t3_hw.c 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934
  1. /*
  2. * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. /**
  37. * t3_wait_op_done_val - wait until an operation is completed
  38. * @adapter: the adapter performing the operation
  39. * @reg: the register to check for completion
  40. * @mask: a single-bit field within @reg that indicates completion
  41. * @polarity: the value of the field when the operation is completed
  42. * @attempts: number of check iterations
  43. * @delay: delay in usecs between iterations
  44. * @valp: where to store the value of the register at completion time
  45. *
  46. * Wait until an operation is completed by checking a bit in a register
  47. * up to @attempts times. If @valp is not NULL the value of the register
  48. * at the time it indicated completion is stored there. Returns 0 if the
  49. * operation completes and -EAGAIN otherwise.
  50. */
  51. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  52. int polarity, int attempts, int delay, u32 *valp)
  53. {
  54. while (1) {
  55. u32 val = t3_read_reg(adapter, reg);
  56. if (!!(val & mask) == polarity) {
  57. if (valp)
  58. *valp = val;
  59. return 0;
  60. }
  61. if (--attempts == 0)
  62. return -EAGAIN;
  63. if (delay)
  64. udelay(delay);
  65. }
  66. }
  67. /**
  68. * t3_write_regs - write a bunch of registers
  69. * @adapter: the adapter to program
  70. * @p: an array of register address/register value pairs
  71. * @n: the number of address/value pairs
  72. * @offset: register address offset
  73. *
  74. * Takes an array of register address/register value pairs and writes each
  75. * value to the corresponding register. Register addresses are adjusted
  76. * by the supplied offset.
  77. */
  78. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  79. int n, unsigned int offset)
  80. {
  81. while (n--) {
  82. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  83. p++;
  84. }
  85. }
  86. /**
  87. * t3_set_reg_field - set a register field to a value
  88. * @adapter: the adapter to program
  89. * @addr: the register address
  90. * @mask: specifies the portion of the register to modify
  91. * @val: the new value for the register field
  92. *
  93. * Sets a register field specified by the supplied mask to the
  94. * given value.
  95. */
  96. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  97. u32 val)
  98. {
  99. u32 v = t3_read_reg(adapter, addr) & ~mask;
  100. t3_write_reg(adapter, addr, v | val);
  101. t3_read_reg(adapter, addr); /* flush */
  102. }
  103. /**
  104. * t3_read_indirect - read indirectly addressed registers
  105. * @adap: the adapter
  106. * @addr_reg: register holding the indirect address
  107. * @data_reg: register holding the value of the indirect register
  108. * @vals: where the read register values are stored
  109. * @start_idx: index of first indirect register to read
  110. * @nregs: how many indirect registers to read
  111. *
  112. * Reads registers that are accessed indirectly through an address/data
  113. * register pair.
  114. */
  115. static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  116. unsigned int data_reg, u32 *vals,
  117. unsigned int nregs, unsigned int start_idx)
  118. {
  119. while (nregs--) {
  120. t3_write_reg(adap, addr_reg, start_idx);
  121. *vals++ = t3_read_reg(adap, data_reg);
  122. start_idx++;
  123. }
  124. }
  125. /**
  126. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  127. * @mc7: identifies MC7 to read from
  128. * @start: index of first 64-bit word to read
  129. * @n: number of 64-bit words to read
  130. * @buf: where to store the read result
  131. *
  132. * Read n 64-bit words from MC7 starting at word start, using backdoor
  133. * accesses.
  134. */
  135. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  136. u64 *buf)
  137. {
  138. static const int shift[] = { 0, 0, 16, 24 };
  139. static const int step[] = { 0, 32, 16, 8 };
  140. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  141. struct adapter *adap = mc7->adapter;
  142. if (start >= size64 || start + n > size64)
  143. return -EINVAL;
  144. start *= (8 << mc7->width);
  145. while (n--) {
  146. int i;
  147. u64 val64 = 0;
  148. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  149. int attempts = 10;
  150. u32 val;
  151. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  153. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  154. while ((val & F_BUSY) && attempts--)
  155. val = t3_read_reg(adap,
  156. mc7->offset + A_MC7_BD_OP);
  157. if (val & F_BUSY)
  158. return -EIO;
  159. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  160. if (mc7->width == 0) {
  161. val64 = t3_read_reg(adap,
  162. mc7->offset +
  163. A_MC7_BD_DATA0);
  164. val64 |= (u64) val << 32;
  165. } else {
  166. if (mc7->width > 1)
  167. val >>= shift[mc7->width];
  168. val64 |= (u64) val << (step[mc7->width] * i);
  169. }
  170. start += 8;
  171. }
  172. *buf++ = val64;
  173. }
  174. return 0;
  175. }
  176. /*
  177. * Initialize MI1.
  178. */
  179. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  180. {
  181. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  182. u32 val = F_PREEN | V_CLKDIV(clkdiv);
  183. t3_write_reg(adap, A_MI1_CFG, val);
  184. }
  185. #define MDIO_ATTEMPTS 20
  186. /*
  187. * MI1 read/write operations for clause 22 PHYs.
  188. */
  189. static int t3_mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  190. int reg_addr, unsigned int *valp)
  191. {
  192. int ret;
  193. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  194. if (mmd_addr)
  195. return -EINVAL;
  196. mutex_lock(&adapter->mdio_lock);
  197. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  198. t3_write_reg(adapter, A_MI1_ADDR, addr);
  199. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  200. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  201. if (!ret)
  202. *valp = t3_read_reg(adapter, A_MI1_DATA);
  203. mutex_unlock(&adapter->mdio_lock);
  204. return ret;
  205. }
  206. static int t3_mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  207. int reg_addr, unsigned int val)
  208. {
  209. int ret;
  210. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  211. if (mmd_addr)
  212. return -EINVAL;
  213. mutex_lock(&adapter->mdio_lock);
  214. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  215. t3_write_reg(adapter, A_MI1_ADDR, addr);
  216. t3_write_reg(adapter, A_MI1_DATA, val);
  217. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  218. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  219. mutex_unlock(&adapter->mdio_lock);
  220. return ret;
  221. }
  222. static const struct mdio_ops mi1_mdio_ops = {
  223. t3_mi1_read,
  224. t3_mi1_write
  225. };
  226. /*
  227. * Performs the address cycle for clause 45 PHYs.
  228. * Must be called with the MDIO_LOCK held.
  229. */
  230. static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
  231. int reg_addr)
  232. {
  233. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  234. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
  235. t3_write_reg(adapter, A_MI1_ADDR, addr);
  236. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  237. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  238. return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  239. MDIO_ATTEMPTS, 10);
  240. }
  241. /*
  242. * MI1 read/write operations for indirect-addressed PHYs.
  243. */
  244. static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  245. int reg_addr, unsigned int *valp)
  246. {
  247. int ret;
  248. mutex_lock(&adapter->mdio_lock);
  249. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  250. if (!ret) {
  251. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  252. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  253. MDIO_ATTEMPTS, 10);
  254. if (!ret)
  255. *valp = t3_read_reg(adapter, A_MI1_DATA);
  256. }
  257. mutex_unlock(&adapter->mdio_lock);
  258. return ret;
  259. }
  260. static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  261. int reg_addr, unsigned int val)
  262. {
  263. int ret;
  264. mutex_lock(&adapter->mdio_lock);
  265. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  266. if (!ret) {
  267. t3_write_reg(adapter, A_MI1_DATA, val);
  268. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  269. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  270. MDIO_ATTEMPTS, 10);
  271. }
  272. mutex_unlock(&adapter->mdio_lock);
  273. return ret;
  274. }
  275. static const struct mdio_ops mi1_mdio_ext_ops = {
  276. mi1_ext_read,
  277. mi1_ext_write
  278. };
  279. /**
  280. * t3_mdio_change_bits - modify the value of a PHY register
  281. * @phy: the PHY to operate on
  282. * @mmd: the device address
  283. * @reg: the register address
  284. * @clear: what part of the register value to mask off
  285. * @set: what part of the register value to set
  286. *
  287. * Changes the value of a PHY register by applying a mask to its current
  288. * value and ORing the result with a new value.
  289. */
  290. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  291. unsigned int set)
  292. {
  293. int ret;
  294. unsigned int val;
  295. ret = mdio_read(phy, mmd, reg, &val);
  296. if (!ret) {
  297. val &= ~clear;
  298. ret = mdio_write(phy, mmd, reg, val | set);
  299. }
  300. return ret;
  301. }
  302. /**
  303. * t3_phy_reset - reset a PHY block
  304. * @phy: the PHY to operate on
  305. * @mmd: the device address of the PHY block to reset
  306. * @wait: how long to wait for the reset to complete in 1ms increments
  307. *
  308. * Resets a PHY block and optionally waits for the reset to complete.
  309. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  310. * for 10G PHYs.
  311. */
  312. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  313. {
  314. int err;
  315. unsigned int ctl;
  316. err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
  317. if (err || !wait)
  318. return err;
  319. do {
  320. err = mdio_read(phy, mmd, MII_BMCR, &ctl);
  321. if (err)
  322. return err;
  323. ctl &= BMCR_RESET;
  324. if (ctl)
  325. msleep(1);
  326. } while (ctl && --wait);
  327. return ctl ? -1 : 0;
  328. }
  329. /**
  330. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  331. * @phy: the PHY to operate on
  332. * @advert: bitmap of capabilities the PHY should advertise
  333. *
  334. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  335. * requested capabilities.
  336. */
  337. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  338. {
  339. int err;
  340. unsigned int val = 0;
  341. err = mdio_read(phy, 0, MII_CTRL1000, &val);
  342. if (err)
  343. return err;
  344. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  345. if (advert & ADVERTISED_1000baseT_Half)
  346. val |= ADVERTISE_1000HALF;
  347. if (advert & ADVERTISED_1000baseT_Full)
  348. val |= ADVERTISE_1000FULL;
  349. err = mdio_write(phy, 0, MII_CTRL1000, val);
  350. if (err)
  351. return err;
  352. val = 1;
  353. if (advert & ADVERTISED_10baseT_Half)
  354. val |= ADVERTISE_10HALF;
  355. if (advert & ADVERTISED_10baseT_Full)
  356. val |= ADVERTISE_10FULL;
  357. if (advert & ADVERTISED_100baseT_Half)
  358. val |= ADVERTISE_100HALF;
  359. if (advert & ADVERTISED_100baseT_Full)
  360. val |= ADVERTISE_100FULL;
  361. if (advert & ADVERTISED_Pause)
  362. val |= ADVERTISE_PAUSE_CAP;
  363. if (advert & ADVERTISED_Asym_Pause)
  364. val |= ADVERTISE_PAUSE_ASYM;
  365. return mdio_write(phy, 0, MII_ADVERTISE, val);
  366. }
  367. /**
  368. * t3_phy_advertise_fiber - set fiber PHY advertisement register
  369. * @phy: the PHY to operate on
  370. * @advert: bitmap of capabilities the PHY should advertise
  371. *
  372. * Sets a fiber PHY's advertisement register to advertise the
  373. * requested capabilities.
  374. */
  375. int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
  376. {
  377. unsigned int val = 0;
  378. if (advert & ADVERTISED_1000baseT_Half)
  379. val |= ADVERTISE_1000XHALF;
  380. if (advert & ADVERTISED_1000baseT_Full)
  381. val |= ADVERTISE_1000XFULL;
  382. if (advert & ADVERTISED_Pause)
  383. val |= ADVERTISE_1000XPAUSE;
  384. if (advert & ADVERTISED_Asym_Pause)
  385. val |= ADVERTISE_1000XPSE_ASYM;
  386. return mdio_write(phy, 0, MII_ADVERTISE, val);
  387. }
  388. /**
  389. * t3_set_phy_speed_duplex - force PHY speed and duplex
  390. * @phy: the PHY to operate on
  391. * @speed: requested PHY speed
  392. * @duplex: requested PHY duplex
  393. *
  394. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  395. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  396. */
  397. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  398. {
  399. int err;
  400. unsigned int ctl;
  401. err = mdio_read(phy, 0, MII_BMCR, &ctl);
  402. if (err)
  403. return err;
  404. if (speed >= 0) {
  405. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  406. if (speed == SPEED_100)
  407. ctl |= BMCR_SPEED100;
  408. else if (speed == SPEED_1000)
  409. ctl |= BMCR_SPEED1000;
  410. }
  411. if (duplex >= 0) {
  412. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  413. if (duplex == DUPLEX_FULL)
  414. ctl |= BMCR_FULLDPLX;
  415. }
  416. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  417. ctl |= BMCR_ANENABLE;
  418. return mdio_write(phy, 0, MII_BMCR, ctl);
  419. }
  420. int t3_phy_lasi_intr_enable(struct cphy *phy)
  421. {
  422. return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 1);
  423. }
  424. int t3_phy_lasi_intr_disable(struct cphy *phy)
  425. {
  426. return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 0);
  427. }
  428. int t3_phy_lasi_intr_clear(struct cphy *phy)
  429. {
  430. u32 val;
  431. return mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &val);
  432. }
  433. int t3_phy_lasi_intr_handler(struct cphy *phy)
  434. {
  435. unsigned int status;
  436. int err = mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &status);
  437. if (err)
  438. return err;
  439. return (status & 1) ? cphy_cause_link_change : 0;
  440. }
  441. static const struct adapter_info t3_adap_info[] = {
  442. {1, 1, 0,
  443. F_GPIO2_OEN | F_GPIO4_OEN |
  444. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  445. &mi1_mdio_ops, "Chelsio PE9000"},
  446. {1, 1, 0,
  447. F_GPIO2_OEN | F_GPIO4_OEN |
  448. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  449. &mi1_mdio_ops, "Chelsio T302"},
  450. {1, 0, 0,
  451. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  452. F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  453. { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  454. &mi1_mdio_ext_ops, "Chelsio T310"},
  455. {1, 1, 0,
  456. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  457. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  458. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  459. { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  460. &mi1_mdio_ext_ops, "Chelsio T320"},
  461. {},
  462. {},
  463. {1, 0, 0,
  464. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
  465. F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  466. { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  467. &mi1_mdio_ext_ops, "Chelsio T310" },
  468. };
  469. /*
  470. * Return the adapter_info structure with a given index. Out-of-range indices
  471. * return NULL.
  472. */
  473. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  474. {
  475. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  476. }
  477. struct port_type_info {
  478. int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
  479. int phy_addr, const struct mdio_ops *ops);
  480. };
  481. static const struct port_type_info port_types[] = {
  482. { NULL },
  483. { t3_ael1002_phy_prep },
  484. { t3_vsc8211_phy_prep },
  485. { NULL},
  486. { t3_xaui_direct_phy_prep },
  487. { t3_ael2005_phy_prep },
  488. { t3_qt2045_phy_prep },
  489. { t3_ael1006_phy_prep },
  490. { NULL },
  491. };
  492. #define VPD_ENTRY(name, len) \
  493. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  494. /*
  495. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  496. * VPD-R sections.
  497. */
  498. struct t3_vpd {
  499. u8 id_tag;
  500. u8 id_len[2];
  501. u8 id_data[16];
  502. u8 vpdr_tag;
  503. u8 vpdr_len[2];
  504. VPD_ENTRY(pn, 16); /* part number */
  505. VPD_ENTRY(ec, 16); /* EC level */
  506. VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
  507. VPD_ENTRY(na, 12); /* MAC address base */
  508. VPD_ENTRY(cclk, 6); /* core clock */
  509. VPD_ENTRY(mclk, 6); /* mem clock */
  510. VPD_ENTRY(uclk, 6); /* uP clk */
  511. VPD_ENTRY(mdc, 6); /* MDIO clk */
  512. VPD_ENTRY(mt, 2); /* mem timing */
  513. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  514. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  515. VPD_ENTRY(port0, 2); /* PHY0 complex */
  516. VPD_ENTRY(port1, 2); /* PHY1 complex */
  517. VPD_ENTRY(port2, 2); /* PHY2 complex */
  518. VPD_ENTRY(port3, 2); /* PHY3 complex */
  519. VPD_ENTRY(rv, 1); /* csum */
  520. u32 pad; /* for multiple-of-4 sizing and alignment */
  521. };
  522. #define EEPROM_MAX_POLL 40
  523. #define EEPROM_STAT_ADDR 0x4000
  524. #define VPD_BASE 0xc00
  525. /**
  526. * t3_seeprom_read - read a VPD EEPROM location
  527. * @adapter: adapter to read
  528. * @addr: EEPROM address
  529. * @data: where to store the read data
  530. *
  531. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  532. * VPD ROM capability. A zero is written to the flag bit when the
  533. * addres is written to the control register. The hardware device will
  534. * set the flag to 1 when 4 bytes have been read into the data register.
  535. */
  536. int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
  537. {
  538. u16 val;
  539. int attempts = EEPROM_MAX_POLL;
  540. u32 v;
  541. unsigned int base = adapter->params.pci.vpd_cap_addr;
  542. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  543. return -EINVAL;
  544. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  545. do {
  546. udelay(10);
  547. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  548. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  549. if (!(val & PCI_VPD_ADDR_F)) {
  550. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  551. return -EIO;
  552. }
  553. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
  554. *data = cpu_to_le32(v);
  555. return 0;
  556. }
  557. /**
  558. * t3_seeprom_write - write a VPD EEPROM location
  559. * @adapter: adapter to write
  560. * @addr: EEPROM address
  561. * @data: value to write
  562. *
  563. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  564. * VPD ROM capability.
  565. */
  566. int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
  567. {
  568. u16 val;
  569. int attempts = EEPROM_MAX_POLL;
  570. unsigned int base = adapter->params.pci.vpd_cap_addr;
  571. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  572. return -EINVAL;
  573. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  574. le32_to_cpu(data));
  575. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  576. addr | PCI_VPD_ADDR_F);
  577. do {
  578. msleep(1);
  579. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  580. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  581. if (val & PCI_VPD_ADDR_F) {
  582. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  583. return -EIO;
  584. }
  585. return 0;
  586. }
  587. /**
  588. * t3_seeprom_wp - enable/disable EEPROM write protection
  589. * @adapter: the adapter
  590. * @enable: 1 to enable write protection, 0 to disable it
  591. *
  592. * Enables or disables write protection on the serial EEPROM.
  593. */
  594. int t3_seeprom_wp(struct adapter *adapter, int enable)
  595. {
  596. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  597. }
  598. /*
  599. * Convert a character holding a hex digit to a number.
  600. */
  601. static unsigned int hex2int(unsigned char c)
  602. {
  603. return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
  604. }
  605. /**
  606. * get_vpd_params - read VPD parameters from VPD EEPROM
  607. * @adapter: adapter to read
  608. * @p: where to store the parameters
  609. *
  610. * Reads card parameters stored in VPD EEPROM.
  611. */
  612. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  613. {
  614. int i, addr, ret;
  615. struct t3_vpd vpd;
  616. /*
  617. * Card information is normally at VPD_BASE but some early cards had
  618. * it at 0.
  619. */
  620. ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
  621. if (ret)
  622. return ret;
  623. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  624. for (i = 0; i < sizeof(vpd); i += 4) {
  625. ret = t3_seeprom_read(adapter, addr + i,
  626. (__le32 *)((u8 *)&vpd + i));
  627. if (ret)
  628. return ret;
  629. }
  630. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  631. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  632. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  633. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  634. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  635. memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
  636. /* Old eeproms didn't have port information */
  637. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  638. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  639. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  640. } else {
  641. p->port_type[0] = hex2int(vpd.port0_data[0]);
  642. p->port_type[1] = hex2int(vpd.port1_data[0]);
  643. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  644. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  645. }
  646. for (i = 0; i < 6; i++)
  647. p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
  648. hex2int(vpd.na_data[2 * i + 1]);
  649. return 0;
  650. }
  651. /* serial flash and firmware constants */
  652. enum {
  653. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  654. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  655. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  656. /* flash command opcodes */
  657. SF_PROG_PAGE = 2, /* program page */
  658. SF_WR_DISABLE = 4, /* disable writes */
  659. SF_RD_STATUS = 5, /* read status register */
  660. SF_WR_ENABLE = 6, /* enable writes */
  661. SF_RD_DATA_FAST = 0xb, /* read flash */
  662. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  663. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  664. FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
  665. FW_MIN_SIZE = 8 /* at least version and csum */
  666. };
  667. /**
  668. * sf1_read - read data from the serial flash
  669. * @adapter: the adapter
  670. * @byte_cnt: number of bytes to read
  671. * @cont: whether another operation will be chained
  672. * @valp: where to store the read data
  673. *
  674. * Reads up to 4 bytes of data from the serial flash. The location of
  675. * the read needs to be specified prior to calling this by issuing the
  676. * appropriate commands to the serial flash.
  677. */
  678. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  679. u32 *valp)
  680. {
  681. int ret;
  682. if (!byte_cnt || byte_cnt > 4)
  683. return -EINVAL;
  684. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  685. return -EBUSY;
  686. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  687. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  688. if (!ret)
  689. *valp = t3_read_reg(adapter, A_SF_DATA);
  690. return ret;
  691. }
  692. /**
  693. * sf1_write - write data to the serial flash
  694. * @adapter: the adapter
  695. * @byte_cnt: number of bytes to write
  696. * @cont: whether another operation will be chained
  697. * @val: value to write
  698. *
  699. * Writes up to 4 bytes of data to the serial flash. The location of
  700. * the write needs to be specified prior to calling this by issuing the
  701. * appropriate commands to the serial flash.
  702. */
  703. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  704. u32 val)
  705. {
  706. if (!byte_cnt || byte_cnt > 4)
  707. return -EINVAL;
  708. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  709. return -EBUSY;
  710. t3_write_reg(adapter, A_SF_DATA, val);
  711. t3_write_reg(adapter, A_SF_OP,
  712. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  713. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  714. }
  715. /**
  716. * flash_wait_op - wait for a flash operation to complete
  717. * @adapter: the adapter
  718. * @attempts: max number of polls of the status register
  719. * @delay: delay between polls in ms
  720. *
  721. * Wait for a flash operation to complete by polling the status register.
  722. */
  723. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  724. {
  725. int ret;
  726. u32 status;
  727. while (1) {
  728. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  729. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  730. return ret;
  731. if (!(status & 1))
  732. return 0;
  733. if (--attempts == 0)
  734. return -EAGAIN;
  735. if (delay)
  736. msleep(delay);
  737. }
  738. }
  739. /**
  740. * t3_read_flash - read words from serial flash
  741. * @adapter: the adapter
  742. * @addr: the start address for the read
  743. * @nwords: how many 32-bit words to read
  744. * @data: where to store the read data
  745. * @byte_oriented: whether to store data as bytes or as words
  746. *
  747. * Read the specified number of 32-bit words from the serial flash.
  748. * If @byte_oriented is set the read data is stored as a byte array
  749. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  750. * natural endianess.
  751. */
  752. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  753. unsigned int nwords, u32 *data, int byte_oriented)
  754. {
  755. int ret;
  756. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  757. return -EINVAL;
  758. addr = swab32(addr) | SF_RD_DATA_FAST;
  759. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  760. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  761. return ret;
  762. for (; nwords; nwords--, data++) {
  763. ret = sf1_read(adapter, 4, nwords > 1, data);
  764. if (ret)
  765. return ret;
  766. if (byte_oriented)
  767. *data = htonl(*data);
  768. }
  769. return 0;
  770. }
  771. /**
  772. * t3_write_flash - write up to a page of data to the serial flash
  773. * @adapter: the adapter
  774. * @addr: the start address to write
  775. * @n: length of data to write
  776. * @data: the data to write
  777. *
  778. * Writes up to a page of data (256 bytes) to the serial flash starting
  779. * at the given address.
  780. */
  781. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  782. unsigned int n, const u8 *data)
  783. {
  784. int ret;
  785. u32 buf[64];
  786. unsigned int i, c, left, val, offset = addr & 0xff;
  787. if (addr + n > SF_SIZE || offset + n > 256)
  788. return -EINVAL;
  789. val = swab32(addr) | SF_PROG_PAGE;
  790. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  791. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  792. return ret;
  793. for (left = n; left; left -= c) {
  794. c = min(left, 4U);
  795. for (val = 0, i = 0; i < c; ++i)
  796. val = (val << 8) + *data++;
  797. ret = sf1_write(adapter, c, c != left, val);
  798. if (ret)
  799. return ret;
  800. }
  801. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  802. return ret;
  803. /* Read the page to verify the write succeeded */
  804. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  805. if (ret)
  806. return ret;
  807. if (memcmp(data - n, (u8 *) buf + offset, n))
  808. return -EIO;
  809. return 0;
  810. }
  811. /**
  812. * t3_get_tp_version - read the tp sram version
  813. * @adapter: the adapter
  814. * @vers: where to place the version
  815. *
  816. * Reads the protocol sram version from sram.
  817. */
  818. int t3_get_tp_version(struct adapter *adapter, u32 *vers)
  819. {
  820. int ret;
  821. /* Get version loaded in SRAM */
  822. t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
  823. ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
  824. 1, 1, 5, 1);
  825. if (ret)
  826. return ret;
  827. *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
  828. return 0;
  829. }
  830. /**
  831. * t3_check_tpsram_version - read the tp sram version
  832. * @adapter: the adapter
  833. *
  834. * Reads the protocol sram version from flash.
  835. */
  836. int t3_check_tpsram_version(struct adapter *adapter)
  837. {
  838. int ret;
  839. u32 vers;
  840. unsigned int major, minor;
  841. if (adapter->params.rev == T3_REV_A)
  842. return 0;
  843. ret = t3_get_tp_version(adapter, &vers);
  844. if (ret)
  845. return ret;
  846. major = G_TP_VERSION_MAJOR(vers);
  847. minor = G_TP_VERSION_MINOR(vers);
  848. if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
  849. return 0;
  850. else {
  851. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  852. "driver compiled for version %d.%d\n", major, minor,
  853. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  854. }
  855. return -EINVAL;
  856. }
  857. /**
  858. * t3_check_tpsram - check if provided protocol SRAM
  859. * is compatible with this driver
  860. * @adapter: the adapter
  861. * @tp_sram: the firmware image to write
  862. * @size: image size
  863. *
  864. * Checks if an adapter's tp sram is compatible with the driver.
  865. * Returns 0 if the versions are compatible, a negative error otherwise.
  866. */
  867. int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
  868. unsigned int size)
  869. {
  870. u32 csum;
  871. unsigned int i;
  872. const __be32 *p = (const __be32 *)tp_sram;
  873. /* Verify checksum */
  874. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  875. csum += ntohl(p[i]);
  876. if (csum != 0xffffffff) {
  877. CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
  878. csum);
  879. return -EINVAL;
  880. }
  881. return 0;
  882. }
  883. enum fw_version_type {
  884. FW_VERSION_N3,
  885. FW_VERSION_T3
  886. };
  887. /**
  888. * t3_get_fw_version - read the firmware version
  889. * @adapter: the adapter
  890. * @vers: where to place the version
  891. *
  892. * Reads the FW version from flash.
  893. */
  894. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  895. {
  896. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  897. }
  898. /**
  899. * t3_check_fw_version - check if the FW is compatible with this driver
  900. * @adapter: the adapter
  901. *
  902. * Checks if an adapter's FW is compatible with the driver. Returns 0
  903. * if the versions are compatible, a negative error otherwise.
  904. */
  905. int t3_check_fw_version(struct adapter *adapter)
  906. {
  907. int ret;
  908. u32 vers;
  909. unsigned int type, major, minor;
  910. ret = t3_get_fw_version(adapter, &vers);
  911. if (ret)
  912. return ret;
  913. type = G_FW_VERSION_TYPE(vers);
  914. major = G_FW_VERSION_MAJOR(vers);
  915. minor = G_FW_VERSION_MINOR(vers);
  916. if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
  917. minor == FW_VERSION_MINOR)
  918. return 0;
  919. else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
  920. CH_WARN(adapter, "found old FW minor version(%u.%u), "
  921. "driver compiled for version %u.%u\n", major, minor,
  922. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  923. else {
  924. CH_WARN(adapter, "found newer FW version(%u.%u), "
  925. "driver compiled for version %u.%u\n", major, minor,
  926. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  927. return 0;
  928. }
  929. return -EINVAL;
  930. }
  931. /**
  932. * t3_flash_erase_sectors - erase a range of flash sectors
  933. * @adapter: the adapter
  934. * @start: the first sector to erase
  935. * @end: the last sector to erase
  936. *
  937. * Erases the sectors in the given range.
  938. */
  939. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  940. {
  941. while (start <= end) {
  942. int ret;
  943. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  944. (ret = sf1_write(adapter, 4, 0,
  945. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  946. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  947. return ret;
  948. start++;
  949. }
  950. return 0;
  951. }
  952. /*
  953. * t3_load_fw - download firmware
  954. * @adapter: the adapter
  955. * @fw_data: the firmware image to write
  956. * @size: image size
  957. *
  958. * Write the supplied firmware image to the card's serial flash.
  959. * The FW image has the following sections: @size - 8 bytes of code and
  960. * data, followed by 4 bytes of FW version, followed by the 32-bit
  961. * 1's complement checksum of the whole image.
  962. */
  963. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  964. {
  965. u32 csum;
  966. unsigned int i;
  967. const __be32 *p = (const __be32 *)fw_data;
  968. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  969. if ((size & 3) || size < FW_MIN_SIZE)
  970. return -EINVAL;
  971. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  972. return -EFBIG;
  973. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  974. csum += ntohl(p[i]);
  975. if (csum != 0xffffffff) {
  976. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  977. csum);
  978. return -EINVAL;
  979. }
  980. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  981. if (ret)
  982. goto out;
  983. size -= 8; /* trim off version and checksum */
  984. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  985. unsigned int chunk_size = min(size, 256U);
  986. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  987. if (ret)
  988. goto out;
  989. addr += chunk_size;
  990. fw_data += chunk_size;
  991. size -= chunk_size;
  992. }
  993. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  994. out:
  995. if (ret)
  996. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  997. return ret;
  998. }
  999. #define CIM_CTL_BASE 0x2000
  1000. /**
  1001. * t3_cim_ctl_blk_read - read a block from CIM control region
  1002. *
  1003. * @adap: the adapter
  1004. * @addr: the start address within the CIM control region
  1005. * @n: number of words to read
  1006. * @valp: where to store the result
  1007. *
  1008. * Reads a block of 4-byte words from the CIM control region.
  1009. */
  1010. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  1011. unsigned int n, unsigned int *valp)
  1012. {
  1013. int ret = 0;
  1014. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  1015. return -EBUSY;
  1016. for ( ; !ret && n--; addr += 4) {
  1017. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  1018. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  1019. 0, 5, 2);
  1020. if (!ret)
  1021. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  1022. }
  1023. return ret;
  1024. }
  1025. static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
  1026. u32 *rx_hash_high, u32 *rx_hash_low)
  1027. {
  1028. /* stop Rx unicast traffic */
  1029. t3_mac_disable_exact_filters(mac);
  1030. /* stop broadcast, multicast, promiscuous mode traffic */
  1031. *rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
  1032. t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
  1033. F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
  1034. F_DISBCAST);
  1035. *rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
  1036. t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
  1037. *rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
  1038. t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
  1039. /* Leave time to drain max RX fifo */
  1040. msleep(1);
  1041. }
  1042. static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
  1043. u32 rx_hash_high, u32 rx_hash_low)
  1044. {
  1045. t3_mac_enable_exact_filters(mac);
  1046. t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
  1047. F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
  1048. rx_cfg);
  1049. t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
  1050. t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
  1051. }
  1052. /**
  1053. * t3_link_changed - handle interface link changes
  1054. * @adapter: the adapter
  1055. * @port_id: the port index that changed link state
  1056. *
  1057. * Called when a port's link settings change to propagate the new values
  1058. * to the associated PHY and MAC. After performing the common tasks it
  1059. * invokes an OS-specific handler.
  1060. */
  1061. void t3_link_changed(struct adapter *adapter, int port_id)
  1062. {
  1063. int link_ok, speed, duplex, fc;
  1064. struct port_info *pi = adap2pinfo(adapter, port_id);
  1065. struct cphy *phy = &pi->phy;
  1066. struct cmac *mac = &pi->mac;
  1067. struct link_config *lc = &pi->link_config;
  1068. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1069. if (!lc->link_ok && link_ok) {
  1070. u32 rx_cfg, rx_hash_high, rx_hash_low;
  1071. u32 status;
  1072. t3_xgm_intr_enable(adapter, port_id);
  1073. t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
  1074. t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
  1075. t3_mac_enable(mac, MAC_DIRECTION_RX);
  1076. status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
  1077. if (status & F_LINKFAULTCHANGE) {
  1078. mac->stats.link_faults++;
  1079. pi->link_fault = 1;
  1080. }
  1081. t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
  1082. }
  1083. if (lc->requested_fc & PAUSE_AUTONEG)
  1084. fc &= lc->requested_fc;
  1085. else
  1086. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1087. if (link_ok == lc->link_ok && speed == lc->speed &&
  1088. duplex == lc->duplex && fc == lc->fc)
  1089. return; /* nothing changed */
  1090. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  1091. uses_xaui(adapter)) {
  1092. if (link_ok)
  1093. t3b_pcs_reset(mac);
  1094. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1095. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  1096. }
  1097. lc->link_ok = link_ok;
  1098. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1099. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1100. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  1101. /* Set MAC speed, duplex, and flow control to match PHY. */
  1102. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  1103. lc->fc = fc;
  1104. }
  1105. t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
  1106. }
  1107. void t3_link_fault(struct adapter *adapter, int port_id)
  1108. {
  1109. struct port_info *pi = adap2pinfo(adapter, port_id);
  1110. struct cmac *mac = &pi->mac;
  1111. struct cphy *phy = &pi->phy;
  1112. struct link_config *lc = &pi->link_config;
  1113. int link_ok, speed, duplex, fc, link_fault;
  1114. u32 rx_cfg, rx_hash_high, rx_hash_low;
  1115. t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
  1116. if (adapter->params.rev > 0 && uses_xaui(adapter))
  1117. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
  1118. t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
  1119. t3_mac_enable(mac, MAC_DIRECTION_RX);
  1120. t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
  1121. link_fault = t3_read_reg(adapter,
  1122. A_XGM_INT_STATUS + mac->offset);
  1123. link_fault &= F_LINKFAULTCHANGE;
  1124. link_ok = lc->link_ok;
  1125. speed = lc->speed;
  1126. duplex = lc->duplex;
  1127. fc = lc->fc;
  1128. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1129. if (link_fault) {
  1130. lc->link_ok = 0;
  1131. lc->speed = SPEED_INVALID;
  1132. lc->duplex = DUPLEX_INVALID;
  1133. t3_os_link_fault(adapter, port_id, 0);
  1134. /* Account link faults only when the phy reports a link up */
  1135. if (link_ok)
  1136. mac->stats.link_faults++;
  1137. } else {
  1138. if (link_ok)
  1139. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1140. F_TXACTENABLE | F_RXEN);
  1141. pi->link_fault = 0;
  1142. lc->link_ok = (unsigned char)link_ok;
  1143. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1144. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1145. t3_os_link_fault(adapter, port_id, link_ok);
  1146. }
  1147. }
  1148. /**
  1149. * t3_link_start - apply link configuration to MAC/PHY
  1150. * @phy: the PHY to setup
  1151. * @mac: the MAC to setup
  1152. * @lc: the requested link configuration
  1153. *
  1154. * Set up a port's MAC and PHY according to a desired link configuration.
  1155. * - If the PHY can auto-negotiate first decide what to advertise, then
  1156. * enable/disable auto-negotiation as desired, and reset.
  1157. * - If the PHY does not auto-negotiate just reset it.
  1158. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1159. * otherwise do it later based on the outcome of auto-negotiation.
  1160. */
  1161. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  1162. {
  1163. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1164. lc->link_ok = 0;
  1165. if (lc->supported & SUPPORTED_Autoneg) {
  1166. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  1167. if (fc) {
  1168. lc->advertising |= ADVERTISED_Asym_Pause;
  1169. if (fc & PAUSE_RX)
  1170. lc->advertising |= ADVERTISED_Pause;
  1171. }
  1172. phy->ops->advertise(phy, lc->advertising);
  1173. if (lc->autoneg == AUTONEG_DISABLE) {
  1174. lc->speed = lc->requested_speed;
  1175. lc->duplex = lc->requested_duplex;
  1176. lc->fc = (unsigned char)fc;
  1177. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  1178. fc);
  1179. /* Also disables autoneg */
  1180. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  1181. } else
  1182. phy->ops->autoneg_enable(phy);
  1183. } else {
  1184. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  1185. lc->fc = (unsigned char)fc;
  1186. phy->ops->reset(phy, 0);
  1187. }
  1188. return 0;
  1189. }
  1190. /**
  1191. * t3_set_vlan_accel - control HW VLAN extraction
  1192. * @adapter: the adapter
  1193. * @ports: bitmap of adapter ports to operate on
  1194. * @on: enable (1) or disable (0) HW VLAN extraction
  1195. *
  1196. * Enables or disables HW extraction of VLAN tags for the given port.
  1197. */
  1198. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  1199. {
  1200. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  1201. ports << S_VLANEXTRACTIONENABLE,
  1202. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  1203. }
  1204. struct intr_info {
  1205. unsigned int mask; /* bits to check in interrupt status */
  1206. const char *msg; /* message to print or NULL */
  1207. short stat_idx; /* stat counter to increment or -1 */
  1208. unsigned short fatal; /* whether the condition reported is fatal */
  1209. };
  1210. /**
  1211. * t3_handle_intr_status - table driven interrupt handler
  1212. * @adapter: the adapter that generated the interrupt
  1213. * @reg: the interrupt status register to process
  1214. * @mask: a mask to apply to the interrupt status
  1215. * @acts: table of interrupt actions
  1216. * @stats: statistics counters tracking interrupt occurences
  1217. *
  1218. * A table driven interrupt handler that applies a set of masks to an
  1219. * interrupt status word and performs the corresponding actions if the
  1220. * interrupts described by the mask have occured. The actions include
  1221. * optionally printing a warning or alert message, and optionally
  1222. * incrementing a stat counter. The table is terminated by an entry
  1223. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1224. */
  1225. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1226. unsigned int mask,
  1227. const struct intr_info *acts,
  1228. unsigned long *stats)
  1229. {
  1230. int fatal = 0;
  1231. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1232. for (; acts->mask; ++acts) {
  1233. if (!(status & acts->mask))
  1234. continue;
  1235. if (acts->fatal) {
  1236. fatal++;
  1237. CH_ALERT(adapter, "%s (0x%x)\n",
  1238. acts->msg, status & acts->mask);
  1239. } else if (acts->msg)
  1240. CH_WARN(adapter, "%s (0x%x)\n",
  1241. acts->msg, status & acts->mask);
  1242. if (acts->stat_idx >= 0)
  1243. stats[acts->stat_idx]++;
  1244. }
  1245. if (status) /* clear processed interrupts */
  1246. t3_write_reg(adapter, reg, status);
  1247. return fatal;
  1248. }
  1249. #define SGE_INTR_MASK (F_RSPQDISABLED | \
  1250. F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
  1251. F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
  1252. F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
  1253. V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
  1254. F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
  1255. F_HIRCQPARITYERROR)
  1256. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1257. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1258. F_NFASRCHFAIL)
  1259. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1260. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1261. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1262. F_TXFIFO_UNDERRUN)
  1263. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1264. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1265. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1266. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1267. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1268. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1269. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1270. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1271. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1272. F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
  1273. F_TXPARERR | V_BISTERR(M_BISTERR))
  1274. #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
  1275. F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
  1276. F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
  1277. #define ULPTX_INTR_MASK 0xfc
  1278. #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
  1279. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1280. F_ZERO_SWITCH_ERROR)
  1281. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1282. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1283. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1284. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
  1285. F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
  1286. F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
  1287. F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
  1288. F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
  1289. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1290. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1291. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1292. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1293. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1294. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1295. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1296. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1297. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1298. V_MCAPARERRENB(M_MCAPARERRENB))
  1299. #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
  1300. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1301. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1302. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1303. F_MPS0 | F_CPL_SWITCH)
  1304. /*
  1305. * Interrupt handler for the PCIX1 module.
  1306. */
  1307. static void pci_intr_handler(struct adapter *adapter)
  1308. {
  1309. static const struct intr_info pcix1_intr_info[] = {
  1310. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1311. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1312. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1313. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1314. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1315. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1316. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1317. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1318. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1319. 1},
  1320. {F_DETCORECCERR, "PCI correctable ECC error",
  1321. STAT_PCI_CORR_ECC, 0},
  1322. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1323. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1324. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1325. 1},
  1326. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1327. 1},
  1328. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1329. 1},
  1330. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1331. "error", -1, 1},
  1332. {0}
  1333. };
  1334. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1335. pcix1_intr_info, adapter->irq_stats))
  1336. t3_fatal_err(adapter);
  1337. }
  1338. /*
  1339. * Interrupt handler for the PCIE module.
  1340. */
  1341. static void pcie_intr_handler(struct adapter *adapter)
  1342. {
  1343. static const struct intr_info pcie_intr_info[] = {
  1344. {F_PEXERR, "PCI PEX error", -1, 1},
  1345. {F_UNXSPLCPLERRR,
  1346. "PCI unexpected split completion DMA read error", -1, 1},
  1347. {F_UNXSPLCPLERRC,
  1348. "PCI unexpected split completion DMA command error", -1, 1},
  1349. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1350. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1351. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1352. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1353. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1354. "PCI MSI-X table/PBA parity error", -1, 1},
  1355. {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
  1356. {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
  1357. {F_RXPARERR, "PCI Rx parity error", -1, 1},
  1358. {F_TXPARERR, "PCI Tx parity error", -1, 1},
  1359. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1360. {0}
  1361. };
  1362. if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
  1363. CH_ALERT(adapter, "PEX error code 0x%x\n",
  1364. t3_read_reg(adapter, A_PCIE_PEX_ERR));
  1365. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1366. pcie_intr_info, adapter->irq_stats))
  1367. t3_fatal_err(adapter);
  1368. }
  1369. /*
  1370. * TP interrupt handler.
  1371. */
  1372. static void tp_intr_handler(struct adapter *adapter)
  1373. {
  1374. static const struct intr_info tp_intr_info[] = {
  1375. {0xffffff, "TP parity error", -1, 1},
  1376. {0x1000000, "TP out of Rx pages", -1, 1},
  1377. {0x2000000, "TP out of Tx pages", -1, 1},
  1378. {0}
  1379. };
  1380. static struct intr_info tp_intr_info_t3c[] = {
  1381. {0x1fffffff, "TP parity error", -1, 1},
  1382. {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
  1383. {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
  1384. {0}
  1385. };
  1386. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1387. adapter->params.rev < T3_REV_C ?
  1388. tp_intr_info : tp_intr_info_t3c, NULL))
  1389. t3_fatal_err(adapter);
  1390. }
  1391. /*
  1392. * CIM interrupt handler.
  1393. */
  1394. static void cim_intr_handler(struct adapter *adapter)
  1395. {
  1396. static const struct intr_info cim_intr_info[] = {
  1397. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1398. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1399. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1400. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1401. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1402. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1403. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1404. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1405. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1406. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1407. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1408. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1409. {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
  1410. {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
  1411. {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
  1412. {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
  1413. {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
  1414. {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
  1415. {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
  1416. {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
  1417. {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
  1418. {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
  1419. {F_ITAGPARERR, "CIM itag parity error", -1, 1},
  1420. {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
  1421. {0}
  1422. };
  1423. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1424. cim_intr_info, NULL))
  1425. t3_fatal_err(adapter);
  1426. }
  1427. /*
  1428. * ULP RX interrupt handler.
  1429. */
  1430. static void ulprx_intr_handler(struct adapter *adapter)
  1431. {
  1432. static const struct intr_info ulprx_intr_info[] = {
  1433. {F_PARERRDATA, "ULP RX data parity error", -1, 1},
  1434. {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
  1435. {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
  1436. {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
  1437. {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
  1438. {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
  1439. {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
  1440. {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
  1441. {0}
  1442. };
  1443. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1444. ulprx_intr_info, NULL))
  1445. t3_fatal_err(adapter);
  1446. }
  1447. /*
  1448. * ULP TX interrupt handler.
  1449. */
  1450. static void ulptx_intr_handler(struct adapter *adapter)
  1451. {
  1452. static const struct intr_info ulptx_intr_info[] = {
  1453. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1454. STAT_ULP_CH0_PBL_OOB, 0},
  1455. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1456. STAT_ULP_CH1_PBL_OOB, 0},
  1457. {0xfc, "ULP TX parity error", -1, 1},
  1458. {0}
  1459. };
  1460. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1461. ulptx_intr_info, adapter->irq_stats))
  1462. t3_fatal_err(adapter);
  1463. }
  1464. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1465. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1466. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1467. F_ICSPI1_TX_FRAMING_ERROR)
  1468. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1469. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1470. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1471. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1472. /*
  1473. * PM TX interrupt handler.
  1474. */
  1475. static void pmtx_intr_handler(struct adapter *adapter)
  1476. {
  1477. static const struct intr_info pmtx_intr_info[] = {
  1478. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1479. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1480. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1481. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1482. "PMTX ispi parity error", -1, 1},
  1483. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1484. "PMTX ospi parity error", -1, 1},
  1485. {0}
  1486. };
  1487. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1488. pmtx_intr_info, NULL))
  1489. t3_fatal_err(adapter);
  1490. }
  1491. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1492. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1493. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1494. F_IESPI1_TX_FRAMING_ERROR)
  1495. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1496. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1497. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1498. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1499. /*
  1500. * PM RX interrupt handler.
  1501. */
  1502. static void pmrx_intr_handler(struct adapter *adapter)
  1503. {
  1504. static const struct intr_info pmrx_intr_info[] = {
  1505. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1506. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1507. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1508. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1509. "PMRX ispi parity error", -1, 1},
  1510. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1511. "PMRX ospi parity error", -1, 1},
  1512. {0}
  1513. };
  1514. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1515. pmrx_intr_info, NULL))
  1516. t3_fatal_err(adapter);
  1517. }
  1518. /*
  1519. * CPL switch interrupt handler.
  1520. */
  1521. static void cplsw_intr_handler(struct adapter *adapter)
  1522. {
  1523. static const struct intr_info cplsw_intr_info[] = {
  1524. {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
  1525. {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
  1526. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1527. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1528. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1529. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1530. {0}
  1531. };
  1532. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1533. cplsw_intr_info, NULL))
  1534. t3_fatal_err(adapter);
  1535. }
  1536. /*
  1537. * MPS interrupt handler.
  1538. */
  1539. static void mps_intr_handler(struct adapter *adapter)
  1540. {
  1541. static const struct intr_info mps_intr_info[] = {
  1542. {0x1ff, "MPS parity error", -1, 1},
  1543. {0}
  1544. };
  1545. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1546. mps_intr_info, NULL))
  1547. t3_fatal_err(adapter);
  1548. }
  1549. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1550. /*
  1551. * MC7 interrupt handler.
  1552. */
  1553. static void mc7_intr_handler(struct mc7 *mc7)
  1554. {
  1555. struct adapter *adapter = mc7->adapter;
  1556. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1557. if (cause & F_CE) {
  1558. mc7->stats.corr_err++;
  1559. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1560. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1561. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1562. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1563. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1564. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1565. }
  1566. if (cause & F_UE) {
  1567. mc7->stats.uncorr_err++;
  1568. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1569. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1570. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1571. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1572. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1573. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1574. }
  1575. if (G_PE(cause)) {
  1576. mc7->stats.parity_err++;
  1577. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1578. mc7->name, G_PE(cause));
  1579. }
  1580. if (cause & F_AE) {
  1581. u32 addr = 0;
  1582. if (adapter->params.rev > 0)
  1583. addr = t3_read_reg(adapter,
  1584. mc7->offset + A_MC7_ERR_ADDR);
  1585. mc7->stats.addr_err++;
  1586. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1587. mc7->name, addr);
  1588. }
  1589. if (cause & MC7_INTR_FATAL)
  1590. t3_fatal_err(adapter);
  1591. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1592. }
  1593. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1594. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1595. /*
  1596. * XGMAC interrupt handler.
  1597. */
  1598. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1599. {
  1600. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1601. /*
  1602. * We mask out interrupt causes for which we're not taking interrupts.
  1603. * This allows us to use polling logic to monitor some of the other
  1604. * conditions when taking interrupts would impose too much load on the
  1605. * system.
  1606. */
  1607. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
  1608. ~F_RXFIFO_OVERFLOW;
  1609. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1610. mac->stats.tx_fifo_parity_err++;
  1611. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1612. }
  1613. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1614. mac->stats.rx_fifo_parity_err++;
  1615. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1616. }
  1617. if (cause & F_TXFIFO_UNDERRUN)
  1618. mac->stats.tx_fifo_urun++;
  1619. if (cause & F_RXFIFO_OVERFLOW)
  1620. mac->stats.rx_fifo_ovfl++;
  1621. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1622. mac->stats.serdes_signal_loss++;
  1623. if (cause & F_XAUIPCSCTCERR)
  1624. mac->stats.xaui_pcs_ctc_err++;
  1625. if (cause & F_XAUIPCSALIGNCHANGE)
  1626. mac->stats.xaui_pcs_align_change++;
  1627. if (cause & F_XGM_INT) {
  1628. t3_set_reg_field(adap,
  1629. A_XGM_INT_ENABLE + mac->offset,
  1630. F_XGM_INT, 0);
  1631. mac->stats.link_faults++;
  1632. t3_os_link_fault_handler(adap, idx);
  1633. }
  1634. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1635. if (cause & XGM_INTR_FATAL)
  1636. t3_fatal_err(adap);
  1637. return cause != 0;
  1638. }
  1639. /*
  1640. * Interrupt handler for PHY events.
  1641. */
  1642. int t3_phy_intr_handler(struct adapter *adapter)
  1643. {
  1644. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1645. for_each_port(adapter, i) {
  1646. struct port_info *p = adap2pinfo(adapter, i);
  1647. if (!(p->phy.caps & SUPPORTED_IRQ))
  1648. continue;
  1649. if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
  1650. int phy_cause = p->phy.ops->intr_handler(&p->phy);
  1651. if (phy_cause & cphy_cause_link_change)
  1652. t3_link_changed(adapter, i);
  1653. if (phy_cause & cphy_cause_fifo_error)
  1654. p->phy.fifo_errors++;
  1655. if (phy_cause & cphy_cause_module_change)
  1656. t3_os_phymod_changed(adapter, i);
  1657. }
  1658. }
  1659. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1660. return 0;
  1661. }
  1662. /*
  1663. * T3 slow path (non-data) interrupt handler.
  1664. */
  1665. int t3_slow_intr_handler(struct adapter *adapter)
  1666. {
  1667. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1668. cause &= adapter->slow_intr_mask;
  1669. if (!cause)
  1670. return 0;
  1671. if (cause & F_PCIM0) {
  1672. if (is_pcie(adapter))
  1673. pcie_intr_handler(adapter);
  1674. else
  1675. pci_intr_handler(adapter);
  1676. }
  1677. if (cause & F_SGE3)
  1678. t3_sge_err_intr_handler(adapter);
  1679. if (cause & F_MC7_PMRX)
  1680. mc7_intr_handler(&adapter->pmrx);
  1681. if (cause & F_MC7_PMTX)
  1682. mc7_intr_handler(&adapter->pmtx);
  1683. if (cause & F_MC7_CM)
  1684. mc7_intr_handler(&adapter->cm);
  1685. if (cause & F_CIM)
  1686. cim_intr_handler(adapter);
  1687. if (cause & F_TP1)
  1688. tp_intr_handler(adapter);
  1689. if (cause & F_ULP2_RX)
  1690. ulprx_intr_handler(adapter);
  1691. if (cause & F_ULP2_TX)
  1692. ulptx_intr_handler(adapter);
  1693. if (cause & F_PM1_RX)
  1694. pmrx_intr_handler(adapter);
  1695. if (cause & F_PM1_TX)
  1696. pmtx_intr_handler(adapter);
  1697. if (cause & F_CPL_SWITCH)
  1698. cplsw_intr_handler(adapter);
  1699. if (cause & F_MPS0)
  1700. mps_intr_handler(adapter);
  1701. if (cause & F_MC5A)
  1702. t3_mc5_intr_handler(&adapter->mc5);
  1703. if (cause & F_XGMAC0_0)
  1704. mac_intr_handler(adapter, 0);
  1705. if (cause & F_XGMAC0_1)
  1706. mac_intr_handler(adapter, 1);
  1707. if (cause & F_T3DBG)
  1708. t3_os_ext_intr_handler(adapter);
  1709. /* Clear the interrupts just processed. */
  1710. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1711. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1712. return 1;
  1713. }
  1714. static unsigned int calc_gpio_intr(struct adapter *adap)
  1715. {
  1716. unsigned int i, gpi_intr = 0;
  1717. for_each_port(adap, i)
  1718. if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
  1719. adapter_info(adap)->gpio_intr[i])
  1720. gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
  1721. return gpi_intr;
  1722. }
  1723. /**
  1724. * t3_intr_enable - enable interrupts
  1725. * @adapter: the adapter whose interrupts should be enabled
  1726. *
  1727. * Enable interrupts by setting the interrupt enable registers of the
  1728. * various HW modules and then enabling the top-level interrupt
  1729. * concentrator.
  1730. */
  1731. void t3_intr_enable(struct adapter *adapter)
  1732. {
  1733. static const struct addr_val_pair intr_en_avp[] = {
  1734. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1735. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1736. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1737. MC7_INTR_MASK},
  1738. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1739. MC7_INTR_MASK},
  1740. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1741. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1742. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1743. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1744. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1745. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1746. };
  1747. adapter->slow_intr_mask = PL_INTR_MASK;
  1748. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1749. t3_write_reg(adapter, A_TP_INT_ENABLE,
  1750. adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
  1751. if (adapter->params.rev > 0) {
  1752. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1753. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1754. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1755. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1756. F_PBL_BOUND_ERR_CH1);
  1757. } else {
  1758. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1759. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1760. }
  1761. t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
  1762. if (is_pcie(adapter))
  1763. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1764. else
  1765. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1766. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1767. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1768. }
  1769. /**
  1770. * t3_intr_disable - disable a card's interrupts
  1771. * @adapter: the adapter whose interrupts should be disabled
  1772. *
  1773. * Disable interrupts. We only disable the top-level interrupt
  1774. * concentrator and the SGE data interrupts.
  1775. */
  1776. void t3_intr_disable(struct adapter *adapter)
  1777. {
  1778. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1779. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1780. adapter->slow_intr_mask = 0;
  1781. }
  1782. /**
  1783. * t3_intr_clear - clear all interrupts
  1784. * @adapter: the adapter whose interrupts should be cleared
  1785. *
  1786. * Clears all interrupts.
  1787. */
  1788. void t3_intr_clear(struct adapter *adapter)
  1789. {
  1790. static const unsigned int cause_reg_addr[] = {
  1791. A_SG_INT_CAUSE,
  1792. A_SG_RSPQ_FL_STATUS,
  1793. A_PCIX_INT_CAUSE,
  1794. A_MC7_INT_CAUSE,
  1795. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1796. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1797. A_CIM_HOST_INT_CAUSE,
  1798. A_TP_INT_CAUSE,
  1799. A_MC5_DB_INT_CAUSE,
  1800. A_ULPRX_INT_CAUSE,
  1801. A_ULPTX_INT_CAUSE,
  1802. A_CPL_INTR_CAUSE,
  1803. A_PM1_TX_INT_CAUSE,
  1804. A_PM1_RX_INT_CAUSE,
  1805. A_MPS_INT_CAUSE,
  1806. A_T3DBG_INT_CAUSE,
  1807. };
  1808. unsigned int i;
  1809. /* Clear PHY and MAC interrupts for each port. */
  1810. for_each_port(adapter, i)
  1811. t3_port_intr_clear(adapter, i);
  1812. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1813. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1814. if (is_pcie(adapter))
  1815. t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
  1816. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1817. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1818. }
  1819. void t3_xgm_intr_enable(struct adapter *adapter, int idx)
  1820. {
  1821. struct port_info *pi = adap2pinfo(adapter, idx);
  1822. t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
  1823. XGM_EXTRA_INTR_MASK);
  1824. }
  1825. void t3_xgm_intr_disable(struct adapter *adapter, int idx)
  1826. {
  1827. struct port_info *pi = adap2pinfo(adapter, idx);
  1828. t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
  1829. 0x7ff);
  1830. }
  1831. /**
  1832. * t3_port_intr_enable - enable port-specific interrupts
  1833. * @adapter: associated adapter
  1834. * @idx: index of port whose interrupts should be enabled
  1835. *
  1836. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1837. * adapter port.
  1838. */
  1839. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1840. {
  1841. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1842. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1843. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1844. phy->ops->intr_enable(phy);
  1845. }
  1846. /**
  1847. * t3_port_intr_disable - disable port-specific interrupts
  1848. * @adapter: associated adapter
  1849. * @idx: index of port whose interrupts should be disabled
  1850. *
  1851. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1852. * adapter port.
  1853. */
  1854. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1855. {
  1856. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1857. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1858. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1859. phy->ops->intr_disable(phy);
  1860. }
  1861. /**
  1862. * t3_port_intr_clear - clear port-specific interrupts
  1863. * @adapter: associated adapter
  1864. * @idx: index of port whose interrupts to clear
  1865. *
  1866. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1867. * adapter port.
  1868. */
  1869. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1870. {
  1871. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1872. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1873. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1874. phy->ops->intr_clear(phy);
  1875. }
  1876. #define SG_CONTEXT_CMD_ATTEMPTS 100
  1877. /**
  1878. * t3_sge_write_context - write an SGE context
  1879. * @adapter: the adapter
  1880. * @id: the context id
  1881. * @type: the context type
  1882. *
  1883. * Program an SGE context with the values already loaded in the
  1884. * CONTEXT_DATA? registers.
  1885. */
  1886. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1887. unsigned int type)
  1888. {
  1889. if (type == F_RESPONSEQ) {
  1890. /*
  1891. * Can't write the Response Queue Context bits for
  1892. * Interrupt Armed or the Reserve bits after the chip
  1893. * has been initialized out of reset. Writing to these
  1894. * bits can confuse the hardware.
  1895. */
  1896. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1897. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1898. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
  1899. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1900. } else {
  1901. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1902. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1903. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1904. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1905. }
  1906. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1907. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1908. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1909. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1910. }
  1911. /**
  1912. * clear_sge_ctxt - completely clear an SGE context
  1913. * @adapter: the adapter
  1914. * @id: the context id
  1915. * @type: the context type
  1916. *
  1917. * Completely clear an SGE context. Used predominantly at post-reset
  1918. * initialization. Note in particular that we don't skip writing to any
  1919. * "sensitive bits" in the contexts the way that t3_sge_write_context()
  1920. * does ...
  1921. */
  1922. static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
  1923. unsigned int type)
  1924. {
  1925. t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
  1926. t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
  1927. t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
  1928. t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
  1929. t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
  1930. t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
  1931. t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
  1932. t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
  1933. t3_write_reg(adap, A_SG_CONTEXT_CMD,
  1934. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1935. return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1936. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1937. }
  1938. /**
  1939. * t3_sge_init_ecntxt - initialize an SGE egress context
  1940. * @adapter: the adapter to configure
  1941. * @id: the context id
  1942. * @gts_enable: whether to enable GTS for the context
  1943. * @type: the egress context type
  1944. * @respq: associated response queue
  1945. * @base_addr: base address of queue
  1946. * @size: number of queue entries
  1947. * @token: uP token
  1948. * @gen: initial generation value for the context
  1949. * @cidx: consumer pointer
  1950. *
  1951. * Initialize an SGE egress context and make it ready for use. If the
  1952. * platform allows concurrent context operations, the caller is
  1953. * responsible for appropriate locking.
  1954. */
  1955. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1956. enum sge_context_type type, int respq, u64 base_addr,
  1957. unsigned int size, unsigned int token, int gen,
  1958. unsigned int cidx)
  1959. {
  1960. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1961. if (base_addr & 0xfff) /* must be 4K aligned */
  1962. return -EINVAL;
  1963. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1964. return -EBUSY;
  1965. base_addr >>= 12;
  1966. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1967. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1968. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1969. V_EC_BASE_LO(base_addr & 0xffff));
  1970. base_addr >>= 16;
  1971. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1972. base_addr >>= 32;
  1973. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1974. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1975. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1976. F_EC_VALID);
  1977. return t3_sge_write_context(adapter, id, F_EGRESS);
  1978. }
  1979. /**
  1980. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1981. * @adapter: the adapter to configure
  1982. * @id: the context id
  1983. * @gts_enable: whether to enable GTS for the context
  1984. * @base_addr: base address of queue
  1985. * @size: number of queue entries
  1986. * @bsize: size of each buffer for this queue
  1987. * @cong_thres: threshold to signal congestion to upstream producers
  1988. * @gen: initial generation value for the context
  1989. * @cidx: consumer pointer
  1990. *
  1991. * Initialize an SGE free list context and make it ready for use. The
  1992. * caller is responsible for ensuring only one context operation occurs
  1993. * at a time.
  1994. */
  1995. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  1996. int gts_enable, u64 base_addr, unsigned int size,
  1997. unsigned int bsize, unsigned int cong_thres, int gen,
  1998. unsigned int cidx)
  1999. {
  2000. if (base_addr & 0xfff) /* must be 4K aligned */
  2001. return -EINVAL;
  2002. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2003. return -EBUSY;
  2004. base_addr >>= 12;
  2005. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  2006. base_addr >>= 32;
  2007. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  2008. V_FL_BASE_HI((u32) base_addr) |
  2009. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  2010. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  2011. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  2012. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  2013. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  2014. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  2015. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  2016. return t3_sge_write_context(adapter, id, F_FREELIST);
  2017. }
  2018. /**
  2019. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  2020. * @adapter: the adapter to configure
  2021. * @id: the context id
  2022. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  2023. * @base_addr: base address of queue
  2024. * @size: number of queue entries
  2025. * @fl_thres: threshold for selecting the normal or jumbo free list
  2026. * @gen: initial generation value for the context
  2027. * @cidx: consumer pointer
  2028. *
  2029. * Initialize an SGE response queue context and make it ready for use.
  2030. * The caller is responsible for ensuring only one context operation
  2031. * occurs at a time.
  2032. */
  2033. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  2034. int irq_vec_idx, u64 base_addr, unsigned int size,
  2035. unsigned int fl_thres, int gen, unsigned int cidx)
  2036. {
  2037. unsigned int intr = 0;
  2038. if (base_addr & 0xfff) /* must be 4K aligned */
  2039. return -EINVAL;
  2040. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2041. return -EBUSY;
  2042. base_addr >>= 12;
  2043. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  2044. V_CQ_INDEX(cidx));
  2045. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  2046. base_addr >>= 32;
  2047. if (irq_vec_idx >= 0)
  2048. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  2049. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  2050. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  2051. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  2052. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  2053. }
  2054. /**
  2055. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  2056. * @adapter: the adapter to configure
  2057. * @id: the context id
  2058. * @base_addr: base address of queue
  2059. * @size: number of queue entries
  2060. * @rspq: response queue for async notifications
  2061. * @ovfl_mode: CQ overflow mode
  2062. * @credits: completion queue credits
  2063. * @credit_thres: the credit threshold
  2064. *
  2065. * Initialize an SGE completion queue context and make it ready for use.
  2066. * The caller is responsible for ensuring only one context operation
  2067. * occurs at a time.
  2068. */
  2069. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  2070. unsigned int size, int rspq, int ovfl_mode,
  2071. unsigned int credits, unsigned int credit_thres)
  2072. {
  2073. if (base_addr & 0xfff) /* must be 4K aligned */
  2074. return -EINVAL;
  2075. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2076. return -EBUSY;
  2077. base_addr >>= 12;
  2078. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  2079. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  2080. base_addr >>= 32;
  2081. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  2082. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  2083. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
  2084. V_CQ_ERR(ovfl_mode));
  2085. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  2086. V_CQ_CREDIT_THRES(credit_thres));
  2087. return t3_sge_write_context(adapter, id, F_CQ);
  2088. }
  2089. /**
  2090. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  2091. * @adapter: the adapter
  2092. * @id: the egress context id
  2093. * @enable: enable (1) or disable (0) the context
  2094. *
  2095. * Enable or disable an SGE egress context. The caller is responsible for
  2096. * ensuring only one context operation occurs at a time.
  2097. */
  2098. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  2099. {
  2100. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2101. return -EBUSY;
  2102. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  2103. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2104. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2105. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  2106. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  2107. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2108. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  2109. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2110. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2111. }
  2112. /**
  2113. * t3_sge_disable_fl - disable an SGE free-buffer list
  2114. * @adapter: the adapter
  2115. * @id: the free list context id
  2116. *
  2117. * Disable an SGE free-buffer list. The caller is responsible for
  2118. * ensuring only one context operation occurs at a time.
  2119. */
  2120. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  2121. {
  2122. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2123. return -EBUSY;
  2124. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  2125. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2126. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  2127. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2128. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  2129. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2130. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  2131. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2132. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2133. }
  2134. /**
  2135. * t3_sge_disable_rspcntxt - disable an SGE response queue
  2136. * @adapter: the adapter
  2137. * @id: the response queue context id
  2138. *
  2139. * Disable an SGE response queue. The caller is responsible for
  2140. * ensuring only one context operation occurs at a time.
  2141. */
  2142. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  2143. {
  2144. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2145. return -EBUSY;
  2146. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2147. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2148. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2149. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2150. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2151. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2152. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  2153. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2154. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2155. }
  2156. /**
  2157. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  2158. * @adapter: the adapter
  2159. * @id: the completion queue context id
  2160. *
  2161. * Disable an SGE completion queue. The caller is responsible for
  2162. * ensuring only one context operation occurs at a time.
  2163. */
  2164. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  2165. {
  2166. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2167. return -EBUSY;
  2168. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2169. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2170. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2171. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2172. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2173. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2174. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  2175. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2176. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2177. }
  2178. /**
  2179. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  2180. * @adapter: the adapter
  2181. * @id: the context id
  2182. * @op: the operation to perform
  2183. *
  2184. * Perform the selected operation on an SGE completion queue context.
  2185. * The caller is responsible for ensuring only one context operation
  2186. * occurs at a time.
  2187. */
  2188. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  2189. unsigned int credits)
  2190. {
  2191. u32 val;
  2192. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2193. return -EBUSY;
  2194. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  2195. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  2196. V_CONTEXT(id) | F_CQ);
  2197. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2198. 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
  2199. return -EIO;
  2200. if (op >= 2 && op < 7) {
  2201. if (adapter->params.rev > 0)
  2202. return G_CQ_INDEX(val);
  2203. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2204. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  2205. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  2206. F_CONTEXT_CMD_BUSY, 0,
  2207. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2208. return -EIO;
  2209. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  2210. }
  2211. return 0;
  2212. }
  2213. /**
  2214. * t3_sge_read_context - read an SGE context
  2215. * @type: the context type
  2216. * @adapter: the adapter
  2217. * @id: the context id
  2218. * @data: holds the retrieved context
  2219. *
  2220. * Read an SGE egress context. The caller is responsible for ensuring
  2221. * only one context operation occurs at a time.
  2222. */
  2223. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  2224. unsigned int id, u32 data[4])
  2225. {
  2226. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2227. return -EBUSY;
  2228. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2229. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  2230. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  2231. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2232. return -EIO;
  2233. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  2234. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  2235. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  2236. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  2237. return 0;
  2238. }
  2239. /**
  2240. * t3_sge_read_ecntxt - read an SGE egress context
  2241. * @adapter: the adapter
  2242. * @id: the context id
  2243. * @data: holds the retrieved context
  2244. *
  2245. * Read an SGE egress context. The caller is responsible for ensuring
  2246. * only one context operation occurs at a time.
  2247. */
  2248. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  2249. {
  2250. if (id >= 65536)
  2251. return -EINVAL;
  2252. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  2253. }
  2254. /**
  2255. * t3_sge_read_cq - read an SGE CQ context
  2256. * @adapter: the adapter
  2257. * @id: the context id
  2258. * @data: holds the retrieved context
  2259. *
  2260. * Read an SGE CQ context. The caller is responsible for ensuring
  2261. * only one context operation occurs at a time.
  2262. */
  2263. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  2264. {
  2265. if (id >= 65536)
  2266. return -EINVAL;
  2267. return t3_sge_read_context(F_CQ, adapter, id, data);
  2268. }
  2269. /**
  2270. * t3_sge_read_fl - read an SGE free-list context
  2271. * @adapter: the adapter
  2272. * @id: the context id
  2273. * @data: holds the retrieved context
  2274. *
  2275. * Read an SGE free-list context. The caller is responsible for ensuring
  2276. * only one context operation occurs at a time.
  2277. */
  2278. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  2279. {
  2280. if (id >= SGE_QSETS * 2)
  2281. return -EINVAL;
  2282. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  2283. }
  2284. /**
  2285. * t3_sge_read_rspq - read an SGE response queue context
  2286. * @adapter: the adapter
  2287. * @id: the context id
  2288. * @data: holds the retrieved context
  2289. *
  2290. * Read an SGE response queue context. The caller is responsible for
  2291. * ensuring only one context operation occurs at a time.
  2292. */
  2293. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  2294. {
  2295. if (id >= SGE_QSETS)
  2296. return -EINVAL;
  2297. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  2298. }
  2299. /**
  2300. * t3_config_rss - configure Rx packet steering
  2301. * @adapter: the adapter
  2302. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  2303. * @cpus: values for the CPU lookup table (0xff terminated)
  2304. * @rspq: values for the response queue lookup table (0xffff terminated)
  2305. *
  2306. * Programs the receive packet steering logic. @cpus and @rspq provide
  2307. * the values for the CPU and response queue lookup tables. If they
  2308. * provide fewer values than the size of the tables the supplied values
  2309. * are used repeatedly until the tables are fully populated.
  2310. */
  2311. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  2312. const u8 * cpus, const u16 *rspq)
  2313. {
  2314. int i, j, cpu_idx = 0, q_idx = 0;
  2315. if (cpus)
  2316. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2317. u32 val = i << 16;
  2318. for (j = 0; j < 2; ++j) {
  2319. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  2320. if (cpus[cpu_idx] == 0xff)
  2321. cpu_idx = 0;
  2322. }
  2323. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  2324. }
  2325. if (rspq)
  2326. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2327. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2328. (i << 16) | rspq[q_idx++]);
  2329. if (rspq[q_idx] == 0xffff)
  2330. q_idx = 0;
  2331. }
  2332. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  2333. }
  2334. /**
  2335. * t3_read_rss - read the contents of the RSS tables
  2336. * @adapter: the adapter
  2337. * @lkup: holds the contents of the RSS lookup table
  2338. * @map: holds the contents of the RSS map table
  2339. *
  2340. * Reads the contents of the receive packet steering tables.
  2341. */
  2342. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  2343. {
  2344. int i;
  2345. u32 val;
  2346. if (lkup)
  2347. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2348. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  2349. 0xffff0000 | i);
  2350. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  2351. if (!(val & 0x80000000))
  2352. return -EAGAIN;
  2353. *lkup++ = val;
  2354. *lkup++ = (val >> 8);
  2355. }
  2356. if (map)
  2357. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2358. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2359. 0xffff0000 | i);
  2360. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  2361. if (!(val & 0x80000000))
  2362. return -EAGAIN;
  2363. *map++ = val;
  2364. }
  2365. return 0;
  2366. }
  2367. /**
  2368. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2369. * @adap: the adapter
  2370. * @enable: 1 to select offload mode, 0 for regular NIC
  2371. *
  2372. * Switches TP to NIC/offload mode.
  2373. */
  2374. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2375. {
  2376. if (is_offload(adap) || !enable)
  2377. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2378. V_NICMODE(!enable));
  2379. }
  2380. /**
  2381. * pm_num_pages - calculate the number of pages of the payload memory
  2382. * @mem_size: the size of the payload memory
  2383. * @pg_size: the size of each payload memory page
  2384. *
  2385. * Calculate the number of pages, each of the given size, that fit in a
  2386. * memory of the specified size, respecting the HW requirement that the
  2387. * number of pages must be a multiple of 24.
  2388. */
  2389. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2390. unsigned int pg_size)
  2391. {
  2392. unsigned int n = mem_size / pg_size;
  2393. return n - n % 24;
  2394. }
  2395. #define mem_region(adap, start, size, reg) \
  2396. t3_write_reg((adap), A_ ## reg, (start)); \
  2397. start += size
  2398. /**
  2399. * partition_mem - partition memory and configure TP memory settings
  2400. * @adap: the adapter
  2401. * @p: the TP parameters
  2402. *
  2403. * Partitions context and payload memory and configures TP's memory
  2404. * registers.
  2405. */
  2406. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2407. {
  2408. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2409. unsigned int timers = 0, timers_shift = 22;
  2410. if (adap->params.rev > 0) {
  2411. if (tids <= 16 * 1024) {
  2412. timers = 1;
  2413. timers_shift = 16;
  2414. } else if (tids <= 64 * 1024) {
  2415. timers = 2;
  2416. timers_shift = 18;
  2417. } else if (tids <= 256 * 1024) {
  2418. timers = 3;
  2419. timers_shift = 20;
  2420. }
  2421. }
  2422. t3_write_reg(adap, A_TP_PMM_SIZE,
  2423. p->chan_rx_size | (p->chan_tx_size >> 16));
  2424. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2425. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2426. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2427. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2428. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2429. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2430. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2431. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2432. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2433. /* Add a bit of headroom and make multiple of 24 */
  2434. pstructs += 48;
  2435. pstructs -= pstructs % 24;
  2436. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2437. m = tids * TCB_SIZE;
  2438. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2439. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2440. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2441. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2442. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2443. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2444. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2445. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2446. m = (m + 4095) & ~0xfff;
  2447. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2448. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2449. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2450. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2451. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2452. if (tids < m)
  2453. adap->params.mc5.nservers += m - tids;
  2454. }
  2455. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2456. u32 val)
  2457. {
  2458. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2459. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2460. }
  2461. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2462. {
  2463. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2464. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2465. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2466. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2467. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2468. V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
  2469. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2470. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2471. V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
  2472. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2473. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
  2474. F_IPV6ENABLE | F_NICMODE);
  2475. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2476. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2477. t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
  2478. adap->params.rev > 0 ? F_ENABLEESND :
  2479. F_T3A_ENABLEESND);
  2480. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2481. F_ENABLEEPCMDAFULL,
  2482. F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
  2483. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2484. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
  2485. F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
  2486. F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
  2487. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
  2488. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
  2489. if (adap->params.rev > 0) {
  2490. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2491. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2492. F_TXPACEAUTO);
  2493. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2494. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2495. } else
  2496. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2497. if (adap->params.rev == T3_REV_C)
  2498. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2499. V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
  2500. V_TABLELATENCYDELTA(4));
  2501. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
  2502. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
  2503. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
  2504. t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
  2505. }
  2506. /* Desired TP timer resolution in usec */
  2507. #define TP_TMR_RES 50
  2508. /* TCP timer values in ms */
  2509. #define TP_DACK_TIMER 50
  2510. #define TP_RTO_MIN 250
  2511. /**
  2512. * tp_set_timers - set TP timing parameters
  2513. * @adap: the adapter to set
  2514. * @core_clk: the core clock frequency in Hz
  2515. *
  2516. * Set TP's timing parameters, such as the various timer resolutions and
  2517. * the TCP timer values.
  2518. */
  2519. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2520. {
  2521. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2522. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2523. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2524. unsigned int tps = core_clk >> tre;
  2525. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2526. V_DELAYEDACKRESOLUTION(dack_re) |
  2527. V_TIMESTAMPRESOLUTION(tstamp_re));
  2528. t3_write_reg(adap, A_TP_DACK_TIMER,
  2529. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2530. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2531. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2532. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2533. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2534. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2535. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2536. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2537. V_KEEPALIVEMAX(9));
  2538. #define SECONDS * tps
  2539. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2540. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2541. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2542. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2543. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2544. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2545. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2546. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2547. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2548. #undef SECONDS
  2549. }
  2550. /**
  2551. * t3_tp_set_coalescing_size - set receive coalescing size
  2552. * @adap: the adapter
  2553. * @size: the receive coalescing size
  2554. * @psh: whether a set PSH bit should deliver coalesced data
  2555. *
  2556. * Set the receive coalescing size and PSH bit handling.
  2557. */
  2558. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2559. {
  2560. u32 val;
  2561. if (size > MAX_RX_COALESCING_LEN)
  2562. return -EINVAL;
  2563. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2564. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2565. if (size) {
  2566. val |= F_RXCOALESCEENABLE;
  2567. if (psh)
  2568. val |= F_RXCOALESCEPSHEN;
  2569. size = min(MAX_RX_COALESCING_LEN, size);
  2570. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2571. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2572. }
  2573. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2574. return 0;
  2575. }
  2576. /**
  2577. * t3_tp_set_max_rxsize - set the max receive size
  2578. * @adap: the adapter
  2579. * @size: the max receive size
  2580. *
  2581. * Set TP's max receive size. This is the limit that applies when
  2582. * receive coalescing is disabled.
  2583. */
  2584. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2585. {
  2586. t3_write_reg(adap, A_TP_PARA_REG7,
  2587. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2588. }
  2589. static void init_mtus(unsigned short mtus[])
  2590. {
  2591. /*
  2592. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2593. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2594. * are enabled and still have at least 8 bytes of payload.
  2595. */
  2596. mtus[0] = 88;
  2597. mtus[1] = 88;
  2598. mtus[2] = 256;
  2599. mtus[3] = 512;
  2600. mtus[4] = 576;
  2601. mtus[5] = 1024;
  2602. mtus[6] = 1280;
  2603. mtus[7] = 1492;
  2604. mtus[8] = 1500;
  2605. mtus[9] = 2002;
  2606. mtus[10] = 2048;
  2607. mtus[11] = 4096;
  2608. mtus[12] = 4352;
  2609. mtus[13] = 8192;
  2610. mtus[14] = 9000;
  2611. mtus[15] = 9600;
  2612. }
  2613. /*
  2614. * Initial congestion control parameters.
  2615. */
  2616. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  2617. {
  2618. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2619. a[9] = 2;
  2620. a[10] = 3;
  2621. a[11] = 4;
  2622. a[12] = 5;
  2623. a[13] = 6;
  2624. a[14] = 7;
  2625. a[15] = 8;
  2626. a[16] = 9;
  2627. a[17] = 10;
  2628. a[18] = 14;
  2629. a[19] = 17;
  2630. a[20] = 21;
  2631. a[21] = 25;
  2632. a[22] = 30;
  2633. a[23] = 35;
  2634. a[24] = 45;
  2635. a[25] = 60;
  2636. a[26] = 80;
  2637. a[27] = 100;
  2638. a[28] = 200;
  2639. a[29] = 300;
  2640. a[30] = 400;
  2641. a[31] = 500;
  2642. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2643. b[9] = b[10] = 1;
  2644. b[11] = b[12] = 2;
  2645. b[13] = b[14] = b[15] = b[16] = 3;
  2646. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2647. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2648. b[28] = b[29] = 6;
  2649. b[30] = b[31] = 7;
  2650. }
  2651. /* The minimum additive increment value for the congestion control table */
  2652. #define CC_MIN_INCR 2U
  2653. /**
  2654. * t3_load_mtus - write the MTU and congestion control HW tables
  2655. * @adap: the adapter
  2656. * @mtus: the unrestricted values for the MTU table
  2657. * @alphs: the values for the congestion control alpha parameter
  2658. * @beta: the values for the congestion control beta parameter
  2659. * @mtu_cap: the maximum permitted effective MTU
  2660. *
  2661. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2662. * Update the high-speed congestion control table with the supplied alpha,
  2663. * beta, and MTUs.
  2664. */
  2665. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2666. unsigned short alpha[NCCTRL_WIN],
  2667. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2668. {
  2669. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2670. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2671. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2672. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2673. };
  2674. unsigned int i, w;
  2675. for (i = 0; i < NMTUS; ++i) {
  2676. unsigned int mtu = min(mtus[i], mtu_cap);
  2677. unsigned int log2 = fls(mtu);
  2678. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2679. log2--;
  2680. t3_write_reg(adap, A_TP_MTU_TABLE,
  2681. (i << 24) | (log2 << 16) | mtu);
  2682. for (w = 0; w < NCCTRL_WIN; ++w) {
  2683. unsigned int inc;
  2684. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2685. CC_MIN_INCR);
  2686. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2687. (w << 16) | (beta[w] << 13) | inc);
  2688. }
  2689. }
  2690. }
  2691. /**
  2692. * t3_read_hw_mtus - returns the values in the HW MTU table
  2693. * @adap: the adapter
  2694. * @mtus: where to store the HW MTU values
  2695. *
  2696. * Reads the HW MTU table.
  2697. */
  2698. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2699. {
  2700. int i;
  2701. for (i = 0; i < NMTUS; ++i) {
  2702. unsigned int val;
  2703. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2704. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2705. mtus[i] = val & 0x3fff;
  2706. }
  2707. }
  2708. /**
  2709. * t3_get_cong_cntl_tab - reads the congestion control table
  2710. * @adap: the adapter
  2711. * @incr: where to store the alpha values
  2712. *
  2713. * Reads the additive increments programmed into the HW congestion
  2714. * control table.
  2715. */
  2716. void t3_get_cong_cntl_tab(struct adapter *adap,
  2717. unsigned short incr[NMTUS][NCCTRL_WIN])
  2718. {
  2719. unsigned int mtu, w;
  2720. for (mtu = 0; mtu < NMTUS; ++mtu)
  2721. for (w = 0; w < NCCTRL_WIN; ++w) {
  2722. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2723. 0xffff0000 | (mtu << 5) | w);
  2724. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2725. 0x1fff;
  2726. }
  2727. }
  2728. /**
  2729. * t3_tp_get_mib_stats - read TP's MIB counters
  2730. * @adap: the adapter
  2731. * @tps: holds the returned counter values
  2732. *
  2733. * Returns the values of TP's MIB counters.
  2734. */
  2735. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2736. {
  2737. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2738. sizeof(*tps) / sizeof(u32), 0);
  2739. }
  2740. #define ulp_region(adap, name, start, len) \
  2741. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2742. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2743. (start) + (len) - 1); \
  2744. start += len
  2745. #define ulptx_region(adap, name, start, len) \
  2746. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2747. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2748. (start) + (len) - 1)
  2749. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2750. {
  2751. unsigned int m = p->chan_rx_size;
  2752. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2753. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2754. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2755. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2756. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2757. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2758. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2759. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2760. }
  2761. /**
  2762. * t3_set_proto_sram - set the contents of the protocol sram
  2763. * @adapter: the adapter
  2764. * @data: the protocol image
  2765. *
  2766. * Write the contents of the protocol SRAM.
  2767. */
  2768. int t3_set_proto_sram(struct adapter *adap, const u8 *data)
  2769. {
  2770. int i;
  2771. const __be32 *buf = (const __be32 *)data;
  2772. for (i = 0; i < PROTO_SRAM_LINES; i++) {
  2773. t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
  2774. t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
  2775. t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
  2776. t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
  2777. t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
  2778. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
  2779. if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
  2780. return -EIO;
  2781. }
  2782. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
  2783. return 0;
  2784. }
  2785. void t3_config_trace_filter(struct adapter *adapter,
  2786. const struct trace_params *tp, int filter_index,
  2787. int invert, int enable)
  2788. {
  2789. u32 addr, key[4], mask[4];
  2790. key[0] = tp->sport | (tp->sip << 16);
  2791. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2792. key[2] = tp->dip;
  2793. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2794. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2795. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2796. mask[2] = tp->dip_mask;
  2797. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2798. if (invert)
  2799. key[3] |= (1 << 29);
  2800. if (enable)
  2801. key[3] |= (1 << 28);
  2802. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2803. tp_wr_indirect(adapter, addr++, key[0]);
  2804. tp_wr_indirect(adapter, addr++, mask[0]);
  2805. tp_wr_indirect(adapter, addr++, key[1]);
  2806. tp_wr_indirect(adapter, addr++, mask[1]);
  2807. tp_wr_indirect(adapter, addr++, key[2]);
  2808. tp_wr_indirect(adapter, addr++, mask[2]);
  2809. tp_wr_indirect(adapter, addr++, key[3]);
  2810. tp_wr_indirect(adapter, addr, mask[3]);
  2811. t3_read_reg(adapter, A_TP_PIO_DATA);
  2812. }
  2813. /**
  2814. * t3_config_sched - configure a HW traffic scheduler
  2815. * @adap: the adapter
  2816. * @kbps: target rate in Kbps
  2817. * @sched: the scheduler index
  2818. *
  2819. * Configure a HW scheduler for the target rate
  2820. */
  2821. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2822. {
  2823. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2824. unsigned int clk = adap->params.vpd.cclk * 1000;
  2825. unsigned int selected_cpt = 0, selected_bpt = 0;
  2826. if (kbps > 0) {
  2827. kbps *= 125; /* -> bytes */
  2828. for (cpt = 1; cpt <= 255; cpt++) {
  2829. tps = clk / cpt;
  2830. bpt = (kbps + tps / 2) / tps;
  2831. if (bpt > 0 && bpt <= 255) {
  2832. v = bpt * tps;
  2833. delta = v >= kbps ? v - kbps : kbps - v;
  2834. if (delta <= mindelta) {
  2835. mindelta = delta;
  2836. selected_cpt = cpt;
  2837. selected_bpt = bpt;
  2838. }
  2839. } else if (selected_cpt)
  2840. break;
  2841. }
  2842. if (!selected_cpt)
  2843. return -EINVAL;
  2844. }
  2845. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2846. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2847. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2848. if (sched & 1)
  2849. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2850. else
  2851. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2852. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2853. return 0;
  2854. }
  2855. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2856. {
  2857. int busy = 0;
  2858. tp_config(adap, p);
  2859. t3_set_vlan_accel(adap, 3, 0);
  2860. if (is_offload(adap)) {
  2861. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2862. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2863. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2864. 0, 1000, 5);
  2865. if (busy)
  2866. CH_ERR(adap, "TP initialization timed out\n");
  2867. }
  2868. if (!busy)
  2869. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2870. return busy;
  2871. }
  2872. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2873. {
  2874. if (port_mask & ~((1 << adap->params.nports) - 1))
  2875. return -EINVAL;
  2876. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2877. port_mask << S_PORT0ACTIVE);
  2878. return 0;
  2879. }
  2880. /*
  2881. * Perform the bits of HW initialization that are dependent on the Tx
  2882. * channels being used.
  2883. */
  2884. static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
  2885. {
  2886. int i;
  2887. if (chan_map != 3) { /* one channel */
  2888. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2889. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2890. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
  2891. (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
  2892. F_TPTXPORT1EN | F_PORT1ACTIVE));
  2893. t3_write_reg(adap, A_PM1_TX_CFG,
  2894. chan_map == 1 ? 0xffffffff : 0);
  2895. } else { /* two channels */
  2896. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2897. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2898. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2899. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2900. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2901. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2902. F_ENFORCEPKT);
  2903. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2904. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2905. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2906. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2907. for (i = 0; i < 16; i++)
  2908. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2909. (i << 16) | 0x1010);
  2910. }
  2911. }
  2912. static int calibrate_xgm(struct adapter *adapter)
  2913. {
  2914. if (uses_xaui(adapter)) {
  2915. unsigned int v, i;
  2916. for (i = 0; i < 5; ++i) {
  2917. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2918. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2919. msleep(1);
  2920. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2921. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2922. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2923. V_XAUIIMP(G_CALIMP(v) >> 2));
  2924. return 0;
  2925. }
  2926. }
  2927. CH_ERR(adapter, "MAC calibration failed\n");
  2928. return -1;
  2929. } else {
  2930. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2931. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2932. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2933. F_XGM_IMPSETUPDATE);
  2934. }
  2935. return 0;
  2936. }
  2937. static void calibrate_xgm_t3b(struct adapter *adapter)
  2938. {
  2939. if (!uses_xaui(adapter)) {
  2940. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2941. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2942. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2943. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2944. F_XGM_IMPSETUPDATE);
  2945. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2946. 0);
  2947. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2948. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2949. }
  2950. }
  2951. struct mc7_timing_params {
  2952. unsigned char ActToPreDly;
  2953. unsigned char ActToRdWrDly;
  2954. unsigned char PreCyc;
  2955. unsigned char RefCyc[5];
  2956. unsigned char BkCyc;
  2957. unsigned char WrToRdDly;
  2958. unsigned char RdToWrDly;
  2959. };
  2960. /*
  2961. * Write a value to a register and check that the write completed. These
  2962. * writes normally complete in a cycle or two, so one read should suffice.
  2963. * The very first read exists to flush the posted write to the device.
  2964. */
  2965. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2966. {
  2967. t3_write_reg(adapter, addr, val);
  2968. t3_read_reg(adapter, addr); /* flush */
  2969. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2970. return 0;
  2971. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2972. return -EIO;
  2973. }
  2974. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2975. {
  2976. static const unsigned int mc7_mode[] = {
  2977. 0x632, 0x642, 0x652, 0x432, 0x442
  2978. };
  2979. static const struct mc7_timing_params mc7_timings[] = {
  2980. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2981. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2982. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2983. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2984. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2985. };
  2986. u32 val;
  2987. unsigned int width, density, slow, attempts;
  2988. struct adapter *adapter = mc7->adapter;
  2989. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  2990. if (!mc7->size)
  2991. return 0;
  2992. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2993. slow = val & F_SLOW;
  2994. width = G_WIDTH(val);
  2995. density = G_DEN(val);
  2996. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  2997. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2998. msleep(1);
  2999. if (!slow) {
  3000. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  3001. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  3002. msleep(1);
  3003. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  3004. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  3005. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  3006. mc7->name);
  3007. goto out_fail;
  3008. }
  3009. }
  3010. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  3011. V_ACTTOPREDLY(p->ActToPreDly) |
  3012. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  3013. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  3014. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  3015. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  3016. val | F_CLKEN | F_TERM150);
  3017. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  3018. if (!slow)
  3019. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  3020. F_DLLENB);
  3021. udelay(1);
  3022. val = slow ? 3 : 6;
  3023. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  3024. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  3025. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  3026. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  3027. goto out_fail;
  3028. if (!slow) {
  3029. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  3030. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  3031. udelay(5);
  3032. }
  3033. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  3034. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  3035. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  3036. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  3037. mc7_mode[mem_type]) ||
  3038. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  3039. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  3040. goto out_fail;
  3041. /* clock value is in KHz */
  3042. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  3043. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  3044. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  3045. F_PERREFEN | V_PREREFDIV(mc7_clock));
  3046. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  3047. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  3048. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  3049. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  3050. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  3051. (mc7->size << width) - 1);
  3052. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  3053. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  3054. attempts = 50;
  3055. do {
  3056. msleep(250);
  3057. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  3058. } while ((val & F_BUSY) && --attempts);
  3059. if (val & F_BUSY) {
  3060. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  3061. goto out_fail;
  3062. }
  3063. /* Enable normal memory accesses. */
  3064. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  3065. return 0;
  3066. out_fail:
  3067. return -1;
  3068. }
  3069. static void config_pcie(struct adapter *adap)
  3070. {
  3071. static const u16 ack_lat[4][6] = {
  3072. {237, 416, 559, 1071, 2095, 4143},
  3073. {128, 217, 289, 545, 1057, 2081},
  3074. {73, 118, 154, 282, 538, 1050},
  3075. {67, 107, 86, 150, 278, 534}
  3076. };
  3077. static const u16 rpl_tmr[4][6] = {
  3078. {711, 1248, 1677, 3213, 6285, 12429},
  3079. {384, 651, 867, 1635, 3171, 6243},
  3080. {219, 354, 462, 846, 1614, 3150},
  3081. {201, 321, 258, 450, 834, 1602}
  3082. };
  3083. u16 val;
  3084. unsigned int log2_width, pldsize;
  3085. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  3086. pci_read_config_word(adap->pdev,
  3087. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  3088. &val);
  3089. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  3090. pci_read_config_word(adap->pdev,
  3091. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  3092. &val);
  3093. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  3094. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  3095. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  3096. log2_width = fls(adap->params.pci.width) - 1;
  3097. acklat = ack_lat[log2_width][pldsize];
  3098. if (val & 1) /* check LOsEnable */
  3099. acklat += fst_trn_tx * 4;
  3100. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  3101. if (adap->params.rev == 0)
  3102. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  3103. V_T3A_ACKLAT(M_T3A_ACKLAT),
  3104. V_T3A_ACKLAT(acklat));
  3105. else
  3106. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  3107. V_ACKLAT(acklat));
  3108. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  3109. V_REPLAYLMT(rpllmt));
  3110. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  3111. t3_set_reg_field(adap, A_PCIE_CFG, 0,
  3112. F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
  3113. F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
  3114. }
  3115. /*
  3116. * Initialize and configure T3 HW modules. This performs the
  3117. * initialization steps that need to be done once after a card is reset.
  3118. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  3119. *
  3120. * fw_params are passed to FW and their value is platform dependent. Only the
  3121. * top 8 bits are available for use, the rest must be 0.
  3122. */
  3123. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  3124. {
  3125. int err = -EIO, attempts, i;
  3126. const struct vpd_params *vpd = &adapter->params.vpd;
  3127. if (adapter->params.rev > 0)
  3128. calibrate_xgm_t3b(adapter);
  3129. else if (calibrate_xgm(adapter))
  3130. goto out_err;
  3131. if (vpd->mclk) {
  3132. partition_mem(adapter, &adapter->params.tp);
  3133. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  3134. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  3135. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  3136. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  3137. adapter->params.mc5.nfilters,
  3138. adapter->params.mc5.nroutes))
  3139. goto out_err;
  3140. for (i = 0; i < 32; i++)
  3141. if (clear_sge_ctxt(adapter, i, F_CQ))
  3142. goto out_err;
  3143. }
  3144. if (tp_init(adapter, &adapter->params.tp))
  3145. goto out_err;
  3146. t3_tp_set_coalescing_size(adapter,
  3147. min(adapter->params.sge.max_pkt_size,
  3148. MAX_RX_COALESCING_LEN), 1);
  3149. t3_tp_set_max_rxsize(adapter,
  3150. min(adapter->params.sge.max_pkt_size, 16384U));
  3151. ulp_config(adapter, &adapter->params.tp);
  3152. if (is_pcie(adapter))
  3153. config_pcie(adapter);
  3154. else
  3155. t3_set_reg_field(adapter, A_PCIX_CFG, 0,
  3156. F_DMASTOPEN | F_CLIDECEN);
  3157. if (adapter->params.rev == T3_REV_C)
  3158. t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
  3159. F_CFG_CQE_SOP_MASK);
  3160. t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
  3161. t3_write_reg(adapter, A_PM1_RX_MODE, 0);
  3162. t3_write_reg(adapter, A_PM1_TX_MODE, 0);
  3163. chan_init_hw(adapter, adapter->params.chan_map);
  3164. t3_sge_init(adapter, &adapter->params.sge);
  3165. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
  3166. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  3167. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  3168. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  3169. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  3170. attempts = 100;
  3171. do { /* wait for uP to initialize */
  3172. msleep(20);
  3173. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  3174. if (!attempts) {
  3175. CH_ERR(adapter, "uP initialization timed out\n");
  3176. goto out_err;
  3177. }
  3178. err = 0;
  3179. out_err:
  3180. return err;
  3181. }
  3182. /**
  3183. * get_pci_mode - determine a card's PCI mode
  3184. * @adapter: the adapter
  3185. * @p: where to store the PCI settings
  3186. *
  3187. * Determines a card's PCI mode and associated parameters, such as speed
  3188. * and width.
  3189. */
  3190. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3191. {
  3192. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  3193. u32 pci_mode, pcie_cap;
  3194. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  3195. if (pcie_cap) {
  3196. u16 val;
  3197. p->variant = PCI_VARIANT_PCIE;
  3198. p->pcie_cap_addr = pcie_cap;
  3199. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  3200. &val);
  3201. p->width = (val >> 4) & 0x3f;
  3202. return;
  3203. }
  3204. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  3205. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  3206. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  3207. pci_mode = G_PCIXINITPAT(pci_mode);
  3208. if (pci_mode == 0)
  3209. p->variant = PCI_VARIANT_PCI;
  3210. else if (pci_mode < 4)
  3211. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  3212. else if (pci_mode < 8)
  3213. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  3214. else
  3215. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  3216. }
  3217. /**
  3218. * init_link_config - initialize a link's SW state
  3219. * @lc: structure holding the link state
  3220. * @ai: information about the current card
  3221. *
  3222. * Initializes the SW state maintained for each link, including the link's
  3223. * capabilities and default speed/duplex/flow-control/autonegotiation
  3224. * settings.
  3225. */
  3226. static void init_link_config(struct link_config *lc, unsigned int caps)
  3227. {
  3228. lc->supported = caps;
  3229. lc->requested_speed = lc->speed = SPEED_INVALID;
  3230. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  3231. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3232. if (lc->supported & SUPPORTED_Autoneg) {
  3233. lc->advertising = lc->supported;
  3234. lc->autoneg = AUTONEG_ENABLE;
  3235. lc->requested_fc |= PAUSE_AUTONEG;
  3236. } else {
  3237. lc->advertising = 0;
  3238. lc->autoneg = AUTONEG_DISABLE;
  3239. }
  3240. }
  3241. /**
  3242. * mc7_calc_size - calculate MC7 memory size
  3243. * @cfg: the MC7 configuration
  3244. *
  3245. * Calculates the size of an MC7 memory in bytes from the value of its
  3246. * configuration register.
  3247. */
  3248. static unsigned int mc7_calc_size(u32 cfg)
  3249. {
  3250. unsigned int width = G_WIDTH(cfg);
  3251. unsigned int banks = !!(cfg & F_BKS) + 1;
  3252. unsigned int org = !!(cfg & F_ORG) + 1;
  3253. unsigned int density = G_DEN(cfg);
  3254. unsigned int MBs = ((256 << density) * banks) / (org << width);
  3255. return MBs << 20;
  3256. }
  3257. static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  3258. unsigned int base_addr, const char *name)
  3259. {
  3260. u32 cfg;
  3261. mc7->adapter = adapter;
  3262. mc7->name = name;
  3263. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  3264. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3265. mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
  3266. mc7->width = G_WIDTH(cfg);
  3267. }
  3268. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  3269. {
  3270. mac->adapter = adapter;
  3271. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  3272. mac->nucast = 1;
  3273. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  3274. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  3275. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  3276. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  3277. F_ENRGMII, 0);
  3278. }
  3279. }
  3280. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  3281. {
  3282. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  3283. mi1_init(adapter, ai);
  3284. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  3285. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  3286. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  3287. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  3288. t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
  3289. t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
  3290. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  3291. val |= F_ENRGMII;
  3292. /* Enable MAC clocks so we can access the registers */
  3293. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3294. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3295. val |= F_CLKDIVRESET_;
  3296. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3297. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3298. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  3299. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3300. }
  3301. /*
  3302. * Reset the adapter.
  3303. * Older PCIe cards lose their config space during reset, PCI-X
  3304. * ones don't.
  3305. */
  3306. int t3_reset_adapter(struct adapter *adapter)
  3307. {
  3308. int i, save_and_restore_pcie =
  3309. adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
  3310. uint16_t devid = 0;
  3311. if (save_and_restore_pcie)
  3312. pci_save_state(adapter->pdev);
  3313. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  3314. /*
  3315. * Delay. Give Some time to device to reset fully.
  3316. * XXX The delay time should be modified.
  3317. */
  3318. for (i = 0; i < 10; i++) {
  3319. msleep(50);
  3320. pci_read_config_word(adapter->pdev, 0x00, &devid);
  3321. if (devid == 0x1425)
  3322. break;
  3323. }
  3324. if (devid != 0x1425)
  3325. return -1;
  3326. if (save_and_restore_pcie)
  3327. pci_restore_state(adapter->pdev);
  3328. return 0;
  3329. }
  3330. static int init_parity(struct adapter *adap)
  3331. {
  3332. int i, err, addr;
  3333. if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  3334. return -EBUSY;
  3335. for (err = i = 0; !err && i < 16; i++)
  3336. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3337. for (i = 0xfff0; !err && i <= 0xffff; i++)
  3338. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3339. for (i = 0; !err && i < SGE_QSETS; i++)
  3340. err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
  3341. if (err)
  3342. return err;
  3343. t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
  3344. for (i = 0; i < 4; i++)
  3345. for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
  3346. t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
  3347. F_IBQDBGWR | V_IBQDBGQID(i) |
  3348. V_IBQDBGADDR(addr));
  3349. err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
  3350. F_IBQDBGBUSY, 0, 2, 1);
  3351. if (err)
  3352. return err;
  3353. }
  3354. return 0;
  3355. }
  3356. /*
  3357. * Initialize adapter SW state for the various HW modules, set initial values
  3358. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  3359. * interface.
  3360. */
  3361. int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
  3362. int reset)
  3363. {
  3364. int ret;
  3365. unsigned int i, j = -1;
  3366. get_pci_mode(adapter, &adapter->params.pci);
  3367. adapter->params.info = ai;
  3368. adapter->params.nports = ai->nports0 + ai->nports1;
  3369. adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1);
  3370. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  3371. /*
  3372. * We used to only run the "adapter check task" once a second if
  3373. * we had PHYs which didn't support interrupts (we would check
  3374. * their link status once a second). Now we check other conditions
  3375. * in that routine which could potentially impose a very high
  3376. * interrupt load on the system. As such, we now always scan the
  3377. * adapter state once a second ...
  3378. */
  3379. adapter->params.linkpoll_period = 10;
  3380. adapter->params.stats_update_period = is_10G(adapter) ?
  3381. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  3382. adapter->params.pci.vpd_cap_addr =
  3383. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  3384. ret = get_vpd_params(adapter, &adapter->params.vpd);
  3385. if (ret < 0)
  3386. return ret;
  3387. if (reset && t3_reset_adapter(adapter))
  3388. return -1;
  3389. t3_sge_prep(adapter, &adapter->params.sge);
  3390. if (adapter->params.vpd.mclk) {
  3391. struct tp_params *p = &adapter->params.tp;
  3392. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  3393. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  3394. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  3395. p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
  3396. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  3397. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  3398. p->cm_size = t3_mc7_size(&adapter->cm);
  3399. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  3400. p->chan_tx_size = p->pmtx_size / p->nchan;
  3401. p->rx_pg_size = 64 * 1024;
  3402. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  3403. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  3404. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  3405. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  3406. adapter->params.rev > 0 ? 12 : 6;
  3407. }
  3408. adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
  3409. t3_mc7_size(&adapter->pmtx) &&
  3410. t3_mc7_size(&adapter->cm);
  3411. if (is_offload(adapter)) {
  3412. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  3413. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  3414. DEFAULT_NFILTERS : 0;
  3415. adapter->params.mc5.nroutes = 0;
  3416. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  3417. init_mtus(adapter->params.mtus);
  3418. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3419. }
  3420. early_hw_init(adapter, ai);
  3421. ret = init_parity(adapter);
  3422. if (ret)
  3423. return ret;
  3424. for_each_port(adapter, i) {
  3425. u8 hw_addr[6];
  3426. const struct port_type_info *pti;
  3427. struct port_info *p = adap2pinfo(adapter, i);
  3428. while (!adapter->params.vpd.port_type[++j])
  3429. ;
  3430. pti = &port_types[adapter->params.vpd.port_type[j]];
  3431. if (!pti->phy_prep) {
  3432. CH_ALERT(adapter, "Invalid port type index %d\n",
  3433. adapter->params.vpd.port_type[j]);
  3434. return -EINVAL;
  3435. }
  3436. ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3437. ai->mdio_ops);
  3438. if (ret)
  3439. return ret;
  3440. mac_prep(&p->mac, adapter, j);
  3441. /*
  3442. * The VPD EEPROM stores the base Ethernet address for the
  3443. * card. A port's address is derived from the base by adding
  3444. * the port's index to the base's low octet.
  3445. */
  3446. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  3447. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  3448. memcpy(adapter->port[i]->dev_addr, hw_addr,
  3449. ETH_ALEN);
  3450. memcpy(adapter->port[i]->perm_addr, hw_addr,
  3451. ETH_ALEN);
  3452. init_link_config(&p->link_config, p->phy.caps);
  3453. p->phy.ops->power_down(&p->phy, 1);
  3454. /*
  3455. * If the PHY doesn't support interrupts for link status
  3456. * changes, schedule a scan of the adapter links at least
  3457. * once a second.
  3458. */
  3459. if (!(p->phy.caps & SUPPORTED_IRQ) &&
  3460. adapter->params.linkpoll_period > 10)
  3461. adapter->params.linkpoll_period = 10;
  3462. }
  3463. return 0;
  3464. }
  3465. void t3_led_ready(struct adapter *adapter)
  3466. {
  3467. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3468. F_GPIO0_OUT_VAL);
  3469. }
  3470. int t3_replay_prep_adapter(struct adapter *adapter)
  3471. {
  3472. const struct adapter_info *ai = adapter->params.info;
  3473. unsigned int i, j = -1;
  3474. int ret;
  3475. early_hw_init(adapter, ai);
  3476. ret = init_parity(adapter);
  3477. if (ret)
  3478. return ret;
  3479. for_each_port(adapter, i) {
  3480. const struct port_type_info *pti;
  3481. struct port_info *p = adap2pinfo(adapter, i);
  3482. while (!adapter->params.vpd.port_type[++j])
  3483. ;
  3484. pti = &port_types[adapter->params.vpd.port_type[j]];
  3485. ret = pti->phy_prep(&p->phy, adapter, p->phy.addr, NULL);
  3486. if (ret)
  3487. return ret;
  3488. p->phy.ops->power_down(&p->phy, 1);
  3489. }
  3490. return 0;
  3491. }