i2c-eg20t.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998
  1. /*
  2. * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/errno.h>
  22. #include <linux/i2c.h>
  23. #include <linux/fs.h>
  24. #include <linux/io.h>
  25. #include <linux/types.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/jiffies.h>
  28. #include <linux/pci.h>
  29. #include <linux/mutex.h>
  30. #include <linux/ktime.h>
  31. #include <linux/slab.h>
  32. #define PCH_EVENT_SET 0 /* I2C Interrupt Event Set Status */
  33. #define PCH_EVENT_NONE 1 /* I2C Interrupt Event Clear Status */
  34. #define PCH_MAX_CLK 100000 /* Maximum Clock speed in MHz */
  35. #define PCH_BUFFER_MODE_ENABLE 0x0002 /* flag for Buffer mode enable */
  36. #define PCH_EEPROM_SW_RST_MODE_ENABLE 0x0008 /* EEPROM SW RST enable flag */
  37. #define PCH_I2CSADR 0x00 /* I2C slave address register */
  38. #define PCH_I2CCTL 0x04 /* I2C control register */
  39. #define PCH_I2CSR 0x08 /* I2C status register */
  40. #define PCH_I2CDR 0x0C /* I2C data register */
  41. #define PCH_I2CMON 0x10 /* I2C bus monitor register */
  42. #define PCH_I2CBC 0x14 /* I2C bus transfer rate setup counter */
  43. #define PCH_I2CMOD 0x18 /* I2C mode register */
  44. #define PCH_I2CBUFSLV 0x1C /* I2C buffer mode slave address register */
  45. #define PCH_I2CBUFSUB 0x20 /* I2C buffer mode subaddress register */
  46. #define PCH_I2CBUFFOR 0x24 /* I2C buffer mode format register */
  47. #define PCH_I2CBUFCTL 0x28 /* I2C buffer mode control register */
  48. #define PCH_I2CBUFMSK 0x2C /* I2C buffer mode interrupt mask register */
  49. #define PCH_I2CBUFSTA 0x30 /* I2C buffer mode status register */
  50. #define PCH_I2CBUFLEV 0x34 /* I2C buffer mode level register */
  51. #define PCH_I2CESRFOR 0x38 /* EEPROM software reset mode format register */
  52. #define PCH_I2CESRCTL 0x3C /* EEPROM software reset mode ctrl register */
  53. #define PCH_I2CESRMSK 0x40 /* EEPROM software reset mode */
  54. #define PCH_I2CESRSTA 0x44 /* EEPROM software reset mode status register */
  55. #define PCH_I2CTMR 0x48 /* I2C timer register */
  56. #define PCH_I2CSRST 0xFC /* I2C reset register */
  57. #define PCH_I2CNF 0xF8 /* I2C noise filter register */
  58. #define BUS_IDLE_TIMEOUT 20
  59. #define PCH_I2CCTL_I2CMEN 0x0080
  60. #define TEN_BIT_ADDR_DEFAULT 0xF000
  61. #define TEN_BIT_ADDR_MASK 0xF0
  62. #define PCH_START 0x0020
  63. #define PCH_RESTART 0x0004
  64. #define PCH_ESR_START 0x0001
  65. #define PCH_BUFF_START 0x1
  66. #define PCH_REPSTART 0x0004
  67. #define PCH_ACK 0x0008
  68. #define PCH_GETACK 0x0001
  69. #define CLR_REG 0x0
  70. #define I2C_RD 0x1
  71. #define I2CMCF_BIT 0x0080
  72. #define I2CMIF_BIT 0x0002
  73. #define I2CMAL_BIT 0x0010
  74. #define I2CBMFI_BIT 0x0001
  75. #define I2CBMAL_BIT 0x0002
  76. #define I2CBMNA_BIT 0x0004
  77. #define I2CBMTO_BIT 0x0008
  78. #define I2CBMIS_BIT 0x0010
  79. #define I2CESRFI_BIT 0X0001
  80. #define I2CESRTO_BIT 0x0002
  81. #define I2CESRFIIE_BIT 0x1
  82. #define I2CESRTOIE_BIT 0x2
  83. #define I2CBMDZ_BIT 0x0040
  84. #define I2CBMAG_BIT 0x0020
  85. #define I2CMBB_BIT 0x0020
  86. #define BUFFER_MODE_MASK (I2CBMFI_BIT | I2CBMAL_BIT | I2CBMNA_BIT | \
  87. I2CBMTO_BIT | I2CBMIS_BIT)
  88. #define I2C_ADDR_MSK 0xFF
  89. #define I2C_MSB_2B_MSK 0x300
  90. #define FAST_MODE_CLK 400
  91. #define FAST_MODE_EN 0x0001
  92. #define SUB_ADDR_LEN_MAX 4
  93. #define BUF_LEN_MAX 32
  94. #define PCH_BUFFER_MODE 0x1
  95. #define EEPROM_SW_RST_MODE 0x0002
  96. #define NORMAL_INTR_ENBL 0x0300
  97. #define EEPROM_RST_INTR_ENBL (I2CESRFIIE_BIT | I2CESRTOIE_BIT)
  98. #define EEPROM_RST_INTR_DISBL 0x0
  99. #define BUFFER_MODE_INTR_ENBL 0x001F
  100. #define BUFFER_MODE_INTR_DISBL 0x0
  101. #define NORMAL_MODE 0x0
  102. #define BUFFER_MODE 0x1
  103. #define EEPROM_SR_MODE 0x2
  104. #define I2C_TX_MODE 0x0010
  105. #define PCH_BUF_TX 0xFFF7
  106. #define PCH_BUF_RD 0x0008
  107. #define I2C_ERROR_MASK (I2CESRTO_EVENT | I2CBMIS_EVENT | I2CBMTO_EVENT | \
  108. I2CBMNA_EVENT | I2CBMAL_EVENT | I2CMAL_EVENT)
  109. #define I2CMAL_EVENT 0x0001
  110. #define I2CMCF_EVENT 0x0002
  111. #define I2CBMFI_EVENT 0x0004
  112. #define I2CBMAL_EVENT 0x0008
  113. #define I2CBMNA_EVENT 0x0010
  114. #define I2CBMTO_EVENT 0x0020
  115. #define I2CBMIS_EVENT 0x0040
  116. #define I2CESRFI_EVENT 0x0080
  117. #define I2CESRTO_EVENT 0x0100
  118. #define PCI_DEVICE_ID_PCH_I2C 0x8817
  119. #define pch_dbg(adap, fmt, arg...) \
  120. dev_dbg(adap->pch_adapter.dev.parent, "%s :" fmt, __func__, ##arg)
  121. #define pch_err(adap, fmt, arg...) \
  122. dev_err(adap->pch_adapter.dev.parent, "%s :" fmt, __func__, ##arg)
  123. #define pch_pci_err(pdev, fmt, arg...) \
  124. dev_err(&pdev->dev, "%s :" fmt, __func__, ##arg)
  125. #define pch_pci_dbg(pdev, fmt, arg...) \
  126. dev_dbg(&pdev->dev, "%s :" fmt, __func__, ##arg)
  127. /*
  128. Set the number of I2C instance max
  129. Intel EG20T PCH : 1ch
  130. OKI SEMICONDUCTOR ML7213 IOH : 2ch
  131. */
  132. #define PCH_I2C_MAX_DEV 2
  133. /**
  134. * struct i2c_algo_pch_data - for I2C driver functionalities
  135. * @pch_adapter: stores the reference to i2c_adapter structure
  136. * @p_adapter_info: stores the reference to adapter_info structure
  137. * @pch_base_address: specifies the remapped base address
  138. * @pch_buff_mode_en: specifies if buffer mode is enabled
  139. * @pch_event_flag: specifies occurrence of interrupt events
  140. * @pch_i2c_xfer_in_progress: specifies whether the transfer is completed
  141. */
  142. struct i2c_algo_pch_data {
  143. struct i2c_adapter pch_adapter;
  144. struct adapter_info *p_adapter_info;
  145. void __iomem *pch_base_address;
  146. int pch_buff_mode_en;
  147. u32 pch_event_flag;
  148. bool pch_i2c_xfer_in_progress;
  149. };
  150. /**
  151. * struct adapter_info - This structure holds the adapter information for the
  152. PCH i2c controller
  153. * @pch_data: stores a list of i2c_algo_pch_data
  154. * @pch_i2c_suspended: specifies whether the system is suspended or not
  155. * perhaps with more lines and words.
  156. * @ch_num: specifies the number of i2c instance
  157. *
  158. * pch_data has as many elements as maximum I2C channels
  159. */
  160. struct adapter_info {
  161. struct i2c_algo_pch_data pch_data[PCH_I2C_MAX_DEV];
  162. bool pch_i2c_suspended;
  163. int ch_num;
  164. };
  165. static int pch_i2c_speed = 100; /* I2C bus speed in Kbps */
  166. static int pch_clk = 50000; /* specifies I2C clock speed in KHz */
  167. static wait_queue_head_t pch_event;
  168. static DEFINE_MUTEX(pch_mutex);
  169. /* Definition for ML7213 by OKI SEMICONDUCTOR */
  170. #define PCI_VENDOR_ID_ROHM 0x10DB
  171. #define PCI_DEVICE_ID_ML7213_I2C 0x802D
  172. #define PCI_DEVICE_ID_ML7223_I2C 0x8010
  173. static struct pci_device_id __devinitdata pch_pcidev_id[] = {
  174. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PCH_I2C), 1, },
  175. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_I2C), 2, },
  176. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_I2C), 1, },
  177. {0,}
  178. };
  179. static irqreturn_t pch_i2c_handler(int irq, void *pData);
  180. static inline void pch_setbit(void __iomem *addr, u32 offset, u32 bitmask)
  181. {
  182. u32 val;
  183. val = ioread32(addr + offset);
  184. val |= bitmask;
  185. iowrite32(val, addr + offset);
  186. }
  187. static inline void pch_clrbit(void __iomem *addr, u32 offset, u32 bitmask)
  188. {
  189. u32 val;
  190. val = ioread32(addr + offset);
  191. val &= (~bitmask);
  192. iowrite32(val, addr + offset);
  193. }
  194. /**
  195. * pch_i2c_init() - hardware initialization of I2C module
  196. * @adap: Pointer to struct i2c_algo_pch_data.
  197. */
  198. static void pch_i2c_init(struct i2c_algo_pch_data *adap)
  199. {
  200. void __iomem *p = adap->pch_base_address;
  201. u32 pch_i2cbc;
  202. u32 pch_i2ctmr;
  203. u32 reg_value;
  204. /* reset I2C controller */
  205. iowrite32(0x01, p + PCH_I2CSRST);
  206. msleep(20);
  207. iowrite32(0x0, p + PCH_I2CSRST);
  208. /* Initialize I2C registers */
  209. iowrite32(0x21, p + PCH_I2CNF);
  210. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_I2CCTL_I2CMEN);
  211. if (pch_i2c_speed != 400)
  212. pch_i2c_speed = 100;
  213. reg_value = PCH_I2CCTL_I2CMEN;
  214. if (pch_i2c_speed == FAST_MODE_CLK) {
  215. reg_value |= FAST_MODE_EN;
  216. pch_dbg(adap, "Fast mode enabled\n");
  217. }
  218. if (pch_clk > PCH_MAX_CLK)
  219. pch_clk = 62500;
  220. pch_i2cbc = (pch_clk + (pch_i2c_speed * 4)) / pch_i2c_speed * 8;
  221. /* Set transfer speed in I2CBC */
  222. iowrite32(pch_i2cbc, p + PCH_I2CBC);
  223. pch_i2ctmr = (pch_clk) / 8;
  224. iowrite32(pch_i2ctmr, p + PCH_I2CTMR);
  225. reg_value |= NORMAL_INTR_ENBL; /* Enable interrupts in normal mode */
  226. iowrite32(reg_value, p + PCH_I2CCTL);
  227. pch_dbg(adap,
  228. "I2CCTL=%x pch_i2cbc=%x pch_i2ctmr=%x Enable interrupts\n",
  229. ioread32(p + PCH_I2CCTL), pch_i2cbc, pch_i2ctmr);
  230. init_waitqueue_head(&pch_event);
  231. }
  232. static inline bool ktime_lt(const ktime_t cmp1, const ktime_t cmp2)
  233. {
  234. return cmp1.tv64 < cmp2.tv64;
  235. }
  236. /**
  237. * pch_i2c_wait_for_bus_idle() - check the status of bus.
  238. * @adap: Pointer to struct i2c_algo_pch_data.
  239. * @timeout: waiting time counter (us).
  240. */
  241. static s32 pch_i2c_wait_for_bus_idle(struct i2c_algo_pch_data *adap,
  242. s32 timeout)
  243. {
  244. void __iomem *p = adap->pch_base_address;
  245. ktime_t ns_val;
  246. if ((ioread32(p + PCH_I2CSR) & I2CMBB_BIT) == 0)
  247. return 0;
  248. /* MAX timeout value is timeout*1000*1000nsec */
  249. ns_val = ktime_add_ns(ktime_get(), timeout*1000*1000);
  250. do {
  251. msleep(20);
  252. if ((ioread32(p + PCH_I2CSR) & I2CMBB_BIT) == 0)
  253. return 0;
  254. } while (ktime_lt(ktime_get(), ns_val));
  255. pch_dbg(adap, "I2CSR = %x\n", ioread32(p + PCH_I2CSR));
  256. pch_err(adap, "%s: Timeout Error.return%d\n", __func__, -ETIME);
  257. return -ETIME;
  258. }
  259. /**
  260. * pch_i2c_start() - Generate I2C start condition in normal mode.
  261. * @adap: Pointer to struct i2c_algo_pch_data.
  262. *
  263. * Generate I2C start condition in normal mode by setting I2CCTL.I2CMSTA to 1.
  264. */
  265. static void pch_i2c_start(struct i2c_algo_pch_data *adap)
  266. {
  267. void __iomem *p = adap->pch_base_address;
  268. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  269. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_START);
  270. }
  271. /**
  272. * pch_i2c_wait_for_xfer_complete() - initiates a wait for the tx complete event
  273. * @adap: Pointer to struct i2c_algo_pch_data.
  274. */
  275. static s32 pch_i2c_wait_for_xfer_complete(struct i2c_algo_pch_data *adap)
  276. {
  277. long ret;
  278. ret = wait_event_timeout(pch_event,
  279. (adap->pch_event_flag != 0), msecs_to_jiffies(50));
  280. if (ret == 0) {
  281. pch_err(adap, "timeout: %x\n", adap->pch_event_flag);
  282. return -ETIMEDOUT;
  283. }
  284. if (adap->pch_event_flag & I2C_ERROR_MASK) {
  285. pch_err(adap, "error bits set: %x\n", adap->pch_event_flag);
  286. return -EIO;
  287. }
  288. adap->pch_event_flag = 0;
  289. return 0;
  290. }
  291. /**
  292. * pch_i2c_getack() - to confirm ACK/NACK
  293. * @adap: Pointer to struct i2c_algo_pch_data.
  294. */
  295. static s32 pch_i2c_getack(struct i2c_algo_pch_data *adap)
  296. {
  297. u32 reg_val;
  298. void __iomem *p = adap->pch_base_address;
  299. reg_val = ioread32(p + PCH_I2CSR) & PCH_GETACK;
  300. if (reg_val != 0) {
  301. pch_err(adap, "return%d\n", -EPROTO);
  302. return -EPROTO;
  303. }
  304. return 0;
  305. }
  306. /**
  307. * pch_i2c_stop() - generate stop condition in normal mode.
  308. * @adap: Pointer to struct i2c_algo_pch_data.
  309. */
  310. static void pch_i2c_stop(struct i2c_algo_pch_data *adap)
  311. {
  312. void __iomem *p = adap->pch_base_address;
  313. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  314. /* clear the start bit */
  315. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, PCH_START);
  316. }
  317. /**
  318. * pch_i2c_repstart() - generate repeated start condition in normal mode
  319. * @adap: Pointer to struct i2c_algo_pch_data.
  320. */
  321. static void pch_i2c_repstart(struct i2c_algo_pch_data *adap)
  322. {
  323. void __iomem *p = adap->pch_base_address;
  324. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  325. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_REPSTART);
  326. }
  327. /**
  328. * pch_i2c_writebytes() - write data to I2C bus in normal mode
  329. * @i2c_adap: Pointer to the struct i2c_adapter.
  330. * @last: specifies whether last message or not.
  331. * In the case of compound mode it will be 1 for last message,
  332. * otherwise 0.
  333. * @first: specifies whether first message or not.
  334. * 1 for first message otherwise 0.
  335. */
  336. static s32 pch_i2c_writebytes(struct i2c_adapter *i2c_adap,
  337. struct i2c_msg *msgs, u32 last, u32 first)
  338. {
  339. struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
  340. u8 *buf;
  341. u32 length;
  342. u32 addr;
  343. u32 addr_2_msb;
  344. u32 addr_8_lsb;
  345. s32 wrcount;
  346. void __iomem *p = adap->pch_base_address;
  347. length = msgs->len;
  348. buf = msgs->buf;
  349. addr = msgs->addr;
  350. /* enable master tx */
  351. pch_setbit(adap->pch_base_address, PCH_I2CCTL, I2C_TX_MODE);
  352. pch_dbg(adap, "I2CCTL = %x msgs->len = %d\n", ioread32(p + PCH_I2CCTL),
  353. length);
  354. if (first) {
  355. if (pch_i2c_wait_for_bus_idle(adap, BUS_IDLE_TIMEOUT) == -ETIME)
  356. return -ETIME;
  357. }
  358. if (msgs->flags & I2C_M_TEN) {
  359. addr_2_msb = ((addr & I2C_MSB_2B_MSK) >> 7) & 0x06;
  360. iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK, p + PCH_I2CDR);
  361. if (first)
  362. pch_i2c_start(adap);
  363. if (pch_i2c_wait_for_xfer_complete(adap) == 0 &&
  364. pch_i2c_getack(adap) == 0) {
  365. addr_8_lsb = (addr & I2C_ADDR_MSK);
  366. iowrite32(addr_8_lsb, p + PCH_I2CDR);
  367. } else {
  368. pch_i2c_stop(adap);
  369. return -ETIME;
  370. }
  371. } else {
  372. /* set 7 bit slave address and R/W bit as 0 */
  373. iowrite32(addr << 1, p + PCH_I2CDR);
  374. if (first)
  375. pch_i2c_start(adap);
  376. }
  377. if ((pch_i2c_wait_for_xfer_complete(adap) == 0) &&
  378. (pch_i2c_getack(adap) == 0)) {
  379. for (wrcount = 0; wrcount < length; ++wrcount) {
  380. /* write buffer value to I2C data register */
  381. iowrite32(buf[wrcount], p + PCH_I2CDR);
  382. pch_dbg(adap, "writing %x to Data register\n",
  383. buf[wrcount]);
  384. if (pch_i2c_wait_for_xfer_complete(adap) != 0)
  385. return -ETIME;
  386. if (pch_i2c_getack(adap))
  387. return -EIO;
  388. }
  389. /* check if this is the last message */
  390. if (last)
  391. pch_i2c_stop(adap);
  392. else
  393. pch_i2c_repstart(adap);
  394. } else {
  395. pch_i2c_stop(adap);
  396. return -EIO;
  397. }
  398. pch_dbg(adap, "return=%d\n", wrcount);
  399. return wrcount;
  400. }
  401. /**
  402. * pch_i2c_sendack() - send ACK
  403. * @adap: Pointer to struct i2c_algo_pch_data.
  404. */
  405. static void pch_i2c_sendack(struct i2c_algo_pch_data *adap)
  406. {
  407. void __iomem *p = adap->pch_base_address;
  408. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  409. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, PCH_ACK);
  410. }
  411. /**
  412. * pch_i2c_sendnack() - send NACK
  413. * @adap: Pointer to struct i2c_algo_pch_data.
  414. */
  415. static void pch_i2c_sendnack(struct i2c_algo_pch_data *adap)
  416. {
  417. void __iomem *p = adap->pch_base_address;
  418. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  419. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_ACK);
  420. }
  421. /**
  422. * pch_i2c_restart() - Generate I2C restart condition in normal mode.
  423. * @adap: Pointer to struct i2c_algo_pch_data.
  424. *
  425. * Generate I2C restart condition in normal mode by setting I2CCTL.I2CRSTA.
  426. */
  427. static void pch_i2c_restart(struct i2c_algo_pch_data *adap)
  428. {
  429. void __iomem *p = adap->pch_base_address;
  430. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  431. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_RESTART);
  432. }
  433. /**
  434. * pch_i2c_readbytes() - read data from I2C bus in normal mode.
  435. * @i2c_adap: Pointer to the struct i2c_adapter.
  436. * @msgs: Pointer to i2c_msg structure.
  437. * @last: specifies whether last message or not.
  438. * @first: specifies whether first message or not.
  439. */
  440. static s32 pch_i2c_readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs,
  441. u32 last, u32 first)
  442. {
  443. struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
  444. u8 *buf;
  445. u32 count;
  446. u32 length;
  447. u32 addr;
  448. u32 addr_2_msb;
  449. u32 addr_8_lsb;
  450. void __iomem *p = adap->pch_base_address;
  451. length = msgs->len;
  452. buf = msgs->buf;
  453. addr = msgs->addr;
  454. /* enable master reception */
  455. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, I2C_TX_MODE);
  456. if (first) {
  457. if (pch_i2c_wait_for_bus_idle(adap, BUS_IDLE_TIMEOUT) == -ETIME)
  458. return -ETIME;
  459. }
  460. if (msgs->flags & I2C_M_TEN) {
  461. addr_2_msb = ((addr & I2C_MSB_2B_MSK) >> 7);
  462. iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK, p + PCH_I2CDR);
  463. if (first)
  464. pch_i2c_start(adap);
  465. rtn = pch_i2c_wait_for_xfer_complete(adap);
  466. if (rtn == 0) {
  467. if (pch_i2c_getack(adap)) {
  468. pch_dbg(adap, "Receive NACK for slave address"
  469. "setting\n");
  470. return -EIO;
  471. }
  472. addr_8_lsb = (addr & I2C_ADDR_MSK);
  473. iowrite32(addr_8_lsb, p + PCH_I2CDR);
  474. } else if (rtn == -EIO) { /* Arbitration Lost */
  475. pch_err(adap, "Lost Arbitration\n");
  476. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  477. I2CMAL_BIT);
  478. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  479. I2CMIF_BIT);
  480. pch_i2c_init(adap);
  481. return -EAGAIN;
  482. } else { /* wait-event timeout */
  483. pch_i2c_stop(adap);
  484. return -ETIME;
  485. }
  486. pch_i2c_restart(adap);
  487. rtn = pch_i2c_wait_for_xfer_complete(adap);
  488. if (rtn == 0) {
  489. if (pch_i2c_getack(adap)) {
  490. pch_dbg(adap, "Receive NACK for slave address"
  491. "setting\n");
  492. return -EIO;
  493. }
  494. addr_2_msb |= I2C_RD;
  495. iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK,
  496. p + PCH_I2CDR);
  497. } else if (rtn == -EIO) { /* Arbitration Lost */
  498. pch_err(adap, "Lost Arbitration\n");
  499. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  500. I2CMAL_BIT);
  501. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  502. I2CMIF_BIT);
  503. pch_i2c_init(adap);
  504. return -EAGAIN;
  505. } else { /* wait-event timeout */
  506. pch_i2c_stop(adap);
  507. return -ETIME;
  508. }
  509. } else {
  510. /* 7 address bits + R/W bit */
  511. addr = (((addr) << 1) | (I2C_RD));
  512. iowrite32(addr, p + PCH_I2CDR);
  513. }
  514. /* check if it is the first message */
  515. if (first)
  516. pch_i2c_start(adap);
  517. if ((pch_i2c_wait_for_xfer_complete(adap) == 0) &&
  518. (pch_i2c_getack(adap) == 0)) {
  519. pch_dbg(adap, "return %d\n", 0);
  520. if (length == 0) {
  521. pch_i2c_stop(adap);
  522. ioread32(p + PCH_I2CDR); /* Dummy read needs */
  523. count = length;
  524. } else {
  525. int read_index;
  526. int loop;
  527. pch_i2c_sendack(adap);
  528. /* Dummy read */
  529. for (loop = 1, read_index = 0; loop < length; loop++) {
  530. buf[read_index] = ioread32(p + PCH_I2CDR);
  531. if (loop != 1)
  532. read_index++;
  533. if (pch_i2c_wait_for_xfer_complete(adap) != 0) {
  534. pch_i2c_stop(adap);
  535. return -ETIME;
  536. }
  537. } /* end for */
  538. pch_i2c_sendnack(adap);
  539. buf[read_index] = ioread32(p + PCH_I2CDR);
  540. if (length != 1)
  541. read_index++;
  542. if (pch_i2c_wait_for_xfer_complete(adap) == 0) {
  543. if (last)
  544. pch_i2c_stop(adap);
  545. else
  546. pch_i2c_repstart(adap);
  547. buf[read_index++] = ioread32(p + PCH_I2CDR);
  548. count = read_index;
  549. } else {
  550. count = -ETIME;
  551. }
  552. }
  553. } else {
  554. count = -ETIME;
  555. pch_i2c_stop(adap);
  556. }
  557. return count;
  558. }
  559. /**
  560. * pch_i2c_cb() - Interrupt handler Call back function
  561. * @adap: Pointer to struct i2c_algo_pch_data.
  562. */
  563. static void pch_i2c_cb(struct i2c_algo_pch_data *adap)
  564. {
  565. u32 sts;
  566. void __iomem *p = adap->pch_base_address;
  567. sts = ioread32(p + PCH_I2CSR);
  568. sts &= (I2CMAL_BIT | I2CMCF_BIT | I2CMIF_BIT);
  569. if (sts & I2CMAL_BIT)
  570. adap->pch_event_flag |= I2CMAL_EVENT;
  571. if (sts & I2CMCF_BIT)
  572. adap->pch_event_flag |= I2CMCF_EVENT;
  573. /* clear the applicable bits */
  574. pch_clrbit(adap->pch_base_address, PCH_I2CSR, sts);
  575. pch_dbg(adap, "PCH_I2CSR = %x\n", ioread32(p + PCH_I2CSR));
  576. wake_up(&pch_event);
  577. }
  578. /**
  579. * pch_i2c_handler() - interrupt handler for the PCH I2C controller
  580. * @irq: irq number.
  581. * @pData: cookie passed back to the handler function.
  582. */
  583. static irqreturn_t pch_i2c_handler(int irq, void *pData)
  584. {
  585. u32 reg_val;
  586. int flag;
  587. int i;
  588. struct adapter_info *adap_info = pData;
  589. void __iomem *p;
  590. u32 mode;
  591. for (i = 0, flag = 0; i < adap_info->ch_num; i++) {
  592. p = adap_info->pch_data[i].pch_base_address;
  593. mode = ioread32(p + PCH_I2CMOD);
  594. mode &= BUFFER_MODE | EEPROM_SR_MODE;
  595. if (mode != NORMAL_MODE) {
  596. pch_err(adap_info->pch_data,
  597. "I2C-%d mode(%d) is not supported\n", mode, i);
  598. continue;
  599. }
  600. reg_val = ioread32(p + PCH_I2CSR);
  601. if (reg_val & (I2CMAL_BIT | I2CMCF_BIT | I2CMIF_BIT)) {
  602. pch_i2c_cb(&adap_info->pch_data[i]);
  603. flag = 1;
  604. }
  605. }
  606. return flag ? IRQ_HANDLED : IRQ_NONE;
  607. }
  608. /**
  609. * pch_i2c_xfer() - Reading adnd writing data through I2C bus
  610. * @i2c_adap: Pointer to the struct i2c_adapter.
  611. * @msgs: Pointer to i2c_msg structure.
  612. * @num: number of messages.
  613. */
  614. static s32 pch_i2c_xfer(struct i2c_adapter *i2c_adap,
  615. struct i2c_msg *msgs, s32 num)
  616. {
  617. struct i2c_msg *pmsg;
  618. u32 i = 0;
  619. u32 status;
  620. u32 msglen;
  621. u32 subaddrlen;
  622. s32 ret;
  623. struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
  624. ret = mutex_lock_interruptible(&pch_mutex);
  625. if (ret)
  626. return -ERESTARTSYS;
  627. if (adap->p_adapter_info->pch_i2c_suspended) {
  628. mutex_unlock(&pch_mutex);
  629. return -EBUSY;
  630. }
  631. pch_dbg(adap, "adap->p_adapter_info->pch_i2c_suspended is %d\n",
  632. adap->p_adapter_info->pch_i2c_suspended);
  633. /* transfer not completed */
  634. adap->pch_i2c_xfer_in_progress = true;
  635. for (i = 0; i < num && ret >= 0; i++) {
  636. pmsg = &msgs[i];
  637. pmsg->flags |= adap->pch_buff_mode_en;
  638. status = pmsg->flags;
  639. pch_dbg(adap,
  640. "After invoking I2C_MODE_SEL :flag= 0x%x\n", status);
  641. /* calculate sub address length and message length */
  642. /* these are applicable only for buffer mode */
  643. subaddrlen = pmsg->buf[0];
  644. /* calculate actual message length excluding
  645. * the sub address fields */
  646. msglen = (pmsg->len) - (subaddrlen + 1);
  647. if ((status & (I2C_M_RD)) != false) {
  648. ret = pch_i2c_readbytes(i2c_adap, pmsg, (i + 1 == num),
  649. (i == 0));
  650. } else {
  651. ret = pch_i2c_writebytes(i2c_adap, pmsg, (i + 1 == num),
  652. (i == 0));
  653. }
  654. }
  655. adap->pch_i2c_xfer_in_progress = false; /* transfer completed */
  656. mutex_unlock(&pch_mutex);
  657. return (ret < 0) ? ret : num;
  658. }
  659. /**
  660. * pch_i2c_func() - return the functionality of the I2C driver
  661. * @adap: Pointer to struct i2c_algo_pch_data.
  662. */
  663. static u32 pch_i2c_func(struct i2c_adapter *adap)
  664. {
  665. return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
  666. }
  667. static struct i2c_algorithm pch_algorithm = {
  668. .master_xfer = pch_i2c_xfer,
  669. .functionality = pch_i2c_func
  670. };
  671. /**
  672. * pch_i2c_disbl_int() - Disable PCH I2C interrupts
  673. * @adap: Pointer to struct i2c_algo_pch_data.
  674. */
  675. static void pch_i2c_disbl_int(struct i2c_algo_pch_data *adap)
  676. {
  677. void __iomem *p = adap->pch_base_address;
  678. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, NORMAL_INTR_ENBL);
  679. iowrite32(EEPROM_RST_INTR_DISBL, p + PCH_I2CESRMSK);
  680. iowrite32(BUFFER_MODE_INTR_DISBL, p + PCH_I2CBUFMSK);
  681. }
  682. static int __devinit pch_i2c_probe(struct pci_dev *pdev,
  683. const struct pci_device_id *id)
  684. {
  685. void __iomem *base_addr;
  686. int ret;
  687. int i, j;
  688. struct adapter_info *adap_info;
  689. struct i2c_adapter *pch_adap;
  690. pch_pci_dbg(pdev, "Entered.\n");
  691. adap_info = kzalloc((sizeof(struct adapter_info)), GFP_KERNEL);
  692. if (adap_info == NULL) {
  693. pch_pci_err(pdev, "Memory allocation FAILED\n");
  694. return -ENOMEM;
  695. }
  696. ret = pci_enable_device(pdev);
  697. if (ret) {
  698. pch_pci_err(pdev, "pci_enable_device FAILED\n");
  699. goto err_pci_enable;
  700. }
  701. ret = pci_request_regions(pdev, KBUILD_MODNAME);
  702. if (ret) {
  703. pch_pci_err(pdev, "pci_request_regions FAILED\n");
  704. goto err_pci_req;
  705. }
  706. base_addr = pci_iomap(pdev, 1, 0);
  707. if (base_addr == NULL) {
  708. pch_pci_err(pdev, "pci_iomap FAILED\n");
  709. ret = -ENOMEM;
  710. goto err_pci_iomap;
  711. }
  712. /* Set the number of I2C channel instance */
  713. adap_info->ch_num = id->driver_data;
  714. for (i = 0; i < adap_info->ch_num; i++) {
  715. pch_adap = &adap_info->pch_data[i].pch_adapter;
  716. adap_info->pch_i2c_suspended = false;
  717. adap_info->pch_data[i].p_adapter_info = adap_info;
  718. pch_adap->owner = THIS_MODULE;
  719. pch_adap->class = I2C_CLASS_HWMON;
  720. strcpy(pch_adap->name, KBUILD_MODNAME);
  721. pch_adap->algo = &pch_algorithm;
  722. pch_adap->algo_data = &adap_info->pch_data[i];
  723. /* base_addr + offset; */
  724. adap_info->pch_data[i].pch_base_address = base_addr + 0x100 * i;
  725. pch_adap->dev.parent = &pdev->dev;
  726. ret = i2c_add_adapter(pch_adap);
  727. if (ret) {
  728. pch_pci_err(pdev, "i2c_add_adapter[ch:%d] FAILED\n", i);
  729. goto err_i2c_add_adapter;
  730. }
  731. pch_i2c_init(&adap_info->pch_data[i]);
  732. }
  733. ret = request_irq(pdev->irq, pch_i2c_handler, IRQF_SHARED,
  734. KBUILD_MODNAME, adap_info);
  735. if (ret) {
  736. pch_pci_err(pdev, "request_irq FAILED\n");
  737. goto err_i2c_add_adapter;
  738. }
  739. pci_set_drvdata(pdev, adap_info);
  740. pch_pci_dbg(pdev, "returns %d.\n", ret);
  741. return 0;
  742. err_i2c_add_adapter:
  743. for (j = 0; j < i; j++)
  744. i2c_del_adapter(&adap_info->pch_data[j].pch_adapter);
  745. pci_iounmap(pdev, base_addr);
  746. err_pci_iomap:
  747. pci_release_regions(pdev);
  748. err_pci_req:
  749. pci_disable_device(pdev);
  750. err_pci_enable:
  751. kfree(adap_info);
  752. return ret;
  753. }
  754. static void __devexit pch_i2c_remove(struct pci_dev *pdev)
  755. {
  756. int i;
  757. struct adapter_info *adap_info = pci_get_drvdata(pdev);
  758. free_irq(pdev->irq, adap_info);
  759. for (i = 0; i < adap_info->ch_num; i++) {
  760. pch_i2c_disbl_int(&adap_info->pch_data[i]);
  761. i2c_del_adapter(&adap_info->pch_data[i].pch_adapter);
  762. }
  763. if (adap_info->pch_data[0].pch_base_address)
  764. pci_iounmap(pdev, adap_info->pch_data[0].pch_base_address);
  765. for (i = 0; i < adap_info->ch_num; i++)
  766. adap_info->pch_data[i].pch_base_address = 0;
  767. pci_set_drvdata(pdev, NULL);
  768. pci_release_regions(pdev);
  769. pci_disable_device(pdev);
  770. kfree(adap_info);
  771. }
  772. #ifdef CONFIG_PM
  773. static int pch_i2c_suspend(struct pci_dev *pdev, pm_message_t state)
  774. {
  775. int ret;
  776. int i;
  777. struct adapter_info *adap_info = pci_get_drvdata(pdev);
  778. void __iomem *p = adap_info->pch_data[0].pch_base_address;
  779. adap_info->pch_i2c_suspended = true;
  780. for (i = 0; i < adap_info->ch_num; i++) {
  781. while ((adap_info->pch_data[i].pch_i2c_xfer_in_progress)) {
  782. /* Wait until all channel transfers are completed */
  783. msleep(20);
  784. }
  785. }
  786. /* Disable the i2c interrupts */
  787. for (i = 0; i < adap_info->ch_num; i++)
  788. pch_i2c_disbl_int(&adap_info->pch_data[i]);
  789. pch_pci_dbg(pdev, "I2CSR = %x I2CBUFSTA = %x I2CESRSTA = %x "
  790. "invoked function pch_i2c_disbl_int successfully\n",
  791. ioread32(p + PCH_I2CSR), ioread32(p + PCH_I2CBUFSTA),
  792. ioread32(p + PCH_I2CESRSTA));
  793. ret = pci_save_state(pdev);
  794. if (ret) {
  795. pch_pci_err(pdev, "pci_save_state\n");
  796. return ret;
  797. }
  798. pci_enable_wake(pdev, PCI_D3hot, 0);
  799. pci_disable_device(pdev);
  800. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  801. return 0;
  802. }
  803. static int pch_i2c_resume(struct pci_dev *pdev)
  804. {
  805. int i;
  806. struct adapter_info *adap_info = pci_get_drvdata(pdev);
  807. pci_set_power_state(pdev, PCI_D0);
  808. pci_restore_state(pdev);
  809. if (pci_enable_device(pdev) < 0) {
  810. pch_pci_err(pdev, "pch_i2c_resume:pci_enable_device FAILED\n");
  811. return -EIO;
  812. }
  813. pci_enable_wake(pdev, PCI_D3hot, 0);
  814. for (i = 0; i < adap_info->ch_num; i++)
  815. pch_i2c_init(&adap_info->pch_data[i]);
  816. adap_info->pch_i2c_suspended = false;
  817. return 0;
  818. }
  819. #else
  820. #define pch_i2c_suspend NULL
  821. #define pch_i2c_resume NULL
  822. #endif
  823. static struct pci_driver pch_pcidriver = {
  824. .name = KBUILD_MODNAME,
  825. .id_table = pch_pcidev_id,
  826. .probe = pch_i2c_probe,
  827. .remove = __devexit_p(pch_i2c_remove),
  828. .suspend = pch_i2c_suspend,
  829. .resume = pch_i2c_resume
  830. };
  831. static int __init pch_pci_init(void)
  832. {
  833. return pci_register_driver(&pch_pcidriver);
  834. }
  835. module_init(pch_pci_init);
  836. static void __exit pch_pci_exit(void)
  837. {
  838. pci_unregister_driver(&pch_pcidriver);
  839. }
  840. module_exit(pch_pci_exit);
  841. MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7213 IOH I2C Driver");
  842. MODULE_LICENSE("GPL");
  843. MODULE_AUTHOR("Tomoya MORINAGA. <tomoya-linux@dsn.okisemi.com>");
  844. module_param(pch_i2c_speed, int, (S_IRUSR | S_IWUSR));
  845. module_param(pch_clk, int, (S_IRUSR | S_IWUSR));