af_iucv.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/iucv.h>
  28. #include <net/iucv/af_iucv.h>
  29. #define VERSION "1.1"
  30. static char iucv_userid[80];
  31. static struct proto_ops iucv_sock_ops;
  32. static struct proto iucv_proto = {
  33. .name = "AF_IUCV",
  34. .owner = THIS_MODULE,
  35. .obj_size = sizeof(struct iucv_sock),
  36. };
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. /* macros to set/get socket control buffer at correct offset */
  42. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  43. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  44. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  45. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  46. static void iucv_sock_kill(struct sock *sk);
  47. static void iucv_sock_close(struct sock *sk);
  48. /* Call Back functions */
  49. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  50. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  51. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  52. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  53. u8 ipuser[16]);
  54. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  55. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  56. static struct iucv_sock_list iucv_sk_list = {
  57. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  58. .autobind_name = ATOMIC_INIT(0)
  59. };
  60. static struct iucv_handler af_iucv_handler = {
  61. .path_pending = iucv_callback_connreq,
  62. .path_complete = iucv_callback_connack,
  63. .path_severed = iucv_callback_connrej,
  64. .message_pending = iucv_callback_rx,
  65. .message_complete = iucv_callback_txdone,
  66. .path_quiesced = iucv_callback_shutdown,
  67. };
  68. static inline void high_nmcpy(unsigned char *dst, char *src)
  69. {
  70. memcpy(dst, src, 8);
  71. }
  72. static inline void low_nmcpy(unsigned char *dst, char *src)
  73. {
  74. memcpy(&dst[8], src, 8);
  75. }
  76. static int afiucv_pm_prepare(struct device *dev)
  77. {
  78. #ifdef CONFIG_PM_DEBUG
  79. printk(KERN_WARNING "afiucv_pm_prepare\n");
  80. #endif
  81. return 0;
  82. }
  83. static void afiucv_pm_complete(struct device *dev)
  84. {
  85. #ifdef CONFIG_PM_DEBUG
  86. printk(KERN_WARNING "afiucv_pm_complete\n");
  87. #endif
  88. return;
  89. }
  90. /**
  91. * afiucv_pm_freeze() - Freeze PM callback
  92. * @dev: AFIUCV dummy device
  93. *
  94. * Sever all established IUCV communication pathes
  95. */
  96. static int afiucv_pm_freeze(struct device *dev)
  97. {
  98. struct iucv_sock *iucv;
  99. struct sock *sk;
  100. struct hlist_node *node;
  101. int err = 0;
  102. #ifdef CONFIG_PM_DEBUG
  103. printk(KERN_WARNING "afiucv_pm_freeze\n");
  104. #endif
  105. read_lock(&iucv_sk_list.lock);
  106. sk_for_each(sk, node, &iucv_sk_list.head) {
  107. iucv = iucv_sk(sk);
  108. skb_queue_purge(&iucv->send_skb_q);
  109. skb_queue_purge(&iucv->backlog_skb_q);
  110. switch (sk->sk_state) {
  111. case IUCV_SEVERED:
  112. case IUCV_DISCONN:
  113. case IUCV_CLOSING:
  114. case IUCV_CONNECTED:
  115. if (iucv->path) {
  116. err = iucv_path_sever(iucv->path, NULL);
  117. iucv_path_free(iucv->path);
  118. iucv->path = NULL;
  119. }
  120. break;
  121. case IUCV_OPEN:
  122. case IUCV_BOUND:
  123. case IUCV_LISTEN:
  124. case IUCV_CLOSED:
  125. default:
  126. break;
  127. }
  128. }
  129. read_unlock(&iucv_sk_list.lock);
  130. return err;
  131. }
  132. /**
  133. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  134. * @dev: AFIUCV dummy device
  135. *
  136. * socket clean up after freeze
  137. */
  138. static int afiucv_pm_restore_thaw(struct device *dev)
  139. {
  140. struct iucv_sock *iucv;
  141. struct sock *sk;
  142. struct hlist_node *node;
  143. #ifdef CONFIG_PM_DEBUG
  144. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  145. #endif
  146. read_lock(&iucv_sk_list.lock);
  147. sk_for_each(sk, node, &iucv_sk_list.head) {
  148. iucv = iucv_sk(sk);
  149. switch (sk->sk_state) {
  150. case IUCV_CONNECTED:
  151. sk->sk_err = EPIPE;
  152. sk->sk_state = IUCV_DISCONN;
  153. sk->sk_state_change(sk);
  154. break;
  155. case IUCV_DISCONN:
  156. case IUCV_SEVERED:
  157. case IUCV_CLOSING:
  158. case IUCV_LISTEN:
  159. case IUCV_BOUND:
  160. case IUCV_OPEN:
  161. default:
  162. break;
  163. }
  164. }
  165. read_unlock(&iucv_sk_list.lock);
  166. return 0;
  167. }
  168. static struct dev_pm_ops afiucv_pm_ops = {
  169. .prepare = afiucv_pm_prepare,
  170. .complete = afiucv_pm_complete,
  171. .freeze = afiucv_pm_freeze,
  172. .thaw = afiucv_pm_restore_thaw,
  173. .restore = afiucv_pm_restore_thaw,
  174. };
  175. static struct device_driver af_iucv_driver = {
  176. .owner = THIS_MODULE,
  177. .name = "afiucv",
  178. .bus = &iucv_bus,
  179. .pm = &afiucv_pm_ops,
  180. };
  181. /* dummy device used as trigger for PM functions */
  182. static struct device *af_iucv_dev;
  183. /**
  184. * iucv_msg_length() - Returns the length of an iucv message.
  185. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  186. *
  187. * The function returns the length of the specified iucv message @msg of data
  188. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  189. *
  190. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  191. * data:
  192. * PRMDATA[0..6] socket data (max 7 bytes);
  193. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  194. *
  195. * The socket data length is computed by substracting the socket data length
  196. * value from 0xFF.
  197. * If the socket data len is greater 7, then PRMDATA can be used for special
  198. * notifications (see iucv_sock_shutdown); and further,
  199. * if the socket data len is > 7, the function returns 8.
  200. *
  201. * Use this function to allocate socket buffers to store iucv message data.
  202. */
  203. static inline size_t iucv_msg_length(struct iucv_message *msg)
  204. {
  205. size_t datalen;
  206. if (msg->flags & IUCV_IPRMDATA) {
  207. datalen = 0xff - msg->rmmsg[7];
  208. return (datalen < 8) ? datalen : 8;
  209. }
  210. return msg->length;
  211. }
  212. /* Timers */
  213. static void iucv_sock_timeout(unsigned long arg)
  214. {
  215. struct sock *sk = (struct sock *)arg;
  216. bh_lock_sock(sk);
  217. sk->sk_err = ETIMEDOUT;
  218. sk->sk_state_change(sk);
  219. bh_unlock_sock(sk);
  220. iucv_sock_kill(sk);
  221. sock_put(sk);
  222. }
  223. static void iucv_sock_clear_timer(struct sock *sk)
  224. {
  225. sk_stop_timer(sk, &sk->sk_timer);
  226. }
  227. static struct sock *__iucv_get_sock_by_name(char *nm)
  228. {
  229. struct sock *sk;
  230. struct hlist_node *node;
  231. sk_for_each(sk, node, &iucv_sk_list.head)
  232. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  233. return sk;
  234. return NULL;
  235. }
  236. static void iucv_sock_destruct(struct sock *sk)
  237. {
  238. skb_queue_purge(&sk->sk_receive_queue);
  239. skb_queue_purge(&sk->sk_write_queue);
  240. }
  241. /* Cleanup Listen */
  242. static void iucv_sock_cleanup_listen(struct sock *parent)
  243. {
  244. struct sock *sk;
  245. /* Close non-accepted connections */
  246. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  247. iucv_sock_close(sk);
  248. iucv_sock_kill(sk);
  249. }
  250. parent->sk_state = IUCV_CLOSED;
  251. sock_set_flag(parent, SOCK_ZAPPED);
  252. }
  253. /* Kill socket */
  254. static void iucv_sock_kill(struct sock *sk)
  255. {
  256. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  257. return;
  258. iucv_sock_unlink(&iucv_sk_list, sk);
  259. sock_set_flag(sk, SOCK_DEAD);
  260. sock_put(sk);
  261. }
  262. /* Close an IUCV socket */
  263. static void iucv_sock_close(struct sock *sk)
  264. {
  265. unsigned char user_data[16];
  266. struct iucv_sock *iucv = iucv_sk(sk);
  267. int err;
  268. unsigned long timeo;
  269. iucv_sock_clear_timer(sk);
  270. lock_sock(sk);
  271. switch (sk->sk_state) {
  272. case IUCV_LISTEN:
  273. iucv_sock_cleanup_listen(sk);
  274. break;
  275. case IUCV_CONNECTED:
  276. case IUCV_DISCONN:
  277. err = 0;
  278. sk->sk_state = IUCV_CLOSING;
  279. sk->sk_state_change(sk);
  280. if (!skb_queue_empty(&iucv->send_skb_q)) {
  281. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  282. timeo = sk->sk_lingertime;
  283. else
  284. timeo = IUCV_DISCONN_TIMEOUT;
  285. err = iucv_sock_wait_state(sk, IUCV_CLOSED, 0, timeo);
  286. }
  287. case IUCV_CLOSING: /* fall through */
  288. sk->sk_state = IUCV_CLOSED;
  289. sk->sk_state_change(sk);
  290. if (iucv->path) {
  291. low_nmcpy(user_data, iucv->src_name);
  292. high_nmcpy(user_data, iucv->dst_name);
  293. ASCEBC(user_data, sizeof(user_data));
  294. err = iucv_path_sever(iucv->path, user_data);
  295. iucv_path_free(iucv->path);
  296. iucv->path = NULL;
  297. }
  298. sk->sk_err = ECONNRESET;
  299. sk->sk_state_change(sk);
  300. skb_queue_purge(&iucv->send_skb_q);
  301. skb_queue_purge(&iucv->backlog_skb_q);
  302. sock_set_flag(sk, SOCK_ZAPPED);
  303. break;
  304. default:
  305. sock_set_flag(sk, SOCK_ZAPPED);
  306. break;
  307. }
  308. release_sock(sk);
  309. iucv_sock_kill(sk);
  310. }
  311. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  312. {
  313. if (parent)
  314. sk->sk_type = parent->sk_type;
  315. }
  316. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  317. {
  318. struct sock *sk;
  319. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  320. if (!sk)
  321. return NULL;
  322. sock_init_data(sock, sk);
  323. INIT_LIST_HEAD(&iucv_sk(sk)->accept_q);
  324. spin_lock_init(&iucv_sk(sk)->accept_q_lock);
  325. skb_queue_head_init(&iucv_sk(sk)->send_skb_q);
  326. INIT_LIST_HEAD(&iucv_sk(sk)->message_q.list);
  327. spin_lock_init(&iucv_sk(sk)->message_q.lock);
  328. skb_queue_head_init(&iucv_sk(sk)->backlog_skb_q);
  329. iucv_sk(sk)->send_tag = 0;
  330. iucv_sk(sk)->flags = 0;
  331. iucv_sk(sk)->msglimit = IUCV_QUEUELEN_DEFAULT;
  332. iucv_sk(sk)->path = NULL;
  333. memset(&iucv_sk(sk)->src_user_id , 0, 32);
  334. sk->sk_destruct = iucv_sock_destruct;
  335. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  336. sk->sk_allocation = GFP_DMA;
  337. sock_reset_flag(sk, SOCK_ZAPPED);
  338. sk->sk_protocol = proto;
  339. sk->sk_state = IUCV_OPEN;
  340. setup_timer(&sk->sk_timer, iucv_sock_timeout, (unsigned long)sk);
  341. iucv_sock_link(&iucv_sk_list, sk);
  342. return sk;
  343. }
  344. /* Create an IUCV socket */
  345. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol)
  346. {
  347. struct sock *sk;
  348. if (protocol && protocol != PF_IUCV)
  349. return -EPROTONOSUPPORT;
  350. sock->state = SS_UNCONNECTED;
  351. switch (sock->type) {
  352. case SOCK_STREAM:
  353. sock->ops = &iucv_sock_ops;
  354. break;
  355. case SOCK_SEQPACKET:
  356. /* currently, proto ops can handle both sk types */
  357. sock->ops = &iucv_sock_ops;
  358. break;
  359. default:
  360. return -ESOCKTNOSUPPORT;
  361. }
  362. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  363. if (!sk)
  364. return -ENOMEM;
  365. iucv_sock_init(sk, NULL);
  366. return 0;
  367. }
  368. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  369. {
  370. write_lock_bh(&l->lock);
  371. sk_add_node(sk, &l->head);
  372. write_unlock_bh(&l->lock);
  373. }
  374. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  375. {
  376. write_lock_bh(&l->lock);
  377. sk_del_node_init(sk);
  378. write_unlock_bh(&l->lock);
  379. }
  380. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  381. {
  382. unsigned long flags;
  383. struct iucv_sock *par = iucv_sk(parent);
  384. sock_hold(sk);
  385. spin_lock_irqsave(&par->accept_q_lock, flags);
  386. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  387. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  388. iucv_sk(sk)->parent = parent;
  389. parent->sk_ack_backlog++;
  390. }
  391. void iucv_accept_unlink(struct sock *sk)
  392. {
  393. unsigned long flags;
  394. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  395. spin_lock_irqsave(&par->accept_q_lock, flags);
  396. list_del_init(&iucv_sk(sk)->accept_q);
  397. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  398. iucv_sk(sk)->parent->sk_ack_backlog--;
  399. iucv_sk(sk)->parent = NULL;
  400. sock_put(sk);
  401. }
  402. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  403. {
  404. struct iucv_sock *isk, *n;
  405. struct sock *sk;
  406. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  407. sk = (struct sock *) isk;
  408. lock_sock(sk);
  409. if (sk->sk_state == IUCV_CLOSED) {
  410. iucv_accept_unlink(sk);
  411. release_sock(sk);
  412. continue;
  413. }
  414. if (sk->sk_state == IUCV_CONNECTED ||
  415. sk->sk_state == IUCV_SEVERED ||
  416. !newsock) {
  417. iucv_accept_unlink(sk);
  418. if (newsock)
  419. sock_graft(sk, newsock);
  420. if (sk->sk_state == IUCV_SEVERED)
  421. sk->sk_state = IUCV_DISCONN;
  422. release_sock(sk);
  423. return sk;
  424. }
  425. release_sock(sk);
  426. }
  427. return NULL;
  428. }
  429. int iucv_sock_wait_state(struct sock *sk, int state, int state2,
  430. unsigned long timeo)
  431. {
  432. DECLARE_WAITQUEUE(wait, current);
  433. int err = 0;
  434. add_wait_queue(sk->sk_sleep, &wait);
  435. while (sk->sk_state != state && sk->sk_state != state2) {
  436. set_current_state(TASK_INTERRUPTIBLE);
  437. if (!timeo) {
  438. err = -EAGAIN;
  439. break;
  440. }
  441. if (signal_pending(current)) {
  442. err = sock_intr_errno(timeo);
  443. break;
  444. }
  445. release_sock(sk);
  446. timeo = schedule_timeout(timeo);
  447. lock_sock(sk);
  448. err = sock_error(sk);
  449. if (err)
  450. break;
  451. }
  452. set_current_state(TASK_RUNNING);
  453. remove_wait_queue(sk->sk_sleep, &wait);
  454. return err;
  455. }
  456. /* Bind an unbound socket */
  457. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  458. int addr_len)
  459. {
  460. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  461. struct sock *sk = sock->sk;
  462. struct iucv_sock *iucv;
  463. int err;
  464. /* Verify the input sockaddr */
  465. if (!addr || addr->sa_family != AF_IUCV)
  466. return -EINVAL;
  467. lock_sock(sk);
  468. if (sk->sk_state != IUCV_OPEN) {
  469. err = -EBADFD;
  470. goto done;
  471. }
  472. write_lock_bh(&iucv_sk_list.lock);
  473. iucv = iucv_sk(sk);
  474. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  475. err = -EADDRINUSE;
  476. goto done_unlock;
  477. }
  478. if (iucv->path) {
  479. err = 0;
  480. goto done_unlock;
  481. }
  482. /* Bind the socket */
  483. memcpy(iucv->src_name, sa->siucv_name, 8);
  484. /* Copy the user id */
  485. memcpy(iucv->src_user_id, iucv_userid, 8);
  486. sk->sk_state = IUCV_BOUND;
  487. err = 0;
  488. done_unlock:
  489. /* Release the socket list lock */
  490. write_unlock_bh(&iucv_sk_list.lock);
  491. done:
  492. release_sock(sk);
  493. return err;
  494. }
  495. /* Automatically bind an unbound socket */
  496. static int iucv_sock_autobind(struct sock *sk)
  497. {
  498. struct iucv_sock *iucv = iucv_sk(sk);
  499. char query_buffer[80];
  500. char name[12];
  501. int err = 0;
  502. /* Set the userid and name */
  503. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  504. if (unlikely(err))
  505. return -EPROTO;
  506. memcpy(iucv->src_user_id, query_buffer, 8);
  507. write_lock_bh(&iucv_sk_list.lock);
  508. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  509. while (__iucv_get_sock_by_name(name)) {
  510. sprintf(name, "%08x",
  511. atomic_inc_return(&iucv_sk_list.autobind_name));
  512. }
  513. write_unlock_bh(&iucv_sk_list.lock);
  514. memcpy(&iucv->src_name, name, 8);
  515. return err;
  516. }
  517. /* Connect an unconnected socket */
  518. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  519. int alen, int flags)
  520. {
  521. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  522. struct sock *sk = sock->sk;
  523. struct iucv_sock *iucv;
  524. unsigned char user_data[16];
  525. int err;
  526. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  527. return -EINVAL;
  528. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  529. return -EBADFD;
  530. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  531. return -EINVAL;
  532. if (sk->sk_state == IUCV_OPEN) {
  533. err = iucv_sock_autobind(sk);
  534. if (unlikely(err))
  535. return err;
  536. }
  537. lock_sock(sk);
  538. /* Set the destination information */
  539. memcpy(iucv_sk(sk)->dst_user_id, sa->siucv_user_id, 8);
  540. memcpy(iucv_sk(sk)->dst_name, sa->siucv_name, 8);
  541. high_nmcpy(user_data, sa->siucv_name);
  542. low_nmcpy(user_data, iucv_sk(sk)->src_name);
  543. ASCEBC(user_data, sizeof(user_data));
  544. iucv = iucv_sk(sk);
  545. /* Create path. */
  546. iucv->path = iucv_path_alloc(iucv->msglimit,
  547. IUCV_IPRMDATA, GFP_KERNEL);
  548. if (!iucv->path) {
  549. err = -ENOMEM;
  550. goto done;
  551. }
  552. err = iucv_path_connect(iucv->path, &af_iucv_handler,
  553. sa->siucv_user_id, NULL, user_data, sk);
  554. if (err) {
  555. iucv_path_free(iucv->path);
  556. iucv->path = NULL;
  557. switch (err) {
  558. case 0x0b: /* Target communicator is not logged on */
  559. err = -ENETUNREACH;
  560. break;
  561. case 0x0d: /* Max connections for this guest exceeded */
  562. case 0x0e: /* Max connections for target guest exceeded */
  563. err = -EAGAIN;
  564. break;
  565. case 0x0f: /* Missing IUCV authorization */
  566. err = -EACCES;
  567. break;
  568. default:
  569. err = -ECONNREFUSED;
  570. break;
  571. }
  572. goto done;
  573. }
  574. if (sk->sk_state != IUCV_CONNECTED) {
  575. err = iucv_sock_wait_state(sk, IUCV_CONNECTED, IUCV_DISCONN,
  576. sock_sndtimeo(sk, flags & O_NONBLOCK));
  577. }
  578. if (sk->sk_state == IUCV_DISCONN) {
  579. err = -ECONNREFUSED;
  580. }
  581. if (err) {
  582. iucv_path_sever(iucv->path, NULL);
  583. iucv_path_free(iucv->path);
  584. iucv->path = NULL;
  585. }
  586. done:
  587. release_sock(sk);
  588. return err;
  589. }
  590. /* Move a socket into listening state. */
  591. static int iucv_sock_listen(struct socket *sock, int backlog)
  592. {
  593. struct sock *sk = sock->sk;
  594. int err;
  595. lock_sock(sk);
  596. err = -EINVAL;
  597. if (sk->sk_state != IUCV_BOUND)
  598. goto done;
  599. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  600. goto done;
  601. sk->sk_max_ack_backlog = backlog;
  602. sk->sk_ack_backlog = 0;
  603. sk->sk_state = IUCV_LISTEN;
  604. err = 0;
  605. done:
  606. release_sock(sk);
  607. return err;
  608. }
  609. /* Accept a pending connection */
  610. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  611. int flags)
  612. {
  613. DECLARE_WAITQUEUE(wait, current);
  614. struct sock *sk = sock->sk, *nsk;
  615. long timeo;
  616. int err = 0;
  617. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  618. if (sk->sk_state != IUCV_LISTEN) {
  619. err = -EBADFD;
  620. goto done;
  621. }
  622. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  623. /* Wait for an incoming connection */
  624. add_wait_queue_exclusive(sk->sk_sleep, &wait);
  625. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  626. set_current_state(TASK_INTERRUPTIBLE);
  627. if (!timeo) {
  628. err = -EAGAIN;
  629. break;
  630. }
  631. release_sock(sk);
  632. timeo = schedule_timeout(timeo);
  633. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  634. if (sk->sk_state != IUCV_LISTEN) {
  635. err = -EBADFD;
  636. break;
  637. }
  638. if (signal_pending(current)) {
  639. err = sock_intr_errno(timeo);
  640. break;
  641. }
  642. }
  643. set_current_state(TASK_RUNNING);
  644. remove_wait_queue(sk->sk_sleep, &wait);
  645. if (err)
  646. goto done;
  647. newsock->state = SS_CONNECTED;
  648. done:
  649. release_sock(sk);
  650. return err;
  651. }
  652. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  653. int *len, int peer)
  654. {
  655. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  656. struct sock *sk = sock->sk;
  657. addr->sa_family = AF_IUCV;
  658. *len = sizeof(struct sockaddr_iucv);
  659. if (peer) {
  660. memcpy(siucv->siucv_user_id, iucv_sk(sk)->dst_user_id, 8);
  661. memcpy(siucv->siucv_name, &iucv_sk(sk)->dst_name, 8);
  662. } else {
  663. memcpy(siucv->siucv_user_id, iucv_sk(sk)->src_user_id, 8);
  664. memcpy(siucv->siucv_name, iucv_sk(sk)->src_name, 8);
  665. }
  666. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  667. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  668. memset(siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  669. return 0;
  670. }
  671. /**
  672. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  673. * @path: IUCV path
  674. * @msg: Pointer to a struct iucv_message
  675. * @skb: The socket data to send, skb->len MUST BE <= 7
  676. *
  677. * Send the socket data in the parameter list in the iucv message
  678. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  679. * list and the socket data len at index 7 (last byte).
  680. * See also iucv_msg_length().
  681. *
  682. * Returns the error code from the iucv_message_send() call.
  683. */
  684. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  685. struct sk_buff *skb)
  686. {
  687. u8 prmdata[8];
  688. memcpy(prmdata, (void *) skb->data, skb->len);
  689. prmdata[7] = 0xff - (u8) skb->len;
  690. return iucv_message_send(path, msg, IUCV_IPRMDATA, 0,
  691. (void *) prmdata, 8);
  692. }
  693. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  694. struct msghdr *msg, size_t len)
  695. {
  696. struct sock *sk = sock->sk;
  697. struct iucv_sock *iucv = iucv_sk(sk);
  698. struct sk_buff *skb;
  699. struct iucv_message txmsg;
  700. struct cmsghdr *cmsg;
  701. int cmsg_done;
  702. char user_id[9];
  703. char appl_id[9];
  704. int err;
  705. err = sock_error(sk);
  706. if (err)
  707. return err;
  708. if (msg->msg_flags & MSG_OOB)
  709. return -EOPNOTSUPP;
  710. /* SOCK_SEQPACKET: we do not support segmented records */
  711. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  712. return -EOPNOTSUPP;
  713. lock_sock(sk);
  714. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  715. err = -EPIPE;
  716. goto out;
  717. }
  718. if (sk->sk_state == IUCV_CONNECTED) {
  719. /* initialize defaults */
  720. cmsg_done = 0; /* check for duplicate headers */
  721. txmsg.class = 0;
  722. /* iterate over control messages */
  723. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  724. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  725. if (!CMSG_OK(msg, cmsg)) {
  726. err = -EINVAL;
  727. goto out;
  728. }
  729. if (cmsg->cmsg_level != SOL_IUCV)
  730. continue;
  731. if (cmsg->cmsg_type & cmsg_done) {
  732. err = -EINVAL;
  733. goto out;
  734. }
  735. cmsg_done |= cmsg->cmsg_type;
  736. switch (cmsg->cmsg_type) {
  737. case SCM_IUCV_TRGCLS:
  738. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  739. err = -EINVAL;
  740. goto out;
  741. }
  742. /* set iucv message target class */
  743. memcpy(&txmsg.class,
  744. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  745. break;
  746. default:
  747. err = -EINVAL;
  748. goto out;
  749. break;
  750. }
  751. }
  752. /* allocate one skb for each iucv message:
  753. * this is fine for SOCK_SEQPACKET (unless we want to support
  754. * segmented records using the MSG_EOR flag), but
  755. * for SOCK_STREAM we might want to improve it in future */
  756. if (!(skb = sock_alloc_send_skb(sk, len,
  757. msg->msg_flags & MSG_DONTWAIT,
  758. &err)))
  759. goto out;
  760. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  761. err = -EFAULT;
  762. goto fail;
  763. }
  764. /* increment and save iucv message tag for msg_completion cbk */
  765. txmsg.tag = iucv->send_tag++;
  766. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  767. skb_queue_tail(&iucv->send_skb_q, skb);
  768. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  769. && skb->len <= 7) {
  770. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  771. /* on success: there is no message_complete callback
  772. * for an IPRMDATA msg; remove skb from send queue */
  773. if (err == 0) {
  774. skb_unlink(skb, &iucv->send_skb_q);
  775. kfree_skb(skb);
  776. }
  777. /* this error should never happen since the
  778. * IUCV_IPRMDATA path flag is set... sever path */
  779. if (err == 0x15) {
  780. iucv_path_sever(iucv->path, NULL);
  781. skb_unlink(skb, &iucv->send_skb_q);
  782. err = -EPIPE;
  783. goto fail;
  784. }
  785. } else
  786. err = iucv_message_send(iucv->path, &txmsg, 0, 0,
  787. (void *) skb->data, skb->len);
  788. if (err) {
  789. if (err == 3) {
  790. user_id[8] = 0;
  791. memcpy(user_id, iucv->dst_user_id, 8);
  792. appl_id[8] = 0;
  793. memcpy(appl_id, iucv->dst_name, 8);
  794. pr_err("Application %s on z/VM guest %s"
  795. " exceeds message limit\n",
  796. user_id, appl_id);
  797. }
  798. skb_unlink(skb, &iucv->send_skb_q);
  799. err = -EPIPE;
  800. goto fail;
  801. }
  802. } else {
  803. err = -ENOTCONN;
  804. goto out;
  805. }
  806. release_sock(sk);
  807. return len;
  808. fail:
  809. kfree_skb(skb);
  810. out:
  811. release_sock(sk);
  812. return err;
  813. }
  814. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  815. {
  816. int dataleft, size, copied = 0;
  817. struct sk_buff *nskb;
  818. dataleft = len;
  819. while (dataleft) {
  820. if (dataleft >= sk->sk_rcvbuf / 4)
  821. size = sk->sk_rcvbuf / 4;
  822. else
  823. size = dataleft;
  824. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  825. if (!nskb)
  826. return -ENOMEM;
  827. /* copy target class to control buffer of new skb */
  828. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  829. /* copy data fragment */
  830. memcpy(nskb->data, skb->data + copied, size);
  831. copied += size;
  832. dataleft -= size;
  833. skb_reset_transport_header(nskb);
  834. skb_reset_network_header(nskb);
  835. nskb->len = size;
  836. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  837. }
  838. return 0;
  839. }
  840. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  841. struct iucv_path *path,
  842. struct iucv_message *msg)
  843. {
  844. int rc;
  845. unsigned int len;
  846. len = iucv_msg_length(msg);
  847. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  848. /* Note: the first 4 bytes are reserved for msg tag */
  849. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  850. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  851. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  852. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  853. skb->data = NULL;
  854. skb->len = 0;
  855. }
  856. } else {
  857. rc = iucv_message_receive(path, msg, msg->flags & IUCV_IPRMDATA,
  858. skb->data, len, NULL);
  859. if (rc) {
  860. kfree_skb(skb);
  861. return;
  862. }
  863. /* we need to fragment iucv messages for SOCK_STREAM only;
  864. * for SOCK_SEQPACKET, it is only relevant if we support
  865. * record segmentation using MSG_EOR (see also recvmsg()) */
  866. if (sk->sk_type == SOCK_STREAM &&
  867. skb->truesize >= sk->sk_rcvbuf / 4) {
  868. rc = iucv_fragment_skb(sk, skb, len);
  869. kfree_skb(skb);
  870. skb = NULL;
  871. if (rc) {
  872. iucv_path_sever(path, NULL);
  873. return;
  874. }
  875. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  876. } else {
  877. skb_reset_transport_header(skb);
  878. skb_reset_network_header(skb);
  879. skb->len = len;
  880. }
  881. }
  882. if (sock_queue_rcv_skb(sk, skb))
  883. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  884. }
  885. static void iucv_process_message_q(struct sock *sk)
  886. {
  887. struct iucv_sock *iucv = iucv_sk(sk);
  888. struct sk_buff *skb;
  889. struct sock_msg_q *p, *n;
  890. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  891. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  892. if (!skb)
  893. break;
  894. iucv_process_message(sk, skb, p->path, &p->msg);
  895. list_del(&p->list);
  896. kfree(p);
  897. if (!skb_queue_empty(&iucv->backlog_skb_q))
  898. break;
  899. }
  900. }
  901. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  902. struct msghdr *msg, size_t len, int flags)
  903. {
  904. int noblock = flags & MSG_DONTWAIT;
  905. struct sock *sk = sock->sk;
  906. struct iucv_sock *iucv = iucv_sk(sk);
  907. unsigned int copied, rlen;
  908. struct sk_buff *skb, *rskb, *cskb;
  909. int err = 0;
  910. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  911. skb_queue_empty(&iucv->backlog_skb_q) &&
  912. skb_queue_empty(&sk->sk_receive_queue) &&
  913. list_empty(&iucv->message_q.list))
  914. return 0;
  915. if (flags & (MSG_OOB))
  916. return -EOPNOTSUPP;
  917. /* receive/dequeue next skb:
  918. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  919. skb = skb_recv_datagram(sk, flags, noblock, &err);
  920. if (!skb) {
  921. if (sk->sk_shutdown & RCV_SHUTDOWN)
  922. return 0;
  923. return err;
  924. }
  925. rlen = skb->len; /* real length of skb */
  926. copied = min_t(unsigned int, rlen, len);
  927. cskb = skb;
  928. if (memcpy_toiovec(msg->msg_iov, cskb->data, copied)) {
  929. if (!(flags & MSG_PEEK))
  930. skb_queue_head(&sk->sk_receive_queue, skb);
  931. return -EFAULT;
  932. }
  933. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  934. if (sk->sk_type == SOCK_SEQPACKET) {
  935. if (copied < rlen)
  936. msg->msg_flags |= MSG_TRUNC;
  937. /* each iucv message contains a complete record */
  938. msg->msg_flags |= MSG_EOR;
  939. }
  940. /* create control message to store iucv msg target class:
  941. * get the trgcls from the control buffer of the skb due to
  942. * fragmentation of original iucv message. */
  943. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  944. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  945. if (err) {
  946. if (!(flags & MSG_PEEK))
  947. skb_queue_head(&sk->sk_receive_queue, skb);
  948. return err;
  949. }
  950. /* Mark read part of skb as used */
  951. if (!(flags & MSG_PEEK)) {
  952. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  953. if (sk->sk_type == SOCK_STREAM) {
  954. skb_pull(skb, copied);
  955. if (skb->len) {
  956. skb_queue_head(&sk->sk_receive_queue, skb);
  957. goto done;
  958. }
  959. }
  960. kfree_skb(skb);
  961. /* Queue backlog skbs */
  962. rskb = skb_dequeue(&iucv->backlog_skb_q);
  963. while (rskb) {
  964. if (sock_queue_rcv_skb(sk, rskb)) {
  965. skb_queue_head(&iucv->backlog_skb_q,
  966. rskb);
  967. break;
  968. } else {
  969. rskb = skb_dequeue(&iucv->backlog_skb_q);
  970. }
  971. }
  972. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  973. spin_lock_bh(&iucv->message_q.lock);
  974. if (!list_empty(&iucv->message_q.list))
  975. iucv_process_message_q(sk);
  976. spin_unlock_bh(&iucv->message_q.lock);
  977. }
  978. }
  979. done:
  980. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  981. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  982. copied = rlen;
  983. return copied;
  984. }
  985. static inline unsigned int iucv_accept_poll(struct sock *parent)
  986. {
  987. struct iucv_sock *isk, *n;
  988. struct sock *sk;
  989. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  990. sk = (struct sock *) isk;
  991. if (sk->sk_state == IUCV_CONNECTED)
  992. return POLLIN | POLLRDNORM;
  993. }
  994. return 0;
  995. }
  996. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  997. poll_table *wait)
  998. {
  999. struct sock *sk = sock->sk;
  1000. unsigned int mask = 0;
  1001. poll_wait(file, sk->sk_sleep, wait);
  1002. if (sk->sk_state == IUCV_LISTEN)
  1003. return iucv_accept_poll(sk);
  1004. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1005. mask |= POLLERR;
  1006. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1007. mask |= POLLRDHUP;
  1008. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1009. mask |= POLLHUP;
  1010. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1011. (sk->sk_shutdown & RCV_SHUTDOWN))
  1012. mask |= POLLIN | POLLRDNORM;
  1013. if (sk->sk_state == IUCV_CLOSED)
  1014. mask |= POLLHUP;
  1015. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  1016. mask |= POLLIN;
  1017. if (sock_writeable(sk))
  1018. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1019. else
  1020. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1021. return mask;
  1022. }
  1023. static int iucv_sock_shutdown(struct socket *sock, int how)
  1024. {
  1025. struct sock *sk = sock->sk;
  1026. struct iucv_sock *iucv = iucv_sk(sk);
  1027. struct iucv_message txmsg;
  1028. int err = 0;
  1029. how++;
  1030. if ((how & ~SHUTDOWN_MASK) || !how)
  1031. return -EINVAL;
  1032. lock_sock(sk);
  1033. switch (sk->sk_state) {
  1034. case IUCV_DISCONN:
  1035. case IUCV_CLOSING:
  1036. case IUCV_SEVERED:
  1037. case IUCV_CLOSED:
  1038. err = -ENOTCONN;
  1039. goto fail;
  1040. default:
  1041. sk->sk_shutdown |= how;
  1042. break;
  1043. }
  1044. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1045. txmsg.class = 0;
  1046. txmsg.tag = 0;
  1047. err = iucv_message_send(iucv->path, &txmsg, IUCV_IPRMDATA, 0,
  1048. (void *) iprm_shutdown, 8);
  1049. if (err) {
  1050. switch (err) {
  1051. case 1:
  1052. err = -ENOTCONN;
  1053. break;
  1054. case 2:
  1055. err = -ECONNRESET;
  1056. break;
  1057. default:
  1058. err = -ENOTCONN;
  1059. break;
  1060. }
  1061. }
  1062. }
  1063. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1064. err = iucv_path_quiesce(iucv_sk(sk)->path, NULL);
  1065. if (err)
  1066. err = -ENOTCONN;
  1067. skb_queue_purge(&sk->sk_receive_queue);
  1068. }
  1069. /* Wake up anyone sleeping in poll */
  1070. sk->sk_state_change(sk);
  1071. fail:
  1072. release_sock(sk);
  1073. return err;
  1074. }
  1075. static int iucv_sock_release(struct socket *sock)
  1076. {
  1077. struct sock *sk = sock->sk;
  1078. int err = 0;
  1079. if (!sk)
  1080. return 0;
  1081. iucv_sock_close(sk);
  1082. /* Unregister with IUCV base support */
  1083. if (iucv_sk(sk)->path) {
  1084. iucv_path_sever(iucv_sk(sk)->path, NULL);
  1085. iucv_path_free(iucv_sk(sk)->path);
  1086. iucv_sk(sk)->path = NULL;
  1087. }
  1088. sock_orphan(sk);
  1089. iucv_sock_kill(sk);
  1090. return err;
  1091. }
  1092. /* getsockopt and setsockopt */
  1093. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1094. char __user *optval, int optlen)
  1095. {
  1096. struct sock *sk = sock->sk;
  1097. struct iucv_sock *iucv = iucv_sk(sk);
  1098. int val;
  1099. int rc;
  1100. if (level != SOL_IUCV)
  1101. return -ENOPROTOOPT;
  1102. if (optlen < sizeof(int))
  1103. return -EINVAL;
  1104. if (get_user(val, (int __user *) optval))
  1105. return -EFAULT;
  1106. rc = 0;
  1107. lock_sock(sk);
  1108. switch (optname) {
  1109. case SO_IPRMDATA_MSG:
  1110. if (val)
  1111. iucv->flags |= IUCV_IPRMDATA;
  1112. else
  1113. iucv->flags &= ~IUCV_IPRMDATA;
  1114. break;
  1115. case SO_MSGLIMIT:
  1116. switch (sk->sk_state) {
  1117. case IUCV_OPEN:
  1118. case IUCV_BOUND:
  1119. if (val < 1 || val > (u16)(~0))
  1120. rc = -EINVAL;
  1121. else
  1122. iucv->msglimit = val;
  1123. break;
  1124. default:
  1125. rc = -EINVAL;
  1126. break;
  1127. }
  1128. break;
  1129. default:
  1130. rc = -ENOPROTOOPT;
  1131. break;
  1132. }
  1133. release_sock(sk);
  1134. return rc;
  1135. }
  1136. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1137. char __user *optval, int __user *optlen)
  1138. {
  1139. struct sock *sk = sock->sk;
  1140. struct iucv_sock *iucv = iucv_sk(sk);
  1141. int val, len;
  1142. if (level != SOL_IUCV)
  1143. return -ENOPROTOOPT;
  1144. if (get_user(len, optlen))
  1145. return -EFAULT;
  1146. if (len < 0)
  1147. return -EINVAL;
  1148. len = min_t(unsigned int, len, sizeof(int));
  1149. switch (optname) {
  1150. case SO_IPRMDATA_MSG:
  1151. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1152. break;
  1153. case SO_MSGLIMIT:
  1154. lock_sock(sk);
  1155. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1156. : iucv->msglimit; /* default */
  1157. release_sock(sk);
  1158. break;
  1159. default:
  1160. return -ENOPROTOOPT;
  1161. }
  1162. if (put_user(len, optlen))
  1163. return -EFAULT;
  1164. if (copy_to_user(optval, &val, len))
  1165. return -EFAULT;
  1166. return 0;
  1167. }
  1168. /* Callback wrappers - called from iucv base support */
  1169. static int iucv_callback_connreq(struct iucv_path *path,
  1170. u8 ipvmid[8], u8 ipuser[16])
  1171. {
  1172. unsigned char user_data[16];
  1173. unsigned char nuser_data[16];
  1174. unsigned char src_name[8];
  1175. struct hlist_node *node;
  1176. struct sock *sk, *nsk;
  1177. struct iucv_sock *iucv, *niucv;
  1178. int err;
  1179. memcpy(src_name, ipuser, 8);
  1180. EBCASC(src_name, 8);
  1181. /* Find out if this path belongs to af_iucv. */
  1182. read_lock(&iucv_sk_list.lock);
  1183. iucv = NULL;
  1184. sk = NULL;
  1185. sk_for_each(sk, node, &iucv_sk_list.head)
  1186. if (sk->sk_state == IUCV_LISTEN &&
  1187. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1188. /*
  1189. * Found a listening socket with
  1190. * src_name == ipuser[0-7].
  1191. */
  1192. iucv = iucv_sk(sk);
  1193. break;
  1194. }
  1195. read_unlock(&iucv_sk_list.lock);
  1196. if (!iucv)
  1197. /* No socket found, not one of our paths. */
  1198. return -EINVAL;
  1199. bh_lock_sock(sk);
  1200. /* Check if parent socket is listening */
  1201. low_nmcpy(user_data, iucv->src_name);
  1202. high_nmcpy(user_data, iucv->dst_name);
  1203. ASCEBC(user_data, sizeof(user_data));
  1204. if (sk->sk_state != IUCV_LISTEN) {
  1205. err = iucv_path_sever(path, user_data);
  1206. iucv_path_free(path);
  1207. goto fail;
  1208. }
  1209. /* Check for backlog size */
  1210. if (sk_acceptq_is_full(sk)) {
  1211. err = iucv_path_sever(path, user_data);
  1212. iucv_path_free(path);
  1213. goto fail;
  1214. }
  1215. /* Create the new socket */
  1216. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1217. if (!nsk) {
  1218. err = iucv_path_sever(path, user_data);
  1219. iucv_path_free(path);
  1220. goto fail;
  1221. }
  1222. niucv = iucv_sk(nsk);
  1223. iucv_sock_init(nsk, sk);
  1224. /* Set the new iucv_sock */
  1225. memcpy(niucv->dst_name, ipuser + 8, 8);
  1226. EBCASC(niucv->dst_name, 8);
  1227. memcpy(niucv->dst_user_id, ipvmid, 8);
  1228. memcpy(niucv->src_name, iucv->src_name, 8);
  1229. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1230. niucv->path = path;
  1231. /* Call iucv_accept */
  1232. high_nmcpy(nuser_data, ipuser + 8);
  1233. memcpy(nuser_data + 8, niucv->src_name, 8);
  1234. ASCEBC(nuser_data + 8, 8);
  1235. /* set message limit for path based on msglimit of accepting socket */
  1236. niucv->msglimit = iucv->msglimit;
  1237. path->msglim = iucv->msglimit;
  1238. err = iucv_path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1239. if (err) {
  1240. err = iucv_path_sever(path, user_data);
  1241. iucv_path_free(path);
  1242. iucv_sock_kill(nsk);
  1243. goto fail;
  1244. }
  1245. iucv_accept_enqueue(sk, nsk);
  1246. /* Wake up accept */
  1247. nsk->sk_state = IUCV_CONNECTED;
  1248. sk->sk_data_ready(sk, 1);
  1249. err = 0;
  1250. fail:
  1251. bh_unlock_sock(sk);
  1252. return 0;
  1253. }
  1254. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1255. {
  1256. struct sock *sk = path->private;
  1257. sk->sk_state = IUCV_CONNECTED;
  1258. sk->sk_state_change(sk);
  1259. }
  1260. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1261. {
  1262. struct sock *sk = path->private;
  1263. struct iucv_sock *iucv = iucv_sk(sk);
  1264. struct sk_buff *skb;
  1265. struct sock_msg_q *save_msg;
  1266. int len;
  1267. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1268. iucv_message_reject(path, msg);
  1269. return;
  1270. }
  1271. spin_lock(&iucv->message_q.lock);
  1272. if (!list_empty(&iucv->message_q.list) ||
  1273. !skb_queue_empty(&iucv->backlog_skb_q))
  1274. goto save_message;
  1275. len = atomic_read(&sk->sk_rmem_alloc);
  1276. len += iucv_msg_length(msg) + sizeof(struct sk_buff);
  1277. if (len > sk->sk_rcvbuf)
  1278. goto save_message;
  1279. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1280. if (!skb)
  1281. goto save_message;
  1282. iucv_process_message(sk, skb, path, msg);
  1283. goto out_unlock;
  1284. save_message:
  1285. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1286. if (!save_msg)
  1287. return;
  1288. save_msg->path = path;
  1289. save_msg->msg = *msg;
  1290. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1291. out_unlock:
  1292. spin_unlock(&iucv->message_q.lock);
  1293. }
  1294. static void iucv_callback_txdone(struct iucv_path *path,
  1295. struct iucv_message *msg)
  1296. {
  1297. struct sock *sk = path->private;
  1298. struct sk_buff *this = NULL;
  1299. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1300. struct sk_buff *list_skb = list->next;
  1301. unsigned long flags;
  1302. if (!skb_queue_empty(list)) {
  1303. spin_lock_irqsave(&list->lock, flags);
  1304. while (list_skb != (struct sk_buff *)list) {
  1305. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1306. this = list_skb;
  1307. break;
  1308. }
  1309. list_skb = list_skb->next;
  1310. }
  1311. if (this)
  1312. __skb_unlink(this, list);
  1313. spin_unlock_irqrestore(&list->lock, flags);
  1314. kfree_skb(this);
  1315. }
  1316. BUG_ON(!this);
  1317. if (sk->sk_state == IUCV_CLOSING) {
  1318. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1319. sk->sk_state = IUCV_CLOSED;
  1320. sk->sk_state_change(sk);
  1321. }
  1322. }
  1323. }
  1324. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1325. {
  1326. struct sock *sk = path->private;
  1327. if (!list_empty(&iucv_sk(sk)->accept_q))
  1328. sk->sk_state = IUCV_SEVERED;
  1329. else
  1330. sk->sk_state = IUCV_DISCONN;
  1331. sk->sk_state_change(sk);
  1332. }
  1333. /* called if the other communication side shuts down its RECV direction;
  1334. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1335. */
  1336. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1337. {
  1338. struct sock *sk = path->private;
  1339. bh_lock_sock(sk);
  1340. if (sk->sk_state != IUCV_CLOSED) {
  1341. sk->sk_shutdown |= SEND_SHUTDOWN;
  1342. sk->sk_state_change(sk);
  1343. }
  1344. bh_unlock_sock(sk);
  1345. }
  1346. static struct proto_ops iucv_sock_ops = {
  1347. .family = PF_IUCV,
  1348. .owner = THIS_MODULE,
  1349. .release = iucv_sock_release,
  1350. .bind = iucv_sock_bind,
  1351. .connect = iucv_sock_connect,
  1352. .listen = iucv_sock_listen,
  1353. .accept = iucv_sock_accept,
  1354. .getname = iucv_sock_getname,
  1355. .sendmsg = iucv_sock_sendmsg,
  1356. .recvmsg = iucv_sock_recvmsg,
  1357. .poll = iucv_sock_poll,
  1358. .ioctl = sock_no_ioctl,
  1359. .mmap = sock_no_mmap,
  1360. .socketpair = sock_no_socketpair,
  1361. .shutdown = iucv_sock_shutdown,
  1362. .setsockopt = iucv_sock_setsockopt,
  1363. .getsockopt = iucv_sock_getsockopt,
  1364. };
  1365. static struct net_proto_family iucv_sock_family_ops = {
  1366. .family = AF_IUCV,
  1367. .owner = THIS_MODULE,
  1368. .create = iucv_sock_create,
  1369. };
  1370. static int __init afiucv_init(void)
  1371. {
  1372. int err;
  1373. if (!MACHINE_IS_VM) {
  1374. pr_err("The af_iucv module cannot be loaded"
  1375. " without z/VM\n");
  1376. err = -EPROTONOSUPPORT;
  1377. goto out;
  1378. }
  1379. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  1380. if (unlikely(err)) {
  1381. WARN_ON(err);
  1382. err = -EPROTONOSUPPORT;
  1383. goto out;
  1384. }
  1385. err = iucv_register(&af_iucv_handler, 0);
  1386. if (err)
  1387. goto out;
  1388. err = proto_register(&iucv_proto, 0);
  1389. if (err)
  1390. goto out_iucv;
  1391. err = sock_register(&iucv_sock_family_ops);
  1392. if (err)
  1393. goto out_proto;
  1394. /* establish dummy device */
  1395. err = driver_register(&af_iucv_driver);
  1396. if (err)
  1397. goto out_sock;
  1398. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  1399. if (!af_iucv_dev) {
  1400. err = -ENOMEM;
  1401. goto out_driver;
  1402. }
  1403. dev_set_name(af_iucv_dev, "af_iucv");
  1404. af_iucv_dev->bus = &iucv_bus;
  1405. af_iucv_dev->parent = iucv_root;
  1406. af_iucv_dev->release = (void (*)(struct device *))kfree;
  1407. af_iucv_dev->driver = &af_iucv_driver;
  1408. err = device_register(af_iucv_dev);
  1409. if (err)
  1410. goto out_driver;
  1411. return 0;
  1412. out_driver:
  1413. driver_unregister(&af_iucv_driver);
  1414. out_sock:
  1415. sock_unregister(PF_IUCV);
  1416. out_proto:
  1417. proto_unregister(&iucv_proto);
  1418. out_iucv:
  1419. iucv_unregister(&af_iucv_handler, 0);
  1420. out:
  1421. return err;
  1422. }
  1423. static void __exit afiucv_exit(void)
  1424. {
  1425. device_unregister(af_iucv_dev);
  1426. driver_unregister(&af_iucv_driver);
  1427. sock_unregister(PF_IUCV);
  1428. proto_unregister(&iucv_proto);
  1429. iucv_unregister(&af_iucv_handler, 0);
  1430. }
  1431. module_init(afiucv_init);
  1432. module_exit(afiucv_exit);
  1433. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  1434. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  1435. MODULE_VERSION(VERSION);
  1436. MODULE_LICENSE("GPL");
  1437. MODULE_ALIAS_NETPROTO(PF_IUCV);