db8500-prcmu.c 79 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/dbx500-prcmu.h>
  31. #include <linux/mfd/abx500/ab8500.h>
  32. #include <linux/regulator/db8500-prcmu.h>
  33. #include <linux/regulator/machine.h>
  34. #include <linux/cpufreq.h>
  35. #include <asm/hardware/gic.h>
  36. #include <mach/hardware.h>
  37. #include <mach/irqs.h>
  38. #include <mach/db8500-regs.h>
  39. #include <mach/id.h>
  40. #include "dbx500-prcmu-regs.h"
  41. /* Offset for the firmware version within the TCPM */
  42. #define PRCMU_FW_VERSION_OFFSET 0xA4
  43. /* Index of different voltages to be used when accessing AVSData */
  44. #define PRCM_AVS_BASE 0x2FC
  45. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  46. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  47. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  48. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  49. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  50. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  51. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  52. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  53. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  54. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  55. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  56. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  57. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  58. #define PRCM_AVS_VOLTAGE 0
  59. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  60. #define PRCM_AVS_ISSLOWSTARTUP 6
  61. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  62. #define PRCM_AVS_ISMODEENABLE 7
  63. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  64. #define PRCM_BOOT_STATUS 0xFFF
  65. #define PRCM_ROMCODE_A2P 0xFFE
  66. #define PRCM_ROMCODE_P2A 0xFFD
  67. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  68. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  69. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  70. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  71. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  72. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  73. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  74. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  75. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  76. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  77. /* Req Mailboxes */
  78. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  79. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  80. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  81. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  82. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  83. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  84. /* Ack Mailboxes */
  85. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  86. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  87. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  88. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  89. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  90. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  91. /* Mailbox 0 headers */
  92. #define MB0H_POWER_STATE_TRANS 0
  93. #define MB0H_CONFIG_WAKEUPS_EXE 1
  94. #define MB0H_READ_WAKEUP_ACK 3
  95. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  96. #define MB0H_WAKEUP_EXE 2
  97. #define MB0H_WAKEUP_SLEEP 5
  98. /* Mailbox 0 REQs */
  99. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  100. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  101. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  102. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  103. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  104. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  105. /* Mailbox 0 ACKs */
  106. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  107. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  108. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  109. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  110. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  111. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  112. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  113. /* Mailbox 1 headers */
  114. #define MB1H_ARM_APE_OPP 0x0
  115. #define MB1H_RESET_MODEM 0x2
  116. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  117. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  118. #define MB1H_RELEASE_USB_WAKEUP 0x5
  119. #define MB1H_PLL_ON_OFF 0x6
  120. /* Mailbox 1 Requests */
  121. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  122. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  123. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  124. #define PLL_SOC0_OFF 0x1
  125. #define PLL_SOC0_ON 0x2
  126. #define PLL_SOC1_OFF 0x4
  127. #define PLL_SOC1_ON 0x8
  128. /* Mailbox 1 ACKs */
  129. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  130. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  131. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  132. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  133. /* Mailbox 2 headers */
  134. #define MB2H_DPS 0x0
  135. #define MB2H_AUTO_PWR 0x1
  136. /* Mailbox 2 REQs */
  137. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  138. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  139. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  140. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  141. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  142. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  143. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  144. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  145. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  146. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  147. /* Mailbox 2 ACKs */
  148. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  149. #define HWACC_PWR_ST_OK 0xFE
  150. /* Mailbox 3 headers */
  151. #define MB3H_ANC 0x0
  152. #define MB3H_SIDETONE 0x1
  153. #define MB3H_SYSCLK 0xE
  154. /* Mailbox 3 Requests */
  155. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  156. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  157. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  158. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  159. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  160. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  161. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  162. /* Mailbox 4 headers */
  163. #define MB4H_DDR_INIT 0x0
  164. #define MB4H_MEM_ST 0x1
  165. #define MB4H_HOTDOG 0x12
  166. #define MB4H_HOTMON 0x13
  167. #define MB4H_HOT_PERIOD 0x14
  168. #define MB4H_A9WDOG_CONF 0x16
  169. #define MB4H_A9WDOG_EN 0x17
  170. #define MB4H_A9WDOG_DIS 0x18
  171. #define MB4H_A9WDOG_LOAD 0x19
  172. #define MB4H_A9WDOG_KICK 0x20
  173. /* Mailbox 4 Requests */
  174. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  175. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  176. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  177. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  178. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  179. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  180. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  181. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  182. #define HOTMON_CONFIG_LOW BIT(0)
  183. #define HOTMON_CONFIG_HIGH BIT(1)
  184. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  185. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  186. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  187. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  188. #define A9WDOG_AUTO_OFF_EN BIT(7)
  189. #define A9WDOG_AUTO_OFF_DIS 0
  190. #define A9WDOG_ID_MASK 0xf
  191. /* Mailbox 5 Requests */
  192. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  193. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  194. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  195. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  196. #define PRCMU_I2C_WRITE(slave) \
  197. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
  198. #define PRCMU_I2C_READ(slave) \
  199. (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
  200. #define PRCMU_I2C_STOP_EN BIT(3)
  201. /* Mailbox 5 ACKs */
  202. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  203. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  204. #define I2C_WR_OK 0x1
  205. #define I2C_RD_OK 0x2
  206. #define NUM_MB 8
  207. #define MBOX_BIT BIT
  208. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  209. /*
  210. * Wakeups/IRQs
  211. */
  212. #define WAKEUP_BIT_RTC BIT(0)
  213. #define WAKEUP_BIT_RTT0 BIT(1)
  214. #define WAKEUP_BIT_RTT1 BIT(2)
  215. #define WAKEUP_BIT_HSI0 BIT(3)
  216. #define WAKEUP_BIT_HSI1 BIT(4)
  217. #define WAKEUP_BIT_CA_WAKE BIT(5)
  218. #define WAKEUP_BIT_USB BIT(6)
  219. #define WAKEUP_BIT_ABB BIT(7)
  220. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  221. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  222. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  223. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  224. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  225. #define WAKEUP_BIT_ANC_OK BIT(13)
  226. #define WAKEUP_BIT_SW_ERROR BIT(14)
  227. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  228. #define WAKEUP_BIT_ARM BIT(17)
  229. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  230. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  231. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  232. #define WAKEUP_BIT_GPIO0 BIT(23)
  233. #define WAKEUP_BIT_GPIO1 BIT(24)
  234. #define WAKEUP_BIT_GPIO2 BIT(25)
  235. #define WAKEUP_BIT_GPIO3 BIT(26)
  236. #define WAKEUP_BIT_GPIO4 BIT(27)
  237. #define WAKEUP_BIT_GPIO5 BIT(28)
  238. #define WAKEUP_BIT_GPIO6 BIT(29)
  239. #define WAKEUP_BIT_GPIO7 BIT(30)
  240. #define WAKEUP_BIT_GPIO8 BIT(31)
  241. static struct {
  242. bool valid;
  243. struct prcmu_fw_version version;
  244. } fw_info;
  245. static struct irq_domain *db8500_irq_domain;
  246. /*
  247. * This vector maps irq numbers to the bits in the bit field used in
  248. * communication with the PRCMU firmware.
  249. *
  250. * The reason for having this is to keep the irq numbers contiguous even though
  251. * the bits in the bit field are not. (The bits also have a tendency to move
  252. * around, to further complicate matters.)
  253. */
  254. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  255. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  256. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  257. IRQ_ENTRY(RTC),
  258. IRQ_ENTRY(RTT0),
  259. IRQ_ENTRY(RTT1),
  260. IRQ_ENTRY(HSI0),
  261. IRQ_ENTRY(HSI1),
  262. IRQ_ENTRY(CA_WAKE),
  263. IRQ_ENTRY(USB),
  264. IRQ_ENTRY(ABB),
  265. IRQ_ENTRY(ABB_FIFO),
  266. IRQ_ENTRY(CA_SLEEP),
  267. IRQ_ENTRY(ARM),
  268. IRQ_ENTRY(HOTMON_LOW),
  269. IRQ_ENTRY(HOTMON_HIGH),
  270. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  271. IRQ_ENTRY(GPIO0),
  272. IRQ_ENTRY(GPIO1),
  273. IRQ_ENTRY(GPIO2),
  274. IRQ_ENTRY(GPIO3),
  275. IRQ_ENTRY(GPIO4),
  276. IRQ_ENTRY(GPIO5),
  277. IRQ_ENTRY(GPIO6),
  278. IRQ_ENTRY(GPIO7),
  279. IRQ_ENTRY(GPIO8)
  280. };
  281. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  282. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  283. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  284. WAKEUP_ENTRY(RTC),
  285. WAKEUP_ENTRY(RTT0),
  286. WAKEUP_ENTRY(RTT1),
  287. WAKEUP_ENTRY(HSI0),
  288. WAKEUP_ENTRY(HSI1),
  289. WAKEUP_ENTRY(USB),
  290. WAKEUP_ENTRY(ABB),
  291. WAKEUP_ENTRY(ABB_FIFO),
  292. WAKEUP_ENTRY(ARM)
  293. };
  294. /*
  295. * mb0_transfer - state needed for mailbox 0 communication.
  296. * @lock: The transaction lock.
  297. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  298. * the request data.
  299. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  300. * @req: Request data that need to persist between requests.
  301. */
  302. static struct {
  303. spinlock_t lock;
  304. spinlock_t dbb_irqs_lock;
  305. struct work_struct mask_work;
  306. struct mutex ac_wake_lock;
  307. struct completion ac_wake_work;
  308. struct {
  309. u32 dbb_irqs;
  310. u32 dbb_wakeups;
  311. u32 abb_events;
  312. } req;
  313. } mb0_transfer;
  314. /*
  315. * mb1_transfer - state needed for mailbox 1 communication.
  316. * @lock: The transaction lock.
  317. * @work: The transaction completion structure.
  318. * @ape_opp: The current APE OPP.
  319. * @ack: Reply ("acknowledge") data.
  320. */
  321. static struct {
  322. struct mutex lock;
  323. struct completion work;
  324. u8 ape_opp;
  325. struct {
  326. u8 header;
  327. u8 arm_opp;
  328. u8 ape_opp;
  329. u8 ape_voltage_status;
  330. } ack;
  331. } mb1_transfer;
  332. /*
  333. * mb2_transfer - state needed for mailbox 2 communication.
  334. * @lock: The transaction lock.
  335. * @work: The transaction completion structure.
  336. * @auto_pm_lock: The autonomous power management configuration lock.
  337. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  338. * @req: Request data that need to persist between requests.
  339. * @ack: Reply ("acknowledge") data.
  340. */
  341. static struct {
  342. struct mutex lock;
  343. struct completion work;
  344. spinlock_t auto_pm_lock;
  345. bool auto_pm_enabled;
  346. struct {
  347. u8 status;
  348. } ack;
  349. } mb2_transfer;
  350. /*
  351. * mb3_transfer - state needed for mailbox 3 communication.
  352. * @lock: The request lock.
  353. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  354. * @sysclk_work: Work structure used for sysclk requests.
  355. */
  356. static struct {
  357. spinlock_t lock;
  358. struct mutex sysclk_lock;
  359. struct completion sysclk_work;
  360. } mb3_transfer;
  361. /*
  362. * mb4_transfer - state needed for mailbox 4 communication.
  363. * @lock: The transaction lock.
  364. * @work: The transaction completion structure.
  365. */
  366. static struct {
  367. struct mutex lock;
  368. struct completion work;
  369. } mb4_transfer;
  370. /*
  371. * mb5_transfer - state needed for mailbox 5 communication.
  372. * @lock: The transaction lock.
  373. * @work: The transaction completion structure.
  374. * @ack: Reply ("acknowledge") data.
  375. */
  376. static struct {
  377. struct mutex lock;
  378. struct completion work;
  379. struct {
  380. u8 status;
  381. u8 value;
  382. } ack;
  383. } mb5_transfer;
  384. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  385. /* Functions definition */
  386. static void compute_armss_rate(void);
  387. /* Spinlocks */
  388. static DEFINE_SPINLOCK(prcmu_lock);
  389. static DEFINE_SPINLOCK(clkout_lock);
  390. /* Global var to runtime determine TCDM base for v2 or v1 */
  391. static __iomem void *tcdm_base;
  392. struct clk_mgt {
  393. void __iomem *reg;
  394. u32 pllsw;
  395. int branch;
  396. bool clk38div;
  397. };
  398. enum {
  399. PLL_RAW,
  400. PLL_FIX,
  401. PLL_DIV
  402. };
  403. static DEFINE_SPINLOCK(clk_mgt_lock);
  404. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  405. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  406. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  407. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  408. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  409. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  410. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  411. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  412. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  413. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  414. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  415. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  416. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  417. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  418. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  419. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  420. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  421. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  422. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  423. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  424. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  425. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  426. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  427. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  428. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  429. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  430. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  431. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  432. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  433. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  434. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  435. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  436. };
  437. struct dsiclk {
  438. u32 divsel_mask;
  439. u32 divsel_shift;
  440. u32 divsel;
  441. };
  442. static struct dsiclk dsiclk[2] = {
  443. {
  444. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  445. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  446. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  447. },
  448. {
  449. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  450. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  451. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  452. }
  453. };
  454. struct dsiescclk {
  455. u32 en;
  456. u32 div_mask;
  457. u32 div_shift;
  458. };
  459. static struct dsiescclk dsiescclk[3] = {
  460. {
  461. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  462. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  463. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  464. },
  465. {
  466. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  467. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  468. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  469. },
  470. {
  471. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  472. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  473. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  474. }
  475. };
  476. /*
  477. * Used by MCDE to setup all necessary PRCMU registers
  478. */
  479. #define PRCMU_RESET_DSIPLL 0x00004000
  480. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  481. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  482. #define PRCMU_CLK_PLL_SW_SHIFT 5
  483. #define PRCMU_CLK_38 (1 << 9)
  484. #define PRCMU_CLK_38_SRC (1 << 10)
  485. #define PRCMU_CLK_38_DIV (1 << 11)
  486. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  487. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  488. /* DPI 50000000 Hz */
  489. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  490. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  491. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  492. /* D=101, N=1, R=4, SELDIV2=0 */
  493. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  494. #define PRCMU_ENABLE_PLLDSI 0x00000001
  495. #define PRCMU_DISABLE_PLLDSI 0x00000000
  496. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  497. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  498. /* ESC clk, div0=1, div1=1, div2=3 */
  499. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  500. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  501. #define PRCMU_DSI_RESET_SW 0x00000007
  502. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  503. int db8500_prcmu_enable_dsipll(void)
  504. {
  505. int i;
  506. /* Clear DSIPLL_RESETN */
  507. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  508. /* Unclamp DSIPLL in/out */
  509. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  510. /* Set DSI PLL FREQ */
  511. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  512. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  513. /* Enable Escape clocks */
  514. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  515. /* Start DSI PLL */
  516. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  517. /* Reset DSI PLL */
  518. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  519. for (i = 0; i < 10; i++) {
  520. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  521. == PRCMU_PLLDSI_LOCKP_LOCKED)
  522. break;
  523. udelay(100);
  524. }
  525. /* Set DSIPLL_RESETN */
  526. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  527. return 0;
  528. }
  529. int db8500_prcmu_disable_dsipll(void)
  530. {
  531. /* Disable dsi pll */
  532. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  533. /* Disable escapeclock */
  534. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  535. return 0;
  536. }
  537. int db8500_prcmu_set_display_clocks(void)
  538. {
  539. unsigned long flags;
  540. spin_lock_irqsave(&clk_mgt_lock, flags);
  541. /* Grab the HW semaphore. */
  542. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  543. cpu_relax();
  544. writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
  545. writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
  546. writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
  547. /* Release the HW semaphore. */
  548. writel(0, PRCM_SEM);
  549. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  550. return 0;
  551. }
  552. u32 db8500_prcmu_read(unsigned int reg)
  553. {
  554. return readl(_PRCMU_BASE + reg);
  555. }
  556. void db8500_prcmu_write(unsigned int reg, u32 value)
  557. {
  558. unsigned long flags;
  559. spin_lock_irqsave(&prcmu_lock, flags);
  560. writel(value, (_PRCMU_BASE + reg));
  561. spin_unlock_irqrestore(&prcmu_lock, flags);
  562. }
  563. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  564. {
  565. u32 val;
  566. unsigned long flags;
  567. spin_lock_irqsave(&prcmu_lock, flags);
  568. val = readl(_PRCMU_BASE + reg);
  569. val = ((val & ~mask) | (value & mask));
  570. writel(val, (_PRCMU_BASE + reg));
  571. spin_unlock_irqrestore(&prcmu_lock, flags);
  572. }
  573. struct prcmu_fw_version *prcmu_get_fw_version(void)
  574. {
  575. return fw_info.valid ? &fw_info.version : NULL;
  576. }
  577. bool prcmu_has_arm_maxopp(void)
  578. {
  579. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  580. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  581. }
  582. /**
  583. * prcmu_get_boot_status - PRCMU boot status checking
  584. * Returns: the current PRCMU boot status
  585. */
  586. int prcmu_get_boot_status(void)
  587. {
  588. return readb(tcdm_base + PRCM_BOOT_STATUS);
  589. }
  590. /**
  591. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  592. * @val: Value to be set, i.e. transition requested
  593. * Returns: 0 on success, -EINVAL on invalid argument
  594. *
  595. * This function is used to run the following power state sequences -
  596. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  597. */
  598. int prcmu_set_rc_a2p(enum romcode_write val)
  599. {
  600. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  601. return -EINVAL;
  602. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  603. return 0;
  604. }
  605. /**
  606. * prcmu_get_rc_p2a - This function is used to get power state sequences
  607. * Returns: the power transition that has last happened
  608. *
  609. * This function can return the following transitions-
  610. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  611. */
  612. enum romcode_read prcmu_get_rc_p2a(void)
  613. {
  614. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  615. }
  616. /**
  617. * prcmu_get_current_mode - Return the current XP70 power mode
  618. * Returns: Returns the current AP(ARM) power mode: init,
  619. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  620. */
  621. enum ap_pwrst prcmu_get_xp70_current_state(void)
  622. {
  623. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  624. }
  625. /**
  626. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  627. * @clkout: The CLKOUT number (0 or 1).
  628. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  629. * @div: The divider to be applied.
  630. *
  631. * Configures one of the programmable clock outputs (CLKOUTs).
  632. * @div should be in the range [1,63] to request a configuration, or 0 to
  633. * inform that the configuration is no longer requested.
  634. */
  635. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  636. {
  637. static int requests[2];
  638. int r = 0;
  639. unsigned long flags;
  640. u32 val;
  641. u32 bits;
  642. u32 mask;
  643. u32 div_mask;
  644. BUG_ON(clkout > 1);
  645. BUG_ON(div > 63);
  646. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  647. if (!div && !requests[clkout])
  648. return -EINVAL;
  649. switch (clkout) {
  650. case 0:
  651. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  652. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  653. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  654. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  655. break;
  656. case 1:
  657. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  658. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  659. PRCM_CLKOCR_CLK1TYPE);
  660. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  661. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  662. break;
  663. }
  664. bits &= mask;
  665. spin_lock_irqsave(&clkout_lock, flags);
  666. val = readl(PRCM_CLKOCR);
  667. if (val & div_mask) {
  668. if (div) {
  669. if ((val & mask) != bits) {
  670. r = -EBUSY;
  671. goto unlock_and_return;
  672. }
  673. } else {
  674. if ((val & mask & ~div_mask) != bits) {
  675. r = -EINVAL;
  676. goto unlock_and_return;
  677. }
  678. }
  679. }
  680. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  681. requests[clkout] += (div ? 1 : -1);
  682. unlock_and_return:
  683. spin_unlock_irqrestore(&clkout_lock, flags);
  684. return r;
  685. }
  686. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  687. {
  688. unsigned long flags;
  689. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  690. spin_lock_irqsave(&mb0_transfer.lock, flags);
  691. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  692. cpu_relax();
  693. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  694. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  695. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  696. writeb((keep_ulp_clk ? 1 : 0),
  697. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  698. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  699. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  700. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  701. return 0;
  702. }
  703. u8 db8500_prcmu_get_power_state_result(void)
  704. {
  705. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  706. }
  707. /* This function decouple the gic from the prcmu */
  708. int db8500_prcmu_gic_decouple(void)
  709. {
  710. u32 val = readl(PRCM_A9_MASK_REQ);
  711. /* Set bit 0 register value to 1 */
  712. writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
  713. PRCM_A9_MASK_REQ);
  714. /* Make sure the register is updated */
  715. readl(PRCM_A9_MASK_REQ);
  716. /* Wait a few cycles for the gic mask completion */
  717. udelay(1);
  718. return 0;
  719. }
  720. /* This function recouple the gic with the prcmu */
  721. int db8500_prcmu_gic_recouple(void)
  722. {
  723. u32 val = readl(PRCM_A9_MASK_REQ);
  724. /* Set bit 0 register value to 0 */
  725. writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
  726. return 0;
  727. }
  728. #define PRCMU_GIC_NUMBER_REGS 5
  729. /*
  730. * This function checks if there are pending irq on the gic. It only
  731. * makes sense if the gic has been decoupled before with the
  732. * db8500_prcmu_gic_decouple function. Disabling an interrupt only
  733. * disables the forwarding of the interrupt to any CPU interface. It
  734. * does not prevent the interrupt from changing state, for example
  735. * becoming pending, or active and pending if it is already
  736. * active. Hence, we have to check the interrupt is pending *and* is
  737. * active.
  738. */
  739. bool db8500_prcmu_gic_pending_irq(void)
  740. {
  741. u32 pr; /* Pending register */
  742. u32 er; /* Enable register */
  743. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  744. int i;
  745. /* 5 registers. STI & PPI not skipped */
  746. for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
  747. pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
  748. er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
  749. if (pr & er)
  750. return true; /* There is a pending interrupt */
  751. }
  752. return false;
  753. }
  754. /*
  755. * This function checks if there are pending interrupt on the
  756. * prcmu which has been delegated to monitor the irqs with the
  757. * db8500_prcmu_copy_gic_settings function.
  758. */
  759. bool db8500_prcmu_pending_irq(void)
  760. {
  761. u32 it, im;
  762. int i;
  763. for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
  764. it = readl(PRCM_ARMITVAL31TO0 + i * 4);
  765. im = readl(PRCM_ARMITMSK31TO0 + i * 4);
  766. if (it & im)
  767. return true; /* There is a pending interrupt */
  768. }
  769. return false;
  770. }
  771. /*
  772. * This function checks if the specified cpu is in in WFI. It's usage
  773. * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
  774. * function. Of course passing smp_processor_id() to this function will
  775. * always return false...
  776. */
  777. bool db8500_prcmu_is_cpu_in_wfi(int cpu)
  778. {
  779. return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
  780. PRCM_ARM_WFI_STANDBY_WFI0;
  781. }
  782. /*
  783. * This function copies the gic SPI settings to the prcmu in order to
  784. * monitor them and abort/finish the retention/off sequence or state.
  785. */
  786. int db8500_prcmu_copy_gic_settings(void)
  787. {
  788. u32 er; /* Enable register */
  789. void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
  790. int i;
  791. /* We skip the STI and PPI */
  792. for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
  793. er = readl_relaxed(dist_base +
  794. GIC_DIST_ENABLE_SET + (i + 1) * 4);
  795. writel(er, PRCM_ARMITMSK31TO0 + i * 4);
  796. }
  797. return 0;
  798. }
  799. /* This function should only be called while mb0_transfer.lock is held. */
  800. static void config_wakeups(void)
  801. {
  802. const u8 header[2] = {
  803. MB0H_CONFIG_WAKEUPS_EXE,
  804. MB0H_CONFIG_WAKEUPS_SLEEP
  805. };
  806. static u32 last_dbb_events;
  807. static u32 last_abb_events;
  808. u32 dbb_events;
  809. u32 abb_events;
  810. unsigned int i;
  811. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  812. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  813. abb_events = mb0_transfer.req.abb_events;
  814. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  815. return;
  816. for (i = 0; i < 2; i++) {
  817. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  818. cpu_relax();
  819. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  820. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  821. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  822. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  823. }
  824. last_dbb_events = dbb_events;
  825. last_abb_events = abb_events;
  826. }
  827. void db8500_prcmu_enable_wakeups(u32 wakeups)
  828. {
  829. unsigned long flags;
  830. u32 bits;
  831. int i;
  832. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  833. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  834. if (wakeups & BIT(i))
  835. bits |= prcmu_wakeup_bit[i];
  836. }
  837. spin_lock_irqsave(&mb0_transfer.lock, flags);
  838. mb0_transfer.req.dbb_wakeups = bits;
  839. config_wakeups();
  840. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  841. }
  842. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  843. {
  844. unsigned long flags;
  845. spin_lock_irqsave(&mb0_transfer.lock, flags);
  846. mb0_transfer.req.abb_events = abb_events;
  847. config_wakeups();
  848. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  849. }
  850. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  851. {
  852. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  853. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  854. else
  855. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  856. }
  857. /**
  858. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  859. * @opp: The new ARM operating point to which transition is to be made
  860. * Returns: 0 on success, non-zero on failure
  861. *
  862. * This function sets the the operating point of the ARM.
  863. */
  864. int db8500_prcmu_set_arm_opp(u8 opp)
  865. {
  866. int r;
  867. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  868. return -EINVAL;
  869. r = 0;
  870. mutex_lock(&mb1_transfer.lock);
  871. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  872. cpu_relax();
  873. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  874. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  875. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  876. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  877. wait_for_completion(&mb1_transfer.work);
  878. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  879. (mb1_transfer.ack.arm_opp != opp))
  880. r = -EIO;
  881. compute_armss_rate();
  882. mutex_unlock(&mb1_transfer.lock);
  883. return r;
  884. }
  885. /**
  886. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  887. *
  888. * Returns: the current ARM OPP
  889. */
  890. int db8500_prcmu_get_arm_opp(void)
  891. {
  892. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  893. }
  894. /**
  895. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  896. *
  897. * Returns: the current DDR OPP
  898. */
  899. int db8500_prcmu_get_ddr_opp(void)
  900. {
  901. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  902. }
  903. /**
  904. * db8500_set_ddr_opp - set the appropriate DDR OPP
  905. * @opp: The new DDR operating point to which transition is to be made
  906. * Returns: 0 on success, non-zero on failure
  907. *
  908. * This function sets the operating point of the DDR.
  909. */
  910. int db8500_prcmu_set_ddr_opp(u8 opp)
  911. {
  912. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  913. return -EINVAL;
  914. /* Changing the DDR OPP can hang the hardware pre-v21 */
  915. if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
  916. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  917. return 0;
  918. }
  919. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  920. static void request_even_slower_clocks(bool enable)
  921. {
  922. void __iomem *clock_reg[] = {
  923. PRCM_ACLK_MGT,
  924. PRCM_DMACLK_MGT
  925. };
  926. unsigned long flags;
  927. unsigned int i;
  928. spin_lock_irqsave(&clk_mgt_lock, flags);
  929. /* Grab the HW semaphore. */
  930. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  931. cpu_relax();
  932. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  933. u32 val;
  934. u32 div;
  935. val = readl(clock_reg[i]);
  936. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  937. if (enable) {
  938. if ((div <= 1) || (div > 15)) {
  939. pr_err("prcmu: Bad clock divider %d in %s\n",
  940. div, __func__);
  941. goto unlock_and_return;
  942. }
  943. div <<= 1;
  944. } else {
  945. if (div <= 2)
  946. goto unlock_and_return;
  947. div >>= 1;
  948. }
  949. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  950. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  951. writel(val, clock_reg[i]);
  952. }
  953. unlock_and_return:
  954. /* Release the HW semaphore. */
  955. writel(0, PRCM_SEM);
  956. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  957. }
  958. /**
  959. * db8500_set_ape_opp - set the appropriate APE OPP
  960. * @opp: The new APE operating point to which transition is to be made
  961. * Returns: 0 on success, non-zero on failure
  962. *
  963. * This function sets the operating point of the APE.
  964. */
  965. int db8500_prcmu_set_ape_opp(u8 opp)
  966. {
  967. int r = 0;
  968. if (opp == mb1_transfer.ape_opp)
  969. return 0;
  970. mutex_lock(&mb1_transfer.lock);
  971. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  972. request_even_slower_clocks(false);
  973. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  974. goto skip_message;
  975. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  976. cpu_relax();
  977. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  978. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  979. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  980. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  981. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  982. wait_for_completion(&mb1_transfer.work);
  983. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  984. (mb1_transfer.ack.ape_opp != opp))
  985. r = -EIO;
  986. skip_message:
  987. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  988. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  989. request_even_slower_clocks(true);
  990. if (!r)
  991. mb1_transfer.ape_opp = opp;
  992. mutex_unlock(&mb1_transfer.lock);
  993. return r;
  994. }
  995. /**
  996. * db8500_prcmu_get_ape_opp - get the current APE OPP
  997. *
  998. * Returns: the current APE OPP
  999. */
  1000. int db8500_prcmu_get_ape_opp(void)
  1001. {
  1002. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  1003. }
  1004. /**
  1005. * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  1006. * @enable: true to request the higher voltage, false to drop a request.
  1007. *
  1008. * Calls to this function to enable and disable requests must be balanced.
  1009. */
  1010. int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
  1011. {
  1012. int r = 0;
  1013. u8 header;
  1014. static unsigned int requests;
  1015. mutex_lock(&mb1_transfer.lock);
  1016. if (enable) {
  1017. if (0 != requests++)
  1018. goto unlock_and_return;
  1019. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  1020. } else {
  1021. if (requests == 0) {
  1022. r = -EIO;
  1023. goto unlock_and_return;
  1024. } else if (1 != requests--) {
  1025. goto unlock_and_return;
  1026. }
  1027. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  1028. }
  1029. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1030. cpu_relax();
  1031. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1032. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1033. wait_for_completion(&mb1_transfer.work);
  1034. if ((mb1_transfer.ack.header != header) ||
  1035. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1036. r = -EIO;
  1037. unlock_and_return:
  1038. mutex_unlock(&mb1_transfer.lock);
  1039. return r;
  1040. }
  1041. /**
  1042. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  1043. *
  1044. * This function releases the power state requirements of a USB wakeup.
  1045. */
  1046. int prcmu_release_usb_wakeup_state(void)
  1047. {
  1048. int r = 0;
  1049. mutex_lock(&mb1_transfer.lock);
  1050. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1051. cpu_relax();
  1052. writeb(MB1H_RELEASE_USB_WAKEUP,
  1053. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1054. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1055. wait_for_completion(&mb1_transfer.work);
  1056. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  1057. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  1058. r = -EIO;
  1059. mutex_unlock(&mb1_transfer.lock);
  1060. return r;
  1061. }
  1062. static int request_pll(u8 clock, bool enable)
  1063. {
  1064. int r = 0;
  1065. if (clock == PRCMU_PLLSOC0)
  1066. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  1067. else if (clock == PRCMU_PLLSOC1)
  1068. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  1069. else
  1070. return -EINVAL;
  1071. mutex_lock(&mb1_transfer.lock);
  1072. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1073. cpu_relax();
  1074. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1075. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  1076. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1077. wait_for_completion(&mb1_transfer.work);
  1078. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  1079. r = -EIO;
  1080. mutex_unlock(&mb1_transfer.lock);
  1081. return r;
  1082. }
  1083. /**
  1084. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1085. * @epod_id: The EPOD to set
  1086. * @epod_state: The new EPOD state
  1087. *
  1088. * This function sets the state of a EPOD (power domain). It may not be called
  1089. * from interrupt context.
  1090. */
  1091. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1092. {
  1093. int r = 0;
  1094. bool ram_retention = false;
  1095. int i;
  1096. /* check argument */
  1097. BUG_ON(epod_id >= NUM_EPOD_ID);
  1098. /* set flag if retention is possible */
  1099. switch (epod_id) {
  1100. case EPOD_ID_SVAMMDSP:
  1101. case EPOD_ID_SIAMMDSP:
  1102. case EPOD_ID_ESRAM12:
  1103. case EPOD_ID_ESRAM34:
  1104. ram_retention = true;
  1105. break;
  1106. }
  1107. /* check argument */
  1108. BUG_ON(epod_state > EPOD_STATE_ON);
  1109. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1110. /* get lock */
  1111. mutex_lock(&mb2_transfer.lock);
  1112. /* wait for mailbox */
  1113. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1114. cpu_relax();
  1115. /* fill in mailbox */
  1116. for (i = 0; i < NUM_EPOD_ID; i++)
  1117. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1118. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1119. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1120. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1121. /*
  1122. * The current firmware version does not handle errors correctly,
  1123. * and we cannot recover if there is an error.
  1124. * This is expected to change when the firmware is updated.
  1125. */
  1126. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1127. msecs_to_jiffies(20000))) {
  1128. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1129. __func__);
  1130. r = -EIO;
  1131. goto unlock_and_return;
  1132. }
  1133. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1134. r = -EIO;
  1135. unlock_and_return:
  1136. mutex_unlock(&mb2_transfer.lock);
  1137. return r;
  1138. }
  1139. /**
  1140. * prcmu_configure_auto_pm - Configure autonomous power management.
  1141. * @sleep: Configuration for ApSleep.
  1142. * @idle: Configuration for ApIdle.
  1143. */
  1144. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1145. struct prcmu_auto_pm_config *idle)
  1146. {
  1147. u32 sleep_cfg;
  1148. u32 idle_cfg;
  1149. unsigned long flags;
  1150. BUG_ON((sleep == NULL) || (idle == NULL));
  1151. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1152. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1153. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1154. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1155. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1156. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1157. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1158. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1159. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1160. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1161. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1162. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1163. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1164. /*
  1165. * The autonomous power management configuration is done through
  1166. * fields in mailbox 2, but these fields are only used as shared
  1167. * variables - i.e. there is no need to send a message.
  1168. */
  1169. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1170. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1171. mb2_transfer.auto_pm_enabled =
  1172. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1173. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1174. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1175. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1176. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1177. }
  1178. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1179. bool prcmu_is_auto_pm_enabled(void)
  1180. {
  1181. return mb2_transfer.auto_pm_enabled;
  1182. }
  1183. static int request_sysclk(bool enable)
  1184. {
  1185. int r;
  1186. unsigned long flags;
  1187. r = 0;
  1188. mutex_lock(&mb3_transfer.sysclk_lock);
  1189. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1190. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1191. cpu_relax();
  1192. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1193. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1194. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1195. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1196. /*
  1197. * The firmware only sends an ACK if we want to enable the
  1198. * SysClk, and it succeeds.
  1199. */
  1200. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1201. msecs_to_jiffies(20000))) {
  1202. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1203. __func__);
  1204. r = -EIO;
  1205. }
  1206. mutex_unlock(&mb3_transfer.sysclk_lock);
  1207. return r;
  1208. }
  1209. static int request_timclk(bool enable)
  1210. {
  1211. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1212. if (!enable)
  1213. val |= PRCM_TCR_STOP_TIMERS;
  1214. writel(val, PRCM_TCR);
  1215. return 0;
  1216. }
  1217. static int request_clock(u8 clock, bool enable)
  1218. {
  1219. u32 val;
  1220. unsigned long flags;
  1221. spin_lock_irqsave(&clk_mgt_lock, flags);
  1222. /* Grab the HW semaphore. */
  1223. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1224. cpu_relax();
  1225. val = readl(clk_mgt[clock].reg);
  1226. if (enable) {
  1227. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1228. } else {
  1229. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1230. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1231. }
  1232. writel(val, clk_mgt[clock].reg);
  1233. /* Release the HW semaphore. */
  1234. writel(0, PRCM_SEM);
  1235. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1236. return 0;
  1237. }
  1238. static int request_sga_clock(u8 clock, bool enable)
  1239. {
  1240. u32 val;
  1241. int ret;
  1242. if (enable) {
  1243. val = readl(PRCM_CGATING_BYPASS);
  1244. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1245. }
  1246. ret = request_clock(clock, enable);
  1247. if (!ret && !enable) {
  1248. val = readl(PRCM_CGATING_BYPASS);
  1249. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1250. }
  1251. return ret;
  1252. }
  1253. static inline bool plldsi_locked(void)
  1254. {
  1255. return (readl(PRCM_PLLDSI_LOCKP) &
  1256. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1257. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1258. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1259. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1260. }
  1261. static int request_plldsi(bool enable)
  1262. {
  1263. int r = 0;
  1264. u32 val;
  1265. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1266. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1267. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1268. val = readl(PRCM_PLLDSI_ENABLE);
  1269. if (enable)
  1270. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1271. else
  1272. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1273. writel(val, PRCM_PLLDSI_ENABLE);
  1274. if (enable) {
  1275. unsigned int i;
  1276. bool locked = plldsi_locked();
  1277. for (i = 10; !locked && (i > 0); --i) {
  1278. udelay(100);
  1279. locked = plldsi_locked();
  1280. }
  1281. if (locked) {
  1282. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1283. PRCM_APE_RESETN_SET);
  1284. } else {
  1285. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1286. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1287. PRCM_MMIP_LS_CLAMP_SET);
  1288. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1289. writel(val, PRCM_PLLDSI_ENABLE);
  1290. r = -EAGAIN;
  1291. }
  1292. } else {
  1293. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1294. }
  1295. return r;
  1296. }
  1297. static int request_dsiclk(u8 n, bool enable)
  1298. {
  1299. u32 val;
  1300. val = readl(PRCM_DSI_PLLOUT_SEL);
  1301. val &= ~dsiclk[n].divsel_mask;
  1302. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1303. dsiclk[n].divsel_shift);
  1304. writel(val, PRCM_DSI_PLLOUT_SEL);
  1305. return 0;
  1306. }
  1307. static int request_dsiescclk(u8 n, bool enable)
  1308. {
  1309. u32 val;
  1310. val = readl(PRCM_DSITVCLK_DIV);
  1311. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1312. writel(val, PRCM_DSITVCLK_DIV);
  1313. return 0;
  1314. }
  1315. /**
  1316. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1317. * @clock: The clock for which the request is made.
  1318. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1319. *
  1320. * This function should only be used by the clock implementation.
  1321. * Do not use it from any other place!
  1322. */
  1323. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1324. {
  1325. if (clock == PRCMU_SGACLK)
  1326. return request_sga_clock(clock, enable);
  1327. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1328. return request_clock(clock, enable);
  1329. else if (clock == PRCMU_TIMCLK)
  1330. return request_timclk(enable);
  1331. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1332. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1333. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1334. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1335. else if (clock == PRCMU_PLLDSI)
  1336. return request_plldsi(enable);
  1337. else if (clock == PRCMU_SYSCLK)
  1338. return request_sysclk(enable);
  1339. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1340. return request_pll(clock, enable);
  1341. else
  1342. return -EINVAL;
  1343. }
  1344. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1345. int branch)
  1346. {
  1347. u64 rate;
  1348. u32 val;
  1349. u32 d;
  1350. u32 div = 1;
  1351. val = readl(reg);
  1352. rate = src_rate;
  1353. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1354. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1355. if (d > 1)
  1356. div *= d;
  1357. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1358. if (d > 1)
  1359. div *= d;
  1360. if (val & PRCM_PLL_FREQ_SELDIV2)
  1361. div *= 2;
  1362. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1363. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1364. ((reg == PRCM_PLLSOC0_FREQ) ||
  1365. (reg == PRCM_PLLARM_FREQ) ||
  1366. (reg == PRCM_PLLDDR_FREQ))))
  1367. div *= 2;
  1368. (void)do_div(rate, div);
  1369. return (unsigned long)rate;
  1370. }
  1371. #define ROOT_CLOCK_RATE 38400000
  1372. static unsigned long clock_rate(u8 clock)
  1373. {
  1374. u32 val;
  1375. u32 pllsw;
  1376. unsigned long rate = ROOT_CLOCK_RATE;
  1377. val = readl(clk_mgt[clock].reg);
  1378. if (val & PRCM_CLK_MGT_CLK38) {
  1379. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1380. rate /= 2;
  1381. return rate;
  1382. }
  1383. val |= clk_mgt[clock].pllsw;
  1384. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1385. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1386. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1387. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1388. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1389. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1390. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1391. else
  1392. return 0;
  1393. if ((clock == PRCMU_SGACLK) &&
  1394. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1395. u64 r = (rate * 10);
  1396. (void)do_div(r, 25);
  1397. return (unsigned long)r;
  1398. }
  1399. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1400. if (val)
  1401. return rate / val;
  1402. else
  1403. return 0;
  1404. }
  1405. static unsigned long latest_armss_rate;
  1406. static unsigned long armss_rate(void)
  1407. {
  1408. return latest_armss_rate;
  1409. }
  1410. static void compute_armss_rate(void)
  1411. {
  1412. u32 r;
  1413. unsigned long rate;
  1414. r = readl(PRCM_ARM_CHGCLKREQ);
  1415. if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
  1416. /* External ARMCLKFIX clock */
  1417. rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
  1418. /* Check PRCM_ARM_CHGCLKREQ divider */
  1419. if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
  1420. rate /= 2;
  1421. /* Check PRCM_ARMCLKFIX_MGT divider */
  1422. r = readl(PRCM_ARMCLKFIX_MGT);
  1423. r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1424. rate /= r;
  1425. } else {/* ARM PLL */
  1426. rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
  1427. }
  1428. latest_armss_rate = rate;
  1429. }
  1430. static unsigned long dsiclk_rate(u8 n)
  1431. {
  1432. u32 divsel;
  1433. u32 div = 1;
  1434. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1435. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1436. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1437. divsel = dsiclk[n].divsel;
  1438. switch (divsel) {
  1439. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1440. div *= 2;
  1441. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1442. div *= 2;
  1443. case PRCM_DSI_PLLOUT_SEL_PHI:
  1444. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1445. PLL_RAW) / div;
  1446. default:
  1447. return 0;
  1448. }
  1449. }
  1450. static unsigned long dsiescclk_rate(u8 n)
  1451. {
  1452. u32 div;
  1453. div = readl(PRCM_DSITVCLK_DIV);
  1454. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1455. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1456. }
  1457. unsigned long prcmu_clock_rate(u8 clock)
  1458. {
  1459. if (clock < PRCMU_NUM_REG_CLOCKS)
  1460. return clock_rate(clock);
  1461. else if (clock == PRCMU_TIMCLK)
  1462. return ROOT_CLOCK_RATE / 16;
  1463. else if (clock == PRCMU_SYSCLK)
  1464. return ROOT_CLOCK_RATE;
  1465. else if (clock == PRCMU_PLLSOC0)
  1466. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1467. else if (clock == PRCMU_PLLSOC1)
  1468. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1469. else if (clock == PRCMU_ARMSS)
  1470. return armss_rate();
  1471. else if (clock == PRCMU_PLLDDR)
  1472. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1473. else if (clock == PRCMU_PLLDSI)
  1474. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1475. PLL_RAW);
  1476. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1477. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1478. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1479. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1480. else
  1481. return 0;
  1482. }
  1483. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1484. {
  1485. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1486. return ROOT_CLOCK_RATE;
  1487. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1488. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1489. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1490. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1491. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1492. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1493. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1494. else
  1495. return 0;
  1496. }
  1497. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1498. {
  1499. u32 div;
  1500. div = (src_rate / rate);
  1501. if (div == 0)
  1502. return 1;
  1503. if (rate < (src_rate / div))
  1504. div++;
  1505. return div;
  1506. }
  1507. static long round_clock_rate(u8 clock, unsigned long rate)
  1508. {
  1509. u32 val;
  1510. u32 div;
  1511. unsigned long src_rate;
  1512. long rounded_rate;
  1513. val = readl(clk_mgt[clock].reg);
  1514. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1515. clk_mgt[clock].branch);
  1516. div = clock_divider(src_rate, rate);
  1517. if (val & PRCM_CLK_MGT_CLK38) {
  1518. if (clk_mgt[clock].clk38div) {
  1519. if (div > 2)
  1520. div = 2;
  1521. } else {
  1522. div = 1;
  1523. }
  1524. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1525. u64 r = (src_rate * 10);
  1526. (void)do_div(r, 25);
  1527. if (r <= rate)
  1528. return (unsigned long)r;
  1529. }
  1530. rounded_rate = (src_rate / min(div, (u32)31));
  1531. return rounded_rate;
  1532. }
  1533. #define MIN_PLL_VCO_RATE 600000000ULL
  1534. #define MAX_PLL_VCO_RATE 1680640000ULL
  1535. static long round_plldsi_rate(unsigned long rate)
  1536. {
  1537. long rounded_rate = 0;
  1538. unsigned long src_rate;
  1539. unsigned long rem;
  1540. u32 r;
  1541. src_rate = clock_rate(PRCMU_HDMICLK);
  1542. rem = rate;
  1543. for (r = 7; (rem > 0) && (r > 0); r--) {
  1544. u64 d;
  1545. d = (r * rate);
  1546. (void)do_div(d, src_rate);
  1547. if (d < 6)
  1548. d = 6;
  1549. else if (d > 255)
  1550. d = 255;
  1551. d *= src_rate;
  1552. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1553. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1554. continue;
  1555. (void)do_div(d, r);
  1556. if (rate < d) {
  1557. if (rounded_rate == 0)
  1558. rounded_rate = (long)d;
  1559. break;
  1560. }
  1561. if ((rate - d) < rem) {
  1562. rem = (rate - d);
  1563. rounded_rate = (long)d;
  1564. }
  1565. }
  1566. return rounded_rate;
  1567. }
  1568. static long round_dsiclk_rate(unsigned long rate)
  1569. {
  1570. u32 div;
  1571. unsigned long src_rate;
  1572. long rounded_rate;
  1573. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1574. PLL_RAW);
  1575. div = clock_divider(src_rate, rate);
  1576. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1577. return rounded_rate;
  1578. }
  1579. static long round_dsiescclk_rate(unsigned long rate)
  1580. {
  1581. u32 div;
  1582. unsigned long src_rate;
  1583. long rounded_rate;
  1584. src_rate = clock_rate(PRCMU_TVCLK);
  1585. div = clock_divider(src_rate, rate);
  1586. rounded_rate = (src_rate / min(div, (u32)255));
  1587. return rounded_rate;
  1588. }
  1589. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1590. {
  1591. if (clock < PRCMU_NUM_REG_CLOCKS)
  1592. return round_clock_rate(clock, rate);
  1593. else if (clock == PRCMU_PLLDSI)
  1594. return round_plldsi_rate(rate);
  1595. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1596. return round_dsiclk_rate(rate);
  1597. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1598. return round_dsiescclk_rate(rate);
  1599. else
  1600. return (long)prcmu_clock_rate(clock);
  1601. }
  1602. static void set_clock_rate(u8 clock, unsigned long rate)
  1603. {
  1604. u32 val;
  1605. u32 div;
  1606. unsigned long src_rate;
  1607. unsigned long flags;
  1608. spin_lock_irqsave(&clk_mgt_lock, flags);
  1609. /* Grab the HW semaphore. */
  1610. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1611. cpu_relax();
  1612. val = readl(clk_mgt[clock].reg);
  1613. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1614. clk_mgt[clock].branch);
  1615. div = clock_divider(src_rate, rate);
  1616. if (val & PRCM_CLK_MGT_CLK38) {
  1617. if (clk_mgt[clock].clk38div) {
  1618. if (div > 1)
  1619. val |= PRCM_CLK_MGT_CLK38DIV;
  1620. else
  1621. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1622. }
  1623. } else if (clock == PRCMU_SGACLK) {
  1624. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1625. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1626. if (div == 3) {
  1627. u64 r = (src_rate * 10);
  1628. (void)do_div(r, 25);
  1629. if (r <= rate) {
  1630. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1631. div = 0;
  1632. }
  1633. }
  1634. val |= min(div, (u32)31);
  1635. } else {
  1636. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1637. val |= min(div, (u32)31);
  1638. }
  1639. writel(val, clk_mgt[clock].reg);
  1640. /* Release the HW semaphore. */
  1641. writel(0, PRCM_SEM);
  1642. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1643. }
  1644. static int set_plldsi_rate(unsigned long rate)
  1645. {
  1646. unsigned long src_rate;
  1647. unsigned long rem;
  1648. u32 pll_freq = 0;
  1649. u32 r;
  1650. src_rate = clock_rate(PRCMU_HDMICLK);
  1651. rem = rate;
  1652. for (r = 7; (rem > 0) && (r > 0); r--) {
  1653. u64 d;
  1654. u64 hwrate;
  1655. d = (r * rate);
  1656. (void)do_div(d, src_rate);
  1657. if (d < 6)
  1658. d = 6;
  1659. else if (d > 255)
  1660. d = 255;
  1661. hwrate = (d * src_rate);
  1662. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1663. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1664. continue;
  1665. (void)do_div(hwrate, r);
  1666. if (rate < hwrate) {
  1667. if (pll_freq == 0)
  1668. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1669. (r << PRCM_PLL_FREQ_R_SHIFT));
  1670. break;
  1671. }
  1672. if ((rate - hwrate) < rem) {
  1673. rem = (rate - hwrate);
  1674. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1675. (r << PRCM_PLL_FREQ_R_SHIFT));
  1676. }
  1677. }
  1678. if (pll_freq == 0)
  1679. return -EINVAL;
  1680. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1681. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1682. return 0;
  1683. }
  1684. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1685. {
  1686. u32 val;
  1687. u32 div;
  1688. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1689. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1690. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1691. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1692. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1693. val = readl(PRCM_DSI_PLLOUT_SEL);
  1694. val &= ~dsiclk[n].divsel_mask;
  1695. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1696. writel(val, PRCM_DSI_PLLOUT_SEL);
  1697. }
  1698. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1699. {
  1700. u32 val;
  1701. u32 div;
  1702. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1703. val = readl(PRCM_DSITVCLK_DIV);
  1704. val &= ~dsiescclk[n].div_mask;
  1705. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1706. writel(val, PRCM_DSITVCLK_DIV);
  1707. }
  1708. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1709. {
  1710. if (clock < PRCMU_NUM_REG_CLOCKS)
  1711. set_clock_rate(clock, rate);
  1712. else if (clock == PRCMU_PLLDSI)
  1713. return set_plldsi_rate(rate);
  1714. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1715. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1716. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1717. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1718. return 0;
  1719. }
  1720. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1721. {
  1722. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1723. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1724. return -EINVAL;
  1725. mutex_lock(&mb4_transfer.lock);
  1726. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1727. cpu_relax();
  1728. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1729. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1730. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1731. writeb(DDR_PWR_STATE_ON,
  1732. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1733. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1734. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1735. wait_for_completion(&mb4_transfer.work);
  1736. mutex_unlock(&mb4_transfer.lock);
  1737. return 0;
  1738. }
  1739. int db8500_prcmu_config_hotdog(u8 threshold)
  1740. {
  1741. mutex_lock(&mb4_transfer.lock);
  1742. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1743. cpu_relax();
  1744. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1745. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1746. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1747. wait_for_completion(&mb4_transfer.work);
  1748. mutex_unlock(&mb4_transfer.lock);
  1749. return 0;
  1750. }
  1751. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1752. {
  1753. mutex_lock(&mb4_transfer.lock);
  1754. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1755. cpu_relax();
  1756. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1757. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1758. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1759. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1760. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1761. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1762. wait_for_completion(&mb4_transfer.work);
  1763. mutex_unlock(&mb4_transfer.lock);
  1764. return 0;
  1765. }
  1766. static int config_hot_period(u16 val)
  1767. {
  1768. mutex_lock(&mb4_transfer.lock);
  1769. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1770. cpu_relax();
  1771. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1772. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1773. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1774. wait_for_completion(&mb4_transfer.work);
  1775. mutex_unlock(&mb4_transfer.lock);
  1776. return 0;
  1777. }
  1778. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1779. {
  1780. if (cycles32k == 0xFFFF)
  1781. return -EINVAL;
  1782. return config_hot_period(cycles32k);
  1783. }
  1784. int db8500_prcmu_stop_temp_sense(void)
  1785. {
  1786. return config_hot_period(0xFFFF);
  1787. }
  1788. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1789. {
  1790. mutex_lock(&mb4_transfer.lock);
  1791. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1792. cpu_relax();
  1793. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1794. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1795. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1796. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1797. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1798. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1799. wait_for_completion(&mb4_transfer.work);
  1800. mutex_unlock(&mb4_transfer.lock);
  1801. return 0;
  1802. }
  1803. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1804. {
  1805. BUG_ON(num == 0 || num > 0xf);
  1806. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1807. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1808. A9WDOG_AUTO_OFF_DIS);
  1809. }
  1810. int db8500_prcmu_enable_a9wdog(u8 id)
  1811. {
  1812. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1813. }
  1814. int db8500_prcmu_disable_a9wdog(u8 id)
  1815. {
  1816. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1817. }
  1818. int db8500_prcmu_kick_a9wdog(u8 id)
  1819. {
  1820. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1821. }
  1822. /*
  1823. * timeout is 28 bit, in ms.
  1824. */
  1825. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1826. {
  1827. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1828. (id & A9WDOG_ID_MASK) |
  1829. /*
  1830. * Put the lowest 28 bits of timeout at
  1831. * offset 4. Four first bits are used for id.
  1832. */
  1833. (u8)((timeout << 4) & 0xf0),
  1834. (u8)((timeout >> 4) & 0xff),
  1835. (u8)((timeout >> 12) & 0xff),
  1836. (u8)((timeout >> 20) & 0xff));
  1837. }
  1838. /**
  1839. * prcmu_abb_read() - Read register value(s) from the ABB.
  1840. * @slave: The I2C slave address.
  1841. * @reg: The (start) register address.
  1842. * @value: The read out value(s).
  1843. * @size: The number of registers to read.
  1844. *
  1845. * Reads register value(s) from the ABB.
  1846. * @size has to be 1 for the current firmware version.
  1847. */
  1848. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1849. {
  1850. int r;
  1851. if (size != 1)
  1852. return -EINVAL;
  1853. mutex_lock(&mb5_transfer.lock);
  1854. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1855. cpu_relax();
  1856. writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1857. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1858. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1859. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1860. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1861. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1862. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1863. msecs_to_jiffies(20000))) {
  1864. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1865. __func__);
  1866. r = -EIO;
  1867. } else {
  1868. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1869. }
  1870. if (!r)
  1871. *value = mb5_transfer.ack.value;
  1872. mutex_unlock(&mb5_transfer.lock);
  1873. return r;
  1874. }
  1875. /**
  1876. * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
  1877. * @slave: The I2C slave address.
  1878. * @reg: The (start) register address.
  1879. * @value: The value(s) to write.
  1880. * @mask: The mask(s) to use.
  1881. * @size: The number of registers to write.
  1882. *
  1883. * Writes masked register value(s) to the ABB.
  1884. * For each @value, only the bits set to 1 in the corresponding @mask
  1885. * will be written. The other bits are not changed.
  1886. * @size has to be 1 for the current firmware version.
  1887. */
  1888. int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
  1889. {
  1890. int r;
  1891. if (size != 1)
  1892. return -EINVAL;
  1893. mutex_lock(&mb5_transfer.lock);
  1894. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1895. cpu_relax();
  1896. writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1897. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1898. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1899. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1900. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1901. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1902. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1903. msecs_to_jiffies(20000))) {
  1904. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1905. __func__);
  1906. r = -EIO;
  1907. } else {
  1908. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1909. }
  1910. mutex_unlock(&mb5_transfer.lock);
  1911. return r;
  1912. }
  1913. /**
  1914. * prcmu_abb_write() - Write register value(s) to the ABB.
  1915. * @slave: The I2C slave address.
  1916. * @reg: The (start) register address.
  1917. * @value: The value(s) to write.
  1918. * @size: The number of registers to write.
  1919. *
  1920. * Writes register value(s) to the ABB.
  1921. * @size has to be 1 for the current firmware version.
  1922. */
  1923. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1924. {
  1925. u8 mask = ~0;
  1926. return prcmu_abb_write_masked(slave, reg, value, &mask, size);
  1927. }
  1928. /**
  1929. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1930. */
  1931. int prcmu_ac_wake_req(void)
  1932. {
  1933. u32 val;
  1934. int ret = 0;
  1935. mutex_lock(&mb0_transfer.ac_wake_lock);
  1936. val = readl(PRCM_HOSTACCESS_REQ);
  1937. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1938. goto unlock_and_return;
  1939. atomic_set(&ac_wake_req_state, 1);
  1940. /*
  1941. * Force Modem Wake-up before hostaccess_req ping-pong.
  1942. * It prevents Modem to enter in Sleep while acking the hostaccess
  1943. * request. The 31us delay has been calculated by HWI.
  1944. */
  1945. val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
  1946. writel(val, PRCM_HOSTACCESS_REQ);
  1947. udelay(31);
  1948. val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
  1949. writel(val, PRCM_HOSTACCESS_REQ);
  1950. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1951. msecs_to_jiffies(5000))) {
  1952. #if defined(CONFIG_DBX500_PRCMU_DEBUG)
  1953. db8500_prcmu_debug_dump(__func__, true, true);
  1954. #endif
  1955. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1956. __func__);
  1957. ret = -EFAULT;
  1958. }
  1959. unlock_and_return:
  1960. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1961. return ret;
  1962. }
  1963. /**
  1964. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1965. */
  1966. void prcmu_ac_sleep_req()
  1967. {
  1968. u32 val;
  1969. mutex_lock(&mb0_transfer.ac_wake_lock);
  1970. val = readl(PRCM_HOSTACCESS_REQ);
  1971. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1972. goto unlock_and_return;
  1973. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1974. PRCM_HOSTACCESS_REQ);
  1975. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1976. msecs_to_jiffies(5000))) {
  1977. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1978. __func__);
  1979. }
  1980. atomic_set(&ac_wake_req_state, 0);
  1981. unlock_and_return:
  1982. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1983. }
  1984. bool db8500_prcmu_is_ac_wake_requested(void)
  1985. {
  1986. return (atomic_read(&ac_wake_req_state) != 0);
  1987. }
  1988. /**
  1989. * db8500_prcmu_system_reset - System reset
  1990. *
  1991. * Saves the reset reason code and then sets the APE_SOFTRST register which
  1992. * fires interrupt to fw
  1993. */
  1994. void db8500_prcmu_system_reset(u16 reset_code)
  1995. {
  1996. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1997. writel(1, PRCM_APE_SOFTRST);
  1998. }
  1999. /**
  2000. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  2001. *
  2002. * Retrieves the reset reason code stored by prcmu_system_reset() before
  2003. * last restart.
  2004. */
  2005. u16 db8500_prcmu_get_reset_code(void)
  2006. {
  2007. return readw(tcdm_base + PRCM_SW_RST_REASON);
  2008. }
  2009. /**
  2010. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  2011. */
  2012. void db8500_prcmu_modem_reset(void)
  2013. {
  2014. mutex_lock(&mb1_transfer.lock);
  2015. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  2016. cpu_relax();
  2017. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  2018. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  2019. wait_for_completion(&mb1_transfer.work);
  2020. /*
  2021. * No need to check return from PRCMU as modem should go in reset state
  2022. * This state is already managed by upper layer
  2023. */
  2024. mutex_unlock(&mb1_transfer.lock);
  2025. }
  2026. static void ack_dbb_wakeup(void)
  2027. {
  2028. unsigned long flags;
  2029. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2030. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  2031. cpu_relax();
  2032. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  2033. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  2034. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2035. }
  2036. static inline void print_unknown_header_warning(u8 n, u8 header)
  2037. {
  2038. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  2039. header, n);
  2040. }
  2041. static bool read_mailbox_0(void)
  2042. {
  2043. bool r;
  2044. u32 ev;
  2045. unsigned int n;
  2046. u8 header;
  2047. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  2048. switch (header) {
  2049. case MB0H_WAKEUP_EXE:
  2050. case MB0H_WAKEUP_SLEEP:
  2051. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  2052. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  2053. else
  2054. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2055. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2056. complete(&mb0_transfer.ac_wake_work);
  2057. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2058. complete(&mb3_transfer.sysclk_work);
  2059. ev &= mb0_transfer.req.dbb_irqs;
  2060. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2061. if (ev & prcmu_irq_bit[n])
  2062. generic_handle_irq(IRQ_PRCMU_BASE + n);
  2063. }
  2064. r = true;
  2065. break;
  2066. default:
  2067. print_unknown_header_warning(0, header);
  2068. r = false;
  2069. break;
  2070. }
  2071. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2072. return r;
  2073. }
  2074. static bool read_mailbox_1(void)
  2075. {
  2076. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2077. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2078. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2079. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2080. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2081. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2082. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2083. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2084. complete(&mb1_transfer.work);
  2085. return false;
  2086. }
  2087. static bool read_mailbox_2(void)
  2088. {
  2089. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2090. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2091. complete(&mb2_transfer.work);
  2092. return false;
  2093. }
  2094. static bool read_mailbox_3(void)
  2095. {
  2096. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2097. return false;
  2098. }
  2099. static bool read_mailbox_4(void)
  2100. {
  2101. u8 header;
  2102. bool do_complete = true;
  2103. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2104. switch (header) {
  2105. case MB4H_MEM_ST:
  2106. case MB4H_HOTDOG:
  2107. case MB4H_HOTMON:
  2108. case MB4H_HOT_PERIOD:
  2109. case MB4H_A9WDOG_CONF:
  2110. case MB4H_A9WDOG_EN:
  2111. case MB4H_A9WDOG_DIS:
  2112. case MB4H_A9WDOG_LOAD:
  2113. case MB4H_A9WDOG_KICK:
  2114. break;
  2115. default:
  2116. print_unknown_header_warning(4, header);
  2117. do_complete = false;
  2118. break;
  2119. }
  2120. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2121. if (do_complete)
  2122. complete(&mb4_transfer.work);
  2123. return false;
  2124. }
  2125. static bool read_mailbox_5(void)
  2126. {
  2127. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2128. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2129. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2130. complete(&mb5_transfer.work);
  2131. return false;
  2132. }
  2133. static bool read_mailbox_6(void)
  2134. {
  2135. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2136. return false;
  2137. }
  2138. static bool read_mailbox_7(void)
  2139. {
  2140. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2141. return false;
  2142. }
  2143. static bool (* const read_mailbox[NUM_MB])(void) = {
  2144. read_mailbox_0,
  2145. read_mailbox_1,
  2146. read_mailbox_2,
  2147. read_mailbox_3,
  2148. read_mailbox_4,
  2149. read_mailbox_5,
  2150. read_mailbox_6,
  2151. read_mailbox_7
  2152. };
  2153. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2154. {
  2155. u32 bits;
  2156. u8 n;
  2157. irqreturn_t r;
  2158. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2159. if (unlikely(!bits))
  2160. return IRQ_NONE;
  2161. r = IRQ_HANDLED;
  2162. for (n = 0; bits; n++) {
  2163. if (bits & MBOX_BIT(n)) {
  2164. bits -= MBOX_BIT(n);
  2165. if (read_mailbox[n]())
  2166. r = IRQ_WAKE_THREAD;
  2167. }
  2168. }
  2169. return r;
  2170. }
  2171. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2172. {
  2173. ack_dbb_wakeup();
  2174. return IRQ_HANDLED;
  2175. }
  2176. static void prcmu_mask_work(struct work_struct *work)
  2177. {
  2178. unsigned long flags;
  2179. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2180. config_wakeups();
  2181. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2182. }
  2183. static void prcmu_irq_mask(struct irq_data *d)
  2184. {
  2185. unsigned long flags;
  2186. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2187. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
  2188. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2189. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2190. schedule_work(&mb0_transfer.mask_work);
  2191. }
  2192. static void prcmu_irq_unmask(struct irq_data *d)
  2193. {
  2194. unsigned long flags;
  2195. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2196. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
  2197. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2198. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2199. schedule_work(&mb0_transfer.mask_work);
  2200. }
  2201. static void noop(struct irq_data *d)
  2202. {
  2203. }
  2204. static struct irq_chip prcmu_irq_chip = {
  2205. .name = "prcmu",
  2206. .irq_disable = prcmu_irq_mask,
  2207. .irq_ack = noop,
  2208. .irq_mask = prcmu_irq_mask,
  2209. .irq_unmask = prcmu_irq_unmask,
  2210. };
  2211. static char *fw_project_name(u8 project)
  2212. {
  2213. switch (project) {
  2214. case PRCMU_FW_PROJECT_U8500:
  2215. return "U8500";
  2216. case PRCMU_FW_PROJECT_U8500_C2:
  2217. return "U8500 C2";
  2218. case PRCMU_FW_PROJECT_U9500:
  2219. return "U9500";
  2220. case PRCMU_FW_PROJECT_U9500_C2:
  2221. return "U9500 C2";
  2222. case PRCMU_FW_PROJECT_U8520:
  2223. return "U8520";
  2224. case PRCMU_FW_PROJECT_U8420:
  2225. return "U8420";
  2226. default:
  2227. return "Unknown";
  2228. }
  2229. }
  2230. static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
  2231. irq_hw_number_t hwirq)
  2232. {
  2233. irq_set_chip_and_handler(virq, &prcmu_irq_chip,
  2234. handle_simple_irq);
  2235. set_irq_flags(virq, IRQF_VALID);
  2236. return 0;
  2237. }
  2238. static struct irq_domain_ops db8500_irq_ops = {
  2239. .map = db8500_irq_map,
  2240. .xlate = irq_domain_xlate_twocell,
  2241. };
  2242. static int db8500_irq_init(struct device_node *np)
  2243. {
  2244. db8500_irq_domain = irq_domain_add_legacy(
  2245. np, NUM_PRCMU_WAKEUPS, IRQ_PRCMU_BASE,
  2246. 0, &db8500_irq_ops, NULL);
  2247. if (!db8500_irq_domain) {
  2248. pr_err("Failed to create irqdomain\n");
  2249. return -ENOSYS;
  2250. }
  2251. return 0;
  2252. }
  2253. void __init db8500_prcmu_early_init(void)
  2254. {
  2255. if (cpu_is_u8500v2()) {
  2256. void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
  2257. if (tcpm_base != NULL) {
  2258. u32 version;
  2259. version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
  2260. fw_info.version.project = version & 0xFF;
  2261. fw_info.version.api_version = (version >> 8) & 0xFF;
  2262. fw_info.version.func_version = (version >> 16) & 0xFF;
  2263. fw_info.version.errata = (version >> 24) & 0xFF;
  2264. fw_info.valid = true;
  2265. pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
  2266. fw_project_name(fw_info.version.project),
  2267. (version >> 8) & 0xFF, (version >> 16) & 0xFF,
  2268. (version >> 24) & 0xFF);
  2269. iounmap(tcpm_base);
  2270. }
  2271. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
  2272. } else {
  2273. pr_err("prcmu: Unsupported chip version\n");
  2274. BUG();
  2275. }
  2276. spin_lock_init(&mb0_transfer.lock);
  2277. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2278. mutex_init(&mb0_transfer.ac_wake_lock);
  2279. init_completion(&mb0_transfer.ac_wake_work);
  2280. mutex_init(&mb1_transfer.lock);
  2281. init_completion(&mb1_transfer.work);
  2282. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2283. mutex_init(&mb2_transfer.lock);
  2284. init_completion(&mb2_transfer.work);
  2285. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2286. spin_lock_init(&mb3_transfer.lock);
  2287. mutex_init(&mb3_transfer.sysclk_lock);
  2288. init_completion(&mb3_transfer.sysclk_work);
  2289. mutex_init(&mb4_transfer.lock);
  2290. init_completion(&mb4_transfer.work);
  2291. mutex_init(&mb5_transfer.lock);
  2292. init_completion(&mb5_transfer.work);
  2293. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2294. compute_armss_rate();
  2295. }
  2296. static void __init init_prcm_registers(void)
  2297. {
  2298. u32 val;
  2299. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2300. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2301. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2302. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2303. }
  2304. /*
  2305. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2306. */
  2307. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2308. REGULATOR_SUPPLY("v-ape", NULL),
  2309. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2310. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2311. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2312. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2313. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
  2314. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2315. REGULATOR_SUPPLY("vcore", "sdi0"),
  2316. REGULATOR_SUPPLY("vcore", "sdi1"),
  2317. REGULATOR_SUPPLY("vcore", "sdi2"),
  2318. REGULATOR_SUPPLY("vcore", "sdi3"),
  2319. REGULATOR_SUPPLY("vcore", "sdi4"),
  2320. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2321. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2322. /* "v-uart" changed to "vcore" in the mainline kernel */
  2323. REGULATOR_SUPPLY("vcore", "uart0"),
  2324. REGULATOR_SUPPLY("vcore", "uart1"),
  2325. REGULATOR_SUPPLY("vcore", "uart2"),
  2326. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2327. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2328. REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
  2329. };
  2330. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2331. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2332. /* AV8100 regulator */
  2333. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2334. };
  2335. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2336. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2337. REGULATOR_SUPPLY("vsupply", "mcde"),
  2338. };
  2339. /* SVA MMDSP regulator switch */
  2340. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2341. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2342. };
  2343. /* SVA pipe regulator switch */
  2344. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2345. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2346. };
  2347. /* SIA MMDSP regulator switch */
  2348. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2349. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2350. };
  2351. /* SIA pipe regulator switch */
  2352. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2353. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2354. };
  2355. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2356. REGULATOR_SUPPLY("v-mali", NULL),
  2357. };
  2358. /* ESRAM1 and 2 regulator switch */
  2359. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2360. REGULATOR_SUPPLY("esram12", "cm_control"),
  2361. };
  2362. /* ESRAM3 and 4 regulator switch */
  2363. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2364. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2365. REGULATOR_SUPPLY("esram34", "cm_control"),
  2366. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2367. };
  2368. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2369. [DB8500_REGULATOR_VAPE] = {
  2370. .constraints = {
  2371. .name = "db8500-vape",
  2372. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2373. .always_on = true,
  2374. },
  2375. .consumer_supplies = db8500_vape_consumers,
  2376. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2377. },
  2378. [DB8500_REGULATOR_VARM] = {
  2379. .constraints = {
  2380. .name = "db8500-varm",
  2381. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2382. },
  2383. },
  2384. [DB8500_REGULATOR_VMODEM] = {
  2385. .constraints = {
  2386. .name = "db8500-vmodem",
  2387. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2388. },
  2389. },
  2390. [DB8500_REGULATOR_VPLL] = {
  2391. .constraints = {
  2392. .name = "db8500-vpll",
  2393. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2394. },
  2395. },
  2396. [DB8500_REGULATOR_VSMPS1] = {
  2397. .constraints = {
  2398. .name = "db8500-vsmps1",
  2399. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2400. },
  2401. },
  2402. [DB8500_REGULATOR_VSMPS2] = {
  2403. .constraints = {
  2404. .name = "db8500-vsmps2",
  2405. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2406. },
  2407. .consumer_supplies = db8500_vsmps2_consumers,
  2408. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2409. },
  2410. [DB8500_REGULATOR_VSMPS3] = {
  2411. .constraints = {
  2412. .name = "db8500-vsmps3",
  2413. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2414. },
  2415. },
  2416. [DB8500_REGULATOR_VRF1] = {
  2417. .constraints = {
  2418. .name = "db8500-vrf1",
  2419. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2420. },
  2421. },
  2422. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2423. /* dependency to u8500-vape is handled outside regulator framework */
  2424. .constraints = {
  2425. .name = "db8500-sva-mmdsp",
  2426. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2427. },
  2428. .consumer_supplies = db8500_svammdsp_consumers,
  2429. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2430. },
  2431. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2432. .constraints = {
  2433. /* "ret" means "retention" */
  2434. .name = "db8500-sva-mmdsp-ret",
  2435. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2436. },
  2437. },
  2438. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2439. /* dependency to u8500-vape is handled outside regulator framework */
  2440. .constraints = {
  2441. .name = "db8500-sva-pipe",
  2442. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2443. },
  2444. .consumer_supplies = db8500_svapipe_consumers,
  2445. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2446. },
  2447. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2448. /* dependency to u8500-vape is handled outside regulator framework */
  2449. .constraints = {
  2450. .name = "db8500-sia-mmdsp",
  2451. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2452. },
  2453. .consumer_supplies = db8500_siammdsp_consumers,
  2454. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2455. },
  2456. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2457. .constraints = {
  2458. .name = "db8500-sia-mmdsp-ret",
  2459. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2460. },
  2461. },
  2462. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2463. /* dependency to u8500-vape is handled outside regulator framework */
  2464. .constraints = {
  2465. .name = "db8500-sia-pipe",
  2466. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2467. },
  2468. .consumer_supplies = db8500_siapipe_consumers,
  2469. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2470. },
  2471. [DB8500_REGULATOR_SWITCH_SGA] = {
  2472. .supply_regulator = "db8500-vape",
  2473. .constraints = {
  2474. .name = "db8500-sga",
  2475. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2476. },
  2477. .consumer_supplies = db8500_sga_consumers,
  2478. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2479. },
  2480. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2481. .supply_regulator = "db8500-vape",
  2482. .constraints = {
  2483. .name = "db8500-b2r2-mcde",
  2484. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2485. },
  2486. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2487. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2488. },
  2489. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2490. /*
  2491. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2492. * no need to hold Vape
  2493. */
  2494. .constraints = {
  2495. .name = "db8500-esram12",
  2496. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2497. },
  2498. .consumer_supplies = db8500_esram12_consumers,
  2499. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2500. },
  2501. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2502. .constraints = {
  2503. .name = "db8500-esram12-ret",
  2504. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2505. },
  2506. },
  2507. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2508. /*
  2509. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2510. * no need to hold Vape
  2511. */
  2512. .constraints = {
  2513. .name = "db8500-esram34",
  2514. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2515. },
  2516. .consumer_supplies = db8500_esram34_consumers,
  2517. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2518. },
  2519. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2520. .constraints = {
  2521. .name = "db8500-esram34-ret",
  2522. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2523. },
  2524. },
  2525. };
  2526. /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
  2527. static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
  2528. { .frequency = 200000, .index = ARM_EXTCLK,},
  2529. { .frequency = 400000, .index = ARM_50_OPP,},
  2530. { .frequency = 800000, .index = ARM_100_OPP,},
  2531. { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
  2532. { .frequency = CPUFREQ_TABLE_END,},
  2533. };
  2534. static struct resource ab8500_resources[] = {
  2535. [0] = {
  2536. .start = IRQ_DB8500_AB8500,
  2537. .end = IRQ_DB8500_AB8500,
  2538. .flags = IORESOURCE_IRQ
  2539. }
  2540. };
  2541. static struct mfd_cell db8500_prcmu_devs[] = {
  2542. {
  2543. .name = "db8500-prcmu-regulators",
  2544. .of_compatible = "stericsson,db8500-prcmu-regulator",
  2545. .platform_data = &db8500_regulators,
  2546. .pdata_size = sizeof(db8500_regulators),
  2547. },
  2548. {
  2549. .name = "cpufreq-u8500",
  2550. .of_compatible = "stericsson,cpufreq-u8500",
  2551. .platform_data = &db8500_cpufreq_table,
  2552. .pdata_size = sizeof(db8500_cpufreq_table),
  2553. },
  2554. {
  2555. .name = "ab8500-core",
  2556. .of_compatible = "stericsson,ab8500",
  2557. .num_resources = ARRAY_SIZE(ab8500_resources),
  2558. .resources = ab8500_resources,
  2559. .id = AB8500_VERSION_AB8500,
  2560. },
  2561. };
  2562. static void db8500_prcmu_update_cpufreq(void)
  2563. {
  2564. if (prcmu_has_arm_maxopp()) {
  2565. db8500_cpufreq_table[3].frequency = 1000000;
  2566. db8500_cpufreq_table[3].index = ARM_MAX_OPP;
  2567. }
  2568. }
  2569. /**
  2570. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2571. *
  2572. */
  2573. static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
  2574. {
  2575. struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
  2576. struct device_node *np = pdev->dev.of_node;
  2577. int irq = 0, err = 0, i;
  2578. if (ux500_is_svp())
  2579. return -ENODEV;
  2580. init_prcm_registers();
  2581. /* Clean up the mailbox interrupts after pre-kernel code. */
  2582. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2583. if (np)
  2584. irq = platform_get_irq(pdev, 0);
  2585. if (!np || irq <= 0)
  2586. irq = IRQ_DB8500_PRCMU1;
  2587. err = request_threaded_irq(irq, prcmu_irq_handler,
  2588. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2589. if (err < 0) {
  2590. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2591. err = -EBUSY;
  2592. goto no_irq_return;
  2593. }
  2594. db8500_irq_init(np);
  2595. for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
  2596. if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
  2597. db8500_prcmu_devs[i].platform_data = ab8500_platdata;
  2598. db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
  2599. }
  2600. }
  2601. if (cpu_is_u8500v20_or_later())
  2602. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2603. db8500_prcmu_update_cpufreq();
  2604. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2605. ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
  2606. if (err) {
  2607. pr_err("prcmu: Failed to add subdevices\n");
  2608. return err;
  2609. }
  2610. pr_info("DB8500 PRCMU initialized\n");
  2611. no_irq_return:
  2612. return err;
  2613. }
  2614. static const struct of_device_id db8500_prcmu_match[] = {
  2615. { .compatible = "stericsson,db8500-prcmu"},
  2616. { },
  2617. };
  2618. static struct platform_driver db8500_prcmu_driver = {
  2619. .driver = {
  2620. .name = "db8500-prcmu",
  2621. .owner = THIS_MODULE,
  2622. .of_match_table = db8500_prcmu_match,
  2623. },
  2624. .probe = db8500_prcmu_probe,
  2625. };
  2626. static int __init db8500_prcmu_init(void)
  2627. {
  2628. return platform_driver_register(&db8500_prcmu_driver);
  2629. }
  2630. core_initcall(db8500_prcmu_init);
  2631. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2632. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2633. MODULE_LICENSE("GPL v2");