sh_tmu.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463
  1. /*
  2. * SuperH Timer Support - TMU
  3. *
  4. * Copyright (C) 2009 Magnus Damm
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/init.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/ioport.h>
  24. #include <linux/delay.h>
  25. #include <linux/io.h>
  26. #include <linux/clk.h>
  27. #include <linux/irq.h>
  28. #include <linux/err.h>
  29. #include <linux/clocksource.h>
  30. #include <linux/clockchips.h>
  31. #include <linux/sh_timer.h>
  32. struct sh_tmu_priv {
  33. void __iomem *mapbase;
  34. struct clk *clk;
  35. struct irqaction irqaction;
  36. struct platform_device *pdev;
  37. unsigned long rate;
  38. unsigned long periodic;
  39. struct clock_event_device ced;
  40. struct clocksource cs;
  41. };
  42. static DEFINE_SPINLOCK(sh_tmu_lock);
  43. #define TSTR -1 /* shared register */
  44. #define TCOR 0 /* channel register */
  45. #define TCNT 1 /* channel register */
  46. #define TCR 2 /* channel register */
  47. static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr)
  48. {
  49. struct sh_timer_config *cfg = p->pdev->dev.platform_data;
  50. void __iomem *base = p->mapbase;
  51. unsigned long offs;
  52. if (reg_nr == TSTR)
  53. return ioread8(base - cfg->channel_offset);
  54. offs = reg_nr << 2;
  55. if (reg_nr == TCR)
  56. return ioread16(base + offs);
  57. else
  58. return ioread32(base + offs);
  59. }
  60. static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr,
  61. unsigned long value)
  62. {
  63. struct sh_timer_config *cfg = p->pdev->dev.platform_data;
  64. void __iomem *base = p->mapbase;
  65. unsigned long offs;
  66. if (reg_nr == TSTR) {
  67. iowrite8(value, base - cfg->channel_offset);
  68. return;
  69. }
  70. offs = reg_nr << 2;
  71. if (reg_nr == TCR)
  72. iowrite16(value, base + offs);
  73. else
  74. iowrite32(value, base + offs);
  75. }
  76. static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start)
  77. {
  78. struct sh_timer_config *cfg = p->pdev->dev.platform_data;
  79. unsigned long flags, value;
  80. /* start stop register shared by multiple timer channels */
  81. spin_lock_irqsave(&sh_tmu_lock, flags);
  82. value = sh_tmu_read(p, TSTR);
  83. if (start)
  84. value |= 1 << cfg->timer_bit;
  85. else
  86. value &= ~(1 << cfg->timer_bit);
  87. sh_tmu_write(p, TSTR, value);
  88. spin_unlock_irqrestore(&sh_tmu_lock, flags);
  89. }
  90. static int sh_tmu_enable(struct sh_tmu_priv *p)
  91. {
  92. int ret;
  93. /* enable clock */
  94. ret = clk_enable(p->clk);
  95. if (ret) {
  96. dev_err(&p->pdev->dev, "cannot enable clock\n");
  97. return ret;
  98. }
  99. /* make sure channel is disabled */
  100. sh_tmu_start_stop_ch(p, 0);
  101. /* maximum timeout */
  102. sh_tmu_write(p, TCOR, 0xffffffff);
  103. sh_tmu_write(p, TCNT, 0xffffffff);
  104. /* configure channel to parent clock / 4, irq off */
  105. p->rate = clk_get_rate(p->clk) / 4;
  106. sh_tmu_write(p, TCR, 0x0000);
  107. /* enable channel */
  108. sh_tmu_start_stop_ch(p, 1);
  109. return 0;
  110. }
  111. static void sh_tmu_disable(struct sh_tmu_priv *p)
  112. {
  113. /* disable channel */
  114. sh_tmu_start_stop_ch(p, 0);
  115. /* disable interrupts in TMU block */
  116. sh_tmu_write(p, TCR, 0x0000);
  117. /* stop clock */
  118. clk_disable(p->clk);
  119. }
  120. static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta,
  121. int periodic)
  122. {
  123. /* stop timer */
  124. sh_tmu_start_stop_ch(p, 0);
  125. /* acknowledge interrupt */
  126. sh_tmu_read(p, TCR);
  127. /* enable interrupt */
  128. sh_tmu_write(p, TCR, 0x0020);
  129. /* reload delta value in case of periodic timer */
  130. if (periodic)
  131. sh_tmu_write(p, TCOR, delta);
  132. else
  133. sh_tmu_write(p, TCOR, 0xffffffff);
  134. sh_tmu_write(p, TCNT, delta);
  135. /* start timer */
  136. sh_tmu_start_stop_ch(p, 1);
  137. }
  138. static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
  139. {
  140. struct sh_tmu_priv *p = dev_id;
  141. /* disable or acknowledge interrupt */
  142. if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT)
  143. sh_tmu_write(p, TCR, 0x0000);
  144. else
  145. sh_tmu_write(p, TCR, 0x0020);
  146. /* notify clockevent layer */
  147. p->ced.event_handler(&p->ced);
  148. return IRQ_HANDLED;
  149. }
  150. static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs)
  151. {
  152. return container_of(cs, struct sh_tmu_priv, cs);
  153. }
  154. static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
  155. {
  156. struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
  157. return sh_tmu_read(p, TCNT) ^ 0xffffffff;
  158. }
  159. static int sh_tmu_clocksource_enable(struct clocksource *cs)
  160. {
  161. struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
  162. int ret;
  163. ret = sh_tmu_enable(p);
  164. if (ret)
  165. return ret;
  166. /* TODO: calculate good shift from rate and counter bit width */
  167. cs->shift = 10;
  168. cs->mult = clocksource_hz2mult(p->rate, cs->shift);
  169. return 0;
  170. }
  171. static void sh_tmu_clocksource_disable(struct clocksource *cs)
  172. {
  173. sh_tmu_disable(cs_to_sh_tmu(cs));
  174. }
  175. static int sh_tmu_register_clocksource(struct sh_tmu_priv *p,
  176. char *name, unsigned long rating)
  177. {
  178. struct clocksource *cs = &p->cs;
  179. cs->name = name;
  180. cs->rating = rating;
  181. cs->read = sh_tmu_clocksource_read;
  182. cs->enable = sh_tmu_clocksource_enable;
  183. cs->disable = sh_tmu_clocksource_disable;
  184. cs->mask = CLOCKSOURCE_MASK(32);
  185. cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
  186. dev_info(&p->pdev->dev, "used as clock source\n");
  187. clocksource_register(cs);
  188. return 0;
  189. }
  190. static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced)
  191. {
  192. return container_of(ced, struct sh_tmu_priv, ced);
  193. }
  194. static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic)
  195. {
  196. struct clock_event_device *ced = &p->ced;
  197. sh_tmu_enable(p);
  198. /* TODO: calculate good shift from rate and counter bit width */
  199. ced->shift = 32;
  200. ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
  201. ced->max_delta_ns = clockevent_delta2ns(0xffffffff, ced);
  202. ced->min_delta_ns = 5000;
  203. if (periodic) {
  204. p->periodic = (p->rate + HZ/2) / HZ;
  205. sh_tmu_set_next(p, p->periodic, 1);
  206. }
  207. }
  208. static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
  209. struct clock_event_device *ced)
  210. {
  211. struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
  212. int disabled = 0;
  213. /* deal with old setting first */
  214. switch (ced->mode) {
  215. case CLOCK_EVT_MODE_PERIODIC:
  216. case CLOCK_EVT_MODE_ONESHOT:
  217. sh_tmu_disable(p);
  218. disabled = 1;
  219. break;
  220. default:
  221. break;
  222. }
  223. switch (mode) {
  224. case CLOCK_EVT_MODE_PERIODIC:
  225. dev_info(&p->pdev->dev, "used for periodic clock events\n");
  226. sh_tmu_clock_event_start(p, 1);
  227. break;
  228. case CLOCK_EVT_MODE_ONESHOT:
  229. dev_info(&p->pdev->dev, "used for oneshot clock events\n");
  230. sh_tmu_clock_event_start(p, 0);
  231. break;
  232. case CLOCK_EVT_MODE_UNUSED:
  233. if (!disabled)
  234. sh_tmu_disable(p);
  235. break;
  236. case CLOCK_EVT_MODE_SHUTDOWN:
  237. default:
  238. break;
  239. }
  240. }
  241. static int sh_tmu_clock_event_next(unsigned long delta,
  242. struct clock_event_device *ced)
  243. {
  244. struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
  245. BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
  246. /* program new delta value */
  247. sh_tmu_set_next(p, delta, 0);
  248. return 0;
  249. }
  250. static void sh_tmu_register_clockevent(struct sh_tmu_priv *p,
  251. char *name, unsigned long rating)
  252. {
  253. struct clock_event_device *ced = &p->ced;
  254. int ret;
  255. memset(ced, 0, sizeof(*ced));
  256. ced->name = name;
  257. ced->features = CLOCK_EVT_FEAT_PERIODIC;
  258. ced->features |= CLOCK_EVT_FEAT_ONESHOT;
  259. ced->rating = rating;
  260. ced->cpumask = cpumask_of(0);
  261. ced->set_next_event = sh_tmu_clock_event_next;
  262. ced->set_mode = sh_tmu_clock_event_mode;
  263. dev_info(&p->pdev->dev, "used for clock events\n");
  264. clockevents_register_device(ced);
  265. ret = setup_irq(p->irqaction.irq, &p->irqaction);
  266. if (ret) {
  267. dev_err(&p->pdev->dev, "failed to request irq %d\n",
  268. p->irqaction.irq);
  269. return;
  270. }
  271. }
  272. static int sh_tmu_register(struct sh_tmu_priv *p, char *name,
  273. unsigned long clockevent_rating,
  274. unsigned long clocksource_rating)
  275. {
  276. if (clockevent_rating)
  277. sh_tmu_register_clockevent(p, name, clockevent_rating);
  278. else if (clocksource_rating)
  279. sh_tmu_register_clocksource(p, name, clocksource_rating);
  280. return 0;
  281. }
  282. static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev)
  283. {
  284. struct sh_timer_config *cfg = pdev->dev.platform_data;
  285. struct resource *res;
  286. int irq, ret;
  287. ret = -ENXIO;
  288. memset(p, 0, sizeof(*p));
  289. p->pdev = pdev;
  290. if (!cfg) {
  291. dev_err(&p->pdev->dev, "missing platform data\n");
  292. goto err0;
  293. }
  294. platform_set_drvdata(pdev, p);
  295. res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
  296. if (!res) {
  297. dev_err(&p->pdev->dev, "failed to get I/O memory\n");
  298. goto err0;
  299. }
  300. irq = platform_get_irq(p->pdev, 0);
  301. if (irq < 0) {
  302. dev_err(&p->pdev->dev, "failed to get irq\n");
  303. goto err0;
  304. }
  305. /* map memory, let mapbase point to our channel */
  306. p->mapbase = ioremap_nocache(res->start, resource_size(res));
  307. if (p->mapbase == NULL) {
  308. dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
  309. goto err0;
  310. }
  311. /* setup data for setup_irq() (too early for request_irq()) */
  312. p->irqaction.name = dev_name(&p->pdev->dev);
  313. p->irqaction.handler = sh_tmu_interrupt;
  314. p->irqaction.dev_id = p;
  315. p->irqaction.irq = irq;
  316. p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL;
  317. /* get hold of clock */
  318. p->clk = clk_get(&p->pdev->dev, "tmu_fck");
  319. if (IS_ERR(p->clk)) {
  320. dev_warn(&p->pdev->dev, "using deprecated clock lookup\n");
  321. p->clk = clk_get(&p->pdev->dev, cfg->clk);
  322. if (IS_ERR(p->clk)) {
  323. dev_err(&p->pdev->dev, "cannot get clock\n");
  324. ret = PTR_ERR(p->clk);
  325. goto err1;
  326. }
  327. }
  328. return sh_tmu_register(p, (char *)dev_name(&p->pdev->dev),
  329. cfg->clockevent_rating,
  330. cfg->clocksource_rating);
  331. err1:
  332. iounmap(p->mapbase);
  333. err0:
  334. return ret;
  335. }
  336. static int __devinit sh_tmu_probe(struct platform_device *pdev)
  337. {
  338. struct sh_tmu_priv *p = platform_get_drvdata(pdev);
  339. int ret;
  340. if (p) {
  341. dev_info(&pdev->dev, "kept as earlytimer\n");
  342. return 0;
  343. }
  344. p = kmalloc(sizeof(*p), GFP_KERNEL);
  345. if (p == NULL) {
  346. dev_err(&pdev->dev, "failed to allocate driver data\n");
  347. return -ENOMEM;
  348. }
  349. ret = sh_tmu_setup(p, pdev);
  350. if (ret) {
  351. kfree(p);
  352. platform_set_drvdata(pdev, NULL);
  353. }
  354. return ret;
  355. }
  356. static int __devexit sh_tmu_remove(struct platform_device *pdev)
  357. {
  358. return -EBUSY; /* cannot unregister clockevent and clocksource */
  359. }
  360. static struct platform_driver sh_tmu_device_driver = {
  361. .probe = sh_tmu_probe,
  362. .remove = __devexit_p(sh_tmu_remove),
  363. .driver = {
  364. .name = "sh_tmu",
  365. }
  366. };
  367. static int __init sh_tmu_init(void)
  368. {
  369. return platform_driver_register(&sh_tmu_device_driver);
  370. }
  371. static void __exit sh_tmu_exit(void)
  372. {
  373. platform_driver_unregister(&sh_tmu_device_driver);
  374. }
  375. early_platform_init("earlytimer", &sh_tmu_device_driver);
  376. module_init(sh_tmu_init);
  377. module_exit(sh_tmu_exit);
  378. MODULE_AUTHOR("Magnus Damm");
  379. MODULE_DESCRIPTION("SuperH TMU Timer Driver");
  380. MODULE_LICENSE("GPL v2");