txrx.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854
  1. /*
  2. * Copyright (c) 2004-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include "core.h"
  19. #include "debug.h"
  20. #include "htc-ops.h"
  21. /*
  22. * tid - tid_mux0..tid_mux3
  23. * aid - tid_mux4..tid_mux7
  24. */
  25. #define ATH6KL_TID_MASK 0xf
  26. #define ATH6KL_AID_SHIFT 4
  27. static inline u8 ath6kl_get_tid(u8 tid_mux)
  28. {
  29. return tid_mux & ATH6KL_TID_MASK;
  30. }
  31. static inline u8 ath6kl_get_aid(u8 tid_mux)
  32. {
  33. return tid_mux >> ATH6KL_AID_SHIFT;
  34. }
  35. static u8 ath6kl_ibss_map_epid(struct sk_buff *skb, struct net_device *dev,
  36. u32 *map_no)
  37. {
  38. struct ath6kl *ar = ath6kl_priv(dev);
  39. struct ethhdr *eth_hdr;
  40. u32 i, ep_map = -1;
  41. u8 *datap;
  42. *map_no = 0;
  43. datap = skb->data;
  44. eth_hdr = (struct ethhdr *) (datap + sizeof(struct wmi_data_hdr));
  45. if (is_multicast_ether_addr(eth_hdr->h_dest))
  46. return ENDPOINT_2;
  47. for (i = 0; i < ar->node_num; i++) {
  48. if (memcmp(eth_hdr->h_dest, ar->node_map[i].mac_addr,
  49. ETH_ALEN) == 0) {
  50. *map_no = i + 1;
  51. ar->node_map[i].tx_pend++;
  52. return ar->node_map[i].ep_id;
  53. }
  54. if ((ep_map == -1) && !ar->node_map[i].tx_pend)
  55. ep_map = i;
  56. }
  57. if (ep_map == -1) {
  58. ep_map = ar->node_num;
  59. ar->node_num++;
  60. if (ar->node_num > MAX_NODE_NUM)
  61. return ENDPOINT_UNUSED;
  62. }
  63. memcpy(ar->node_map[ep_map].mac_addr, eth_hdr->h_dest, ETH_ALEN);
  64. for (i = ENDPOINT_2; i <= ENDPOINT_5; i++) {
  65. if (!ar->tx_pending[i]) {
  66. ar->node_map[ep_map].ep_id = i;
  67. break;
  68. }
  69. /*
  70. * No free endpoint is available, start redistribution on
  71. * the inuse endpoints.
  72. */
  73. if (i == ENDPOINT_5) {
  74. ar->node_map[ep_map].ep_id = ar->next_ep_id;
  75. ar->next_ep_id++;
  76. if (ar->next_ep_id > ENDPOINT_5)
  77. ar->next_ep_id = ENDPOINT_2;
  78. }
  79. }
  80. *map_no = ep_map + 1;
  81. ar->node_map[ep_map].tx_pend++;
  82. return ar->node_map[ep_map].ep_id;
  83. }
  84. static bool ath6kl_process_uapsdq(struct ath6kl_sta *conn,
  85. struct ath6kl_vif *vif,
  86. struct sk_buff *skb,
  87. u32 *flags)
  88. {
  89. struct ath6kl *ar = vif->ar;
  90. bool is_apsdq_empty = false;
  91. struct ethhdr *datap = (struct ethhdr *) skb->data;
  92. u8 up = 0, traffic_class, *ip_hdr;
  93. u16 ether_type;
  94. struct ath6kl_llc_snap_hdr *llc_hdr;
  95. if (conn->sta_flags & STA_PS_APSD_TRIGGER) {
  96. /*
  97. * This tx is because of a uAPSD trigger, determine
  98. * more and EOSP bit. Set EOSP if queue is empty
  99. * or sufficient frames are delivered for this trigger.
  100. */
  101. spin_lock_bh(&conn->psq_lock);
  102. if (!skb_queue_empty(&conn->apsdq))
  103. *flags |= WMI_DATA_HDR_FLAGS_MORE;
  104. else if (conn->sta_flags & STA_PS_APSD_EOSP)
  105. *flags |= WMI_DATA_HDR_FLAGS_EOSP;
  106. *flags |= WMI_DATA_HDR_FLAGS_UAPSD;
  107. spin_unlock_bh(&conn->psq_lock);
  108. return false;
  109. } else if (!conn->apsd_info)
  110. return false;
  111. if (test_bit(WMM_ENABLED, &vif->flags)) {
  112. ether_type = be16_to_cpu(datap->h_proto);
  113. if (is_ethertype(ether_type)) {
  114. /* packet is in DIX format */
  115. ip_hdr = (u8 *)(datap + 1);
  116. } else {
  117. /* packet is in 802.3 format */
  118. llc_hdr = (struct ath6kl_llc_snap_hdr *)
  119. (datap + 1);
  120. ether_type = be16_to_cpu(llc_hdr->eth_type);
  121. ip_hdr = (u8 *)(llc_hdr + 1);
  122. }
  123. if (ether_type == IP_ETHERTYPE)
  124. up = ath6kl_wmi_determine_user_priority(
  125. ip_hdr, 0);
  126. }
  127. traffic_class = ath6kl_wmi_get_traffic_class(up);
  128. if ((conn->apsd_info & (1 << traffic_class)) == 0)
  129. return false;
  130. /* Queue the frames if the STA is sleeping */
  131. spin_lock_bh(&conn->psq_lock);
  132. is_apsdq_empty = skb_queue_empty(&conn->apsdq);
  133. skb_queue_tail(&conn->apsdq, skb);
  134. spin_unlock_bh(&conn->psq_lock);
  135. /*
  136. * If this is the first pkt getting queued
  137. * for this STA, update the PVB for this STA
  138. */
  139. if (is_apsdq_empty) {
  140. ath6kl_wmi_set_apsd_bfrd_traf(ar->wmi,
  141. vif->fw_vif_idx,
  142. conn->aid, 1, 0);
  143. }
  144. *flags |= WMI_DATA_HDR_FLAGS_UAPSD;
  145. return true;
  146. }
  147. static bool ath6kl_process_psq(struct ath6kl_sta *conn,
  148. struct ath6kl_vif *vif,
  149. struct sk_buff *skb,
  150. u32 *flags)
  151. {
  152. bool is_psq_empty = false;
  153. struct ath6kl *ar = vif->ar;
  154. if (conn->sta_flags & STA_PS_POLLED) {
  155. spin_lock_bh(&conn->psq_lock);
  156. if (!skb_queue_empty(&conn->psq))
  157. *flags |= WMI_DATA_HDR_FLAGS_MORE;
  158. spin_unlock_bh(&conn->psq_lock);
  159. return false;
  160. }
  161. /* Queue the frames if the STA is sleeping */
  162. spin_lock_bh(&conn->psq_lock);
  163. is_psq_empty = skb_queue_empty(&conn->psq);
  164. skb_queue_tail(&conn->psq, skb);
  165. spin_unlock_bh(&conn->psq_lock);
  166. /*
  167. * If this is the first pkt getting queued
  168. * for this STA, update the PVB for this
  169. * STA.
  170. */
  171. if (is_psq_empty)
  172. ath6kl_wmi_set_pvb_cmd(ar->wmi,
  173. vif->fw_vif_idx,
  174. conn->aid, 1);
  175. return true;
  176. }
  177. static bool ath6kl_powersave_ap(struct ath6kl_vif *vif, struct sk_buff *skb,
  178. u32 *flags)
  179. {
  180. struct ethhdr *datap = (struct ethhdr *) skb->data;
  181. struct ath6kl_sta *conn = NULL;
  182. bool ps_queued = false;
  183. struct ath6kl *ar = vif->ar;
  184. if (is_multicast_ether_addr(datap->h_dest)) {
  185. u8 ctr = 0;
  186. bool q_mcast = false;
  187. for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
  188. if (ar->sta_list[ctr].sta_flags & STA_PS_SLEEP) {
  189. q_mcast = true;
  190. break;
  191. }
  192. }
  193. if (q_mcast) {
  194. /*
  195. * If this transmit is not because of a Dtim Expiry
  196. * q it.
  197. */
  198. if (!test_bit(DTIM_EXPIRED, &vif->flags)) {
  199. bool is_mcastq_empty = false;
  200. spin_lock_bh(&ar->mcastpsq_lock);
  201. is_mcastq_empty =
  202. skb_queue_empty(&ar->mcastpsq);
  203. skb_queue_tail(&ar->mcastpsq, skb);
  204. spin_unlock_bh(&ar->mcastpsq_lock);
  205. /*
  206. * If this is the first Mcast pkt getting
  207. * queued indicate to the target to set the
  208. * BitmapControl LSB of the TIM IE.
  209. */
  210. if (is_mcastq_empty)
  211. ath6kl_wmi_set_pvb_cmd(ar->wmi,
  212. vif->fw_vif_idx,
  213. MCAST_AID, 1);
  214. ps_queued = true;
  215. } else {
  216. /*
  217. * This transmit is because of Dtim expiry.
  218. * Determine if MoreData bit has to be set.
  219. */
  220. spin_lock_bh(&ar->mcastpsq_lock);
  221. if (!skb_queue_empty(&ar->mcastpsq))
  222. *flags |= WMI_DATA_HDR_FLAGS_MORE;
  223. spin_unlock_bh(&ar->mcastpsq_lock);
  224. }
  225. }
  226. } else {
  227. conn = ath6kl_find_sta(vif, datap->h_dest);
  228. if (!conn) {
  229. dev_kfree_skb(skb);
  230. /* Inform the caller that the skb is consumed */
  231. return true;
  232. }
  233. if (conn->sta_flags & STA_PS_SLEEP) {
  234. ps_queued = ath6kl_process_uapsdq(conn,
  235. vif, skb, flags);
  236. if (!(*flags & WMI_DATA_HDR_FLAGS_UAPSD))
  237. ps_queued = ath6kl_process_psq(conn,
  238. vif, skb, flags);
  239. }
  240. }
  241. return ps_queued;
  242. }
  243. /* Tx functions */
  244. int ath6kl_control_tx(void *devt, struct sk_buff *skb,
  245. enum htc_endpoint_id eid)
  246. {
  247. struct ath6kl *ar = devt;
  248. int status = 0;
  249. struct ath6kl_cookie *cookie = NULL;
  250. if (WARN_ON_ONCE(ar->state == ATH6KL_STATE_WOW))
  251. return -EACCES;
  252. spin_lock_bh(&ar->lock);
  253. ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
  254. "%s: skb=0x%p, len=0x%x eid =%d\n", __func__,
  255. skb, skb->len, eid);
  256. if (test_bit(WMI_CTRL_EP_FULL, &ar->flag) && (eid == ar->ctrl_ep)) {
  257. /*
  258. * Control endpoint is full, don't allocate resources, we
  259. * are just going to drop this packet.
  260. */
  261. cookie = NULL;
  262. ath6kl_err("wmi ctrl ep full, dropping pkt : 0x%p, len:%d\n",
  263. skb, skb->len);
  264. } else
  265. cookie = ath6kl_alloc_cookie(ar);
  266. if (cookie == NULL) {
  267. spin_unlock_bh(&ar->lock);
  268. status = -ENOMEM;
  269. goto fail_ctrl_tx;
  270. }
  271. ar->tx_pending[eid]++;
  272. if (eid != ar->ctrl_ep)
  273. ar->total_tx_data_pend++;
  274. spin_unlock_bh(&ar->lock);
  275. cookie->skb = skb;
  276. cookie->map_no = 0;
  277. set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len,
  278. eid, ATH6KL_CONTROL_PKT_TAG);
  279. cookie->htc_pkt.skb = skb;
  280. /*
  281. * This interface is asynchronous, if there is an error, cleanup
  282. * will happen in the TX completion callback.
  283. */
  284. ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt);
  285. return 0;
  286. fail_ctrl_tx:
  287. dev_kfree_skb(skb);
  288. return status;
  289. }
  290. int ath6kl_data_tx(struct sk_buff *skb, struct net_device *dev)
  291. {
  292. struct ath6kl *ar = ath6kl_priv(dev);
  293. struct ath6kl_cookie *cookie = NULL;
  294. enum htc_endpoint_id eid = ENDPOINT_UNUSED;
  295. struct ath6kl_vif *vif = netdev_priv(dev);
  296. u32 map_no = 0;
  297. u16 htc_tag = ATH6KL_DATA_PKT_TAG;
  298. u8 ac = 99 ; /* initialize to unmapped ac */
  299. bool chk_adhoc_ps_mapping = false;
  300. int ret;
  301. struct wmi_tx_meta_v2 meta_v2;
  302. void *meta;
  303. u8 csum_start = 0, csum_dest = 0, csum = skb->ip_summed;
  304. u8 meta_ver = 0;
  305. u32 flags = 0;
  306. ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
  307. "%s: skb=0x%p, data=0x%p, len=0x%x\n", __func__,
  308. skb, skb->data, skb->len);
  309. /* If target is not associated */
  310. if (!test_bit(CONNECTED, &vif->flags)) {
  311. dev_kfree_skb(skb);
  312. return 0;
  313. }
  314. if (WARN_ON_ONCE(ar->state != ATH6KL_STATE_ON)) {
  315. dev_kfree_skb(skb);
  316. return 0;
  317. }
  318. if (!test_bit(WMI_READY, &ar->flag))
  319. goto fail_tx;
  320. /* AP mode Power saving processing */
  321. if (vif->nw_type == AP_NETWORK) {
  322. if (ath6kl_powersave_ap(vif, skb, &flags))
  323. return 0;
  324. }
  325. if (test_bit(WMI_ENABLED, &ar->flag)) {
  326. if ((dev->features & NETIF_F_IP_CSUM) &&
  327. (csum == CHECKSUM_PARTIAL)) {
  328. csum_start = skb->csum_start -
  329. (skb_network_header(skb) - skb->head) +
  330. sizeof(struct ath6kl_llc_snap_hdr);
  331. csum_dest = skb->csum_offset + csum_start;
  332. }
  333. if (skb_headroom(skb) < dev->needed_headroom) {
  334. struct sk_buff *tmp_skb = skb;
  335. skb = skb_realloc_headroom(skb, dev->needed_headroom);
  336. kfree_skb(tmp_skb);
  337. if (skb == NULL) {
  338. vif->net_stats.tx_dropped++;
  339. return 0;
  340. }
  341. }
  342. if (ath6kl_wmi_dix_2_dot3(ar->wmi, skb)) {
  343. ath6kl_err("ath6kl_wmi_dix_2_dot3 failed\n");
  344. goto fail_tx;
  345. }
  346. if ((dev->features & NETIF_F_IP_CSUM) &&
  347. (csum == CHECKSUM_PARTIAL)) {
  348. meta_v2.csum_start = csum_start;
  349. meta_v2.csum_dest = csum_dest;
  350. /* instruct target to calculate checksum */
  351. meta_v2.csum_flags = WMI_META_V2_FLAG_CSUM_OFFLOAD;
  352. meta_ver = WMI_META_VERSION_2;
  353. meta = &meta_v2;
  354. } else {
  355. meta_ver = 0;
  356. meta = NULL;
  357. }
  358. ret = ath6kl_wmi_data_hdr_add(ar->wmi, skb,
  359. DATA_MSGTYPE, flags, 0,
  360. meta_ver,
  361. meta, vif->fw_vif_idx);
  362. if (ret) {
  363. ath6kl_warn("failed to add wmi data header:%d\n"
  364. , ret);
  365. goto fail_tx;
  366. }
  367. if ((vif->nw_type == ADHOC_NETWORK) &&
  368. ar->ibss_ps_enable && test_bit(CONNECTED, &vif->flags))
  369. chk_adhoc_ps_mapping = true;
  370. else {
  371. /* get the stream mapping */
  372. ret = ath6kl_wmi_implicit_create_pstream(ar->wmi,
  373. vif->fw_vif_idx, skb,
  374. 0, test_bit(WMM_ENABLED, &vif->flags), &ac);
  375. if (ret)
  376. goto fail_tx;
  377. }
  378. } else
  379. goto fail_tx;
  380. spin_lock_bh(&ar->lock);
  381. if (chk_adhoc_ps_mapping)
  382. eid = ath6kl_ibss_map_epid(skb, dev, &map_no);
  383. else
  384. eid = ar->ac2ep_map[ac];
  385. if (eid == 0 || eid == ENDPOINT_UNUSED) {
  386. ath6kl_err("eid %d is not mapped!\n", eid);
  387. spin_unlock_bh(&ar->lock);
  388. goto fail_tx;
  389. }
  390. /* allocate resource for this packet */
  391. cookie = ath6kl_alloc_cookie(ar);
  392. if (!cookie) {
  393. spin_unlock_bh(&ar->lock);
  394. goto fail_tx;
  395. }
  396. /* update counts while the lock is held */
  397. ar->tx_pending[eid]++;
  398. ar->total_tx_data_pend++;
  399. spin_unlock_bh(&ar->lock);
  400. if (!IS_ALIGNED((unsigned long) skb->data - HTC_HDR_LENGTH, 4) &&
  401. skb_cloned(skb)) {
  402. /*
  403. * We will touch (move the buffer data to align it. Since the
  404. * skb buffer is cloned and not only the header is changed, we
  405. * have to copy it to allow the changes. Since we are copying
  406. * the data here, we may as well align it by reserving suitable
  407. * headroom to avoid the memmove in ath6kl_htc_tx_buf_align().
  408. */
  409. struct sk_buff *nskb;
  410. nskb = skb_copy_expand(skb, HTC_HDR_LENGTH, 0, GFP_ATOMIC);
  411. if (nskb == NULL)
  412. goto fail_tx;
  413. kfree_skb(skb);
  414. skb = nskb;
  415. }
  416. cookie->skb = skb;
  417. cookie->map_no = map_no;
  418. set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len,
  419. eid, htc_tag);
  420. cookie->htc_pkt.skb = skb;
  421. ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "tx ",
  422. skb->data, skb->len);
  423. /*
  424. * HTC interface is asynchronous, if this fails, cleanup will
  425. * happen in the ath6kl_tx_complete callback.
  426. */
  427. ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt);
  428. return 0;
  429. fail_tx:
  430. dev_kfree_skb(skb);
  431. vif->net_stats.tx_dropped++;
  432. vif->net_stats.tx_aborted_errors++;
  433. return 0;
  434. }
  435. /* indicate tx activity or inactivity on a WMI stream */
  436. void ath6kl_indicate_tx_activity(void *devt, u8 traffic_class, bool active)
  437. {
  438. struct ath6kl *ar = devt;
  439. enum htc_endpoint_id eid;
  440. int i;
  441. eid = ar->ac2ep_map[traffic_class];
  442. if (!test_bit(WMI_ENABLED, &ar->flag))
  443. goto notify_htc;
  444. spin_lock_bh(&ar->lock);
  445. ar->ac_stream_active[traffic_class] = active;
  446. if (active) {
  447. /*
  448. * Keep track of the active stream with the highest
  449. * priority.
  450. */
  451. if (ar->ac_stream_pri_map[traffic_class] >
  452. ar->hiac_stream_active_pri)
  453. /* set the new highest active priority */
  454. ar->hiac_stream_active_pri =
  455. ar->ac_stream_pri_map[traffic_class];
  456. } else {
  457. /*
  458. * We may have to search for the next active stream
  459. * that is the highest priority.
  460. */
  461. if (ar->hiac_stream_active_pri ==
  462. ar->ac_stream_pri_map[traffic_class]) {
  463. /*
  464. * The highest priority stream just went inactive
  465. * reset and search for the "next" highest "active"
  466. * priority stream.
  467. */
  468. ar->hiac_stream_active_pri = 0;
  469. for (i = 0; i < WMM_NUM_AC; i++) {
  470. if (ar->ac_stream_active[i] &&
  471. (ar->ac_stream_pri_map[i] >
  472. ar->hiac_stream_active_pri))
  473. /*
  474. * Set the new highest active
  475. * priority.
  476. */
  477. ar->hiac_stream_active_pri =
  478. ar->ac_stream_pri_map[i];
  479. }
  480. }
  481. }
  482. spin_unlock_bh(&ar->lock);
  483. notify_htc:
  484. /* notify HTC, this may cause credit distribution changes */
  485. ath6kl_htc_activity_changed(ar->htc_target, eid, active);
  486. }
  487. enum htc_send_full_action ath6kl_tx_queue_full(struct htc_target *target,
  488. struct htc_packet *packet)
  489. {
  490. struct ath6kl *ar = target->dev->ar;
  491. struct ath6kl_vif *vif;
  492. enum htc_endpoint_id endpoint = packet->endpoint;
  493. enum htc_send_full_action action = HTC_SEND_FULL_KEEP;
  494. if (endpoint == ar->ctrl_ep) {
  495. /*
  496. * Under normal WMI if this is getting full, then something
  497. * is running rampant the host should not be exhausting the
  498. * WMI queue with too many commands the only exception to
  499. * this is during testing using endpointping.
  500. */
  501. set_bit(WMI_CTRL_EP_FULL, &ar->flag);
  502. ath6kl_err("wmi ctrl ep is full\n");
  503. return action;
  504. }
  505. if (packet->info.tx.tag == ATH6KL_CONTROL_PKT_TAG)
  506. return action;
  507. /*
  508. * The last MAX_HI_COOKIE_NUM "batch" of cookies are reserved for
  509. * the highest active stream.
  510. */
  511. if (ar->ac_stream_pri_map[ar->ep2ac_map[endpoint]] <
  512. ar->hiac_stream_active_pri &&
  513. ar->cookie_count <=
  514. target->endpoint[endpoint].tx_drop_packet_threshold)
  515. /*
  516. * Give preference to the highest priority stream by
  517. * dropping the packets which overflowed.
  518. */
  519. action = HTC_SEND_FULL_DROP;
  520. /* FIXME: Locking */
  521. spin_lock_bh(&ar->list_lock);
  522. list_for_each_entry(vif, &ar->vif_list, list) {
  523. if (vif->nw_type == ADHOC_NETWORK ||
  524. action != HTC_SEND_FULL_DROP) {
  525. spin_unlock_bh(&ar->list_lock);
  526. set_bit(NETQ_STOPPED, &vif->flags);
  527. netif_stop_queue(vif->ndev);
  528. return action;
  529. }
  530. }
  531. spin_unlock_bh(&ar->list_lock);
  532. return action;
  533. }
  534. /* TODO this needs to be looked at */
  535. static void ath6kl_tx_clear_node_map(struct ath6kl_vif *vif,
  536. enum htc_endpoint_id eid, u32 map_no)
  537. {
  538. struct ath6kl *ar = vif->ar;
  539. u32 i;
  540. if (vif->nw_type != ADHOC_NETWORK)
  541. return;
  542. if (!ar->ibss_ps_enable)
  543. return;
  544. if (eid == ar->ctrl_ep)
  545. return;
  546. if (map_no == 0)
  547. return;
  548. map_no--;
  549. ar->node_map[map_no].tx_pend--;
  550. if (ar->node_map[map_no].tx_pend)
  551. return;
  552. if (map_no != (ar->node_num - 1))
  553. return;
  554. for (i = ar->node_num; i > 0; i--) {
  555. if (ar->node_map[i - 1].tx_pend)
  556. break;
  557. memset(&ar->node_map[i - 1], 0,
  558. sizeof(struct ath6kl_node_mapping));
  559. ar->node_num--;
  560. }
  561. }
  562. void ath6kl_tx_complete(struct htc_target *target,
  563. struct list_head *packet_queue)
  564. {
  565. struct ath6kl *ar = target->dev->ar;
  566. struct sk_buff_head skb_queue;
  567. struct htc_packet *packet;
  568. struct sk_buff *skb;
  569. struct ath6kl_cookie *ath6kl_cookie;
  570. u32 map_no = 0;
  571. int status;
  572. enum htc_endpoint_id eid;
  573. bool wake_event = false;
  574. bool flushing[ATH6KL_VIF_MAX] = {false};
  575. u8 if_idx;
  576. struct ath6kl_vif *vif;
  577. skb_queue_head_init(&skb_queue);
  578. /* lock the driver as we update internal state */
  579. spin_lock_bh(&ar->lock);
  580. /* reap completed packets */
  581. while (!list_empty(packet_queue)) {
  582. packet = list_first_entry(packet_queue, struct htc_packet,
  583. list);
  584. list_del(&packet->list);
  585. ath6kl_cookie = (struct ath6kl_cookie *)packet->pkt_cntxt;
  586. if (!ath6kl_cookie)
  587. goto fatal;
  588. status = packet->status;
  589. skb = ath6kl_cookie->skb;
  590. eid = packet->endpoint;
  591. map_no = ath6kl_cookie->map_no;
  592. if (!skb || !skb->data)
  593. goto fatal;
  594. __skb_queue_tail(&skb_queue, skb);
  595. if (!status && (packet->act_len != skb->len))
  596. goto fatal;
  597. ar->tx_pending[eid]--;
  598. if (eid != ar->ctrl_ep)
  599. ar->total_tx_data_pend--;
  600. if (eid == ar->ctrl_ep) {
  601. if (test_bit(WMI_CTRL_EP_FULL, &ar->flag))
  602. clear_bit(WMI_CTRL_EP_FULL, &ar->flag);
  603. if (ar->tx_pending[eid] == 0)
  604. wake_event = true;
  605. }
  606. if (eid == ar->ctrl_ep) {
  607. if_idx = wmi_cmd_hdr_get_if_idx(
  608. (struct wmi_cmd_hdr *) packet->buf);
  609. } else {
  610. if_idx = wmi_data_hdr_get_if_idx(
  611. (struct wmi_data_hdr *) packet->buf);
  612. }
  613. vif = ath6kl_get_vif_by_index(ar, if_idx);
  614. if (!vif) {
  615. ath6kl_free_cookie(ar, ath6kl_cookie);
  616. continue;
  617. }
  618. if (status) {
  619. if (status == -ECANCELED)
  620. /* a packet was flushed */
  621. flushing[if_idx] = true;
  622. vif->net_stats.tx_errors++;
  623. if (status != -ENOSPC && status != -ECANCELED)
  624. ath6kl_warn("tx complete error: %d\n", status);
  625. ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
  626. "%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n",
  627. __func__, skb, packet->buf, packet->act_len,
  628. eid, "error!");
  629. } else {
  630. ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
  631. "%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n",
  632. __func__, skb, packet->buf, packet->act_len,
  633. eid, "OK");
  634. flushing[if_idx] = false;
  635. vif->net_stats.tx_packets++;
  636. vif->net_stats.tx_bytes += skb->len;
  637. }
  638. ath6kl_tx_clear_node_map(vif, eid, map_no);
  639. ath6kl_free_cookie(ar, ath6kl_cookie);
  640. if (test_bit(NETQ_STOPPED, &vif->flags))
  641. clear_bit(NETQ_STOPPED, &vif->flags);
  642. }
  643. spin_unlock_bh(&ar->lock);
  644. __skb_queue_purge(&skb_queue);
  645. /* FIXME: Locking */
  646. spin_lock_bh(&ar->list_lock);
  647. list_for_each_entry(vif, &ar->vif_list, list) {
  648. if (test_bit(CONNECTED, &vif->flags) &&
  649. !flushing[vif->fw_vif_idx]) {
  650. spin_unlock_bh(&ar->list_lock);
  651. netif_wake_queue(vif->ndev);
  652. spin_lock_bh(&ar->list_lock);
  653. }
  654. }
  655. spin_unlock_bh(&ar->list_lock);
  656. if (wake_event)
  657. wake_up(&ar->event_wq);
  658. return;
  659. fatal:
  660. WARN_ON(1);
  661. spin_unlock_bh(&ar->lock);
  662. return;
  663. }
  664. void ath6kl_tx_data_cleanup(struct ath6kl *ar)
  665. {
  666. int i;
  667. /* flush all the data (non-control) streams */
  668. for (i = 0; i < WMM_NUM_AC; i++)
  669. ath6kl_htc_flush_txep(ar->htc_target, ar->ac2ep_map[i],
  670. ATH6KL_DATA_PKT_TAG);
  671. }
  672. /* Rx functions */
  673. static void ath6kl_deliver_frames_to_nw_stack(struct net_device *dev,
  674. struct sk_buff *skb)
  675. {
  676. if (!skb)
  677. return;
  678. skb->dev = dev;
  679. if (!(skb->dev->flags & IFF_UP)) {
  680. dev_kfree_skb(skb);
  681. return;
  682. }
  683. skb->protocol = eth_type_trans(skb, skb->dev);
  684. netif_rx_ni(skb);
  685. }
  686. static void ath6kl_alloc_netbufs(struct sk_buff_head *q, u16 num)
  687. {
  688. struct sk_buff *skb;
  689. while (num) {
  690. skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE);
  691. if (!skb) {
  692. ath6kl_err("netbuf allocation failed\n");
  693. return;
  694. }
  695. skb_queue_tail(q, skb);
  696. num--;
  697. }
  698. }
  699. static struct sk_buff *aggr_get_free_skb(struct aggr_info *p_aggr)
  700. {
  701. struct sk_buff *skb = NULL;
  702. if (skb_queue_len(&p_aggr->rx_amsdu_freeq) <
  703. (AGGR_NUM_OF_FREE_NETBUFS >> 2))
  704. ath6kl_alloc_netbufs(&p_aggr->rx_amsdu_freeq,
  705. AGGR_NUM_OF_FREE_NETBUFS);
  706. skb = skb_dequeue(&p_aggr->rx_amsdu_freeq);
  707. return skb;
  708. }
  709. void ath6kl_rx_refill(struct htc_target *target, enum htc_endpoint_id endpoint)
  710. {
  711. struct ath6kl *ar = target->dev->ar;
  712. struct sk_buff *skb;
  713. int rx_buf;
  714. int n_buf_refill;
  715. struct htc_packet *packet;
  716. struct list_head queue;
  717. n_buf_refill = ATH6KL_MAX_RX_BUFFERS -
  718. ath6kl_htc_get_rxbuf_num(ar->htc_target, endpoint);
  719. if (n_buf_refill <= 0)
  720. return;
  721. INIT_LIST_HEAD(&queue);
  722. ath6kl_dbg(ATH6KL_DBG_WLAN_RX,
  723. "%s: providing htc with %d buffers at eid=%d\n",
  724. __func__, n_buf_refill, endpoint);
  725. for (rx_buf = 0; rx_buf < n_buf_refill; rx_buf++) {
  726. skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE);
  727. if (!skb)
  728. break;
  729. packet = (struct htc_packet *) skb->head;
  730. if (!IS_ALIGNED((unsigned long) skb->data, 4))
  731. skb->data = PTR_ALIGN(skb->data - 4, 4);
  732. set_htc_rxpkt_info(packet, skb, skb->data,
  733. ATH6KL_BUFFER_SIZE, endpoint);
  734. packet->skb = skb;
  735. list_add_tail(&packet->list, &queue);
  736. }
  737. if (!list_empty(&queue))
  738. ath6kl_htc_add_rxbuf_multiple(ar->htc_target, &queue);
  739. }
  740. void ath6kl_refill_amsdu_rxbufs(struct ath6kl *ar, int count)
  741. {
  742. struct htc_packet *packet;
  743. struct sk_buff *skb;
  744. while (count) {
  745. skb = ath6kl_buf_alloc(ATH6KL_AMSDU_BUFFER_SIZE);
  746. if (!skb)
  747. return;
  748. packet = (struct htc_packet *) skb->head;
  749. if (!IS_ALIGNED((unsigned long) skb->data, 4))
  750. skb->data = PTR_ALIGN(skb->data - 4, 4);
  751. set_htc_rxpkt_info(packet, skb, skb->data,
  752. ATH6KL_AMSDU_BUFFER_SIZE, 0);
  753. packet->skb = skb;
  754. spin_lock_bh(&ar->lock);
  755. list_add_tail(&packet->list, &ar->amsdu_rx_buffer_queue);
  756. spin_unlock_bh(&ar->lock);
  757. count--;
  758. }
  759. }
  760. /*
  761. * Callback to allocate a receive buffer for a pending packet. We use a
  762. * pre-allocated list of buffers of maximum AMSDU size (4K).
  763. */
  764. struct htc_packet *ath6kl_alloc_amsdu_rxbuf(struct htc_target *target,
  765. enum htc_endpoint_id endpoint,
  766. int len)
  767. {
  768. struct ath6kl *ar = target->dev->ar;
  769. struct htc_packet *packet = NULL;
  770. struct list_head *pkt_pos;
  771. int refill_cnt = 0, depth = 0;
  772. ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: eid=%d, len:%d\n",
  773. __func__, endpoint, len);
  774. if ((len <= ATH6KL_BUFFER_SIZE) ||
  775. (len > ATH6KL_AMSDU_BUFFER_SIZE))
  776. return NULL;
  777. spin_lock_bh(&ar->lock);
  778. if (list_empty(&ar->amsdu_rx_buffer_queue)) {
  779. spin_unlock_bh(&ar->lock);
  780. refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS;
  781. goto refill_buf;
  782. }
  783. packet = list_first_entry(&ar->amsdu_rx_buffer_queue,
  784. struct htc_packet, list);
  785. list_del(&packet->list);
  786. list_for_each(pkt_pos, &ar->amsdu_rx_buffer_queue)
  787. depth++;
  788. refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS - depth;
  789. spin_unlock_bh(&ar->lock);
  790. /* set actual endpoint ID */
  791. packet->endpoint = endpoint;
  792. refill_buf:
  793. if (refill_cnt >= ATH6KL_AMSDU_REFILL_THRESHOLD)
  794. ath6kl_refill_amsdu_rxbufs(ar, refill_cnt);
  795. return packet;
  796. }
  797. static void aggr_slice_amsdu(struct aggr_info *p_aggr,
  798. struct rxtid *rxtid, struct sk_buff *skb)
  799. {
  800. struct sk_buff *new_skb;
  801. struct ethhdr *hdr;
  802. u16 frame_8023_len, payload_8023_len, mac_hdr_len, amsdu_len;
  803. u8 *framep;
  804. mac_hdr_len = sizeof(struct ethhdr);
  805. framep = skb->data + mac_hdr_len;
  806. amsdu_len = skb->len - mac_hdr_len;
  807. while (amsdu_len > mac_hdr_len) {
  808. hdr = (struct ethhdr *) framep;
  809. payload_8023_len = ntohs(hdr->h_proto);
  810. if (payload_8023_len < MIN_MSDU_SUBFRAME_PAYLOAD_LEN ||
  811. payload_8023_len > MAX_MSDU_SUBFRAME_PAYLOAD_LEN) {
  812. ath6kl_err("802.3 AMSDU frame bound check failed. len %d\n",
  813. payload_8023_len);
  814. break;
  815. }
  816. frame_8023_len = payload_8023_len + mac_hdr_len;
  817. new_skb = aggr_get_free_skb(p_aggr);
  818. if (!new_skb) {
  819. ath6kl_err("no buffer available\n");
  820. break;
  821. }
  822. memcpy(new_skb->data, framep, frame_8023_len);
  823. skb_put(new_skb, frame_8023_len);
  824. if (ath6kl_wmi_dot3_2_dix(new_skb)) {
  825. ath6kl_err("dot3_2_dix error\n");
  826. dev_kfree_skb(new_skb);
  827. break;
  828. }
  829. skb_queue_tail(&rxtid->q, new_skb);
  830. /* Is this the last subframe within this aggregate ? */
  831. if ((amsdu_len - frame_8023_len) == 0)
  832. break;
  833. /* Add the length of A-MSDU subframe padding bytes -
  834. * Round to nearest word.
  835. */
  836. frame_8023_len = ALIGN(frame_8023_len, 4);
  837. framep += frame_8023_len;
  838. amsdu_len -= frame_8023_len;
  839. }
  840. dev_kfree_skb(skb);
  841. }
  842. static void aggr_deque_frms(struct aggr_info_conn *agg_conn, u8 tid,
  843. u16 seq_no, u8 order)
  844. {
  845. struct sk_buff *skb;
  846. struct rxtid *rxtid;
  847. struct skb_hold_q *node;
  848. u16 idx, idx_end, seq_end;
  849. struct rxtid_stats *stats;
  850. rxtid = &agg_conn->rx_tid[tid];
  851. stats = &agg_conn->stat[tid];
  852. idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
  853. /*
  854. * idx_end is typically the last possible frame in the window,
  855. * but changes to 'the' seq_no, when BAR comes. If seq_no
  856. * is non-zero, we will go up to that and stop.
  857. * Note: last seq no in current window will occupy the same
  858. * index position as index that is just previous to start.
  859. * An imp point : if win_sz is 7, for seq_no space of 4095,
  860. * then, there would be holes when sequence wrap around occurs.
  861. * Target should judiciously choose the win_sz, based on
  862. * this condition. For 4095, (TID_WINDOW_SZ = 2 x win_sz
  863. * 2, 4, 8, 16 win_sz works fine).
  864. * We must deque from "idx" to "idx_end", including both.
  865. */
  866. seq_end = seq_no ? seq_no : rxtid->seq_next;
  867. idx_end = AGGR_WIN_IDX(seq_end, rxtid->hold_q_sz);
  868. spin_lock_bh(&rxtid->lock);
  869. do {
  870. node = &rxtid->hold_q[idx];
  871. if ((order == 1) && (!node->skb))
  872. break;
  873. if (node->skb) {
  874. if (node->is_amsdu)
  875. aggr_slice_amsdu(agg_conn->aggr_info, rxtid,
  876. node->skb);
  877. else
  878. skb_queue_tail(&rxtid->q, node->skb);
  879. node->skb = NULL;
  880. } else
  881. stats->num_hole++;
  882. rxtid->seq_next = ATH6KL_NEXT_SEQ_NO(rxtid->seq_next);
  883. idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
  884. } while (idx != idx_end);
  885. spin_unlock_bh(&rxtid->lock);
  886. stats->num_delivered += skb_queue_len(&rxtid->q);
  887. while ((skb = skb_dequeue(&rxtid->q)))
  888. ath6kl_deliver_frames_to_nw_stack(agg_conn->dev, skb);
  889. }
  890. static bool aggr_process_recv_frm(struct aggr_info_conn *agg_conn, u8 tid,
  891. u16 seq_no,
  892. bool is_amsdu, struct sk_buff *frame)
  893. {
  894. struct rxtid *rxtid;
  895. struct rxtid_stats *stats;
  896. struct sk_buff *skb;
  897. struct skb_hold_q *node;
  898. u16 idx, st, cur, end;
  899. bool is_queued = false;
  900. u16 extended_end;
  901. rxtid = &agg_conn->rx_tid[tid];
  902. stats = &agg_conn->stat[tid];
  903. stats->num_into_aggr++;
  904. if (!rxtid->aggr) {
  905. if (is_amsdu) {
  906. aggr_slice_amsdu(agg_conn->aggr_info, rxtid, frame);
  907. is_queued = true;
  908. stats->num_amsdu++;
  909. while ((skb = skb_dequeue(&rxtid->q)))
  910. ath6kl_deliver_frames_to_nw_stack(agg_conn->dev,
  911. skb);
  912. }
  913. return is_queued;
  914. }
  915. /* Check the incoming sequence no, if it's in the window */
  916. st = rxtid->seq_next;
  917. cur = seq_no;
  918. end = (st + rxtid->hold_q_sz-1) & ATH6KL_MAX_SEQ_NO;
  919. if (((st < end) && (cur < st || cur > end)) ||
  920. ((st > end) && (cur > end) && (cur < st))) {
  921. extended_end = (end + rxtid->hold_q_sz - 1) &
  922. ATH6KL_MAX_SEQ_NO;
  923. if (((end < extended_end) &&
  924. (cur < end || cur > extended_end)) ||
  925. ((end > extended_end) && (cur > extended_end) &&
  926. (cur < end))) {
  927. aggr_deque_frms(agg_conn, tid, 0, 0);
  928. if (cur >= rxtid->hold_q_sz - 1)
  929. rxtid->seq_next = cur - (rxtid->hold_q_sz - 1);
  930. else
  931. rxtid->seq_next = ATH6KL_MAX_SEQ_NO -
  932. (rxtid->hold_q_sz - 2 - cur);
  933. } else {
  934. /*
  935. * Dequeue only those frames that are outside the
  936. * new shifted window.
  937. */
  938. if (cur >= rxtid->hold_q_sz - 1)
  939. st = cur - (rxtid->hold_q_sz - 1);
  940. else
  941. st = ATH6KL_MAX_SEQ_NO -
  942. (rxtid->hold_q_sz - 2 - cur);
  943. aggr_deque_frms(agg_conn, tid, st, 0);
  944. }
  945. stats->num_oow++;
  946. }
  947. idx = AGGR_WIN_IDX(seq_no, rxtid->hold_q_sz);
  948. node = &rxtid->hold_q[idx];
  949. spin_lock_bh(&rxtid->lock);
  950. /*
  951. * Is the cur frame duplicate or something beyond our window(hold_q
  952. * -> which is 2x, already)?
  953. *
  954. * 1. Duplicate is easy - drop incoming frame.
  955. * 2. Not falling in current sliding window.
  956. * 2a. is the frame_seq_no preceding current tid_seq_no?
  957. * -> drop the frame. perhaps sender did not get our ACK.
  958. * this is taken care of above.
  959. * 2b. is the frame_seq_no beyond window(st, TID_WINDOW_SZ);
  960. * -> Taken care of it above, by moving window forward.
  961. */
  962. dev_kfree_skb(node->skb);
  963. stats->num_dups++;
  964. node->skb = frame;
  965. is_queued = true;
  966. node->is_amsdu = is_amsdu;
  967. node->seq_no = seq_no;
  968. if (node->is_amsdu)
  969. stats->num_amsdu++;
  970. else
  971. stats->num_mpdu++;
  972. spin_unlock_bh(&rxtid->lock);
  973. aggr_deque_frms(agg_conn, tid, 0, 1);
  974. if (agg_conn->timer_scheduled)
  975. rxtid->progress = true;
  976. else
  977. for (idx = 0 ; idx < rxtid->hold_q_sz; idx++) {
  978. if (rxtid->hold_q[idx].skb) {
  979. /*
  980. * There is a frame in the queue and no
  981. * timer so start a timer to ensure that
  982. * the frame doesn't remain stuck
  983. * forever.
  984. */
  985. agg_conn->timer_scheduled = true;
  986. mod_timer(&agg_conn->timer,
  987. (jiffies +
  988. HZ * (AGGR_RX_TIMEOUT) / 1000));
  989. rxtid->progress = false;
  990. rxtid->timer_mon = true;
  991. break;
  992. }
  993. }
  994. return is_queued;
  995. }
  996. static void ath6kl_uapsd_trigger_frame_rx(struct ath6kl_vif *vif,
  997. struct ath6kl_sta *conn)
  998. {
  999. struct ath6kl *ar = vif->ar;
  1000. bool is_apsdq_empty, is_apsdq_empty_at_start;
  1001. u32 num_frames_to_deliver, flags;
  1002. struct sk_buff *skb = NULL;
  1003. /*
  1004. * If the APSD q for this STA is not empty, dequeue and
  1005. * send a pkt from the head of the q. Also update the
  1006. * More data bit in the WMI_DATA_HDR if there are
  1007. * more pkts for this STA in the APSD q.
  1008. * If there are no more pkts for this STA,
  1009. * update the APSD bitmap for this STA.
  1010. */
  1011. num_frames_to_deliver = (conn->apsd_info >> ATH6KL_APSD_NUM_OF_AC) &
  1012. ATH6KL_APSD_FRAME_MASK;
  1013. /*
  1014. * Number of frames to send in a service period is
  1015. * indicated by the station
  1016. * in the QOS_INFO of the association request
  1017. * If it is zero, send all frames
  1018. */
  1019. if (!num_frames_to_deliver)
  1020. num_frames_to_deliver = ATH6KL_APSD_ALL_FRAME;
  1021. spin_lock_bh(&conn->psq_lock);
  1022. is_apsdq_empty = skb_queue_empty(&conn->apsdq);
  1023. spin_unlock_bh(&conn->psq_lock);
  1024. is_apsdq_empty_at_start = is_apsdq_empty;
  1025. while ((!is_apsdq_empty) && (num_frames_to_deliver)) {
  1026. spin_lock_bh(&conn->psq_lock);
  1027. skb = skb_dequeue(&conn->apsdq);
  1028. is_apsdq_empty = skb_queue_empty(&conn->apsdq);
  1029. spin_unlock_bh(&conn->psq_lock);
  1030. /*
  1031. * Set the STA flag to Trigger delivery,
  1032. * so that the frame will go out
  1033. */
  1034. conn->sta_flags |= STA_PS_APSD_TRIGGER;
  1035. num_frames_to_deliver--;
  1036. /* Last frame in the service period, set EOSP or queue empty */
  1037. if ((is_apsdq_empty) || (!num_frames_to_deliver))
  1038. conn->sta_flags |= STA_PS_APSD_EOSP;
  1039. ath6kl_data_tx(skb, vif->ndev);
  1040. conn->sta_flags &= ~(STA_PS_APSD_TRIGGER);
  1041. conn->sta_flags &= ~(STA_PS_APSD_EOSP);
  1042. }
  1043. if (is_apsdq_empty) {
  1044. if (is_apsdq_empty_at_start)
  1045. flags = WMI_AP_APSD_NO_DELIVERY_FRAMES;
  1046. else
  1047. flags = 0;
  1048. ath6kl_wmi_set_apsd_bfrd_traf(ar->wmi,
  1049. vif->fw_vif_idx,
  1050. conn->aid, 0, flags);
  1051. }
  1052. return;
  1053. }
  1054. void ath6kl_rx(struct htc_target *target, struct htc_packet *packet)
  1055. {
  1056. struct ath6kl *ar = target->dev->ar;
  1057. struct sk_buff *skb = packet->pkt_cntxt;
  1058. struct wmi_rx_meta_v2 *meta;
  1059. struct wmi_data_hdr *dhdr;
  1060. int min_hdr_len;
  1061. u8 meta_type, dot11_hdr = 0;
  1062. u8 pad_before_data_start;
  1063. int status = packet->status;
  1064. enum htc_endpoint_id ept = packet->endpoint;
  1065. bool is_amsdu, prev_ps, ps_state = false;
  1066. bool trig_state = false;
  1067. struct ath6kl_sta *conn = NULL;
  1068. struct sk_buff *skb1 = NULL;
  1069. struct ethhdr *datap = NULL;
  1070. struct ath6kl_vif *vif;
  1071. struct aggr_info_conn *aggr_conn;
  1072. u16 seq_no, offset;
  1073. u8 tid, if_idx;
  1074. ath6kl_dbg(ATH6KL_DBG_WLAN_RX,
  1075. "%s: ar=0x%p eid=%d, skb=0x%p, data=0x%p, len=0x%x status:%d",
  1076. __func__, ar, ept, skb, packet->buf,
  1077. packet->act_len, status);
  1078. if (status || !(skb->data + HTC_HDR_LENGTH)) {
  1079. dev_kfree_skb(skb);
  1080. return;
  1081. }
  1082. skb_put(skb, packet->act_len + HTC_HDR_LENGTH);
  1083. skb_pull(skb, HTC_HDR_LENGTH);
  1084. ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "rx ",
  1085. skb->data, skb->len);
  1086. if (ept == ar->ctrl_ep) {
  1087. if (test_bit(WMI_ENABLED, &ar->flag)) {
  1088. ath6kl_check_wow_status(ar);
  1089. ath6kl_wmi_control_rx(ar->wmi, skb);
  1090. return;
  1091. }
  1092. if_idx =
  1093. wmi_cmd_hdr_get_if_idx((struct wmi_cmd_hdr *) skb->data);
  1094. } else {
  1095. if_idx =
  1096. wmi_data_hdr_get_if_idx((struct wmi_data_hdr *) skb->data);
  1097. }
  1098. vif = ath6kl_get_vif_by_index(ar, if_idx);
  1099. if (!vif) {
  1100. dev_kfree_skb(skb);
  1101. return;
  1102. }
  1103. /*
  1104. * Take lock to protect buffer counts and adaptive power throughput
  1105. * state.
  1106. */
  1107. spin_lock_bh(&vif->if_lock);
  1108. vif->net_stats.rx_packets++;
  1109. vif->net_stats.rx_bytes += packet->act_len;
  1110. spin_unlock_bh(&vif->if_lock);
  1111. skb->dev = vif->ndev;
  1112. if (!test_bit(WMI_ENABLED, &ar->flag)) {
  1113. if (EPPING_ALIGNMENT_PAD > 0)
  1114. skb_pull(skb, EPPING_ALIGNMENT_PAD);
  1115. ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb);
  1116. return;
  1117. }
  1118. ath6kl_check_wow_status(ar);
  1119. min_hdr_len = sizeof(struct ethhdr) + sizeof(struct wmi_data_hdr) +
  1120. sizeof(struct ath6kl_llc_snap_hdr);
  1121. dhdr = (struct wmi_data_hdr *) skb->data;
  1122. /*
  1123. * In the case of AP mode we may receive NULL data frames
  1124. * that do not have LLC hdr. They are 16 bytes in size.
  1125. * Allow these frames in the AP mode.
  1126. */
  1127. if (vif->nw_type != AP_NETWORK &&
  1128. ((packet->act_len < min_hdr_len) ||
  1129. (packet->act_len > WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH))) {
  1130. ath6kl_info("frame len is too short or too long\n");
  1131. vif->net_stats.rx_errors++;
  1132. vif->net_stats.rx_length_errors++;
  1133. dev_kfree_skb(skb);
  1134. return;
  1135. }
  1136. /* Get the Power save state of the STA */
  1137. if (vif->nw_type == AP_NETWORK) {
  1138. meta_type = wmi_data_hdr_get_meta(dhdr);
  1139. ps_state = !!((dhdr->info >> WMI_DATA_HDR_PS_SHIFT) &
  1140. WMI_DATA_HDR_PS_MASK);
  1141. offset = sizeof(struct wmi_data_hdr);
  1142. trig_state = !!(le16_to_cpu(dhdr->info3) & WMI_DATA_HDR_TRIG);
  1143. switch (meta_type) {
  1144. case 0:
  1145. break;
  1146. case WMI_META_VERSION_1:
  1147. offset += sizeof(struct wmi_rx_meta_v1);
  1148. break;
  1149. case WMI_META_VERSION_2:
  1150. offset += sizeof(struct wmi_rx_meta_v2);
  1151. break;
  1152. default:
  1153. break;
  1154. }
  1155. datap = (struct ethhdr *) (skb->data + offset);
  1156. conn = ath6kl_find_sta(vif, datap->h_source);
  1157. if (!conn) {
  1158. dev_kfree_skb(skb);
  1159. return;
  1160. }
  1161. /*
  1162. * If there is a change in PS state of the STA,
  1163. * take appropriate steps:
  1164. *
  1165. * 1. If Sleep-->Awake, flush the psq for the STA
  1166. * Clear the PVB for the STA.
  1167. * 2. If Awake-->Sleep, Starting queueing frames
  1168. * the STA.
  1169. */
  1170. prev_ps = !!(conn->sta_flags & STA_PS_SLEEP);
  1171. if (ps_state)
  1172. conn->sta_flags |= STA_PS_SLEEP;
  1173. else
  1174. conn->sta_flags &= ~STA_PS_SLEEP;
  1175. /* Accept trigger only when the station is in sleep */
  1176. if ((conn->sta_flags & STA_PS_SLEEP) && trig_state)
  1177. ath6kl_uapsd_trigger_frame_rx(vif, conn);
  1178. if (prev_ps ^ !!(conn->sta_flags & STA_PS_SLEEP)) {
  1179. if (!(conn->sta_flags & STA_PS_SLEEP)) {
  1180. struct sk_buff *skbuff = NULL;
  1181. bool is_apsdq_empty;
  1182. struct ath6kl_mgmt_buff *mgmt;
  1183. u8 idx;
  1184. spin_lock_bh(&conn->psq_lock);
  1185. while (conn->mgmt_psq_len > 0) {
  1186. mgmt = list_first_entry(
  1187. &conn->mgmt_psq,
  1188. struct ath6kl_mgmt_buff,
  1189. list);
  1190. list_del(&mgmt->list);
  1191. conn->mgmt_psq_len--;
  1192. spin_unlock_bh(&conn->psq_lock);
  1193. idx = vif->fw_vif_idx;
  1194. ath6kl_wmi_send_mgmt_cmd(ar->wmi,
  1195. idx,
  1196. mgmt->id,
  1197. mgmt->freq,
  1198. mgmt->wait,
  1199. mgmt->buf,
  1200. mgmt->len,
  1201. mgmt->no_cck);
  1202. kfree(mgmt);
  1203. spin_lock_bh(&conn->psq_lock);
  1204. }
  1205. conn->mgmt_psq_len = 0;
  1206. while ((skbuff = skb_dequeue(&conn->psq))) {
  1207. spin_unlock_bh(&conn->psq_lock);
  1208. ath6kl_data_tx(skbuff, vif->ndev);
  1209. spin_lock_bh(&conn->psq_lock);
  1210. }
  1211. is_apsdq_empty = skb_queue_empty(&conn->apsdq);
  1212. while ((skbuff = skb_dequeue(&conn->apsdq))) {
  1213. spin_unlock_bh(&conn->psq_lock);
  1214. ath6kl_data_tx(skbuff, vif->ndev);
  1215. spin_lock_bh(&conn->psq_lock);
  1216. }
  1217. spin_unlock_bh(&conn->psq_lock);
  1218. if (!is_apsdq_empty)
  1219. ath6kl_wmi_set_apsd_bfrd_traf(
  1220. ar->wmi,
  1221. vif->fw_vif_idx,
  1222. conn->aid, 0, 0);
  1223. /* Clear the PVB for this STA */
  1224. ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx,
  1225. conn->aid, 0);
  1226. }
  1227. }
  1228. /* drop NULL data frames here */
  1229. if ((packet->act_len < min_hdr_len) ||
  1230. (packet->act_len >
  1231. WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH)) {
  1232. dev_kfree_skb(skb);
  1233. return;
  1234. }
  1235. }
  1236. is_amsdu = wmi_data_hdr_is_amsdu(dhdr) ? true : false;
  1237. tid = wmi_data_hdr_get_up(dhdr);
  1238. seq_no = wmi_data_hdr_get_seqno(dhdr);
  1239. meta_type = wmi_data_hdr_get_meta(dhdr);
  1240. dot11_hdr = wmi_data_hdr_get_dot11(dhdr);
  1241. pad_before_data_start =
  1242. (le16_to_cpu(dhdr->info3) >> WMI_DATA_HDR_PAD_BEFORE_DATA_SHIFT)
  1243. & WMI_DATA_HDR_PAD_BEFORE_DATA_MASK;
  1244. skb_pull(skb, sizeof(struct wmi_data_hdr));
  1245. switch (meta_type) {
  1246. case WMI_META_VERSION_1:
  1247. skb_pull(skb, sizeof(struct wmi_rx_meta_v1));
  1248. break;
  1249. case WMI_META_VERSION_2:
  1250. meta = (struct wmi_rx_meta_v2 *) skb->data;
  1251. if (meta->csum_flags & 0x1) {
  1252. skb->ip_summed = CHECKSUM_COMPLETE;
  1253. skb->csum = (__force __wsum) meta->csum;
  1254. }
  1255. skb_pull(skb, sizeof(struct wmi_rx_meta_v2));
  1256. break;
  1257. default:
  1258. break;
  1259. }
  1260. skb_pull(skb, pad_before_data_start);
  1261. if (dot11_hdr)
  1262. status = ath6kl_wmi_dot11_hdr_remove(ar->wmi, skb);
  1263. else if (!is_amsdu)
  1264. status = ath6kl_wmi_dot3_2_dix(skb);
  1265. if (status) {
  1266. /*
  1267. * Drop frames that could not be processed (lack of
  1268. * memory, etc.)
  1269. */
  1270. dev_kfree_skb(skb);
  1271. return;
  1272. }
  1273. if (!(vif->ndev->flags & IFF_UP)) {
  1274. dev_kfree_skb(skb);
  1275. return;
  1276. }
  1277. if (vif->nw_type == AP_NETWORK) {
  1278. datap = (struct ethhdr *) skb->data;
  1279. if (is_multicast_ether_addr(datap->h_dest))
  1280. /*
  1281. * Bcast/Mcast frames should be sent to the
  1282. * OS stack as well as on the air.
  1283. */
  1284. skb1 = skb_copy(skb, GFP_ATOMIC);
  1285. else {
  1286. /*
  1287. * Search for a connected STA with dstMac
  1288. * as the Mac address. If found send the
  1289. * frame to it on the air else send the
  1290. * frame up the stack.
  1291. */
  1292. conn = ath6kl_find_sta(vif, datap->h_dest);
  1293. if (conn && ar->intra_bss) {
  1294. skb1 = skb;
  1295. skb = NULL;
  1296. } else if (conn && !ar->intra_bss) {
  1297. dev_kfree_skb(skb);
  1298. skb = NULL;
  1299. }
  1300. }
  1301. if (skb1)
  1302. ath6kl_data_tx(skb1, vif->ndev);
  1303. if (skb == NULL) {
  1304. /* nothing to deliver up the stack */
  1305. return;
  1306. }
  1307. }
  1308. datap = (struct ethhdr *) skb->data;
  1309. if (is_unicast_ether_addr(datap->h_dest)) {
  1310. if (vif->nw_type == AP_NETWORK) {
  1311. conn = ath6kl_find_sta(vif, datap->h_source);
  1312. if (!conn)
  1313. return;
  1314. aggr_conn = conn->aggr_conn;
  1315. } else
  1316. aggr_conn = vif->aggr_cntxt->aggr_conn;
  1317. if (aggr_process_recv_frm(aggr_conn, tid, seq_no,
  1318. is_amsdu, skb)) {
  1319. /* aggregation code will handle the skb */
  1320. return;
  1321. }
  1322. } else if (!is_broadcast_ether_addr(datap->h_dest))
  1323. vif->net_stats.multicast++;
  1324. ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb);
  1325. }
  1326. static void aggr_timeout(unsigned long arg)
  1327. {
  1328. u8 i, j;
  1329. struct aggr_info_conn *aggr_conn = (struct aggr_info_conn *) arg;
  1330. struct rxtid *rxtid;
  1331. struct rxtid_stats *stats;
  1332. for (i = 0; i < NUM_OF_TIDS; i++) {
  1333. rxtid = &aggr_conn->rx_tid[i];
  1334. stats = &aggr_conn->stat[i];
  1335. if (!rxtid->aggr || !rxtid->timer_mon || rxtid->progress)
  1336. continue;
  1337. stats->num_timeouts++;
  1338. ath6kl_dbg(ATH6KL_DBG_AGGR,
  1339. "aggr timeout (st %d end %d)\n",
  1340. rxtid->seq_next,
  1341. ((rxtid->seq_next + rxtid->hold_q_sz-1) &
  1342. ATH6KL_MAX_SEQ_NO));
  1343. aggr_deque_frms(aggr_conn, i, 0, 0);
  1344. }
  1345. aggr_conn->timer_scheduled = false;
  1346. for (i = 0; i < NUM_OF_TIDS; i++) {
  1347. rxtid = &aggr_conn->rx_tid[i];
  1348. if (rxtid->aggr && rxtid->hold_q) {
  1349. for (j = 0; j < rxtid->hold_q_sz; j++) {
  1350. if (rxtid->hold_q[j].skb) {
  1351. aggr_conn->timer_scheduled = true;
  1352. rxtid->timer_mon = true;
  1353. rxtid->progress = false;
  1354. break;
  1355. }
  1356. }
  1357. if (j >= rxtid->hold_q_sz)
  1358. rxtid->timer_mon = false;
  1359. }
  1360. }
  1361. if (aggr_conn->timer_scheduled)
  1362. mod_timer(&aggr_conn->timer,
  1363. jiffies + msecs_to_jiffies(AGGR_RX_TIMEOUT));
  1364. }
  1365. static void aggr_delete_tid_state(struct aggr_info_conn *aggr_conn, u8 tid)
  1366. {
  1367. struct rxtid *rxtid;
  1368. struct rxtid_stats *stats;
  1369. if (!aggr_conn || tid >= NUM_OF_TIDS)
  1370. return;
  1371. rxtid = &aggr_conn->rx_tid[tid];
  1372. stats = &aggr_conn->stat[tid];
  1373. if (rxtid->aggr)
  1374. aggr_deque_frms(aggr_conn, tid, 0, 0);
  1375. rxtid->aggr = false;
  1376. rxtid->progress = false;
  1377. rxtid->timer_mon = false;
  1378. rxtid->win_sz = 0;
  1379. rxtid->seq_next = 0;
  1380. rxtid->hold_q_sz = 0;
  1381. kfree(rxtid->hold_q);
  1382. rxtid->hold_q = NULL;
  1383. memset(stats, 0, sizeof(struct rxtid_stats));
  1384. }
  1385. void aggr_recv_addba_req_evt(struct ath6kl_vif *vif, u8 tid_mux, u16 seq_no,
  1386. u8 win_sz)
  1387. {
  1388. struct ath6kl_sta *sta;
  1389. struct aggr_info_conn *aggr_conn = NULL;
  1390. struct rxtid *rxtid;
  1391. struct rxtid_stats *stats;
  1392. u16 hold_q_size;
  1393. u8 tid, aid;
  1394. if (vif->nw_type == AP_NETWORK) {
  1395. aid = ath6kl_get_aid(tid_mux);
  1396. sta = ath6kl_find_sta_by_aid(vif->ar, aid);
  1397. if (sta)
  1398. aggr_conn = sta->aggr_conn;
  1399. } else
  1400. aggr_conn = vif->aggr_cntxt->aggr_conn;
  1401. if (!aggr_conn)
  1402. return;
  1403. tid = ath6kl_get_tid(tid_mux);
  1404. if (tid >= NUM_OF_TIDS)
  1405. return;
  1406. rxtid = &aggr_conn->rx_tid[tid];
  1407. stats = &aggr_conn->stat[tid];
  1408. if (win_sz < AGGR_WIN_SZ_MIN || win_sz > AGGR_WIN_SZ_MAX)
  1409. ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: win_sz %d, tid %d\n",
  1410. __func__, win_sz, tid);
  1411. if (rxtid->aggr)
  1412. aggr_delete_tid_state(aggr_conn, tid);
  1413. rxtid->seq_next = seq_no;
  1414. hold_q_size = TID_WINDOW_SZ(win_sz) * sizeof(struct skb_hold_q);
  1415. rxtid->hold_q = kzalloc(hold_q_size, GFP_KERNEL);
  1416. if (!rxtid->hold_q)
  1417. return;
  1418. rxtid->win_sz = win_sz;
  1419. rxtid->hold_q_sz = TID_WINDOW_SZ(win_sz);
  1420. if (!skb_queue_empty(&rxtid->q))
  1421. return;
  1422. rxtid->aggr = true;
  1423. }
  1424. void aggr_conn_init(struct ath6kl_vif *vif, struct aggr_info *aggr_info,
  1425. struct aggr_info_conn *aggr_conn)
  1426. {
  1427. struct rxtid *rxtid;
  1428. u8 i;
  1429. aggr_conn->aggr_sz = AGGR_SZ_DEFAULT;
  1430. aggr_conn->dev = vif->ndev;
  1431. init_timer(&aggr_conn->timer);
  1432. aggr_conn->timer.function = aggr_timeout;
  1433. aggr_conn->timer.data = (unsigned long) aggr_conn;
  1434. aggr_conn->aggr_info = aggr_info;
  1435. aggr_conn->timer_scheduled = false;
  1436. for (i = 0; i < NUM_OF_TIDS; i++) {
  1437. rxtid = &aggr_conn->rx_tid[i];
  1438. rxtid->aggr = false;
  1439. rxtid->progress = false;
  1440. rxtid->timer_mon = false;
  1441. skb_queue_head_init(&rxtid->q);
  1442. spin_lock_init(&rxtid->lock);
  1443. }
  1444. }
  1445. struct aggr_info *aggr_init(struct ath6kl_vif *vif)
  1446. {
  1447. struct aggr_info *p_aggr = NULL;
  1448. p_aggr = kzalloc(sizeof(struct aggr_info), GFP_KERNEL);
  1449. if (!p_aggr) {
  1450. ath6kl_err("failed to alloc memory for aggr_node\n");
  1451. return NULL;
  1452. }
  1453. p_aggr->aggr_conn = kzalloc(sizeof(struct aggr_info_conn), GFP_KERNEL);
  1454. if (!p_aggr->aggr_conn) {
  1455. ath6kl_err("failed to alloc memory for connection specific aggr info\n");
  1456. kfree(p_aggr);
  1457. return NULL;
  1458. }
  1459. aggr_conn_init(vif, p_aggr, p_aggr->aggr_conn);
  1460. skb_queue_head_init(&p_aggr->rx_amsdu_freeq);
  1461. ath6kl_alloc_netbufs(&p_aggr->rx_amsdu_freeq, AGGR_NUM_OF_FREE_NETBUFS);
  1462. return p_aggr;
  1463. }
  1464. void aggr_recv_delba_req_evt(struct ath6kl_vif *vif, u8 tid_mux)
  1465. {
  1466. struct ath6kl_sta *sta;
  1467. struct rxtid *rxtid;
  1468. struct aggr_info_conn *aggr_conn = NULL;
  1469. u8 tid, aid;
  1470. if (vif->nw_type == AP_NETWORK) {
  1471. aid = ath6kl_get_aid(tid_mux);
  1472. sta = ath6kl_find_sta_by_aid(vif->ar, aid);
  1473. if (sta)
  1474. aggr_conn = sta->aggr_conn;
  1475. } else
  1476. aggr_conn = vif->aggr_cntxt->aggr_conn;
  1477. if (!aggr_conn)
  1478. return;
  1479. tid = ath6kl_get_tid(tid_mux);
  1480. if (tid >= NUM_OF_TIDS)
  1481. return;
  1482. rxtid = &aggr_conn->rx_tid[tid];
  1483. if (rxtid->aggr)
  1484. aggr_delete_tid_state(aggr_conn, tid);
  1485. }
  1486. void aggr_reset_state(struct aggr_info_conn *aggr_conn)
  1487. {
  1488. u8 tid;
  1489. if (!aggr_conn)
  1490. return;
  1491. if (aggr_conn->timer_scheduled) {
  1492. del_timer(&aggr_conn->timer);
  1493. aggr_conn->timer_scheduled = false;
  1494. }
  1495. for (tid = 0; tid < NUM_OF_TIDS; tid++)
  1496. aggr_delete_tid_state(aggr_conn, tid);
  1497. }
  1498. /* clean up our amsdu buffer list */
  1499. void ath6kl_cleanup_amsdu_rxbufs(struct ath6kl *ar)
  1500. {
  1501. struct htc_packet *packet, *tmp_pkt;
  1502. spin_lock_bh(&ar->lock);
  1503. if (list_empty(&ar->amsdu_rx_buffer_queue)) {
  1504. spin_unlock_bh(&ar->lock);
  1505. return;
  1506. }
  1507. list_for_each_entry_safe(packet, tmp_pkt, &ar->amsdu_rx_buffer_queue,
  1508. list) {
  1509. list_del(&packet->list);
  1510. spin_unlock_bh(&ar->lock);
  1511. dev_kfree_skb(packet->pkt_cntxt);
  1512. spin_lock_bh(&ar->lock);
  1513. }
  1514. spin_unlock_bh(&ar->lock);
  1515. }
  1516. void aggr_module_destroy(struct aggr_info *aggr_info)
  1517. {
  1518. if (!aggr_info)
  1519. return;
  1520. aggr_reset_state(aggr_info->aggr_conn);
  1521. skb_queue_purge(&aggr_info->rx_amsdu_freeq);
  1522. kfree(aggr_info->aggr_conn);
  1523. kfree(aggr_info);
  1524. }