xmit.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. #include "ar9003_mac.h"
  18. #define BITS_PER_BYTE 8
  19. #define OFDM_PLCP_BITS 22
  20. #define HT_RC_2_MCS(_rc) ((_rc) & 0x1f)
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. #define OFDM_SIFS_TIME 16
  33. static u16 bits_per_symbol[][2] = {
  34. /* 20MHz 40MHz */
  35. { 26, 54 }, /* 0: BPSK */
  36. { 52, 108 }, /* 1: QPSK 1/2 */
  37. { 78, 162 }, /* 2: QPSK 3/4 */
  38. { 104, 216 }, /* 3: 16-QAM 1/2 */
  39. { 156, 324 }, /* 4: 16-QAM 3/4 */
  40. { 208, 432 }, /* 5: 64-QAM 2/3 */
  41. { 234, 486 }, /* 6: 64-QAM 3/4 */
  42. { 260, 540 }, /* 7: 64-QAM 5/6 */
  43. };
  44. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  45. static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
  46. struct ath_atx_tid *tid,
  47. struct list_head *bf_head);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok, int sendbar);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head);
  53. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
  54. static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
  55. struct ath_tx_status *ts, int txok);
  56. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  57. int nbad, int txok, bool update_rc);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. enum {
  61. MCS_HT20,
  62. MCS_HT20_SGI,
  63. MCS_HT40,
  64. MCS_HT40_SGI,
  65. };
  66. static int ath_max_4ms_framelen[4][32] = {
  67. [MCS_HT20] = {
  68. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  69. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  70. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  71. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  72. },
  73. [MCS_HT20_SGI] = {
  74. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  75. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  76. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  77. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  78. },
  79. [MCS_HT40] = {
  80. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  81. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  82. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  83. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  84. },
  85. [MCS_HT40_SGI] = {
  86. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  87. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  88. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  89. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  90. }
  91. };
  92. /*********************/
  93. /* Aggregation logic */
  94. /*********************/
  95. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  96. {
  97. struct ath_atx_ac *ac = tid->ac;
  98. if (tid->paused)
  99. return;
  100. if (tid->sched)
  101. return;
  102. tid->sched = true;
  103. list_add_tail(&tid->list, &ac->tid_q);
  104. if (ac->sched)
  105. return;
  106. ac->sched = true;
  107. list_add_tail(&ac->list, &txq->axq_acq);
  108. }
  109. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  110. {
  111. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  112. WARN_ON(!tid->paused);
  113. spin_lock_bh(&txq->axq_lock);
  114. tid->paused = false;
  115. if (list_empty(&tid->buf_q))
  116. goto unlock;
  117. ath_tx_queue_tid(txq, tid);
  118. ath_txq_schedule(sc, txq);
  119. unlock:
  120. spin_unlock_bh(&txq->axq_lock);
  121. }
  122. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  123. {
  124. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  125. struct ath_buf *bf;
  126. struct list_head bf_head;
  127. struct ath_tx_status ts;
  128. INIT_LIST_HEAD(&bf_head);
  129. memset(&ts, 0, sizeof(ts));
  130. spin_lock_bh(&txq->axq_lock);
  131. while (!list_empty(&tid->buf_q)) {
  132. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  133. list_move_tail(&bf->list, &bf_head);
  134. if (bf_isretried(bf)) {
  135. ath_tx_update_baw(sc, tid, bf->bf_seqno);
  136. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  137. } else {
  138. ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
  139. }
  140. }
  141. spin_unlock_bh(&txq->axq_lock);
  142. }
  143. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  144. int seqno)
  145. {
  146. int index, cindex;
  147. index = ATH_BA_INDEX(tid->seq_start, seqno);
  148. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  149. __clear_bit(cindex, tid->tx_buf);
  150. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  151. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  152. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  153. }
  154. }
  155. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  156. struct ath_buf *bf)
  157. {
  158. int index, cindex;
  159. if (bf_isretried(bf))
  160. return;
  161. index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
  162. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  163. __set_bit(cindex, tid->tx_buf);
  164. if (index >= ((tid->baw_tail - tid->baw_head) &
  165. (ATH_TID_MAX_BUFS - 1))) {
  166. tid->baw_tail = cindex;
  167. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  168. }
  169. }
  170. /*
  171. * TODO: For frame(s) that are in the retry state, we will reuse the
  172. * sequence number(s) without setting the retry bit. The
  173. * alternative is to give up on these and BAR the receiver's window
  174. * forward.
  175. */
  176. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  177. struct ath_atx_tid *tid)
  178. {
  179. struct ath_buf *bf;
  180. struct list_head bf_head;
  181. struct ath_tx_status ts;
  182. memset(&ts, 0, sizeof(ts));
  183. INIT_LIST_HEAD(&bf_head);
  184. for (;;) {
  185. if (list_empty(&tid->buf_q))
  186. break;
  187. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  188. list_move_tail(&bf->list, &bf_head);
  189. if (bf_isretried(bf))
  190. ath_tx_update_baw(sc, tid, bf->bf_seqno);
  191. spin_unlock(&txq->axq_lock);
  192. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  193. spin_lock(&txq->axq_lock);
  194. }
  195. tid->seq_next = tid->seq_start;
  196. tid->baw_tail = tid->baw_head;
  197. }
  198. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  199. struct ath_buf *bf)
  200. {
  201. struct sk_buff *skb;
  202. struct ieee80211_hdr *hdr;
  203. bf->bf_state.bf_type |= BUF_RETRY;
  204. bf->bf_retries++;
  205. TX_STAT_INC(txq->axq_qnum, a_retries);
  206. skb = bf->bf_mpdu;
  207. hdr = (struct ieee80211_hdr *)skb->data;
  208. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  209. }
  210. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  211. {
  212. struct ath_buf *bf = NULL;
  213. spin_lock_bh(&sc->tx.txbuflock);
  214. if (unlikely(list_empty(&sc->tx.txbuf))) {
  215. spin_unlock_bh(&sc->tx.txbuflock);
  216. return NULL;
  217. }
  218. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  219. list_del(&bf->list);
  220. spin_unlock_bh(&sc->tx.txbuflock);
  221. return bf;
  222. }
  223. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  224. {
  225. spin_lock_bh(&sc->tx.txbuflock);
  226. list_add_tail(&bf->list, &sc->tx.txbuf);
  227. spin_unlock_bh(&sc->tx.txbuflock);
  228. }
  229. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  230. {
  231. struct ath_buf *tbf;
  232. tbf = ath_tx_get_buffer(sc);
  233. if (WARN_ON(!tbf))
  234. return NULL;
  235. ATH_TXBUF_RESET(tbf);
  236. tbf->aphy = bf->aphy;
  237. tbf->bf_mpdu = bf->bf_mpdu;
  238. tbf->bf_buf_addr = bf->bf_buf_addr;
  239. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  240. tbf->bf_state = bf->bf_state;
  241. tbf->bf_dmacontext = bf->bf_dmacontext;
  242. return tbf;
  243. }
  244. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  245. struct ath_buf *bf, struct list_head *bf_q,
  246. struct ath_tx_status *ts, int txok)
  247. {
  248. struct ath_node *an = NULL;
  249. struct sk_buff *skb;
  250. struct ieee80211_sta *sta;
  251. struct ieee80211_hw *hw;
  252. struct ieee80211_hdr *hdr;
  253. struct ieee80211_tx_info *tx_info;
  254. struct ath_atx_tid *tid = NULL;
  255. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  256. struct list_head bf_head, bf_pending;
  257. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
  258. u32 ba[WME_BA_BMP_SIZE >> 5];
  259. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  260. bool rc_update = true;
  261. struct ieee80211_tx_rate rates[4];
  262. int nframes;
  263. skb = bf->bf_mpdu;
  264. hdr = (struct ieee80211_hdr *)skb->data;
  265. tx_info = IEEE80211_SKB_CB(skb);
  266. hw = bf->aphy->hw;
  267. memcpy(rates, tx_info->control.rates, sizeof(rates));
  268. nframes = bf->bf_nframes;
  269. rcu_read_lock();
  270. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  271. if (!sta) {
  272. rcu_read_unlock();
  273. INIT_LIST_HEAD(&bf_head);
  274. while (bf) {
  275. bf_next = bf->bf_next;
  276. bf->bf_state.bf_type |= BUF_XRETRY;
  277. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  278. !bf->bf_stale || bf_next != NULL)
  279. list_move_tail(&bf->list, &bf_head);
  280. ath_tx_rc_status(bf, ts, 1, 0, false);
  281. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  282. 0, 0);
  283. bf = bf_next;
  284. }
  285. return;
  286. }
  287. an = (struct ath_node *)sta->drv_priv;
  288. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  289. /*
  290. * The hardware occasionally sends a tx status for the wrong TID.
  291. * In this case, the BA status cannot be considered valid and all
  292. * subframes need to be retransmitted
  293. */
  294. if (bf->bf_tidno != ts->tid)
  295. txok = false;
  296. isaggr = bf_isaggr(bf);
  297. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  298. if (isaggr && txok) {
  299. if (ts->ts_flags & ATH9K_TX_BA) {
  300. seq_st = ts->ts_seqnum;
  301. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  302. } else {
  303. /*
  304. * AR5416 can become deaf/mute when BA
  305. * issue happens. Chip needs to be reset.
  306. * But AP code may have sychronization issues
  307. * when perform internal reset in this routine.
  308. * Only enable reset in STA mode for now.
  309. */
  310. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  311. needreset = 1;
  312. }
  313. }
  314. INIT_LIST_HEAD(&bf_pending);
  315. INIT_LIST_HEAD(&bf_head);
  316. nbad = ath_tx_num_badfrms(sc, bf, ts, txok);
  317. while (bf) {
  318. txfail = txpending = 0;
  319. bf_next = bf->bf_next;
  320. skb = bf->bf_mpdu;
  321. tx_info = IEEE80211_SKB_CB(skb);
  322. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
  323. /* transmit completion, subframe is
  324. * acked by block ack */
  325. acked_cnt++;
  326. } else if (!isaggr && txok) {
  327. /* transmit completion */
  328. acked_cnt++;
  329. } else {
  330. if (!(tid->state & AGGR_CLEANUP) &&
  331. !bf_last->bf_tx_aborted) {
  332. if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
  333. ath_tx_set_retry(sc, txq, bf);
  334. txpending = 1;
  335. } else {
  336. bf->bf_state.bf_type |= BUF_XRETRY;
  337. txfail = 1;
  338. sendbar = 1;
  339. txfail_cnt++;
  340. }
  341. } else {
  342. /*
  343. * cleanup in progress, just fail
  344. * the un-acked sub-frames
  345. */
  346. txfail = 1;
  347. }
  348. }
  349. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  350. bf_next == NULL) {
  351. /*
  352. * Make sure the last desc is reclaimed if it
  353. * not a holding desc.
  354. */
  355. if (!bf_last->bf_stale)
  356. list_move_tail(&bf->list, &bf_head);
  357. else
  358. INIT_LIST_HEAD(&bf_head);
  359. } else {
  360. BUG_ON(list_empty(bf_q));
  361. list_move_tail(&bf->list, &bf_head);
  362. }
  363. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  364. /*
  365. * complete the acked-ones/xretried ones; update
  366. * block-ack window
  367. */
  368. spin_lock_bh(&txq->axq_lock);
  369. ath_tx_update_baw(sc, tid, bf->bf_seqno);
  370. spin_unlock_bh(&txq->axq_lock);
  371. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  372. memcpy(tx_info->control.rates, rates, sizeof(rates));
  373. bf->bf_nframes = nframes;
  374. ath_tx_rc_status(bf, ts, nbad, txok, true);
  375. rc_update = false;
  376. } else {
  377. ath_tx_rc_status(bf, ts, nbad, txok, false);
  378. }
  379. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  380. !txfail, sendbar);
  381. } else {
  382. /* retry the un-acked ones */
  383. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
  384. if (bf->bf_next == NULL && bf_last->bf_stale) {
  385. struct ath_buf *tbf;
  386. tbf = ath_clone_txbuf(sc, bf_last);
  387. /*
  388. * Update tx baw and complete the
  389. * frame with failed status if we
  390. * run out of tx buf.
  391. */
  392. if (!tbf) {
  393. spin_lock_bh(&txq->axq_lock);
  394. ath_tx_update_baw(sc, tid,
  395. bf->bf_seqno);
  396. spin_unlock_bh(&txq->axq_lock);
  397. bf->bf_state.bf_type |=
  398. BUF_XRETRY;
  399. ath_tx_rc_status(bf, ts, nbad,
  400. 0, false);
  401. ath_tx_complete_buf(sc, bf, txq,
  402. &bf_head,
  403. ts, 0, 0);
  404. break;
  405. }
  406. ath9k_hw_cleartxdesc(sc->sc_ah,
  407. tbf->bf_desc);
  408. list_add_tail(&tbf->list, &bf_head);
  409. } else {
  410. /*
  411. * Clear descriptor status words for
  412. * software retry
  413. */
  414. ath9k_hw_cleartxdesc(sc->sc_ah,
  415. bf->bf_desc);
  416. }
  417. }
  418. /*
  419. * Put this buffer to the temporary pending
  420. * queue to retain ordering
  421. */
  422. list_splice_tail_init(&bf_head, &bf_pending);
  423. }
  424. bf = bf_next;
  425. }
  426. /* prepend un-acked frames to the beginning of the pending frame queue */
  427. if (!list_empty(&bf_pending)) {
  428. spin_lock_bh(&txq->axq_lock);
  429. list_splice(&bf_pending, &tid->buf_q);
  430. ath_tx_queue_tid(txq, tid);
  431. spin_unlock_bh(&txq->axq_lock);
  432. }
  433. if (tid->state & AGGR_CLEANUP) {
  434. ath_tx_flush_tid(sc, tid);
  435. if (tid->baw_head == tid->baw_tail) {
  436. tid->state &= ~AGGR_ADDBA_COMPLETE;
  437. tid->state &= ~AGGR_CLEANUP;
  438. }
  439. }
  440. rcu_read_unlock();
  441. if (needreset)
  442. ath_reset(sc, false);
  443. }
  444. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  445. struct ath_atx_tid *tid)
  446. {
  447. struct sk_buff *skb;
  448. struct ieee80211_tx_info *tx_info;
  449. struct ieee80211_tx_rate *rates;
  450. u32 max_4ms_framelen, frmlen;
  451. u16 aggr_limit, legacy = 0;
  452. int i;
  453. skb = bf->bf_mpdu;
  454. tx_info = IEEE80211_SKB_CB(skb);
  455. rates = tx_info->control.rates;
  456. /*
  457. * Find the lowest frame length among the rate series that will have a
  458. * 4ms transmit duration.
  459. * TODO - TXOP limit needs to be considered.
  460. */
  461. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  462. for (i = 0; i < 4; i++) {
  463. if (rates[i].count) {
  464. int modeidx;
  465. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  466. legacy = 1;
  467. break;
  468. }
  469. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  470. modeidx = MCS_HT40;
  471. else
  472. modeidx = MCS_HT20;
  473. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  474. modeidx++;
  475. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  476. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  477. }
  478. }
  479. /*
  480. * limit aggregate size by the minimum rate if rate selected is
  481. * not a probe rate, if rate selected is a probe rate then
  482. * avoid aggregation of this packet.
  483. */
  484. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  485. return 0;
  486. if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  487. aggr_limit = min((max_4ms_framelen * 3) / 8,
  488. (u32)ATH_AMPDU_LIMIT_MAX);
  489. else
  490. aggr_limit = min(max_4ms_framelen,
  491. (u32)ATH_AMPDU_LIMIT_MAX);
  492. /*
  493. * h/w can accept aggregates upto 16 bit lengths (65535).
  494. * The IE, however can hold upto 65536, which shows up here
  495. * as zero. Ignore 65536 since we are constrained by hw.
  496. */
  497. if (tid->an->maxampdu)
  498. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  499. return aggr_limit;
  500. }
  501. /*
  502. * Returns the number of delimiters to be added to
  503. * meet the minimum required mpdudensity.
  504. */
  505. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  506. struct ath_buf *bf, u16 frmlen)
  507. {
  508. struct sk_buff *skb = bf->bf_mpdu;
  509. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  510. u32 nsymbits, nsymbols;
  511. u16 minlen;
  512. u8 flags, rix;
  513. int width, streams, half_gi, ndelim, mindelim;
  514. /* Select standard number of delimiters based on frame length alone */
  515. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  516. /*
  517. * If encryption enabled, hardware requires some more padding between
  518. * subframes.
  519. * TODO - this could be improved to be dependent on the rate.
  520. * The hardware can keep up at lower rates, but not higher rates
  521. */
  522. if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
  523. ndelim += ATH_AGGR_ENCRYPTDELIM;
  524. /*
  525. * Convert desired mpdu density from microeconds to bytes based
  526. * on highest rate in rate series (i.e. first rate) to determine
  527. * required minimum length for subframe. Take into account
  528. * whether high rate is 20 or 40Mhz and half or full GI.
  529. *
  530. * If there is no mpdu density restriction, no further calculation
  531. * is needed.
  532. */
  533. if (tid->an->mpdudensity == 0)
  534. return ndelim;
  535. rix = tx_info->control.rates[0].idx;
  536. flags = tx_info->control.rates[0].flags;
  537. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  538. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  539. if (half_gi)
  540. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  541. else
  542. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  543. if (nsymbols == 0)
  544. nsymbols = 1;
  545. streams = HT_RC_2_STREAMS(rix);
  546. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  547. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  548. if (frmlen < minlen) {
  549. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  550. ndelim = max(mindelim, ndelim);
  551. }
  552. return ndelim;
  553. }
  554. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  555. struct ath_txq *txq,
  556. struct ath_atx_tid *tid,
  557. struct list_head *bf_q)
  558. {
  559. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  560. struct ath_buf *bf, *bf_first, *bf_prev = NULL;
  561. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  562. u16 aggr_limit = 0, al = 0, bpad = 0,
  563. al_delta, h_baw = tid->baw_size / 2;
  564. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  565. bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
  566. do {
  567. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  568. /* do not step over block-ack window */
  569. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
  570. status = ATH_AGGR_BAW_CLOSED;
  571. break;
  572. }
  573. if (!rl) {
  574. aggr_limit = ath_lookup_rate(sc, bf, tid);
  575. rl = 1;
  576. }
  577. /* do not exceed aggregation limit */
  578. al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
  579. if (nframes &&
  580. (aggr_limit < (al + bpad + al_delta + prev_al))) {
  581. status = ATH_AGGR_LIMITED;
  582. break;
  583. }
  584. /* do not exceed subframe limit */
  585. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  586. status = ATH_AGGR_LIMITED;
  587. break;
  588. }
  589. nframes++;
  590. /* add padding for previous frame to aggregation length */
  591. al += bpad + al_delta;
  592. /*
  593. * Get the delimiters needed to meet the MPDU
  594. * density for this node.
  595. */
  596. ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
  597. bpad = PADBYTES(al_delta) + (ndelim << 2);
  598. bf->bf_next = NULL;
  599. ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
  600. /* link buffers of this frame to the aggregate */
  601. ath_tx_addto_baw(sc, tid, bf);
  602. ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
  603. list_move_tail(&bf->list, bf_q);
  604. if (bf_prev) {
  605. bf_prev->bf_next = bf;
  606. ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
  607. bf->bf_daddr);
  608. }
  609. bf_prev = bf;
  610. } while (!list_empty(&tid->buf_q));
  611. bf_first->bf_al = al;
  612. bf_first->bf_nframes = nframes;
  613. return status;
  614. #undef PADBYTES
  615. }
  616. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  617. struct ath_atx_tid *tid)
  618. {
  619. struct ath_buf *bf;
  620. enum ATH_AGGR_STATUS status;
  621. struct list_head bf_q;
  622. do {
  623. if (list_empty(&tid->buf_q))
  624. return;
  625. INIT_LIST_HEAD(&bf_q);
  626. status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
  627. /*
  628. * no frames picked up to be aggregated;
  629. * block-ack window is not open.
  630. */
  631. if (list_empty(&bf_q))
  632. break;
  633. bf = list_first_entry(&bf_q, struct ath_buf, list);
  634. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  635. /* if only one frame, send as non-aggregate */
  636. if (bf->bf_nframes == 1) {
  637. bf->bf_state.bf_type &= ~BUF_AGGR;
  638. ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
  639. ath_buf_set_rate(sc, bf);
  640. ath_tx_txqaddbuf(sc, txq, &bf_q);
  641. continue;
  642. }
  643. /* setup first desc of aggregate */
  644. bf->bf_state.bf_type |= BUF_AGGR;
  645. ath_buf_set_rate(sc, bf);
  646. ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
  647. /* anchor last desc of aggregate */
  648. ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
  649. ath_tx_txqaddbuf(sc, txq, &bf_q);
  650. TX_STAT_INC(txq->axq_qnum, a_aggr);
  651. } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
  652. status != ATH_AGGR_BAW_CLOSED);
  653. }
  654. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  655. u16 tid, u16 *ssn)
  656. {
  657. struct ath_atx_tid *txtid;
  658. struct ath_node *an;
  659. an = (struct ath_node *)sta->drv_priv;
  660. txtid = ATH_AN_2_TID(an, tid);
  661. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  662. return -EAGAIN;
  663. txtid->state |= AGGR_ADDBA_PROGRESS;
  664. txtid->paused = true;
  665. *ssn = txtid->seq_start;
  666. return 0;
  667. }
  668. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  669. {
  670. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  671. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  672. struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
  673. if (txtid->state & AGGR_CLEANUP)
  674. return;
  675. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  676. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  677. return;
  678. }
  679. spin_lock_bh(&txq->axq_lock);
  680. txtid->paused = true;
  681. /*
  682. * If frames are still being transmitted for this TID, they will be
  683. * cleaned up during tx completion. To prevent race conditions, this
  684. * TID can only be reused after all in-progress subframes have been
  685. * completed.
  686. */
  687. if (txtid->baw_head != txtid->baw_tail)
  688. txtid->state |= AGGR_CLEANUP;
  689. else
  690. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  691. spin_unlock_bh(&txq->axq_lock);
  692. ath_tx_flush_tid(sc, txtid);
  693. }
  694. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  695. {
  696. struct ath_atx_tid *txtid;
  697. struct ath_node *an;
  698. an = (struct ath_node *)sta->drv_priv;
  699. if (sc->sc_flags & SC_OP_TXAGGR) {
  700. txtid = ATH_AN_2_TID(an, tid);
  701. txtid->baw_size =
  702. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  703. txtid->state |= AGGR_ADDBA_COMPLETE;
  704. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  705. ath_tx_resume_tid(sc, txtid);
  706. }
  707. }
  708. /********************/
  709. /* Queue Management */
  710. /********************/
  711. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  712. struct ath_txq *txq)
  713. {
  714. struct ath_atx_ac *ac, *ac_tmp;
  715. struct ath_atx_tid *tid, *tid_tmp;
  716. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  717. list_del(&ac->list);
  718. ac->sched = false;
  719. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  720. list_del(&tid->list);
  721. tid->sched = false;
  722. ath_tid_drain(sc, txq, tid);
  723. }
  724. }
  725. }
  726. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  727. {
  728. struct ath_hw *ah = sc->sc_ah;
  729. struct ath_common *common = ath9k_hw_common(ah);
  730. struct ath9k_tx_queue_info qi;
  731. int qnum, i;
  732. memset(&qi, 0, sizeof(qi));
  733. qi.tqi_subtype = subtype;
  734. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  735. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  736. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  737. qi.tqi_physCompBuf = 0;
  738. /*
  739. * Enable interrupts only for EOL and DESC conditions.
  740. * We mark tx descriptors to receive a DESC interrupt
  741. * when a tx queue gets deep; otherwise waiting for the
  742. * EOL to reap descriptors. Note that this is done to
  743. * reduce interrupt load and this only defers reaping
  744. * descriptors, never transmitting frames. Aside from
  745. * reducing interrupts this also permits more concurrency.
  746. * The only potential downside is if the tx queue backs
  747. * up in which case the top half of the kernel may backup
  748. * due to a lack of tx descriptors.
  749. *
  750. * The UAPSD queue is an exception, since we take a desc-
  751. * based intr on the EOSP frames.
  752. */
  753. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  754. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  755. TXQ_FLAG_TXERRINT_ENABLE;
  756. } else {
  757. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  758. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  759. else
  760. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  761. TXQ_FLAG_TXDESCINT_ENABLE;
  762. }
  763. qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  764. if (qnum == -1) {
  765. /*
  766. * NB: don't print a message, this happens
  767. * normally on parts with too few tx queues
  768. */
  769. return NULL;
  770. }
  771. if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
  772. ath_print(common, ATH_DBG_FATAL,
  773. "qnum %u out of range, max %u!\n",
  774. qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
  775. ath9k_hw_releasetxqueue(ah, qnum);
  776. return NULL;
  777. }
  778. if (!ATH_TXQ_SETUP(sc, qnum)) {
  779. struct ath_txq *txq = &sc->tx.txq[qnum];
  780. txq->axq_class = subtype;
  781. txq->axq_qnum = qnum;
  782. txq->axq_link = NULL;
  783. INIT_LIST_HEAD(&txq->axq_q);
  784. INIT_LIST_HEAD(&txq->axq_acq);
  785. spin_lock_init(&txq->axq_lock);
  786. txq->axq_depth = 0;
  787. txq->axq_tx_inprogress = false;
  788. sc->tx.txqsetup |= 1<<qnum;
  789. txq->txq_headidx = txq->txq_tailidx = 0;
  790. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  791. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  792. INIT_LIST_HEAD(&txq->txq_fifo_pending);
  793. }
  794. return &sc->tx.txq[qnum];
  795. }
  796. int ath_txq_update(struct ath_softc *sc, int qnum,
  797. struct ath9k_tx_queue_info *qinfo)
  798. {
  799. struct ath_hw *ah = sc->sc_ah;
  800. int error = 0;
  801. struct ath9k_tx_queue_info qi;
  802. if (qnum == sc->beacon.beaconq) {
  803. /*
  804. * XXX: for beacon queue, we just save the parameter.
  805. * It will be picked up by ath_beaconq_config when
  806. * it's necessary.
  807. */
  808. sc->beacon.beacon_qi = *qinfo;
  809. return 0;
  810. }
  811. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  812. ath9k_hw_get_txq_props(ah, qnum, &qi);
  813. qi.tqi_aifs = qinfo->tqi_aifs;
  814. qi.tqi_cwmin = qinfo->tqi_cwmin;
  815. qi.tqi_cwmax = qinfo->tqi_cwmax;
  816. qi.tqi_burstTime = qinfo->tqi_burstTime;
  817. qi.tqi_readyTime = qinfo->tqi_readyTime;
  818. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  819. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  820. "Unable to update hardware queue %u!\n", qnum);
  821. error = -EIO;
  822. } else {
  823. ath9k_hw_resettxqueue(ah, qnum);
  824. }
  825. return error;
  826. }
  827. int ath_cabq_update(struct ath_softc *sc)
  828. {
  829. struct ath9k_tx_queue_info qi;
  830. int qnum = sc->beacon.cabq->axq_qnum;
  831. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  832. /*
  833. * Ensure the readytime % is within the bounds.
  834. */
  835. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  836. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  837. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  838. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  839. qi.tqi_readyTime = (sc->beacon_interval *
  840. sc->config.cabqReadytime) / 100;
  841. ath_txq_update(sc, qnum, &qi);
  842. return 0;
  843. }
  844. /*
  845. * Drain a given TX queue (could be Beacon or Data)
  846. *
  847. * This assumes output has been stopped and
  848. * we do not need to block ath_tx_tasklet.
  849. */
  850. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  851. {
  852. struct ath_buf *bf, *lastbf;
  853. struct list_head bf_head;
  854. struct ath_tx_status ts;
  855. memset(&ts, 0, sizeof(ts));
  856. INIT_LIST_HEAD(&bf_head);
  857. for (;;) {
  858. spin_lock_bh(&txq->axq_lock);
  859. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  860. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  861. txq->txq_headidx = txq->txq_tailidx = 0;
  862. spin_unlock_bh(&txq->axq_lock);
  863. break;
  864. } else {
  865. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  866. struct ath_buf, list);
  867. }
  868. } else {
  869. if (list_empty(&txq->axq_q)) {
  870. txq->axq_link = NULL;
  871. spin_unlock_bh(&txq->axq_lock);
  872. break;
  873. }
  874. bf = list_first_entry(&txq->axq_q, struct ath_buf,
  875. list);
  876. if (bf->bf_stale) {
  877. list_del(&bf->list);
  878. spin_unlock_bh(&txq->axq_lock);
  879. ath_tx_return_buffer(sc, bf);
  880. continue;
  881. }
  882. }
  883. lastbf = bf->bf_lastbf;
  884. if (!retry_tx)
  885. lastbf->bf_tx_aborted = true;
  886. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  887. list_cut_position(&bf_head,
  888. &txq->txq_fifo[txq->txq_tailidx],
  889. &lastbf->list);
  890. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  891. } else {
  892. /* remove ath_buf's of the same mpdu from txq */
  893. list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
  894. }
  895. txq->axq_depth--;
  896. spin_unlock_bh(&txq->axq_lock);
  897. if (bf_isampdu(bf))
  898. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0);
  899. else
  900. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  901. }
  902. spin_lock_bh(&txq->axq_lock);
  903. txq->axq_tx_inprogress = false;
  904. spin_unlock_bh(&txq->axq_lock);
  905. /* flush any pending frames if aggregation is enabled */
  906. if (sc->sc_flags & SC_OP_TXAGGR) {
  907. if (!retry_tx) {
  908. spin_lock_bh(&txq->axq_lock);
  909. ath_txq_drain_pending_buffers(sc, txq);
  910. spin_unlock_bh(&txq->axq_lock);
  911. }
  912. }
  913. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  914. spin_lock_bh(&txq->axq_lock);
  915. while (!list_empty(&txq->txq_fifo_pending)) {
  916. bf = list_first_entry(&txq->txq_fifo_pending,
  917. struct ath_buf, list);
  918. list_cut_position(&bf_head,
  919. &txq->txq_fifo_pending,
  920. &bf->bf_lastbf->list);
  921. spin_unlock_bh(&txq->axq_lock);
  922. if (bf_isampdu(bf))
  923. ath_tx_complete_aggr(sc, txq, bf, &bf_head,
  924. &ts, 0);
  925. else
  926. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  927. &ts, 0, 0);
  928. spin_lock_bh(&txq->axq_lock);
  929. }
  930. spin_unlock_bh(&txq->axq_lock);
  931. }
  932. }
  933. void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  934. {
  935. struct ath_hw *ah = sc->sc_ah;
  936. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  937. struct ath_txq *txq;
  938. int i, npend = 0;
  939. if (sc->sc_flags & SC_OP_INVALID)
  940. return;
  941. /* Stop beacon queue */
  942. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  943. /* Stop data queues */
  944. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  945. if (ATH_TXQ_SETUP(sc, i)) {
  946. txq = &sc->tx.txq[i];
  947. ath9k_hw_stoptxdma(ah, txq->axq_qnum);
  948. npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
  949. }
  950. }
  951. if (npend) {
  952. int r;
  953. ath_print(common, ATH_DBG_FATAL,
  954. "Failed to stop TX DMA. Resetting hardware!\n");
  955. spin_lock_bh(&sc->sc_resetlock);
  956. r = ath9k_hw_reset(ah, sc->sc_ah->curchan, ah->caldata, false);
  957. if (r)
  958. ath_print(common, ATH_DBG_FATAL,
  959. "Unable to reset hardware; reset status %d\n",
  960. r);
  961. spin_unlock_bh(&sc->sc_resetlock);
  962. }
  963. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  964. if (ATH_TXQ_SETUP(sc, i))
  965. ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
  966. }
  967. }
  968. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  969. {
  970. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  971. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  972. }
  973. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  974. {
  975. struct ath_atx_ac *ac;
  976. struct ath_atx_tid *tid;
  977. if (list_empty(&txq->axq_acq))
  978. return;
  979. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  980. list_del(&ac->list);
  981. ac->sched = false;
  982. do {
  983. if (list_empty(&ac->tid_q))
  984. return;
  985. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
  986. list_del(&tid->list);
  987. tid->sched = false;
  988. if (tid->paused)
  989. continue;
  990. ath_tx_sched_aggr(sc, txq, tid);
  991. /*
  992. * add tid to round-robin queue if more frames
  993. * are pending for the tid
  994. */
  995. if (!list_empty(&tid->buf_q))
  996. ath_tx_queue_tid(txq, tid);
  997. break;
  998. } while (!list_empty(&ac->tid_q));
  999. if (!list_empty(&ac->tid_q)) {
  1000. if (!ac->sched) {
  1001. ac->sched = true;
  1002. list_add_tail(&ac->list, &txq->axq_acq);
  1003. }
  1004. }
  1005. }
  1006. int ath_tx_setup(struct ath_softc *sc, int haltype)
  1007. {
  1008. struct ath_txq *txq;
  1009. if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
  1010. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  1011. "HAL AC %u out of range, max %zu!\n",
  1012. haltype, ARRAY_SIZE(sc->tx.hwq_map));
  1013. return 0;
  1014. }
  1015. txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
  1016. if (txq != NULL) {
  1017. sc->tx.hwq_map[haltype] = txq->axq_qnum;
  1018. return 1;
  1019. } else
  1020. return 0;
  1021. }
  1022. /***********/
  1023. /* TX, DMA */
  1024. /***********/
  1025. /*
  1026. * Insert a chain of ath_buf (descriptors) on a txq and
  1027. * assume the descriptors are already chained together by caller.
  1028. */
  1029. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1030. struct list_head *head)
  1031. {
  1032. struct ath_hw *ah = sc->sc_ah;
  1033. struct ath_common *common = ath9k_hw_common(ah);
  1034. struct ath_buf *bf;
  1035. /*
  1036. * Insert the frame on the outbound list and
  1037. * pass it on to the hardware.
  1038. */
  1039. if (list_empty(head))
  1040. return;
  1041. bf = list_first_entry(head, struct ath_buf, list);
  1042. ath_print(common, ATH_DBG_QUEUE,
  1043. "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
  1044. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1045. if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
  1046. list_splice_tail_init(head, &txq->txq_fifo_pending);
  1047. return;
  1048. }
  1049. if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
  1050. ath_print(common, ATH_DBG_XMIT,
  1051. "Initializing tx fifo %d which "
  1052. "is non-empty\n",
  1053. txq->txq_headidx);
  1054. INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
  1055. list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1056. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1057. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1058. ath_print(common, ATH_DBG_XMIT,
  1059. "TXDP[%u] = %llx (%p)\n",
  1060. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1061. } else {
  1062. list_splice_tail_init(head, &txq->axq_q);
  1063. if (txq->axq_link == NULL) {
  1064. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1065. ath_print(common, ATH_DBG_XMIT,
  1066. "TXDP[%u] = %llx (%p)\n",
  1067. txq->axq_qnum, ito64(bf->bf_daddr),
  1068. bf->bf_desc);
  1069. } else {
  1070. *txq->axq_link = bf->bf_daddr;
  1071. ath_print(common, ATH_DBG_XMIT,
  1072. "link[%u] (%p)=%llx (%p)\n",
  1073. txq->axq_qnum, txq->axq_link,
  1074. ito64(bf->bf_daddr), bf->bf_desc);
  1075. }
  1076. ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
  1077. &txq->axq_link);
  1078. ath9k_hw_txstart(ah, txq->axq_qnum);
  1079. }
  1080. txq->axq_depth++;
  1081. }
  1082. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1083. struct list_head *bf_head,
  1084. struct ath_tx_control *txctl)
  1085. {
  1086. struct ath_buf *bf;
  1087. bf = list_first_entry(bf_head, struct ath_buf, list);
  1088. bf->bf_state.bf_type |= BUF_AMPDU;
  1089. TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
  1090. /*
  1091. * Do not queue to h/w when any of the following conditions is true:
  1092. * - there are pending frames in software queue
  1093. * - the TID is currently paused for ADDBA/BAR request
  1094. * - seqno is not within block-ack window
  1095. * - h/w queue depth exceeds low water mark
  1096. */
  1097. if (!list_empty(&tid->buf_q) || tid->paused ||
  1098. !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
  1099. txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
  1100. /*
  1101. * Add this frame to software queue for scheduling later
  1102. * for aggregation.
  1103. */
  1104. list_move_tail(&bf->list, &tid->buf_q);
  1105. ath_tx_queue_tid(txctl->txq, tid);
  1106. return;
  1107. }
  1108. /* Add sub-frame to BAW */
  1109. ath_tx_addto_baw(sc, tid, bf);
  1110. /* Queue to h/w without aggregation */
  1111. bf->bf_nframes = 1;
  1112. bf->bf_lastbf = bf;
  1113. ath_buf_set_rate(sc, bf);
  1114. ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
  1115. }
  1116. static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
  1117. struct ath_atx_tid *tid,
  1118. struct list_head *bf_head)
  1119. {
  1120. struct ath_buf *bf;
  1121. bf = list_first_entry(bf_head, struct ath_buf, list);
  1122. bf->bf_state.bf_type &= ~BUF_AMPDU;
  1123. /* update starting sequence number for subsequent ADDBA request */
  1124. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  1125. bf->bf_nframes = 1;
  1126. bf->bf_lastbf = bf;
  1127. ath_buf_set_rate(sc, bf);
  1128. ath_tx_txqaddbuf(sc, txq, bf_head);
  1129. TX_STAT_INC(txq->axq_qnum, queued);
  1130. }
  1131. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1132. struct list_head *bf_head)
  1133. {
  1134. struct ath_buf *bf;
  1135. bf = list_first_entry(bf_head, struct ath_buf, list);
  1136. bf->bf_lastbf = bf;
  1137. bf->bf_nframes = 1;
  1138. ath_buf_set_rate(sc, bf);
  1139. ath_tx_txqaddbuf(sc, txq, bf_head);
  1140. TX_STAT_INC(txq->axq_qnum, queued);
  1141. }
  1142. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  1143. {
  1144. struct ieee80211_hdr *hdr;
  1145. enum ath9k_pkt_type htype;
  1146. __le16 fc;
  1147. hdr = (struct ieee80211_hdr *)skb->data;
  1148. fc = hdr->frame_control;
  1149. if (ieee80211_is_beacon(fc))
  1150. htype = ATH9K_PKT_TYPE_BEACON;
  1151. else if (ieee80211_is_probe_resp(fc))
  1152. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  1153. else if (ieee80211_is_atim(fc))
  1154. htype = ATH9K_PKT_TYPE_ATIM;
  1155. else if (ieee80211_is_pspoll(fc))
  1156. htype = ATH9K_PKT_TYPE_PSPOLL;
  1157. else
  1158. htype = ATH9K_PKT_TYPE_NORMAL;
  1159. return htype;
  1160. }
  1161. static void assign_aggr_tid_seqno(struct sk_buff *skb,
  1162. struct ath_buf *bf)
  1163. {
  1164. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1165. struct ieee80211_hdr *hdr;
  1166. struct ath_node *an;
  1167. struct ath_atx_tid *tid;
  1168. __le16 fc;
  1169. u8 *qc;
  1170. if (!tx_info->control.sta)
  1171. return;
  1172. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1173. hdr = (struct ieee80211_hdr *)skb->data;
  1174. fc = hdr->frame_control;
  1175. if (ieee80211_is_data_qos(fc)) {
  1176. qc = ieee80211_get_qos_ctl(hdr);
  1177. bf->bf_tidno = qc[0] & 0xf;
  1178. }
  1179. /*
  1180. * For HT capable stations, we save tidno for later use.
  1181. * We also override seqno set by upper layer with the one
  1182. * in tx aggregation state.
  1183. */
  1184. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  1185. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1186. bf->bf_seqno = tid->seq_next;
  1187. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1188. }
  1189. static int setup_tx_flags(struct sk_buff *skb, bool use_ldpc)
  1190. {
  1191. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1192. int flags = 0;
  1193. flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
  1194. flags |= ATH9K_TXDESC_INTREQ;
  1195. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1196. flags |= ATH9K_TXDESC_NOACK;
  1197. if (use_ldpc)
  1198. flags |= ATH9K_TXDESC_LDPC;
  1199. return flags;
  1200. }
  1201. /*
  1202. * rix - rate index
  1203. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  1204. * width - 0 for 20 MHz, 1 for 40 MHz
  1205. * half_gi - to use 4us v/s 3.6 us for symbol time
  1206. */
  1207. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
  1208. int width, int half_gi, bool shortPreamble)
  1209. {
  1210. u32 nbits, nsymbits, duration, nsymbols;
  1211. int streams, pktlen;
  1212. pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
  1213. /* find number of symbols: PLCP + data */
  1214. streams = HT_RC_2_STREAMS(rix);
  1215. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  1216. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  1217. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  1218. if (!half_gi)
  1219. duration = SYMBOL_TIME(nsymbols);
  1220. else
  1221. duration = SYMBOL_TIME_HALFGI(nsymbols);
  1222. /* addup duration for legacy/ht training and signal fields */
  1223. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  1224. return duration;
  1225. }
  1226. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
  1227. {
  1228. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1229. struct ath9k_11n_rate_series series[4];
  1230. struct sk_buff *skb;
  1231. struct ieee80211_tx_info *tx_info;
  1232. struct ieee80211_tx_rate *rates;
  1233. const struct ieee80211_rate *rate;
  1234. struct ieee80211_hdr *hdr;
  1235. int i, flags = 0;
  1236. u8 rix = 0, ctsrate = 0;
  1237. bool is_pspoll;
  1238. memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
  1239. skb = bf->bf_mpdu;
  1240. tx_info = IEEE80211_SKB_CB(skb);
  1241. rates = tx_info->control.rates;
  1242. hdr = (struct ieee80211_hdr *)skb->data;
  1243. is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
  1244. /*
  1245. * We check if Short Preamble is needed for the CTS rate by
  1246. * checking the BSS's global flag.
  1247. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1248. */
  1249. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  1250. ctsrate = rate->hw_value;
  1251. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  1252. ctsrate |= rate->hw_value_short;
  1253. for (i = 0; i < 4; i++) {
  1254. bool is_40, is_sgi, is_sp;
  1255. int phy;
  1256. if (!rates[i].count || (rates[i].idx < 0))
  1257. continue;
  1258. rix = rates[i].idx;
  1259. series[i].Tries = rates[i].count;
  1260. series[i].ChSel = common->tx_chainmask;
  1261. if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
  1262. (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
  1263. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1264. flags |= ATH9K_TXDESC_RTSENA;
  1265. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  1266. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1267. flags |= ATH9K_TXDESC_CTSENA;
  1268. }
  1269. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  1270. series[i].RateFlags |= ATH9K_RATESERIES_2040;
  1271. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  1272. series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  1273. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  1274. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  1275. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  1276. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  1277. /* MCS rates */
  1278. series[i].Rate = rix | 0x80;
  1279. series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
  1280. is_40, is_sgi, is_sp);
  1281. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  1282. series[i].RateFlags |= ATH9K_RATESERIES_STBC;
  1283. continue;
  1284. }
  1285. /* legcay rates */
  1286. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  1287. !(rate->flags & IEEE80211_RATE_ERP_G))
  1288. phy = WLAN_RC_PHY_CCK;
  1289. else
  1290. phy = WLAN_RC_PHY_OFDM;
  1291. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  1292. series[i].Rate = rate->hw_value;
  1293. if (rate->hw_value_short) {
  1294. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  1295. series[i].Rate |= rate->hw_value_short;
  1296. } else {
  1297. is_sp = false;
  1298. }
  1299. series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  1300. phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
  1301. }
  1302. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  1303. if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
  1304. flags &= ~ATH9K_TXDESC_RTSENA;
  1305. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  1306. if (flags & ATH9K_TXDESC_RTSENA)
  1307. flags &= ~ATH9K_TXDESC_CTSENA;
  1308. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  1309. ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
  1310. bf->bf_lastbf->bf_desc,
  1311. !is_pspoll, ctsrate,
  1312. 0, series, 4, flags);
  1313. if (sc->config.ath_aggr_prot && flags)
  1314. ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
  1315. }
  1316. static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
  1317. struct sk_buff *skb,
  1318. struct ath_tx_control *txctl)
  1319. {
  1320. struct ath_wiphy *aphy = hw->priv;
  1321. struct ath_softc *sc = aphy->sc;
  1322. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1323. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1324. int hdrlen;
  1325. __le16 fc;
  1326. int padpos, padsize;
  1327. bool use_ldpc = false;
  1328. tx_info->pad[0] = 0;
  1329. switch (txctl->frame_type) {
  1330. case ATH9K_IFT_NOT_INTERNAL:
  1331. break;
  1332. case ATH9K_IFT_PAUSE:
  1333. tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
  1334. /* fall through */
  1335. case ATH9K_IFT_UNPAUSE:
  1336. tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
  1337. break;
  1338. }
  1339. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  1340. fc = hdr->frame_control;
  1341. ATH_TXBUF_RESET(bf);
  1342. bf->aphy = aphy;
  1343. bf->bf_frmlen = skb->len + FCS_LEN;
  1344. /* Remove the padding size from bf_frmlen, if any */
  1345. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1346. padsize = padpos & 3;
  1347. if (padsize && skb->len>padpos+padsize) {
  1348. bf->bf_frmlen -= padsize;
  1349. }
  1350. if (!txctl->paprd && conf_is_ht(&hw->conf)) {
  1351. bf->bf_state.bf_type |= BUF_HT;
  1352. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1353. use_ldpc = true;
  1354. }
  1355. bf->bf_state.bfs_paprd = txctl->paprd;
  1356. if (txctl->paprd)
  1357. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1358. bf->bf_flags = setup_tx_flags(skb, use_ldpc);
  1359. bf->bf_keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1360. if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
  1361. bf->bf_frmlen += tx_info->control.hw_key->icv_len;
  1362. bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
  1363. } else {
  1364. bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
  1365. }
  1366. if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
  1367. (sc->sc_flags & SC_OP_TXAGGR))
  1368. assign_aggr_tid_seqno(skb, bf);
  1369. bf->bf_mpdu = skb;
  1370. bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
  1371. skb->len, DMA_TO_DEVICE);
  1372. if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
  1373. bf->bf_mpdu = NULL;
  1374. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  1375. "dma_mapping_error() on TX\n");
  1376. return -ENOMEM;
  1377. }
  1378. bf->bf_buf_addr = bf->bf_dmacontext;
  1379. bf->bf_tx_aborted = false;
  1380. return 0;
  1381. }
  1382. /* FIXME: tx power */
  1383. static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
  1384. struct ath_tx_control *txctl)
  1385. {
  1386. struct sk_buff *skb = bf->bf_mpdu;
  1387. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1388. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1389. struct ath_node *an = NULL;
  1390. struct list_head bf_head;
  1391. struct ath_desc *ds;
  1392. struct ath_atx_tid *tid;
  1393. struct ath_hw *ah = sc->sc_ah;
  1394. int frm_type;
  1395. __le16 fc;
  1396. frm_type = get_hw_packet_type(skb);
  1397. fc = hdr->frame_control;
  1398. INIT_LIST_HEAD(&bf_head);
  1399. list_add_tail(&bf->list, &bf_head);
  1400. ds = bf->bf_desc;
  1401. ath9k_hw_set_desc_link(ah, ds, 0);
  1402. ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
  1403. bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
  1404. ath9k_hw_filltxdesc(ah, ds,
  1405. skb->len, /* segment length */
  1406. true, /* first segment */
  1407. true, /* last segment */
  1408. ds, /* first descriptor */
  1409. bf->bf_buf_addr,
  1410. txctl->txq->axq_qnum);
  1411. if (bf->bf_state.bfs_paprd)
  1412. ar9003_hw_set_paprd_txdesc(ah, ds, bf->bf_state.bfs_paprd);
  1413. spin_lock_bh(&txctl->txq->axq_lock);
  1414. if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
  1415. tx_info->control.sta) {
  1416. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1417. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  1418. if (!ieee80211_is_data_qos(fc)) {
  1419. ath_tx_send_normal(sc, txctl->txq, &bf_head);
  1420. goto tx_done;
  1421. }
  1422. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1423. /*
  1424. * Try aggregation if it's a unicast data frame
  1425. * and the destination is HT capable.
  1426. */
  1427. ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
  1428. } else {
  1429. /*
  1430. * Send this frame as regular when ADDBA
  1431. * exchange is neither complete nor pending.
  1432. */
  1433. ath_tx_send_ht_normal(sc, txctl->txq,
  1434. tid, &bf_head);
  1435. }
  1436. } else {
  1437. ath_tx_send_normal(sc, txctl->txq, &bf_head);
  1438. }
  1439. tx_done:
  1440. spin_unlock_bh(&txctl->txq->axq_lock);
  1441. }
  1442. /* Upon failure caller should free skb */
  1443. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1444. struct ath_tx_control *txctl)
  1445. {
  1446. struct ath_wiphy *aphy = hw->priv;
  1447. struct ath_softc *sc = aphy->sc;
  1448. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1449. struct ath_txq *txq = txctl->txq;
  1450. struct ath_buf *bf;
  1451. int q, r;
  1452. bf = ath_tx_get_buffer(sc);
  1453. if (!bf) {
  1454. ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
  1455. return -1;
  1456. }
  1457. r = ath_tx_setup_buffer(hw, bf, skb, txctl);
  1458. if (unlikely(r)) {
  1459. ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
  1460. /* upon ath_tx_processq() this TX queue will be resumed, we
  1461. * guarantee this will happen by knowing beforehand that
  1462. * we will at least have to run TX completionon one buffer
  1463. * on the queue */
  1464. spin_lock_bh(&txq->axq_lock);
  1465. if (!txq->stopped && txq->axq_depth > 1) {
  1466. ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
  1467. txq->stopped = 1;
  1468. }
  1469. spin_unlock_bh(&txq->axq_lock);
  1470. ath_tx_return_buffer(sc, bf);
  1471. return r;
  1472. }
  1473. q = skb_get_queue_mapping(skb);
  1474. if (q >= 4)
  1475. q = 0;
  1476. spin_lock_bh(&txq->axq_lock);
  1477. if (++sc->tx.pending_frames[q] > ATH_MAX_QDEPTH && !txq->stopped) {
  1478. ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
  1479. txq->stopped = 1;
  1480. }
  1481. spin_unlock_bh(&txq->axq_lock);
  1482. ath_tx_start_dma(sc, bf, txctl);
  1483. return 0;
  1484. }
  1485. void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
  1486. {
  1487. struct ath_wiphy *aphy = hw->priv;
  1488. struct ath_softc *sc = aphy->sc;
  1489. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1490. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1491. int padpos, padsize;
  1492. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1493. struct ath_tx_control txctl;
  1494. memset(&txctl, 0, sizeof(struct ath_tx_control));
  1495. /*
  1496. * As a temporary workaround, assign seq# here; this will likely need
  1497. * to be cleaned up to work better with Beacon transmission and virtual
  1498. * BSSes.
  1499. */
  1500. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1501. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1502. sc->tx.seq_no += 0x10;
  1503. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1504. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1505. }
  1506. /* Add the padding after the header if this is not already done */
  1507. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1508. padsize = padpos & 3;
  1509. if (padsize && skb->len>padpos) {
  1510. if (skb_headroom(skb) < padsize) {
  1511. ath_print(common, ATH_DBG_XMIT,
  1512. "TX CABQ padding failed\n");
  1513. dev_kfree_skb_any(skb);
  1514. return;
  1515. }
  1516. skb_push(skb, padsize);
  1517. memmove(skb->data, skb->data + padsize, padpos);
  1518. }
  1519. txctl.txq = sc->beacon.cabq;
  1520. ath_print(common, ATH_DBG_XMIT,
  1521. "transmitting CABQ packet, skb: %p\n", skb);
  1522. if (ath_tx_start(hw, skb, &txctl) != 0) {
  1523. ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
  1524. goto exit;
  1525. }
  1526. return;
  1527. exit:
  1528. dev_kfree_skb_any(skb);
  1529. }
  1530. /*****************/
  1531. /* TX Completion */
  1532. /*****************/
  1533. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1534. struct ath_wiphy *aphy, int tx_flags)
  1535. {
  1536. struct ieee80211_hw *hw = sc->hw;
  1537. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1538. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1539. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1540. int q, padpos, padsize;
  1541. ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
  1542. if (aphy)
  1543. hw = aphy->hw;
  1544. if (tx_flags & ATH_TX_BAR)
  1545. tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1546. if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
  1547. /* Frame was ACKed */
  1548. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1549. }
  1550. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1551. padsize = padpos & 3;
  1552. if (padsize && skb->len>padpos+padsize) {
  1553. /*
  1554. * Remove MAC header padding before giving the frame back to
  1555. * mac80211.
  1556. */
  1557. memmove(skb->data + padsize, skb->data, padpos);
  1558. skb_pull(skb, padsize);
  1559. }
  1560. if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
  1561. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1562. ath_print(common, ATH_DBG_PS,
  1563. "Going back to sleep after having "
  1564. "received TX status (0x%lx)\n",
  1565. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1566. PS_WAIT_FOR_CAB |
  1567. PS_WAIT_FOR_PSPOLL_DATA |
  1568. PS_WAIT_FOR_TX_ACK));
  1569. }
  1570. if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
  1571. ath9k_tx_status(hw, skb);
  1572. else {
  1573. q = skb_get_queue_mapping(skb);
  1574. if (q >= 4)
  1575. q = 0;
  1576. if (--sc->tx.pending_frames[q] < 0)
  1577. sc->tx.pending_frames[q] = 0;
  1578. ieee80211_tx_status(hw, skb);
  1579. }
  1580. }
  1581. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1582. struct ath_txq *txq, struct list_head *bf_q,
  1583. struct ath_tx_status *ts, int txok, int sendbar)
  1584. {
  1585. struct sk_buff *skb = bf->bf_mpdu;
  1586. unsigned long flags;
  1587. int tx_flags = 0;
  1588. if (sendbar)
  1589. tx_flags = ATH_TX_BAR;
  1590. if (!txok) {
  1591. tx_flags |= ATH_TX_ERROR;
  1592. if (bf_isxretried(bf))
  1593. tx_flags |= ATH_TX_XRETRY;
  1594. }
  1595. dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
  1596. if (bf->bf_state.bfs_paprd) {
  1597. if (time_after(jiffies,
  1598. bf->bf_state.bfs_paprd_timestamp +
  1599. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1600. dev_kfree_skb_any(skb);
  1601. else
  1602. complete(&sc->paprd_complete);
  1603. } else {
  1604. ath_debug_stat_tx(sc, txq, bf, ts);
  1605. ath_tx_complete(sc, skb, bf->aphy, tx_flags);
  1606. }
  1607. /*
  1608. * Return the list of ath_buf of this mpdu to free queue
  1609. */
  1610. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1611. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1612. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1613. }
  1614. static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
  1615. struct ath_tx_status *ts, int txok)
  1616. {
  1617. u16 seq_st = 0;
  1618. u32 ba[WME_BA_BMP_SIZE >> 5];
  1619. int ba_index;
  1620. int nbad = 0;
  1621. int isaggr = 0;
  1622. if (bf->bf_lastbf->bf_tx_aborted)
  1623. return 0;
  1624. isaggr = bf_isaggr(bf);
  1625. if (isaggr) {
  1626. seq_st = ts->ts_seqnum;
  1627. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  1628. }
  1629. while (bf) {
  1630. ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
  1631. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  1632. nbad++;
  1633. bf = bf->bf_next;
  1634. }
  1635. return nbad;
  1636. }
  1637. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  1638. int nbad, int txok, bool update_rc)
  1639. {
  1640. struct sk_buff *skb = bf->bf_mpdu;
  1641. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1642. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1643. struct ieee80211_hw *hw = bf->aphy->hw;
  1644. u8 i, tx_rateindex;
  1645. if (txok)
  1646. tx_info->status.ack_signal = ts->ts_rssi;
  1647. tx_rateindex = ts->ts_rateindex;
  1648. WARN_ON(tx_rateindex >= hw->max_rates);
  1649. if (ts->ts_status & ATH9K_TXERR_FILT)
  1650. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1651. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc) {
  1652. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1653. BUG_ON(nbad > bf->bf_nframes);
  1654. tx_info->status.ampdu_len = bf->bf_nframes;
  1655. tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
  1656. }
  1657. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1658. (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
  1659. if (ieee80211_is_data(hdr->frame_control)) {
  1660. if (ts->ts_flags &
  1661. (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
  1662. tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
  1663. if ((ts->ts_status & ATH9K_TXERR_XRETRY) ||
  1664. (ts->ts_status & ATH9K_TXERR_FIFO))
  1665. tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
  1666. }
  1667. }
  1668. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1669. tx_info->status.rates[i].count = 0;
  1670. tx_info->status.rates[i].idx = -1;
  1671. }
  1672. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1673. }
  1674. static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
  1675. {
  1676. int qnum;
  1677. qnum = ath_get_mac80211_qnum(txq->axq_class, sc);
  1678. if (qnum == -1)
  1679. return;
  1680. spin_lock_bh(&txq->axq_lock);
  1681. if (txq->stopped && sc->tx.pending_frames[qnum] < ATH_MAX_QDEPTH) {
  1682. if (ath_mac80211_start_queue(sc, qnum))
  1683. txq->stopped = 0;
  1684. }
  1685. spin_unlock_bh(&txq->axq_lock);
  1686. }
  1687. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1688. {
  1689. struct ath_hw *ah = sc->sc_ah;
  1690. struct ath_common *common = ath9k_hw_common(ah);
  1691. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1692. struct list_head bf_head;
  1693. struct ath_desc *ds;
  1694. struct ath_tx_status ts;
  1695. int txok;
  1696. int status;
  1697. ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
  1698. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1699. txq->axq_link);
  1700. for (;;) {
  1701. spin_lock_bh(&txq->axq_lock);
  1702. if (list_empty(&txq->axq_q)) {
  1703. txq->axq_link = NULL;
  1704. spin_unlock_bh(&txq->axq_lock);
  1705. break;
  1706. }
  1707. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1708. /*
  1709. * There is a race condition that a BH gets scheduled
  1710. * after sw writes TxE and before hw re-load the last
  1711. * descriptor to get the newly chained one.
  1712. * Software must keep the last DONE descriptor as a
  1713. * holding descriptor - software does so by marking
  1714. * it with the STALE flag.
  1715. */
  1716. bf_held = NULL;
  1717. if (bf->bf_stale) {
  1718. bf_held = bf;
  1719. if (list_is_last(&bf_held->list, &txq->axq_q)) {
  1720. spin_unlock_bh(&txq->axq_lock);
  1721. break;
  1722. } else {
  1723. bf = list_entry(bf_held->list.next,
  1724. struct ath_buf, list);
  1725. }
  1726. }
  1727. lastbf = bf->bf_lastbf;
  1728. ds = lastbf->bf_desc;
  1729. memset(&ts, 0, sizeof(ts));
  1730. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1731. if (status == -EINPROGRESS) {
  1732. spin_unlock_bh(&txq->axq_lock);
  1733. break;
  1734. }
  1735. /*
  1736. * Remove ath_buf's of the same transmit unit from txq,
  1737. * however leave the last descriptor back as the holding
  1738. * descriptor for hw.
  1739. */
  1740. lastbf->bf_stale = true;
  1741. INIT_LIST_HEAD(&bf_head);
  1742. if (!list_is_singular(&lastbf->list))
  1743. list_cut_position(&bf_head,
  1744. &txq->axq_q, lastbf->list.prev);
  1745. txq->axq_depth--;
  1746. txok = !(ts.ts_status & ATH9K_TXERR_MASK);
  1747. txq->axq_tx_inprogress = false;
  1748. if (bf_held)
  1749. list_del(&bf_held->list);
  1750. spin_unlock_bh(&txq->axq_lock);
  1751. if (bf_held)
  1752. ath_tx_return_buffer(sc, bf_held);
  1753. if (!bf_isampdu(bf)) {
  1754. /*
  1755. * This frame is sent out as a single frame.
  1756. * Use hardware retry status for this frame.
  1757. */
  1758. if (ts.ts_status & ATH9K_TXERR_XRETRY)
  1759. bf->bf_state.bf_type |= BUF_XRETRY;
  1760. ath_tx_rc_status(bf, &ts, txok ? 0 : 1, txok, true);
  1761. }
  1762. if (bf_isampdu(bf))
  1763. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok);
  1764. else
  1765. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
  1766. ath_wake_mac80211_queue(sc, txq);
  1767. spin_lock_bh(&txq->axq_lock);
  1768. if (sc->sc_flags & SC_OP_TXAGGR)
  1769. ath_txq_schedule(sc, txq);
  1770. spin_unlock_bh(&txq->axq_lock);
  1771. }
  1772. }
  1773. static void ath_tx_complete_poll_work(struct work_struct *work)
  1774. {
  1775. struct ath_softc *sc = container_of(work, struct ath_softc,
  1776. tx_complete_work.work);
  1777. struct ath_txq *txq;
  1778. int i;
  1779. bool needreset = false;
  1780. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1781. if (ATH_TXQ_SETUP(sc, i)) {
  1782. txq = &sc->tx.txq[i];
  1783. spin_lock_bh(&txq->axq_lock);
  1784. if (txq->axq_depth) {
  1785. if (txq->axq_tx_inprogress) {
  1786. needreset = true;
  1787. spin_unlock_bh(&txq->axq_lock);
  1788. break;
  1789. } else {
  1790. txq->axq_tx_inprogress = true;
  1791. }
  1792. }
  1793. spin_unlock_bh(&txq->axq_lock);
  1794. }
  1795. if (needreset) {
  1796. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
  1797. "tx hung, resetting the chip\n");
  1798. ath9k_ps_wakeup(sc);
  1799. ath_reset(sc, false);
  1800. ath9k_ps_restore(sc);
  1801. }
  1802. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1803. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1804. }
  1805. void ath_tx_tasklet(struct ath_softc *sc)
  1806. {
  1807. int i;
  1808. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1809. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1810. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1811. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1812. ath_tx_processq(sc, &sc->tx.txq[i]);
  1813. }
  1814. }
  1815. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1816. {
  1817. struct ath_tx_status txs;
  1818. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1819. struct ath_hw *ah = sc->sc_ah;
  1820. struct ath_txq *txq;
  1821. struct ath_buf *bf, *lastbf;
  1822. struct list_head bf_head;
  1823. int status;
  1824. int txok;
  1825. for (;;) {
  1826. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
  1827. if (status == -EINPROGRESS)
  1828. break;
  1829. if (status == -EIO) {
  1830. ath_print(common, ATH_DBG_XMIT,
  1831. "Error processing tx status\n");
  1832. break;
  1833. }
  1834. /* Skip beacon completions */
  1835. if (txs.qid == sc->beacon.beaconq)
  1836. continue;
  1837. txq = &sc->tx.txq[txs.qid];
  1838. spin_lock_bh(&txq->axq_lock);
  1839. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1840. spin_unlock_bh(&txq->axq_lock);
  1841. return;
  1842. }
  1843. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1844. struct ath_buf, list);
  1845. lastbf = bf->bf_lastbf;
  1846. INIT_LIST_HEAD(&bf_head);
  1847. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1848. &lastbf->list);
  1849. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1850. txq->axq_depth--;
  1851. txq->axq_tx_inprogress = false;
  1852. spin_unlock_bh(&txq->axq_lock);
  1853. txok = !(txs.ts_status & ATH9K_TXERR_MASK);
  1854. if (!bf_isampdu(bf)) {
  1855. if (txs.ts_status & ATH9K_TXERR_XRETRY)
  1856. bf->bf_state.bf_type |= BUF_XRETRY;
  1857. ath_tx_rc_status(bf, &txs, txok ? 0 : 1, txok, true);
  1858. }
  1859. if (bf_isampdu(bf))
  1860. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs, txok);
  1861. else
  1862. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  1863. &txs, txok, 0);
  1864. ath_wake_mac80211_queue(sc, txq);
  1865. spin_lock_bh(&txq->axq_lock);
  1866. if (!list_empty(&txq->txq_fifo_pending)) {
  1867. INIT_LIST_HEAD(&bf_head);
  1868. bf = list_first_entry(&txq->txq_fifo_pending,
  1869. struct ath_buf, list);
  1870. list_cut_position(&bf_head, &txq->txq_fifo_pending,
  1871. &bf->bf_lastbf->list);
  1872. ath_tx_txqaddbuf(sc, txq, &bf_head);
  1873. } else if (sc->sc_flags & SC_OP_TXAGGR)
  1874. ath_txq_schedule(sc, txq);
  1875. spin_unlock_bh(&txq->axq_lock);
  1876. }
  1877. }
  1878. /*****************/
  1879. /* Init, Cleanup */
  1880. /*****************/
  1881. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1882. {
  1883. struct ath_descdma *dd = &sc->txsdma;
  1884. u8 txs_len = sc->sc_ah->caps.txs_len;
  1885. dd->dd_desc_len = size * txs_len;
  1886. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1887. &dd->dd_desc_paddr, GFP_KERNEL);
  1888. if (!dd->dd_desc)
  1889. return -ENOMEM;
  1890. return 0;
  1891. }
  1892. static int ath_tx_edma_init(struct ath_softc *sc)
  1893. {
  1894. int err;
  1895. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1896. if (!err)
  1897. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1898. sc->txsdma.dd_desc_paddr,
  1899. ATH_TXSTATUS_RING_SIZE);
  1900. return err;
  1901. }
  1902. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1903. {
  1904. struct ath_descdma *dd = &sc->txsdma;
  1905. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1906. dd->dd_desc_paddr);
  1907. }
  1908. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1909. {
  1910. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1911. int error = 0;
  1912. spin_lock_init(&sc->tx.txbuflock);
  1913. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1914. "tx", nbufs, 1, 1);
  1915. if (error != 0) {
  1916. ath_print(common, ATH_DBG_FATAL,
  1917. "Failed to allocate tx descriptors: %d\n", error);
  1918. goto err;
  1919. }
  1920. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1921. "beacon", ATH_BCBUF, 1, 1);
  1922. if (error != 0) {
  1923. ath_print(common, ATH_DBG_FATAL,
  1924. "Failed to allocate beacon descriptors: %d\n", error);
  1925. goto err;
  1926. }
  1927. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1928. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1929. error = ath_tx_edma_init(sc);
  1930. if (error)
  1931. goto err;
  1932. }
  1933. err:
  1934. if (error != 0)
  1935. ath_tx_cleanup(sc);
  1936. return error;
  1937. }
  1938. void ath_tx_cleanup(struct ath_softc *sc)
  1939. {
  1940. if (sc->beacon.bdma.dd_desc_len != 0)
  1941. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1942. if (sc->tx.txdma.dd_desc_len != 0)
  1943. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1944. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1945. ath_tx_edma_cleanup(sc);
  1946. }
  1947. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1948. {
  1949. struct ath_atx_tid *tid;
  1950. struct ath_atx_ac *ac;
  1951. int tidno, acno;
  1952. for (tidno = 0, tid = &an->tid[tidno];
  1953. tidno < WME_NUM_TID;
  1954. tidno++, tid++) {
  1955. tid->an = an;
  1956. tid->tidno = tidno;
  1957. tid->seq_start = tid->seq_next = 0;
  1958. tid->baw_size = WME_MAX_BA;
  1959. tid->baw_head = tid->baw_tail = 0;
  1960. tid->sched = false;
  1961. tid->paused = false;
  1962. tid->state &= ~AGGR_CLEANUP;
  1963. INIT_LIST_HEAD(&tid->buf_q);
  1964. acno = TID_TO_WME_AC(tidno);
  1965. tid->ac = &an->ac[acno];
  1966. tid->state &= ~AGGR_ADDBA_COMPLETE;
  1967. tid->state &= ~AGGR_ADDBA_PROGRESS;
  1968. }
  1969. for (acno = 0, ac = &an->ac[acno];
  1970. acno < WME_NUM_AC; acno++, ac++) {
  1971. ac->sched = false;
  1972. ac->qnum = sc->tx.hwq_map[acno];
  1973. INIT_LIST_HEAD(&ac->tid_q);
  1974. }
  1975. }
  1976. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  1977. {
  1978. struct ath_atx_ac *ac;
  1979. struct ath_atx_tid *tid;
  1980. struct ath_txq *txq;
  1981. int i, tidno;
  1982. for (tidno = 0, tid = &an->tid[tidno];
  1983. tidno < WME_NUM_TID; tidno++, tid++) {
  1984. i = tid->ac->qnum;
  1985. if (!ATH_TXQ_SETUP(sc, i))
  1986. continue;
  1987. txq = &sc->tx.txq[i];
  1988. ac = tid->ac;
  1989. spin_lock_bh(&txq->axq_lock);
  1990. if (tid->sched) {
  1991. list_del(&tid->list);
  1992. tid->sched = false;
  1993. }
  1994. if (ac->sched) {
  1995. list_del(&ac->list);
  1996. tid->ac->sched = false;
  1997. }
  1998. ath_tid_drain(sc, txq, tid);
  1999. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2000. tid->state &= ~AGGR_CLEANUP;
  2001. spin_unlock_bh(&txq->axq_lock);
  2002. }
  2003. }