super.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/blkdev.h>
  19. #include <linux/module.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/fs.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/highmem.h>
  24. #include <linux/time.h>
  25. #include <linux/init.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/string.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/mount.h>
  30. #include <linux/mpage.h>
  31. #include <linux/swap.h>
  32. #include <linux/writeback.h>
  33. #include <linux/statfs.h>
  34. #include <linux/compat.h>
  35. #include <linux/parser.h>
  36. #include <linux/ctype.h>
  37. #include <linux/namei.h>
  38. #include <linux/miscdevice.h>
  39. #include <linux/magic.h>
  40. #include <linux/slab.h>
  41. #include <linux/cleancache.h>
  42. #include <linux/ratelimit.h>
  43. #include <linux/btrfs.h>
  44. #include "compat.h"
  45. #include "delayed-inode.h"
  46. #include "ctree.h"
  47. #include "disk-io.h"
  48. #include "transaction.h"
  49. #include "btrfs_inode.h"
  50. #include "print-tree.h"
  51. #include "xattr.h"
  52. #include "volumes.h"
  53. #include "version.h"
  54. #include "export.h"
  55. #include "compression.h"
  56. #include "rcu-string.h"
  57. #include "dev-replace.h"
  58. #include "free-space-cache.h"
  59. #define CREATE_TRACE_POINTS
  60. #include <trace/events/btrfs.h>
  61. static const struct super_operations btrfs_super_ops;
  62. static struct file_system_type btrfs_fs_type;
  63. static const char *btrfs_decode_error(int errno)
  64. {
  65. char *errstr = "unknown";
  66. switch (errno) {
  67. case -EIO:
  68. errstr = "IO failure";
  69. break;
  70. case -ENOMEM:
  71. errstr = "Out of memory";
  72. break;
  73. case -EROFS:
  74. errstr = "Readonly filesystem";
  75. break;
  76. case -EEXIST:
  77. errstr = "Object already exists";
  78. break;
  79. }
  80. return errstr;
  81. }
  82. static void save_error_info(struct btrfs_fs_info *fs_info)
  83. {
  84. /*
  85. * today we only save the error info into ram. Long term we'll
  86. * also send it down to the disk
  87. */
  88. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  89. }
  90. /* btrfs handle error by forcing the filesystem readonly */
  91. static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
  92. {
  93. struct super_block *sb = fs_info->sb;
  94. if (sb->s_flags & MS_RDONLY)
  95. return;
  96. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  97. sb->s_flags |= MS_RDONLY;
  98. btrfs_info(fs_info, "forced readonly");
  99. /*
  100. * Note that a running device replace operation is not
  101. * canceled here although there is no way to update
  102. * the progress. It would add the risk of a deadlock,
  103. * therefore the canceling is ommited. The only penalty
  104. * is that some I/O remains active until the procedure
  105. * completes. The next time when the filesystem is
  106. * mounted writeable again, the device replace
  107. * operation continues.
  108. */
  109. }
  110. }
  111. #ifdef CONFIG_PRINTK
  112. /*
  113. * __btrfs_std_error decodes expected errors from the caller and
  114. * invokes the approciate error response.
  115. */
  116. void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
  117. unsigned int line, int errno, const char *fmt, ...)
  118. {
  119. struct super_block *sb = fs_info->sb;
  120. const char *errstr;
  121. /*
  122. * Special case: if the error is EROFS, and we're already
  123. * under MS_RDONLY, then it is safe here.
  124. */
  125. if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
  126. return;
  127. errstr = btrfs_decode_error(errno);
  128. if (fmt) {
  129. struct va_format vaf;
  130. va_list args;
  131. va_start(args, fmt);
  132. vaf.fmt = fmt;
  133. vaf.va = &args;
  134. printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
  135. sb->s_id, function, line, errno, errstr, &vaf);
  136. va_end(args);
  137. } else {
  138. printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
  139. sb->s_id, function, line, errno, errstr);
  140. }
  141. /* Don't go through full error handling during mount */
  142. if (sb->s_flags & MS_BORN) {
  143. save_error_info(fs_info);
  144. btrfs_handle_error(fs_info);
  145. }
  146. }
  147. static const char * const logtypes[] = {
  148. "emergency",
  149. "alert",
  150. "critical",
  151. "error",
  152. "warning",
  153. "notice",
  154. "info",
  155. "debug",
  156. };
  157. void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
  158. {
  159. struct super_block *sb = fs_info->sb;
  160. char lvl[4];
  161. struct va_format vaf;
  162. va_list args;
  163. const char *type = logtypes[4];
  164. int kern_level;
  165. va_start(args, fmt);
  166. kern_level = printk_get_level(fmt);
  167. if (kern_level) {
  168. size_t size = printk_skip_level(fmt) - fmt;
  169. memcpy(lvl, fmt, size);
  170. lvl[size] = '\0';
  171. fmt += size;
  172. type = logtypes[kern_level - '0'];
  173. } else
  174. *lvl = '\0';
  175. vaf.fmt = fmt;
  176. vaf.va = &args;
  177. printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
  178. va_end(args);
  179. }
  180. #else
  181. void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
  182. unsigned int line, int errno, const char *fmt, ...)
  183. {
  184. struct super_block *sb = fs_info->sb;
  185. /*
  186. * Special case: if the error is EROFS, and we're already
  187. * under MS_RDONLY, then it is safe here.
  188. */
  189. if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
  190. return;
  191. /* Don't go through full error handling during mount */
  192. if (sb->s_flags & MS_BORN) {
  193. save_error_info(fs_info);
  194. btrfs_handle_error(fs_info);
  195. }
  196. }
  197. #endif
  198. /*
  199. * We only mark the transaction aborted and then set the file system read-only.
  200. * This will prevent new transactions from starting or trying to join this
  201. * one.
  202. *
  203. * This means that error recovery at the call site is limited to freeing
  204. * any local memory allocations and passing the error code up without
  205. * further cleanup. The transaction should complete as it normally would
  206. * in the call path but will return -EIO.
  207. *
  208. * We'll complete the cleanup in btrfs_end_transaction and
  209. * btrfs_commit_transaction.
  210. */
  211. void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
  212. struct btrfs_root *root, const char *function,
  213. unsigned int line, int errno)
  214. {
  215. /*
  216. * Report first abort since mount
  217. */
  218. if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
  219. &root->fs_info->fs_state)) {
  220. WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
  221. errno);
  222. }
  223. trans->aborted = errno;
  224. /* Nothing used. The other threads that have joined this
  225. * transaction may be able to continue. */
  226. if (!trans->blocks_used) {
  227. const char *errstr;
  228. errstr = btrfs_decode_error(errno);
  229. btrfs_warn(root->fs_info,
  230. "%s:%d: Aborting unused transaction(%s).",
  231. function, line, errstr);
  232. return;
  233. }
  234. ACCESS_ONCE(trans->transaction->aborted) = errno;
  235. __btrfs_std_error(root->fs_info, function, line, errno, NULL);
  236. }
  237. /*
  238. * __btrfs_panic decodes unexpected, fatal errors from the caller,
  239. * issues an alert, and either panics or BUGs, depending on mount options.
  240. */
  241. void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
  242. unsigned int line, int errno, const char *fmt, ...)
  243. {
  244. char *s_id = "<unknown>";
  245. const char *errstr;
  246. struct va_format vaf = { .fmt = fmt };
  247. va_list args;
  248. if (fs_info)
  249. s_id = fs_info->sb->s_id;
  250. va_start(args, fmt);
  251. vaf.va = &args;
  252. errstr = btrfs_decode_error(errno);
  253. if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
  254. panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
  255. s_id, function, line, &vaf, errno, errstr);
  256. printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
  257. s_id, function, line, &vaf, errno, errstr);
  258. va_end(args);
  259. /* Caller calls BUG() */
  260. }
  261. static void btrfs_put_super(struct super_block *sb)
  262. {
  263. (void)close_ctree(btrfs_sb(sb)->tree_root);
  264. /* FIXME: need to fix VFS to return error? */
  265. /* AV: return it _where_? ->put_super() can be triggered by any number
  266. * of async events, up to and including delivery of SIGKILL to the
  267. * last process that kept it busy. Or segfault in the aforementioned
  268. * process... Whom would you report that to?
  269. */
  270. }
  271. enum {
  272. Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
  273. Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
  274. Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
  275. Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
  276. Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
  277. Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
  278. Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
  279. Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
  280. Opt_check_integrity, Opt_check_integrity_including_extent_data,
  281. Opt_check_integrity_print_mask, Opt_fatal_errors,
  282. Opt_err,
  283. };
  284. static match_table_t tokens = {
  285. {Opt_degraded, "degraded"},
  286. {Opt_subvol, "subvol=%s"},
  287. {Opt_subvolid, "subvolid=%d"},
  288. {Opt_device, "device=%s"},
  289. {Opt_nodatasum, "nodatasum"},
  290. {Opt_nodatacow, "nodatacow"},
  291. {Opt_nobarrier, "nobarrier"},
  292. {Opt_max_inline, "max_inline=%s"},
  293. {Opt_alloc_start, "alloc_start=%s"},
  294. {Opt_thread_pool, "thread_pool=%d"},
  295. {Opt_compress, "compress"},
  296. {Opt_compress_type, "compress=%s"},
  297. {Opt_compress_force, "compress-force"},
  298. {Opt_compress_force_type, "compress-force=%s"},
  299. {Opt_ssd, "ssd"},
  300. {Opt_ssd_spread, "ssd_spread"},
  301. {Opt_nossd, "nossd"},
  302. {Opt_noacl, "noacl"},
  303. {Opt_notreelog, "notreelog"},
  304. {Opt_flushoncommit, "flushoncommit"},
  305. {Opt_ratio, "metadata_ratio=%d"},
  306. {Opt_discard, "discard"},
  307. {Opt_space_cache, "space_cache"},
  308. {Opt_clear_cache, "clear_cache"},
  309. {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
  310. {Opt_enospc_debug, "enospc_debug"},
  311. {Opt_subvolrootid, "subvolrootid=%d"},
  312. {Opt_defrag, "autodefrag"},
  313. {Opt_inode_cache, "inode_cache"},
  314. {Opt_no_space_cache, "nospace_cache"},
  315. {Opt_recovery, "recovery"},
  316. {Opt_skip_balance, "skip_balance"},
  317. {Opt_check_integrity, "check_int"},
  318. {Opt_check_integrity_including_extent_data, "check_int_data"},
  319. {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
  320. {Opt_fatal_errors, "fatal_errors=%s"},
  321. {Opt_err, NULL},
  322. };
  323. /*
  324. * Regular mount options parser. Everything that is needed only when
  325. * reading in a new superblock is parsed here.
  326. * XXX JDM: This needs to be cleaned up for remount.
  327. */
  328. int btrfs_parse_options(struct btrfs_root *root, char *options)
  329. {
  330. struct btrfs_fs_info *info = root->fs_info;
  331. substring_t args[MAX_OPT_ARGS];
  332. char *p, *num, *orig = NULL;
  333. u64 cache_gen;
  334. int intarg;
  335. int ret = 0;
  336. char *compress_type;
  337. bool compress_force = false;
  338. cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
  339. if (cache_gen)
  340. btrfs_set_opt(info->mount_opt, SPACE_CACHE);
  341. if (!options)
  342. goto out;
  343. /*
  344. * strsep changes the string, duplicate it because parse_options
  345. * gets called twice
  346. */
  347. options = kstrdup(options, GFP_NOFS);
  348. if (!options)
  349. return -ENOMEM;
  350. orig = options;
  351. while ((p = strsep(&options, ",")) != NULL) {
  352. int token;
  353. if (!*p)
  354. continue;
  355. token = match_token(p, tokens, args);
  356. switch (token) {
  357. case Opt_degraded:
  358. printk(KERN_INFO "btrfs: allowing degraded mounts\n");
  359. btrfs_set_opt(info->mount_opt, DEGRADED);
  360. break;
  361. case Opt_subvol:
  362. case Opt_subvolid:
  363. case Opt_subvolrootid:
  364. case Opt_device:
  365. /*
  366. * These are parsed by btrfs_parse_early_options
  367. * and can be happily ignored here.
  368. */
  369. break;
  370. case Opt_nodatasum:
  371. printk(KERN_INFO "btrfs: setting nodatasum\n");
  372. btrfs_set_opt(info->mount_opt, NODATASUM);
  373. break;
  374. case Opt_nodatacow:
  375. if (!btrfs_test_opt(root, COMPRESS) ||
  376. !btrfs_test_opt(root, FORCE_COMPRESS)) {
  377. printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
  378. } else {
  379. printk(KERN_INFO "btrfs: setting nodatacow\n");
  380. }
  381. info->compress_type = BTRFS_COMPRESS_NONE;
  382. btrfs_clear_opt(info->mount_opt, COMPRESS);
  383. btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
  384. btrfs_set_opt(info->mount_opt, NODATACOW);
  385. btrfs_set_opt(info->mount_opt, NODATASUM);
  386. break;
  387. case Opt_compress_force:
  388. case Opt_compress_force_type:
  389. compress_force = true;
  390. /* Fallthrough */
  391. case Opt_compress:
  392. case Opt_compress_type:
  393. if (token == Opt_compress ||
  394. token == Opt_compress_force ||
  395. strcmp(args[0].from, "zlib") == 0) {
  396. compress_type = "zlib";
  397. info->compress_type = BTRFS_COMPRESS_ZLIB;
  398. btrfs_set_opt(info->mount_opt, COMPRESS);
  399. btrfs_clear_opt(info->mount_opt, NODATACOW);
  400. btrfs_clear_opt(info->mount_opt, NODATASUM);
  401. } else if (strcmp(args[0].from, "lzo") == 0) {
  402. compress_type = "lzo";
  403. info->compress_type = BTRFS_COMPRESS_LZO;
  404. btrfs_set_opt(info->mount_opt, COMPRESS);
  405. btrfs_clear_opt(info->mount_opt, NODATACOW);
  406. btrfs_clear_opt(info->mount_opt, NODATASUM);
  407. btrfs_set_fs_incompat(info, COMPRESS_LZO);
  408. } else if (strncmp(args[0].from, "no", 2) == 0) {
  409. compress_type = "no";
  410. info->compress_type = BTRFS_COMPRESS_NONE;
  411. btrfs_clear_opt(info->mount_opt, COMPRESS);
  412. btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
  413. compress_force = false;
  414. } else {
  415. ret = -EINVAL;
  416. goto out;
  417. }
  418. if (compress_force) {
  419. btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
  420. pr_info("btrfs: force %s compression\n",
  421. compress_type);
  422. } else
  423. pr_info("btrfs: use %s compression\n",
  424. compress_type);
  425. break;
  426. case Opt_ssd:
  427. printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
  428. btrfs_set_opt(info->mount_opt, SSD);
  429. break;
  430. case Opt_ssd_spread:
  431. printk(KERN_INFO "btrfs: use spread ssd "
  432. "allocation scheme\n");
  433. btrfs_set_opt(info->mount_opt, SSD);
  434. btrfs_set_opt(info->mount_opt, SSD_SPREAD);
  435. break;
  436. case Opt_nossd:
  437. printk(KERN_INFO "btrfs: not using ssd allocation "
  438. "scheme\n");
  439. btrfs_set_opt(info->mount_opt, NOSSD);
  440. btrfs_clear_opt(info->mount_opt, SSD);
  441. btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
  442. break;
  443. case Opt_nobarrier:
  444. printk(KERN_INFO "btrfs: turning off barriers\n");
  445. btrfs_set_opt(info->mount_opt, NOBARRIER);
  446. break;
  447. case Opt_thread_pool:
  448. intarg = 0;
  449. match_int(&args[0], &intarg);
  450. if (intarg)
  451. info->thread_pool_size = intarg;
  452. break;
  453. case Opt_max_inline:
  454. num = match_strdup(&args[0]);
  455. if (num) {
  456. info->max_inline = memparse(num, NULL);
  457. kfree(num);
  458. if (info->max_inline) {
  459. info->max_inline = max_t(u64,
  460. info->max_inline,
  461. root->sectorsize);
  462. }
  463. printk(KERN_INFO "btrfs: max_inline at %llu\n",
  464. (unsigned long long)info->max_inline);
  465. }
  466. break;
  467. case Opt_alloc_start:
  468. num = match_strdup(&args[0]);
  469. if (num) {
  470. mutex_lock(&info->chunk_mutex);
  471. info->alloc_start = memparse(num, NULL);
  472. mutex_unlock(&info->chunk_mutex);
  473. kfree(num);
  474. printk(KERN_INFO
  475. "btrfs: allocations start at %llu\n",
  476. (unsigned long long)info->alloc_start);
  477. }
  478. break;
  479. case Opt_noacl:
  480. root->fs_info->sb->s_flags &= ~MS_POSIXACL;
  481. break;
  482. case Opt_notreelog:
  483. printk(KERN_INFO "btrfs: disabling tree log\n");
  484. btrfs_set_opt(info->mount_opt, NOTREELOG);
  485. break;
  486. case Opt_flushoncommit:
  487. printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
  488. btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
  489. break;
  490. case Opt_ratio:
  491. intarg = 0;
  492. match_int(&args[0], &intarg);
  493. if (intarg) {
  494. info->metadata_ratio = intarg;
  495. printk(KERN_INFO "btrfs: metadata ratio %d\n",
  496. info->metadata_ratio);
  497. }
  498. break;
  499. case Opt_discard:
  500. btrfs_set_opt(info->mount_opt, DISCARD);
  501. break;
  502. case Opt_space_cache:
  503. btrfs_set_opt(info->mount_opt, SPACE_CACHE);
  504. break;
  505. case Opt_no_space_cache:
  506. printk(KERN_INFO "btrfs: disabling disk space caching\n");
  507. btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
  508. break;
  509. case Opt_inode_cache:
  510. printk(KERN_INFO "btrfs: enabling inode map caching\n");
  511. btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
  512. break;
  513. case Opt_clear_cache:
  514. printk(KERN_INFO "btrfs: force clearing of disk cache\n");
  515. btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
  516. break;
  517. case Opt_user_subvol_rm_allowed:
  518. btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
  519. break;
  520. case Opt_enospc_debug:
  521. btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
  522. break;
  523. case Opt_defrag:
  524. printk(KERN_INFO "btrfs: enabling auto defrag\n");
  525. btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
  526. break;
  527. case Opt_recovery:
  528. printk(KERN_INFO "btrfs: enabling auto recovery\n");
  529. btrfs_set_opt(info->mount_opt, RECOVERY);
  530. break;
  531. case Opt_skip_balance:
  532. btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
  533. break;
  534. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  535. case Opt_check_integrity_including_extent_data:
  536. printk(KERN_INFO "btrfs: enabling check integrity"
  537. " including extent data\n");
  538. btrfs_set_opt(info->mount_opt,
  539. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
  540. btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
  541. break;
  542. case Opt_check_integrity:
  543. printk(KERN_INFO "btrfs: enabling check integrity\n");
  544. btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
  545. break;
  546. case Opt_check_integrity_print_mask:
  547. intarg = 0;
  548. match_int(&args[0], &intarg);
  549. if (intarg) {
  550. info->check_integrity_print_mask = intarg;
  551. printk(KERN_INFO "btrfs:"
  552. " check_integrity_print_mask 0x%x\n",
  553. info->check_integrity_print_mask);
  554. }
  555. break;
  556. #else
  557. case Opt_check_integrity_including_extent_data:
  558. case Opt_check_integrity:
  559. case Opt_check_integrity_print_mask:
  560. printk(KERN_ERR "btrfs: support for check_integrity*"
  561. " not compiled in!\n");
  562. ret = -EINVAL;
  563. goto out;
  564. #endif
  565. case Opt_fatal_errors:
  566. if (strcmp(args[0].from, "panic") == 0)
  567. btrfs_set_opt(info->mount_opt,
  568. PANIC_ON_FATAL_ERROR);
  569. else if (strcmp(args[0].from, "bug") == 0)
  570. btrfs_clear_opt(info->mount_opt,
  571. PANIC_ON_FATAL_ERROR);
  572. else {
  573. ret = -EINVAL;
  574. goto out;
  575. }
  576. break;
  577. case Opt_err:
  578. printk(KERN_INFO "btrfs: unrecognized mount option "
  579. "'%s'\n", p);
  580. ret = -EINVAL;
  581. goto out;
  582. default:
  583. break;
  584. }
  585. }
  586. out:
  587. if (!ret && btrfs_test_opt(root, SPACE_CACHE))
  588. printk(KERN_INFO "btrfs: disk space caching is enabled\n");
  589. kfree(orig);
  590. return ret;
  591. }
  592. /*
  593. * Parse mount options that are required early in the mount process.
  594. *
  595. * All other options will be parsed on much later in the mount process and
  596. * only when we need to allocate a new super block.
  597. */
  598. static int btrfs_parse_early_options(const char *options, fmode_t flags,
  599. void *holder, char **subvol_name, u64 *subvol_objectid,
  600. u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
  601. {
  602. substring_t args[MAX_OPT_ARGS];
  603. char *device_name, *opts, *orig, *p;
  604. int error = 0;
  605. int intarg;
  606. if (!options)
  607. return 0;
  608. /*
  609. * strsep changes the string, duplicate it because parse_options
  610. * gets called twice
  611. */
  612. opts = kstrdup(options, GFP_KERNEL);
  613. if (!opts)
  614. return -ENOMEM;
  615. orig = opts;
  616. while ((p = strsep(&opts, ",")) != NULL) {
  617. int token;
  618. if (!*p)
  619. continue;
  620. token = match_token(p, tokens, args);
  621. switch (token) {
  622. case Opt_subvol:
  623. kfree(*subvol_name);
  624. *subvol_name = match_strdup(&args[0]);
  625. break;
  626. case Opt_subvolid:
  627. intarg = 0;
  628. error = match_int(&args[0], &intarg);
  629. if (!error) {
  630. /* we want the original fs_tree */
  631. if (!intarg)
  632. *subvol_objectid =
  633. BTRFS_FS_TREE_OBJECTID;
  634. else
  635. *subvol_objectid = intarg;
  636. }
  637. break;
  638. case Opt_subvolrootid:
  639. intarg = 0;
  640. error = match_int(&args[0], &intarg);
  641. if (!error) {
  642. /* we want the original fs_tree */
  643. if (!intarg)
  644. *subvol_rootid =
  645. BTRFS_FS_TREE_OBJECTID;
  646. else
  647. *subvol_rootid = intarg;
  648. }
  649. break;
  650. case Opt_device:
  651. device_name = match_strdup(&args[0]);
  652. if (!device_name) {
  653. error = -ENOMEM;
  654. goto out;
  655. }
  656. error = btrfs_scan_one_device(device_name,
  657. flags, holder, fs_devices);
  658. kfree(device_name);
  659. if (error)
  660. goto out;
  661. break;
  662. default:
  663. break;
  664. }
  665. }
  666. out:
  667. kfree(orig);
  668. return error;
  669. }
  670. static struct dentry *get_default_root(struct super_block *sb,
  671. u64 subvol_objectid)
  672. {
  673. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  674. struct btrfs_root *root = fs_info->tree_root;
  675. struct btrfs_root *new_root;
  676. struct btrfs_dir_item *di;
  677. struct btrfs_path *path;
  678. struct btrfs_key location;
  679. struct inode *inode;
  680. u64 dir_id;
  681. int new = 0;
  682. /*
  683. * We have a specific subvol we want to mount, just setup location and
  684. * go look up the root.
  685. */
  686. if (subvol_objectid) {
  687. location.objectid = subvol_objectid;
  688. location.type = BTRFS_ROOT_ITEM_KEY;
  689. location.offset = (u64)-1;
  690. goto find_root;
  691. }
  692. path = btrfs_alloc_path();
  693. if (!path)
  694. return ERR_PTR(-ENOMEM);
  695. path->leave_spinning = 1;
  696. /*
  697. * Find the "default" dir item which points to the root item that we
  698. * will mount by default if we haven't been given a specific subvolume
  699. * to mount.
  700. */
  701. dir_id = btrfs_super_root_dir(fs_info->super_copy);
  702. di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
  703. if (IS_ERR(di)) {
  704. btrfs_free_path(path);
  705. return ERR_CAST(di);
  706. }
  707. if (!di) {
  708. /*
  709. * Ok the default dir item isn't there. This is weird since
  710. * it's always been there, but don't freak out, just try and
  711. * mount to root most subvolume.
  712. */
  713. btrfs_free_path(path);
  714. dir_id = BTRFS_FIRST_FREE_OBJECTID;
  715. new_root = fs_info->fs_root;
  716. goto setup_root;
  717. }
  718. btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
  719. btrfs_free_path(path);
  720. find_root:
  721. new_root = btrfs_read_fs_root_no_name(fs_info, &location);
  722. if (IS_ERR(new_root))
  723. return ERR_CAST(new_root);
  724. if (btrfs_root_refs(&new_root->root_item) == 0)
  725. return ERR_PTR(-ENOENT);
  726. dir_id = btrfs_root_dirid(&new_root->root_item);
  727. setup_root:
  728. location.objectid = dir_id;
  729. location.type = BTRFS_INODE_ITEM_KEY;
  730. location.offset = 0;
  731. inode = btrfs_iget(sb, &location, new_root, &new);
  732. if (IS_ERR(inode))
  733. return ERR_CAST(inode);
  734. /*
  735. * If we're just mounting the root most subvol put the inode and return
  736. * a reference to the dentry. We will have already gotten a reference
  737. * to the inode in btrfs_fill_super so we're good to go.
  738. */
  739. if (!new && sb->s_root->d_inode == inode) {
  740. iput(inode);
  741. return dget(sb->s_root);
  742. }
  743. return d_obtain_alias(inode);
  744. }
  745. static int btrfs_fill_super(struct super_block *sb,
  746. struct btrfs_fs_devices *fs_devices,
  747. void *data, int silent)
  748. {
  749. struct inode *inode;
  750. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  751. struct btrfs_key key;
  752. int err;
  753. sb->s_maxbytes = MAX_LFS_FILESIZE;
  754. sb->s_magic = BTRFS_SUPER_MAGIC;
  755. sb->s_op = &btrfs_super_ops;
  756. sb->s_d_op = &btrfs_dentry_operations;
  757. sb->s_export_op = &btrfs_export_ops;
  758. sb->s_xattr = btrfs_xattr_handlers;
  759. sb->s_time_gran = 1;
  760. #ifdef CONFIG_BTRFS_FS_POSIX_ACL
  761. sb->s_flags |= MS_POSIXACL;
  762. #endif
  763. sb->s_flags |= MS_I_VERSION;
  764. err = open_ctree(sb, fs_devices, (char *)data);
  765. if (err) {
  766. printk("btrfs: open_ctree failed\n");
  767. return err;
  768. }
  769. key.objectid = BTRFS_FIRST_FREE_OBJECTID;
  770. key.type = BTRFS_INODE_ITEM_KEY;
  771. key.offset = 0;
  772. inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
  773. if (IS_ERR(inode)) {
  774. err = PTR_ERR(inode);
  775. goto fail_close;
  776. }
  777. sb->s_root = d_make_root(inode);
  778. if (!sb->s_root) {
  779. err = -ENOMEM;
  780. goto fail_close;
  781. }
  782. save_mount_options(sb, data);
  783. cleancache_init_fs(sb);
  784. sb->s_flags |= MS_ACTIVE;
  785. return 0;
  786. fail_close:
  787. close_ctree(fs_info->tree_root);
  788. return err;
  789. }
  790. int btrfs_sync_fs(struct super_block *sb, int wait)
  791. {
  792. struct btrfs_trans_handle *trans;
  793. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  794. struct btrfs_root *root = fs_info->tree_root;
  795. trace_btrfs_sync_fs(wait);
  796. if (!wait) {
  797. filemap_flush(fs_info->btree_inode->i_mapping);
  798. return 0;
  799. }
  800. btrfs_wait_ordered_extents(root, 0);
  801. trans = btrfs_attach_transaction_barrier(root);
  802. if (IS_ERR(trans)) {
  803. /* no transaction, don't bother */
  804. if (PTR_ERR(trans) == -ENOENT)
  805. return 0;
  806. return PTR_ERR(trans);
  807. }
  808. return btrfs_commit_transaction(trans, root);
  809. }
  810. static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
  811. {
  812. struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
  813. struct btrfs_root *root = info->tree_root;
  814. char *compress_type;
  815. if (btrfs_test_opt(root, DEGRADED))
  816. seq_puts(seq, ",degraded");
  817. if (btrfs_test_opt(root, NODATASUM))
  818. seq_puts(seq, ",nodatasum");
  819. if (btrfs_test_opt(root, NODATACOW))
  820. seq_puts(seq, ",nodatacow");
  821. if (btrfs_test_opt(root, NOBARRIER))
  822. seq_puts(seq, ",nobarrier");
  823. if (info->max_inline != 8192 * 1024)
  824. seq_printf(seq, ",max_inline=%llu",
  825. (unsigned long long)info->max_inline);
  826. if (info->alloc_start != 0)
  827. seq_printf(seq, ",alloc_start=%llu",
  828. (unsigned long long)info->alloc_start);
  829. if (info->thread_pool_size != min_t(unsigned long,
  830. num_online_cpus() + 2, 8))
  831. seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
  832. if (btrfs_test_opt(root, COMPRESS)) {
  833. if (info->compress_type == BTRFS_COMPRESS_ZLIB)
  834. compress_type = "zlib";
  835. else
  836. compress_type = "lzo";
  837. if (btrfs_test_opt(root, FORCE_COMPRESS))
  838. seq_printf(seq, ",compress-force=%s", compress_type);
  839. else
  840. seq_printf(seq, ",compress=%s", compress_type);
  841. }
  842. if (btrfs_test_opt(root, NOSSD))
  843. seq_puts(seq, ",nossd");
  844. if (btrfs_test_opt(root, SSD_SPREAD))
  845. seq_puts(seq, ",ssd_spread");
  846. else if (btrfs_test_opt(root, SSD))
  847. seq_puts(seq, ",ssd");
  848. if (btrfs_test_opt(root, NOTREELOG))
  849. seq_puts(seq, ",notreelog");
  850. if (btrfs_test_opt(root, FLUSHONCOMMIT))
  851. seq_puts(seq, ",flushoncommit");
  852. if (btrfs_test_opt(root, DISCARD))
  853. seq_puts(seq, ",discard");
  854. if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
  855. seq_puts(seq, ",noacl");
  856. if (btrfs_test_opt(root, SPACE_CACHE))
  857. seq_puts(seq, ",space_cache");
  858. else
  859. seq_puts(seq, ",nospace_cache");
  860. if (btrfs_test_opt(root, CLEAR_CACHE))
  861. seq_puts(seq, ",clear_cache");
  862. if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
  863. seq_puts(seq, ",user_subvol_rm_allowed");
  864. if (btrfs_test_opt(root, ENOSPC_DEBUG))
  865. seq_puts(seq, ",enospc_debug");
  866. if (btrfs_test_opt(root, AUTO_DEFRAG))
  867. seq_puts(seq, ",autodefrag");
  868. if (btrfs_test_opt(root, INODE_MAP_CACHE))
  869. seq_puts(seq, ",inode_cache");
  870. if (btrfs_test_opt(root, SKIP_BALANCE))
  871. seq_puts(seq, ",skip_balance");
  872. if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
  873. seq_puts(seq, ",fatal_errors=panic");
  874. return 0;
  875. }
  876. static int btrfs_test_super(struct super_block *s, void *data)
  877. {
  878. struct btrfs_fs_info *p = data;
  879. struct btrfs_fs_info *fs_info = btrfs_sb(s);
  880. return fs_info->fs_devices == p->fs_devices;
  881. }
  882. static int btrfs_set_super(struct super_block *s, void *data)
  883. {
  884. int err = set_anon_super(s, data);
  885. if (!err)
  886. s->s_fs_info = data;
  887. return err;
  888. }
  889. /*
  890. * subvolumes are identified by ino 256
  891. */
  892. static inline int is_subvolume_inode(struct inode *inode)
  893. {
  894. if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
  895. return 1;
  896. return 0;
  897. }
  898. /*
  899. * This will strip out the subvol=%s argument for an argument string and add
  900. * subvolid=0 to make sure we get the actual tree root for path walking to the
  901. * subvol we want.
  902. */
  903. static char *setup_root_args(char *args)
  904. {
  905. unsigned len = strlen(args) + 2 + 1;
  906. char *src, *dst, *buf;
  907. /*
  908. * We need the same args as before, but with this substitution:
  909. * s!subvol=[^,]+!subvolid=0!
  910. *
  911. * Since the replacement string is up to 2 bytes longer than the
  912. * original, allocate strlen(args) + 2 + 1 bytes.
  913. */
  914. src = strstr(args, "subvol=");
  915. /* This shouldn't happen, but just in case.. */
  916. if (!src)
  917. return NULL;
  918. buf = dst = kmalloc(len, GFP_NOFS);
  919. if (!buf)
  920. return NULL;
  921. /*
  922. * If the subvol= arg is not at the start of the string,
  923. * copy whatever precedes it into buf.
  924. */
  925. if (src != args) {
  926. *src++ = '\0';
  927. strcpy(buf, args);
  928. dst += strlen(args);
  929. }
  930. strcpy(dst, "subvolid=0");
  931. dst += strlen("subvolid=0");
  932. /*
  933. * If there is a "," after the original subvol=... string,
  934. * copy that suffix into our buffer. Otherwise, we're done.
  935. */
  936. src = strchr(src, ',');
  937. if (src)
  938. strcpy(dst, src);
  939. return buf;
  940. }
  941. static struct dentry *mount_subvol(const char *subvol_name, int flags,
  942. const char *device_name, char *data)
  943. {
  944. struct dentry *root;
  945. struct vfsmount *mnt;
  946. char *newargs;
  947. newargs = setup_root_args(data);
  948. if (!newargs)
  949. return ERR_PTR(-ENOMEM);
  950. mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
  951. newargs);
  952. kfree(newargs);
  953. if (IS_ERR(mnt))
  954. return ERR_CAST(mnt);
  955. root = mount_subtree(mnt, subvol_name);
  956. if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
  957. struct super_block *s = root->d_sb;
  958. dput(root);
  959. root = ERR_PTR(-EINVAL);
  960. deactivate_locked_super(s);
  961. printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
  962. subvol_name);
  963. }
  964. return root;
  965. }
  966. /*
  967. * Find a superblock for the given device / mount point.
  968. *
  969. * Note: This is based on get_sb_bdev from fs/super.c with a few additions
  970. * for multiple device setup. Make sure to keep it in sync.
  971. */
  972. static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
  973. const char *device_name, void *data)
  974. {
  975. struct block_device *bdev = NULL;
  976. struct super_block *s;
  977. struct dentry *root;
  978. struct btrfs_fs_devices *fs_devices = NULL;
  979. struct btrfs_fs_info *fs_info = NULL;
  980. fmode_t mode = FMODE_READ;
  981. char *subvol_name = NULL;
  982. u64 subvol_objectid = 0;
  983. u64 subvol_rootid = 0;
  984. int error = 0;
  985. if (!(flags & MS_RDONLY))
  986. mode |= FMODE_WRITE;
  987. error = btrfs_parse_early_options(data, mode, fs_type,
  988. &subvol_name, &subvol_objectid,
  989. &subvol_rootid, &fs_devices);
  990. if (error) {
  991. kfree(subvol_name);
  992. return ERR_PTR(error);
  993. }
  994. if (subvol_name) {
  995. root = mount_subvol(subvol_name, flags, device_name, data);
  996. kfree(subvol_name);
  997. return root;
  998. }
  999. error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
  1000. if (error)
  1001. return ERR_PTR(error);
  1002. /*
  1003. * Setup a dummy root and fs_info for test/set super. This is because
  1004. * we don't actually fill this stuff out until open_ctree, but we need
  1005. * it for searching for existing supers, so this lets us do that and
  1006. * then open_ctree will properly initialize everything later.
  1007. */
  1008. fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
  1009. if (!fs_info)
  1010. return ERR_PTR(-ENOMEM);
  1011. fs_info->fs_devices = fs_devices;
  1012. fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
  1013. fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
  1014. if (!fs_info->super_copy || !fs_info->super_for_commit) {
  1015. error = -ENOMEM;
  1016. goto error_fs_info;
  1017. }
  1018. error = btrfs_open_devices(fs_devices, mode, fs_type);
  1019. if (error)
  1020. goto error_fs_info;
  1021. if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
  1022. error = -EACCES;
  1023. goto error_close_devices;
  1024. }
  1025. bdev = fs_devices->latest_bdev;
  1026. s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
  1027. fs_info);
  1028. if (IS_ERR(s)) {
  1029. error = PTR_ERR(s);
  1030. goto error_close_devices;
  1031. }
  1032. if (s->s_root) {
  1033. btrfs_close_devices(fs_devices);
  1034. free_fs_info(fs_info);
  1035. if ((flags ^ s->s_flags) & MS_RDONLY)
  1036. error = -EBUSY;
  1037. } else {
  1038. char b[BDEVNAME_SIZE];
  1039. strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
  1040. btrfs_sb(s)->bdev_holder = fs_type;
  1041. error = btrfs_fill_super(s, fs_devices, data,
  1042. flags & MS_SILENT ? 1 : 0);
  1043. }
  1044. root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
  1045. if (IS_ERR(root))
  1046. deactivate_locked_super(s);
  1047. return root;
  1048. error_close_devices:
  1049. btrfs_close_devices(fs_devices);
  1050. error_fs_info:
  1051. free_fs_info(fs_info);
  1052. return ERR_PTR(error);
  1053. }
  1054. static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
  1055. {
  1056. spin_lock_irq(&workers->lock);
  1057. workers->max_workers = new_limit;
  1058. spin_unlock_irq(&workers->lock);
  1059. }
  1060. static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
  1061. int new_pool_size, int old_pool_size)
  1062. {
  1063. if (new_pool_size == old_pool_size)
  1064. return;
  1065. fs_info->thread_pool_size = new_pool_size;
  1066. printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
  1067. old_pool_size, new_pool_size);
  1068. btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
  1069. btrfs_set_max_workers(&fs_info->workers, new_pool_size);
  1070. btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
  1071. btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
  1072. btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
  1073. btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
  1074. btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
  1075. btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
  1076. btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
  1077. btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
  1078. btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
  1079. btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
  1080. btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
  1081. btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
  1082. new_pool_size);
  1083. }
  1084. static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info,
  1085. unsigned long old_opts, int flags)
  1086. {
  1087. set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
  1088. if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
  1089. (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
  1090. (flags & MS_RDONLY))) {
  1091. /* wait for any defraggers to finish */
  1092. wait_event(fs_info->transaction_wait,
  1093. (atomic_read(&fs_info->defrag_running) == 0));
  1094. if (flags & MS_RDONLY)
  1095. sync_filesystem(fs_info->sb);
  1096. }
  1097. }
  1098. static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
  1099. unsigned long old_opts)
  1100. {
  1101. /*
  1102. * We need cleanup all defragable inodes if the autodefragment is
  1103. * close or the fs is R/O.
  1104. */
  1105. if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
  1106. (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
  1107. (fs_info->sb->s_flags & MS_RDONLY))) {
  1108. btrfs_cleanup_defrag_inodes(fs_info);
  1109. }
  1110. clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
  1111. }
  1112. static int btrfs_remount(struct super_block *sb, int *flags, char *data)
  1113. {
  1114. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1115. struct btrfs_root *root = fs_info->tree_root;
  1116. unsigned old_flags = sb->s_flags;
  1117. unsigned long old_opts = fs_info->mount_opt;
  1118. unsigned long old_compress_type = fs_info->compress_type;
  1119. u64 old_max_inline = fs_info->max_inline;
  1120. u64 old_alloc_start = fs_info->alloc_start;
  1121. int old_thread_pool_size = fs_info->thread_pool_size;
  1122. unsigned int old_metadata_ratio = fs_info->metadata_ratio;
  1123. int ret;
  1124. btrfs_remount_prepare(fs_info, old_opts, *flags);
  1125. ret = btrfs_parse_options(root, data);
  1126. if (ret) {
  1127. ret = -EINVAL;
  1128. goto restore;
  1129. }
  1130. btrfs_resize_thread_pool(fs_info,
  1131. fs_info->thread_pool_size, old_thread_pool_size);
  1132. if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
  1133. goto out;
  1134. if (*flags & MS_RDONLY) {
  1135. /*
  1136. * this also happens on 'umount -rf' or on shutdown, when
  1137. * the filesystem is busy.
  1138. */
  1139. sb->s_flags |= MS_RDONLY;
  1140. btrfs_dev_replace_suspend_for_unmount(fs_info);
  1141. btrfs_scrub_cancel(fs_info);
  1142. ret = btrfs_commit_super(root);
  1143. if (ret)
  1144. goto restore;
  1145. } else {
  1146. if (fs_info->fs_devices->rw_devices == 0) {
  1147. ret = -EACCES;
  1148. goto restore;
  1149. }
  1150. if (fs_info->fs_devices->missing_devices >
  1151. fs_info->num_tolerated_disk_barrier_failures &&
  1152. !(*flags & MS_RDONLY)) {
  1153. printk(KERN_WARNING
  1154. "Btrfs: too many missing devices, writeable remount is not allowed\n");
  1155. ret = -EACCES;
  1156. goto restore;
  1157. }
  1158. if (btrfs_super_log_root(fs_info->super_copy) != 0) {
  1159. ret = -EINVAL;
  1160. goto restore;
  1161. }
  1162. ret = btrfs_cleanup_fs_roots(fs_info);
  1163. if (ret)
  1164. goto restore;
  1165. /* recover relocation */
  1166. ret = btrfs_recover_relocation(root);
  1167. if (ret)
  1168. goto restore;
  1169. ret = btrfs_resume_balance_async(fs_info);
  1170. if (ret)
  1171. goto restore;
  1172. ret = btrfs_resume_dev_replace_async(fs_info);
  1173. if (ret) {
  1174. pr_warn("btrfs: failed to resume dev_replace\n");
  1175. goto restore;
  1176. }
  1177. sb->s_flags &= ~MS_RDONLY;
  1178. }
  1179. out:
  1180. btrfs_remount_cleanup(fs_info, old_opts);
  1181. return 0;
  1182. restore:
  1183. /* We've hit an error - don't reset MS_RDONLY */
  1184. if (sb->s_flags & MS_RDONLY)
  1185. old_flags |= MS_RDONLY;
  1186. sb->s_flags = old_flags;
  1187. fs_info->mount_opt = old_opts;
  1188. fs_info->compress_type = old_compress_type;
  1189. fs_info->max_inline = old_max_inline;
  1190. mutex_lock(&fs_info->chunk_mutex);
  1191. fs_info->alloc_start = old_alloc_start;
  1192. mutex_unlock(&fs_info->chunk_mutex);
  1193. btrfs_resize_thread_pool(fs_info,
  1194. old_thread_pool_size, fs_info->thread_pool_size);
  1195. fs_info->metadata_ratio = old_metadata_ratio;
  1196. btrfs_remount_cleanup(fs_info, old_opts);
  1197. return ret;
  1198. }
  1199. /* Used to sort the devices by max_avail(descending sort) */
  1200. static int btrfs_cmp_device_free_bytes(const void *dev_info1,
  1201. const void *dev_info2)
  1202. {
  1203. if (((struct btrfs_device_info *)dev_info1)->max_avail >
  1204. ((struct btrfs_device_info *)dev_info2)->max_avail)
  1205. return -1;
  1206. else if (((struct btrfs_device_info *)dev_info1)->max_avail <
  1207. ((struct btrfs_device_info *)dev_info2)->max_avail)
  1208. return 1;
  1209. else
  1210. return 0;
  1211. }
  1212. /*
  1213. * sort the devices by max_avail, in which max free extent size of each device
  1214. * is stored.(Descending Sort)
  1215. */
  1216. static inline void btrfs_descending_sort_devices(
  1217. struct btrfs_device_info *devices,
  1218. size_t nr_devices)
  1219. {
  1220. sort(devices, nr_devices, sizeof(struct btrfs_device_info),
  1221. btrfs_cmp_device_free_bytes, NULL);
  1222. }
  1223. /*
  1224. * The helper to calc the free space on the devices that can be used to store
  1225. * file data.
  1226. */
  1227. static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
  1228. {
  1229. struct btrfs_fs_info *fs_info = root->fs_info;
  1230. struct btrfs_device_info *devices_info;
  1231. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  1232. struct btrfs_device *device;
  1233. u64 skip_space;
  1234. u64 type;
  1235. u64 avail_space;
  1236. u64 used_space;
  1237. u64 min_stripe_size;
  1238. int min_stripes = 1, num_stripes = 1;
  1239. int i = 0, nr_devices;
  1240. int ret;
  1241. nr_devices = fs_info->fs_devices->open_devices;
  1242. BUG_ON(!nr_devices);
  1243. devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
  1244. GFP_NOFS);
  1245. if (!devices_info)
  1246. return -ENOMEM;
  1247. /* calc min stripe number for data space alloction */
  1248. type = btrfs_get_alloc_profile(root, 1);
  1249. if (type & BTRFS_BLOCK_GROUP_RAID0) {
  1250. min_stripes = 2;
  1251. num_stripes = nr_devices;
  1252. } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
  1253. min_stripes = 2;
  1254. num_stripes = 2;
  1255. } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
  1256. min_stripes = 4;
  1257. num_stripes = 4;
  1258. }
  1259. if (type & BTRFS_BLOCK_GROUP_DUP)
  1260. min_stripe_size = 2 * BTRFS_STRIPE_LEN;
  1261. else
  1262. min_stripe_size = BTRFS_STRIPE_LEN;
  1263. list_for_each_entry(device, &fs_devices->devices, dev_list) {
  1264. if (!device->in_fs_metadata || !device->bdev ||
  1265. device->is_tgtdev_for_dev_replace)
  1266. continue;
  1267. avail_space = device->total_bytes - device->bytes_used;
  1268. /* align with stripe_len */
  1269. do_div(avail_space, BTRFS_STRIPE_LEN);
  1270. avail_space *= BTRFS_STRIPE_LEN;
  1271. /*
  1272. * In order to avoid overwritting the superblock on the drive,
  1273. * btrfs starts at an offset of at least 1MB when doing chunk
  1274. * allocation.
  1275. */
  1276. skip_space = 1024 * 1024;
  1277. /* user can set the offset in fs_info->alloc_start. */
  1278. if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
  1279. device->total_bytes)
  1280. skip_space = max(fs_info->alloc_start, skip_space);
  1281. /*
  1282. * btrfs can not use the free space in [0, skip_space - 1],
  1283. * we must subtract it from the total. In order to implement
  1284. * it, we account the used space in this range first.
  1285. */
  1286. ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
  1287. &used_space);
  1288. if (ret) {
  1289. kfree(devices_info);
  1290. return ret;
  1291. }
  1292. /* calc the free space in [0, skip_space - 1] */
  1293. skip_space -= used_space;
  1294. /*
  1295. * we can use the free space in [0, skip_space - 1], subtract
  1296. * it from the total.
  1297. */
  1298. if (avail_space && avail_space >= skip_space)
  1299. avail_space -= skip_space;
  1300. else
  1301. avail_space = 0;
  1302. if (avail_space < min_stripe_size)
  1303. continue;
  1304. devices_info[i].dev = device;
  1305. devices_info[i].max_avail = avail_space;
  1306. i++;
  1307. }
  1308. nr_devices = i;
  1309. btrfs_descending_sort_devices(devices_info, nr_devices);
  1310. i = nr_devices - 1;
  1311. avail_space = 0;
  1312. while (nr_devices >= min_stripes) {
  1313. if (num_stripes > nr_devices)
  1314. num_stripes = nr_devices;
  1315. if (devices_info[i].max_avail >= min_stripe_size) {
  1316. int j;
  1317. u64 alloc_size;
  1318. avail_space += devices_info[i].max_avail * num_stripes;
  1319. alloc_size = devices_info[i].max_avail;
  1320. for (j = i + 1 - num_stripes; j <= i; j++)
  1321. devices_info[j].max_avail -= alloc_size;
  1322. }
  1323. i--;
  1324. nr_devices--;
  1325. }
  1326. kfree(devices_info);
  1327. *free_bytes = avail_space;
  1328. return 0;
  1329. }
  1330. static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  1331. {
  1332. struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
  1333. struct btrfs_super_block *disk_super = fs_info->super_copy;
  1334. struct list_head *head = &fs_info->space_info;
  1335. struct btrfs_space_info *found;
  1336. u64 total_used = 0;
  1337. u64 total_free_data = 0;
  1338. int bits = dentry->d_sb->s_blocksize_bits;
  1339. __be32 *fsid = (__be32 *)fs_info->fsid;
  1340. int ret;
  1341. /* holding chunk_muext to avoid allocating new chunks */
  1342. mutex_lock(&fs_info->chunk_mutex);
  1343. rcu_read_lock();
  1344. list_for_each_entry_rcu(found, head, list) {
  1345. if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
  1346. total_free_data += found->disk_total - found->disk_used;
  1347. total_free_data -=
  1348. btrfs_account_ro_block_groups_free_space(found);
  1349. }
  1350. total_used += found->disk_used;
  1351. }
  1352. rcu_read_unlock();
  1353. buf->f_namelen = BTRFS_NAME_LEN;
  1354. buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
  1355. buf->f_bfree = buf->f_blocks - (total_used >> bits);
  1356. buf->f_bsize = dentry->d_sb->s_blocksize;
  1357. buf->f_type = BTRFS_SUPER_MAGIC;
  1358. buf->f_bavail = total_free_data;
  1359. ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
  1360. if (ret) {
  1361. mutex_unlock(&fs_info->chunk_mutex);
  1362. return ret;
  1363. }
  1364. buf->f_bavail += total_free_data;
  1365. buf->f_bavail = buf->f_bavail >> bits;
  1366. mutex_unlock(&fs_info->chunk_mutex);
  1367. /* We treat it as constant endianness (it doesn't matter _which_)
  1368. because we want the fsid to come out the same whether mounted
  1369. on a big-endian or little-endian host */
  1370. buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
  1371. buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
  1372. /* Mask in the root object ID too, to disambiguate subvols */
  1373. buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
  1374. buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
  1375. return 0;
  1376. }
  1377. static void btrfs_kill_super(struct super_block *sb)
  1378. {
  1379. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1380. kill_anon_super(sb);
  1381. free_fs_info(fs_info);
  1382. }
  1383. static struct file_system_type btrfs_fs_type = {
  1384. .owner = THIS_MODULE,
  1385. .name = "btrfs",
  1386. .mount = btrfs_mount,
  1387. .kill_sb = btrfs_kill_super,
  1388. .fs_flags = FS_REQUIRES_DEV,
  1389. };
  1390. MODULE_ALIAS_FS("btrfs");
  1391. /*
  1392. * used by btrfsctl to scan devices when no FS is mounted
  1393. */
  1394. static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
  1395. unsigned long arg)
  1396. {
  1397. struct btrfs_ioctl_vol_args *vol;
  1398. struct btrfs_fs_devices *fs_devices;
  1399. int ret = -ENOTTY;
  1400. if (!capable(CAP_SYS_ADMIN))
  1401. return -EPERM;
  1402. vol = memdup_user((void __user *)arg, sizeof(*vol));
  1403. if (IS_ERR(vol))
  1404. return PTR_ERR(vol);
  1405. switch (cmd) {
  1406. case BTRFS_IOC_SCAN_DEV:
  1407. ret = btrfs_scan_one_device(vol->name, FMODE_READ,
  1408. &btrfs_fs_type, &fs_devices);
  1409. break;
  1410. case BTRFS_IOC_DEVICES_READY:
  1411. ret = btrfs_scan_one_device(vol->name, FMODE_READ,
  1412. &btrfs_fs_type, &fs_devices);
  1413. if (ret)
  1414. break;
  1415. ret = !(fs_devices->num_devices == fs_devices->total_devices);
  1416. break;
  1417. }
  1418. kfree(vol);
  1419. return ret;
  1420. }
  1421. static int btrfs_freeze(struct super_block *sb)
  1422. {
  1423. struct btrfs_trans_handle *trans;
  1424. struct btrfs_root *root = btrfs_sb(sb)->tree_root;
  1425. trans = btrfs_attach_transaction_barrier(root);
  1426. if (IS_ERR(trans)) {
  1427. /* no transaction, don't bother */
  1428. if (PTR_ERR(trans) == -ENOENT)
  1429. return 0;
  1430. return PTR_ERR(trans);
  1431. }
  1432. return btrfs_commit_transaction(trans, root);
  1433. }
  1434. static int btrfs_unfreeze(struct super_block *sb)
  1435. {
  1436. return 0;
  1437. }
  1438. static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
  1439. {
  1440. struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
  1441. struct btrfs_fs_devices *cur_devices;
  1442. struct btrfs_device *dev, *first_dev = NULL;
  1443. struct list_head *head;
  1444. struct rcu_string *name;
  1445. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  1446. cur_devices = fs_info->fs_devices;
  1447. while (cur_devices) {
  1448. head = &cur_devices->devices;
  1449. list_for_each_entry(dev, head, dev_list) {
  1450. if (dev->missing)
  1451. continue;
  1452. if (!first_dev || dev->devid < first_dev->devid)
  1453. first_dev = dev;
  1454. }
  1455. cur_devices = cur_devices->seed;
  1456. }
  1457. if (first_dev) {
  1458. rcu_read_lock();
  1459. name = rcu_dereference(first_dev->name);
  1460. seq_escape(m, name->str, " \t\n\\");
  1461. rcu_read_unlock();
  1462. } else {
  1463. WARN_ON(1);
  1464. }
  1465. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  1466. return 0;
  1467. }
  1468. static const struct super_operations btrfs_super_ops = {
  1469. .drop_inode = btrfs_drop_inode,
  1470. .evict_inode = btrfs_evict_inode,
  1471. .put_super = btrfs_put_super,
  1472. .sync_fs = btrfs_sync_fs,
  1473. .show_options = btrfs_show_options,
  1474. .show_devname = btrfs_show_devname,
  1475. .write_inode = btrfs_write_inode,
  1476. .alloc_inode = btrfs_alloc_inode,
  1477. .destroy_inode = btrfs_destroy_inode,
  1478. .statfs = btrfs_statfs,
  1479. .remount_fs = btrfs_remount,
  1480. .freeze_fs = btrfs_freeze,
  1481. .unfreeze_fs = btrfs_unfreeze,
  1482. };
  1483. static const struct file_operations btrfs_ctl_fops = {
  1484. .unlocked_ioctl = btrfs_control_ioctl,
  1485. .compat_ioctl = btrfs_control_ioctl,
  1486. .owner = THIS_MODULE,
  1487. .llseek = noop_llseek,
  1488. };
  1489. static struct miscdevice btrfs_misc = {
  1490. .minor = BTRFS_MINOR,
  1491. .name = "btrfs-control",
  1492. .fops = &btrfs_ctl_fops
  1493. };
  1494. MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
  1495. MODULE_ALIAS("devname:btrfs-control");
  1496. static int btrfs_interface_init(void)
  1497. {
  1498. return misc_register(&btrfs_misc);
  1499. }
  1500. static void btrfs_interface_exit(void)
  1501. {
  1502. if (misc_deregister(&btrfs_misc) < 0)
  1503. printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
  1504. }
  1505. static int __init init_btrfs_fs(void)
  1506. {
  1507. int err;
  1508. err = btrfs_init_sysfs();
  1509. if (err)
  1510. return err;
  1511. btrfs_init_compress();
  1512. err = btrfs_init_cachep();
  1513. if (err)
  1514. goto free_compress;
  1515. err = extent_io_init();
  1516. if (err)
  1517. goto free_cachep;
  1518. err = extent_map_init();
  1519. if (err)
  1520. goto free_extent_io;
  1521. err = ordered_data_init();
  1522. if (err)
  1523. goto free_extent_map;
  1524. err = btrfs_delayed_inode_init();
  1525. if (err)
  1526. goto free_ordered_data;
  1527. err = btrfs_auto_defrag_init();
  1528. if (err)
  1529. goto free_delayed_inode;
  1530. err = btrfs_delayed_ref_init();
  1531. if (err)
  1532. goto free_auto_defrag;
  1533. err = btrfs_interface_init();
  1534. if (err)
  1535. goto free_delayed_ref;
  1536. err = register_filesystem(&btrfs_fs_type);
  1537. if (err)
  1538. goto unregister_ioctl;
  1539. btrfs_init_lockdep();
  1540. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1541. btrfs_test_free_space_cache();
  1542. #endif
  1543. printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
  1544. return 0;
  1545. unregister_ioctl:
  1546. btrfs_interface_exit();
  1547. free_delayed_ref:
  1548. btrfs_delayed_ref_exit();
  1549. free_auto_defrag:
  1550. btrfs_auto_defrag_exit();
  1551. free_delayed_inode:
  1552. btrfs_delayed_inode_exit();
  1553. free_ordered_data:
  1554. ordered_data_exit();
  1555. free_extent_map:
  1556. extent_map_exit();
  1557. free_extent_io:
  1558. extent_io_exit();
  1559. free_cachep:
  1560. btrfs_destroy_cachep();
  1561. free_compress:
  1562. btrfs_exit_compress();
  1563. btrfs_exit_sysfs();
  1564. return err;
  1565. }
  1566. static void __exit exit_btrfs_fs(void)
  1567. {
  1568. btrfs_destroy_cachep();
  1569. btrfs_delayed_ref_exit();
  1570. btrfs_auto_defrag_exit();
  1571. btrfs_delayed_inode_exit();
  1572. ordered_data_exit();
  1573. extent_map_exit();
  1574. extent_io_exit();
  1575. btrfs_interface_exit();
  1576. unregister_filesystem(&btrfs_fs_type);
  1577. btrfs_exit_sysfs();
  1578. btrfs_cleanup_fs_uuids();
  1579. btrfs_exit_compress();
  1580. }
  1581. module_init(init_btrfs_fs)
  1582. module_exit(exit_btrfs_fs)
  1583. MODULE_LICENSE("GPL");