gadget.h 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901
  1. /*
  2. * <linux/usb/gadget.h>
  3. *
  4. * We call the USB code inside a Linux-based peripheral device a "gadget"
  5. * driver, except for the hardware-specific bus glue. One USB host can
  6. * master many USB gadgets, but the gadgets are only slaved to one host.
  7. *
  8. *
  9. * (C) Copyright 2002-2004 by David Brownell
  10. * All Rights Reserved.
  11. *
  12. * This software is licensed under the GNU GPL version 2.
  13. */
  14. #ifndef __LINUX_USB_GADGET_H
  15. #define __LINUX_USB_GADGET_H
  16. #include <linux/slab.h>
  17. struct usb_ep;
  18. /**
  19. * struct usb_request - describes one i/o request
  20. * @buf: Buffer used for data. Always provide this; some controllers
  21. * only use PIO, or don't use DMA for some endpoints.
  22. * @dma: DMA address corresponding to 'buf'. If you don't set this
  23. * field, and the usb controller needs one, it is responsible
  24. * for mapping and unmapping the buffer.
  25. * @length: Length of that data
  26. * @no_interrupt: If true, hints that no completion irq is needed.
  27. * Helpful sometimes with deep request queues that are handled
  28. * directly by DMA controllers.
  29. * @zero: If true, when writing data, makes the last packet be "short"
  30. * by adding a zero length packet as needed;
  31. * @short_not_ok: When reading data, makes short packets be
  32. * treated as errors (queue stops advancing till cleanup).
  33. * @complete: Function called when request completes, so this request and
  34. * its buffer may be re-used. The function will always be called with
  35. * interrupts disabled, and it must not sleep.
  36. * Reads terminate with a short packet, or when the buffer fills,
  37. * whichever comes first. When writes terminate, some data bytes
  38. * will usually still be in flight (often in a hardware fifo).
  39. * Errors (for reads or writes) stop the queue from advancing
  40. * until the completion function returns, so that any transfers
  41. * invalidated by the error may first be dequeued.
  42. * @context: For use by the completion callback
  43. * @list: For use by the gadget driver.
  44. * @status: Reports completion code, zero or a negative errno.
  45. * Normally, faults block the transfer queue from advancing until
  46. * the completion callback returns.
  47. * Code "-ESHUTDOWN" indicates completion caused by device disconnect,
  48. * or when the driver disabled the endpoint.
  49. * @actual: Reports bytes transferred to/from the buffer. For reads (OUT
  50. * transfers) this may be less than the requested length. If the
  51. * short_not_ok flag is set, short reads are treated as errors
  52. * even when status otherwise indicates successful completion.
  53. * Note that for writes (IN transfers) some data bytes may still
  54. * reside in a device-side FIFO when the request is reported as
  55. * complete.
  56. *
  57. * These are allocated/freed through the endpoint they're used with. The
  58. * hardware's driver can add extra per-request data to the memory it returns,
  59. * which often avoids separate memory allocations (potential failures),
  60. * later when the request is queued.
  61. *
  62. * Request flags affect request handling, such as whether a zero length
  63. * packet is written (the "zero" flag), whether a short read should be
  64. * treated as an error (blocking request queue advance, the "short_not_ok"
  65. * flag), or hinting that an interrupt is not required (the "no_interrupt"
  66. * flag, for use with deep request queues).
  67. *
  68. * Bulk endpoints can use any size buffers, and can also be used for interrupt
  69. * transfers. interrupt-only endpoints can be much less functional.
  70. *
  71. * NOTE: this is analagous to 'struct urb' on the host side, except that
  72. * it's thinner and promotes more pre-allocation.
  73. */
  74. struct usb_request {
  75. void *buf;
  76. unsigned length;
  77. dma_addr_t dma;
  78. unsigned no_interrupt:1;
  79. unsigned zero:1;
  80. unsigned short_not_ok:1;
  81. void (*complete)(struct usb_ep *ep,
  82. struct usb_request *req);
  83. void *context;
  84. struct list_head list;
  85. int status;
  86. unsigned actual;
  87. };
  88. /*-------------------------------------------------------------------------*/
  89. /* endpoint-specific parts of the api to the usb controller hardware.
  90. * unlike the urb model, (de)multiplexing layers are not required.
  91. * (so this api could slash overhead if used on the host side...)
  92. *
  93. * note that device side usb controllers commonly differ in how many
  94. * endpoints they support, as well as their capabilities.
  95. */
  96. struct usb_ep_ops {
  97. int (*enable) (struct usb_ep *ep,
  98. const struct usb_endpoint_descriptor *desc);
  99. int (*disable) (struct usb_ep *ep);
  100. struct usb_request *(*alloc_request) (struct usb_ep *ep,
  101. gfp_t gfp_flags);
  102. void (*free_request) (struct usb_ep *ep, struct usb_request *req);
  103. int (*queue) (struct usb_ep *ep, struct usb_request *req,
  104. gfp_t gfp_flags);
  105. int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
  106. int (*set_halt) (struct usb_ep *ep, int value);
  107. int (*set_wedge) (struct usb_ep *ep);
  108. int (*fifo_status) (struct usb_ep *ep);
  109. void (*fifo_flush) (struct usb_ep *ep);
  110. };
  111. /**
  112. * struct usb_ep - device side representation of USB endpoint
  113. * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
  114. * @ops: Function pointers used to access hardware-specific operations.
  115. * @ep_list:the gadget's ep_list holds all of its endpoints
  116. * @maxpacket:The maximum packet size used on this endpoint. The initial
  117. * value can sometimes be reduced (hardware allowing), according to
  118. * the endpoint descriptor used to configure the endpoint.
  119. * @driver_data:for use by the gadget driver. all other fields are
  120. * read-only to gadget drivers.
  121. *
  122. * the bus controller driver lists all the general purpose endpoints in
  123. * gadget->ep_list. the control endpoint (gadget->ep0) is not in that list,
  124. * and is accessed only in response to a driver setup() callback.
  125. */
  126. struct usb_ep {
  127. void *driver_data;
  128. const char *name;
  129. const struct usb_ep_ops *ops;
  130. struct list_head ep_list;
  131. unsigned maxpacket:16;
  132. };
  133. /*-------------------------------------------------------------------------*/
  134. /**
  135. * usb_ep_enable - configure endpoint, making it usable
  136. * @ep:the endpoint being configured. may not be the endpoint named "ep0".
  137. * drivers discover endpoints through the ep_list of a usb_gadget.
  138. * @desc:descriptor for desired behavior. caller guarantees this pointer
  139. * remains valid until the endpoint is disabled; the data byte order
  140. * is little-endian (usb-standard).
  141. *
  142. * when configurations are set, or when interface settings change, the driver
  143. * will enable or disable the relevant endpoints. while it is enabled, an
  144. * endpoint may be used for i/o until the driver receives a disconnect() from
  145. * the host or until the endpoint is disabled.
  146. *
  147. * the ep0 implementation (which calls this routine) must ensure that the
  148. * hardware capabilities of each endpoint match the descriptor provided
  149. * for it. for example, an endpoint named "ep2in-bulk" would be usable
  150. * for interrupt transfers as well as bulk, but it likely couldn't be used
  151. * for iso transfers or for endpoint 14. some endpoints are fully
  152. * configurable, with more generic names like "ep-a". (remember that for
  153. * USB, "in" means "towards the USB master".)
  154. *
  155. * returns zero, or a negative error code.
  156. */
  157. static inline int usb_ep_enable(struct usb_ep *ep,
  158. const struct usb_endpoint_descriptor *desc)
  159. {
  160. return ep->ops->enable(ep, desc);
  161. }
  162. /**
  163. * usb_ep_disable - endpoint is no longer usable
  164. * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
  165. *
  166. * no other task may be using this endpoint when this is called.
  167. * any pending and uncompleted requests will complete with status
  168. * indicating disconnect (-ESHUTDOWN) before this call returns.
  169. * gadget drivers must call usb_ep_enable() again before queueing
  170. * requests to the endpoint.
  171. *
  172. * returns zero, or a negative error code.
  173. */
  174. static inline int usb_ep_disable(struct usb_ep *ep)
  175. {
  176. return ep->ops->disable(ep);
  177. }
  178. /**
  179. * usb_ep_alloc_request - allocate a request object to use with this endpoint
  180. * @ep:the endpoint to be used with with the request
  181. * @gfp_flags:GFP_* flags to use
  182. *
  183. * Request objects must be allocated with this call, since they normally
  184. * need controller-specific setup and may even need endpoint-specific
  185. * resources such as allocation of DMA descriptors.
  186. * Requests may be submitted with usb_ep_queue(), and receive a single
  187. * completion callback. Free requests with usb_ep_free_request(), when
  188. * they are no longer needed.
  189. *
  190. * Returns the request, or null if one could not be allocated.
  191. */
  192. static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
  193. gfp_t gfp_flags)
  194. {
  195. return ep->ops->alloc_request(ep, gfp_flags);
  196. }
  197. /**
  198. * usb_ep_free_request - frees a request object
  199. * @ep:the endpoint associated with the request
  200. * @req:the request being freed
  201. *
  202. * Reverses the effect of usb_ep_alloc_request().
  203. * Caller guarantees the request is not queued, and that it will
  204. * no longer be requeued (or otherwise used).
  205. */
  206. static inline void usb_ep_free_request(struct usb_ep *ep,
  207. struct usb_request *req)
  208. {
  209. ep->ops->free_request(ep, req);
  210. }
  211. /**
  212. * usb_ep_queue - queues (submits) an I/O request to an endpoint.
  213. * @ep:the endpoint associated with the request
  214. * @req:the request being submitted
  215. * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
  216. * pre-allocate all necessary memory with the request.
  217. *
  218. * This tells the device controller to perform the specified request through
  219. * that endpoint (reading or writing a buffer). When the request completes,
  220. * including being canceled by usb_ep_dequeue(), the request's completion
  221. * routine is called to return the request to the driver. Any endpoint
  222. * (except control endpoints like ep0) may have more than one transfer
  223. * request queued; they complete in FIFO order. Once a gadget driver
  224. * submits a request, that request may not be examined or modified until it
  225. * is given back to that driver through the completion callback.
  226. *
  227. * Each request is turned into one or more packets. The controller driver
  228. * never merges adjacent requests into the same packet. OUT transfers
  229. * will sometimes use data that's already buffered in the hardware.
  230. * Drivers can rely on the fact that the first byte of the request's buffer
  231. * always corresponds to the first byte of some USB packet, for both
  232. * IN and OUT transfers.
  233. *
  234. * Bulk endpoints can queue any amount of data; the transfer is packetized
  235. * automatically. The last packet will be short if the request doesn't fill it
  236. * out completely. Zero length packets (ZLPs) should be avoided in portable
  237. * protocols since not all usb hardware can successfully handle zero length
  238. * packets. (ZLPs may be explicitly written, and may be implicitly written if
  239. * the request 'zero' flag is set.) Bulk endpoints may also be used
  240. * for interrupt transfers; but the reverse is not true, and some endpoints
  241. * won't support every interrupt transfer. (Such as 768 byte packets.)
  242. *
  243. * Interrupt-only endpoints are less functional than bulk endpoints, for
  244. * example by not supporting queueing or not handling buffers that are
  245. * larger than the endpoint's maxpacket size. They may also treat data
  246. * toggle differently.
  247. *
  248. * Control endpoints ... after getting a setup() callback, the driver queues
  249. * one response (even if it would be zero length). That enables the
  250. * status ack, after transfering data as specified in the response. Setup
  251. * functions may return negative error codes to generate protocol stalls.
  252. * (Note that some USB device controllers disallow protocol stall responses
  253. * in some cases.) When control responses are deferred (the response is
  254. * written after the setup callback returns), then usb_ep_set_halt() may be
  255. * used on ep0 to trigger protocol stalls. Depending on the controller,
  256. * it may not be possible to trigger a status-stage protocol stall when the
  257. * data stage is over, that is, from within the response's completion
  258. * routine.
  259. *
  260. * For periodic endpoints, like interrupt or isochronous ones, the usb host
  261. * arranges to poll once per interval, and the gadget driver usually will
  262. * have queued some data to transfer at that time.
  263. *
  264. * Returns zero, or a negative error code. Endpoints that are not enabled
  265. * report errors; errors will also be
  266. * reported when the usb peripheral is disconnected.
  267. */
  268. static inline int usb_ep_queue(struct usb_ep *ep,
  269. struct usb_request *req, gfp_t gfp_flags)
  270. {
  271. return ep->ops->queue(ep, req, gfp_flags);
  272. }
  273. /**
  274. * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
  275. * @ep:the endpoint associated with the request
  276. * @req:the request being canceled
  277. *
  278. * if the request is still active on the endpoint, it is dequeued and its
  279. * completion routine is called (with status -ECONNRESET); else a negative
  280. * error code is returned.
  281. *
  282. * note that some hardware can't clear out write fifos (to unlink the request
  283. * at the head of the queue) except as part of disconnecting from usb. such
  284. * restrictions prevent drivers from supporting configuration changes,
  285. * even to configuration zero (a "chapter 9" requirement).
  286. */
  287. static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
  288. {
  289. return ep->ops->dequeue(ep, req);
  290. }
  291. /**
  292. * usb_ep_set_halt - sets the endpoint halt feature.
  293. * @ep: the non-isochronous endpoint being stalled
  294. *
  295. * Use this to stall an endpoint, perhaps as an error report.
  296. * Except for control endpoints,
  297. * the endpoint stays halted (will not stream any data) until the host
  298. * clears this feature; drivers may need to empty the endpoint's request
  299. * queue first, to make sure no inappropriate transfers happen.
  300. *
  301. * Note that while an endpoint CLEAR_FEATURE will be invisible to the
  302. * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
  303. * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
  304. * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
  305. *
  306. * Returns zero, or a negative error code. On success, this call sets
  307. * underlying hardware state that blocks data transfers.
  308. * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
  309. * transfer requests are still queued, or if the controller hardware
  310. * (usually a FIFO) still holds bytes that the host hasn't collected.
  311. */
  312. static inline int usb_ep_set_halt(struct usb_ep *ep)
  313. {
  314. return ep->ops->set_halt(ep, 1);
  315. }
  316. /**
  317. * usb_ep_clear_halt - clears endpoint halt, and resets toggle
  318. * @ep:the bulk or interrupt endpoint being reset
  319. *
  320. * Use this when responding to the standard usb "set interface" request,
  321. * for endpoints that aren't reconfigured, after clearing any other state
  322. * in the endpoint's i/o queue.
  323. *
  324. * Returns zero, or a negative error code. On success, this call clears
  325. * the underlying hardware state reflecting endpoint halt and data toggle.
  326. * Note that some hardware can't support this request (like pxa2xx_udc),
  327. * and accordingly can't correctly implement interface altsettings.
  328. */
  329. static inline int usb_ep_clear_halt(struct usb_ep *ep)
  330. {
  331. return ep->ops->set_halt(ep, 0);
  332. }
  333. /**
  334. * usb_ep_set_wedge - sets the halt feature and ignores clear requests
  335. * @ep: the endpoint being wedged
  336. *
  337. * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
  338. * requests. If the gadget driver clears the halt status, it will
  339. * automatically unwedge the endpoint.
  340. *
  341. * Returns zero on success, else negative errno.
  342. */
  343. static inline int
  344. usb_ep_set_wedge(struct usb_ep *ep)
  345. {
  346. if (ep->ops->set_wedge)
  347. return ep->ops->set_wedge(ep);
  348. else
  349. return ep->ops->set_halt(ep, 1);
  350. }
  351. /**
  352. * usb_ep_fifo_status - returns number of bytes in fifo, or error
  353. * @ep: the endpoint whose fifo status is being checked.
  354. *
  355. * FIFO endpoints may have "unclaimed data" in them in certain cases,
  356. * such as after aborted transfers. Hosts may not have collected all
  357. * the IN data written by the gadget driver (and reported by a request
  358. * completion). The gadget driver may not have collected all the data
  359. * written OUT to it by the host. Drivers that need precise handling for
  360. * fault reporting or recovery may need to use this call.
  361. *
  362. * This returns the number of such bytes in the fifo, or a negative
  363. * errno if the endpoint doesn't use a FIFO or doesn't support such
  364. * precise handling.
  365. */
  366. static inline int usb_ep_fifo_status(struct usb_ep *ep)
  367. {
  368. if (ep->ops->fifo_status)
  369. return ep->ops->fifo_status(ep);
  370. else
  371. return -EOPNOTSUPP;
  372. }
  373. /**
  374. * usb_ep_fifo_flush - flushes contents of a fifo
  375. * @ep: the endpoint whose fifo is being flushed.
  376. *
  377. * This call may be used to flush the "unclaimed data" that may exist in
  378. * an endpoint fifo after abnormal transaction terminations. The call
  379. * must never be used except when endpoint is not being used for any
  380. * protocol translation.
  381. */
  382. static inline void usb_ep_fifo_flush(struct usb_ep *ep)
  383. {
  384. if (ep->ops->fifo_flush)
  385. ep->ops->fifo_flush(ep);
  386. }
  387. /*-------------------------------------------------------------------------*/
  388. struct usb_gadget;
  389. /* the rest of the api to the controller hardware: device operations,
  390. * which don't involve endpoints (or i/o).
  391. */
  392. struct usb_gadget_ops {
  393. int (*get_frame)(struct usb_gadget *);
  394. int (*wakeup)(struct usb_gadget *);
  395. int (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
  396. int (*vbus_session) (struct usb_gadget *, int is_active);
  397. int (*vbus_draw) (struct usb_gadget *, unsigned mA);
  398. int (*pullup) (struct usb_gadget *, int is_on);
  399. int (*ioctl)(struct usb_gadget *,
  400. unsigned code, unsigned long param);
  401. };
  402. /**
  403. * struct usb_gadget - represents a usb slave device
  404. * @ops: Function pointers used to access hardware-specific operations.
  405. * @ep0: Endpoint zero, used when reading or writing responses to
  406. * driver setup() requests
  407. * @ep_list: List of other endpoints supported by the device.
  408. * @speed: Speed of current connection to USB host.
  409. * @is_dualspeed: True if the controller supports both high and full speed
  410. * operation. If it does, the gadget driver must also support both.
  411. * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
  412. * gadget driver must provide a USB OTG descriptor.
  413. * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
  414. * is in the Mini-AB jack, and HNP has been used to switch roles
  415. * so that the "A" device currently acts as A-Peripheral, not A-Host.
  416. * @a_hnp_support: OTG device feature flag, indicating that the A-Host
  417. * supports HNP at this port.
  418. * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
  419. * only supports HNP on a different root port.
  420. * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
  421. * enabled HNP support.
  422. * @name: Identifies the controller hardware type. Used in diagnostics
  423. * and sometimes configuration.
  424. * @dev: Driver model state for this abstract device.
  425. *
  426. * Gadgets have a mostly-portable "gadget driver" implementing device
  427. * functions, handling all usb configurations and interfaces. Gadget
  428. * drivers talk to hardware-specific code indirectly, through ops vectors.
  429. * That insulates the gadget driver from hardware details, and packages
  430. * the hardware endpoints through generic i/o queues. The "usb_gadget"
  431. * and "usb_ep" interfaces provide that insulation from the hardware.
  432. *
  433. * Except for the driver data, all fields in this structure are
  434. * read-only to the gadget driver. That driver data is part of the
  435. * "driver model" infrastructure in 2.6 (and later) kernels, and for
  436. * earlier systems is grouped in a similar structure that's not known
  437. * to the rest of the kernel.
  438. *
  439. * Values of the three OTG device feature flags are updated before the
  440. * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
  441. * driver suspend() calls. They are valid only when is_otg, and when the
  442. * device is acting as a B-Peripheral (so is_a_peripheral is false).
  443. */
  444. struct usb_gadget {
  445. /* readonly to gadget driver */
  446. const struct usb_gadget_ops *ops;
  447. struct usb_ep *ep0;
  448. struct list_head ep_list; /* of usb_ep */
  449. enum usb_device_speed speed;
  450. unsigned is_dualspeed:1;
  451. unsigned is_otg:1;
  452. unsigned is_a_peripheral:1;
  453. unsigned b_hnp_enable:1;
  454. unsigned a_hnp_support:1;
  455. unsigned a_alt_hnp_support:1;
  456. const char *name;
  457. struct device dev;
  458. };
  459. static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
  460. { dev_set_drvdata(&gadget->dev, data); }
  461. static inline void *get_gadget_data(struct usb_gadget *gadget)
  462. { return dev_get_drvdata(&gadget->dev); }
  463. static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
  464. {
  465. return container_of(dev, struct usb_gadget, dev);
  466. }
  467. /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
  468. #define gadget_for_each_ep(tmp,gadget) \
  469. list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
  470. /**
  471. * gadget_is_dualspeed - return true iff the hardware handles high speed
  472. * @g: controller that might support both high and full speeds
  473. */
  474. static inline int gadget_is_dualspeed(struct usb_gadget *g)
  475. {
  476. #ifdef CONFIG_USB_GADGET_DUALSPEED
  477. /* runtime test would check "g->is_dualspeed" ... that might be
  478. * useful to work around hardware bugs, but is mostly pointless
  479. */
  480. return 1;
  481. #else
  482. return 0;
  483. #endif
  484. }
  485. /**
  486. * gadget_is_otg - return true iff the hardware is OTG-ready
  487. * @g: controller that might have a Mini-AB connector
  488. *
  489. * This is a runtime test, since kernels with a USB-OTG stack sometimes
  490. * run on boards which only have a Mini-B (or Mini-A) connector.
  491. */
  492. static inline int gadget_is_otg(struct usb_gadget *g)
  493. {
  494. #ifdef CONFIG_USB_OTG
  495. return g->is_otg;
  496. #else
  497. return 0;
  498. #endif
  499. }
  500. /**
  501. * usb_gadget_frame_number - returns the current frame number
  502. * @gadget: controller that reports the frame number
  503. *
  504. * Returns the usb frame number, normally eleven bits from a SOF packet,
  505. * or negative errno if this device doesn't support this capability.
  506. */
  507. static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
  508. {
  509. return gadget->ops->get_frame(gadget);
  510. }
  511. /**
  512. * usb_gadget_wakeup - tries to wake up the host connected to this gadget
  513. * @gadget: controller used to wake up the host
  514. *
  515. * Returns zero on success, else negative error code if the hardware
  516. * doesn't support such attempts, or its support has not been enabled
  517. * by the usb host. Drivers must return device descriptors that report
  518. * their ability to support this, or hosts won't enable it.
  519. *
  520. * This may also try to use SRP to wake the host and start enumeration,
  521. * even if OTG isn't otherwise in use. OTG devices may also start
  522. * remote wakeup even when hosts don't explicitly enable it.
  523. */
  524. static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
  525. {
  526. if (!gadget->ops->wakeup)
  527. return -EOPNOTSUPP;
  528. return gadget->ops->wakeup(gadget);
  529. }
  530. /**
  531. * usb_gadget_set_selfpowered - sets the device selfpowered feature.
  532. * @gadget:the device being declared as self-powered
  533. *
  534. * this affects the device status reported by the hardware driver
  535. * to reflect that it now has a local power supply.
  536. *
  537. * returns zero on success, else negative errno.
  538. */
  539. static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
  540. {
  541. if (!gadget->ops->set_selfpowered)
  542. return -EOPNOTSUPP;
  543. return gadget->ops->set_selfpowered(gadget, 1);
  544. }
  545. /**
  546. * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
  547. * @gadget:the device being declared as bus-powered
  548. *
  549. * this affects the device status reported by the hardware driver.
  550. * some hardware may not support bus-powered operation, in which
  551. * case this feature's value can never change.
  552. *
  553. * returns zero on success, else negative errno.
  554. */
  555. static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
  556. {
  557. if (!gadget->ops->set_selfpowered)
  558. return -EOPNOTSUPP;
  559. return gadget->ops->set_selfpowered(gadget, 0);
  560. }
  561. /**
  562. * usb_gadget_vbus_connect - Notify controller that VBUS is powered
  563. * @gadget:The device which now has VBUS power.
  564. * Context: can sleep
  565. *
  566. * This call is used by a driver for an external transceiver (or GPIO)
  567. * that detects a VBUS power session starting. Common responses include
  568. * resuming the controller, activating the D+ (or D-) pullup to let the
  569. * host detect that a USB device is attached, and starting to draw power
  570. * (8mA or possibly more, especially after SET_CONFIGURATION).
  571. *
  572. * Returns zero on success, else negative errno.
  573. */
  574. static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
  575. {
  576. if (!gadget->ops->vbus_session)
  577. return -EOPNOTSUPP;
  578. return gadget->ops->vbus_session(gadget, 1);
  579. }
  580. /**
  581. * usb_gadget_vbus_draw - constrain controller's VBUS power usage
  582. * @gadget:The device whose VBUS usage is being described
  583. * @mA:How much current to draw, in milliAmperes. This should be twice
  584. * the value listed in the configuration descriptor bMaxPower field.
  585. *
  586. * This call is used by gadget drivers during SET_CONFIGURATION calls,
  587. * reporting how much power the device may consume. For example, this
  588. * could affect how quickly batteries are recharged.
  589. *
  590. * Returns zero on success, else negative errno.
  591. */
  592. static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
  593. {
  594. if (!gadget->ops->vbus_draw)
  595. return -EOPNOTSUPP;
  596. return gadget->ops->vbus_draw(gadget, mA);
  597. }
  598. /**
  599. * usb_gadget_vbus_disconnect - notify controller about VBUS session end
  600. * @gadget:the device whose VBUS supply is being described
  601. * Context: can sleep
  602. *
  603. * This call is used by a driver for an external transceiver (or GPIO)
  604. * that detects a VBUS power session ending. Common responses include
  605. * reversing everything done in usb_gadget_vbus_connect().
  606. *
  607. * Returns zero on success, else negative errno.
  608. */
  609. static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
  610. {
  611. if (!gadget->ops->vbus_session)
  612. return -EOPNOTSUPP;
  613. return gadget->ops->vbus_session(gadget, 0);
  614. }
  615. /**
  616. * usb_gadget_connect - software-controlled connect to USB host
  617. * @gadget:the peripheral being connected
  618. *
  619. * Enables the D+ (or potentially D-) pullup. The host will start
  620. * enumerating this gadget when the pullup is active and a VBUS session
  621. * is active (the link is powered). This pullup is always enabled unless
  622. * usb_gadget_disconnect() has been used to disable it.
  623. *
  624. * Returns zero on success, else negative errno.
  625. */
  626. static inline int usb_gadget_connect(struct usb_gadget *gadget)
  627. {
  628. if (!gadget->ops->pullup)
  629. return -EOPNOTSUPP;
  630. return gadget->ops->pullup(gadget, 1);
  631. }
  632. /**
  633. * usb_gadget_disconnect - software-controlled disconnect from USB host
  634. * @gadget:the peripheral being disconnected
  635. *
  636. * Disables the D+ (or potentially D-) pullup, which the host may see
  637. * as a disconnect (when a VBUS session is active). Not all systems
  638. * support software pullup controls.
  639. *
  640. * This routine may be used during the gadget driver bind() call to prevent
  641. * the peripheral from ever being visible to the USB host, unless later
  642. * usb_gadget_connect() is called. For example, user mode components may
  643. * need to be activated before the system can talk to hosts.
  644. *
  645. * Returns zero on success, else negative errno.
  646. */
  647. static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
  648. {
  649. if (!gadget->ops->pullup)
  650. return -EOPNOTSUPP;
  651. return gadget->ops->pullup(gadget, 0);
  652. }
  653. /*-------------------------------------------------------------------------*/
  654. /**
  655. * struct usb_gadget_driver - driver for usb 'slave' devices
  656. * @function: String describing the gadget's function
  657. * @speed: Highest speed the driver handles.
  658. * @bind: Invoked when the driver is bound to a gadget, usually
  659. * after registering the driver.
  660. * At that point, ep0 is fully initialized, and ep_list holds
  661. * the currently-available endpoints.
  662. * Called in a context that permits sleeping.
  663. * @setup: Invoked for ep0 control requests that aren't handled by
  664. * the hardware level driver. Most calls must be handled by
  665. * the gadget driver, including descriptor and configuration
  666. * management. The 16 bit members of the setup data are in
  667. * USB byte order. Called in_interrupt; this may not sleep. Driver
  668. * queues a response to ep0, or returns negative to stall.
  669. * @disconnect: Invoked after all transfers have been stopped,
  670. * when the host is disconnected. May be called in_interrupt; this
  671. * may not sleep. Some devices can't detect disconnect, so this might
  672. * not be called except as part of controller shutdown.
  673. * @unbind: Invoked when the driver is unbound from a gadget,
  674. * usually from rmmod (after a disconnect is reported).
  675. * Called in a context that permits sleeping.
  676. * @suspend: Invoked on USB suspend. May be called in_interrupt.
  677. * @resume: Invoked on USB resume. May be called in_interrupt.
  678. * @driver: Driver model state for this driver.
  679. *
  680. * Devices are disabled till a gadget driver successfully bind()s, which
  681. * means the driver will handle setup() requests needed to enumerate (and
  682. * meet "chapter 9" requirements) then do some useful work.
  683. *
  684. * If gadget->is_otg is true, the gadget driver must provide an OTG
  685. * descriptor during enumeration, or else fail the bind() call. In such
  686. * cases, no USB traffic may flow until both bind() returns without
  687. * having called usb_gadget_disconnect(), and the USB host stack has
  688. * initialized.
  689. *
  690. * Drivers use hardware-specific knowledge to configure the usb hardware.
  691. * endpoint addressing is only one of several hardware characteristics that
  692. * are in descriptors the ep0 implementation returns from setup() calls.
  693. *
  694. * Except for ep0 implementation, most driver code shouldn't need change to
  695. * run on top of different usb controllers. It'll use endpoints set up by
  696. * that ep0 implementation.
  697. *
  698. * The usb controller driver handles a few standard usb requests. Those
  699. * include set_address, and feature flags for devices, interfaces, and
  700. * endpoints (the get_status, set_feature, and clear_feature requests).
  701. *
  702. * Accordingly, the driver's setup() callback must always implement all
  703. * get_descriptor requests, returning at least a device descriptor and
  704. * a configuration descriptor. Drivers must make sure the endpoint
  705. * descriptors match any hardware constraints. Some hardware also constrains
  706. * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
  707. *
  708. * The driver's setup() callback must also implement set_configuration,
  709. * and should also implement set_interface, get_configuration, and
  710. * get_interface. Setting a configuration (or interface) is where
  711. * endpoints should be activated or (config 0) shut down.
  712. *
  713. * (Note that only the default control endpoint is supported. Neither
  714. * hosts nor devices generally support control traffic except to ep0.)
  715. *
  716. * Most devices will ignore USB suspend/resume operations, and so will
  717. * not provide those callbacks. However, some may need to change modes
  718. * when the host is not longer directing those activities. For example,
  719. * local controls (buttons, dials, etc) may need to be re-enabled since
  720. * the (remote) host can't do that any longer; or an error state might
  721. * be cleared, to make the device behave identically whether or not
  722. * power is maintained.
  723. */
  724. struct usb_gadget_driver {
  725. char *function;
  726. enum usb_device_speed speed;
  727. int (*bind)(struct usb_gadget *);
  728. void (*unbind)(struct usb_gadget *);
  729. int (*setup)(struct usb_gadget *,
  730. const struct usb_ctrlrequest *);
  731. void (*disconnect)(struct usb_gadget *);
  732. void (*suspend)(struct usb_gadget *);
  733. void (*resume)(struct usb_gadget *);
  734. /* FIXME support safe rmmod */
  735. struct device_driver driver;
  736. };
  737. /*-------------------------------------------------------------------------*/
  738. /* driver modules register and unregister, as usual.
  739. * these calls must be made in a context that can sleep.
  740. *
  741. * these will usually be implemented directly by the hardware-dependent
  742. * usb bus interface driver, which will only support a single driver.
  743. */
  744. /**
  745. * usb_gadget_register_driver - register a gadget driver
  746. * @driver:the driver being registered
  747. * Context: can sleep
  748. *
  749. * Call this in your gadget driver's module initialization function,
  750. * to tell the underlying usb controller driver about your driver.
  751. * The driver's bind() function will be called to bind it to a
  752. * gadget before this registration call returns. It's expected that
  753. * the bind() functions will be in init sections.
  754. */
  755. int usb_gadget_register_driver(struct usb_gadget_driver *driver);
  756. /**
  757. * usb_gadget_unregister_driver - unregister a gadget driver
  758. * @driver:the driver being unregistered
  759. * Context: can sleep
  760. *
  761. * Call this in your gadget driver's module cleanup function,
  762. * to tell the underlying usb controller that your driver is
  763. * going away. If the controller is connected to a USB host,
  764. * it will first disconnect(). The driver is also requested
  765. * to unbind() and clean up any device state, before this procedure
  766. * finally returns. It's expected that the unbind() functions
  767. * will in in exit sections, so may not be linked in some kernels.
  768. */
  769. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
  770. /*-------------------------------------------------------------------------*/
  771. /* utility to simplify dealing with string descriptors */
  772. /**
  773. * struct usb_string - wraps a C string and its USB id
  774. * @id:the (nonzero) ID for this string
  775. * @s:the string, in UTF-8 encoding
  776. *
  777. * If you're using usb_gadget_get_string(), use this to wrap a string
  778. * together with its ID.
  779. */
  780. struct usb_string {
  781. u8 id;
  782. const char *s;
  783. };
  784. /**
  785. * struct usb_gadget_strings - a set of USB strings in a given language
  786. * @language:identifies the strings' language (0x0409 for en-us)
  787. * @strings:array of strings with their ids
  788. *
  789. * If you're using usb_gadget_get_string(), use this to wrap all the
  790. * strings for a given language.
  791. */
  792. struct usb_gadget_strings {
  793. u16 language; /* 0x0409 for en-us */
  794. struct usb_string *strings;
  795. };
  796. /* put descriptor for string with that id into buf (buflen >= 256) */
  797. int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
  798. /*-------------------------------------------------------------------------*/
  799. /* utility to simplify managing config descriptors */
  800. /* write vector of descriptors into buffer */
  801. int usb_descriptor_fillbuf(void *, unsigned,
  802. const struct usb_descriptor_header **);
  803. /* build config descriptor from single descriptor vector */
  804. int usb_gadget_config_buf(const struct usb_config_descriptor *config,
  805. void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
  806. /* copy a NULL-terminated vector of descriptors */
  807. struct usb_descriptor_header **usb_copy_descriptors(
  808. struct usb_descriptor_header **);
  809. /* return copy of endpoint descriptor given original descriptor set */
  810. struct usb_endpoint_descriptor *usb_find_endpoint(
  811. struct usb_descriptor_header **src,
  812. struct usb_descriptor_header **copy,
  813. struct usb_endpoint_descriptor *match);
  814. /**
  815. * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
  816. * @v: vector of descriptors
  817. */
  818. static inline void usb_free_descriptors(struct usb_descriptor_header **v)
  819. {
  820. kfree(v);
  821. }
  822. /*-------------------------------------------------------------------------*/
  823. /* utility wrapping a simple endpoint selection policy */
  824. extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
  825. struct usb_endpoint_descriptor *) __devinit;
  826. extern void usb_ep_autoconfig_reset(struct usb_gadget *) __devinit;
  827. #endif /* __LINUX_USB_GADGET_H */