tlbex.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  9. * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. * Copyright (C) 2008, 2009 Cavium Networks, Inc.
  12. * Copyright (C) 2011 MIPS Technologies, Inc.
  13. *
  14. * ... and the days got worse and worse and now you see
  15. * I've gone completly out of my mind.
  16. *
  17. * They're coming to take me a away haha
  18. * they're coming to take me a away hoho hihi haha
  19. * to the funny farm where code is beautiful all the time ...
  20. *
  21. * (Condolences to Napoleon XIV)
  22. */
  23. #include <linux/bug.h>
  24. #include <linux/kernel.h>
  25. #include <linux/types.h>
  26. #include <linux/smp.h>
  27. #include <linux/string.h>
  28. #include <linux/init.h>
  29. #include <linux/cache.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu-type.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/war.h>
  34. #include <asm/uasm.h>
  35. #include <asm/setup.h>
  36. /*
  37. * TLB load/store/modify handlers.
  38. *
  39. * Only the fastpath gets synthesized at runtime, the slowpath for
  40. * do_page_fault remains normal asm.
  41. */
  42. extern void tlb_do_page_fault_0(void);
  43. extern void tlb_do_page_fault_1(void);
  44. struct work_registers {
  45. int r1;
  46. int r2;
  47. int r3;
  48. };
  49. struct tlb_reg_save {
  50. unsigned long a;
  51. unsigned long b;
  52. } ____cacheline_aligned_in_smp;
  53. static struct tlb_reg_save handler_reg_save[NR_CPUS];
  54. static inline int r45k_bvahwbug(void)
  55. {
  56. /* XXX: We should probe for the presence of this bug, but we don't. */
  57. return 0;
  58. }
  59. static inline int r4k_250MHZhwbug(void)
  60. {
  61. /* XXX: We should probe for the presence of this bug, but we don't. */
  62. return 0;
  63. }
  64. static inline int __maybe_unused bcm1250_m3_war(void)
  65. {
  66. return BCM1250_M3_WAR;
  67. }
  68. static inline int __maybe_unused r10000_llsc_war(void)
  69. {
  70. return R10000_LLSC_WAR;
  71. }
  72. static int use_bbit_insns(void)
  73. {
  74. switch (current_cpu_type()) {
  75. case CPU_CAVIUM_OCTEON:
  76. case CPU_CAVIUM_OCTEON_PLUS:
  77. case CPU_CAVIUM_OCTEON2:
  78. case CPU_CAVIUM_OCTEON3:
  79. return 1;
  80. default:
  81. return 0;
  82. }
  83. }
  84. static int use_lwx_insns(void)
  85. {
  86. switch (current_cpu_type()) {
  87. case CPU_CAVIUM_OCTEON2:
  88. case CPU_CAVIUM_OCTEON3:
  89. return 1;
  90. default:
  91. return 0;
  92. }
  93. }
  94. #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
  95. CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
  96. static bool scratchpad_available(void)
  97. {
  98. return true;
  99. }
  100. static int scratchpad_offset(int i)
  101. {
  102. /*
  103. * CVMSEG starts at address -32768 and extends for
  104. * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
  105. */
  106. i += 1; /* Kernel use starts at the top and works down. */
  107. return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
  108. }
  109. #else
  110. static bool scratchpad_available(void)
  111. {
  112. return false;
  113. }
  114. static int scratchpad_offset(int i)
  115. {
  116. BUG();
  117. /* Really unreachable, but evidently some GCC want this. */
  118. return 0;
  119. }
  120. #endif
  121. /*
  122. * Found by experiment: At least some revisions of the 4kc throw under
  123. * some circumstances a machine check exception, triggered by invalid
  124. * values in the index register. Delaying the tlbp instruction until
  125. * after the next branch, plus adding an additional nop in front of
  126. * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
  127. * why; it's not an issue caused by the core RTL.
  128. *
  129. */
  130. static int m4kc_tlbp_war(void)
  131. {
  132. return (current_cpu_data.processor_id & 0xffff00) ==
  133. (PRID_COMP_MIPS | PRID_IMP_4KC);
  134. }
  135. /* Handle labels (which must be positive integers). */
  136. enum label_id {
  137. label_second_part = 1,
  138. label_leave,
  139. label_vmalloc,
  140. label_vmalloc_done,
  141. label_tlbw_hazard_0,
  142. label_split = label_tlbw_hazard_0 + 8,
  143. label_tlbl_goaround1,
  144. label_tlbl_goaround2,
  145. label_nopage_tlbl,
  146. label_nopage_tlbs,
  147. label_nopage_tlbm,
  148. label_smp_pgtable_change,
  149. label_r3000_write_probe_fail,
  150. label_large_segbits_fault,
  151. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  152. label_tlb_huge_update,
  153. #endif
  154. };
  155. UASM_L_LA(_second_part)
  156. UASM_L_LA(_leave)
  157. UASM_L_LA(_vmalloc)
  158. UASM_L_LA(_vmalloc_done)
  159. /* _tlbw_hazard_x is handled differently. */
  160. UASM_L_LA(_split)
  161. UASM_L_LA(_tlbl_goaround1)
  162. UASM_L_LA(_tlbl_goaround2)
  163. UASM_L_LA(_nopage_tlbl)
  164. UASM_L_LA(_nopage_tlbs)
  165. UASM_L_LA(_nopage_tlbm)
  166. UASM_L_LA(_smp_pgtable_change)
  167. UASM_L_LA(_r3000_write_probe_fail)
  168. UASM_L_LA(_large_segbits_fault)
  169. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  170. UASM_L_LA(_tlb_huge_update)
  171. #endif
  172. static int hazard_instance;
  173. static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
  174. {
  175. switch (instance) {
  176. case 0 ... 7:
  177. uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
  178. return;
  179. default:
  180. BUG();
  181. }
  182. }
  183. static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
  184. {
  185. switch (instance) {
  186. case 0 ... 7:
  187. uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
  188. break;
  189. default:
  190. BUG();
  191. }
  192. }
  193. /*
  194. * pgtable bits are assigned dynamically depending on processor feature
  195. * and statically based on kernel configuration. This spits out the actual
  196. * values the kernel is using. Required to make sense from disassembled
  197. * TLB exception handlers.
  198. */
  199. static void output_pgtable_bits_defines(void)
  200. {
  201. #define pr_define(fmt, ...) \
  202. pr_debug("#define " fmt, ##__VA_ARGS__)
  203. pr_debug("#include <asm/asm.h>\n");
  204. pr_debug("#include <asm/regdef.h>\n");
  205. pr_debug("\n");
  206. pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
  207. pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
  208. pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
  209. pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
  210. pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
  211. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  212. pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
  213. pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
  214. #endif
  215. if (cpu_has_rixi) {
  216. #ifdef _PAGE_NO_EXEC_SHIFT
  217. pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
  218. #endif
  219. #ifdef _PAGE_NO_READ_SHIFT
  220. pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
  221. #endif
  222. }
  223. pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
  224. pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
  225. pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
  226. pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
  227. pr_debug("\n");
  228. }
  229. static inline void dump_handler(const char *symbol, const u32 *handler, int count)
  230. {
  231. int i;
  232. pr_debug("LEAF(%s)\n", symbol);
  233. pr_debug("\t.set push\n");
  234. pr_debug("\t.set noreorder\n");
  235. for (i = 0; i < count; i++)
  236. pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
  237. pr_debug("\t.set\tpop\n");
  238. pr_debug("\tEND(%s)\n", symbol);
  239. }
  240. /* The only general purpose registers allowed in TLB handlers. */
  241. #define K0 26
  242. #define K1 27
  243. /* Some CP0 registers */
  244. #define C0_INDEX 0, 0
  245. #define C0_ENTRYLO0 2, 0
  246. #define C0_TCBIND 2, 2
  247. #define C0_ENTRYLO1 3, 0
  248. #define C0_CONTEXT 4, 0
  249. #define C0_PAGEMASK 5, 0
  250. #define C0_BADVADDR 8, 0
  251. #define C0_ENTRYHI 10, 0
  252. #define C0_EPC 14, 0
  253. #define C0_XCONTEXT 20, 0
  254. #ifdef CONFIG_64BIT
  255. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
  256. #else
  257. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
  258. #endif
  259. /* The worst case length of the handler is around 18 instructions for
  260. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  261. * Maximum space available is 32 instructions for R3000 and 64
  262. * instructions for R4000.
  263. *
  264. * We deliberately chose a buffer size of 128, so we won't scribble
  265. * over anything important on overflow before we panic.
  266. */
  267. static u32 tlb_handler[128];
  268. /* simply assume worst case size for labels and relocs */
  269. static struct uasm_label labels[128];
  270. static struct uasm_reloc relocs[128];
  271. static int check_for_high_segbits;
  272. static unsigned int kscratch_used_mask;
  273. static inline int __maybe_unused c0_kscratch(void)
  274. {
  275. switch (current_cpu_type()) {
  276. case CPU_XLP:
  277. case CPU_XLR:
  278. return 22;
  279. default:
  280. return 31;
  281. }
  282. }
  283. static int allocate_kscratch(void)
  284. {
  285. int r;
  286. unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
  287. r = ffs(a);
  288. if (r == 0)
  289. return -1;
  290. r--; /* make it zero based */
  291. kscratch_used_mask |= (1 << r);
  292. return r;
  293. }
  294. static int scratch_reg;
  295. static int pgd_reg;
  296. enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
  297. static struct work_registers build_get_work_registers(u32 **p)
  298. {
  299. struct work_registers r;
  300. if (scratch_reg >= 0) {
  301. /* Save in CPU local C0_KScratch? */
  302. UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
  303. r.r1 = K0;
  304. r.r2 = K1;
  305. r.r3 = 1;
  306. return r;
  307. }
  308. if (num_possible_cpus() > 1) {
  309. /* Get smp_processor_id */
  310. UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
  311. UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
  312. /* handler_reg_save index in K0 */
  313. UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
  314. UASM_i_LA(p, K1, (long)&handler_reg_save);
  315. UASM_i_ADDU(p, K0, K0, K1);
  316. } else {
  317. UASM_i_LA(p, K0, (long)&handler_reg_save);
  318. }
  319. /* K0 now points to save area, save $1 and $2 */
  320. UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  321. UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  322. r.r1 = K1;
  323. r.r2 = 1;
  324. r.r3 = 2;
  325. return r;
  326. }
  327. static void build_restore_work_registers(u32 **p)
  328. {
  329. if (scratch_reg >= 0) {
  330. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  331. return;
  332. }
  333. /* K0 already points to save area, restore $1 and $2 */
  334. UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  335. UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  336. }
  337. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  338. /*
  339. * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
  340. * we cannot do r3000 under these circumstances.
  341. *
  342. * Declare pgd_current here instead of including mmu_context.h to avoid type
  343. * conflicts for tlbmiss_handler_setup_pgd
  344. */
  345. extern unsigned long pgd_current[];
  346. /*
  347. * The R3000 TLB handler is simple.
  348. */
  349. static void build_r3000_tlb_refill_handler(void)
  350. {
  351. long pgdc = (long)pgd_current;
  352. u32 *p;
  353. memset(tlb_handler, 0, sizeof(tlb_handler));
  354. p = tlb_handler;
  355. uasm_i_mfc0(&p, K0, C0_BADVADDR);
  356. uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
  357. uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
  358. uasm_i_srl(&p, K0, K0, 22); /* load delay */
  359. uasm_i_sll(&p, K0, K0, 2);
  360. uasm_i_addu(&p, K1, K1, K0);
  361. uasm_i_mfc0(&p, K0, C0_CONTEXT);
  362. uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
  363. uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
  364. uasm_i_addu(&p, K1, K1, K0);
  365. uasm_i_lw(&p, K0, 0, K1);
  366. uasm_i_nop(&p); /* load delay */
  367. uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
  368. uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  369. uasm_i_tlbwr(&p); /* cp0 delay */
  370. uasm_i_jr(&p, K1);
  371. uasm_i_rfe(&p); /* branch delay */
  372. if (p > tlb_handler + 32)
  373. panic("TLB refill handler space exceeded");
  374. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  375. (unsigned int)(p - tlb_handler));
  376. memcpy((void *)ebase, tlb_handler, 0x80);
  377. dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
  378. }
  379. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  380. /*
  381. * The R4000 TLB handler is much more complicated. We have two
  382. * consecutive handler areas with 32 instructions space each.
  383. * Since they aren't used at the same time, we can overflow in the
  384. * other one.To keep things simple, we first assume linear space,
  385. * then we relocate it to the final handler layout as needed.
  386. */
  387. static u32 final_handler[64];
  388. /*
  389. * Hazards
  390. *
  391. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  392. * 2. A timing hazard exists for the TLBP instruction.
  393. *
  394. * stalling_instruction
  395. * TLBP
  396. *
  397. * The JTLB is being read for the TLBP throughout the stall generated by the
  398. * previous instruction. This is not really correct as the stalling instruction
  399. * can modify the address used to access the JTLB. The failure symptom is that
  400. * the TLBP instruction will use an address created for the stalling instruction
  401. * and not the address held in C0_ENHI and thus report the wrong results.
  402. *
  403. * The software work-around is to not allow the instruction preceding the TLBP
  404. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  405. *
  406. * Errata 2 will not be fixed. This errata is also on the R5000.
  407. *
  408. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  409. */
  410. static void __maybe_unused build_tlb_probe_entry(u32 **p)
  411. {
  412. switch (current_cpu_type()) {
  413. /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
  414. case CPU_R4600:
  415. case CPU_R4700:
  416. case CPU_R5000:
  417. case CPU_NEVADA:
  418. uasm_i_nop(p);
  419. uasm_i_tlbp(p);
  420. break;
  421. default:
  422. uasm_i_tlbp(p);
  423. break;
  424. }
  425. }
  426. /*
  427. * Write random or indexed TLB entry, and care about the hazards from
  428. * the preceding mtc0 and for the following eret.
  429. */
  430. enum tlb_write_entry { tlb_random, tlb_indexed };
  431. static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
  432. struct uasm_reloc **r,
  433. enum tlb_write_entry wmode)
  434. {
  435. void(*tlbw)(u32 **) = NULL;
  436. switch (wmode) {
  437. case tlb_random: tlbw = uasm_i_tlbwr; break;
  438. case tlb_indexed: tlbw = uasm_i_tlbwi; break;
  439. }
  440. if (cpu_has_mips_r2) {
  441. /*
  442. * The architecture spec says an ehb is required here,
  443. * but a number of cores do not have the hazard and
  444. * using an ehb causes an expensive pipeline stall.
  445. */
  446. switch (current_cpu_type()) {
  447. case CPU_M14KC:
  448. case CPU_74K:
  449. break;
  450. default:
  451. uasm_i_ehb(p);
  452. break;
  453. }
  454. tlbw(p);
  455. return;
  456. }
  457. switch (current_cpu_type()) {
  458. case CPU_R4000PC:
  459. case CPU_R4000SC:
  460. case CPU_R4000MC:
  461. case CPU_R4400PC:
  462. case CPU_R4400SC:
  463. case CPU_R4400MC:
  464. /*
  465. * This branch uses up a mtc0 hazard nop slot and saves
  466. * two nops after the tlbw instruction.
  467. */
  468. uasm_bgezl_hazard(p, r, hazard_instance);
  469. tlbw(p);
  470. uasm_bgezl_label(l, p, hazard_instance);
  471. hazard_instance++;
  472. uasm_i_nop(p);
  473. break;
  474. case CPU_R4600:
  475. case CPU_R4700:
  476. uasm_i_nop(p);
  477. tlbw(p);
  478. uasm_i_nop(p);
  479. break;
  480. case CPU_R5000:
  481. case CPU_NEVADA:
  482. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  483. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  484. tlbw(p);
  485. break;
  486. case CPU_R4300:
  487. case CPU_5KC:
  488. case CPU_TX49XX:
  489. case CPU_PR4450:
  490. case CPU_XLR:
  491. uasm_i_nop(p);
  492. tlbw(p);
  493. break;
  494. case CPU_R10000:
  495. case CPU_R12000:
  496. case CPU_R14000:
  497. case CPU_4KC:
  498. case CPU_4KEC:
  499. case CPU_M14KC:
  500. case CPU_M14KEC:
  501. case CPU_SB1:
  502. case CPU_SB1A:
  503. case CPU_4KSC:
  504. case CPU_20KC:
  505. case CPU_25KF:
  506. case CPU_BMIPS32:
  507. case CPU_BMIPS3300:
  508. case CPU_BMIPS4350:
  509. case CPU_BMIPS4380:
  510. case CPU_BMIPS5000:
  511. case CPU_LOONGSON2:
  512. case CPU_R5500:
  513. if (m4kc_tlbp_war())
  514. uasm_i_nop(p);
  515. case CPU_ALCHEMY:
  516. tlbw(p);
  517. break;
  518. case CPU_RM7000:
  519. uasm_i_nop(p);
  520. uasm_i_nop(p);
  521. uasm_i_nop(p);
  522. uasm_i_nop(p);
  523. tlbw(p);
  524. break;
  525. case CPU_VR4111:
  526. case CPU_VR4121:
  527. case CPU_VR4122:
  528. case CPU_VR4181:
  529. case CPU_VR4181A:
  530. uasm_i_nop(p);
  531. uasm_i_nop(p);
  532. tlbw(p);
  533. uasm_i_nop(p);
  534. uasm_i_nop(p);
  535. break;
  536. case CPU_VR4131:
  537. case CPU_VR4133:
  538. case CPU_R5432:
  539. uasm_i_nop(p);
  540. uasm_i_nop(p);
  541. tlbw(p);
  542. break;
  543. case CPU_JZRISC:
  544. tlbw(p);
  545. uasm_i_nop(p);
  546. break;
  547. default:
  548. panic("No TLB refill handler yet (CPU type: %d)",
  549. current_cpu_data.cputype);
  550. break;
  551. }
  552. }
  553. static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
  554. unsigned int reg)
  555. {
  556. if (cpu_has_rixi) {
  557. UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
  558. } else {
  559. #ifdef CONFIG_64BIT_PHYS_ADDR
  560. uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
  561. #else
  562. UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
  563. #endif
  564. }
  565. }
  566. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  567. static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
  568. unsigned int tmp, enum label_id lid,
  569. int restore_scratch)
  570. {
  571. if (restore_scratch) {
  572. /* Reset default page size */
  573. if (PM_DEFAULT_MASK >> 16) {
  574. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  575. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  576. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  577. uasm_il_b(p, r, lid);
  578. } else if (PM_DEFAULT_MASK) {
  579. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  580. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  581. uasm_il_b(p, r, lid);
  582. } else {
  583. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  584. uasm_il_b(p, r, lid);
  585. }
  586. if (scratch_reg >= 0)
  587. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  588. else
  589. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  590. } else {
  591. /* Reset default page size */
  592. if (PM_DEFAULT_MASK >> 16) {
  593. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  594. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  595. uasm_il_b(p, r, lid);
  596. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  597. } else if (PM_DEFAULT_MASK) {
  598. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  599. uasm_il_b(p, r, lid);
  600. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  601. } else {
  602. uasm_il_b(p, r, lid);
  603. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  604. }
  605. }
  606. }
  607. static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
  608. struct uasm_reloc **r,
  609. unsigned int tmp,
  610. enum tlb_write_entry wmode,
  611. int restore_scratch)
  612. {
  613. /* Set huge page tlb entry size */
  614. uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
  615. uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
  616. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  617. build_tlb_write_entry(p, l, r, wmode);
  618. build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
  619. }
  620. /*
  621. * Check if Huge PTE is present, if so then jump to LABEL.
  622. */
  623. static void
  624. build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
  625. unsigned int pmd, int lid)
  626. {
  627. UASM_i_LW(p, tmp, 0, pmd);
  628. if (use_bbit_insns()) {
  629. uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
  630. } else {
  631. uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
  632. uasm_il_bnez(p, r, tmp, lid);
  633. }
  634. }
  635. static void build_huge_update_entries(u32 **p, unsigned int pte,
  636. unsigned int tmp)
  637. {
  638. int small_sequence;
  639. /*
  640. * A huge PTE describes an area the size of the
  641. * configured huge page size. This is twice the
  642. * of the large TLB entry size we intend to use.
  643. * A TLB entry half the size of the configured
  644. * huge page size is configured into entrylo0
  645. * and entrylo1 to cover the contiguous huge PTE
  646. * address space.
  647. */
  648. small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
  649. /* We can clobber tmp. It isn't used after this.*/
  650. if (!small_sequence)
  651. uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
  652. build_convert_pte_to_entrylo(p, pte);
  653. UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
  654. /* convert to entrylo1 */
  655. if (small_sequence)
  656. UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
  657. else
  658. UASM_i_ADDU(p, pte, pte, tmp);
  659. UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
  660. }
  661. static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
  662. struct uasm_label **l,
  663. unsigned int pte,
  664. unsigned int ptr)
  665. {
  666. #ifdef CONFIG_SMP
  667. UASM_i_SC(p, pte, 0, ptr);
  668. uasm_il_beqz(p, r, pte, label_tlb_huge_update);
  669. UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
  670. #else
  671. UASM_i_SW(p, pte, 0, ptr);
  672. #endif
  673. build_huge_update_entries(p, pte, ptr);
  674. build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
  675. }
  676. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  677. #ifdef CONFIG_64BIT
  678. /*
  679. * TMP and PTR are scratch.
  680. * TMP will be clobbered, PTR will hold the pmd entry.
  681. */
  682. static void
  683. build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  684. unsigned int tmp, unsigned int ptr)
  685. {
  686. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  687. long pgdc = (long)pgd_current;
  688. #endif
  689. /*
  690. * The vmalloc handling is not in the hotpath.
  691. */
  692. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  693. if (check_for_high_segbits) {
  694. /*
  695. * The kernel currently implicitely assumes that the
  696. * MIPS SEGBITS parameter for the processor is
  697. * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
  698. * allocate virtual addresses outside the maximum
  699. * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
  700. * that doesn't prevent user code from accessing the
  701. * higher xuseg addresses. Here, we make sure that
  702. * everything but the lower xuseg addresses goes down
  703. * the module_alloc/vmalloc path.
  704. */
  705. uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  706. uasm_il_bnez(p, r, ptr, label_vmalloc);
  707. } else {
  708. uasm_il_bltz(p, r, tmp, label_vmalloc);
  709. }
  710. /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
  711. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  712. if (pgd_reg != -1) {
  713. /* pgd is in pgd_reg */
  714. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  715. } else {
  716. /*
  717. * &pgd << 11 stored in CONTEXT [23..63].
  718. */
  719. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  720. /* Clear lower 23 bits of context. */
  721. uasm_i_dins(p, ptr, 0, 0, 23);
  722. /* 1 0 1 0 1 << 6 xkphys cached */
  723. uasm_i_ori(p, ptr, ptr, 0x540);
  724. uasm_i_drotr(p, ptr, ptr, 11);
  725. }
  726. #elif defined(CONFIG_SMP)
  727. UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
  728. uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
  729. UASM_i_LA_mostly(p, tmp, pgdc);
  730. uasm_i_daddu(p, ptr, ptr, tmp);
  731. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  732. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  733. #else
  734. UASM_i_LA_mostly(p, ptr, pgdc);
  735. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  736. #endif
  737. uasm_l_vmalloc_done(l, *p);
  738. /* get pgd offset in bytes */
  739. uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
  740. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  741. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  742. #ifndef __PAGETABLE_PMD_FOLDED
  743. uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  744. uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  745. uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  746. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  747. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  748. #endif
  749. }
  750. /*
  751. * BVADDR is the faulting address, PTR is scratch.
  752. * PTR will hold the pgd for vmalloc.
  753. */
  754. static void
  755. build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  756. unsigned int bvaddr, unsigned int ptr,
  757. enum vmalloc64_mode mode)
  758. {
  759. long swpd = (long)swapper_pg_dir;
  760. int single_insn_swpd;
  761. int did_vmalloc_branch = 0;
  762. single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
  763. uasm_l_vmalloc(l, *p);
  764. if (mode != not_refill && check_for_high_segbits) {
  765. if (single_insn_swpd) {
  766. uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
  767. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  768. did_vmalloc_branch = 1;
  769. /* fall through */
  770. } else {
  771. uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
  772. }
  773. }
  774. if (!did_vmalloc_branch) {
  775. if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
  776. uasm_il_b(p, r, label_vmalloc_done);
  777. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  778. } else {
  779. UASM_i_LA_mostly(p, ptr, swpd);
  780. uasm_il_b(p, r, label_vmalloc_done);
  781. if (uasm_in_compat_space_p(swpd))
  782. uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
  783. else
  784. uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
  785. }
  786. }
  787. if (mode != not_refill && check_for_high_segbits) {
  788. uasm_l_large_segbits_fault(l, *p);
  789. /*
  790. * We get here if we are an xsseg address, or if we are
  791. * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
  792. *
  793. * Ignoring xsseg (assume disabled so would generate
  794. * (address errors?), the only remaining possibility
  795. * is the upper xuseg addresses. On processors with
  796. * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
  797. * addresses would have taken an address error. We try
  798. * to mimic that here by taking a load/istream page
  799. * fault.
  800. */
  801. UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
  802. uasm_i_jr(p, ptr);
  803. if (mode == refill_scratch) {
  804. if (scratch_reg >= 0)
  805. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  806. else
  807. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  808. } else {
  809. uasm_i_nop(p);
  810. }
  811. }
  812. }
  813. #else /* !CONFIG_64BIT */
  814. /*
  815. * TMP and PTR are scratch.
  816. * TMP will be clobbered, PTR will hold the pgd entry.
  817. */
  818. static void __maybe_unused
  819. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  820. {
  821. long pgdc = (long)pgd_current;
  822. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  823. #ifdef CONFIG_SMP
  824. uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
  825. UASM_i_LA_mostly(p, tmp, pgdc);
  826. uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
  827. uasm_i_addu(p, ptr, tmp, ptr);
  828. #else
  829. UASM_i_LA_mostly(p, ptr, pgdc);
  830. #endif
  831. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  832. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  833. uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  834. uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
  835. uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  836. }
  837. #endif /* !CONFIG_64BIT */
  838. static void build_adjust_context(u32 **p, unsigned int ctx)
  839. {
  840. unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
  841. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  842. switch (current_cpu_type()) {
  843. case CPU_VR41XX:
  844. case CPU_VR4111:
  845. case CPU_VR4121:
  846. case CPU_VR4122:
  847. case CPU_VR4131:
  848. case CPU_VR4181:
  849. case CPU_VR4181A:
  850. case CPU_VR4133:
  851. shift += 2;
  852. break;
  853. default:
  854. break;
  855. }
  856. if (shift)
  857. UASM_i_SRL(p, ctx, ctx, shift);
  858. uasm_i_andi(p, ctx, ctx, mask);
  859. }
  860. static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  861. {
  862. /*
  863. * Bug workaround for the Nevada. It seems as if under certain
  864. * circumstances the move from cp0_context might produce a
  865. * bogus result when the mfc0 instruction and its consumer are
  866. * in a different cacheline or a load instruction, probably any
  867. * memory reference, is between them.
  868. */
  869. switch (current_cpu_type()) {
  870. case CPU_NEVADA:
  871. UASM_i_LW(p, ptr, 0, ptr);
  872. GET_CONTEXT(p, tmp); /* get context reg */
  873. break;
  874. default:
  875. GET_CONTEXT(p, tmp); /* get context reg */
  876. UASM_i_LW(p, ptr, 0, ptr);
  877. break;
  878. }
  879. build_adjust_context(p, tmp);
  880. UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  881. }
  882. static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
  883. {
  884. /*
  885. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  886. * Kernel is a special case. Only a few CPUs use it.
  887. */
  888. #ifdef CONFIG_64BIT_PHYS_ADDR
  889. if (cpu_has_64bits) {
  890. uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
  891. uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  892. if (cpu_has_rixi) {
  893. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  894. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  895. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  896. } else {
  897. uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  898. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  899. uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  900. }
  901. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  902. } else {
  903. int pte_off_even = sizeof(pte_t) / 2;
  904. int pte_off_odd = pte_off_even + sizeof(pte_t);
  905. /* The pte entries are pre-shifted */
  906. uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  907. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  908. uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  909. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  910. }
  911. #else
  912. UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
  913. UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  914. if (r45k_bvahwbug())
  915. build_tlb_probe_entry(p);
  916. if (cpu_has_rixi) {
  917. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  918. if (r4k_250MHZhwbug())
  919. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  920. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  921. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  922. } else {
  923. UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  924. if (r4k_250MHZhwbug())
  925. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  926. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  927. UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  928. if (r45k_bvahwbug())
  929. uasm_i_mfc0(p, tmp, C0_INDEX);
  930. }
  931. if (r4k_250MHZhwbug())
  932. UASM_i_MTC0(p, 0, C0_ENTRYLO1);
  933. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  934. #endif
  935. }
  936. struct mips_huge_tlb_info {
  937. int huge_pte;
  938. int restore_scratch;
  939. };
  940. static struct mips_huge_tlb_info
  941. build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
  942. struct uasm_reloc **r, unsigned int tmp,
  943. unsigned int ptr, int c0_scratch_reg)
  944. {
  945. struct mips_huge_tlb_info rv;
  946. unsigned int even, odd;
  947. int vmalloc_branch_delay_filled = 0;
  948. const int scratch = 1; /* Our extra working register */
  949. rv.huge_pte = scratch;
  950. rv.restore_scratch = 0;
  951. if (check_for_high_segbits) {
  952. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  953. if (pgd_reg != -1)
  954. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  955. else
  956. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  957. if (c0_scratch_reg >= 0)
  958. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  959. else
  960. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  961. uasm_i_dsrl_safe(p, scratch, tmp,
  962. PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  963. uasm_il_bnez(p, r, scratch, label_vmalloc);
  964. if (pgd_reg == -1) {
  965. vmalloc_branch_delay_filled = 1;
  966. /* Clear lower 23 bits of context. */
  967. uasm_i_dins(p, ptr, 0, 0, 23);
  968. }
  969. } else {
  970. if (pgd_reg != -1)
  971. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  972. else
  973. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  974. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  975. if (c0_scratch_reg >= 0)
  976. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  977. else
  978. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  979. if (pgd_reg == -1)
  980. /* Clear lower 23 bits of context. */
  981. uasm_i_dins(p, ptr, 0, 0, 23);
  982. uasm_il_bltz(p, r, tmp, label_vmalloc);
  983. }
  984. if (pgd_reg == -1) {
  985. vmalloc_branch_delay_filled = 1;
  986. /* 1 0 1 0 1 << 6 xkphys cached */
  987. uasm_i_ori(p, ptr, ptr, 0x540);
  988. uasm_i_drotr(p, ptr, ptr, 11);
  989. }
  990. #ifdef __PAGETABLE_PMD_FOLDED
  991. #define LOC_PTEP scratch
  992. #else
  993. #define LOC_PTEP ptr
  994. #endif
  995. if (!vmalloc_branch_delay_filled)
  996. /* get pgd offset in bytes */
  997. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  998. uasm_l_vmalloc_done(l, *p);
  999. /*
  1000. * tmp ptr
  1001. * fall-through case = badvaddr *pgd_current
  1002. * vmalloc case = badvaddr swapper_pg_dir
  1003. */
  1004. if (vmalloc_branch_delay_filled)
  1005. /* get pgd offset in bytes */
  1006. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1007. #ifdef __PAGETABLE_PMD_FOLDED
  1008. GET_CONTEXT(p, tmp); /* get context reg */
  1009. #endif
  1010. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
  1011. if (use_lwx_insns()) {
  1012. UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
  1013. } else {
  1014. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
  1015. uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
  1016. }
  1017. #ifndef __PAGETABLE_PMD_FOLDED
  1018. /* get pmd offset in bytes */
  1019. uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
  1020. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
  1021. GET_CONTEXT(p, tmp); /* get context reg */
  1022. if (use_lwx_insns()) {
  1023. UASM_i_LWX(p, scratch, scratch, ptr);
  1024. } else {
  1025. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
  1026. UASM_i_LW(p, scratch, 0, ptr);
  1027. }
  1028. #endif
  1029. /* Adjust the context during the load latency. */
  1030. build_adjust_context(p, tmp);
  1031. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1032. uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
  1033. /*
  1034. * The in the LWX case we don't want to do the load in the
  1035. * delay slot. It cannot issue in the same cycle and may be
  1036. * speculative and unneeded.
  1037. */
  1038. if (use_lwx_insns())
  1039. uasm_i_nop(p);
  1040. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  1041. /* build_update_entries */
  1042. if (use_lwx_insns()) {
  1043. even = ptr;
  1044. odd = tmp;
  1045. UASM_i_LWX(p, even, scratch, tmp);
  1046. UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
  1047. UASM_i_LWX(p, odd, scratch, tmp);
  1048. } else {
  1049. UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
  1050. even = tmp;
  1051. odd = ptr;
  1052. UASM_i_LW(p, even, 0, ptr); /* get even pte */
  1053. UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
  1054. }
  1055. if (cpu_has_rixi) {
  1056. uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
  1057. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1058. uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1059. } else {
  1060. uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
  1061. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1062. uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1063. }
  1064. UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
  1065. if (c0_scratch_reg >= 0) {
  1066. UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  1067. build_tlb_write_entry(p, l, r, tlb_random);
  1068. uasm_l_leave(l, *p);
  1069. rv.restore_scratch = 1;
  1070. } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
  1071. build_tlb_write_entry(p, l, r, tlb_random);
  1072. uasm_l_leave(l, *p);
  1073. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1074. } else {
  1075. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1076. build_tlb_write_entry(p, l, r, tlb_random);
  1077. uasm_l_leave(l, *p);
  1078. rv.restore_scratch = 1;
  1079. }
  1080. uasm_i_eret(p); /* return from trap */
  1081. return rv;
  1082. }
  1083. /*
  1084. * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
  1085. * because EXL == 0. If we wrap, we can also use the 32 instruction
  1086. * slots before the XTLB refill exception handler which belong to the
  1087. * unused TLB refill exception.
  1088. */
  1089. #define MIPS64_REFILL_INSNS 32
  1090. static void build_r4000_tlb_refill_handler(void)
  1091. {
  1092. u32 *p = tlb_handler;
  1093. struct uasm_label *l = labels;
  1094. struct uasm_reloc *r = relocs;
  1095. u32 *f;
  1096. unsigned int final_len;
  1097. struct mips_huge_tlb_info htlb_info __maybe_unused;
  1098. enum vmalloc64_mode vmalloc_mode __maybe_unused;
  1099. memset(tlb_handler, 0, sizeof(tlb_handler));
  1100. memset(labels, 0, sizeof(labels));
  1101. memset(relocs, 0, sizeof(relocs));
  1102. memset(final_handler, 0, sizeof(final_handler));
  1103. if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
  1104. htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
  1105. scratch_reg);
  1106. vmalloc_mode = refill_scratch;
  1107. } else {
  1108. htlb_info.huge_pte = K0;
  1109. htlb_info.restore_scratch = 0;
  1110. vmalloc_mode = refill_noscratch;
  1111. /*
  1112. * create the plain linear handler
  1113. */
  1114. if (bcm1250_m3_war()) {
  1115. unsigned int segbits = 44;
  1116. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1117. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1118. uasm_i_xor(&p, K0, K0, K1);
  1119. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1120. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1121. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1122. uasm_i_or(&p, K0, K0, K1);
  1123. uasm_il_bnez(&p, &r, K0, label_leave);
  1124. /* No need for uasm_i_nop */
  1125. }
  1126. #ifdef CONFIG_64BIT
  1127. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1128. #else
  1129. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1130. #endif
  1131. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1132. build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
  1133. #endif
  1134. build_get_ptep(&p, K0, K1);
  1135. build_update_entries(&p, K0, K1);
  1136. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1137. uasm_l_leave(&l, p);
  1138. uasm_i_eret(&p); /* return from trap */
  1139. }
  1140. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1141. uasm_l_tlb_huge_update(&l, p);
  1142. build_huge_update_entries(&p, htlb_info.huge_pte, K1);
  1143. build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
  1144. htlb_info.restore_scratch);
  1145. #endif
  1146. #ifdef CONFIG_64BIT
  1147. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
  1148. #endif
  1149. /*
  1150. * Overflow check: For the 64bit handler, we need at least one
  1151. * free instruction slot for the wrap-around branch. In worst
  1152. * case, if the intended insertion point is a delay slot, we
  1153. * need three, with the second nop'ed and the third being
  1154. * unused.
  1155. */
  1156. /* Loongson2 ebase is different than r4k, we have more space */
  1157. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  1158. if ((p - tlb_handler) > 64)
  1159. panic("TLB refill handler space exceeded");
  1160. #else
  1161. if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
  1162. || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
  1163. && uasm_insn_has_bdelay(relocs,
  1164. tlb_handler + MIPS64_REFILL_INSNS - 3)))
  1165. panic("TLB refill handler space exceeded");
  1166. #endif
  1167. /*
  1168. * Now fold the handler in the TLB refill handler space.
  1169. */
  1170. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  1171. f = final_handler;
  1172. /* Simplest case, just copy the handler. */
  1173. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1174. final_len = p - tlb_handler;
  1175. #else /* CONFIG_64BIT */
  1176. f = final_handler + MIPS64_REFILL_INSNS;
  1177. if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
  1178. /* Just copy the handler. */
  1179. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1180. final_len = p - tlb_handler;
  1181. } else {
  1182. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1183. const enum label_id ls = label_tlb_huge_update;
  1184. #else
  1185. const enum label_id ls = label_vmalloc;
  1186. #endif
  1187. u32 *split;
  1188. int ov = 0;
  1189. int i;
  1190. for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
  1191. ;
  1192. BUG_ON(i == ARRAY_SIZE(labels));
  1193. split = labels[i].addr;
  1194. /*
  1195. * See if we have overflown one way or the other.
  1196. */
  1197. if (split > tlb_handler + MIPS64_REFILL_INSNS ||
  1198. split < p - MIPS64_REFILL_INSNS)
  1199. ov = 1;
  1200. if (ov) {
  1201. /*
  1202. * Split two instructions before the end. One
  1203. * for the branch and one for the instruction
  1204. * in the delay slot.
  1205. */
  1206. split = tlb_handler + MIPS64_REFILL_INSNS - 2;
  1207. /*
  1208. * If the branch would fall in a delay slot,
  1209. * we must back up an additional instruction
  1210. * so that it is no longer in a delay slot.
  1211. */
  1212. if (uasm_insn_has_bdelay(relocs, split - 1))
  1213. split--;
  1214. }
  1215. /* Copy first part of the handler. */
  1216. uasm_copy_handler(relocs, labels, tlb_handler, split, f);
  1217. f += split - tlb_handler;
  1218. if (ov) {
  1219. /* Insert branch. */
  1220. uasm_l_split(&l, final_handler);
  1221. uasm_il_b(&f, &r, label_split);
  1222. if (uasm_insn_has_bdelay(relocs, split))
  1223. uasm_i_nop(&f);
  1224. else {
  1225. uasm_copy_handler(relocs, labels,
  1226. split, split + 1, f);
  1227. uasm_move_labels(labels, f, f + 1, -1);
  1228. f++;
  1229. split++;
  1230. }
  1231. }
  1232. /* Copy the rest of the handler. */
  1233. uasm_copy_handler(relocs, labels, split, p, final_handler);
  1234. final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
  1235. (p - split);
  1236. }
  1237. #endif /* CONFIG_64BIT */
  1238. uasm_resolve_relocs(relocs, labels);
  1239. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  1240. final_len);
  1241. memcpy((void *)ebase, final_handler, 0x100);
  1242. dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
  1243. }
  1244. extern u32 handle_tlbl[], handle_tlbl_end[];
  1245. extern u32 handle_tlbs[], handle_tlbs_end[];
  1246. extern u32 handle_tlbm[], handle_tlbm_end[];
  1247. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1248. extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[];
  1249. static void build_r4000_setup_pgd(void)
  1250. {
  1251. const int a0 = 4;
  1252. const int a1 = 5;
  1253. u32 *p = tlbmiss_handler_setup_pgd;
  1254. const int tlbmiss_handler_setup_pgd_size =
  1255. tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd;
  1256. struct uasm_label *l = labels;
  1257. struct uasm_reloc *r = relocs;
  1258. memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
  1259. sizeof(tlbmiss_handler_setup_pgd[0]));
  1260. memset(labels, 0, sizeof(labels));
  1261. memset(relocs, 0, sizeof(relocs));
  1262. pgd_reg = allocate_kscratch();
  1263. if (pgd_reg == -1) {
  1264. /* PGD << 11 in c0_Context */
  1265. /*
  1266. * If it is a ckseg0 address, convert to a physical
  1267. * address. Shifting right by 29 and adding 4 will
  1268. * result in zero for these addresses.
  1269. *
  1270. */
  1271. UASM_i_SRA(&p, a1, a0, 29);
  1272. UASM_i_ADDIU(&p, a1, a1, 4);
  1273. uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
  1274. uasm_i_nop(&p);
  1275. uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
  1276. uasm_l_tlbl_goaround1(&l, p);
  1277. UASM_i_SLL(&p, a0, a0, 11);
  1278. uasm_i_jr(&p, 31);
  1279. UASM_i_MTC0(&p, a0, C0_CONTEXT);
  1280. } else {
  1281. /* PGD in c0_KScratch */
  1282. uasm_i_jr(&p, 31);
  1283. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1284. }
  1285. if (p >= tlbmiss_handler_setup_pgd_end)
  1286. panic("tlbmiss_handler_setup_pgd space exceeded");
  1287. uasm_resolve_relocs(relocs, labels);
  1288. pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
  1289. (unsigned int)(p - tlbmiss_handler_setup_pgd));
  1290. dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
  1291. tlbmiss_handler_setup_pgd_size);
  1292. }
  1293. #endif
  1294. static void
  1295. iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
  1296. {
  1297. #ifdef CONFIG_SMP
  1298. # ifdef CONFIG_64BIT_PHYS_ADDR
  1299. if (cpu_has_64bits)
  1300. uasm_i_lld(p, pte, 0, ptr);
  1301. else
  1302. # endif
  1303. UASM_i_LL(p, pte, 0, ptr);
  1304. #else
  1305. # ifdef CONFIG_64BIT_PHYS_ADDR
  1306. if (cpu_has_64bits)
  1307. uasm_i_ld(p, pte, 0, ptr);
  1308. else
  1309. # endif
  1310. UASM_i_LW(p, pte, 0, ptr);
  1311. #endif
  1312. }
  1313. static void
  1314. iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
  1315. unsigned int mode)
  1316. {
  1317. #ifdef CONFIG_64BIT_PHYS_ADDR
  1318. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1319. #endif
  1320. uasm_i_ori(p, pte, pte, mode);
  1321. #ifdef CONFIG_SMP
  1322. # ifdef CONFIG_64BIT_PHYS_ADDR
  1323. if (cpu_has_64bits)
  1324. uasm_i_scd(p, pte, 0, ptr);
  1325. else
  1326. # endif
  1327. UASM_i_SC(p, pte, 0, ptr);
  1328. if (r10000_llsc_war())
  1329. uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
  1330. else
  1331. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1332. # ifdef CONFIG_64BIT_PHYS_ADDR
  1333. if (!cpu_has_64bits) {
  1334. /* no uasm_i_nop needed */
  1335. uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1336. uasm_i_ori(p, pte, pte, hwmode);
  1337. uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1338. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1339. /* no uasm_i_nop needed */
  1340. uasm_i_lw(p, pte, 0, ptr);
  1341. } else
  1342. uasm_i_nop(p);
  1343. # else
  1344. uasm_i_nop(p);
  1345. # endif
  1346. #else
  1347. # ifdef CONFIG_64BIT_PHYS_ADDR
  1348. if (cpu_has_64bits)
  1349. uasm_i_sd(p, pte, 0, ptr);
  1350. else
  1351. # endif
  1352. UASM_i_SW(p, pte, 0, ptr);
  1353. # ifdef CONFIG_64BIT_PHYS_ADDR
  1354. if (!cpu_has_64bits) {
  1355. uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1356. uasm_i_ori(p, pte, pte, hwmode);
  1357. uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1358. uasm_i_lw(p, pte, 0, ptr);
  1359. }
  1360. # endif
  1361. #endif
  1362. }
  1363. /*
  1364. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1365. * the page table where this PTE is located, PTE will be re-loaded
  1366. * with it's original value.
  1367. */
  1368. static void
  1369. build_pte_present(u32 **p, struct uasm_reloc **r,
  1370. int pte, int ptr, int scratch, enum label_id lid)
  1371. {
  1372. int t = scratch >= 0 ? scratch : pte;
  1373. if (cpu_has_rixi) {
  1374. if (use_bbit_insns()) {
  1375. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
  1376. uasm_i_nop(p);
  1377. } else {
  1378. uasm_i_andi(p, t, pte, _PAGE_PRESENT);
  1379. uasm_il_beqz(p, r, t, lid);
  1380. if (pte == t)
  1381. /* You lose the SMP race :-(*/
  1382. iPTE_LW(p, pte, ptr);
  1383. }
  1384. } else {
  1385. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
  1386. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
  1387. uasm_il_bnez(p, r, t, lid);
  1388. if (pte == t)
  1389. /* You lose the SMP race :-(*/
  1390. iPTE_LW(p, pte, ptr);
  1391. }
  1392. }
  1393. /* Make PTE valid, store result in PTR. */
  1394. static void
  1395. build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1396. unsigned int ptr)
  1397. {
  1398. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1399. iPTE_SW(p, r, pte, ptr, mode);
  1400. }
  1401. /*
  1402. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1403. * restore PTE with value from PTR when done.
  1404. */
  1405. static void
  1406. build_pte_writable(u32 **p, struct uasm_reloc **r,
  1407. unsigned int pte, unsigned int ptr, int scratch,
  1408. enum label_id lid)
  1409. {
  1410. int t = scratch >= 0 ? scratch : pte;
  1411. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1412. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
  1413. uasm_il_bnez(p, r, t, lid);
  1414. if (pte == t)
  1415. /* You lose the SMP race :-(*/
  1416. iPTE_LW(p, pte, ptr);
  1417. else
  1418. uasm_i_nop(p);
  1419. }
  1420. /* Make PTE writable, update software status bits as well, then store
  1421. * at PTR.
  1422. */
  1423. static void
  1424. build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1425. unsigned int ptr)
  1426. {
  1427. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1428. | _PAGE_DIRTY);
  1429. iPTE_SW(p, r, pte, ptr, mode);
  1430. }
  1431. /*
  1432. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1433. * restore PTE with value from PTR when done.
  1434. */
  1435. static void
  1436. build_pte_modifiable(u32 **p, struct uasm_reloc **r,
  1437. unsigned int pte, unsigned int ptr, int scratch,
  1438. enum label_id lid)
  1439. {
  1440. if (use_bbit_insns()) {
  1441. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
  1442. uasm_i_nop(p);
  1443. } else {
  1444. int t = scratch >= 0 ? scratch : pte;
  1445. uasm_i_andi(p, t, pte, _PAGE_WRITE);
  1446. uasm_il_beqz(p, r, t, lid);
  1447. if (pte == t)
  1448. /* You lose the SMP race :-(*/
  1449. iPTE_LW(p, pte, ptr);
  1450. }
  1451. }
  1452. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1453. /*
  1454. * R3000 style TLB load/store/modify handlers.
  1455. */
  1456. /*
  1457. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1458. * Then it returns.
  1459. */
  1460. static void
  1461. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1462. {
  1463. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1464. uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1465. uasm_i_tlbwi(p);
  1466. uasm_i_jr(p, tmp);
  1467. uasm_i_rfe(p); /* branch delay */
  1468. }
  1469. /*
  1470. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1471. * or tlbwr as appropriate. This is because the index register
  1472. * may have the probe fail bit set as a result of a trap on a
  1473. * kseg2 access, i.e. without refill. Then it returns.
  1474. */
  1475. static void
  1476. build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
  1477. struct uasm_reloc **r, unsigned int pte,
  1478. unsigned int tmp)
  1479. {
  1480. uasm_i_mfc0(p, tmp, C0_INDEX);
  1481. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1482. uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1483. uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1484. uasm_i_tlbwi(p); /* cp0 delay */
  1485. uasm_i_jr(p, tmp);
  1486. uasm_i_rfe(p); /* branch delay */
  1487. uasm_l_r3000_write_probe_fail(l, *p);
  1488. uasm_i_tlbwr(p); /* cp0 delay */
  1489. uasm_i_jr(p, tmp);
  1490. uasm_i_rfe(p); /* branch delay */
  1491. }
  1492. static void
  1493. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1494. unsigned int ptr)
  1495. {
  1496. long pgdc = (long)pgd_current;
  1497. uasm_i_mfc0(p, pte, C0_BADVADDR);
  1498. uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
  1499. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  1500. uasm_i_srl(p, pte, pte, 22); /* load delay */
  1501. uasm_i_sll(p, pte, pte, 2);
  1502. uasm_i_addu(p, ptr, ptr, pte);
  1503. uasm_i_mfc0(p, pte, C0_CONTEXT);
  1504. uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1505. uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
  1506. uasm_i_addu(p, ptr, ptr, pte);
  1507. uasm_i_lw(p, pte, 0, ptr);
  1508. uasm_i_tlbp(p); /* load delay */
  1509. }
  1510. static void build_r3000_tlb_load_handler(void)
  1511. {
  1512. u32 *p = handle_tlbl;
  1513. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1514. struct uasm_label *l = labels;
  1515. struct uasm_reloc *r = relocs;
  1516. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1517. memset(labels, 0, sizeof(labels));
  1518. memset(relocs, 0, sizeof(relocs));
  1519. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1520. build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
  1521. uasm_i_nop(&p); /* load delay */
  1522. build_make_valid(&p, &r, K0, K1);
  1523. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1524. uasm_l_nopage_tlbl(&l, p);
  1525. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1526. uasm_i_nop(&p);
  1527. if (p >= handle_tlbl_end)
  1528. panic("TLB load handler fastpath space exceeded");
  1529. uasm_resolve_relocs(relocs, labels);
  1530. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1531. (unsigned int)(p - handle_tlbl));
  1532. dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
  1533. }
  1534. static void build_r3000_tlb_store_handler(void)
  1535. {
  1536. u32 *p = handle_tlbs;
  1537. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1538. struct uasm_label *l = labels;
  1539. struct uasm_reloc *r = relocs;
  1540. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1541. memset(labels, 0, sizeof(labels));
  1542. memset(relocs, 0, sizeof(relocs));
  1543. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1544. build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
  1545. uasm_i_nop(&p); /* load delay */
  1546. build_make_write(&p, &r, K0, K1);
  1547. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1548. uasm_l_nopage_tlbs(&l, p);
  1549. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1550. uasm_i_nop(&p);
  1551. if (p >= handle_tlbs_end)
  1552. panic("TLB store handler fastpath space exceeded");
  1553. uasm_resolve_relocs(relocs, labels);
  1554. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1555. (unsigned int)(p - handle_tlbs));
  1556. dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
  1557. }
  1558. static void build_r3000_tlb_modify_handler(void)
  1559. {
  1560. u32 *p = handle_tlbm;
  1561. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1562. struct uasm_label *l = labels;
  1563. struct uasm_reloc *r = relocs;
  1564. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1565. memset(labels, 0, sizeof(labels));
  1566. memset(relocs, 0, sizeof(relocs));
  1567. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1568. build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
  1569. uasm_i_nop(&p); /* load delay */
  1570. build_make_write(&p, &r, K0, K1);
  1571. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1572. uasm_l_nopage_tlbm(&l, p);
  1573. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1574. uasm_i_nop(&p);
  1575. if (p >= handle_tlbm_end)
  1576. panic("TLB modify handler fastpath space exceeded");
  1577. uasm_resolve_relocs(relocs, labels);
  1578. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1579. (unsigned int)(p - handle_tlbm));
  1580. dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1581. }
  1582. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  1583. /*
  1584. * R4000 style TLB load/store/modify handlers.
  1585. */
  1586. static struct work_registers
  1587. build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
  1588. struct uasm_reloc **r)
  1589. {
  1590. struct work_registers wr = build_get_work_registers(p);
  1591. #ifdef CONFIG_64BIT
  1592. build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
  1593. #else
  1594. build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
  1595. #endif
  1596. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1597. /*
  1598. * For huge tlb entries, pmd doesn't contain an address but
  1599. * instead contains the tlb pte. Check the PAGE_HUGE bit and
  1600. * see if we need to jump to huge tlb processing.
  1601. */
  1602. build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
  1603. #endif
  1604. UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
  1605. UASM_i_LW(p, wr.r2, 0, wr.r2);
  1606. UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1607. uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1608. UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
  1609. #ifdef CONFIG_SMP
  1610. uasm_l_smp_pgtable_change(l, *p);
  1611. #endif
  1612. iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
  1613. if (!m4kc_tlbp_war())
  1614. build_tlb_probe_entry(p);
  1615. return wr;
  1616. }
  1617. static void
  1618. build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
  1619. struct uasm_reloc **r, unsigned int tmp,
  1620. unsigned int ptr)
  1621. {
  1622. uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
  1623. uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
  1624. build_update_entries(p, tmp, ptr);
  1625. build_tlb_write_entry(p, l, r, tlb_indexed);
  1626. uasm_l_leave(l, *p);
  1627. build_restore_work_registers(p);
  1628. uasm_i_eret(p); /* return from trap */
  1629. #ifdef CONFIG_64BIT
  1630. build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
  1631. #endif
  1632. }
  1633. static void build_r4000_tlb_load_handler(void)
  1634. {
  1635. u32 *p = handle_tlbl;
  1636. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1637. struct uasm_label *l = labels;
  1638. struct uasm_reloc *r = relocs;
  1639. struct work_registers wr;
  1640. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1641. memset(labels, 0, sizeof(labels));
  1642. memset(relocs, 0, sizeof(relocs));
  1643. if (bcm1250_m3_war()) {
  1644. unsigned int segbits = 44;
  1645. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1646. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1647. uasm_i_xor(&p, K0, K0, K1);
  1648. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1649. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1650. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1651. uasm_i_or(&p, K0, K0, K1);
  1652. uasm_il_bnez(&p, &r, K0, label_leave);
  1653. /* No need for uasm_i_nop */
  1654. }
  1655. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1656. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1657. if (m4kc_tlbp_war())
  1658. build_tlb_probe_entry(&p);
  1659. if (cpu_has_rixi) {
  1660. /*
  1661. * If the page is not _PAGE_VALID, RI or XI could not
  1662. * have triggered it. Skip the expensive test..
  1663. */
  1664. if (use_bbit_insns()) {
  1665. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1666. label_tlbl_goaround1);
  1667. } else {
  1668. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1669. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
  1670. }
  1671. uasm_i_nop(&p);
  1672. uasm_i_tlbr(&p);
  1673. switch (current_cpu_type()) {
  1674. default:
  1675. if (cpu_has_mips_r2) {
  1676. uasm_i_ehb(&p);
  1677. case CPU_CAVIUM_OCTEON:
  1678. case CPU_CAVIUM_OCTEON_PLUS:
  1679. case CPU_CAVIUM_OCTEON2:
  1680. break;
  1681. }
  1682. }
  1683. /* Examine entrylo 0 or 1 based on ptr. */
  1684. if (use_bbit_insns()) {
  1685. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1686. } else {
  1687. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1688. uasm_i_beqz(&p, wr.r3, 8);
  1689. }
  1690. /* load it in the delay slot*/
  1691. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1692. /* load it if ptr is odd */
  1693. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1694. /*
  1695. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1696. * XI must have triggered it.
  1697. */
  1698. if (use_bbit_insns()) {
  1699. uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
  1700. uasm_i_nop(&p);
  1701. uasm_l_tlbl_goaround1(&l, p);
  1702. } else {
  1703. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1704. uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
  1705. uasm_i_nop(&p);
  1706. }
  1707. uasm_l_tlbl_goaround1(&l, p);
  1708. }
  1709. build_make_valid(&p, &r, wr.r1, wr.r2);
  1710. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1711. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1712. /*
  1713. * This is the entry point when build_r4000_tlbchange_handler_head
  1714. * spots a huge page.
  1715. */
  1716. uasm_l_tlb_huge_update(&l, p);
  1717. iPTE_LW(&p, wr.r1, wr.r2);
  1718. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1719. build_tlb_probe_entry(&p);
  1720. if (cpu_has_rixi) {
  1721. /*
  1722. * If the page is not _PAGE_VALID, RI or XI could not
  1723. * have triggered it. Skip the expensive test..
  1724. */
  1725. if (use_bbit_insns()) {
  1726. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1727. label_tlbl_goaround2);
  1728. } else {
  1729. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1730. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1731. }
  1732. uasm_i_nop(&p);
  1733. uasm_i_tlbr(&p);
  1734. switch (current_cpu_type()) {
  1735. default:
  1736. if (cpu_has_mips_r2) {
  1737. uasm_i_ehb(&p);
  1738. case CPU_CAVIUM_OCTEON:
  1739. case CPU_CAVIUM_OCTEON_PLUS:
  1740. case CPU_CAVIUM_OCTEON2:
  1741. break;
  1742. }
  1743. }
  1744. /* Examine entrylo 0 or 1 based on ptr. */
  1745. if (use_bbit_insns()) {
  1746. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1747. } else {
  1748. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1749. uasm_i_beqz(&p, wr.r3, 8);
  1750. }
  1751. /* load it in the delay slot*/
  1752. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1753. /* load it if ptr is odd */
  1754. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1755. /*
  1756. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1757. * XI must have triggered it.
  1758. */
  1759. if (use_bbit_insns()) {
  1760. uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
  1761. } else {
  1762. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1763. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1764. }
  1765. if (PM_DEFAULT_MASK == 0)
  1766. uasm_i_nop(&p);
  1767. /*
  1768. * We clobbered C0_PAGEMASK, restore it. On the other branch
  1769. * it is restored in build_huge_tlb_write_entry.
  1770. */
  1771. build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
  1772. uasm_l_tlbl_goaround2(&l, p);
  1773. }
  1774. uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
  1775. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1776. #endif
  1777. uasm_l_nopage_tlbl(&l, p);
  1778. build_restore_work_registers(&p);
  1779. #ifdef CONFIG_CPU_MICROMIPS
  1780. if ((unsigned long)tlb_do_page_fault_0 & 1) {
  1781. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
  1782. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
  1783. uasm_i_jr(&p, K0);
  1784. } else
  1785. #endif
  1786. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1787. uasm_i_nop(&p);
  1788. if (p >= handle_tlbl_end)
  1789. panic("TLB load handler fastpath space exceeded");
  1790. uasm_resolve_relocs(relocs, labels);
  1791. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1792. (unsigned int)(p - handle_tlbl));
  1793. dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
  1794. }
  1795. static void build_r4000_tlb_store_handler(void)
  1796. {
  1797. u32 *p = handle_tlbs;
  1798. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1799. struct uasm_label *l = labels;
  1800. struct uasm_reloc *r = relocs;
  1801. struct work_registers wr;
  1802. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1803. memset(labels, 0, sizeof(labels));
  1804. memset(relocs, 0, sizeof(relocs));
  1805. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1806. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1807. if (m4kc_tlbp_war())
  1808. build_tlb_probe_entry(&p);
  1809. build_make_write(&p, &r, wr.r1, wr.r2);
  1810. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1811. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1812. /*
  1813. * This is the entry point when
  1814. * build_r4000_tlbchange_handler_head spots a huge page.
  1815. */
  1816. uasm_l_tlb_huge_update(&l, p);
  1817. iPTE_LW(&p, wr.r1, wr.r2);
  1818. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1819. build_tlb_probe_entry(&p);
  1820. uasm_i_ori(&p, wr.r1, wr.r1,
  1821. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1822. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1823. #endif
  1824. uasm_l_nopage_tlbs(&l, p);
  1825. build_restore_work_registers(&p);
  1826. #ifdef CONFIG_CPU_MICROMIPS
  1827. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1828. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1829. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1830. uasm_i_jr(&p, K0);
  1831. } else
  1832. #endif
  1833. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1834. uasm_i_nop(&p);
  1835. if (p >= handle_tlbs_end)
  1836. panic("TLB store handler fastpath space exceeded");
  1837. uasm_resolve_relocs(relocs, labels);
  1838. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1839. (unsigned int)(p - handle_tlbs));
  1840. dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
  1841. }
  1842. static void build_r4000_tlb_modify_handler(void)
  1843. {
  1844. u32 *p = handle_tlbm;
  1845. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1846. struct uasm_label *l = labels;
  1847. struct uasm_reloc *r = relocs;
  1848. struct work_registers wr;
  1849. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1850. memset(labels, 0, sizeof(labels));
  1851. memset(relocs, 0, sizeof(relocs));
  1852. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1853. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1854. if (m4kc_tlbp_war())
  1855. build_tlb_probe_entry(&p);
  1856. /* Present and writable bits set, set accessed and dirty bits. */
  1857. build_make_write(&p, &r, wr.r1, wr.r2);
  1858. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1859. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1860. /*
  1861. * This is the entry point when
  1862. * build_r4000_tlbchange_handler_head spots a huge page.
  1863. */
  1864. uasm_l_tlb_huge_update(&l, p);
  1865. iPTE_LW(&p, wr.r1, wr.r2);
  1866. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1867. build_tlb_probe_entry(&p);
  1868. uasm_i_ori(&p, wr.r1, wr.r1,
  1869. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1870. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1871. #endif
  1872. uasm_l_nopage_tlbm(&l, p);
  1873. build_restore_work_registers(&p);
  1874. #ifdef CONFIG_CPU_MICROMIPS
  1875. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1876. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1877. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1878. uasm_i_jr(&p, K0);
  1879. } else
  1880. #endif
  1881. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1882. uasm_i_nop(&p);
  1883. if (p >= handle_tlbm_end)
  1884. panic("TLB modify handler fastpath space exceeded");
  1885. uasm_resolve_relocs(relocs, labels);
  1886. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1887. (unsigned int)(p - handle_tlbm));
  1888. dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1889. }
  1890. static void flush_tlb_handlers(void)
  1891. {
  1892. local_flush_icache_range((unsigned long)handle_tlbl,
  1893. (unsigned long)handle_tlbl_end);
  1894. local_flush_icache_range((unsigned long)handle_tlbs,
  1895. (unsigned long)handle_tlbs_end);
  1896. local_flush_icache_range((unsigned long)handle_tlbm,
  1897. (unsigned long)handle_tlbm_end);
  1898. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1899. local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
  1900. (unsigned long)tlbmiss_handler_setup_pgd_end);
  1901. #endif
  1902. }
  1903. void build_tlb_refill_handler(void)
  1904. {
  1905. /*
  1906. * The refill handler is generated per-CPU, multi-node systems
  1907. * may have local storage for it. The other handlers are only
  1908. * needed once.
  1909. */
  1910. static int run_once = 0;
  1911. output_pgtable_bits_defines();
  1912. #ifdef CONFIG_64BIT
  1913. check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  1914. #endif
  1915. switch (current_cpu_type()) {
  1916. case CPU_R2000:
  1917. case CPU_R3000:
  1918. case CPU_R3000A:
  1919. case CPU_R3081E:
  1920. case CPU_TX3912:
  1921. case CPU_TX3922:
  1922. case CPU_TX3927:
  1923. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1924. if (cpu_has_local_ebase)
  1925. build_r3000_tlb_refill_handler();
  1926. if (!run_once) {
  1927. if (!cpu_has_local_ebase)
  1928. build_r3000_tlb_refill_handler();
  1929. build_r3000_tlb_load_handler();
  1930. build_r3000_tlb_store_handler();
  1931. build_r3000_tlb_modify_handler();
  1932. flush_tlb_handlers();
  1933. run_once++;
  1934. }
  1935. #else
  1936. panic("No R3000 TLB refill handler");
  1937. #endif
  1938. break;
  1939. case CPU_R6000:
  1940. case CPU_R6000A:
  1941. panic("No R6000 TLB refill handler yet");
  1942. break;
  1943. case CPU_R8000:
  1944. panic("No R8000 TLB refill handler yet");
  1945. break;
  1946. default:
  1947. if (!run_once) {
  1948. scratch_reg = allocate_kscratch();
  1949. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1950. build_r4000_setup_pgd();
  1951. #endif
  1952. build_r4000_tlb_load_handler();
  1953. build_r4000_tlb_store_handler();
  1954. build_r4000_tlb_modify_handler();
  1955. if (!cpu_has_local_ebase)
  1956. build_r4000_tlb_refill_handler();
  1957. flush_tlb_handlers();
  1958. run_once++;
  1959. }
  1960. if (cpu_has_local_ebase)
  1961. build_r4000_tlb_refill_handler();
  1962. }
  1963. }