cpm2_common.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. /*
  2. * General Purpose functions for the global management of the
  3. * 8260 Communication Processor Module.
  4. * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
  5. * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
  6. * 2.3.99 Updates
  7. *
  8. * 2006 (c) MontaVista Software, Inc.
  9. * Vitaly Bordug <vbordug@ru.mvista.com>
  10. * Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
  11. *
  12. * This file is licensed under the terms of the GNU General Public License
  13. * version 2. This program is licensed "as is" without any warranty of any
  14. * kind, whether express or implied.
  15. */
  16. /*
  17. *
  18. * In addition to the individual control of the communication
  19. * channels, there are a few functions that globally affect the
  20. * communication processor.
  21. *
  22. * Buffer descriptors must be allocated from the dual ported memory
  23. * space. The allocator for that is here. When the communication
  24. * process is reset, we reclaim the memory available. There is
  25. * currently no deallocator for this memory.
  26. */
  27. #include <linux/errno.h>
  28. #include <linux/sched.h>
  29. #include <linux/kernel.h>
  30. #include <linux/param.h>
  31. #include <linux/string.h>
  32. #include <linux/mm.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/module.h>
  35. #include <linux/of.h>
  36. #include <asm/io.h>
  37. #include <asm/irq.h>
  38. #include <asm/mpc8260.h>
  39. #include <asm/page.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/cpm2.h>
  42. #include <asm/rheap.h>
  43. #include <asm/fs_pd.h>
  44. #include <sysdev/fsl_soc.h>
  45. #ifndef CONFIG_PPC_CPM_NEW_BINDING
  46. static void cpm2_dpinit(void);
  47. #endif
  48. cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */
  49. /* We allocate this here because it is used almost exclusively for
  50. * the communication processor devices.
  51. */
  52. cpm2_map_t __iomem *cpm2_immr;
  53. #define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount
  54. of space for CPM as it is larger
  55. than on PQ2 */
  56. void __init cpm2_reset(void)
  57. {
  58. #ifdef CONFIG_PPC_85xx
  59. cpm2_immr = ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE);
  60. #else
  61. cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE);
  62. #endif
  63. /* Reclaim the DP memory for our use.
  64. */
  65. #ifdef CONFIG_PPC_CPM_NEW_BINDING
  66. cpm_muram_init();
  67. #else
  68. cpm2_dpinit();
  69. #endif
  70. /* Tell everyone where the comm processor resides.
  71. */
  72. cpmp = &cpm2_immr->im_cpm;
  73. }
  74. static DEFINE_SPINLOCK(cmd_lock);
  75. #define MAX_CR_CMD_LOOPS 10000
  76. int cpm_command(u32 command, u8 opcode)
  77. {
  78. int i, ret;
  79. unsigned long flags;
  80. spin_lock_irqsave(&cmd_lock, flags);
  81. ret = 0;
  82. out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG);
  83. for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
  84. if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
  85. goto out;
  86. printk(KERN_ERR "%s(): Not able to issue CPM command\n", __FUNCTION__);
  87. ret = -EIO;
  88. out:
  89. spin_unlock_irqrestore(&cmd_lock, flags);
  90. return ret;
  91. }
  92. EXPORT_SYMBOL(cpm_command);
  93. /* Set a baud rate generator. This needs lots of work. There are
  94. * eight BRGs, which can be connected to the CPM channels or output
  95. * as clocks. The BRGs are in two different block of internal
  96. * memory mapped space.
  97. * The baud rate clock is the system clock divided by something.
  98. * It was set up long ago during the initial boot phase and is
  99. * is given to us.
  100. * Baud rate clocks are zero-based in the driver code (as that maps
  101. * to port numbers). Documentation uses 1-based numbering.
  102. */
  103. #define BRG_INT_CLK (get_brgfreq())
  104. #define BRG_UART_CLK (BRG_INT_CLK/16)
  105. /* This function is used by UARTS, or anything else that uses a 16x
  106. * oversampled clock.
  107. */
  108. void
  109. cpm_setbrg(uint brg, uint rate)
  110. {
  111. u32 __iomem *bp;
  112. /* This is good enough to get SMCs running.....
  113. */
  114. if (brg < 4) {
  115. bp = cpm2_map_size(im_brgc1, 16);
  116. } else {
  117. bp = cpm2_map_size(im_brgc5, 16);
  118. brg -= 4;
  119. }
  120. bp += brg;
  121. out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
  122. cpm2_unmap(bp);
  123. }
  124. /* This function is used to set high speed synchronous baud rate
  125. * clocks.
  126. */
  127. void
  128. cpm2_fastbrg(uint brg, uint rate, int div16)
  129. {
  130. u32 __iomem *bp;
  131. u32 val;
  132. if (brg < 4) {
  133. bp = cpm2_map_size(im_brgc1, 16);
  134. }
  135. else {
  136. bp = cpm2_map_size(im_brgc5, 16);
  137. brg -= 4;
  138. }
  139. bp += brg;
  140. val = ((BRG_INT_CLK / rate) << 1) | CPM_BRG_EN;
  141. if (div16)
  142. val |= CPM_BRG_DIV16;
  143. out_be32(bp, val);
  144. cpm2_unmap(bp);
  145. }
  146. int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
  147. {
  148. int ret = 0;
  149. int shift;
  150. int i, bits = 0;
  151. cpmux_t __iomem *im_cpmux;
  152. u32 __iomem *reg;
  153. u32 mask = 7;
  154. u8 clk_map[][3] = {
  155. {CPM_CLK_FCC1, CPM_BRG5, 0},
  156. {CPM_CLK_FCC1, CPM_BRG6, 1},
  157. {CPM_CLK_FCC1, CPM_BRG7, 2},
  158. {CPM_CLK_FCC1, CPM_BRG8, 3},
  159. {CPM_CLK_FCC1, CPM_CLK9, 4},
  160. {CPM_CLK_FCC1, CPM_CLK10, 5},
  161. {CPM_CLK_FCC1, CPM_CLK11, 6},
  162. {CPM_CLK_FCC1, CPM_CLK12, 7},
  163. {CPM_CLK_FCC2, CPM_BRG5, 0},
  164. {CPM_CLK_FCC2, CPM_BRG6, 1},
  165. {CPM_CLK_FCC2, CPM_BRG7, 2},
  166. {CPM_CLK_FCC2, CPM_BRG8, 3},
  167. {CPM_CLK_FCC2, CPM_CLK13, 4},
  168. {CPM_CLK_FCC2, CPM_CLK14, 5},
  169. {CPM_CLK_FCC2, CPM_CLK15, 6},
  170. {CPM_CLK_FCC2, CPM_CLK16, 7},
  171. {CPM_CLK_FCC3, CPM_BRG5, 0},
  172. {CPM_CLK_FCC3, CPM_BRG6, 1},
  173. {CPM_CLK_FCC3, CPM_BRG7, 2},
  174. {CPM_CLK_FCC3, CPM_BRG8, 3},
  175. {CPM_CLK_FCC3, CPM_CLK13, 4},
  176. {CPM_CLK_FCC3, CPM_CLK14, 5},
  177. {CPM_CLK_FCC3, CPM_CLK15, 6},
  178. {CPM_CLK_FCC3, CPM_CLK16, 7},
  179. {CPM_CLK_SCC1, CPM_BRG1, 0},
  180. {CPM_CLK_SCC1, CPM_BRG2, 1},
  181. {CPM_CLK_SCC1, CPM_BRG3, 2},
  182. {CPM_CLK_SCC1, CPM_BRG4, 3},
  183. {CPM_CLK_SCC1, CPM_CLK11, 4},
  184. {CPM_CLK_SCC1, CPM_CLK12, 5},
  185. {CPM_CLK_SCC1, CPM_CLK3, 6},
  186. {CPM_CLK_SCC1, CPM_CLK4, 7},
  187. {CPM_CLK_SCC2, CPM_BRG1, 0},
  188. {CPM_CLK_SCC2, CPM_BRG2, 1},
  189. {CPM_CLK_SCC2, CPM_BRG3, 2},
  190. {CPM_CLK_SCC2, CPM_BRG4, 3},
  191. {CPM_CLK_SCC2, CPM_CLK11, 4},
  192. {CPM_CLK_SCC2, CPM_CLK12, 5},
  193. {CPM_CLK_SCC2, CPM_CLK3, 6},
  194. {CPM_CLK_SCC2, CPM_CLK4, 7},
  195. {CPM_CLK_SCC3, CPM_BRG1, 0},
  196. {CPM_CLK_SCC3, CPM_BRG2, 1},
  197. {CPM_CLK_SCC3, CPM_BRG3, 2},
  198. {CPM_CLK_SCC3, CPM_BRG4, 3},
  199. {CPM_CLK_SCC3, CPM_CLK5, 4},
  200. {CPM_CLK_SCC3, CPM_CLK6, 5},
  201. {CPM_CLK_SCC3, CPM_CLK7, 6},
  202. {CPM_CLK_SCC3, CPM_CLK8, 7},
  203. {CPM_CLK_SCC4, CPM_BRG1, 0},
  204. {CPM_CLK_SCC4, CPM_BRG2, 1},
  205. {CPM_CLK_SCC4, CPM_BRG3, 2},
  206. {CPM_CLK_SCC4, CPM_BRG4, 3},
  207. {CPM_CLK_SCC4, CPM_CLK5, 4},
  208. {CPM_CLK_SCC4, CPM_CLK6, 5},
  209. {CPM_CLK_SCC4, CPM_CLK7, 6},
  210. {CPM_CLK_SCC4, CPM_CLK8, 7},
  211. };
  212. im_cpmux = cpm2_map(im_cpmux);
  213. switch (target) {
  214. case CPM_CLK_SCC1:
  215. reg = &im_cpmux->cmx_scr;
  216. shift = 24;
  217. case CPM_CLK_SCC2:
  218. reg = &im_cpmux->cmx_scr;
  219. shift = 16;
  220. break;
  221. case CPM_CLK_SCC3:
  222. reg = &im_cpmux->cmx_scr;
  223. shift = 8;
  224. break;
  225. case CPM_CLK_SCC4:
  226. reg = &im_cpmux->cmx_scr;
  227. shift = 0;
  228. break;
  229. case CPM_CLK_FCC1:
  230. reg = &im_cpmux->cmx_fcr;
  231. shift = 24;
  232. break;
  233. case CPM_CLK_FCC2:
  234. reg = &im_cpmux->cmx_fcr;
  235. shift = 16;
  236. break;
  237. case CPM_CLK_FCC3:
  238. reg = &im_cpmux->cmx_fcr;
  239. shift = 8;
  240. break;
  241. default:
  242. printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n");
  243. return -EINVAL;
  244. }
  245. if (mode == CPM_CLK_RX)
  246. shift += 3;
  247. for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
  248. if (clk_map[i][0] == target && clk_map[i][1] == clock) {
  249. bits = clk_map[i][2];
  250. break;
  251. }
  252. }
  253. if (i == ARRAY_SIZE(clk_map))
  254. ret = -EINVAL;
  255. bits <<= shift;
  256. mask <<= shift;
  257. out_be32(reg, (in_be32(reg) & ~mask) | bits);
  258. cpm2_unmap(im_cpmux);
  259. return ret;
  260. }
  261. int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock)
  262. {
  263. int ret = 0;
  264. int shift;
  265. int i, bits = 0;
  266. cpmux_t __iomem *im_cpmux;
  267. u8 __iomem *reg;
  268. u8 mask = 3;
  269. u8 clk_map[][3] = {
  270. {CPM_CLK_SMC1, CPM_BRG1, 0},
  271. {CPM_CLK_SMC1, CPM_BRG7, 1},
  272. {CPM_CLK_SMC1, CPM_CLK7, 2},
  273. {CPM_CLK_SMC1, CPM_CLK9, 3},
  274. {CPM_CLK_SMC2, CPM_BRG2, 0},
  275. {CPM_CLK_SMC2, CPM_BRG8, 1},
  276. {CPM_CLK_SMC2, CPM_CLK4, 2},
  277. {CPM_CLK_SMC2, CPM_CLK15, 3},
  278. };
  279. im_cpmux = cpm2_map(im_cpmux);
  280. switch (target) {
  281. case CPM_CLK_SMC1:
  282. reg = &im_cpmux->cmx_smr;
  283. mask = 3;
  284. shift = 4;
  285. break;
  286. case CPM_CLK_SMC2:
  287. reg = &im_cpmux->cmx_smr;
  288. mask = 3;
  289. shift = 0;
  290. break;
  291. default:
  292. printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n");
  293. return -EINVAL;
  294. }
  295. for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
  296. if (clk_map[i][0] == target && clk_map[i][1] == clock) {
  297. bits = clk_map[i][2];
  298. break;
  299. }
  300. }
  301. if (i == ARRAY_SIZE(clk_map))
  302. ret = -EINVAL;
  303. bits <<= shift;
  304. mask <<= shift;
  305. out_8(reg, (in_8(reg) & ~mask) | bits);
  306. cpm2_unmap(im_cpmux);
  307. return ret;
  308. }
  309. #ifndef CONFIG_PPC_CPM_NEW_BINDING
  310. /*
  311. * dpalloc / dpfree bits.
  312. */
  313. static spinlock_t cpm_dpmem_lock;
  314. /* 16 blocks should be enough to satisfy all requests
  315. * until the memory subsystem goes up... */
  316. static rh_block_t cpm_boot_dpmem_rh_block[16];
  317. static rh_info_t cpm_dpmem_info;
  318. static u8 __iomem *im_dprambase;
  319. static void cpm2_dpinit(void)
  320. {
  321. spin_lock_init(&cpm_dpmem_lock);
  322. /* initialize the info header */
  323. rh_init(&cpm_dpmem_info, 1,
  324. sizeof(cpm_boot_dpmem_rh_block) /
  325. sizeof(cpm_boot_dpmem_rh_block[0]),
  326. cpm_boot_dpmem_rh_block);
  327. im_dprambase = cpm2_immr;
  328. /* Attach the usable dpmem area */
  329. /* XXX: This is actually crap. CPM_DATAONLY_BASE and
  330. * CPM_DATAONLY_SIZE is only a subset of the available dpram. It
  331. * varies with the processor and the microcode patches activated.
  332. * But the following should be at least safe.
  333. */
  334. rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
  335. }
  336. /* This function returns an index into the DPRAM area.
  337. */
  338. unsigned long cpm_dpalloc(uint size, uint align)
  339. {
  340. unsigned long start;
  341. unsigned long flags;
  342. spin_lock_irqsave(&cpm_dpmem_lock, flags);
  343. cpm_dpmem_info.alignment = align;
  344. start = rh_alloc(&cpm_dpmem_info, size, "commproc");
  345. spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
  346. return (uint)start;
  347. }
  348. EXPORT_SYMBOL(cpm_dpalloc);
  349. int cpm_dpfree(unsigned long offset)
  350. {
  351. int ret;
  352. unsigned long flags;
  353. spin_lock_irqsave(&cpm_dpmem_lock, flags);
  354. ret = rh_free(&cpm_dpmem_info, offset);
  355. spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
  356. return ret;
  357. }
  358. EXPORT_SYMBOL(cpm_dpfree);
  359. /* not sure if this is ever needed */
  360. unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align)
  361. {
  362. unsigned long start;
  363. unsigned long flags;
  364. spin_lock_irqsave(&cpm_dpmem_lock, flags);
  365. cpm_dpmem_info.alignment = align;
  366. start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc");
  367. spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
  368. return start;
  369. }
  370. EXPORT_SYMBOL(cpm_dpalloc_fixed);
  371. void cpm_dpdump(void)
  372. {
  373. rh_dump(&cpm_dpmem_info);
  374. }
  375. EXPORT_SYMBOL(cpm_dpdump);
  376. void *cpm_dpram_addr(unsigned long offset)
  377. {
  378. return (void *)(im_dprambase + offset);
  379. }
  380. EXPORT_SYMBOL(cpm_dpram_addr);
  381. #endif /* !CONFIG_PPC_CPM_NEW_BINDING */
  382. struct cpm2_ioports {
  383. u32 dir, par, sor, odr, dat;
  384. u32 res[3];
  385. };
  386. void cpm2_set_pin(int port, int pin, int flags)
  387. {
  388. struct cpm2_ioports __iomem *iop =
  389. (struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport;
  390. pin = 1 << (31 - pin);
  391. if (flags & CPM_PIN_OUTPUT)
  392. setbits32(&iop[port].dir, pin);
  393. else
  394. clrbits32(&iop[port].dir, pin);
  395. if (!(flags & CPM_PIN_GPIO))
  396. setbits32(&iop[port].par, pin);
  397. else
  398. clrbits32(&iop[port].par, pin);
  399. if (flags & CPM_PIN_SECONDARY)
  400. setbits32(&iop[port].sor, pin);
  401. else
  402. clrbits32(&iop[port].sor, pin);
  403. if (flags & CPM_PIN_OPENDRAIN)
  404. setbits32(&iop[port].odr, pin);
  405. else
  406. clrbits32(&iop[port].odr, pin);
  407. }