mm.h 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. #include <linux/range.h>
  13. #include <linux/pfn.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/shrinker.h>
  16. struct mempolicy;
  17. struct anon_vma;
  18. struct file_ra_state;
  19. struct user_struct;
  20. struct writeback_control;
  21. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  22. extern unsigned long max_mapnr;
  23. #endif
  24. extern unsigned long num_physpages;
  25. extern unsigned long totalram_pages;
  26. extern void * high_memory;
  27. extern int page_cluster;
  28. #ifdef CONFIG_SYSCTL
  29. extern int sysctl_legacy_va_layout;
  30. #else
  31. #define sysctl_legacy_va_layout 0
  32. #endif
  33. #include <asm/page.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/processor.h>
  36. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  37. /* to align the pointer to the (next) page boundary */
  38. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  39. /*
  40. * Linux kernel virtual memory manager primitives.
  41. * The idea being to have a "virtual" mm in the same way
  42. * we have a virtual fs - giving a cleaner interface to the
  43. * mm details, and allowing different kinds of memory mappings
  44. * (from shared memory to executable loading to arbitrary
  45. * mmap() functions).
  46. */
  47. extern struct kmem_cache *vm_area_cachep;
  48. #ifndef CONFIG_MMU
  49. extern struct rb_root nommu_region_tree;
  50. extern struct rw_semaphore nommu_region_sem;
  51. extern unsigned int kobjsize(const void *objp);
  52. #endif
  53. /*
  54. * vm_flags in vm_area_struct, see mm_types.h.
  55. */
  56. #define VM_READ 0x00000001 /* currently active flags */
  57. #define VM_WRITE 0x00000002
  58. #define VM_EXEC 0x00000004
  59. #define VM_SHARED 0x00000008
  60. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  61. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  62. #define VM_MAYWRITE 0x00000020
  63. #define VM_MAYEXEC 0x00000040
  64. #define VM_MAYSHARE 0x00000080
  65. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  66. #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
  67. #define VM_GROWSUP 0x00000200
  68. #else
  69. #define VM_GROWSUP 0x00000000
  70. #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
  71. #endif
  72. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  73. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  74. #define VM_EXECUTABLE 0x00001000
  75. #define VM_LOCKED 0x00002000
  76. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  77. /* Used by sys_madvise() */
  78. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  79. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  80. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  81. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  82. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  83. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  84. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  85. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  86. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  87. #ifndef CONFIG_TRANSPARENT_HUGEPAGE
  88. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  89. #else
  90. #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
  91. #endif
  92. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  93. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  94. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  95. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  96. #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
  97. #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
  98. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  99. /* Bits set in the VMA until the stack is in its final location */
  100. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  101. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  102. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  103. #endif
  104. #ifdef CONFIG_STACK_GROWSUP
  105. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  106. #else
  107. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  108. #endif
  109. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  110. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  111. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  112. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  113. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  114. /*
  115. * Special vmas that are non-mergable, non-mlock()able.
  116. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  117. */
  118. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
  119. /*
  120. * mapping from the currently active vm_flags protection bits (the
  121. * low four bits) to a page protection mask..
  122. */
  123. extern pgprot_t protection_map[16];
  124. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  125. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  126. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  127. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  128. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  129. #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
  130. /*
  131. * This interface is used by x86 PAT code to identify a pfn mapping that is
  132. * linear over entire vma. This is to optimize PAT code that deals with
  133. * marking the physical region with a particular prot. This is not for generic
  134. * mm use. Note also that this check will not work if the pfn mapping is
  135. * linear for a vma starting at physical address 0. In which case PAT code
  136. * falls back to slow path of reserving physical range page by page.
  137. */
  138. static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
  139. {
  140. return !!(vma->vm_flags & VM_PFN_AT_MMAP);
  141. }
  142. static inline int is_pfn_mapping(struct vm_area_struct *vma)
  143. {
  144. return !!(vma->vm_flags & VM_PFNMAP);
  145. }
  146. /*
  147. * vm_fault is filled by the the pagefault handler and passed to the vma's
  148. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  149. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  150. *
  151. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  152. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  153. * mapping support.
  154. */
  155. struct vm_fault {
  156. unsigned int flags; /* FAULT_FLAG_xxx flags */
  157. pgoff_t pgoff; /* Logical page offset based on vma */
  158. void __user *virtual_address; /* Faulting virtual address */
  159. struct page *page; /* ->fault handlers should return a
  160. * page here, unless VM_FAULT_NOPAGE
  161. * is set (which is also implied by
  162. * VM_FAULT_ERROR).
  163. */
  164. };
  165. /*
  166. * These are the virtual MM functions - opening of an area, closing and
  167. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  168. * to the functions called when a no-page or a wp-page exception occurs.
  169. */
  170. struct vm_operations_struct {
  171. void (*open)(struct vm_area_struct * area);
  172. void (*close)(struct vm_area_struct * area);
  173. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  174. /* notification that a previously read-only page is about to become
  175. * writable, if an error is returned it will cause a SIGBUS */
  176. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  177. /* called by access_process_vm when get_user_pages() fails, typically
  178. * for use by special VMAs that can switch between memory and hardware
  179. */
  180. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  181. void *buf, int len, int write);
  182. #ifdef CONFIG_NUMA
  183. /*
  184. * set_policy() op must add a reference to any non-NULL @new mempolicy
  185. * to hold the policy upon return. Caller should pass NULL @new to
  186. * remove a policy and fall back to surrounding context--i.e. do not
  187. * install a MPOL_DEFAULT policy, nor the task or system default
  188. * mempolicy.
  189. */
  190. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  191. /*
  192. * get_policy() op must add reference [mpol_get()] to any policy at
  193. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  194. * in mm/mempolicy.c will do this automatically.
  195. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  196. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  197. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  198. * must return NULL--i.e., do not "fallback" to task or system default
  199. * policy.
  200. */
  201. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  202. unsigned long addr);
  203. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  204. const nodemask_t *to, unsigned long flags);
  205. #endif
  206. };
  207. struct mmu_gather;
  208. struct inode;
  209. #define page_private(page) ((page)->private)
  210. #define set_page_private(page, v) ((page)->private = (v))
  211. /*
  212. * FIXME: take this include out, include page-flags.h in
  213. * files which need it (119 of them)
  214. */
  215. #include <linux/page-flags.h>
  216. #include <linux/huge_mm.h>
  217. /*
  218. * Methods to modify the page usage count.
  219. *
  220. * What counts for a page usage:
  221. * - cache mapping (page->mapping)
  222. * - private data (page->private)
  223. * - page mapped in a task's page tables, each mapping
  224. * is counted separately
  225. *
  226. * Also, many kernel routines increase the page count before a critical
  227. * routine so they can be sure the page doesn't go away from under them.
  228. */
  229. /*
  230. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  231. */
  232. static inline int put_page_testzero(struct page *page)
  233. {
  234. VM_BUG_ON(atomic_read(&page->_count) == 0);
  235. return atomic_dec_and_test(&page->_count);
  236. }
  237. /*
  238. * Try to grab a ref unless the page has a refcount of zero, return false if
  239. * that is the case.
  240. */
  241. static inline int get_page_unless_zero(struct page *page)
  242. {
  243. return atomic_inc_not_zero(&page->_count);
  244. }
  245. extern int page_is_ram(unsigned long pfn);
  246. /* Support for virtually mapped pages */
  247. struct page *vmalloc_to_page(const void *addr);
  248. unsigned long vmalloc_to_pfn(const void *addr);
  249. /*
  250. * Determine if an address is within the vmalloc range
  251. *
  252. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  253. * is no special casing required.
  254. */
  255. static inline int is_vmalloc_addr(const void *x)
  256. {
  257. #ifdef CONFIG_MMU
  258. unsigned long addr = (unsigned long)x;
  259. return addr >= VMALLOC_START && addr < VMALLOC_END;
  260. #else
  261. return 0;
  262. #endif
  263. }
  264. #ifdef CONFIG_MMU
  265. extern int is_vmalloc_or_module_addr(const void *x);
  266. #else
  267. static inline int is_vmalloc_or_module_addr(const void *x)
  268. {
  269. return 0;
  270. }
  271. #endif
  272. static inline void compound_lock(struct page *page)
  273. {
  274. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  275. bit_spin_lock(PG_compound_lock, &page->flags);
  276. #endif
  277. }
  278. static inline void compound_unlock(struct page *page)
  279. {
  280. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  281. bit_spin_unlock(PG_compound_lock, &page->flags);
  282. #endif
  283. }
  284. static inline unsigned long compound_lock_irqsave(struct page *page)
  285. {
  286. unsigned long uninitialized_var(flags);
  287. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  288. local_irq_save(flags);
  289. compound_lock(page);
  290. #endif
  291. return flags;
  292. }
  293. static inline void compound_unlock_irqrestore(struct page *page,
  294. unsigned long flags)
  295. {
  296. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  297. compound_unlock(page);
  298. local_irq_restore(flags);
  299. #endif
  300. }
  301. static inline struct page *compound_head(struct page *page)
  302. {
  303. if (unlikely(PageTail(page)))
  304. return page->first_page;
  305. return page;
  306. }
  307. static inline int page_count(struct page *page)
  308. {
  309. return atomic_read(&compound_head(page)->_count);
  310. }
  311. static inline void get_page(struct page *page)
  312. {
  313. /*
  314. * Getting a normal page or the head of a compound page
  315. * requires to already have an elevated page->_count. Only if
  316. * we're getting a tail page, the elevated page->_count is
  317. * required only in the head page, so for tail pages the
  318. * bugcheck only verifies that the page->_count isn't
  319. * negative.
  320. */
  321. VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
  322. atomic_inc(&page->_count);
  323. /*
  324. * Getting a tail page will elevate both the head and tail
  325. * page->_count(s).
  326. */
  327. if (unlikely(PageTail(page))) {
  328. /*
  329. * This is safe only because
  330. * __split_huge_page_refcount can't run under
  331. * get_page().
  332. */
  333. VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
  334. atomic_inc(&page->first_page->_count);
  335. }
  336. }
  337. static inline struct page *virt_to_head_page(const void *x)
  338. {
  339. struct page *page = virt_to_page(x);
  340. return compound_head(page);
  341. }
  342. /*
  343. * Setup the page count before being freed into the page allocator for
  344. * the first time (boot or memory hotplug)
  345. */
  346. static inline void init_page_count(struct page *page)
  347. {
  348. atomic_set(&page->_count, 1);
  349. }
  350. /*
  351. * PageBuddy() indicate that the page is free and in the buddy system
  352. * (see mm/page_alloc.c).
  353. *
  354. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  355. * -2 so that an underflow of the page_mapcount() won't be mistaken
  356. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  357. * efficiently by most CPU architectures.
  358. */
  359. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  360. static inline int PageBuddy(struct page *page)
  361. {
  362. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  363. }
  364. static inline void __SetPageBuddy(struct page *page)
  365. {
  366. VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
  367. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  368. }
  369. static inline void __ClearPageBuddy(struct page *page)
  370. {
  371. VM_BUG_ON(!PageBuddy(page));
  372. atomic_set(&page->_mapcount, -1);
  373. }
  374. void put_page(struct page *page);
  375. void put_pages_list(struct list_head *pages);
  376. void split_page(struct page *page, unsigned int order);
  377. int split_free_page(struct page *page);
  378. /*
  379. * Compound pages have a destructor function. Provide a
  380. * prototype for that function and accessor functions.
  381. * These are _only_ valid on the head of a PG_compound page.
  382. */
  383. typedef void compound_page_dtor(struct page *);
  384. static inline void set_compound_page_dtor(struct page *page,
  385. compound_page_dtor *dtor)
  386. {
  387. page[1].lru.next = (void *)dtor;
  388. }
  389. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  390. {
  391. return (compound_page_dtor *)page[1].lru.next;
  392. }
  393. static inline int compound_order(struct page *page)
  394. {
  395. if (!PageHead(page))
  396. return 0;
  397. return (unsigned long)page[1].lru.prev;
  398. }
  399. static inline int compound_trans_order(struct page *page)
  400. {
  401. int order;
  402. unsigned long flags;
  403. if (!PageHead(page))
  404. return 0;
  405. flags = compound_lock_irqsave(page);
  406. order = compound_order(page);
  407. compound_unlock_irqrestore(page, flags);
  408. return order;
  409. }
  410. static inline void set_compound_order(struct page *page, unsigned long order)
  411. {
  412. page[1].lru.prev = (void *)order;
  413. }
  414. #ifdef CONFIG_MMU
  415. /*
  416. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  417. * servicing faults for write access. In the normal case, do always want
  418. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  419. * that do not have writing enabled, when used by access_process_vm.
  420. */
  421. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  422. {
  423. if (likely(vma->vm_flags & VM_WRITE))
  424. pte = pte_mkwrite(pte);
  425. return pte;
  426. }
  427. #endif
  428. /*
  429. * Multiple processes may "see" the same page. E.g. for untouched
  430. * mappings of /dev/null, all processes see the same page full of
  431. * zeroes, and text pages of executables and shared libraries have
  432. * only one copy in memory, at most, normally.
  433. *
  434. * For the non-reserved pages, page_count(page) denotes a reference count.
  435. * page_count() == 0 means the page is free. page->lru is then used for
  436. * freelist management in the buddy allocator.
  437. * page_count() > 0 means the page has been allocated.
  438. *
  439. * Pages are allocated by the slab allocator in order to provide memory
  440. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  441. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  442. * unless a particular usage is carefully commented. (the responsibility of
  443. * freeing the kmalloc memory is the caller's, of course).
  444. *
  445. * A page may be used by anyone else who does a __get_free_page().
  446. * In this case, page_count still tracks the references, and should only
  447. * be used through the normal accessor functions. The top bits of page->flags
  448. * and page->virtual store page management information, but all other fields
  449. * are unused and could be used privately, carefully. The management of this
  450. * page is the responsibility of the one who allocated it, and those who have
  451. * subsequently been given references to it.
  452. *
  453. * The other pages (we may call them "pagecache pages") are completely
  454. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  455. * The following discussion applies only to them.
  456. *
  457. * A pagecache page contains an opaque `private' member, which belongs to the
  458. * page's address_space. Usually, this is the address of a circular list of
  459. * the page's disk buffers. PG_private must be set to tell the VM to call
  460. * into the filesystem to release these pages.
  461. *
  462. * A page may belong to an inode's memory mapping. In this case, page->mapping
  463. * is the pointer to the inode, and page->index is the file offset of the page,
  464. * in units of PAGE_CACHE_SIZE.
  465. *
  466. * If pagecache pages are not associated with an inode, they are said to be
  467. * anonymous pages. These may become associated with the swapcache, and in that
  468. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  469. *
  470. * In either case (swapcache or inode backed), the pagecache itself holds one
  471. * reference to the page. Setting PG_private should also increment the
  472. * refcount. The each user mapping also has a reference to the page.
  473. *
  474. * The pagecache pages are stored in a per-mapping radix tree, which is
  475. * rooted at mapping->page_tree, and indexed by offset.
  476. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  477. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  478. *
  479. * All pagecache pages may be subject to I/O:
  480. * - inode pages may need to be read from disk,
  481. * - inode pages which have been modified and are MAP_SHARED may need
  482. * to be written back to the inode on disk,
  483. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  484. * modified may need to be swapped out to swap space and (later) to be read
  485. * back into memory.
  486. */
  487. /*
  488. * The zone field is never updated after free_area_init_core()
  489. * sets it, so none of the operations on it need to be atomic.
  490. */
  491. /*
  492. * page->flags layout:
  493. *
  494. * There are three possibilities for how page->flags get
  495. * laid out. The first is for the normal case, without
  496. * sparsemem. The second is for sparsemem when there is
  497. * plenty of space for node and section. The last is when
  498. * we have run out of space and have to fall back to an
  499. * alternate (slower) way of determining the node.
  500. *
  501. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  502. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  503. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  504. */
  505. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  506. #define SECTIONS_WIDTH SECTIONS_SHIFT
  507. #else
  508. #define SECTIONS_WIDTH 0
  509. #endif
  510. #define ZONES_WIDTH ZONES_SHIFT
  511. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  512. #define NODES_WIDTH NODES_SHIFT
  513. #else
  514. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  515. #error "Vmemmap: No space for nodes field in page flags"
  516. #endif
  517. #define NODES_WIDTH 0
  518. #endif
  519. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  520. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  521. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  522. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  523. /*
  524. * We are going to use the flags for the page to node mapping if its in
  525. * there. This includes the case where there is no node, so it is implicit.
  526. */
  527. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  528. #define NODE_NOT_IN_PAGE_FLAGS
  529. #endif
  530. /*
  531. * Define the bit shifts to access each section. For non-existent
  532. * sections we define the shift as 0; that plus a 0 mask ensures
  533. * the compiler will optimise away reference to them.
  534. */
  535. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  536. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  537. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  538. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  539. #ifdef NODE_NOT_IN_PAGE_FLAGS
  540. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  541. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  542. SECTIONS_PGOFF : ZONES_PGOFF)
  543. #else
  544. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  545. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  546. NODES_PGOFF : ZONES_PGOFF)
  547. #endif
  548. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  549. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  550. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  551. #endif
  552. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  553. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  554. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  555. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  556. static inline enum zone_type page_zonenum(const struct page *page)
  557. {
  558. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  559. }
  560. /*
  561. * The identification function is only used by the buddy allocator for
  562. * determining if two pages could be buddies. We are not really
  563. * identifying a zone since we could be using a the section number
  564. * id if we have not node id available in page flags.
  565. * We guarantee only that it will return the same value for two
  566. * combinable pages in a zone.
  567. */
  568. static inline int page_zone_id(struct page *page)
  569. {
  570. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  571. }
  572. static inline int zone_to_nid(struct zone *zone)
  573. {
  574. #ifdef CONFIG_NUMA
  575. return zone->node;
  576. #else
  577. return 0;
  578. #endif
  579. }
  580. #ifdef NODE_NOT_IN_PAGE_FLAGS
  581. extern int page_to_nid(const struct page *page);
  582. #else
  583. static inline int page_to_nid(const struct page *page)
  584. {
  585. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  586. }
  587. #endif
  588. static inline struct zone *page_zone(const struct page *page)
  589. {
  590. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  591. }
  592. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  593. static inline void set_page_section(struct page *page, unsigned long section)
  594. {
  595. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  596. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  597. }
  598. static inline unsigned long page_to_section(struct page *page)
  599. {
  600. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  601. }
  602. #endif
  603. static inline void set_page_zone(struct page *page, enum zone_type zone)
  604. {
  605. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  606. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  607. }
  608. static inline void set_page_node(struct page *page, unsigned long node)
  609. {
  610. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  611. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  612. }
  613. static inline void set_page_links(struct page *page, enum zone_type zone,
  614. unsigned long node, unsigned long pfn)
  615. {
  616. set_page_zone(page, zone);
  617. set_page_node(page, node);
  618. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  619. set_page_section(page, pfn_to_section_nr(pfn));
  620. #endif
  621. }
  622. /*
  623. * Some inline functions in vmstat.h depend on page_zone()
  624. */
  625. #include <linux/vmstat.h>
  626. static __always_inline void *lowmem_page_address(const struct page *page)
  627. {
  628. return __va(PFN_PHYS(page_to_pfn((struct page *)page)));
  629. }
  630. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  631. #define HASHED_PAGE_VIRTUAL
  632. #endif
  633. #if defined(WANT_PAGE_VIRTUAL)
  634. #define page_address(page) ((page)->virtual)
  635. #define set_page_address(page, address) \
  636. do { \
  637. (page)->virtual = (address); \
  638. } while(0)
  639. #define page_address_init() do { } while(0)
  640. #endif
  641. #if defined(HASHED_PAGE_VIRTUAL)
  642. void *page_address(struct page *page);
  643. void set_page_address(struct page *page, void *virtual);
  644. void page_address_init(void);
  645. #endif
  646. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  647. #define page_address(page) lowmem_page_address(page)
  648. #define set_page_address(page, address) do { } while(0)
  649. #define page_address_init() do { } while(0)
  650. #endif
  651. /*
  652. * On an anonymous page mapped into a user virtual memory area,
  653. * page->mapping points to its anon_vma, not to a struct address_space;
  654. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  655. *
  656. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  657. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  658. * and then page->mapping points, not to an anon_vma, but to a private
  659. * structure which KSM associates with that merged page. See ksm.h.
  660. *
  661. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  662. *
  663. * Please note that, confusingly, "page_mapping" refers to the inode
  664. * address_space which maps the page from disk; whereas "page_mapped"
  665. * refers to user virtual address space into which the page is mapped.
  666. */
  667. #define PAGE_MAPPING_ANON 1
  668. #define PAGE_MAPPING_KSM 2
  669. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  670. extern struct address_space swapper_space;
  671. static inline struct address_space *page_mapping(struct page *page)
  672. {
  673. struct address_space *mapping = page->mapping;
  674. VM_BUG_ON(PageSlab(page));
  675. if (unlikely(PageSwapCache(page)))
  676. mapping = &swapper_space;
  677. else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  678. mapping = NULL;
  679. return mapping;
  680. }
  681. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  682. static inline void *page_rmapping(struct page *page)
  683. {
  684. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  685. }
  686. static inline int PageAnon(struct page *page)
  687. {
  688. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  689. }
  690. /*
  691. * Return the pagecache index of the passed page. Regular pagecache pages
  692. * use ->index whereas swapcache pages use ->private
  693. */
  694. static inline pgoff_t page_index(struct page *page)
  695. {
  696. if (unlikely(PageSwapCache(page)))
  697. return page_private(page);
  698. return page->index;
  699. }
  700. /*
  701. * The atomic page->_mapcount, like _count, starts from -1:
  702. * so that transitions both from it and to it can be tracked,
  703. * using atomic_inc_and_test and atomic_add_negative(-1).
  704. */
  705. static inline void reset_page_mapcount(struct page *page)
  706. {
  707. atomic_set(&(page)->_mapcount, -1);
  708. }
  709. static inline int page_mapcount(struct page *page)
  710. {
  711. return atomic_read(&(page)->_mapcount) + 1;
  712. }
  713. /*
  714. * Return true if this page is mapped into pagetables.
  715. */
  716. static inline int page_mapped(struct page *page)
  717. {
  718. return atomic_read(&(page)->_mapcount) >= 0;
  719. }
  720. /*
  721. * Different kinds of faults, as returned by handle_mm_fault().
  722. * Used to decide whether a process gets delivered SIGBUS or
  723. * just gets major/minor fault counters bumped up.
  724. */
  725. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  726. #define VM_FAULT_OOM 0x0001
  727. #define VM_FAULT_SIGBUS 0x0002
  728. #define VM_FAULT_MAJOR 0x0004
  729. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  730. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  731. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  732. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  733. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  734. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  735. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  736. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  737. VM_FAULT_HWPOISON_LARGE)
  738. /* Encode hstate index for a hwpoisoned large page */
  739. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  740. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  741. /*
  742. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  743. */
  744. extern void pagefault_out_of_memory(void);
  745. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  746. /*
  747. * Flags passed to show_mem() and show_free_areas() to suppress output in
  748. * various contexts.
  749. */
  750. #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
  751. extern void show_free_areas(unsigned int flags);
  752. extern bool skip_free_areas_node(unsigned int flags, int nid);
  753. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  754. struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
  755. int shmem_zero_setup(struct vm_area_struct *);
  756. extern int can_do_mlock(void);
  757. extern int user_shm_lock(size_t, struct user_struct *);
  758. extern void user_shm_unlock(size_t, struct user_struct *);
  759. /*
  760. * Parameter block passed down to zap_pte_range in exceptional cases.
  761. */
  762. struct zap_details {
  763. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  764. struct address_space *check_mapping; /* Check page->mapping if set */
  765. pgoff_t first_index; /* Lowest page->index to unmap */
  766. pgoff_t last_index; /* Highest page->index to unmap */
  767. };
  768. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  769. pte_t pte);
  770. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  771. unsigned long size);
  772. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  773. unsigned long size, struct zap_details *);
  774. unsigned long unmap_vmas(struct mmu_gather *tlb,
  775. struct vm_area_struct *start_vma, unsigned long start_addr,
  776. unsigned long end_addr, unsigned long *nr_accounted,
  777. struct zap_details *);
  778. /**
  779. * mm_walk - callbacks for walk_page_range
  780. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  781. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  782. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  783. * this handler is required to be able to handle
  784. * pmd_trans_huge() pmds. They may simply choose to
  785. * split_huge_page() instead of handling it explicitly.
  786. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  787. * @pte_hole: if set, called for each hole at all levels
  788. * @hugetlb_entry: if set, called for each hugetlb entry
  789. * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
  790. * is used.
  791. *
  792. * (see walk_page_range for more details)
  793. */
  794. struct mm_walk {
  795. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  796. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  797. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  798. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  799. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  800. int (*hugetlb_entry)(pte_t *, unsigned long,
  801. unsigned long, unsigned long, struct mm_walk *);
  802. struct mm_struct *mm;
  803. void *private;
  804. };
  805. int walk_page_range(unsigned long addr, unsigned long end,
  806. struct mm_walk *walk);
  807. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  808. unsigned long end, unsigned long floor, unsigned long ceiling);
  809. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  810. struct vm_area_struct *vma);
  811. void unmap_mapping_range(struct address_space *mapping,
  812. loff_t const holebegin, loff_t const holelen, int even_cows);
  813. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  814. unsigned long *pfn);
  815. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  816. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  817. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  818. void *buf, int len, int write);
  819. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  820. loff_t const holebegin, loff_t const holelen)
  821. {
  822. unmap_mapping_range(mapping, holebegin, holelen, 0);
  823. }
  824. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  825. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  826. extern int vmtruncate(struct inode *inode, loff_t offset);
  827. extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
  828. int truncate_inode_page(struct address_space *mapping, struct page *page);
  829. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  830. int invalidate_inode_page(struct page *page);
  831. #ifdef CONFIG_MMU
  832. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  833. unsigned long address, unsigned int flags);
  834. #else
  835. static inline int handle_mm_fault(struct mm_struct *mm,
  836. struct vm_area_struct *vma, unsigned long address,
  837. unsigned int flags)
  838. {
  839. /* should never happen if there's no MMU */
  840. BUG();
  841. return VM_FAULT_SIGBUS;
  842. }
  843. #endif
  844. extern int make_pages_present(unsigned long addr, unsigned long end);
  845. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  846. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  847. void *buf, int len, int write);
  848. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  849. unsigned long start, int len, unsigned int foll_flags,
  850. struct page **pages, struct vm_area_struct **vmas,
  851. int *nonblocking);
  852. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  853. unsigned long start, int nr_pages, int write, int force,
  854. struct page **pages, struct vm_area_struct **vmas);
  855. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  856. struct page **pages);
  857. struct page *get_dump_page(unsigned long addr);
  858. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  859. extern void do_invalidatepage(struct page *page, unsigned long offset);
  860. int __set_page_dirty_nobuffers(struct page *page);
  861. int __set_page_dirty_no_writeback(struct page *page);
  862. int redirty_page_for_writepage(struct writeback_control *wbc,
  863. struct page *page);
  864. void account_page_dirtied(struct page *page, struct address_space *mapping);
  865. void account_page_writeback(struct page *page);
  866. int set_page_dirty(struct page *page);
  867. int set_page_dirty_lock(struct page *page);
  868. int clear_page_dirty_for_io(struct page *page);
  869. /* Is the vma a continuation of the stack vma above it? */
  870. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  871. {
  872. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  873. }
  874. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  875. unsigned long addr)
  876. {
  877. return (vma->vm_flags & VM_GROWSDOWN) &&
  878. (vma->vm_start == addr) &&
  879. !vma_growsdown(vma->vm_prev, addr);
  880. }
  881. /* Is the vma a continuation of the stack vma below it? */
  882. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  883. {
  884. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  885. }
  886. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  887. unsigned long addr)
  888. {
  889. return (vma->vm_flags & VM_GROWSUP) &&
  890. (vma->vm_end == addr) &&
  891. !vma_growsup(vma->vm_next, addr);
  892. }
  893. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  894. unsigned long old_addr, struct vm_area_struct *new_vma,
  895. unsigned long new_addr, unsigned long len);
  896. extern unsigned long do_mremap(unsigned long addr,
  897. unsigned long old_len, unsigned long new_len,
  898. unsigned long flags, unsigned long new_addr);
  899. extern int mprotect_fixup(struct vm_area_struct *vma,
  900. struct vm_area_struct **pprev, unsigned long start,
  901. unsigned long end, unsigned long newflags);
  902. /*
  903. * doesn't attempt to fault and will return short.
  904. */
  905. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  906. struct page **pages);
  907. /*
  908. * per-process(per-mm_struct) statistics.
  909. */
  910. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  911. {
  912. atomic_long_set(&mm->rss_stat.count[member], value);
  913. }
  914. #if defined(SPLIT_RSS_COUNTING)
  915. unsigned long get_mm_counter(struct mm_struct *mm, int member);
  916. #else
  917. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  918. {
  919. return atomic_long_read(&mm->rss_stat.count[member]);
  920. }
  921. #endif
  922. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  923. {
  924. atomic_long_add(value, &mm->rss_stat.count[member]);
  925. }
  926. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  927. {
  928. atomic_long_inc(&mm->rss_stat.count[member]);
  929. }
  930. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  931. {
  932. atomic_long_dec(&mm->rss_stat.count[member]);
  933. }
  934. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  935. {
  936. return get_mm_counter(mm, MM_FILEPAGES) +
  937. get_mm_counter(mm, MM_ANONPAGES);
  938. }
  939. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  940. {
  941. return max(mm->hiwater_rss, get_mm_rss(mm));
  942. }
  943. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  944. {
  945. return max(mm->hiwater_vm, mm->total_vm);
  946. }
  947. static inline void update_hiwater_rss(struct mm_struct *mm)
  948. {
  949. unsigned long _rss = get_mm_rss(mm);
  950. if ((mm)->hiwater_rss < _rss)
  951. (mm)->hiwater_rss = _rss;
  952. }
  953. static inline void update_hiwater_vm(struct mm_struct *mm)
  954. {
  955. if (mm->hiwater_vm < mm->total_vm)
  956. mm->hiwater_vm = mm->total_vm;
  957. }
  958. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  959. struct mm_struct *mm)
  960. {
  961. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  962. if (*maxrss < hiwater_rss)
  963. *maxrss = hiwater_rss;
  964. }
  965. #if defined(SPLIT_RSS_COUNTING)
  966. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
  967. #else
  968. static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  969. {
  970. }
  971. #endif
  972. int vma_wants_writenotify(struct vm_area_struct *vma);
  973. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  974. spinlock_t **ptl);
  975. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  976. spinlock_t **ptl)
  977. {
  978. pte_t *ptep;
  979. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  980. return ptep;
  981. }
  982. #ifdef __PAGETABLE_PUD_FOLDED
  983. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  984. unsigned long address)
  985. {
  986. return 0;
  987. }
  988. #else
  989. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  990. #endif
  991. #ifdef __PAGETABLE_PMD_FOLDED
  992. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  993. unsigned long address)
  994. {
  995. return 0;
  996. }
  997. #else
  998. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  999. #endif
  1000. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1001. pmd_t *pmd, unsigned long address);
  1002. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1003. /*
  1004. * The following ifdef needed to get the 4level-fixup.h header to work.
  1005. * Remove it when 4level-fixup.h has been removed.
  1006. */
  1007. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1008. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1009. {
  1010. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1011. NULL: pud_offset(pgd, address);
  1012. }
  1013. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1014. {
  1015. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1016. NULL: pmd_offset(pud, address);
  1017. }
  1018. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1019. #if USE_SPLIT_PTLOCKS
  1020. /*
  1021. * We tuck a spinlock to guard each pagetable page into its struct page,
  1022. * at page->private, with BUILD_BUG_ON to make sure that this will not
  1023. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  1024. * When freeing, reset page->mapping so free_pages_check won't complain.
  1025. */
  1026. #define __pte_lockptr(page) &((page)->ptl)
  1027. #define pte_lock_init(_page) do { \
  1028. spin_lock_init(__pte_lockptr(_page)); \
  1029. } while (0)
  1030. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  1031. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  1032. #else /* !USE_SPLIT_PTLOCKS */
  1033. /*
  1034. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1035. */
  1036. #define pte_lock_init(page) do {} while (0)
  1037. #define pte_lock_deinit(page) do {} while (0)
  1038. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  1039. #endif /* USE_SPLIT_PTLOCKS */
  1040. static inline void pgtable_page_ctor(struct page *page)
  1041. {
  1042. pte_lock_init(page);
  1043. inc_zone_page_state(page, NR_PAGETABLE);
  1044. }
  1045. static inline void pgtable_page_dtor(struct page *page)
  1046. {
  1047. pte_lock_deinit(page);
  1048. dec_zone_page_state(page, NR_PAGETABLE);
  1049. }
  1050. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1051. ({ \
  1052. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1053. pte_t *__pte = pte_offset_map(pmd, address); \
  1054. *(ptlp) = __ptl; \
  1055. spin_lock(__ptl); \
  1056. __pte; \
  1057. })
  1058. #define pte_unmap_unlock(pte, ptl) do { \
  1059. spin_unlock(ptl); \
  1060. pte_unmap(pte); \
  1061. } while (0)
  1062. #define pte_alloc_map(mm, vma, pmd, address) \
  1063. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1064. pmd, address))? \
  1065. NULL: pte_offset_map(pmd, address))
  1066. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1067. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1068. pmd, address))? \
  1069. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1070. #define pte_alloc_kernel(pmd, address) \
  1071. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1072. NULL: pte_offset_kernel(pmd, address))
  1073. extern void free_area_init(unsigned long * zones_size);
  1074. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1075. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1076. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  1077. /*
  1078. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  1079. * zones, allocate the backing mem_map and account for memory holes in a more
  1080. * architecture independent manner. This is a substitute for creating the
  1081. * zone_sizes[] and zholes_size[] arrays and passing them to
  1082. * free_area_init_node()
  1083. *
  1084. * An architecture is expected to register range of page frames backed by
  1085. * physical memory with add_active_range() before calling
  1086. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1087. * usage, an architecture is expected to do something like
  1088. *
  1089. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1090. * max_highmem_pfn};
  1091. * for_each_valid_physical_page_range()
  1092. * add_active_range(node_id, start_pfn, end_pfn)
  1093. * free_area_init_nodes(max_zone_pfns);
  1094. *
  1095. * If the architecture guarantees that there are no holes in the ranges
  1096. * registered with add_active_range(), free_bootmem_active_regions()
  1097. * will call free_bootmem_node() for each registered physical page range.
  1098. * Similarly sparse_memory_present_with_active_regions() calls
  1099. * memory_present() for each range when SPARSEMEM is enabled.
  1100. *
  1101. * See mm/page_alloc.c for more information on each function exposed by
  1102. * CONFIG_ARCH_POPULATES_NODE_MAP
  1103. */
  1104. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1105. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  1106. unsigned long end_pfn);
  1107. extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
  1108. unsigned long end_pfn);
  1109. extern void remove_all_active_ranges(void);
  1110. void sort_node_map(void);
  1111. unsigned long node_map_pfn_alignment(void);
  1112. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1113. unsigned long end_pfn);
  1114. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1115. unsigned long end_pfn);
  1116. extern void get_pfn_range_for_nid(unsigned int nid,
  1117. unsigned long *start_pfn, unsigned long *end_pfn);
  1118. extern unsigned long find_min_pfn_with_active_regions(void);
  1119. extern void free_bootmem_with_active_regions(int nid,
  1120. unsigned long max_low_pfn);
  1121. int add_from_early_node_map(struct range *range, int az,
  1122. int nr_range, int nid);
  1123. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  1124. u64 goal, u64 limit);
  1125. typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
  1126. extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
  1127. extern void sparse_memory_present_with_active_regions(int nid);
  1128. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  1129. #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
  1130. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1131. static inline int __early_pfn_to_nid(unsigned long pfn)
  1132. {
  1133. return 0;
  1134. }
  1135. #else
  1136. /* please see mm/page_alloc.c */
  1137. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1138. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1139. /* there is a per-arch backend function. */
  1140. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1141. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1142. #endif
  1143. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1144. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1145. unsigned long, enum memmap_context);
  1146. extern void setup_per_zone_wmarks(void);
  1147. extern int __meminit init_per_zone_wmark_min(void);
  1148. extern void mem_init(void);
  1149. extern void __init mmap_init(void);
  1150. extern void show_mem(unsigned int flags);
  1151. extern void si_meminfo(struct sysinfo * val);
  1152. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1153. extern int after_bootmem;
  1154. extern void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1155. extern void setup_per_cpu_pageset(void);
  1156. extern void zone_pcp_update(struct zone *zone);
  1157. /* nommu.c */
  1158. extern atomic_long_t mmap_pages_allocated;
  1159. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1160. /* prio_tree.c */
  1161. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  1162. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  1163. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  1164. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  1165. struct prio_tree_iter *iter);
  1166. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  1167. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  1168. (vma = vma_prio_tree_next(vma, iter)); )
  1169. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1170. struct list_head *list)
  1171. {
  1172. vma->shared.vm_set.parent = NULL;
  1173. list_add_tail(&vma->shared.vm_set.list, list);
  1174. }
  1175. /* mmap.c */
  1176. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1177. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1178. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1179. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1180. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1181. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1182. struct mempolicy *);
  1183. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1184. extern int split_vma(struct mm_struct *,
  1185. struct vm_area_struct *, unsigned long addr, int new_below);
  1186. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1187. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1188. struct rb_node **, struct rb_node *);
  1189. extern void unlink_file_vma(struct vm_area_struct *);
  1190. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1191. unsigned long addr, unsigned long len, pgoff_t pgoff);
  1192. extern void exit_mmap(struct mm_struct *);
  1193. extern int mm_take_all_locks(struct mm_struct *mm);
  1194. extern void mm_drop_all_locks(struct mm_struct *mm);
  1195. /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
  1196. extern void added_exe_file_vma(struct mm_struct *mm);
  1197. extern void removed_exe_file_vma(struct mm_struct *mm);
  1198. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1199. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1200. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1201. extern int install_special_mapping(struct mm_struct *mm,
  1202. unsigned long addr, unsigned long len,
  1203. unsigned long flags, struct page **pages);
  1204. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1205. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1206. unsigned long len, unsigned long prot,
  1207. unsigned long flag, unsigned long pgoff);
  1208. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1209. unsigned long len, unsigned long flags,
  1210. vm_flags_t vm_flags, unsigned long pgoff);
  1211. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  1212. unsigned long len, unsigned long prot,
  1213. unsigned long flag, unsigned long offset)
  1214. {
  1215. unsigned long ret = -EINVAL;
  1216. if ((offset + PAGE_ALIGN(len)) < offset)
  1217. goto out;
  1218. if (!(offset & ~PAGE_MASK))
  1219. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  1220. out:
  1221. return ret;
  1222. }
  1223. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1224. extern unsigned long do_brk(unsigned long, unsigned long);
  1225. /* filemap.c */
  1226. extern unsigned long page_unuse(struct page *);
  1227. extern void truncate_inode_pages(struct address_space *, loff_t);
  1228. extern void truncate_inode_pages_range(struct address_space *,
  1229. loff_t lstart, loff_t lend);
  1230. /* generic vm_area_ops exported for stackable file systems */
  1231. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1232. /* mm/page-writeback.c */
  1233. int write_one_page(struct page *page, int wait);
  1234. void task_dirty_inc(struct task_struct *tsk);
  1235. /* readahead.c */
  1236. #define VM_MAX_READAHEAD 128 /* kbytes */
  1237. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1238. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1239. pgoff_t offset, unsigned long nr_to_read);
  1240. void page_cache_sync_readahead(struct address_space *mapping,
  1241. struct file_ra_state *ra,
  1242. struct file *filp,
  1243. pgoff_t offset,
  1244. unsigned long size);
  1245. void page_cache_async_readahead(struct address_space *mapping,
  1246. struct file_ra_state *ra,
  1247. struct file *filp,
  1248. struct page *pg,
  1249. pgoff_t offset,
  1250. unsigned long size);
  1251. unsigned long max_sane_readahead(unsigned long nr);
  1252. unsigned long ra_submit(struct file_ra_state *ra,
  1253. struct address_space *mapping,
  1254. struct file *filp);
  1255. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1256. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1257. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1258. extern int expand_downwards(struct vm_area_struct *vma,
  1259. unsigned long address);
  1260. #if VM_GROWSUP
  1261. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1262. #else
  1263. #define expand_upwards(vma, address) do { } while (0)
  1264. #endif
  1265. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1266. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1267. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1268. struct vm_area_struct **pprev);
  1269. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1270. NULL if none. Assume start_addr < end_addr. */
  1271. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1272. {
  1273. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1274. if (vma && end_addr <= vma->vm_start)
  1275. vma = NULL;
  1276. return vma;
  1277. }
  1278. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1279. {
  1280. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1281. }
  1282. #ifdef CONFIG_MMU
  1283. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1284. #else
  1285. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1286. {
  1287. return __pgprot(0);
  1288. }
  1289. #endif
  1290. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1291. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1292. unsigned long pfn, unsigned long size, pgprot_t);
  1293. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1294. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1295. unsigned long pfn);
  1296. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1297. unsigned long pfn);
  1298. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1299. unsigned int foll_flags);
  1300. #define FOLL_WRITE 0x01 /* check pte is writable */
  1301. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1302. #define FOLL_GET 0x04 /* do get_page on page */
  1303. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1304. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1305. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1306. * and return without waiting upon it */
  1307. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1308. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1309. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1310. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1311. void *data);
  1312. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1313. unsigned long size, pte_fn_t fn, void *data);
  1314. #ifdef CONFIG_PROC_FS
  1315. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1316. #else
  1317. static inline void vm_stat_account(struct mm_struct *mm,
  1318. unsigned long flags, struct file *file, long pages)
  1319. {
  1320. }
  1321. #endif /* CONFIG_PROC_FS */
  1322. #ifdef CONFIG_DEBUG_PAGEALLOC
  1323. extern int debug_pagealloc_enabled;
  1324. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1325. static inline void enable_debug_pagealloc(void)
  1326. {
  1327. debug_pagealloc_enabled = 1;
  1328. }
  1329. #ifdef CONFIG_HIBERNATION
  1330. extern bool kernel_page_present(struct page *page);
  1331. #endif /* CONFIG_HIBERNATION */
  1332. #else
  1333. static inline void
  1334. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1335. static inline void enable_debug_pagealloc(void)
  1336. {
  1337. }
  1338. #ifdef CONFIG_HIBERNATION
  1339. static inline bool kernel_page_present(struct page *page) { return true; }
  1340. #endif /* CONFIG_HIBERNATION */
  1341. #endif
  1342. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1343. #ifdef __HAVE_ARCH_GATE_AREA
  1344. int in_gate_area_no_mm(unsigned long addr);
  1345. int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1346. #else
  1347. int in_gate_area_no_mm(unsigned long addr);
  1348. #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
  1349. #endif /* __HAVE_ARCH_GATE_AREA */
  1350. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1351. void __user *, size_t *, loff_t *);
  1352. unsigned long shrink_slab(struct shrink_control *shrink,
  1353. unsigned long nr_pages_scanned,
  1354. unsigned long lru_pages);
  1355. #ifndef CONFIG_MMU
  1356. #define randomize_va_space 0
  1357. #else
  1358. extern int randomize_va_space;
  1359. #endif
  1360. const char * arch_vma_name(struct vm_area_struct *vma);
  1361. void print_vma_addr(char *prefix, unsigned long rip);
  1362. void sparse_mem_maps_populate_node(struct page **map_map,
  1363. unsigned long pnum_begin,
  1364. unsigned long pnum_end,
  1365. unsigned long map_count,
  1366. int nodeid);
  1367. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1368. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1369. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1370. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1371. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1372. void *vmemmap_alloc_block(unsigned long size, int node);
  1373. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1374. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1375. int vmemmap_populate_basepages(struct page *start_page,
  1376. unsigned long pages, int node);
  1377. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1378. void vmemmap_populate_print_last(void);
  1379. enum mf_flags {
  1380. MF_COUNT_INCREASED = 1 << 0,
  1381. };
  1382. extern void memory_failure(unsigned long pfn, int trapno);
  1383. extern int __memory_failure(unsigned long pfn, int trapno, int flags);
  1384. extern int unpoison_memory(unsigned long pfn);
  1385. extern int sysctl_memory_failure_early_kill;
  1386. extern int sysctl_memory_failure_recovery;
  1387. extern void shake_page(struct page *p, int access);
  1388. extern atomic_long_t mce_bad_pages;
  1389. extern int soft_offline_page(struct page *page, int flags);
  1390. extern void dump_page(struct page *page);
  1391. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1392. extern void clear_huge_page(struct page *page,
  1393. unsigned long addr,
  1394. unsigned int pages_per_huge_page);
  1395. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1396. unsigned long addr, struct vm_area_struct *vma,
  1397. unsigned int pages_per_huge_page);
  1398. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1399. #endif /* __KERNEL__ */
  1400. #endif /* _LINUX_MM_H */