bnx2x_main.c 318 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973
  1. /* bnx2x_main.c: Broadcom Everest network driver.
  2. *
  3. * Copyright (c) 2007-2011 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Maintained by: Eilon Greenstein <eilong@broadcom.com>
  10. * Written by: Eliezer Tamir
  11. * Based on code from Michael Chan's bnx2 driver
  12. * UDP CSUM errata workaround by Arik Gendelman
  13. * Slowpath and fastpath rework by Vladislav Zolotarov
  14. * Statistics and Link management by Yitchak Gertner
  15. *
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include <linux/module.h>
  19. #include <linux/moduleparam.h>
  20. #include <linux/kernel.h>
  21. #include <linux/device.h> /* for dev_info() */
  22. #include <linux/timer.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/slab.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/pci.h>
  28. #include <linux/init.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/dma-mapping.h>
  33. #include <linux/bitops.h>
  34. #include <linux/irq.h>
  35. #include <linux/delay.h>
  36. #include <asm/byteorder.h>
  37. #include <linux/time.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/mii.h>
  40. #include <linux/if.h>
  41. #include <linux/if_vlan.h>
  42. #include <net/ip.h>
  43. #include <net/ipv6.h>
  44. #include <net/tcp.h>
  45. #include <net/checksum.h>
  46. #include <net/ip6_checksum.h>
  47. #include <linux/workqueue.h>
  48. #include <linux/crc32.h>
  49. #include <linux/crc32c.h>
  50. #include <linux/prefetch.h>
  51. #include <linux/zlib.h>
  52. #include <linux/io.h>
  53. #include <linux/stringify.h>
  54. #include <linux/vmalloc.h>
  55. #include "bnx2x.h"
  56. #include "bnx2x_init.h"
  57. #include "bnx2x_init_ops.h"
  58. #include "bnx2x_cmn.h"
  59. #include "bnx2x_dcb.h"
  60. #include "bnx2x_sp.h"
  61. #include <linux/firmware.h>
  62. #include "bnx2x_fw_file_hdr.h"
  63. /* FW files */
  64. #define FW_FILE_VERSION \
  65. __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
  66. __stringify(BCM_5710_FW_MINOR_VERSION) "." \
  67. __stringify(BCM_5710_FW_REVISION_VERSION) "." \
  68. __stringify(BCM_5710_FW_ENGINEERING_VERSION)
  69. #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
  70. #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
  71. #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
  72. /* Time in jiffies before concluding the transmitter is hung */
  73. #define TX_TIMEOUT (5*HZ)
  74. static char version[] __devinitdata =
  75. "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
  76. DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  77. MODULE_AUTHOR("Eliezer Tamir");
  78. MODULE_DESCRIPTION("Broadcom NetXtreme II "
  79. "BCM57710/57711/57711E/"
  80. "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
  81. "57840/57840_MF Driver");
  82. MODULE_LICENSE("GPL");
  83. MODULE_VERSION(DRV_MODULE_VERSION);
  84. MODULE_FIRMWARE(FW_FILE_NAME_E1);
  85. MODULE_FIRMWARE(FW_FILE_NAME_E1H);
  86. MODULE_FIRMWARE(FW_FILE_NAME_E2);
  87. static int multi_mode = 1;
  88. module_param(multi_mode, int, 0);
  89. MODULE_PARM_DESC(multi_mode, " Multi queue mode "
  90. "(0 Disable; 1 Enable (default))");
  91. int num_queues;
  92. module_param(num_queues, int, 0);
  93. MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
  94. " (default is as a number of CPUs)");
  95. static int disable_tpa;
  96. module_param(disable_tpa, int, 0);
  97. MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
  98. #define INT_MODE_INTx 1
  99. #define INT_MODE_MSI 2
  100. static int int_mode;
  101. module_param(int_mode, int, 0);
  102. MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
  103. "(1 INT#x; 2 MSI)");
  104. static int dropless_fc;
  105. module_param(dropless_fc, int, 0);
  106. MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
  107. static int poll;
  108. module_param(poll, int, 0);
  109. MODULE_PARM_DESC(poll, " Use polling (for debug)");
  110. static int mrrs = -1;
  111. module_param(mrrs, int, 0);
  112. MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
  113. static int debug;
  114. module_param(debug, int, 0);
  115. MODULE_PARM_DESC(debug, " Default debug msglevel");
  116. struct workqueue_struct *bnx2x_wq;
  117. enum bnx2x_board_type {
  118. BCM57710 = 0,
  119. BCM57711,
  120. BCM57711E,
  121. BCM57712,
  122. BCM57712_MF,
  123. BCM57800,
  124. BCM57800_MF,
  125. BCM57810,
  126. BCM57810_MF,
  127. BCM57840,
  128. BCM57840_MF
  129. };
  130. /* indexed by board_type, above */
  131. static struct {
  132. char *name;
  133. } board_info[] __devinitdata = {
  134. { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
  135. { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
  136. { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
  137. { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
  138. { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
  139. { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
  140. { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
  141. { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
  142. { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
  143. { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
  144. { "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
  145. "Ethernet Multi Function"}
  146. };
  147. #ifndef PCI_DEVICE_ID_NX2_57710
  148. #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
  149. #endif
  150. #ifndef PCI_DEVICE_ID_NX2_57711
  151. #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
  152. #endif
  153. #ifndef PCI_DEVICE_ID_NX2_57711E
  154. #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
  155. #endif
  156. #ifndef PCI_DEVICE_ID_NX2_57712
  157. #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
  158. #endif
  159. #ifndef PCI_DEVICE_ID_NX2_57712_MF
  160. #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
  161. #endif
  162. #ifndef PCI_DEVICE_ID_NX2_57800
  163. #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
  164. #endif
  165. #ifndef PCI_DEVICE_ID_NX2_57800_MF
  166. #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
  167. #endif
  168. #ifndef PCI_DEVICE_ID_NX2_57810
  169. #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
  170. #endif
  171. #ifndef PCI_DEVICE_ID_NX2_57810_MF
  172. #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
  173. #endif
  174. #ifndef PCI_DEVICE_ID_NX2_57840
  175. #define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
  176. #endif
  177. #ifndef PCI_DEVICE_ID_NX2_57840_MF
  178. #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
  179. #endif
  180. static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
  181. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
  182. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
  183. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
  184. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
  185. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
  186. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
  187. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
  188. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
  189. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
  190. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
  191. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
  192. { 0 }
  193. };
  194. MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
  195. /****************************************************************************
  196. * General service functions
  197. ****************************************************************************/
  198. static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
  199. u32 addr, dma_addr_t mapping)
  200. {
  201. REG_WR(bp, addr, U64_LO(mapping));
  202. REG_WR(bp, addr + 4, U64_HI(mapping));
  203. }
  204. static inline void storm_memset_spq_addr(struct bnx2x *bp,
  205. dma_addr_t mapping, u16 abs_fid)
  206. {
  207. u32 addr = XSEM_REG_FAST_MEMORY +
  208. XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
  209. __storm_memset_dma_mapping(bp, addr, mapping);
  210. }
  211. static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
  212. u16 pf_id)
  213. {
  214. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
  215. pf_id);
  216. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
  217. pf_id);
  218. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
  219. pf_id);
  220. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
  221. pf_id);
  222. }
  223. static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
  224. u8 enable)
  225. {
  226. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
  227. enable);
  228. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
  229. enable);
  230. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
  231. enable);
  232. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
  233. enable);
  234. }
  235. static inline void storm_memset_eq_data(struct bnx2x *bp,
  236. struct event_ring_data *eq_data,
  237. u16 pfid)
  238. {
  239. size_t size = sizeof(struct event_ring_data);
  240. u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
  241. __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
  242. }
  243. static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
  244. u16 pfid)
  245. {
  246. u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
  247. REG_WR16(bp, addr, eq_prod);
  248. }
  249. /* used only at init
  250. * locking is done by mcp
  251. */
  252. static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
  253. {
  254. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
  255. pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
  256. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
  257. PCICFG_VENDOR_ID_OFFSET);
  258. }
  259. static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
  260. {
  261. u32 val;
  262. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
  263. pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
  264. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
  265. PCICFG_VENDOR_ID_OFFSET);
  266. return val;
  267. }
  268. #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
  269. #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
  270. #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
  271. #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
  272. #define DMAE_DP_DST_NONE "dst_addr [none]"
  273. static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
  274. int msglvl)
  275. {
  276. u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
  277. switch (dmae->opcode & DMAE_COMMAND_DST) {
  278. case DMAE_CMD_DST_PCI:
  279. if (src_type == DMAE_CMD_SRC_PCI)
  280. DP(msglvl, "DMAE: opcode 0x%08x\n"
  281. "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
  282. "comp_addr [%x:%08x], comp_val 0x%08x\n",
  283. dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
  284. dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
  285. dmae->comp_addr_hi, dmae->comp_addr_lo,
  286. dmae->comp_val);
  287. else
  288. DP(msglvl, "DMAE: opcode 0x%08x\n"
  289. "src [%08x], len [%d*4], dst [%x:%08x]\n"
  290. "comp_addr [%x:%08x], comp_val 0x%08x\n",
  291. dmae->opcode, dmae->src_addr_lo >> 2,
  292. dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
  293. dmae->comp_addr_hi, dmae->comp_addr_lo,
  294. dmae->comp_val);
  295. break;
  296. case DMAE_CMD_DST_GRC:
  297. if (src_type == DMAE_CMD_SRC_PCI)
  298. DP(msglvl, "DMAE: opcode 0x%08x\n"
  299. "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
  300. "comp_addr [%x:%08x], comp_val 0x%08x\n",
  301. dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
  302. dmae->len, dmae->dst_addr_lo >> 2,
  303. dmae->comp_addr_hi, dmae->comp_addr_lo,
  304. dmae->comp_val);
  305. else
  306. DP(msglvl, "DMAE: opcode 0x%08x\n"
  307. "src [%08x], len [%d*4], dst [%08x]\n"
  308. "comp_addr [%x:%08x], comp_val 0x%08x\n",
  309. dmae->opcode, dmae->src_addr_lo >> 2,
  310. dmae->len, dmae->dst_addr_lo >> 2,
  311. dmae->comp_addr_hi, dmae->comp_addr_lo,
  312. dmae->comp_val);
  313. break;
  314. default:
  315. if (src_type == DMAE_CMD_SRC_PCI)
  316. DP(msglvl, "DMAE: opcode 0x%08x\n"
  317. "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
  318. "comp_addr [%x:%08x] comp_val 0x%08x\n",
  319. dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
  320. dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
  321. dmae->comp_val);
  322. else
  323. DP(msglvl, "DMAE: opcode 0x%08x\n"
  324. "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
  325. "comp_addr [%x:%08x] comp_val 0x%08x\n",
  326. dmae->opcode, dmae->src_addr_lo >> 2,
  327. dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
  328. dmae->comp_val);
  329. break;
  330. }
  331. }
  332. /* copy command into DMAE command memory and set DMAE command go */
  333. void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
  334. {
  335. u32 cmd_offset;
  336. int i;
  337. cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
  338. for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
  339. REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
  340. DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
  341. idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
  342. }
  343. REG_WR(bp, dmae_reg_go_c[idx], 1);
  344. }
  345. u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
  346. {
  347. return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
  348. DMAE_CMD_C_ENABLE);
  349. }
  350. u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
  351. {
  352. return opcode & ~DMAE_CMD_SRC_RESET;
  353. }
  354. u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
  355. bool with_comp, u8 comp_type)
  356. {
  357. u32 opcode = 0;
  358. opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
  359. (dst_type << DMAE_COMMAND_DST_SHIFT));
  360. opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
  361. opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
  362. opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
  363. (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
  364. opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
  365. #ifdef __BIG_ENDIAN
  366. opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
  367. #else
  368. opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
  369. #endif
  370. if (with_comp)
  371. opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
  372. return opcode;
  373. }
  374. static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
  375. struct dmae_command *dmae,
  376. u8 src_type, u8 dst_type)
  377. {
  378. memset(dmae, 0, sizeof(struct dmae_command));
  379. /* set the opcode */
  380. dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
  381. true, DMAE_COMP_PCI);
  382. /* fill in the completion parameters */
  383. dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
  384. dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
  385. dmae->comp_val = DMAE_COMP_VAL;
  386. }
  387. /* issue a dmae command over the init-channel and wailt for completion */
  388. static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
  389. struct dmae_command *dmae)
  390. {
  391. u32 *wb_comp = bnx2x_sp(bp, wb_comp);
  392. int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
  393. int rc = 0;
  394. DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
  395. bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
  396. bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
  397. /*
  398. * Lock the dmae channel. Disable BHs to prevent a dead-lock
  399. * as long as this code is called both from syscall context and
  400. * from ndo_set_rx_mode() flow that may be called from BH.
  401. */
  402. spin_lock_bh(&bp->dmae_lock);
  403. /* reset completion */
  404. *wb_comp = 0;
  405. /* post the command on the channel used for initializations */
  406. bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
  407. /* wait for completion */
  408. udelay(5);
  409. while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
  410. DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
  411. if (!cnt) {
  412. BNX2X_ERR("DMAE timeout!\n");
  413. rc = DMAE_TIMEOUT;
  414. goto unlock;
  415. }
  416. cnt--;
  417. udelay(50);
  418. }
  419. if (*wb_comp & DMAE_PCI_ERR_FLAG) {
  420. BNX2X_ERR("DMAE PCI error!\n");
  421. rc = DMAE_PCI_ERROR;
  422. }
  423. DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
  424. bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
  425. bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
  426. unlock:
  427. spin_unlock_bh(&bp->dmae_lock);
  428. return rc;
  429. }
  430. void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
  431. u32 len32)
  432. {
  433. struct dmae_command dmae;
  434. if (!bp->dmae_ready) {
  435. u32 *data = bnx2x_sp(bp, wb_data[0]);
  436. DP(BNX2X_MSG_OFF,
  437. "DMAE is not ready (dst_addr %08x len32 %d) using indirect\n",
  438. dst_addr, len32);
  439. if (CHIP_IS_E1(bp))
  440. bnx2x_init_ind_wr(bp, dst_addr, data, len32);
  441. else
  442. bnx2x_init_str_wr(bp, dst_addr, data, len32);
  443. return;
  444. }
  445. /* set opcode and fixed command fields */
  446. bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
  447. /* fill in addresses and len */
  448. dmae.src_addr_lo = U64_LO(dma_addr);
  449. dmae.src_addr_hi = U64_HI(dma_addr);
  450. dmae.dst_addr_lo = dst_addr >> 2;
  451. dmae.dst_addr_hi = 0;
  452. dmae.len = len32;
  453. bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
  454. /* issue the command and wait for completion */
  455. bnx2x_issue_dmae_with_comp(bp, &dmae);
  456. }
  457. void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
  458. {
  459. struct dmae_command dmae;
  460. if (!bp->dmae_ready) {
  461. u32 *data = bnx2x_sp(bp, wb_data[0]);
  462. int i;
  463. if (CHIP_IS_E1(bp)) {
  464. DP(BNX2X_MSG_OFF,
  465. "DMAE is not ready (src_addr %08x len32 %d) using indirect\n",
  466. src_addr, len32);
  467. for (i = 0; i < len32; i++)
  468. data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
  469. } else
  470. for (i = 0; i < len32; i++)
  471. data[i] = REG_RD(bp, src_addr + i*4);
  472. return;
  473. }
  474. /* set opcode and fixed command fields */
  475. bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
  476. /* fill in addresses and len */
  477. dmae.src_addr_lo = src_addr >> 2;
  478. dmae.src_addr_hi = 0;
  479. dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
  480. dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
  481. dmae.len = len32;
  482. bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
  483. /* issue the command and wait for completion */
  484. bnx2x_issue_dmae_with_comp(bp, &dmae);
  485. }
  486. static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
  487. u32 addr, u32 len)
  488. {
  489. int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
  490. int offset = 0;
  491. while (len > dmae_wr_max) {
  492. bnx2x_write_dmae(bp, phys_addr + offset,
  493. addr + offset, dmae_wr_max);
  494. offset += dmae_wr_max * 4;
  495. len -= dmae_wr_max;
  496. }
  497. bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
  498. }
  499. /* used only for slowpath so not inlined */
  500. static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
  501. {
  502. u32 wb_write[2];
  503. wb_write[0] = val_hi;
  504. wb_write[1] = val_lo;
  505. REG_WR_DMAE(bp, reg, wb_write, 2);
  506. }
  507. #ifdef USE_WB_RD
  508. static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
  509. {
  510. u32 wb_data[2];
  511. REG_RD_DMAE(bp, reg, wb_data, 2);
  512. return HILO_U64(wb_data[0], wb_data[1]);
  513. }
  514. #endif
  515. static int bnx2x_mc_assert(struct bnx2x *bp)
  516. {
  517. char last_idx;
  518. int i, rc = 0;
  519. u32 row0, row1, row2, row3;
  520. /* XSTORM */
  521. last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
  522. XSTORM_ASSERT_LIST_INDEX_OFFSET);
  523. if (last_idx)
  524. BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  525. /* print the asserts */
  526. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  527. row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  528. XSTORM_ASSERT_LIST_OFFSET(i));
  529. row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  530. XSTORM_ASSERT_LIST_OFFSET(i) + 4);
  531. row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  532. XSTORM_ASSERT_LIST_OFFSET(i) + 8);
  533. row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  534. XSTORM_ASSERT_LIST_OFFSET(i) + 12);
  535. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  536. BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
  537. " 0x%08x 0x%08x 0x%08x\n",
  538. i, row3, row2, row1, row0);
  539. rc++;
  540. } else {
  541. break;
  542. }
  543. }
  544. /* TSTORM */
  545. last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
  546. TSTORM_ASSERT_LIST_INDEX_OFFSET);
  547. if (last_idx)
  548. BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  549. /* print the asserts */
  550. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  551. row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  552. TSTORM_ASSERT_LIST_OFFSET(i));
  553. row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  554. TSTORM_ASSERT_LIST_OFFSET(i) + 4);
  555. row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  556. TSTORM_ASSERT_LIST_OFFSET(i) + 8);
  557. row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  558. TSTORM_ASSERT_LIST_OFFSET(i) + 12);
  559. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  560. BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
  561. " 0x%08x 0x%08x 0x%08x\n",
  562. i, row3, row2, row1, row0);
  563. rc++;
  564. } else {
  565. break;
  566. }
  567. }
  568. /* CSTORM */
  569. last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
  570. CSTORM_ASSERT_LIST_INDEX_OFFSET);
  571. if (last_idx)
  572. BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  573. /* print the asserts */
  574. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  575. row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  576. CSTORM_ASSERT_LIST_OFFSET(i));
  577. row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  578. CSTORM_ASSERT_LIST_OFFSET(i) + 4);
  579. row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  580. CSTORM_ASSERT_LIST_OFFSET(i) + 8);
  581. row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  582. CSTORM_ASSERT_LIST_OFFSET(i) + 12);
  583. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  584. BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
  585. " 0x%08x 0x%08x 0x%08x\n",
  586. i, row3, row2, row1, row0);
  587. rc++;
  588. } else {
  589. break;
  590. }
  591. }
  592. /* USTORM */
  593. last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
  594. USTORM_ASSERT_LIST_INDEX_OFFSET);
  595. if (last_idx)
  596. BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  597. /* print the asserts */
  598. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  599. row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
  600. USTORM_ASSERT_LIST_OFFSET(i));
  601. row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
  602. USTORM_ASSERT_LIST_OFFSET(i) + 4);
  603. row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
  604. USTORM_ASSERT_LIST_OFFSET(i) + 8);
  605. row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
  606. USTORM_ASSERT_LIST_OFFSET(i) + 12);
  607. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  608. BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
  609. " 0x%08x 0x%08x 0x%08x\n",
  610. i, row3, row2, row1, row0);
  611. rc++;
  612. } else {
  613. break;
  614. }
  615. }
  616. return rc;
  617. }
  618. void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
  619. {
  620. u32 addr, val;
  621. u32 mark, offset;
  622. __be32 data[9];
  623. int word;
  624. u32 trace_shmem_base;
  625. if (BP_NOMCP(bp)) {
  626. BNX2X_ERR("NO MCP - can not dump\n");
  627. return;
  628. }
  629. netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
  630. (bp->common.bc_ver & 0xff0000) >> 16,
  631. (bp->common.bc_ver & 0xff00) >> 8,
  632. (bp->common.bc_ver & 0xff));
  633. val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
  634. if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
  635. printk("%s" "MCP PC at 0x%x\n", lvl, val);
  636. if (BP_PATH(bp) == 0)
  637. trace_shmem_base = bp->common.shmem_base;
  638. else
  639. trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
  640. addr = trace_shmem_base - 0x0800 + 4;
  641. mark = REG_RD(bp, addr);
  642. mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
  643. + ((mark + 0x3) & ~0x3) - 0x08000000;
  644. printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
  645. printk("%s", lvl);
  646. for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
  647. for (word = 0; word < 8; word++)
  648. data[word] = htonl(REG_RD(bp, offset + 4*word));
  649. data[8] = 0x0;
  650. pr_cont("%s", (char *)data);
  651. }
  652. for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
  653. for (word = 0; word < 8; word++)
  654. data[word] = htonl(REG_RD(bp, offset + 4*word));
  655. data[8] = 0x0;
  656. pr_cont("%s", (char *)data);
  657. }
  658. printk("%s" "end of fw dump\n", lvl);
  659. }
  660. static inline void bnx2x_fw_dump(struct bnx2x *bp)
  661. {
  662. bnx2x_fw_dump_lvl(bp, KERN_ERR);
  663. }
  664. void bnx2x_panic_dump(struct bnx2x *bp)
  665. {
  666. int i;
  667. u16 j;
  668. struct hc_sp_status_block_data sp_sb_data;
  669. int func = BP_FUNC(bp);
  670. #ifdef BNX2X_STOP_ON_ERROR
  671. u16 start = 0, end = 0;
  672. u8 cos;
  673. #endif
  674. bp->stats_state = STATS_STATE_DISABLED;
  675. DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
  676. BNX2X_ERR("begin crash dump -----------------\n");
  677. /* Indices */
  678. /* Common */
  679. BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
  680. " spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
  681. bp->def_idx, bp->def_att_idx, bp->attn_state,
  682. bp->spq_prod_idx, bp->stats_counter);
  683. BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
  684. bp->def_status_blk->atten_status_block.attn_bits,
  685. bp->def_status_blk->atten_status_block.attn_bits_ack,
  686. bp->def_status_blk->atten_status_block.status_block_id,
  687. bp->def_status_blk->atten_status_block.attn_bits_index);
  688. BNX2X_ERR(" def (");
  689. for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
  690. pr_cont("0x%x%s",
  691. bp->def_status_blk->sp_sb.index_values[i],
  692. (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
  693. for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
  694. *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
  695. CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
  696. i*sizeof(u32));
  697. pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
  698. sp_sb_data.igu_sb_id,
  699. sp_sb_data.igu_seg_id,
  700. sp_sb_data.p_func.pf_id,
  701. sp_sb_data.p_func.vnic_id,
  702. sp_sb_data.p_func.vf_id,
  703. sp_sb_data.p_func.vf_valid,
  704. sp_sb_data.state);
  705. for_each_eth_queue(bp, i) {
  706. struct bnx2x_fastpath *fp = &bp->fp[i];
  707. int loop;
  708. struct hc_status_block_data_e2 sb_data_e2;
  709. struct hc_status_block_data_e1x sb_data_e1x;
  710. struct hc_status_block_sm *hc_sm_p =
  711. CHIP_IS_E1x(bp) ?
  712. sb_data_e1x.common.state_machine :
  713. sb_data_e2.common.state_machine;
  714. struct hc_index_data *hc_index_p =
  715. CHIP_IS_E1x(bp) ?
  716. sb_data_e1x.index_data :
  717. sb_data_e2.index_data;
  718. u8 data_size, cos;
  719. u32 *sb_data_p;
  720. struct bnx2x_fp_txdata txdata;
  721. /* Rx */
  722. BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
  723. " rx_comp_prod(0x%x)"
  724. " rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
  725. i, fp->rx_bd_prod, fp->rx_bd_cons,
  726. fp->rx_comp_prod,
  727. fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
  728. BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
  729. " fp_hc_idx(0x%x)\n",
  730. fp->rx_sge_prod, fp->last_max_sge,
  731. le16_to_cpu(fp->fp_hc_idx));
  732. /* Tx */
  733. for_each_cos_in_tx_queue(fp, cos)
  734. {
  735. txdata = fp->txdata[cos];
  736. BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
  737. " tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
  738. " *tx_cons_sb(0x%x)\n",
  739. i, txdata.tx_pkt_prod,
  740. txdata.tx_pkt_cons, txdata.tx_bd_prod,
  741. txdata.tx_bd_cons,
  742. le16_to_cpu(*txdata.tx_cons_sb));
  743. }
  744. loop = CHIP_IS_E1x(bp) ?
  745. HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
  746. /* host sb data */
  747. #ifdef BCM_CNIC
  748. if (IS_FCOE_FP(fp))
  749. continue;
  750. #endif
  751. BNX2X_ERR(" run indexes (");
  752. for (j = 0; j < HC_SB_MAX_SM; j++)
  753. pr_cont("0x%x%s",
  754. fp->sb_running_index[j],
  755. (j == HC_SB_MAX_SM - 1) ? ")" : " ");
  756. BNX2X_ERR(" indexes (");
  757. for (j = 0; j < loop; j++)
  758. pr_cont("0x%x%s",
  759. fp->sb_index_values[j],
  760. (j == loop - 1) ? ")" : " ");
  761. /* fw sb data */
  762. data_size = CHIP_IS_E1x(bp) ?
  763. sizeof(struct hc_status_block_data_e1x) :
  764. sizeof(struct hc_status_block_data_e2);
  765. data_size /= sizeof(u32);
  766. sb_data_p = CHIP_IS_E1x(bp) ?
  767. (u32 *)&sb_data_e1x :
  768. (u32 *)&sb_data_e2;
  769. /* copy sb data in here */
  770. for (j = 0; j < data_size; j++)
  771. *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
  772. CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
  773. j * sizeof(u32));
  774. if (!CHIP_IS_E1x(bp)) {
  775. pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
  776. "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
  777. "state(0x%x)\n",
  778. sb_data_e2.common.p_func.pf_id,
  779. sb_data_e2.common.p_func.vf_id,
  780. sb_data_e2.common.p_func.vf_valid,
  781. sb_data_e2.common.p_func.vnic_id,
  782. sb_data_e2.common.same_igu_sb_1b,
  783. sb_data_e2.common.state);
  784. } else {
  785. pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
  786. "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
  787. "state(0x%x)\n",
  788. sb_data_e1x.common.p_func.pf_id,
  789. sb_data_e1x.common.p_func.vf_id,
  790. sb_data_e1x.common.p_func.vf_valid,
  791. sb_data_e1x.common.p_func.vnic_id,
  792. sb_data_e1x.common.same_igu_sb_1b,
  793. sb_data_e1x.common.state);
  794. }
  795. /* SB_SMs data */
  796. for (j = 0; j < HC_SB_MAX_SM; j++) {
  797. pr_cont("SM[%d] __flags (0x%x) "
  798. "igu_sb_id (0x%x) igu_seg_id(0x%x) "
  799. "time_to_expire (0x%x) "
  800. "timer_value(0x%x)\n", j,
  801. hc_sm_p[j].__flags,
  802. hc_sm_p[j].igu_sb_id,
  803. hc_sm_p[j].igu_seg_id,
  804. hc_sm_p[j].time_to_expire,
  805. hc_sm_p[j].timer_value);
  806. }
  807. /* Indecies data */
  808. for (j = 0; j < loop; j++) {
  809. pr_cont("INDEX[%d] flags (0x%x) "
  810. "timeout (0x%x)\n", j,
  811. hc_index_p[j].flags,
  812. hc_index_p[j].timeout);
  813. }
  814. }
  815. #ifdef BNX2X_STOP_ON_ERROR
  816. /* Rings */
  817. /* Rx */
  818. for_each_rx_queue(bp, i) {
  819. struct bnx2x_fastpath *fp = &bp->fp[i];
  820. start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
  821. end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
  822. for (j = start; j != end; j = RX_BD(j + 1)) {
  823. u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
  824. struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
  825. BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
  826. i, j, rx_bd[1], rx_bd[0], sw_bd->data);
  827. }
  828. start = RX_SGE(fp->rx_sge_prod);
  829. end = RX_SGE(fp->last_max_sge);
  830. for (j = start; j != end; j = RX_SGE(j + 1)) {
  831. u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
  832. struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
  833. BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
  834. i, j, rx_sge[1], rx_sge[0], sw_page->page);
  835. }
  836. start = RCQ_BD(fp->rx_comp_cons - 10);
  837. end = RCQ_BD(fp->rx_comp_cons + 503);
  838. for (j = start; j != end; j = RCQ_BD(j + 1)) {
  839. u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
  840. BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
  841. i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
  842. }
  843. }
  844. /* Tx */
  845. for_each_tx_queue(bp, i) {
  846. struct bnx2x_fastpath *fp = &bp->fp[i];
  847. for_each_cos_in_tx_queue(fp, cos) {
  848. struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
  849. start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
  850. end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
  851. for (j = start; j != end; j = TX_BD(j + 1)) {
  852. struct sw_tx_bd *sw_bd =
  853. &txdata->tx_buf_ring[j];
  854. BNX2X_ERR("fp%d: txdata %d, "
  855. "packet[%x]=[%p,%x]\n",
  856. i, cos, j, sw_bd->skb,
  857. sw_bd->first_bd);
  858. }
  859. start = TX_BD(txdata->tx_bd_cons - 10);
  860. end = TX_BD(txdata->tx_bd_cons + 254);
  861. for (j = start; j != end; j = TX_BD(j + 1)) {
  862. u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
  863. BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
  864. "[%x:%x:%x:%x]\n",
  865. i, cos, j, tx_bd[0], tx_bd[1],
  866. tx_bd[2], tx_bd[3]);
  867. }
  868. }
  869. }
  870. #endif
  871. bnx2x_fw_dump(bp);
  872. bnx2x_mc_assert(bp);
  873. BNX2X_ERR("end crash dump -----------------\n");
  874. }
  875. /*
  876. * FLR Support for E2
  877. *
  878. * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
  879. * initialization.
  880. */
  881. #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
  882. #define FLR_WAIT_INTERAVAL 50 /* usec */
  883. #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
  884. struct pbf_pN_buf_regs {
  885. int pN;
  886. u32 init_crd;
  887. u32 crd;
  888. u32 crd_freed;
  889. };
  890. struct pbf_pN_cmd_regs {
  891. int pN;
  892. u32 lines_occup;
  893. u32 lines_freed;
  894. };
  895. static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
  896. struct pbf_pN_buf_regs *regs,
  897. u32 poll_count)
  898. {
  899. u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
  900. u32 cur_cnt = poll_count;
  901. crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
  902. crd = crd_start = REG_RD(bp, regs->crd);
  903. init_crd = REG_RD(bp, regs->init_crd);
  904. DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
  905. DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
  906. DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
  907. while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
  908. (init_crd - crd_start))) {
  909. if (cur_cnt--) {
  910. udelay(FLR_WAIT_INTERAVAL);
  911. crd = REG_RD(bp, regs->crd);
  912. crd_freed = REG_RD(bp, regs->crd_freed);
  913. } else {
  914. DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
  915. regs->pN);
  916. DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
  917. regs->pN, crd);
  918. DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
  919. regs->pN, crd_freed);
  920. break;
  921. }
  922. }
  923. DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
  924. poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
  925. }
  926. static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
  927. struct pbf_pN_cmd_regs *regs,
  928. u32 poll_count)
  929. {
  930. u32 occup, to_free, freed, freed_start;
  931. u32 cur_cnt = poll_count;
  932. occup = to_free = REG_RD(bp, regs->lines_occup);
  933. freed = freed_start = REG_RD(bp, regs->lines_freed);
  934. DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
  935. DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
  936. while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
  937. if (cur_cnt--) {
  938. udelay(FLR_WAIT_INTERAVAL);
  939. occup = REG_RD(bp, regs->lines_occup);
  940. freed = REG_RD(bp, regs->lines_freed);
  941. } else {
  942. DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
  943. regs->pN);
  944. DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
  945. regs->pN, occup);
  946. DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
  947. regs->pN, freed);
  948. break;
  949. }
  950. }
  951. DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
  952. poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
  953. }
  954. static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
  955. u32 expected, u32 poll_count)
  956. {
  957. u32 cur_cnt = poll_count;
  958. u32 val;
  959. while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
  960. udelay(FLR_WAIT_INTERAVAL);
  961. return val;
  962. }
  963. static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
  964. char *msg, u32 poll_cnt)
  965. {
  966. u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
  967. if (val != 0) {
  968. BNX2X_ERR("%s usage count=%d\n", msg, val);
  969. return 1;
  970. }
  971. return 0;
  972. }
  973. static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
  974. {
  975. /* adjust polling timeout */
  976. if (CHIP_REV_IS_EMUL(bp))
  977. return FLR_POLL_CNT * 2000;
  978. if (CHIP_REV_IS_FPGA(bp))
  979. return FLR_POLL_CNT * 120;
  980. return FLR_POLL_CNT;
  981. }
  982. static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
  983. {
  984. struct pbf_pN_cmd_regs cmd_regs[] = {
  985. {0, (CHIP_IS_E3B0(bp)) ?
  986. PBF_REG_TQ_OCCUPANCY_Q0 :
  987. PBF_REG_P0_TQ_OCCUPANCY,
  988. (CHIP_IS_E3B0(bp)) ?
  989. PBF_REG_TQ_LINES_FREED_CNT_Q0 :
  990. PBF_REG_P0_TQ_LINES_FREED_CNT},
  991. {1, (CHIP_IS_E3B0(bp)) ?
  992. PBF_REG_TQ_OCCUPANCY_Q1 :
  993. PBF_REG_P1_TQ_OCCUPANCY,
  994. (CHIP_IS_E3B0(bp)) ?
  995. PBF_REG_TQ_LINES_FREED_CNT_Q1 :
  996. PBF_REG_P1_TQ_LINES_FREED_CNT},
  997. {4, (CHIP_IS_E3B0(bp)) ?
  998. PBF_REG_TQ_OCCUPANCY_LB_Q :
  999. PBF_REG_P4_TQ_OCCUPANCY,
  1000. (CHIP_IS_E3B0(bp)) ?
  1001. PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
  1002. PBF_REG_P4_TQ_LINES_FREED_CNT}
  1003. };
  1004. struct pbf_pN_buf_regs buf_regs[] = {
  1005. {0, (CHIP_IS_E3B0(bp)) ?
  1006. PBF_REG_INIT_CRD_Q0 :
  1007. PBF_REG_P0_INIT_CRD ,
  1008. (CHIP_IS_E3B0(bp)) ?
  1009. PBF_REG_CREDIT_Q0 :
  1010. PBF_REG_P0_CREDIT,
  1011. (CHIP_IS_E3B0(bp)) ?
  1012. PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
  1013. PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
  1014. {1, (CHIP_IS_E3B0(bp)) ?
  1015. PBF_REG_INIT_CRD_Q1 :
  1016. PBF_REG_P1_INIT_CRD,
  1017. (CHIP_IS_E3B0(bp)) ?
  1018. PBF_REG_CREDIT_Q1 :
  1019. PBF_REG_P1_CREDIT,
  1020. (CHIP_IS_E3B0(bp)) ?
  1021. PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
  1022. PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
  1023. {4, (CHIP_IS_E3B0(bp)) ?
  1024. PBF_REG_INIT_CRD_LB_Q :
  1025. PBF_REG_P4_INIT_CRD,
  1026. (CHIP_IS_E3B0(bp)) ?
  1027. PBF_REG_CREDIT_LB_Q :
  1028. PBF_REG_P4_CREDIT,
  1029. (CHIP_IS_E3B0(bp)) ?
  1030. PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
  1031. PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
  1032. };
  1033. int i;
  1034. /* Verify the command queues are flushed P0, P1, P4 */
  1035. for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
  1036. bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
  1037. /* Verify the transmission buffers are flushed P0, P1, P4 */
  1038. for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
  1039. bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
  1040. }
  1041. #define OP_GEN_PARAM(param) \
  1042. (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
  1043. #define OP_GEN_TYPE(type) \
  1044. (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
  1045. #define OP_GEN_AGG_VECT(index) \
  1046. (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
  1047. static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
  1048. u32 poll_cnt)
  1049. {
  1050. struct sdm_op_gen op_gen = {0};
  1051. u32 comp_addr = BAR_CSTRORM_INTMEM +
  1052. CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
  1053. int ret = 0;
  1054. if (REG_RD(bp, comp_addr)) {
  1055. BNX2X_ERR("Cleanup complete is not 0\n");
  1056. return 1;
  1057. }
  1058. op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
  1059. op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
  1060. op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
  1061. op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
  1062. DP(BNX2X_MSG_SP, "FW Final cleanup\n");
  1063. REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
  1064. if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
  1065. BNX2X_ERR("FW final cleanup did not succeed\n");
  1066. ret = 1;
  1067. }
  1068. /* Zero completion for nxt FLR */
  1069. REG_WR(bp, comp_addr, 0);
  1070. return ret;
  1071. }
  1072. static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
  1073. {
  1074. int pos;
  1075. u16 status;
  1076. pos = pci_pcie_cap(dev);
  1077. if (!pos)
  1078. return false;
  1079. pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
  1080. return status & PCI_EXP_DEVSTA_TRPND;
  1081. }
  1082. /* PF FLR specific routines
  1083. */
  1084. static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
  1085. {
  1086. /* wait for CFC PF usage-counter to zero (includes all the VFs) */
  1087. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1088. CFC_REG_NUM_LCIDS_INSIDE_PF,
  1089. "CFC PF usage counter timed out",
  1090. poll_cnt))
  1091. return 1;
  1092. /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
  1093. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1094. DORQ_REG_PF_USAGE_CNT,
  1095. "DQ PF usage counter timed out",
  1096. poll_cnt))
  1097. return 1;
  1098. /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
  1099. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1100. QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
  1101. "QM PF usage counter timed out",
  1102. poll_cnt))
  1103. return 1;
  1104. /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
  1105. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1106. TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
  1107. "Timers VNIC usage counter timed out",
  1108. poll_cnt))
  1109. return 1;
  1110. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1111. TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
  1112. "Timers NUM_SCANS usage counter timed out",
  1113. poll_cnt))
  1114. return 1;
  1115. /* Wait DMAE PF usage counter to zero */
  1116. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1117. dmae_reg_go_c[INIT_DMAE_C(bp)],
  1118. "DMAE dommand register timed out",
  1119. poll_cnt))
  1120. return 1;
  1121. return 0;
  1122. }
  1123. static void bnx2x_hw_enable_status(struct bnx2x *bp)
  1124. {
  1125. u32 val;
  1126. val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
  1127. DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
  1128. val = REG_RD(bp, PBF_REG_DISABLE_PF);
  1129. DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
  1130. val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
  1131. DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
  1132. val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
  1133. DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
  1134. val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
  1135. DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
  1136. val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
  1137. DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
  1138. val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
  1139. DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
  1140. val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
  1141. DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
  1142. val);
  1143. }
  1144. static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
  1145. {
  1146. u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
  1147. DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
  1148. /* Re-enable PF target read access */
  1149. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
  1150. /* Poll HW usage counters */
  1151. if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
  1152. return -EBUSY;
  1153. /* Zero the igu 'trailing edge' and 'leading edge' */
  1154. /* Send the FW cleanup command */
  1155. if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
  1156. return -EBUSY;
  1157. /* ATC cleanup */
  1158. /* Verify TX hw is flushed */
  1159. bnx2x_tx_hw_flushed(bp, poll_cnt);
  1160. /* Wait 100ms (not adjusted according to platform) */
  1161. msleep(100);
  1162. /* Verify no pending pci transactions */
  1163. if (bnx2x_is_pcie_pending(bp->pdev))
  1164. BNX2X_ERR("PCIE Transactions still pending\n");
  1165. /* Debug */
  1166. bnx2x_hw_enable_status(bp);
  1167. /*
  1168. * Master enable - Due to WB DMAE writes performed before this
  1169. * register is re-initialized as part of the regular function init
  1170. */
  1171. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
  1172. return 0;
  1173. }
  1174. static void bnx2x_hc_int_enable(struct bnx2x *bp)
  1175. {
  1176. int port = BP_PORT(bp);
  1177. u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
  1178. u32 val = REG_RD(bp, addr);
  1179. int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
  1180. int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
  1181. if (msix) {
  1182. val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1183. HC_CONFIG_0_REG_INT_LINE_EN_0);
  1184. val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1185. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1186. } else if (msi) {
  1187. val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
  1188. val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1189. HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1190. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1191. } else {
  1192. val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1193. HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1194. HC_CONFIG_0_REG_INT_LINE_EN_0 |
  1195. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1196. if (!CHIP_IS_E1(bp)) {
  1197. DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
  1198. val, port, addr);
  1199. REG_WR(bp, addr, val);
  1200. val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
  1201. }
  1202. }
  1203. if (CHIP_IS_E1(bp))
  1204. REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
  1205. DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
  1206. val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
  1207. REG_WR(bp, addr, val);
  1208. /*
  1209. * Ensure that HC_CONFIG is written before leading/trailing edge config
  1210. */
  1211. mmiowb();
  1212. barrier();
  1213. if (!CHIP_IS_E1(bp)) {
  1214. /* init leading/trailing edge */
  1215. if (IS_MF(bp)) {
  1216. val = (0xee0f | (1 << (BP_VN(bp) + 4)));
  1217. if (bp->port.pmf)
  1218. /* enable nig and gpio3 attention */
  1219. val |= 0x1100;
  1220. } else
  1221. val = 0xffff;
  1222. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
  1223. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
  1224. }
  1225. /* Make sure that interrupts are indeed enabled from here on */
  1226. mmiowb();
  1227. }
  1228. static void bnx2x_igu_int_enable(struct bnx2x *bp)
  1229. {
  1230. u32 val;
  1231. int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
  1232. int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
  1233. val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
  1234. if (msix) {
  1235. val &= ~(IGU_PF_CONF_INT_LINE_EN |
  1236. IGU_PF_CONF_SINGLE_ISR_EN);
  1237. val |= (IGU_PF_CONF_FUNC_EN |
  1238. IGU_PF_CONF_MSI_MSIX_EN |
  1239. IGU_PF_CONF_ATTN_BIT_EN);
  1240. } else if (msi) {
  1241. val &= ~IGU_PF_CONF_INT_LINE_EN;
  1242. val |= (IGU_PF_CONF_FUNC_EN |
  1243. IGU_PF_CONF_MSI_MSIX_EN |
  1244. IGU_PF_CONF_ATTN_BIT_EN |
  1245. IGU_PF_CONF_SINGLE_ISR_EN);
  1246. } else {
  1247. val &= ~IGU_PF_CONF_MSI_MSIX_EN;
  1248. val |= (IGU_PF_CONF_FUNC_EN |
  1249. IGU_PF_CONF_INT_LINE_EN |
  1250. IGU_PF_CONF_ATTN_BIT_EN |
  1251. IGU_PF_CONF_SINGLE_ISR_EN);
  1252. }
  1253. DP(NETIF_MSG_INTR, "write 0x%x to IGU mode %s\n",
  1254. val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
  1255. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  1256. barrier();
  1257. /* init leading/trailing edge */
  1258. if (IS_MF(bp)) {
  1259. val = (0xee0f | (1 << (BP_VN(bp) + 4)));
  1260. if (bp->port.pmf)
  1261. /* enable nig and gpio3 attention */
  1262. val |= 0x1100;
  1263. } else
  1264. val = 0xffff;
  1265. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
  1266. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
  1267. /* Make sure that interrupts are indeed enabled from here on */
  1268. mmiowb();
  1269. }
  1270. void bnx2x_int_enable(struct bnx2x *bp)
  1271. {
  1272. if (bp->common.int_block == INT_BLOCK_HC)
  1273. bnx2x_hc_int_enable(bp);
  1274. else
  1275. bnx2x_igu_int_enable(bp);
  1276. }
  1277. static void bnx2x_hc_int_disable(struct bnx2x *bp)
  1278. {
  1279. int port = BP_PORT(bp);
  1280. u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
  1281. u32 val = REG_RD(bp, addr);
  1282. /*
  1283. * in E1 we must use only PCI configuration space to disable
  1284. * MSI/MSIX capablility
  1285. * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
  1286. */
  1287. if (CHIP_IS_E1(bp)) {
  1288. /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
  1289. * Use mask register to prevent from HC sending interrupts
  1290. * after we exit the function
  1291. */
  1292. REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
  1293. val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1294. HC_CONFIG_0_REG_INT_LINE_EN_0 |
  1295. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1296. } else
  1297. val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1298. HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1299. HC_CONFIG_0_REG_INT_LINE_EN_0 |
  1300. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1301. DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
  1302. val, port, addr);
  1303. /* flush all outstanding writes */
  1304. mmiowb();
  1305. REG_WR(bp, addr, val);
  1306. if (REG_RD(bp, addr) != val)
  1307. BNX2X_ERR("BUG! proper val not read from IGU!\n");
  1308. }
  1309. static void bnx2x_igu_int_disable(struct bnx2x *bp)
  1310. {
  1311. u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
  1312. val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
  1313. IGU_PF_CONF_INT_LINE_EN |
  1314. IGU_PF_CONF_ATTN_BIT_EN);
  1315. DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
  1316. /* flush all outstanding writes */
  1317. mmiowb();
  1318. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  1319. if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
  1320. BNX2X_ERR("BUG! proper val not read from IGU!\n");
  1321. }
  1322. void bnx2x_int_disable(struct bnx2x *bp)
  1323. {
  1324. if (bp->common.int_block == INT_BLOCK_HC)
  1325. bnx2x_hc_int_disable(bp);
  1326. else
  1327. bnx2x_igu_int_disable(bp);
  1328. }
  1329. void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
  1330. {
  1331. int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
  1332. int i, offset;
  1333. if (disable_hw)
  1334. /* prevent the HW from sending interrupts */
  1335. bnx2x_int_disable(bp);
  1336. /* make sure all ISRs are done */
  1337. if (msix) {
  1338. synchronize_irq(bp->msix_table[0].vector);
  1339. offset = 1;
  1340. #ifdef BCM_CNIC
  1341. offset++;
  1342. #endif
  1343. for_each_eth_queue(bp, i)
  1344. synchronize_irq(bp->msix_table[offset++].vector);
  1345. } else
  1346. synchronize_irq(bp->pdev->irq);
  1347. /* make sure sp_task is not running */
  1348. cancel_delayed_work(&bp->sp_task);
  1349. cancel_delayed_work(&bp->period_task);
  1350. flush_workqueue(bnx2x_wq);
  1351. }
  1352. /* fast path */
  1353. /*
  1354. * General service functions
  1355. */
  1356. /* Return true if succeeded to acquire the lock */
  1357. static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
  1358. {
  1359. u32 lock_status;
  1360. u32 resource_bit = (1 << resource);
  1361. int func = BP_FUNC(bp);
  1362. u32 hw_lock_control_reg;
  1363. DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
  1364. /* Validating that the resource is within range */
  1365. if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
  1366. DP(NETIF_MSG_HW,
  1367. "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
  1368. resource, HW_LOCK_MAX_RESOURCE_VALUE);
  1369. return false;
  1370. }
  1371. if (func <= 5)
  1372. hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
  1373. else
  1374. hw_lock_control_reg =
  1375. (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
  1376. /* Try to acquire the lock */
  1377. REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
  1378. lock_status = REG_RD(bp, hw_lock_control_reg);
  1379. if (lock_status & resource_bit)
  1380. return true;
  1381. DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
  1382. return false;
  1383. }
  1384. /**
  1385. * bnx2x_get_leader_lock_resource - get the recovery leader resource id
  1386. *
  1387. * @bp: driver handle
  1388. *
  1389. * Returns the recovery leader resource id according to the engine this function
  1390. * belongs to. Currently only only 2 engines is supported.
  1391. */
  1392. static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
  1393. {
  1394. if (BP_PATH(bp))
  1395. return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
  1396. else
  1397. return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
  1398. }
  1399. /**
  1400. * bnx2x_trylock_leader_lock- try to aquire a leader lock.
  1401. *
  1402. * @bp: driver handle
  1403. *
  1404. * Tries to aquire a leader lock for cuurent engine.
  1405. */
  1406. static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
  1407. {
  1408. return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
  1409. }
  1410. #ifdef BCM_CNIC
  1411. static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
  1412. #endif
  1413. void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
  1414. {
  1415. struct bnx2x *bp = fp->bp;
  1416. int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
  1417. int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
  1418. enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
  1419. struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
  1420. DP(BNX2X_MSG_SP,
  1421. "fp %d cid %d got ramrod #%d state is %x type is %d\n",
  1422. fp->index, cid, command, bp->state,
  1423. rr_cqe->ramrod_cqe.ramrod_type);
  1424. switch (command) {
  1425. case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
  1426. DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
  1427. drv_cmd = BNX2X_Q_CMD_UPDATE;
  1428. break;
  1429. case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
  1430. DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
  1431. drv_cmd = BNX2X_Q_CMD_SETUP;
  1432. break;
  1433. case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
  1434. DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
  1435. drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
  1436. break;
  1437. case (RAMROD_CMD_ID_ETH_HALT):
  1438. DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
  1439. drv_cmd = BNX2X_Q_CMD_HALT;
  1440. break;
  1441. case (RAMROD_CMD_ID_ETH_TERMINATE):
  1442. DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
  1443. drv_cmd = BNX2X_Q_CMD_TERMINATE;
  1444. break;
  1445. case (RAMROD_CMD_ID_ETH_EMPTY):
  1446. DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
  1447. drv_cmd = BNX2X_Q_CMD_EMPTY;
  1448. break;
  1449. default:
  1450. BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
  1451. command, fp->index);
  1452. return;
  1453. }
  1454. if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
  1455. q_obj->complete_cmd(bp, q_obj, drv_cmd))
  1456. /* q_obj->complete_cmd() failure means that this was
  1457. * an unexpected completion.
  1458. *
  1459. * In this case we don't want to increase the bp->spq_left
  1460. * because apparently we haven't sent this command the first
  1461. * place.
  1462. */
  1463. #ifdef BNX2X_STOP_ON_ERROR
  1464. bnx2x_panic();
  1465. #else
  1466. return;
  1467. #endif
  1468. smp_mb__before_atomic_inc();
  1469. atomic_inc(&bp->cq_spq_left);
  1470. /* push the change in bp->spq_left and towards the memory */
  1471. smp_mb__after_atomic_inc();
  1472. DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
  1473. return;
  1474. }
  1475. void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
  1476. u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
  1477. {
  1478. u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
  1479. bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
  1480. start);
  1481. }
  1482. irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
  1483. {
  1484. struct bnx2x *bp = netdev_priv(dev_instance);
  1485. u16 status = bnx2x_ack_int(bp);
  1486. u16 mask;
  1487. int i;
  1488. u8 cos;
  1489. /* Return here if interrupt is shared and it's not for us */
  1490. if (unlikely(status == 0)) {
  1491. DP(NETIF_MSG_INTR, "not our interrupt!\n");
  1492. return IRQ_NONE;
  1493. }
  1494. DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
  1495. #ifdef BNX2X_STOP_ON_ERROR
  1496. if (unlikely(bp->panic))
  1497. return IRQ_HANDLED;
  1498. #endif
  1499. for_each_eth_queue(bp, i) {
  1500. struct bnx2x_fastpath *fp = &bp->fp[i];
  1501. mask = 0x2 << (fp->index + CNIC_PRESENT);
  1502. if (status & mask) {
  1503. /* Handle Rx or Tx according to SB id */
  1504. prefetch(fp->rx_cons_sb);
  1505. for_each_cos_in_tx_queue(fp, cos)
  1506. prefetch(fp->txdata[cos].tx_cons_sb);
  1507. prefetch(&fp->sb_running_index[SM_RX_ID]);
  1508. napi_schedule(&bnx2x_fp(bp, fp->index, napi));
  1509. status &= ~mask;
  1510. }
  1511. }
  1512. #ifdef BCM_CNIC
  1513. mask = 0x2;
  1514. if (status & (mask | 0x1)) {
  1515. struct cnic_ops *c_ops = NULL;
  1516. if (likely(bp->state == BNX2X_STATE_OPEN)) {
  1517. rcu_read_lock();
  1518. c_ops = rcu_dereference(bp->cnic_ops);
  1519. if (c_ops)
  1520. c_ops->cnic_handler(bp->cnic_data, NULL);
  1521. rcu_read_unlock();
  1522. }
  1523. status &= ~mask;
  1524. }
  1525. #endif
  1526. if (unlikely(status & 0x1)) {
  1527. queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
  1528. status &= ~0x1;
  1529. if (!status)
  1530. return IRQ_HANDLED;
  1531. }
  1532. if (unlikely(status))
  1533. DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
  1534. status);
  1535. return IRQ_HANDLED;
  1536. }
  1537. /* Link */
  1538. /*
  1539. * General service functions
  1540. */
  1541. int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
  1542. {
  1543. u32 lock_status;
  1544. u32 resource_bit = (1 << resource);
  1545. int func = BP_FUNC(bp);
  1546. u32 hw_lock_control_reg;
  1547. int cnt;
  1548. /* Validating that the resource is within range */
  1549. if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
  1550. DP(NETIF_MSG_HW,
  1551. "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
  1552. resource, HW_LOCK_MAX_RESOURCE_VALUE);
  1553. return -EINVAL;
  1554. }
  1555. if (func <= 5) {
  1556. hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
  1557. } else {
  1558. hw_lock_control_reg =
  1559. (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
  1560. }
  1561. /* Validating that the resource is not already taken */
  1562. lock_status = REG_RD(bp, hw_lock_control_reg);
  1563. if (lock_status & resource_bit) {
  1564. DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
  1565. lock_status, resource_bit);
  1566. return -EEXIST;
  1567. }
  1568. /* Try for 5 second every 5ms */
  1569. for (cnt = 0; cnt < 1000; cnt++) {
  1570. /* Try to acquire the lock */
  1571. REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
  1572. lock_status = REG_RD(bp, hw_lock_control_reg);
  1573. if (lock_status & resource_bit)
  1574. return 0;
  1575. msleep(5);
  1576. }
  1577. DP(NETIF_MSG_HW, "Timeout\n");
  1578. return -EAGAIN;
  1579. }
  1580. int bnx2x_release_leader_lock(struct bnx2x *bp)
  1581. {
  1582. return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
  1583. }
  1584. int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
  1585. {
  1586. u32 lock_status;
  1587. u32 resource_bit = (1 << resource);
  1588. int func = BP_FUNC(bp);
  1589. u32 hw_lock_control_reg;
  1590. DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
  1591. /* Validating that the resource is within range */
  1592. if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
  1593. DP(NETIF_MSG_HW,
  1594. "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
  1595. resource, HW_LOCK_MAX_RESOURCE_VALUE);
  1596. return -EINVAL;
  1597. }
  1598. if (func <= 5) {
  1599. hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
  1600. } else {
  1601. hw_lock_control_reg =
  1602. (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
  1603. }
  1604. /* Validating that the resource is currently taken */
  1605. lock_status = REG_RD(bp, hw_lock_control_reg);
  1606. if (!(lock_status & resource_bit)) {
  1607. DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
  1608. lock_status, resource_bit);
  1609. return -EFAULT;
  1610. }
  1611. REG_WR(bp, hw_lock_control_reg, resource_bit);
  1612. return 0;
  1613. }
  1614. int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
  1615. {
  1616. /* The GPIO should be swapped if swap register is set and active */
  1617. int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
  1618. REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
  1619. int gpio_shift = gpio_num +
  1620. (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
  1621. u32 gpio_mask = (1 << gpio_shift);
  1622. u32 gpio_reg;
  1623. int value;
  1624. if (gpio_num > MISC_REGISTERS_GPIO_3) {
  1625. BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
  1626. return -EINVAL;
  1627. }
  1628. /* read GPIO value */
  1629. gpio_reg = REG_RD(bp, MISC_REG_GPIO);
  1630. /* get the requested pin value */
  1631. if ((gpio_reg & gpio_mask) == gpio_mask)
  1632. value = 1;
  1633. else
  1634. value = 0;
  1635. DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
  1636. return value;
  1637. }
  1638. int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
  1639. {
  1640. /* The GPIO should be swapped if swap register is set and active */
  1641. int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
  1642. REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
  1643. int gpio_shift = gpio_num +
  1644. (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
  1645. u32 gpio_mask = (1 << gpio_shift);
  1646. u32 gpio_reg;
  1647. if (gpio_num > MISC_REGISTERS_GPIO_3) {
  1648. BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
  1649. return -EINVAL;
  1650. }
  1651. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1652. /* read GPIO and mask except the float bits */
  1653. gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
  1654. switch (mode) {
  1655. case MISC_REGISTERS_GPIO_OUTPUT_LOW:
  1656. DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
  1657. gpio_num, gpio_shift);
  1658. /* clear FLOAT and set CLR */
  1659. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
  1660. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
  1661. break;
  1662. case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
  1663. DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
  1664. gpio_num, gpio_shift);
  1665. /* clear FLOAT and set SET */
  1666. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
  1667. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
  1668. break;
  1669. case MISC_REGISTERS_GPIO_INPUT_HI_Z:
  1670. DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
  1671. gpio_num, gpio_shift);
  1672. /* set FLOAT */
  1673. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
  1674. break;
  1675. default:
  1676. break;
  1677. }
  1678. REG_WR(bp, MISC_REG_GPIO, gpio_reg);
  1679. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1680. return 0;
  1681. }
  1682. int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
  1683. {
  1684. u32 gpio_reg = 0;
  1685. int rc = 0;
  1686. /* Any port swapping should be handled by caller. */
  1687. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1688. /* read GPIO and mask except the float bits */
  1689. gpio_reg = REG_RD(bp, MISC_REG_GPIO);
  1690. gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
  1691. gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
  1692. gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
  1693. switch (mode) {
  1694. case MISC_REGISTERS_GPIO_OUTPUT_LOW:
  1695. DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
  1696. /* set CLR */
  1697. gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
  1698. break;
  1699. case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
  1700. DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
  1701. /* set SET */
  1702. gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
  1703. break;
  1704. case MISC_REGISTERS_GPIO_INPUT_HI_Z:
  1705. DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
  1706. /* set FLOAT */
  1707. gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
  1708. break;
  1709. default:
  1710. BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
  1711. rc = -EINVAL;
  1712. break;
  1713. }
  1714. if (rc == 0)
  1715. REG_WR(bp, MISC_REG_GPIO, gpio_reg);
  1716. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1717. return rc;
  1718. }
  1719. int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
  1720. {
  1721. /* The GPIO should be swapped if swap register is set and active */
  1722. int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
  1723. REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
  1724. int gpio_shift = gpio_num +
  1725. (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
  1726. u32 gpio_mask = (1 << gpio_shift);
  1727. u32 gpio_reg;
  1728. if (gpio_num > MISC_REGISTERS_GPIO_3) {
  1729. BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
  1730. return -EINVAL;
  1731. }
  1732. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1733. /* read GPIO int */
  1734. gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
  1735. switch (mode) {
  1736. case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
  1737. DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
  1738. "output low\n", gpio_num, gpio_shift);
  1739. /* clear SET and set CLR */
  1740. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
  1741. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
  1742. break;
  1743. case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
  1744. DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
  1745. "output high\n", gpio_num, gpio_shift);
  1746. /* clear CLR and set SET */
  1747. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
  1748. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
  1749. break;
  1750. default:
  1751. break;
  1752. }
  1753. REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
  1754. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1755. return 0;
  1756. }
  1757. static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
  1758. {
  1759. u32 spio_mask = (1 << spio_num);
  1760. u32 spio_reg;
  1761. if ((spio_num < MISC_REGISTERS_SPIO_4) ||
  1762. (spio_num > MISC_REGISTERS_SPIO_7)) {
  1763. BNX2X_ERR("Invalid SPIO %d\n", spio_num);
  1764. return -EINVAL;
  1765. }
  1766. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
  1767. /* read SPIO and mask except the float bits */
  1768. spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
  1769. switch (mode) {
  1770. case MISC_REGISTERS_SPIO_OUTPUT_LOW:
  1771. DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
  1772. /* clear FLOAT and set CLR */
  1773. spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
  1774. spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
  1775. break;
  1776. case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
  1777. DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
  1778. /* clear FLOAT and set SET */
  1779. spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
  1780. spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
  1781. break;
  1782. case MISC_REGISTERS_SPIO_INPUT_HI_Z:
  1783. DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
  1784. /* set FLOAT */
  1785. spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
  1786. break;
  1787. default:
  1788. break;
  1789. }
  1790. REG_WR(bp, MISC_REG_SPIO, spio_reg);
  1791. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
  1792. return 0;
  1793. }
  1794. void bnx2x_calc_fc_adv(struct bnx2x *bp)
  1795. {
  1796. u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
  1797. switch (bp->link_vars.ieee_fc &
  1798. MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
  1799. case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
  1800. bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
  1801. ADVERTISED_Pause);
  1802. break;
  1803. case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
  1804. bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
  1805. ADVERTISED_Pause);
  1806. break;
  1807. case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
  1808. bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
  1809. break;
  1810. default:
  1811. bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
  1812. ADVERTISED_Pause);
  1813. break;
  1814. }
  1815. }
  1816. u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
  1817. {
  1818. if (!BP_NOMCP(bp)) {
  1819. u8 rc;
  1820. int cfx_idx = bnx2x_get_link_cfg_idx(bp);
  1821. u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
  1822. /*
  1823. * Initialize link parameters structure variables
  1824. * It is recommended to turn off RX FC for jumbo frames
  1825. * for better performance
  1826. */
  1827. if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
  1828. bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
  1829. else
  1830. bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
  1831. bnx2x_acquire_phy_lock(bp);
  1832. if (load_mode == LOAD_DIAG) {
  1833. struct link_params *lp = &bp->link_params;
  1834. lp->loopback_mode = LOOPBACK_XGXS;
  1835. /* do PHY loopback at 10G speed, if possible */
  1836. if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
  1837. if (lp->speed_cap_mask[cfx_idx] &
  1838. PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
  1839. lp->req_line_speed[cfx_idx] =
  1840. SPEED_10000;
  1841. else
  1842. lp->req_line_speed[cfx_idx] =
  1843. SPEED_1000;
  1844. }
  1845. }
  1846. rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
  1847. bnx2x_release_phy_lock(bp);
  1848. bnx2x_calc_fc_adv(bp);
  1849. if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
  1850. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  1851. bnx2x_link_report(bp);
  1852. } else
  1853. queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
  1854. bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
  1855. return rc;
  1856. }
  1857. BNX2X_ERR("Bootcode is missing - can not initialize link\n");
  1858. return -EINVAL;
  1859. }
  1860. void bnx2x_link_set(struct bnx2x *bp)
  1861. {
  1862. if (!BP_NOMCP(bp)) {
  1863. bnx2x_acquire_phy_lock(bp);
  1864. bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
  1865. bnx2x_phy_init(&bp->link_params, &bp->link_vars);
  1866. bnx2x_release_phy_lock(bp);
  1867. bnx2x_calc_fc_adv(bp);
  1868. } else
  1869. BNX2X_ERR("Bootcode is missing - can not set link\n");
  1870. }
  1871. static void bnx2x__link_reset(struct bnx2x *bp)
  1872. {
  1873. if (!BP_NOMCP(bp)) {
  1874. bnx2x_acquire_phy_lock(bp);
  1875. bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
  1876. bnx2x_release_phy_lock(bp);
  1877. } else
  1878. BNX2X_ERR("Bootcode is missing - can not reset link\n");
  1879. }
  1880. u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
  1881. {
  1882. u8 rc = 0;
  1883. if (!BP_NOMCP(bp)) {
  1884. bnx2x_acquire_phy_lock(bp);
  1885. rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
  1886. is_serdes);
  1887. bnx2x_release_phy_lock(bp);
  1888. } else
  1889. BNX2X_ERR("Bootcode is missing - can not test link\n");
  1890. return rc;
  1891. }
  1892. static void bnx2x_init_port_minmax(struct bnx2x *bp)
  1893. {
  1894. u32 r_param = bp->link_vars.line_speed / 8;
  1895. u32 fair_periodic_timeout_usec;
  1896. u32 t_fair;
  1897. memset(&(bp->cmng.rs_vars), 0,
  1898. sizeof(struct rate_shaping_vars_per_port));
  1899. memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
  1900. /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
  1901. bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
  1902. /* this is the threshold below which no timer arming will occur
  1903. 1.25 coefficient is for the threshold to be a little bigger
  1904. than the real time, to compensate for timer in-accuracy */
  1905. bp->cmng.rs_vars.rs_threshold =
  1906. (RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
  1907. /* resolution of fairness timer */
  1908. fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
  1909. /* for 10G it is 1000usec. for 1G it is 10000usec. */
  1910. t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
  1911. /* this is the threshold below which we won't arm the timer anymore */
  1912. bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
  1913. /* we multiply by 1e3/8 to get bytes/msec.
  1914. We don't want the credits to pass a credit
  1915. of the t_fair*FAIR_MEM (algorithm resolution) */
  1916. bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
  1917. /* since each tick is 4 usec */
  1918. bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
  1919. }
  1920. /* Calculates the sum of vn_min_rates.
  1921. It's needed for further normalizing of the min_rates.
  1922. Returns:
  1923. sum of vn_min_rates.
  1924. or
  1925. 0 - if all the min_rates are 0.
  1926. In the later case fainess algorithm should be deactivated.
  1927. If not all min_rates are zero then those that are zeroes will be set to 1.
  1928. */
  1929. static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
  1930. {
  1931. int all_zero = 1;
  1932. int vn;
  1933. bp->vn_weight_sum = 0;
  1934. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
  1935. u32 vn_cfg = bp->mf_config[vn];
  1936. u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
  1937. FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
  1938. /* Skip hidden vns */
  1939. if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
  1940. continue;
  1941. /* If min rate is zero - set it to 1 */
  1942. if (!vn_min_rate)
  1943. vn_min_rate = DEF_MIN_RATE;
  1944. else
  1945. all_zero = 0;
  1946. bp->vn_weight_sum += vn_min_rate;
  1947. }
  1948. /* if ETS or all min rates are zeros - disable fairness */
  1949. if (BNX2X_IS_ETS_ENABLED(bp)) {
  1950. bp->cmng.flags.cmng_enables &=
  1951. ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
  1952. DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
  1953. } else if (all_zero) {
  1954. bp->cmng.flags.cmng_enables &=
  1955. ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
  1956. DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
  1957. " fairness will be disabled\n");
  1958. } else
  1959. bp->cmng.flags.cmng_enables |=
  1960. CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
  1961. }
  1962. static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
  1963. {
  1964. struct rate_shaping_vars_per_vn m_rs_vn;
  1965. struct fairness_vars_per_vn m_fair_vn;
  1966. u32 vn_cfg = bp->mf_config[vn];
  1967. int func = func_by_vn(bp, vn);
  1968. u16 vn_min_rate, vn_max_rate;
  1969. int i;
  1970. /* If function is hidden - set min and max to zeroes */
  1971. if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
  1972. vn_min_rate = 0;
  1973. vn_max_rate = 0;
  1974. } else {
  1975. u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
  1976. vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
  1977. FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
  1978. /* If fairness is enabled (not all min rates are zeroes) and
  1979. if current min rate is zero - set it to 1.
  1980. This is a requirement of the algorithm. */
  1981. if (bp->vn_weight_sum && (vn_min_rate == 0))
  1982. vn_min_rate = DEF_MIN_RATE;
  1983. if (IS_MF_SI(bp))
  1984. /* maxCfg in percents of linkspeed */
  1985. vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
  1986. else
  1987. /* maxCfg is absolute in 100Mb units */
  1988. vn_max_rate = maxCfg * 100;
  1989. }
  1990. DP(NETIF_MSG_IFUP,
  1991. "func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
  1992. func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
  1993. memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
  1994. memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
  1995. /* global vn counter - maximal Mbps for this vn */
  1996. m_rs_vn.vn_counter.rate = vn_max_rate;
  1997. /* quota - number of bytes transmitted in this period */
  1998. m_rs_vn.vn_counter.quota =
  1999. (vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
  2000. if (bp->vn_weight_sum) {
  2001. /* credit for each period of the fairness algorithm:
  2002. number of bytes in T_FAIR (the vn share the port rate).
  2003. vn_weight_sum should not be larger than 10000, thus
  2004. T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
  2005. than zero */
  2006. m_fair_vn.vn_credit_delta =
  2007. max_t(u32, (vn_min_rate * (T_FAIR_COEF /
  2008. (8 * bp->vn_weight_sum))),
  2009. (bp->cmng.fair_vars.fair_threshold +
  2010. MIN_ABOVE_THRESH));
  2011. DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
  2012. m_fair_vn.vn_credit_delta);
  2013. }
  2014. /* Store it to internal memory */
  2015. for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
  2016. REG_WR(bp, BAR_XSTRORM_INTMEM +
  2017. XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
  2018. ((u32 *)(&m_rs_vn))[i]);
  2019. for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
  2020. REG_WR(bp, BAR_XSTRORM_INTMEM +
  2021. XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
  2022. ((u32 *)(&m_fair_vn))[i]);
  2023. }
  2024. static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
  2025. {
  2026. if (CHIP_REV_IS_SLOW(bp))
  2027. return CMNG_FNS_NONE;
  2028. if (IS_MF(bp))
  2029. return CMNG_FNS_MINMAX;
  2030. return CMNG_FNS_NONE;
  2031. }
  2032. void bnx2x_read_mf_cfg(struct bnx2x *bp)
  2033. {
  2034. int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
  2035. if (BP_NOMCP(bp))
  2036. return; /* what should be the default bvalue in this case */
  2037. /* For 2 port configuration the absolute function number formula
  2038. * is:
  2039. * abs_func = 2 * vn + BP_PORT + BP_PATH
  2040. *
  2041. * and there are 4 functions per port
  2042. *
  2043. * For 4 port configuration it is
  2044. * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
  2045. *
  2046. * and there are 2 functions per port
  2047. */
  2048. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
  2049. int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
  2050. if (func >= E1H_FUNC_MAX)
  2051. break;
  2052. bp->mf_config[vn] =
  2053. MF_CFG_RD(bp, func_mf_config[func].config);
  2054. }
  2055. }
  2056. static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
  2057. {
  2058. if (cmng_type == CMNG_FNS_MINMAX) {
  2059. int vn;
  2060. /* clear cmng_enables */
  2061. bp->cmng.flags.cmng_enables = 0;
  2062. /* read mf conf from shmem */
  2063. if (read_cfg)
  2064. bnx2x_read_mf_cfg(bp);
  2065. /* Init rate shaping and fairness contexts */
  2066. bnx2x_init_port_minmax(bp);
  2067. /* vn_weight_sum and enable fairness if not 0 */
  2068. bnx2x_calc_vn_weight_sum(bp);
  2069. /* calculate and set min-max rate for each vn */
  2070. if (bp->port.pmf)
  2071. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
  2072. bnx2x_init_vn_minmax(bp, vn);
  2073. /* always enable rate shaping and fairness */
  2074. bp->cmng.flags.cmng_enables |=
  2075. CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
  2076. if (!bp->vn_weight_sum)
  2077. DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
  2078. " fairness will be disabled\n");
  2079. return;
  2080. }
  2081. /* rate shaping and fairness are disabled */
  2082. DP(NETIF_MSG_IFUP,
  2083. "rate shaping and fairness are disabled\n");
  2084. }
  2085. /* This function is called upon link interrupt */
  2086. static void bnx2x_link_attn(struct bnx2x *bp)
  2087. {
  2088. /* Make sure that we are synced with the current statistics */
  2089. bnx2x_stats_handle(bp, STATS_EVENT_STOP);
  2090. bnx2x_link_update(&bp->link_params, &bp->link_vars);
  2091. if (bp->link_vars.link_up) {
  2092. /* dropless flow control */
  2093. if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
  2094. int port = BP_PORT(bp);
  2095. u32 pause_enabled = 0;
  2096. if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
  2097. pause_enabled = 1;
  2098. REG_WR(bp, BAR_USTRORM_INTMEM +
  2099. USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
  2100. pause_enabled);
  2101. }
  2102. if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
  2103. struct host_port_stats *pstats;
  2104. pstats = bnx2x_sp(bp, port_stats);
  2105. /* reset old mac stats */
  2106. memset(&(pstats->mac_stx[0]), 0,
  2107. sizeof(struct mac_stx));
  2108. }
  2109. if (bp->state == BNX2X_STATE_OPEN)
  2110. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  2111. }
  2112. if (bp->link_vars.link_up && bp->link_vars.line_speed) {
  2113. int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
  2114. if (cmng_fns != CMNG_FNS_NONE) {
  2115. bnx2x_cmng_fns_init(bp, false, cmng_fns);
  2116. storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
  2117. } else
  2118. /* rate shaping and fairness are disabled */
  2119. DP(NETIF_MSG_IFUP,
  2120. "single function mode without fairness\n");
  2121. }
  2122. __bnx2x_link_report(bp);
  2123. if (IS_MF(bp))
  2124. bnx2x_link_sync_notify(bp);
  2125. }
  2126. void bnx2x__link_status_update(struct bnx2x *bp)
  2127. {
  2128. if (bp->state != BNX2X_STATE_OPEN)
  2129. return;
  2130. /* read updated dcb configuration */
  2131. bnx2x_dcbx_pmf_update(bp);
  2132. bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
  2133. if (bp->link_vars.link_up)
  2134. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  2135. else
  2136. bnx2x_stats_handle(bp, STATS_EVENT_STOP);
  2137. /* indicate link status */
  2138. bnx2x_link_report(bp);
  2139. }
  2140. static void bnx2x_pmf_update(struct bnx2x *bp)
  2141. {
  2142. int port = BP_PORT(bp);
  2143. u32 val;
  2144. bp->port.pmf = 1;
  2145. DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
  2146. /*
  2147. * We need the mb() to ensure the ordering between the writing to
  2148. * bp->port.pmf here and reading it from the bnx2x_periodic_task().
  2149. */
  2150. smp_mb();
  2151. /* queue a periodic task */
  2152. queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
  2153. bnx2x_dcbx_pmf_update(bp);
  2154. /* enable nig attention */
  2155. val = (0xff0f | (1 << (BP_VN(bp) + 4)));
  2156. if (bp->common.int_block == INT_BLOCK_HC) {
  2157. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
  2158. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
  2159. } else if (!CHIP_IS_E1x(bp)) {
  2160. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
  2161. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
  2162. }
  2163. bnx2x_stats_handle(bp, STATS_EVENT_PMF);
  2164. }
  2165. /* end of Link */
  2166. /* slow path */
  2167. /*
  2168. * General service functions
  2169. */
  2170. /* send the MCP a request, block until there is a reply */
  2171. u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
  2172. {
  2173. int mb_idx = BP_FW_MB_IDX(bp);
  2174. u32 seq;
  2175. u32 rc = 0;
  2176. u32 cnt = 1;
  2177. u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
  2178. mutex_lock(&bp->fw_mb_mutex);
  2179. seq = ++bp->fw_seq;
  2180. SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
  2181. SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
  2182. DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
  2183. (command | seq), param);
  2184. do {
  2185. /* let the FW do it's magic ... */
  2186. msleep(delay);
  2187. rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
  2188. /* Give the FW up to 5 second (500*10ms) */
  2189. } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
  2190. DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
  2191. cnt*delay, rc, seq);
  2192. /* is this a reply to our command? */
  2193. if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
  2194. rc &= FW_MSG_CODE_MASK;
  2195. else {
  2196. /* FW BUG! */
  2197. BNX2X_ERR("FW failed to respond!\n");
  2198. bnx2x_fw_dump(bp);
  2199. rc = 0;
  2200. }
  2201. mutex_unlock(&bp->fw_mb_mutex);
  2202. return rc;
  2203. }
  2204. void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
  2205. {
  2206. if (CHIP_IS_E1x(bp)) {
  2207. struct tstorm_eth_function_common_config tcfg = {0};
  2208. storm_memset_func_cfg(bp, &tcfg, p->func_id);
  2209. }
  2210. /* Enable the function in the FW */
  2211. storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
  2212. storm_memset_func_en(bp, p->func_id, 1);
  2213. /* spq */
  2214. if (p->func_flgs & FUNC_FLG_SPQ) {
  2215. storm_memset_spq_addr(bp, p->spq_map, p->func_id);
  2216. REG_WR(bp, XSEM_REG_FAST_MEMORY +
  2217. XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
  2218. }
  2219. }
  2220. /**
  2221. * bnx2x_get_tx_only_flags - Return common flags
  2222. *
  2223. * @bp device handle
  2224. * @fp queue handle
  2225. * @zero_stats TRUE if statistics zeroing is needed
  2226. *
  2227. * Return the flags that are common for the Tx-only and not normal connections.
  2228. */
  2229. static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
  2230. struct bnx2x_fastpath *fp,
  2231. bool zero_stats)
  2232. {
  2233. unsigned long flags = 0;
  2234. /* PF driver will always initialize the Queue to an ACTIVE state */
  2235. __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
  2236. /* tx only connections collect statistics (on the same index as the
  2237. * parent connection). The statistics are zeroed when the parent
  2238. * connection is initialized.
  2239. */
  2240. __set_bit(BNX2X_Q_FLG_STATS, &flags);
  2241. if (zero_stats)
  2242. __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
  2243. return flags;
  2244. }
  2245. static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
  2246. struct bnx2x_fastpath *fp,
  2247. bool leading)
  2248. {
  2249. unsigned long flags = 0;
  2250. /* calculate other queue flags */
  2251. if (IS_MF_SD(bp))
  2252. __set_bit(BNX2X_Q_FLG_OV, &flags);
  2253. if (IS_FCOE_FP(fp))
  2254. __set_bit(BNX2X_Q_FLG_FCOE, &flags);
  2255. if (!fp->disable_tpa) {
  2256. __set_bit(BNX2X_Q_FLG_TPA, &flags);
  2257. __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
  2258. }
  2259. if (leading) {
  2260. __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
  2261. __set_bit(BNX2X_Q_FLG_MCAST, &flags);
  2262. }
  2263. /* Always set HW VLAN stripping */
  2264. __set_bit(BNX2X_Q_FLG_VLAN, &flags);
  2265. return flags | bnx2x_get_common_flags(bp, fp, true);
  2266. }
  2267. static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
  2268. struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
  2269. u8 cos)
  2270. {
  2271. gen_init->stat_id = bnx2x_stats_id(fp);
  2272. gen_init->spcl_id = fp->cl_id;
  2273. /* Always use mini-jumbo MTU for FCoE L2 ring */
  2274. if (IS_FCOE_FP(fp))
  2275. gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
  2276. else
  2277. gen_init->mtu = bp->dev->mtu;
  2278. gen_init->cos = cos;
  2279. }
  2280. static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
  2281. struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
  2282. struct bnx2x_rxq_setup_params *rxq_init)
  2283. {
  2284. u8 max_sge = 0;
  2285. u16 sge_sz = 0;
  2286. u16 tpa_agg_size = 0;
  2287. if (!fp->disable_tpa) {
  2288. pause->sge_th_lo = SGE_TH_LO(bp);
  2289. pause->sge_th_hi = SGE_TH_HI(bp);
  2290. /* validate SGE ring has enough to cross high threshold */
  2291. WARN_ON(bp->dropless_fc &&
  2292. pause->sge_th_hi + FW_PREFETCH_CNT >
  2293. MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
  2294. tpa_agg_size = min_t(u32,
  2295. (min_t(u32, 8, MAX_SKB_FRAGS) *
  2296. SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
  2297. max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
  2298. SGE_PAGE_SHIFT;
  2299. max_sge = ((max_sge + PAGES_PER_SGE - 1) &
  2300. (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
  2301. sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
  2302. 0xffff);
  2303. }
  2304. /* pause - not for e1 */
  2305. if (!CHIP_IS_E1(bp)) {
  2306. pause->bd_th_lo = BD_TH_LO(bp);
  2307. pause->bd_th_hi = BD_TH_HI(bp);
  2308. pause->rcq_th_lo = RCQ_TH_LO(bp);
  2309. pause->rcq_th_hi = RCQ_TH_HI(bp);
  2310. /*
  2311. * validate that rings have enough entries to cross
  2312. * high thresholds
  2313. */
  2314. WARN_ON(bp->dropless_fc &&
  2315. pause->bd_th_hi + FW_PREFETCH_CNT >
  2316. bp->rx_ring_size);
  2317. WARN_ON(bp->dropless_fc &&
  2318. pause->rcq_th_hi + FW_PREFETCH_CNT >
  2319. NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
  2320. pause->pri_map = 1;
  2321. }
  2322. /* rxq setup */
  2323. rxq_init->dscr_map = fp->rx_desc_mapping;
  2324. rxq_init->sge_map = fp->rx_sge_mapping;
  2325. rxq_init->rcq_map = fp->rx_comp_mapping;
  2326. rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
  2327. /* This should be a maximum number of data bytes that may be
  2328. * placed on the BD (not including paddings).
  2329. */
  2330. rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
  2331. BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
  2332. rxq_init->cl_qzone_id = fp->cl_qzone_id;
  2333. rxq_init->tpa_agg_sz = tpa_agg_size;
  2334. rxq_init->sge_buf_sz = sge_sz;
  2335. rxq_init->max_sges_pkt = max_sge;
  2336. rxq_init->rss_engine_id = BP_FUNC(bp);
  2337. /* Maximum number or simultaneous TPA aggregation for this Queue.
  2338. *
  2339. * For PF Clients it should be the maximum avaliable number.
  2340. * VF driver(s) may want to define it to a smaller value.
  2341. */
  2342. rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
  2343. rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
  2344. rxq_init->fw_sb_id = fp->fw_sb_id;
  2345. if (IS_FCOE_FP(fp))
  2346. rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
  2347. else
  2348. rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
  2349. }
  2350. static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
  2351. struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
  2352. u8 cos)
  2353. {
  2354. txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
  2355. txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
  2356. txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
  2357. txq_init->fw_sb_id = fp->fw_sb_id;
  2358. /*
  2359. * set the tss leading client id for TX classfication ==
  2360. * leading RSS client id
  2361. */
  2362. txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
  2363. if (IS_FCOE_FP(fp)) {
  2364. txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
  2365. txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
  2366. }
  2367. }
  2368. static void bnx2x_pf_init(struct bnx2x *bp)
  2369. {
  2370. struct bnx2x_func_init_params func_init = {0};
  2371. struct event_ring_data eq_data = { {0} };
  2372. u16 flags;
  2373. if (!CHIP_IS_E1x(bp)) {
  2374. /* reset IGU PF statistics: MSIX + ATTN */
  2375. /* PF */
  2376. REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
  2377. BNX2X_IGU_STAS_MSG_VF_CNT*4 +
  2378. (CHIP_MODE_IS_4_PORT(bp) ?
  2379. BP_FUNC(bp) : BP_VN(bp))*4, 0);
  2380. /* ATTN */
  2381. REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
  2382. BNX2X_IGU_STAS_MSG_VF_CNT*4 +
  2383. BNX2X_IGU_STAS_MSG_PF_CNT*4 +
  2384. (CHIP_MODE_IS_4_PORT(bp) ?
  2385. BP_FUNC(bp) : BP_VN(bp))*4, 0);
  2386. }
  2387. /* function setup flags */
  2388. flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
  2389. /* This flag is relevant for E1x only.
  2390. * E2 doesn't have a TPA configuration in a function level.
  2391. */
  2392. flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
  2393. func_init.func_flgs = flags;
  2394. func_init.pf_id = BP_FUNC(bp);
  2395. func_init.func_id = BP_FUNC(bp);
  2396. func_init.spq_map = bp->spq_mapping;
  2397. func_init.spq_prod = bp->spq_prod_idx;
  2398. bnx2x_func_init(bp, &func_init);
  2399. memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
  2400. /*
  2401. * Congestion management values depend on the link rate
  2402. * There is no active link so initial link rate is set to 10 Gbps.
  2403. * When the link comes up The congestion management values are
  2404. * re-calculated according to the actual link rate.
  2405. */
  2406. bp->link_vars.line_speed = SPEED_10000;
  2407. bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
  2408. /* Only the PMF sets the HW */
  2409. if (bp->port.pmf)
  2410. storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
  2411. /* init Event Queue */
  2412. eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
  2413. eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
  2414. eq_data.producer = bp->eq_prod;
  2415. eq_data.index_id = HC_SP_INDEX_EQ_CONS;
  2416. eq_data.sb_id = DEF_SB_ID;
  2417. storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
  2418. }
  2419. static void bnx2x_e1h_disable(struct bnx2x *bp)
  2420. {
  2421. int port = BP_PORT(bp);
  2422. bnx2x_tx_disable(bp);
  2423. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
  2424. }
  2425. static void bnx2x_e1h_enable(struct bnx2x *bp)
  2426. {
  2427. int port = BP_PORT(bp);
  2428. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
  2429. /* Tx queue should be only reenabled */
  2430. netif_tx_wake_all_queues(bp->dev);
  2431. /*
  2432. * Should not call netif_carrier_on since it will be called if the link
  2433. * is up when checking for link state
  2434. */
  2435. }
  2436. #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
  2437. static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
  2438. {
  2439. struct eth_stats_info *ether_stat =
  2440. &bp->slowpath->drv_info_to_mcp.ether_stat;
  2441. /* leave last char as NULL */
  2442. memcpy(ether_stat->version, DRV_MODULE_VERSION,
  2443. ETH_STAT_INFO_VERSION_LEN - 1);
  2444. bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
  2445. DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
  2446. ether_stat->mac_local);
  2447. ether_stat->mtu_size = bp->dev->mtu;
  2448. if (bp->dev->features & NETIF_F_RXCSUM)
  2449. ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
  2450. if (bp->dev->features & NETIF_F_TSO)
  2451. ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
  2452. ether_stat->feature_flags |= bp->common.boot_mode;
  2453. ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
  2454. ether_stat->txq_size = bp->tx_ring_size;
  2455. ether_stat->rxq_size = bp->rx_ring_size;
  2456. }
  2457. static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
  2458. {
  2459. #ifdef BCM_CNIC
  2460. struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
  2461. struct fcoe_stats_info *fcoe_stat =
  2462. &bp->slowpath->drv_info_to_mcp.fcoe_stat;
  2463. memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
  2464. fcoe_stat->qos_priority =
  2465. app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
  2466. /* insert FCoE stats from ramrod response */
  2467. if (!NO_FCOE(bp)) {
  2468. struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
  2469. &bp->fw_stats_data->queue_stats[FCOE_IDX].
  2470. tstorm_queue_statistics;
  2471. struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
  2472. &bp->fw_stats_data->queue_stats[FCOE_IDX].
  2473. xstorm_queue_statistics;
  2474. struct fcoe_statistics_params *fw_fcoe_stat =
  2475. &bp->fw_stats_data->fcoe;
  2476. ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
  2477. fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
  2478. ADD_64(fcoe_stat->rx_bytes_hi,
  2479. fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
  2480. fcoe_stat->rx_bytes_lo,
  2481. fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
  2482. ADD_64(fcoe_stat->rx_bytes_hi,
  2483. fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
  2484. fcoe_stat->rx_bytes_lo,
  2485. fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
  2486. ADD_64(fcoe_stat->rx_bytes_hi,
  2487. fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
  2488. fcoe_stat->rx_bytes_lo,
  2489. fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
  2490. ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
  2491. fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
  2492. ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
  2493. fcoe_q_tstorm_stats->rcv_ucast_pkts);
  2494. ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
  2495. fcoe_q_tstorm_stats->rcv_bcast_pkts);
  2496. ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
  2497. fcoe_q_tstorm_stats->rcv_mcast_pkts);
  2498. ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
  2499. fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
  2500. ADD_64(fcoe_stat->tx_bytes_hi,
  2501. fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
  2502. fcoe_stat->tx_bytes_lo,
  2503. fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
  2504. ADD_64(fcoe_stat->tx_bytes_hi,
  2505. fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
  2506. fcoe_stat->tx_bytes_lo,
  2507. fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
  2508. ADD_64(fcoe_stat->tx_bytes_hi,
  2509. fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
  2510. fcoe_stat->tx_bytes_lo,
  2511. fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
  2512. ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
  2513. fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
  2514. ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
  2515. fcoe_q_xstorm_stats->ucast_pkts_sent);
  2516. ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
  2517. fcoe_q_xstorm_stats->bcast_pkts_sent);
  2518. ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
  2519. fcoe_q_xstorm_stats->mcast_pkts_sent);
  2520. }
  2521. /* ask L5 driver to add data to the struct */
  2522. bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
  2523. #endif
  2524. }
  2525. static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
  2526. {
  2527. #ifdef BCM_CNIC
  2528. struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
  2529. struct iscsi_stats_info *iscsi_stat =
  2530. &bp->slowpath->drv_info_to_mcp.iscsi_stat;
  2531. memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
  2532. iscsi_stat->qos_priority =
  2533. app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
  2534. /* ask L5 driver to add data to the struct */
  2535. bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
  2536. #endif
  2537. }
  2538. /* called due to MCP event (on pmf):
  2539. * reread new bandwidth configuration
  2540. * configure FW
  2541. * notify others function about the change
  2542. */
  2543. static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
  2544. {
  2545. if (bp->link_vars.link_up) {
  2546. bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
  2547. bnx2x_link_sync_notify(bp);
  2548. }
  2549. storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
  2550. }
  2551. static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
  2552. {
  2553. bnx2x_config_mf_bw(bp);
  2554. bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
  2555. }
  2556. static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
  2557. {
  2558. enum drv_info_opcode op_code;
  2559. u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
  2560. /* if drv_info version supported by MFW doesn't match - send NACK */
  2561. if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
  2562. bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
  2563. return;
  2564. }
  2565. op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
  2566. DRV_INFO_CONTROL_OP_CODE_SHIFT;
  2567. memset(&bp->slowpath->drv_info_to_mcp, 0,
  2568. sizeof(union drv_info_to_mcp));
  2569. switch (op_code) {
  2570. case ETH_STATS_OPCODE:
  2571. bnx2x_drv_info_ether_stat(bp);
  2572. break;
  2573. case FCOE_STATS_OPCODE:
  2574. bnx2x_drv_info_fcoe_stat(bp);
  2575. break;
  2576. case ISCSI_STATS_OPCODE:
  2577. bnx2x_drv_info_iscsi_stat(bp);
  2578. break;
  2579. default:
  2580. /* if op code isn't supported - send NACK */
  2581. bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
  2582. return;
  2583. }
  2584. /* if we got drv_info attn from MFW then these fields are defined in
  2585. * shmem2 for sure
  2586. */
  2587. SHMEM2_WR(bp, drv_info_host_addr_lo,
  2588. U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
  2589. SHMEM2_WR(bp, drv_info_host_addr_hi,
  2590. U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
  2591. bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
  2592. }
  2593. static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
  2594. {
  2595. DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
  2596. if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
  2597. /*
  2598. * This is the only place besides the function initialization
  2599. * where the bp->flags can change so it is done without any
  2600. * locks
  2601. */
  2602. if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
  2603. DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
  2604. bp->flags |= MF_FUNC_DIS;
  2605. bnx2x_e1h_disable(bp);
  2606. } else {
  2607. DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
  2608. bp->flags &= ~MF_FUNC_DIS;
  2609. bnx2x_e1h_enable(bp);
  2610. }
  2611. dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
  2612. }
  2613. if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
  2614. bnx2x_config_mf_bw(bp);
  2615. dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
  2616. }
  2617. /* Report results to MCP */
  2618. if (dcc_event)
  2619. bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
  2620. else
  2621. bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
  2622. }
  2623. /* must be called under the spq lock */
  2624. static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
  2625. {
  2626. struct eth_spe *next_spe = bp->spq_prod_bd;
  2627. if (bp->spq_prod_bd == bp->spq_last_bd) {
  2628. bp->spq_prod_bd = bp->spq;
  2629. bp->spq_prod_idx = 0;
  2630. DP(NETIF_MSG_TIMER, "end of spq\n");
  2631. } else {
  2632. bp->spq_prod_bd++;
  2633. bp->spq_prod_idx++;
  2634. }
  2635. return next_spe;
  2636. }
  2637. /* must be called under the spq lock */
  2638. static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
  2639. {
  2640. int func = BP_FUNC(bp);
  2641. /*
  2642. * Make sure that BD data is updated before writing the producer:
  2643. * BD data is written to the memory, the producer is read from the
  2644. * memory, thus we need a full memory barrier to ensure the ordering.
  2645. */
  2646. mb();
  2647. REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
  2648. bp->spq_prod_idx);
  2649. mmiowb();
  2650. }
  2651. /**
  2652. * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
  2653. *
  2654. * @cmd: command to check
  2655. * @cmd_type: command type
  2656. */
  2657. static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
  2658. {
  2659. if ((cmd_type == NONE_CONNECTION_TYPE) ||
  2660. (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
  2661. (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
  2662. (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
  2663. (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
  2664. (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
  2665. (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
  2666. return true;
  2667. else
  2668. return false;
  2669. }
  2670. /**
  2671. * bnx2x_sp_post - place a single command on an SP ring
  2672. *
  2673. * @bp: driver handle
  2674. * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
  2675. * @cid: SW CID the command is related to
  2676. * @data_hi: command private data address (high 32 bits)
  2677. * @data_lo: command private data address (low 32 bits)
  2678. * @cmd_type: command type (e.g. NONE, ETH)
  2679. *
  2680. * SP data is handled as if it's always an address pair, thus data fields are
  2681. * not swapped to little endian in upper functions. Instead this function swaps
  2682. * data as if it's two u32 fields.
  2683. */
  2684. int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
  2685. u32 data_hi, u32 data_lo, int cmd_type)
  2686. {
  2687. struct eth_spe *spe;
  2688. u16 type;
  2689. bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
  2690. #ifdef BNX2X_STOP_ON_ERROR
  2691. if (unlikely(bp->panic))
  2692. return -EIO;
  2693. #endif
  2694. spin_lock_bh(&bp->spq_lock);
  2695. if (common) {
  2696. if (!atomic_read(&bp->eq_spq_left)) {
  2697. BNX2X_ERR("BUG! EQ ring full!\n");
  2698. spin_unlock_bh(&bp->spq_lock);
  2699. bnx2x_panic();
  2700. return -EBUSY;
  2701. }
  2702. } else if (!atomic_read(&bp->cq_spq_left)) {
  2703. BNX2X_ERR("BUG! SPQ ring full!\n");
  2704. spin_unlock_bh(&bp->spq_lock);
  2705. bnx2x_panic();
  2706. return -EBUSY;
  2707. }
  2708. spe = bnx2x_sp_get_next(bp);
  2709. /* CID needs port number to be encoded int it */
  2710. spe->hdr.conn_and_cmd_data =
  2711. cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
  2712. HW_CID(bp, cid));
  2713. type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
  2714. type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
  2715. SPE_HDR_FUNCTION_ID);
  2716. spe->hdr.type = cpu_to_le16(type);
  2717. spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
  2718. spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
  2719. /*
  2720. * It's ok if the actual decrement is issued towards the memory
  2721. * somewhere between the spin_lock and spin_unlock. Thus no
  2722. * more explict memory barrier is needed.
  2723. */
  2724. if (common)
  2725. atomic_dec(&bp->eq_spq_left);
  2726. else
  2727. atomic_dec(&bp->cq_spq_left);
  2728. DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
  2729. "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) "
  2730. "type(0x%x) left (CQ, EQ) (%x,%x)\n",
  2731. bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
  2732. (u32)(U64_LO(bp->spq_mapping) +
  2733. (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
  2734. HW_CID(bp, cid), data_hi, data_lo, type,
  2735. atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
  2736. bnx2x_sp_prod_update(bp);
  2737. spin_unlock_bh(&bp->spq_lock);
  2738. return 0;
  2739. }
  2740. /* acquire split MCP access lock register */
  2741. static int bnx2x_acquire_alr(struct bnx2x *bp)
  2742. {
  2743. u32 j, val;
  2744. int rc = 0;
  2745. might_sleep();
  2746. for (j = 0; j < 1000; j++) {
  2747. val = (1UL << 31);
  2748. REG_WR(bp, GRCBASE_MCP + 0x9c, val);
  2749. val = REG_RD(bp, GRCBASE_MCP + 0x9c);
  2750. if (val & (1L << 31))
  2751. break;
  2752. msleep(5);
  2753. }
  2754. if (!(val & (1L << 31))) {
  2755. BNX2X_ERR("Cannot acquire MCP access lock register\n");
  2756. rc = -EBUSY;
  2757. }
  2758. return rc;
  2759. }
  2760. /* release split MCP access lock register */
  2761. static void bnx2x_release_alr(struct bnx2x *bp)
  2762. {
  2763. REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
  2764. }
  2765. #define BNX2X_DEF_SB_ATT_IDX 0x0001
  2766. #define BNX2X_DEF_SB_IDX 0x0002
  2767. static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
  2768. {
  2769. struct host_sp_status_block *def_sb = bp->def_status_blk;
  2770. u16 rc = 0;
  2771. barrier(); /* status block is written to by the chip */
  2772. if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
  2773. bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
  2774. rc |= BNX2X_DEF_SB_ATT_IDX;
  2775. }
  2776. if (bp->def_idx != def_sb->sp_sb.running_index) {
  2777. bp->def_idx = def_sb->sp_sb.running_index;
  2778. rc |= BNX2X_DEF_SB_IDX;
  2779. }
  2780. /* Do not reorder: indecies reading should complete before handling */
  2781. barrier();
  2782. return rc;
  2783. }
  2784. /*
  2785. * slow path service functions
  2786. */
  2787. static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
  2788. {
  2789. int port = BP_PORT(bp);
  2790. u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  2791. MISC_REG_AEU_MASK_ATTN_FUNC_0;
  2792. u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
  2793. NIG_REG_MASK_INTERRUPT_PORT0;
  2794. u32 aeu_mask;
  2795. u32 nig_mask = 0;
  2796. u32 reg_addr;
  2797. if (bp->attn_state & asserted)
  2798. BNX2X_ERR("IGU ERROR\n");
  2799. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  2800. aeu_mask = REG_RD(bp, aeu_addr);
  2801. DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
  2802. aeu_mask, asserted);
  2803. aeu_mask &= ~(asserted & 0x3ff);
  2804. DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
  2805. REG_WR(bp, aeu_addr, aeu_mask);
  2806. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  2807. DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
  2808. bp->attn_state |= asserted;
  2809. DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
  2810. if (asserted & ATTN_HARD_WIRED_MASK) {
  2811. if (asserted & ATTN_NIG_FOR_FUNC) {
  2812. bnx2x_acquire_phy_lock(bp);
  2813. /* save nig interrupt mask */
  2814. nig_mask = REG_RD(bp, nig_int_mask_addr);
  2815. /* If nig_mask is not set, no need to call the update
  2816. * function.
  2817. */
  2818. if (nig_mask) {
  2819. REG_WR(bp, nig_int_mask_addr, 0);
  2820. bnx2x_link_attn(bp);
  2821. }
  2822. /* handle unicore attn? */
  2823. }
  2824. if (asserted & ATTN_SW_TIMER_4_FUNC)
  2825. DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
  2826. if (asserted & GPIO_2_FUNC)
  2827. DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
  2828. if (asserted & GPIO_3_FUNC)
  2829. DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
  2830. if (asserted & GPIO_4_FUNC)
  2831. DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
  2832. if (port == 0) {
  2833. if (asserted & ATTN_GENERAL_ATTN_1) {
  2834. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
  2835. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
  2836. }
  2837. if (asserted & ATTN_GENERAL_ATTN_2) {
  2838. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
  2839. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
  2840. }
  2841. if (asserted & ATTN_GENERAL_ATTN_3) {
  2842. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
  2843. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
  2844. }
  2845. } else {
  2846. if (asserted & ATTN_GENERAL_ATTN_4) {
  2847. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
  2848. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
  2849. }
  2850. if (asserted & ATTN_GENERAL_ATTN_5) {
  2851. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
  2852. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
  2853. }
  2854. if (asserted & ATTN_GENERAL_ATTN_6) {
  2855. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
  2856. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
  2857. }
  2858. }
  2859. } /* if hardwired */
  2860. if (bp->common.int_block == INT_BLOCK_HC)
  2861. reg_addr = (HC_REG_COMMAND_REG + port*32 +
  2862. COMMAND_REG_ATTN_BITS_SET);
  2863. else
  2864. reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
  2865. DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
  2866. (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
  2867. REG_WR(bp, reg_addr, asserted);
  2868. /* now set back the mask */
  2869. if (asserted & ATTN_NIG_FOR_FUNC) {
  2870. REG_WR(bp, nig_int_mask_addr, nig_mask);
  2871. bnx2x_release_phy_lock(bp);
  2872. }
  2873. }
  2874. static inline void bnx2x_fan_failure(struct bnx2x *bp)
  2875. {
  2876. int port = BP_PORT(bp);
  2877. u32 ext_phy_config;
  2878. /* mark the failure */
  2879. ext_phy_config =
  2880. SHMEM_RD(bp,
  2881. dev_info.port_hw_config[port].external_phy_config);
  2882. ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
  2883. ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
  2884. SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
  2885. ext_phy_config);
  2886. /* log the failure */
  2887. netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
  2888. " the driver to shutdown the card to prevent permanent"
  2889. " damage. Please contact OEM Support for assistance\n");
  2890. /*
  2891. * Scheudle device reset (unload)
  2892. * This is due to some boards consuming sufficient power when driver is
  2893. * up to overheat if fan fails.
  2894. */
  2895. smp_mb__before_clear_bit();
  2896. set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
  2897. smp_mb__after_clear_bit();
  2898. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  2899. }
  2900. static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
  2901. {
  2902. int port = BP_PORT(bp);
  2903. int reg_offset;
  2904. u32 val;
  2905. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
  2906. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
  2907. if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
  2908. val = REG_RD(bp, reg_offset);
  2909. val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
  2910. REG_WR(bp, reg_offset, val);
  2911. BNX2X_ERR("SPIO5 hw attention\n");
  2912. /* Fan failure attention */
  2913. bnx2x_hw_reset_phy(&bp->link_params);
  2914. bnx2x_fan_failure(bp);
  2915. }
  2916. if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
  2917. bnx2x_acquire_phy_lock(bp);
  2918. bnx2x_handle_module_detect_int(&bp->link_params);
  2919. bnx2x_release_phy_lock(bp);
  2920. }
  2921. if (attn & HW_INTERRUT_ASSERT_SET_0) {
  2922. val = REG_RD(bp, reg_offset);
  2923. val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
  2924. REG_WR(bp, reg_offset, val);
  2925. BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
  2926. (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
  2927. bnx2x_panic();
  2928. }
  2929. }
  2930. static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
  2931. {
  2932. u32 val;
  2933. if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
  2934. val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
  2935. BNX2X_ERR("DB hw attention 0x%x\n", val);
  2936. /* DORQ discard attention */
  2937. if (val & 0x2)
  2938. BNX2X_ERR("FATAL error from DORQ\n");
  2939. }
  2940. if (attn & HW_INTERRUT_ASSERT_SET_1) {
  2941. int port = BP_PORT(bp);
  2942. int reg_offset;
  2943. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
  2944. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
  2945. val = REG_RD(bp, reg_offset);
  2946. val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
  2947. REG_WR(bp, reg_offset, val);
  2948. BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
  2949. (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
  2950. bnx2x_panic();
  2951. }
  2952. }
  2953. static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
  2954. {
  2955. u32 val;
  2956. if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
  2957. val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
  2958. BNX2X_ERR("CFC hw attention 0x%x\n", val);
  2959. /* CFC error attention */
  2960. if (val & 0x2)
  2961. BNX2X_ERR("FATAL error from CFC\n");
  2962. }
  2963. if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
  2964. val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
  2965. BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
  2966. /* RQ_USDMDP_FIFO_OVERFLOW */
  2967. if (val & 0x18000)
  2968. BNX2X_ERR("FATAL error from PXP\n");
  2969. if (!CHIP_IS_E1x(bp)) {
  2970. val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
  2971. BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
  2972. }
  2973. }
  2974. if (attn & HW_INTERRUT_ASSERT_SET_2) {
  2975. int port = BP_PORT(bp);
  2976. int reg_offset;
  2977. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
  2978. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
  2979. val = REG_RD(bp, reg_offset);
  2980. val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
  2981. REG_WR(bp, reg_offset, val);
  2982. BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
  2983. (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
  2984. bnx2x_panic();
  2985. }
  2986. }
  2987. static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
  2988. {
  2989. u32 val;
  2990. if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
  2991. if (attn & BNX2X_PMF_LINK_ASSERT) {
  2992. int func = BP_FUNC(bp);
  2993. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
  2994. bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
  2995. func_mf_config[BP_ABS_FUNC(bp)].config);
  2996. val = SHMEM_RD(bp,
  2997. func_mb[BP_FW_MB_IDX(bp)].drv_status);
  2998. if (val & DRV_STATUS_DCC_EVENT_MASK)
  2999. bnx2x_dcc_event(bp,
  3000. (val & DRV_STATUS_DCC_EVENT_MASK));
  3001. if (val & DRV_STATUS_SET_MF_BW)
  3002. bnx2x_set_mf_bw(bp);
  3003. if (val & DRV_STATUS_DRV_INFO_REQ)
  3004. bnx2x_handle_drv_info_req(bp);
  3005. if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
  3006. bnx2x_pmf_update(bp);
  3007. if (bp->port.pmf &&
  3008. (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
  3009. bp->dcbx_enabled > 0)
  3010. /* start dcbx state machine */
  3011. bnx2x_dcbx_set_params(bp,
  3012. BNX2X_DCBX_STATE_NEG_RECEIVED);
  3013. if (bp->link_vars.periodic_flags &
  3014. PERIODIC_FLAGS_LINK_EVENT) {
  3015. /* sync with link */
  3016. bnx2x_acquire_phy_lock(bp);
  3017. bp->link_vars.periodic_flags &=
  3018. ~PERIODIC_FLAGS_LINK_EVENT;
  3019. bnx2x_release_phy_lock(bp);
  3020. if (IS_MF(bp))
  3021. bnx2x_link_sync_notify(bp);
  3022. bnx2x_link_report(bp);
  3023. }
  3024. /* Always call it here: bnx2x_link_report() will
  3025. * prevent the link indication duplication.
  3026. */
  3027. bnx2x__link_status_update(bp);
  3028. } else if (attn & BNX2X_MC_ASSERT_BITS) {
  3029. BNX2X_ERR("MC assert!\n");
  3030. bnx2x_mc_assert(bp);
  3031. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
  3032. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
  3033. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
  3034. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
  3035. bnx2x_panic();
  3036. } else if (attn & BNX2X_MCP_ASSERT) {
  3037. BNX2X_ERR("MCP assert!\n");
  3038. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
  3039. bnx2x_fw_dump(bp);
  3040. } else
  3041. BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
  3042. }
  3043. if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
  3044. BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
  3045. if (attn & BNX2X_GRC_TIMEOUT) {
  3046. val = CHIP_IS_E1(bp) ? 0 :
  3047. REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
  3048. BNX2X_ERR("GRC time-out 0x%08x\n", val);
  3049. }
  3050. if (attn & BNX2X_GRC_RSV) {
  3051. val = CHIP_IS_E1(bp) ? 0 :
  3052. REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
  3053. BNX2X_ERR("GRC reserved 0x%08x\n", val);
  3054. }
  3055. REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
  3056. }
  3057. }
  3058. /*
  3059. * Bits map:
  3060. * 0-7 - Engine0 load counter.
  3061. * 8-15 - Engine1 load counter.
  3062. * 16 - Engine0 RESET_IN_PROGRESS bit.
  3063. * 17 - Engine1 RESET_IN_PROGRESS bit.
  3064. * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
  3065. * on the engine
  3066. * 19 - Engine1 ONE_IS_LOADED.
  3067. * 20 - Chip reset flow bit. When set none-leader must wait for both engines
  3068. * leader to complete (check for both RESET_IN_PROGRESS bits and not for
  3069. * just the one belonging to its engine).
  3070. *
  3071. */
  3072. #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
  3073. #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
  3074. #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
  3075. #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
  3076. #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
  3077. #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
  3078. #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
  3079. #define BNX2X_GLOBAL_RESET_BIT 0x00040000
  3080. /*
  3081. * Set the GLOBAL_RESET bit.
  3082. *
  3083. * Should be run under rtnl lock
  3084. */
  3085. void bnx2x_set_reset_global(struct bnx2x *bp)
  3086. {
  3087. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3088. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
  3089. barrier();
  3090. mmiowb();
  3091. }
  3092. /*
  3093. * Clear the GLOBAL_RESET bit.
  3094. *
  3095. * Should be run under rtnl lock
  3096. */
  3097. static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
  3098. {
  3099. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3100. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
  3101. barrier();
  3102. mmiowb();
  3103. }
  3104. /*
  3105. * Checks the GLOBAL_RESET bit.
  3106. *
  3107. * should be run under rtnl lock
  3108. */
  3109. static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
  3110. {
  3111. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3112. DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
  3113. return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
  3114. }
  3115. /*
  3116. * Clear RESET_IN_PROGRESS bit for the current engine.
  3117. *
  3118. * Should be run under rtnl lock
  3119. */
  3120. static inline void bnx2x_set_reset_done(struct bnx2x *bp)
  3121. {
  3122. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3123. u32 bit = BP_PATH(bp) ?
  3124. BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
  3125. /* Clear the bit */
  3126. val &= ~bit;
  3127. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3128. barrier();
  3129. mmiowb();
  3130. }
  3131. /*
  3132. * Set RESET_IN_PROGRESS for the current engine.
  3133. *
  3134. * should be run under rtnl lock
  3135. */
  3136. void bnx2x_set_reset_in_progress(struct bnx2x *bp)
  3137. {
  3138. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3139. u32 bit = BP_PATH(bp) ?
  3140. BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
  3141. /* Set the bit */
  3142. val |= bit;
  3143. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3144. barrier();
  3145. mmiowb();
  3146. }
  3147. /*
  3148. * Checks the RESET_IN_PROGRESS bit for the given engine.
  3149. * should be run under rtnl lock
  3150. */
  3151. bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
  3152. {
  3153. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3154. u32 bit = engine ?
  3155. BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
  3156. /* return false if bit is set */
  3157. return (val & bit) ? false : true;
  3158. }
  3159. /*
  3160. * Increment the load counter for the current engine.
  3161. *
  3162. * should be run under rtnl lock
  3163. */
  3164. void bnx2x_inc_load_cnt(struct bnx2x *bp)
  3165. {
  3166. u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3167. u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
  3168. BNX2X_PATH0_LOAD_CNT_MASK;
  3169. u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
  3170. BNX2X_PATH0_LOAD_CNT_SHIFT;
  3171. DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
  3172. /* get the current counter value */
  3173. val1 = (val & mask) >> shift;
  3174. /* increment... */
  3175. val1++;
  3176. /* clear the old value */
  3177. val &= ~mask;
  3178. /* set the new one */
  3179. val |= ((val1 << shift) & mask);
  3180. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3181. barrier();
  3182. mmiowb();
  3183. }
  3184. /**
  3185. * bnx2x_dec_load_cnt - decrement the load counter
  3186. *
  3187. * @bp: driver handle
  3188. *
  3189. * Should be run under rtnl lock.
  3190. * Decrements the load counter for the current engine. Returns
  3191. * the new counter value.
  3192. */
  3193. u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
  3194. {
  3195. u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3196. u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
  3197. BNX2X_PATH0_LOAD_CNT_MASK;
  3198. u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
  3199. BNX2X_PATH0_LOAD_CNT_SHIFT;
  3200. DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
  3201. /* get the current counter value */
  3202. val1 = (val & mask) >> shift;
  3203. /* decrement... */
  3204. val1--;
  3205. /* clear the old value */
  3206. val &= ~mask;
  3207. /* set the new one */
  3208. val |= ((val1 << shift) & mask);
  3209. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3210. barrier();
  3211. mmiowb();
  3212. return val1;
  3213. }
  3214. /*
  3215. * Read the load counter for the current engine.
  3216. *
  3217. * should be run under rtnl lock
  3218. */
  3219. static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
  3220. {
  3221. u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
  3222. BNX2X_PATH0_LOAD_CNT_MASK);
  3223. u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
  3224. BNX2X_PATH0_LOAD_CNT_SHIFT);
  3225. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3226. DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
  3227. val = (val & mask) >> shift;
  3228. DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
  3229. return val;
  3230. }
  3231. /*
  3232. * Reset the load counter for the current engine.
  3233. *
  3234. * should be run under rtnl lock
  3235. */
  3236. static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
  3237. {
  3238. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3239. u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
  3240. BNX2X_PATH0_LOAD_CNT_MASK);
  3241. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
  3242. }
  3243. static inline void _print_next_block(int idx, const char *blk)
  3244. {
  3245. pr_cont("%s%s", idx ? ", " : "", blk);
  3246. }
  3247. static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
  3248. bool print)
  3249. {
  3250. int i = 0;
  3251. u32 cur_bit = 0;
  3252. for (i = 0; sig; i++) {
  3253. cur_bit = ((u32)0x1 << i);
  3254. if (sig & cur_bit) {
  3255. switch (cur_bit) {
  3256. case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
  3257. if (print)
  3258. _print_next_block(par_num++, "BRB");
  3259. break;
  3260. case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
  3261. if (print)
  3262. _print_next_block(par_num++, "PARSER");
  3263. break;
  3264. case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
  3265. if (print)
  3266. _print_next_block(par_num++, "TSDM");
  3267. break;
  3268. case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
  3269. if (print)
  3270. _print_next_block(par_num++,
  3271. "SEARCHER");
  3272. break;
  3273. case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
  3274. if (print)
  3275. _print_next_block(par_num++, "TCM");
  3276. break;
  3277. case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
  3278. if (print)
  3279. _print_next_block(par_num++, "TSEMI");
  3280. break;
  3281. case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
  3282. if (print)
  3283. _print_next_block(par_num++, "XPB");
  3284. break;
  3285. }
  3286. /* Clear the bit */
  3287. sig &= ~cur_bit;
  3288. }
  3289. }
  3290. return par_num;
  3291. }
  3292. static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
  3293. bool *global, bool print)
  3294. {
  3295. int i = 0;
  3296. u32 cur_bit = 0;
  3297. for (i = 0; sig; i++) {
  3298. cur_bit = ((u32)0x1 << i);
  3299. if (sig & cur_bit) {
  3300. switch (cur_bit) {
  3301. case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
  3302. if (print)
  3303. _print_next_block(par_num++, "PBF");
  3304. break;
  3305. case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
  3306. if (print)
  3307. _print_next_block(par_num++, "QM");
  3308. break;
  3309. case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
  3310. if (print)
  3311. _print_next_block(par_num++, "TM");
  3312. break;
  3313. case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
  3314. if (print)
  3315. _print_next_block(par_num++, "XSDM");
  3316. break;
  3317. case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
  3318. if (print)
  3319. _print_next_block(par_num++, "XCM");
  3320. break;
  3321. case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
  3322. if (print)
  3323. _print_next_block(par_num++, "XSEMI");
  3324. break;
  3325. case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
  3326. if (print)
  3327. _print_next_block(par_num++,
  3328. "DOORBELLQ");
  3329. break;
  3330. case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
  3331. if (print)
  3332. _print_next_block(par_num++, "NIG");
  3333. break;
  3334. case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
  3335. if (print)
  3336. _print_next_block(par_num++,
  3337. "VAUX PCI CORE");
  3338. *global = true;
  3339. break;
  3340. case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
  3341. if (print)
  3342. _print_next_block(par_num++, "DEBUG");
  3343. break;
  3344. case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
  3345. if (print)
  3346. _print_next_block(par_num++, "USDM");
  3347. break;
  3348. case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
  3349. if (print)
  3350. _print_next_block(par_num++, "UCM");
  3351. break;
  3352. case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
  3353. if (print)
  3354. _print_next_block(par_num++, "USEMI");
  3355. break;
  3356. case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
  3357. if (print)
  3358. _print_next_block(par_num++, "UPB");
  3359. break;
  3360. case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
  3361. if (print)
  3362. _print_next_block(par_num++, "CSDM");
  3363. break;
  3364. case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
  3365. if (print)
  3366. _print_next_block(par_num++, "CCM");
  3367. break;
  3368. }
  3369. /* Clear the bit */
  3370. sig &= ~cur_bit;
  3371. }
  3372. }
  3373. return par_num;
  3374. }
  3375. static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
  3376. bool print)
  3377. {
  3378. int i = 0;
  3379. u32 cur_bit = 0;
  3380. for (i = 0; sig; i++) {
  3381. cur_bit = ((u32)0x1 << i);
  3382. if (sig & cur_bit) {
  3383. switch (cur_bit) {
  3384. case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
  3385. if (print)
  3386. _print_next_block(par_num++, "CSEMI");
  3387. break;
  3388. case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
  3389. if (print)
  3390. _print_next_block(par_num++, "PXP");
  3391. break;
  3392. case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
  3393. if (print)
  3394. _print_next_block(par_num++,
  3395. "PXPPCICLOCKCLIENT");
  3396. break;
  3397. case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
  3398. if (print)
  3399. _print_next_block(par_num++, "CFC");
  3400. break;
  3401. case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
  3402. if (print)
  3403. _print_next_block(par_num++, "CDU");
  3404. break;
  3405. case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
  3406. if (print)
  3407. _print_next_block(par_num++, "DMAE");
  3408. break;
  3409. case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
  3410. if (print)
  3411. _print_next_block(par_num++, "IGU");
  3412. break;
  3413. case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
  3414. if (print)
  3415. _print_next_block(par_num++, "MISC");
  3416. break;
  3417. }
  3418. /* Clear the bit */
  3419. sig &= ~cur_bit;
  3420. }
  3421. }
  3422. return par_num;
  3423. }
  3424. static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
  3425. bool *global, bool print)
  3426. {
  3427. int i = 0;
  3428. u32 cur_bit = 0;
  3429. for (i = 0; sig; i++) {
  3430. cur_bit = ((u32)0x1 << i);
  3431. if (sig & cur_bit) {
  3432. switch (cur_bit) {
  3433. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
  3434. if (print)
  3435. _print_next_block(par_num++, "MCP ROM");
  3436. *global = true;
  3437. break;
  3438. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
  3439. if (print)
  3440. _print_next_block(par_num++,
  3441. "MCP UMP RX");
  3442. *global = true;
  3443. break;
  3444. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
  3445. if (print)
  3446. _print_next_block(par_num++,
  3447. "MCP UMP TX");
  3448. *global = true;
  3449. break;
  3450. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
  3451. if (print)
  3452. _print_next_block(par_num++,
  3453. "MCP SCPAD");
  3454. *global = true;
  3455. break;
  3456. }
  3457. /* Clear the bit */
  3458. sig &= ~cur_bit;
  3459. }
  3460. }
  3461. return par_num;
  3462. }
  3463. static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
  3464. bool print)
  3465. {
  3466. int i = 0;
  3467. u32 cur_bit = 0;
  3468. for (i = 0; sig; i++) {
  3469. cur_bit = ((u32)0x1 << i);
  3470. if (sig & cur_bit) {
  3471. switch (cur_bit) {
  3472. case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
  3473. if (print)
  3474. _print_next_block(par_num++, "PGLUE_B");
  3475. break;
  3476. case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
  3477. if (print)
  3478. _print_next_block(par_num++, "ATC");
  3479. break;
  3480. }
  3481. /* Clear the bit */
  3482. sig &= ~cur_bit;
  3483. }
  3484. }
  3485. return par_num;
  3486. }
  3487. static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
  3488. u32 *sig)
  3489. {
  3490. if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
  3491. (sig[1] & HW_PRTY_ASSERT_SET_1) ||
  3492. (sig[2] & HW_PRTY_ASSERT_SET_2) ||
  3493. (sig[3] & HW_PRTY_ASSERT_SET_3) ||
  3494. (sig[4] & HW_PRTY_ASSERT_SET_4)) {
  3495. int par_num = 0;
  3496. DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
  3497. "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
  3498. "[4]:0x%08x\n",
  3499. sig[0] & HW_PRTY_ASSERT_SET_0,
  3500. sig[1] & HW_PRTY_ASSERT_SET_1,
  3501. sig[2] & HW_PRTY_ASSERT_SET_2,
  3502. sig[3] & HW_PRTY_ASSERT_SET_3,
  3503. sig[4] & HW_PRTY_ASSERT_SET_4);
  3504. if (print)
  3505. netdev_err(bp->dev,
  3506. "Parity errors detected in blocks: ");
  3507. par_num = bnx2x_check_blocks_with_parity0(
  3508. sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
  3509. par_num = bnx2x_check_blocks_with_parity1(
  3510. sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
  3511. par_num = bnx2x_check_blocks_with_parity2(
  3512. sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
  3513. par_num = bnx2x_check_blocks_with_parity3(
  3514. sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
  3515. par_num = bnx2x_check_blocks_with_parity4(
  3516. sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
  3517. if (print)
  3518. pr_cont("\n");
  3519. return true;
  3520. } else
  3521. return false;
  3522. }
  3523. /**
  3524. * bnx2x_chk_parity_attn - checks for parity attentions.
  3525. *
  3526. * @bp: driver handle
  3527. * @global: true if there was a global attention
  3528. * @print: show parity attention in syslog
  3529. */
  3530. bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
  3531. {
  3532. struct attn_route attn = { {0} };
  3533. int port = BP_PORT(bp);
  3534. attn.sig[0] = REG_RD(bp,
  3535. MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
  3536. port*4);
  3537. attn.sig[1] = REG_RD(bp,
  3538. MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
  3539. port*4);
  3540. attn.sig[2] = REG_RD(bp,
  3541. MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
  3542. port*4);
  3543. attn.sig[3] = REG_RD(bp,
  3544. MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
  3545. port*4);
  3546. if (!CHIP_IS_E1x(bp))
  3547. attn.sig[4] = REG_RD(bp,
  3548. MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
  3549. port*4);
  3550. return bnx2x_parity_attn(bp, global, print, attn.sig);
  3551. }
  3552. static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
  3553. {
  3554. u32 val;
  3555. if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
  3556. val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
  3557. BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
  3558. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
  3559. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3560. "ADDRESS_ERROR\n");
  3561. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
  3562. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3563. "INCORRECT_RCV_BEHAVIOR\n");
  3564. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
  3565. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3566. "WAS_ERROR_ATTN\n");
  3567. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
  3568. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3569. "VF_LENGTH_VIOLATION_ATTN\n");
  3570. if (val &
  3571. PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
  3572. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3573. "VF_GRC_SPACE_VIOLATION_ATTN\n");
  3574. if (val &
  3575. PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
  3576. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3577. "VF_MSIX_BAR_VIOLATION_ATTN\n");
  3578. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
  3579. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3580. "TCPL_ERROR_ATTN\n");
  3581. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
  3582. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3583. "TCPL_IN_TWO_RCBS_ATTN\n");
  3584. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
  3585. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
  3586. "CSSNOOP_FIFO_OVERFLOW\n");
  3587. }
  3588. if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
  3589. val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
  3590. BNX2X_ERR("ATC hw attention 0x%x\n", val);
  3591. if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
  3592. BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
  3593. if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
  3594. BNX2X_ERR("ATC_ATC_INT_STS_REG"
  3595. "_ATC_TCPL_TO_NOT_PEND\n");
  3596. if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
  3597. BNX2X_ERR("ATC_ATC_INT_STS_REG_"
  3598. "ATC_GPA_MULTIPLE_HITS\n");
  3599. if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
  3600. BNX2X_ERR("ATC_ATC_INT_STS_REG_"
  3601. "ATC_RCPL_TO_EMPTY_CNT\n");
  3602. if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
  3603. BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
  3604. if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
  3605. BNX2X_ERR("ATC_ATC_INT_STS_REG_"
  3606. "ATC_IREQ_LESS_THAN_STU\n");
  3607. }
  3608. if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
  3609. AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
  3610. BNX2X_ERR("FATAL parity attention set4 0x%x\n",
  3611. (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
  3612. AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
  3613. }
  3614. }
  3615. static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
  3616. {
  3617. struct attn_route attn, *group_mask;
  3618. int port = BP_PORT(bp);
  3619. int index;
  3620. u32 reg_addr;
  3621. u32 val;
  3622. u32 aeu_mask;
  3623. bool global = false;
  3624. /* need to take HW lock because MCP or other port might also
  3625. try to handle this event */
  3626. bnx2x_acquire_alr(bp);
  3627. if (bnx2x_chk_parity_attn(bp, &global, true)) {
  3628. #ifndef BNX2X_STOP_ON_ERROR
  3629. bp->recovery_state = BNX2X_RECOVERY_INIT;
  3630. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  3631. /* Disable HW interrupts */
  3632. bnx2x_int_disable(bp);
  3633. /* In case of parity errors don't handle attentions so that
  3634. * other function would "see" parity errors.
  3635. */
  3636. #else
  3637. bnx2x_panic();
  3638. #endif
  3639. bnx2x_release_alr(bp);
  3640. return;
  3641. }
  3642. attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
  3643. attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
  3644. attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
  3645. attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
  3646. if (!CHIP_IS_E1x(bp))
  3647. attn.sig[4] =
  3648. REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
  3649. else
  3650. attn.sig[4] = 0;
  3651. DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
  3652. attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
  3653. for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
  3654. if (deasserted & (1 << index)) {
  3655. group_mask = &bp->attn_group[index];
  3656. DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
  3657. "%08x %08x %08x\n",
  3658. index,
  3659. group_mask->sig[0], group_mask->sig[1],
  3660. group_mask->sig[2], group_mask->sig[3],
  3661. group_mask->sig[4]);
  3662. bnx2x_attn_int_deasserted4(bp,
  3663. attn.sig[4] & group_mask->sig[4]);
  3664. bnx2x_attn_int_deasserted3(bp,
  3665. attn.sig[3] & group_mask->sig[3]);
  3666. bnx2x_attn_int_deasserted1(bp,
  3667. attn.sig[1] & group_mask->sig[1]);
  3668. bnx2x_attn_int_deasserted2(bp,
  3669. attn.sig[2] & group_mask->sig[2]);
  3670. bnx2x_attn_int_deasserted0(bp,
  3671. attn.sig[0] & group_mask->sig[0]);
  3672. }
  3673. }
  3674. bnx2x_release_alr(bp);
  3675. if (bp->common.int_block == INT_BLOCK_HC)
  3676. reg_addr = (HC_REG_COMMAND_REG + port*32 +
  3677. COMMAND_REG_ATTN_BITS_CLR);
  3678. else
  3679. reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
  3680. val = ~deasserted;
  3681. DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
  3682. (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
  3683. REG_WR(bp, reg_addr, val);
  3684. if (~bp->attn_state & deasserted)
  3685. BNX2X_ERR("IGU ERROR\n");
  3686. reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  3687. MISC_REG_AEU_MASK_ATTN_FUNC_0;
  3688. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  3689. aeu_mask = REG_RD(bp, reg_addr);
  3690. DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
  3691. aeu_mask, deasserted);
  3692. aeu_mask |= (deasserted & 0x3ff);
  3693. DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
  3694. REG_WR(bp, reg_addr, aeu_mask);
  3695. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  3696. DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
  3697. bp->attn_state &= ~deasserted;
  3698. DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
  3699. }
  3700. static void bnx2x_attn_int(struct bnx2x *bp)
  3701. {
  3702. /* read local copy of bits */
  3703. u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
  3704. attn_bits);
  3705. u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
  3706. attn_bits_ack);
  3707. u32 attn_state = bp->attn_state;
  3708. /* look for changed bits */
  3709. u32 asserted = attn_bits & ~attn_ack & ~attn_state;
  3710. u32 deasserted = ~attn_bits & attn_ack & attn_state;
  3711. DP(NETIF_MSG_HW,
  3712. "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
  3713. attn_bits, attn_ack, asserted, deasserted);
  3714. if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
  3715. BNX2X_ERR("BAD attention state\n");
  3716. /* handle bits that were raised */
  3717. if (asserted)
  3718. bnx2x_attn_int_asserted(bp, asserted);
  3719. if (deasserted)
  3720. bnx2x_attn_int_deasserted(bp, deasserted);
  3721. }
  3722. void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
  3723. u16 index, u8 op, u8 update)
  3724. {
  3725. u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
  3726. bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
  3727. igu_addr);
  3728. }
  3729. static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
  3730. {
  3731. /* No memory barriers */
  3732. storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
  3733. mmiowb(); /* keep prod updates ordered */
  3734. }
  3735. #ifdef BCM_CNIC
  3736. static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
  3737. union event_ring_elem *elem)
  3738. {
  3739. u8 err = elem->message.error;
  3740. if (!bp->cnic_eth_dev.starting_cid ||
  3741. (cid < bp->cnic_eth_dev.starting_cid &&
  3742. cid != bp->cnic_eth_dev.iscsi_l2_cid))
  3743. return 1;
  3744. DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
  3745. if (unlikely(err)) {
  3746. BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
  3747. cid);
  3748. bnx2x_panic_dump(bp);
  3749. }
  3750. bnx2x_cnic_cfc_comp(bp, cid, err);
  3751. return 0;
  3752. }
  3753. #endif
  3754. static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
  3755. {
  3756. struct bnx2x_mcast_ramrod_params rparam;
  3757. int rc;
  3758. memset(&rparam, 0, sizeof(rparam));
  3759. rparam.mcast_obj = &bp->mcast_obj;
  3760. netif_addr_lock_bh(bp->dev);
  3761. /* Clear pending state for the last command */
  3762. bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
  3763. /* If there are pending mcast commands - send them */
  3764. if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
  3765. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
  3766. if (rc < 0)
  3767. BNX2X_ERR("Failed to send pending mcast commands: %d\n",
  3768. rc);
  3769. }
  3770. netif_addr_unlock_bh(bp->dev);
  3771. }
  3772. static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
  3773. union event_ring_elem *elem)
  3774. {
  3775. unsigned long ramrod_flags = 0;
  3776. int rc = 0;
  3777. u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
  3778. struct bnx2x_vlan_mac_obj *vlan_mac_obj;
  3779. /* Always push next commands out, don't wait here */
  3780. __set_bit(RAMROD_CONT, &ramrod_flags);
  3781. switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
  3782. case BNX2X_FILTER_MAC_PENDING:
  3783. #ifdef BCM_CNIC
  3784. if (cid == BNX2X_ISCSI_ETH_CID)
  3785. vlan_mac_obj = &bp->iscsi_l2_mac_obj;
  3786. else
  3787. #endif
  3788. vlan_mac_obj = &bp->fp[cid].mac_obj;
  3789. break;
  3790. case BNX2X_FILTER_MCAST_PENDING:
  3791. /* This is only relevant for 57710 where multicast MACs are
  3792. * configured as unicast MACs using the same ramrod.
  3793. */
  3794. bnx2x_handle_mcast_eqe(bp);
  3795. return;
  3796. default:
  3797. BNX2X_ERR("Unsupported classification command: %d\n",
  3798. elem->message.data.eth_event.echo);
  3799. return;
  3800. }
  3801. rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
  3802. if (rc < 0)
  3803. BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
  3804. else if (rc > 0)
  3805. DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
  3806. }
  3807. #ifdef BCM_CNIC
  3808. static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
  3809. #endif
  3810. static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
  3811. {
  3812. netif_addr_lock_bh(bp->dev);
  3813. clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
  3814. /* Send rx_mode command again if was requested */
  3815. if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
  3816. bnx2x_set_storm_rx_mode(bp);
  3817. #ifdef BCM_CNIC
  3818. else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
  3819. &bp->sp_state))
  3820. bnx2x_set_iscsi_eth_rx_mode(bp, true);
  3821. else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
  3822. &bp->sp_state))
  3823. bnx2x_set_iscsi_eth_rx_mode(bp, false);
  3824. #endif
  3825. netif_addr_unlock_bh(bp->dev);
  3826. }
  3827. static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
  3828. struct bnx2x *bp, u32 cid)
  3829. {
  3830. DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
  3831. #ifdef BCM_CNIC
  3832. if (cid == BNX2X_FCOE_ETH_CID)
  3833. return &bnx2x_fcoe(bp, q_obj);
  3834. else
  3835. #endif
  3836. return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
  3837. }
  3838. static void bnx2x_eq_int(struct bnx2x *bp)
  3839. {
  3840. u16 hw_cons, sw_cons, sw_prod;
  3841. union event_ring_elem *elem;
  3842. u32 cid;
  3843. u8 opcode;
  3844. int spqe_cnt = 0;
  3845. struct bnx2x_queue_sp_obj *q_obj;
  3846. struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
  3847. struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
  3848. hw_cons = le16_to_cpu(*bp->eq_cons_sb);
  3849. /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
  3850. * when we get the the next-page we nned to adjust so the loop
  3851. * condition below will be met. The next element is the size of a
  3852. * regular element and hence incrementing by 1
  3853. */
  3854. if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
  3855. hw_cons++;
  3856. /* This function may never run in parallel with itself for a
  3857. * specific bp, thus there is no need in "paired" read memory
  3858. * barrier here.
  3859. */
  3860. sw_cons = bp->eq_cons;
  3861. sw_prod = bp->eq_prod;
  3862. DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
  3863. hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
  3864. for (; sw_cons != hw_cons;
  3865. sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
  3866. elem = &bp->eq_ring[EQ_DESC(sw_cons)];
  3867. cid = SW_CID(elem->message.data.cfc_del_event.cid);
  3868. opcode = elem->message.opcode;
  3869. /* handle eq element */
  3870. switch (opcode) {
  3871. case EVENT_RING_OPCODE_STAT_QUERY:
  3872. DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
  3873. bp->stats_comp++);
  3874. /* nothing to do with stats comp */
  3875. goto next_spqe;
  3876. case EVENT_RING_OPCODE_CFC_DEL:
  3877. /* handle according to cid range */
  3878. /*
  3879. * we may want to verify here that the bp state is
  3880. * HALTING
  3881. */
  3882. DP(BNX2X_MSG_SP,
  3883. "got delete ramrod for MULTI[%d]\n", cid);
  3884. #ifdef BCM_CNIC
  3885. if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
  3886. goto next_spqe;
  3887. #endif
  3888. q_obj = bnx2x_cid_to_q_obj(bp, cid);
  3889. if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
  3890. break;
  3891. goto next_spqe;
  3892. case EVENT_RING_OPCODE_STOP_TRAFFIC:
  3893. DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
  3894. if (f_obj->complete_cmd(bp, f_obj,
  3895. BNX2X_F_CMD_TX_STOP))
  3896. break;
  3897. bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
  3898. goto next_spqe;
  3899. case EVENT_RING_OPCODE_START_TRAFFIC:
  3900. DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
  3901. if (f_obj->complete_cmd(bp, f_obj,
  3902. BNX2X_F_CMD_TX_START))
  3903. break;
  3904. bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
  3905. goto next_spqe;
  3906. case EVENT_RING_OPCODE_FUNCTION_START:
  3907. DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
  3908. if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
  3909. break;
  3910. goto next_spqe;
  3911. case EVENT_RING_OPCODE_FUNCTION_STOP:
  3912. DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
  3913. if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
  3914. break;
  3915. goto next_spqe;
  3916. }
  3917. switch (opcode | bp->state) {
  3918. case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
  3919. BNX2X_STATE_OPEN):
  3920. case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
  3921. BNX2X_STATE_OPENING_WAIT4_PORT):
  3922. cid = elem->message.data.eth_event.echo &
  3923. BNX2X_SWCID_MASK;
  3924. DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
  3925. cid);
  3926. rss_raw->clear_pending(rss_raw);
  3927. break;
  3928. case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
  3929. case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
  3930. case (EVENT_RING_OPCODE_SET_MAC |
  3931. BNX2X_STATE_CLOSING_WAIT4_HALT):
  3932. case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
  3933. BNX2X_STATE_OPEN):
  3934. case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
  3935. BNX2X_STATE_DIAG):
  3936. case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
  3937. BNX2X_STATE_CLOSING_WAIT4_HALT):
  3938. DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
  3939. bnx2x_handle_classification_eqe(bp, elem);
  3940. break;
  3941. case (EVENT_RING_OPCODE_MULTICAST_RULES |
  3942. BNX2X_STATE_OPEN):
  3943. case (EVENT_RING_OPCODE_MULTICAST_RULES |
  3944. BNX2X_STATE_DIAG):
  3945. case (EVENT_RING_OPCODE_MULTICAST_RULES |
  3946. BNX2X_STATE_CLOSING_WAIT4_HALT):
  3947. DP(BNX2X_MSG_SP, "got mcast ramrod\n");
  3948. bnx2x_handle_mcast_eqe(bp);
  3949. break;
  3950. case (EVENT_RING_OPCODE_FILTERS_RULES |
  3951. BNX2X_STATE_OPEN):
  3952. case (EVENT_RING_OPCODE_FILTERS_RULES |
  3953. BNX2X_STATE_DIAG):
  3954. case (EVENT_RING_OPCODE_FILTERS_RULES |
  3955. BNX2X_STATE_CLOSING_WAIT4_HALT):
  3956. DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
  3957. bnx2x_handle_rx_mode_eqe(bp);
  3958. break;
  3959. default:
  3960. /* unknown event log error and continue */
  3961. BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
  3962. elem->message.opcode, bp->state);
  3963. }
  3964. next_spqe:
  3965. spqe_cnt++;
  3966. } /* for */
  3967. smp_mb__before_atomic_inc();
  3968. atomic_add(spqe_cnt, &bp->eq_spq_left);
  3969. bp->eq_cons = sw_cons;
  3970. bp->eq_prod = sw_prod;
  3971. /* Make sure that above mem writes were issued towards the memory */
  3972. smp_wmb();
  3973. /* update producer */
  3974. bnx2x_update_eq_prod(bp, bp->eq_prod);
  3975. }
  3976. static void bnx2x_sp_task(struct work_struct *work)
  3977. {
  3978. struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
  3979. u16 status;
  3980. status = bnx2x_update_dsb_idx(bp);
  3981. /* if (status == 0) */
  3982. /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
  3983. DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
  3984. /* HW attentions */
  3985. if (status & BNX2X_DEF_SB_ATT_IDX) {
  3986. bnx2x_attn_int(bp);
  3987. status &= ~BNX2X_DEF_SB_ATT_IDX;
  3988. }
  3989. /* SP events: STAT_QUERY and others */
  3990. if (status & BNX2X_DEF_SB_IDX) {
  3991. #ifdef BCM_CNIC
  3992. struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
  3993. if ((!NO_FCOE(bp)) &&
  3994. (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
  3995. /*
  3996. * Prevent local bottom-halves from running as
  3997. * we are going to change the local NAPI list.
  3998. */
  3999. local_bh_disable();
  4000. napi_schedule(&bnx2x_fcoe(bp, napi));
  4001. local_bh_enable();
  4002. }
  4003. #endif
  4004. /* Handle EQ completions */
  4005. bnx2x_eq_int(bp);
  4006. bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
  4007. le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
  4008. status &= ~BNX2X_DEF_SB_IDX;
  4009. }
  4010. if (unlikely(status))
  4011. DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
  4012. status);
  4013. bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
  4014. le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
  4015. }
  4016. irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
  4017. {
  4018. struct net_device *dev = dev_instance;
  4019. struct bnx2x *bp = netdev_priv(dev);
  4020. bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
  4021. IGU_INT_DISABLE, 0);
  4022. #ifdef BNX2X_STOP_ON_ERROR
  4023. if (unlikely(bp->panic))
  4024. return IRQ_HANDLED;
  4025. #endif
  4026. #ifdef BCM_CNIC
  4027. {
  4028. struct cnic_ops *c_ops;
  4029. rcu_read_lock();
  4030. c_ops = rcu_dereference(bp->cnic_ops);
  4031. if (c_ops)
  4032. c_ops->cnic_handler(bp->cnic_data, NULL);
  4033. rcu_read_unlock();
  4034. }
  4035. #endif
  4036. queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
  4037. return IRQ_HANDLED;
  4038. }
  4039. /* end of slow path */
  4040. void bnx2x_drv_pulse(struct bnx2x *bp)
  4041. {
  4042. SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
  4043. bp->fw_drv_pulse_wr_seq);
  4044. }
  4045. static void bnx2x_timer(unsigned long data)
  4046. {
  4047. u8 cos;
  4048. struct bnx2x *bp = (struct bnx2x *) data;
  4049. if (!netif_running(bp->dev))
  4050. return;
  4051. if (poll) {
  4052. struct bnx2x_fastpath *fp = &bp->fp[0];
  4053. for_each_cos_in_tx_queue(fp, cos)
  4054. bnx2x_tx_int(bp, &fp->txdata[cos]);
  4055. bnx2x_rx_int(fp, 1000);
  4056. }
  4057. if (!BP_NOMCP(bp)) {
  4058. int mb_idx = BP_FW_MB_IDX(bp);
  4059. u32 drv_pulse;
  4060. u32 mcp_pulse;
  4061. ++bp->fw_drv_pulse_wr_seq;
  4062. bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
  4063. /* TBD - add SYSTEM_TIME */
  4064. drv_pulse = bp->fw_drv_pulse_wr_seq;
  4065. bnx2x_drv_pulse(bp);
  4066. mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
  4067. MCP_PULSE_SEQ_MASK);
  4068. /* The delta between driver pulse and mcp response
  4069. * should be 1 (before mcp response) or 0 (after mcp response)
  4070. */
  4071. if ((drv_pulse != mcp_pulse) &&
  4072. (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
  4073. /* someone lost a heartbeat... */
  4074. BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
  4075. drv_pulse, mcp_pulse);
  4076. }
  4077. }
  4078. if (bp->state == BNX2X_STATE_OPEN)
  4079. bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
  4080. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4081. }
  4082. /* end of Statistics */
  4083. /* nic init */
  4084. /*
  4085. * nic init service functions
  4086. */
  4087. static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
  4088. {
  4089. u32 i;
  4090. if (!(len%4) && !(addr%4))
  4091. for (i = 0; i < len; i += 4)
  4092. REG_WR(bp, addr + i, fill);
  4093. else
  4094. for (i = 0; i < len; i++)
  4095. REG_WR8(bp, addr + i, fill);
  4096. }
  4097. /* helper: writes FP SP data to FW - data_size in dwords */
  4098. static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
  4099. int fw_sb_id,
  4100. u32 *sb_data_p,
  4101. u32 data_size)
  4102. {
  4103. int index;
  4104. for (index = 0; index < data_size; index++)
  4105. REG_WR(bp, BAR_CSTRORM_INTMEM +
  4106. CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
  4107. sizeof(u32)*index,
  4108. *(sb_data_p + index));
  4109. }
  4110. static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
  4111. {
  4112. u32 *sb_data_p;
  4113. u32 data_size = 0;
  4114. struct hc_status_block_data_e2 sb_data_e2;
  4115. struct hc_status_block_data_e1x sb_data_e1x;
  4116. /* disable the function first */
  4117. if (!CHIP_IS_E1x(bp)) {
  4118. memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
  4119. sb_data_e2.common.state = SB_DISABLED;
  4120. sb_data_e2.common.p_func.vf_valid = false;
  4121. sb_data_p = (u32 *)&sb_data_e2;
  4122. data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
  4123. } else {
  4124. memset(&sb_data_e1x, 0,
  4125. sizeof(struct hc_status_block_data_e1x));
  4126. sb_data_e1x.common.state = SB_DISABLED;
  4127. sb_data_e1x.common.p_func.vf_valid = false;
  4128. sb_data_p = (u32 *)&sb_data_e1x;
  4129. data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
  4130. }
  4131. bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
  4132. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4133. CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
  4134. CSTORM_STATUS_BLOCK_SIZE);
  4135. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4136. CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
  4137. CSTORM_SYNC_BLOCK_SIZE);
  4138. }
  4139. /* helper: writes SP SB data to FW */
  4140. static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
  4141. struct hc_sp_status_block_data *sp_sb_data)
  4142. {
  4143. int func = BP_FUNC(bp);
  4144. int i;
  4145. for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
  4146. REG_WR(bp, BAR_CSTRORM_INTMEM +
  4147. CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
  4148. i*sizeof(u32),
  4149. *((u32 *)sp_sb_data + i));
  4150. }
  4151. static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
  4152. {
  4153. int func = BP_FUNC(bp);
  4154. struct hc_sp_status_block_data sp_sb_data;
  4155. memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
  4156. sp_sb_data.state = SB_DISABLED;
  4157. sp_sb_data.p_func.vf_valid = false;
  4158. bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
  4159. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4160. CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
  4161. CSTORM_SP_STATUS_BLOCK_SIZE);
  4162. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4163. CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
  4164. CSTORM_SP_SYNC_BLOCK_SIZE);
  4165. }
  4166. static inline
  4167. void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
  4168. int igu_sb_id, int igu_seg_id)
  4169. {
  4170. hc_sm->igu_sb_id = igu_sb_id;
  4171. hc_sm->igu_seg_id = igu_seg_id;
  4172. hc_sm->timer_value = 0xFF;
  4173. hc_sm->time_to_expire = 0xFFFFFFFF;
  4174. }
  4175. /* allocates state machine ids. */
  4176. static inline
  4177. void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
  4178. {
  4179. /* zero out state machine indices */
  4180. /* rx indices */
  4181. index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
  4182. /* tx indices */
  4183. index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
  4184. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
  4185. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
  4186. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
  4187. /* map indices */
  4188. /* rx indices */
  4189. index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
  4190. SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4191. /* tx indices */
  4192. index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
  4193. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4194. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
  4195. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4196. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
  4197. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4198. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
  4199. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4200. }
  4201. static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
  4202. u8 vf_valid, int fw_sb_id, int igu_sb_id)
  4203. {
  4204. int igu_seg_id;
  4205. struct hc_status_block_data_e2 sb_data_e2;
  4206. struct hc_status_block_data_e1x sb_data_e1x;
  4207. struct hc_status_block_sm *hc_sm_p;
  4208. int data_size;
  4209. u32 *sb_data_p;
  4210. if (CHIP_INT_MODE_IS_BC(bp))
  4211. igu_seg_id = HC_SEG_ACCESS_NORM;
  4212. else
  4213. igu_seg_id = IGU_SEG_ACCESS_NORM;
  4214. bnx2x_zero_fp_sb(bp, fw_sb_id);
  4215. if (!CHIP_IS_E1x(bp)) {
  4216. memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
  4217. sb_data_e2.common.state = SB_ENABLED;
  4218. sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
  4219. sb_data_e2.common.p_func.vf_id = vfid;
  4220. sb_data_e2.common.p_func.vf_valid = vf_valid;
  4221. sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
  4222. sb_data_e2.common.same_igu_sb_1b = true;
  4223. sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
  4224. sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
  4225. hc_sm_p = sb_data_e2.common.state_machine;
  4226. sb_data_p = (u32 *)&sb_data_e2;
  4227. data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
  4228. bnx2x_map_sb_state_machines(sb_data_e2.index_data);
  4229. } else {
  4230. memset(&sb_data_e1x, 0,
  4231. sizeof(struct hc_status_block_data_e1x));
  4232. sb_data_e1x.common.state = SB_ENABLED;
  4233. sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
  4234. sb_data_e1x.common.p_func.vf_id = 0xff;
  4235. sb_data_e1x.common.p_func.vf_valid = false;
  4236. sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
  4237. sb_data_e1x.common.same_igu_sb_1b = true;
  4238. sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
  4239. sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
  4240. hc_sm_p = sb_data_e1x.common.state_machine;
  4241. sb_data_p = (u32 *)&sb_data_e1x;
  4242. data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
  4243. bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
  4244. }
  4245. bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
  4246. igu_sb_id, igu_seg_id);
  4247. bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
  4248. igu_sb_id, igu_seg_id);
  4249. DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
  4250. /* write indecies to HW */
  4251. bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
  4252. }
  4253. static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
  4254. u16 tx_usec, u16 rx_usec)
  4255. {
  4256. bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
  4257. false, rx_usec);
  4258. bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
  4259. HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
  4260. tx_usec);
  4261. bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
  4262. HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
  4263. tx_usec);
  4264. bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
  4265. HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
  4266. tx_usec);
  4267. }
  4268. static void bnx2x_init_def_sb(struct bnx2x *bp)
  4269. {
  4270. struct host_sp_status_block *def_sb = bp->def_status_blk;
  4271. dma_addr_t mapping = bp->def_status_blk_mapping;
  4272. int igu_sp_sb_index;
  4273. int igu_seg_id;
  4274. int port = BP_PORT(bp);
  4275. int func = BP_FUNC(bp);
  4276. int reg_offset, reg_offset_en5;
  4277. u64 section;
  4278. int index;
  4279. struct hc_sp_status_block_data sp_sb_data;
  4280. memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
  4281. if (CHIP_INT_MODE_IS_BC(bp)) {
  4282. igu_sp_sb_index = DEF_SB_IGU_ID;
  4283. igu_seg_id = HC_SEG_ACCESS_DEF;
  4284. } else {
  4285. igu_sp_sb_index = bp->igu_dsb_id;
  4286. igu_seg_id = IGU_SEG_ACCESS_DEF;
  4287. }
  4288. /* ATTN */
  4289. section = ((u64)mapping) + offsetof(struct host_sp_status_block,
  4290. atten_status_block);
  4291. def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
  4292. bp->attn_state = 0;
  4293. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
  4294. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
  4295. reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
  4296. MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
  4297. for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
  4298. int sindex;
  4299. /* take care of sig[0]..sig[4] */
  4300. for (sindex = 0; sindex < 4; sindex++)
  4301. bp->attn_group[index].sig[sindex] =
  4302. REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
  4303. if (!CHIP_IS_E1x(bp))
  4304. /*
  4305. * enable5 is separate from the rest of the registers,
  4306. * and therefore the address skip is 4
  4307. * and not 16 between the different groups
  4308. */
  4309. bp->attn_group[index].sig[4] = REG_RD(bp,
  4310. reg_offset_en5 + 0x4*index);
  4311. else
  4312. bp->attn_group[index].sig[4] = 0;
  4313. }
  4314. if (bp->common.int_block == INT_BLOCK_HC) {
  4315. reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
  4316. HC_REG_ATTN_MSG0_ADDR_L);
  4317. REG_WR(bp, reg_offset, U64_LO(section));
  4318. REG_WR(bp, reg_offset + 4, U64_HI(section));
  4319. } else if (!CHIP_IS_E1x(bp)) {
  4320. REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
  4321. REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
  4322. }
  4323. section = ((u64)mapping) + offsetof(struct host_sp_status_block,
  4324. sp_sb);
  4325. bnx2x_zero_sp_sb(bp);
  4326. sp_sb_data.state = SB_ENABLED;
  4327. sp_sb_data.host_sb_addr.lo = U64_LO(section);
  4328. sp_sb_data.host_sb_addr.hi = U64_HI(section);
  4329. sp_sb_data.igu_sb_id = igu_sp_sb_index;
  4330. sp_sb_data.igu_seg_id = igu_seg_id;
  4331. sp_sb_data.p_func.pf_id = func;
  4332. sp_sb_data.p_func.vnic_id = BP_VN(bp);
  4333. sp_sb_data.p_func.vf_id = 0xff;
  4334. bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
  4335. bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
  4336. }
  4337. void bnx2x_update_coalesce(struct bnx2x *bp)
  4338. {
  4339. int i;
  4340. for_each_eth_queue(bp, i)
  4341. bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
  4342. bp->tx_ticks, bp->rx_ticks);
  4343. }
  4344. static void bnx2x_init_sp_ring(struct bnx2x *bp)
  4345. {
  4346. spin_lock_init(&bp->spq_lock);
  4347. atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
  4348. bp->spq_prod_idx = 0;
  4349. bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
  4350. bp->spq_prod_bd = bp->spq;
  4351. bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
  4352. }
  4353. static void bnx2x_init_eq_ring(struct bnx2x *bp)
  4354. {
  4355. int i;
  4356. for (i = 1; i <= NUM_EQ_PAGES; i++) {
  4357. union event_ring_elem *elem =
  4358. &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
  4359. elem->next_page.addr.hi =
  4360. cpu_to_le32(U64_HI(bp->eq_mapping +
  4361. BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
  4362. elem->next_page.addr.lo =
  4363. cpu_to_le32(U64_LO(bp->eq_mapping +
  4364. BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
  4365. }
  4366. bp->eq_cons = 0;
  4367. bp->eq_prod = NUM_EQ_DESC;
  4368. bp->eq_cons_sb = BNX2X_EQ_INDEX;
  4369. /* we want a warning message before it gets rought... */
  4370. atomic_set(&bp->eq_spq_left,
  4371. min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
  4372. }
  4373. /* called with netif_addr_lock_bh() */
  4374. void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
  4375. unsigned long rx_mode_flags,
  4376. unsigned long rx_accept_flags,
  4377. unsigned long tx_accept_flags,
  4378. unsigned long ramrod_flags)
  4379. {
  4380. struct bnx2x_rx_mode_ramrod_params ramrod_param;
  4381. int rc;
  4382. memset(&ramrod_param, 0, sizeof(ramrod_param));
  4383. /* Prepare ramrod parameters */
  4384. ramrod_param.cid = 0;
  4385. ramrod_param.cl_id = cl_id;
  4386. ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
  4387. ramrod_param.func_id = BP_FUNC(bp);
  4388. ramrod_param.pstate = &bp->sp_state;
  4389. ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
  4390. ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
  4391. ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
  4392. set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
  4393. ramrod_param.ramrod_flags = ramrod_flags;
  4394. ramrod_param.rx_mode_flags = rx_mode_flags;
  4395. ramrod_param.rx_accept_flags = rx_accept_flags;
  4396. ramrod_param.tx_accept_flags = tx_accept_flags;
  4397. rc = bnx2x_config_rx_mode(bp, &ramrod_param);
  4398. if (rc < 0) {
  4399. BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
  4400. return;
  4401. }
  4402. }
  4403. /* called with netif_addr_lock_bh() */
  4404. void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
  4405. {
  4406. unsigned long rx_mode_flags = 0, ramrod_flags = 0;
  4407. unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
  4408. #ifdef BCM_CNIC
  4409. if (!NO_FCOE(bp))
  4410. /* Configure rx_mode of FCoE Queue */
  4411. __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
  4412. #endif
  4413. switch (bp->rx_mode) {
  4414. case BNX2X_RX_MODE_NONE:
  4415. /*
  4416. * 'drop all' supersedes any accept flags that may have been
  4417. * passed to the function.
  4418. */
  4419. break;
  4420. case BNX2X_RX_MODE_NORMAL:
  4421. __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
  4422. __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
  4423. __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
  4424. /* internal switching mode */
  4425. __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
  4426. __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
  4427. __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
  4428. break;
  4429. case BNX2X_RX_MODE_ALLMULTI:
  4430. __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
  4431. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
  4432. __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
  4433. /* internal switching mode */
  4434. __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
  4435. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
  4436. __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
  4437. break;
  4438. case BNX2X_RX_MODE_PROMISC:
  4439. /* According to deffinition of SI mode, iface in promisc mode
  4440. * should receive matched and unmatched (in resolution of port)
  4441. * unicast packets.
  4442. */
  4443. __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
  4444. __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
  4445. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
  4446. __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
  4447. /* internal switching mode */
  4448. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
  4449. __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
  4450. if (IS_MF_SI(bp))
  4451. __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
  4452. else
  4453. __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
  4454. break;
  4455. default:
  4456. BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
  4457. return;
  4458. }
  4459. if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
  4460. __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
  4461. __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
  4462. }
  4463. __set_bit(RAMROD_RX, &ramrod_flags);
  4464. __set_bit(RAMROD_TX, &ramrod_flags);
  4465. bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
  4466. tx_accept_flags, ramrod_flags);
  4467. }
  4468. static void bnx2x_init_internal_common(struct bnx2x *bp)
  4469. {
  4470. int i;
  4471. if (IS_MF_SI(bp))
  4472. /*
  4473. * In switch independent mode, the TSTORM needs to accept
  4474. * packets that failed classification, since approximate match
  4475. * mac addresses aren't written to NIG LLH
  4476. */
  4477. REG_WR8(bp, BAR_TSTRORM_INTMEM +
  4478. TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
  4479. else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
  4480. REG_WR8(bp, BAR_TSTRORM_INTMEM +
  4481. TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
  4482. /* Zero this manually as its initialization is
  4483. currently missing in the initTool */
  4484. for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
  4485. REG_WR(bp, BAR_USTRORM_INTMEM +
  4486. USTORM_AGG_DATA_OFFSET + i * 4, 0);
  4487. if (!CHIP_IS_E1x(bp)) {
  4488. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
  4489. CHIP_INT_MODE_IS_BC(bp) ?
  4490. HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
  4491. }
  4492. }
  4493. static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
  4494. {
  4495. switch (load_code) {
  4496. case FW_MSG_CODE_DRV_LOAD_COMMON:
  4497. case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
  4498. bnx2x_init_internal_common(bp);
  4499. /* no break */
  4500. case FW_MSG_CODE_DRV_LOAD_PORT:
  4501. /* nothing to do */
  4502. /* no break */
  4503. case FW_MSG_CODE_DRV_LOAD_FUNCTION:
  4504. /* internal memory per function is
  4505. initialized inside bnx2x_pf_init */
  4506. break;
  4507. default:
  4508. BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
  4509. break;
  4510. }
  4511. }
  4512. static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
  4513. {
  4514. return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
  4515. }
  4516. static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
  4517. {
  4518. return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
  4519. }
  4520. static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
  4521. {
  4522. if (CHIP_IS_E1x(fp->bp))
  4523. return BP_L_ID(fp->bp) + fp->index;
  4524. else /* We want Client ID to be the same as IGU SB ID for 57712 */
  4525. return bnx2x_fp_igu_sb_id(fp);
  4526. }
  4527. static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
  4528. {
  4529. struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
  4530. u8 cos;
  4531. unsigned long q_type = 0;
  4532. u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
  4533. fp->rx_queue = fp_idx;
  4534. fp->cid = fp_idx;
  4535. fp->cl_id = bnx2x_fp_cl_id(fp);
  4536. fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
  4537. fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
  4538. /* qZone id equals to FW (per path) client id */
  4539. fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
  4540. /* init shortcut */
  4541. fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
  4542. /* Setup SB indicies */
  4543. fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
  4544. /* Configure Queue State object */
  4545. __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
  4546. __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
  4547. BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
  4548. /* init tx data */
  4549. for_each_cos_in_tx_queue(fp, cos) {
  4550. bnx2x_init_txdata(bp, &fp->txdata[cos],
  4551. CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
  4552. FP_COS_TO_TXQ(fp, cos),
  4553. BNX2X_TX_SB_INDEX_BASE + cos);
  4554. cids[cos] = fp->txdata[cos].cid;
  4555. }
  4556. bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
  4557. BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
  4558. bnx2x_sp_mapping(bp, q_rdata), q_type);
  4559. /**
  4560. * Configure classification DBs: Always enable Tx switching
  4561. */
  4562. bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
  4563. DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) "
  4564. "cl_id %d fw_sb %d igu_sb %d\n",
  4565. fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
  4566. fp->igu_sb_id);
  4567. bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
  4568. fp->fw_sb_id, fp->igu_sb_id);
  4569. bnx2x_update_fpsb_idx(fp);
  4570. }
  4571. void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
  4572. {
  4573. int i;
  4574. for_each_eth_queue(bp, i)
  4575. bnx2x_init_eth_fp(bp, i);
  4576. #ifdef BCM_CNIC
  4577. if (!NO_FCOE(bp))
  4578. bnx2x_init_fcoe_fp(bp);
  4579. bnx2x_init_sb(bp, bp->cnic_sb_mapping,
  4580. BNX2X_VF_ID_INVALID, false,
  4581. bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
  4582. #endif
  4583. /* Initialize MOD_ABS interrupts */
  4584. bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
  4585. bp->common.shmem_base, bp->common.shmem2_base,
  4586. BP_PORT(bp));
  4587. /* ensure status block indices were read */
  4588. rmb();
  4589. bnx2x_init_def_sb(bp);
  4590. bnx2x_update_dsb_idx(bp);
  4591. bnx2x_init_rx_rings(bp);
  4592. bnx2x_init_tx_rings(bp);
  4593. bnx2x_init_sp_ring(bp);
  4594. bnx2x_init_eq_ring(bp);
  4595. bnx2x_init_internal(bp, load_code);
  4596. bnx2x_pf_init(bp);
  4597. bnx2x_stats_init(bp);
  4598. /* flush all before enabling interrupts */
  4599. mb();
  4600. mmiowb();
  4601. bnx2x_int_enable(bp);
  4602. /* Check for SPIO5 */
  4603. bnx2x_attn_int_deasserted0(bp,
  4604. REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
  4605. AEU_INPUTS_ATTN_BITS_SPIO5);
  4606. }
  4607. /* end of nic init */
  4608. /*
  4609. * gzip service functions
  4610. */
  4611. static int bnx2x_gunzip_init(struct bnx2x *bp)
  4612. {
  4613. bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
  4614. &bp->gunzip_mapping, GFP_KERNEL);
  4615. if (bp->gunzip_buf == NULL)
  4616. goto gunzip_nomem1;
  4617. bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
  4618. if (bp->strm == NULL)
  4619. goto gunzip_nomem2;
  4620. bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
  4621. if (bp->strm->workspace == NULL)
  4622. goto gunzip_nomem3;
  4623. return 0;
  4624. gunzip_nomem3:
  4625. kfree(bp->strm);
  4626. bp->strm = NULL;
  4627. gunzip_nomem2:
  4628. dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
  4629. bp->gunzip_mapping);
  4630. bp->gunzip_buf = NULL;
  4631. gunzip_nomem1:
  4632. netdev_err(bp->dev, "Cannot allocate firmware buffer for"
  4633. " un-compression\n");
  4634. return -ENOMEM;
  4635. }
  4636. static void bnx2x_gunzip_end(struct bnx2x *bp)
  4637. {
  4638. if (bp->strm) {
  4639. vfree(bp->strm->workspace);
  4640. kfree(bp->strm);
  4641. bp->strm = NULL;
  4642. }
  4643. if (bp->gunzip_buf) {
  4644. dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
  4645. bp->gunzip_mapping);
  4646. bp->gunzip_buf = NULL;
  4647. }
  4648. }
  4649. static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
  4650. {
  4651. int n, rc;
  4652. /* check gzip header */
  4653. if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
  4654. BNX2X_ERR("Bad gzip header\n");
  4655. return -EINVAL;
  4656. }
  4657. n = 10;
  4658. #define FNAME 0x8
  4659. if (zbuf[3] & FNAME)
  4660. while ((zbuf[n++] != 0) && (n < len));
  4661. bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
  4662. bp->strm->avail_in = len - n;
  4663. bp->strm->next_out = bp->gunzip_buf;
  4664. bp->strm->avail_out = FW_BUF_SIZE;
  4665. rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
  4666. if (rc != Z_OK)
  4667. return rc;
  4668. rc = zlib_inflate(bp->strm, Z_FINISH);
  4669. if ((rc != Z_OK) && (rc != Z_STREAM_END))
  4670. netdev_err(bp->dev, "Firmware decompression error: %s\n",
  4671. bp->strm->msg);
  4672. bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
  4673. if (bp->gunzip_outlen & 0x3)
  4674. netdev_err(bp->dev, "Firmware decompression error:"
  4675. " gunzip_outlen (%d) not aligned\n",
  4676. bp->gunzip_outlen);
  4677. bp->gunzip_outlen >>= 2;
  4678. zlib_inflateEnd(bp->strm);
  4679. if (rc == Z_STREAM_END)
  4680. return 0;
  4681. return rc;
  4682. }
  4683. /* nic load/unload */
  4684. /*
  4685. * General service functions
  4686. */
  4687. /* send a NIG loopback debug packet */
  4688. static void bnx2x_lb_pckt(struct bnx2x *bp)
  4689. {
  4690. u32 wb_write[3];
  4691. /* Ethernet source and destination addresses */
  4692. wb_write[0] = 0x55555555;
  4693. wb_write[1] = 0x55555555;
  4694. wb_write[2] = 0x20; /* SOP */
  4695. REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
  4696. /* NON-IP protocol */
  4697. wb_write[0] = 0x09000000;
  4698. wb_write[1] = 0x55555555;
  4699. wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
  4700. REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
  4701. }
  4702. /* some of the internal memories
  4703. * are not directly readable from the driver
  4704. * to test them we send debug packets
  4705. */
  4706. static int bnx2x_int_mem_test(struct bnx2x *bp)
  4707. {
  4708. int factor;
  4709. int count, i;
  4710. u32 val = 0;
  4711. if (CHIP_REV_IS_FPGA(bp))
  4712. factor = 120;
  4713. else if (CHIP_REV_IS_EMUL(bp))
  4714. factor = 200;
  4715. else
  4716. factor = 1;
  4717. /* Disable inputs of parser neighbor blocks */
  4718. REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
  4719. REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
  4720. REG_WR(bp, CFC_REG_DEBUG0, 0x1);
  4721. REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
  4722. /* Write 0 to parser credits for CFC search request */
  4723. REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
  4724. /* send Ethernet packet */
  4725. bnx2x_lb_pckt(bp);
  4726. /* TODO do i reset NIG statistic? */
  4727. /* Wait until NIG register shows 1 packet of size 0x10 */
  4728. count = 1000 * factor;
  4729. while (count) {
  4730. bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
  4731. val = *bnx2x_sp(bp, wb_data[0]);
  4732. if (val == 0x10)
  4733. break;
  4734. msleep(10);
  4735. count--;
  4736. }
  4737. if (val != 0x10) {
  4738. BNX2X_ERR("NIG timeout val = 0x%x\n", val);
  4739. return -1;
  4740. }
  4741. /* Wait until PRS register shows 1 packet */
  4742. count = 1000 * factor;
  4743. while (count) {
  4744. val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
  4745. if (val == 1)
  4746. break;
  4747. msleep(10);
  4748. count--;
  4749. }
  4750. if (val != 0x1) {
  4751. BNX2X_ERR("PRS timeout val = 0x%x\n", val);
  4752. return -2;
  4753. }
  4754. /* Reset and init BRB, PRS */
  4755. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
  4756. msleep(50);
  4757. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
  4758. msleep(50);
  4759. bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
  4760. bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
  4761. DP(NETIF_MSG_HW, "part2\n");
  4762. /* Disable inputs of parser neighbor blocks */
  4763. REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
  4764. REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
  4765. REG_WR(bp, CFC_REG_DEBUG0, 0x1);
  4766. REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
  4767. /* Write 0 to parser credits for CFC search request */
  4768. REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
  4769. /* send 10 Ethernet packets */
  4770. for (i = 0; i < 10; i++)
  4771. bnx2x_lb_pckt(bp);
  4772. /* Wait until NIG register shows 10 + 1
  4773. packets of size 11*0x10 = 0xb0 */
  4774. count = 1000 * factor;
  4775. while (count) {
  4776. bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
  4777. val = *bnx2x_sp(bp, wb_data[0]);
  4778. if (val == 0xb0)
  4779. break;
  4780. msleep(10);
  4781. count--;
  4782. }
  4783. if (val != 0xb0) {
  4784. BNX2X_ERR("NIG timeout val = 0x%x\n", val);
  4785. return -3;
  4786. }
  4787. /* Wait until PRS register shows 2 packets */
  4788. val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
  4789. if (val != 2)
  4790. BNX2X_ERR("PRS timeout val = 0x%x\n", val);
  4791. /* Write 1 to parser credits for CFC search request */
  4792. REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
  4793. /* Wait until PRS register shows 3 packets */
  4794. msleep(10 * factor);
  4795. /* Wait until NIG register shows 1 packet of size 0x10 */
  4796. val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
  4797. if (val != 3)
  4798. BNX2X_ERR("PRS timeout val = 0x%x\n", val);
  4799. /* clear NIG EOP FIFO */
  4800. for (i = 0; i < 11; i++)
  4801. REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
  4802. val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
  4803. if (val != 1) {
  4804. BNX2X_ERR("clear of NIG failed\n");
  4805. return -4;
  4806. }
  4807. /* Reset and init BRB, PRS, NIG */
  4808. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
  4809. msleep(50);
  4810. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
  4811. msleep(50);
  4812. bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
  4813. bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
  4814. #ifndef BCM_CNIC
  4815. /* set NIC mode */
  4816. REG_WR(bp, PRS_REG_NIC_MODE, 1);
  4817. #endif
  4818. /* Enable inputs of parser neighbor blocks */
  4819. REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
  4820. REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
  4821. REG_WR(bp, CFC_REG_DEBUG0, 0x0);
  4822. REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
  4823. DP(NETIF_MSG_HW, "done\n");
  4824. return 0; /* OK */
  4825. }
  4826. static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
  4827. {
  4828. REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
  4829. if (!CHIP_IS_E1x(bp))
  4830. REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
  4831. else
  4832. REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
  4833. REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
  4834. REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
  4835. /*
  4836. * mask read length error interrupts in brb for parser
  4837. * (parsing unit and 'checksum and crc' unit)
  4838. * these errors are legal (PU reads fixed length and CAC can cause
  4839. * read length error on truncated packets)
  4840. */
  4841. REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
  4842. REG_WR(bp, QM_REG_QM_INT_MASK, 0);
  4843. REG_WR(bp, TM_REG_TM_INT_MASK, 0);
  4844. REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
  4845. REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
  4846. REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
  4847. /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
  4848. /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
  4849. REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
  4850. REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
  4851. REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
  4852. /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
  4853. /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
  4854. REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
  4855. REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
  4856. REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
  4857. REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
  4858. /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
  4859. /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
  4860. if (CHIP_REV_IS_FPGA(bp))
  4861. REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
  4862. else if (!CHIP_IS_E1x(bp))
  4863. REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
  4864. (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
  4865. | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
  4866. | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
  4867. | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
  4868. | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
  4869. else
  4870. REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
  4871. REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
  4872. REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
  4873. REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
  4874. /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
  4875. if (!CHIP_IS_E1x(bp))
  4876. /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
  4877. REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
  4878. REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
  4879. REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
  4880. /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
  4881. REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
  4882. }
  4883. static void bnx2x_reset_common(struct bnx2x *bp)
  4884. {
  4885. u32 val = 0x1400;
  4886. /* reset_common */
  4887. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  4888. 0xd3ffff7f);
  4889. if (CHIP_IS_E3(bp)) {
  4890. val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
  4891. val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
  4892. }
  4893. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
  4894. }
  4895. static void bnx2x_setup_dmae(struct bnx2x *bp)
  4896. {
  4897. bp->dmae_ready = 0;
  4898. spin_lock_init(&bp->dmae_lock);
  4899. }
  4900. static void bnx2x_init_pxp(struct bnx2x *bp)
  4901. {
  4902. u16 devctl;
  4903. int r_order, w_order;
  4904. pci_read_config_word(bp->pdev,
  4905. pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
  4906. DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
  4907. w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
  4908. if (bp->mrrs == -1)
  4909. r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
  4910. else {
  4911. DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
  4912. r_order = bp->mrrs;
  4913. }
  4914. bnx2x_init_pxp_arb(bp, r_order, w_order);
  4915. }
  4916. static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
  4917. {
  4918. int is_required;
  4919. u32 val;
  4920. int port;
  4921. if (BP_NOMCP(bp))
  4922. return;
  4923. is_required = 0;
  4924. val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
  4925. SHARED_HW_CFG_FAN_FAILURE_MASK;
  4926. if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
  4927. is_required = 1;
  4928. /*
  4929. * The fan failure mechanism is usually related to the PHY type since
  4930. * the power consumption of the board is affected by the PHY. Currently,
  4931. * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
  4932. */
  4933. else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
  4934. for (port = PORT_0; port < PORT_MAX; port++) {
  4935. is_required |=
  4936. bnx2x_fan_failure_det_req(
  4937. bp,
  4938. bp->common.shmem_base,
  4939. bp->common.shmem2_base,
  4940. port);
  4941. }
  4942. DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
  4943. if (is_required == 0)
  4944. return;
  4945. /* Fan failure is indicated by SPIO 5 */
  4946. bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
  4947. MISC_REGISTERS_SPIO_INPUT_HI_Z);
  4948. /* set to active low mode */
  4949. val = REG_RD(bp, MISC_REG_SPIO_INT);
  4950. val |= ((1 << MISC_REGISTERS_SPIO_5) <<
  4951. MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
  4952. REG_WR(bp, MISC_REG_SPIO_INT, val);
  4953. /* enable interrupt to signal the IGU */
  4954. val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
  4955. val |= (1 << MISC_REGISTERS_SPIO_5);
  4956. REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
  4957. }
  4958. static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
  4959. {
  4960. u32 offset = 0;
  4961. if (CHIP_IS_E1(bp))
  4962. return;
  4963. if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
  4964. return;
  4965. switch (BP_ABS_FUNC(bp)) {
  4966. case 0:
  4967. offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
  4968. break;
  4969. case 1:
  4970. offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
  4971. break;
  4972. case 2:
  4973. offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
  4974. break;
  4975. case 3:
  4976. offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
  4977. break;
  4978. case 4:
  4979. offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
  4980. break;
  4981. case 5:
  4982. offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
  4983. break;
  4984. case 6:
  4985. offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
  4986. break;
  4987. case 7:
  4988. offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
  4989. break;
  4990. default:
  4991. return;
  4992. }
  4993. REG_WR(bp, offset, pretend_func_num);
  4994. REG_RD(bp, offset);
  4995. DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
  4996. }
  4997. void bnx2x_pf_disable(struct bnx2x *bp)
  4998. {
  4999. u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
  5000. val &= ~IGU_PF_CONF_FUNC_EN;
  5001. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  5002. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
  5003. REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
  5004. }
  5005. static inline void bnx2x__common_init_phy(struct bnx2x *bp)
  5006. {
  5007. u32 shmem_base[2], shmem2_base[2];
  5008. shmem_base[0] = bp->common.shmem_base;
  5009. shmem2_base[0] = bp->common.shmem2_base;
  5010. if (!CHIP_IS_E1x(bp)) {
  5011. shmem_base[1] =
  5012. SHMEM2_RD(bp, other_shmem_base_addr);
  5013. shmem2_base[1] =
  5014. SHMEM2_RD(bp, other_shmem2_base_addr);
  5015. }
  5016. bnx2x_acquire_phy_lock(bp);
  5017. bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
  5018. bp->common.chip_id);
  5019. bnx2x_release_phy_lock(bp);
  5020. }
  5021. /**
  5022. * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
  5023. *
  5024. * @bp: driver handle
  5025. */
  5026. static int bnx2x_init_hw_common(struct bnx2x *bp)
  5027. {
  5028. u32 val;
  5029. DP(BNX2X_MSG_MCP, "starting common init func %d\n", BP_ABS_FUNC(bp));
  5030. /*
  5031. * take the UNDI lock to protect undi_unload flow from accessing
  5032. * registers while we're resetting the chip
  5033. */
  5034. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  5035. bnx2x_reset_common(bp);
  5036. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
  5037. val = 0xfffc;
  5038. if (CHIP_IS_E3(bp)) {
  5039. val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
  5040. val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
  5041. }
  5042. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
  5043. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  5044. bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
  5045. if (!CHIP_IS_E1x(bp)) {
  5046. u8 abs_func_id;
  5047. /**
  5048. * 4-port mode or 2-port mode we need to turn of master-enable
  5049. * for everyone, after that, turn it back on for self.
  5050. * so, we disregard multi-function or not, and always disable
  5051. * for all functions on the given path, this means 0,2,4,6 for
  5052. * path 0 and 1,3,5,7 for path 1
  5053. */
  5054. for (abs_func_id = BP_PATH(bp);
  5055. abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
  5056. if (abs_func_id == BP_ABS_FUNC(bp)) {
  5057. REG_WR(bp,
  5058. PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
  5059. 1);
  5060. continue;
  5061. }
  5062. bnx2x_pretend_func(bp, abs_func_id);
  5063. /* clear pf enable */
  5064. bnx2x_pf_disable(bp);
  5065. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  5066. }
  5067. }
  5068. bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
  5069. if (CHIP_IS_E1(bp)) {
  5070. /* enable HW interrupt from PXP on USDM overflow
  5071. bit 16 on INT_MASK_0 */
  5072. REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
  5073. }
  5074. bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
  5075. bnx2x_init_pxp(bp);
  5076. #ifdef __BIG_ENDIAN
  5077. REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
  5078. REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
  5079. REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
  5080. REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
  5081. REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
  5082. /* make sure this value is 0 */
  5083. REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
  5084. /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
  5085. REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
  5086. REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
  5087. REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
  5088. REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
  5089. #endif
  5090. bnx2x_ilt_init_page_size(bp, INITOP_SET);
  5091. if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
  5092. REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
  5093. /* let the HW do it's magic ... */
  5094. msleep(100);
  5095. /* finish PXP init */
  5096. val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
  5097. if (val != 1) {
  5098. BNX2X_ERR("PXP2 CFG failed\n");
  5099. return -EBUSY;
  5100. }
  5101. val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
  5102. if (val != 1) {
  5103. BNX2X_ERR("PXP2 RD_INIT failed\n");
  5104. return -EBUSY;
  5105. }
  5106. /* Timers bug workaround E2 only. We need to set the entire ILT to
  5107. * have entries with value "0" and valid bit on.
  5108. * This needs to be done by the first PF that is loaded in a path
  5109. * (i.e. common phase)
  5110. */
  5111. if (!CHIP_IS_E1x(bp)) {
  5112. /* In E2 there is a bug in the timers block that can cause function 6 / 7
  5113. * (i.e. vnic3) to start even if it is marked as "scan-off".
  5114. * This occurs when a different function (func2,3) is being marked
  5115. * as "scan-off". Real-life scenario for example: if a driver is being
  5116. * load-unloaded while func6,7 are down. This will cause the timer to access
  5117. * the ilt, translate to a logical address and send a request to read/write.
  5118. * Since the ilt for the function that is down is not valid, this will cause
  5119. * a translation error which is unrecoverable.
  5120. * The Workaround is intended to make sure that when this happens nothing fatal
  5121. * will occur. The workaround:
  5122. * 1. First PF driver which loads on a path will:
  5123. * a. After taking the chip out of reset, by using pretend,
  5124. * it will write "0" to the following registers of
  5125. * the other vnics.
  5126. * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
  5127. * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
  5128. * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
  5129. * And for itself it will write '1' to
  5130. * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
  5131. * dmae-operations (writing to pram for example.)
  5132. * note: can be done for only function 6,7 but cleaner this
  5133. * way.
  5134. * b. Write zero+valid to the entire ILT.
  5135. * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
  5136. * VNIC3 (of that port). The range allocated will be the
  5137. * entire ILT. This is needed to prevent ILT range error.
  5138. * 2. Any PF driver load flow:
  5139. * a. ILT update with the physical addresses of the allocated
  5140. * logical pages.
  5141. * b. Wait 20msec. - note that this timeout is needed to make
  5142. * sure there are no requests in one of the PXP internal
  5143. * queues with "old" ILT addresses.
  5144. * c. PF enable in the PGLC.
  5145. * d. Clear the was_error of the PF in the PGLC. (could have
  5146. * occured while driver was down)
  5147. * e. PF enable in the CFC (WEAK + STRONG)
  5148. * f. Timers scan enable
  5149. * 3. PF driver unload flow:
  5150. * a. Clear the Timers scan_en.
  5151. * b. Polling for scan_on=0 for that PF.
  5152. * c. Clear the PF enable bit in the PXP.
  5153. * d. Clear the PF enable in the CFC (WEAK + STRONG)
  5154. * e. Write zero+valid to all ILT entries (The valid bit must
  5155. * stay set)
  5156. * f. If this is VNIC 3 of a port then also init
  5157. * first_timers_ilt_entry to zero and last_timers_ilt_entry
  5158. * to the last enrty in the ILT.
  5159. *
  5160. * Notes:
  5161. * Currently the PF error in the PGLC is non recoverable.
  5162. * In the future the there will be a recovery routine for this error.
  5163. * Currently attention is masked.
  5164. * Having an MCP lock on the load/unload process does not guarantee that
  5165. * there is no Timer disable during Func6/7 enable. This is because the
  5166. * Timers scan is currently being cleared by the MCP on FLR.
  5167. * Step 2.d can be done only for PF6/7 and the driver can also check if
  5168. * there is error before clearing it. But the flow above is simpler and
  5169. * more general.
  5170. * All ILT entries are written by zero+valid and not just PF6/7
  5171. * ILT entries since in the future the ILT entries allocation for
  5172. * PF-s might be dynamic.
  5173. */
  5174. struct ilt_client_info ilt_cli;
  5175. struct bnx2x_ilt ilt;
  5176. memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
  5177. memset(&ilt, 0, sizeof(struct bnx2x_ilt));
  5178. /* initialize dummy TM client */
  5179. ilt_cli.start = 0;
  5180. ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
  5181. ilt_cli.client_num = ILT_CLIENT_TM;
  5182. /* Step 1: set zeroes to all ilt page entries with valid bit on
  5183. * Step 2: set the timers first/last ilt entry to point
  5184. * to the entire range to prevent ILT range error for 3rd/4th
  5185. * vnic (this code assumes existance of the vnic)
  5186. *
  5187. * both steps performed by call to bnx2x_ilt_client_init_op()
  5188. * with dummy TM client
  5189. *
  5190. * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
  5191. * and his brother are split registers
  5192. */
  5193. bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
  5194. bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
  5195. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  5196. REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
  5197. REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
  5198. REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
  5199. }
  5200. REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
  5201. REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
  5202. if (!CHIP_IS_E1x(bp)) {
  5203. int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
  5204. (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
  5205. bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
  5206. bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
  5207. /* let the HW do it's magic ... */
  5208. do {
  5209. msleep(200);
  5210. val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
  5211. } while (factor-- && (val != 1));
  5212. if (val != 1) {
  5213. BNX2X_ERR("ATC_INIT failed\n");
  5214. return -EBUSY;
  5215. }
  5216. }
  5217. bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
  5218. /* clean the DMAE memory */
  5219. bp->dmae_ready = 1;
  5220. bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
  5221. bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
  5222. bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
  5223. bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
  5224. bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
  5225. bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
  5226. bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
  5227. bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
  5228. bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
  5229. bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
  5230. /* QM queues pointers table */
  5231. bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
  5232. /* soft reset pulse */
  5233. REG_WR(bp, QM_REG_SOFT_RESET, 1);
  5234. REG_WR(bp, QM_REG_SOFT_RESET, 0);
  5235. #ifdef BCM_CNIC
  5236. bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
  5237. #endif
  5238. bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
  5239. REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
  5240. if (!CHIP_REV_IS_SLOW(bp))
  5241. /* enable hw interrupt from doorbell Q */
  5242. REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
  5243. bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
  5244. bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
  5245. REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
  5246. if (!CHIP_IS_E1(bp))
  5247. REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
  5248. if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
  5249. /* Bit-map indicating which L2 hdrs may appear
  5250. * after the basic Ethernet header
  5251. */
  5252. REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
  5253. bp->path_has_ovlan ? 7 : 6);
  5254. bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
  5255. bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
  5256. bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
  5257. bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
  5258. if (!CHIP_IS_E1x(bp)) {
  5259. /* reset VFC memories */
  5260. REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
  5261. VFC_MEMORIES_RST_REG_CAM_RST |
  5262. VFC_MEMORIES_RST_REG_RAM_RST);
  5263. REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
  5264. VFC_MEMORIES_RST_REG_CAM_RST |
  5265. VFC_MEMORIES_RST_REG_RAM_RST);
  5266. msleep(20);
  5267. }
  5268. bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
  5269. bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
  5270. bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
  5271. bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
  5272. /* sync semi rtc */
  5273. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  5274. 0x80000000);
  5275. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
  5276. 0x80000000);
  5277. bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
  5278. bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
  5279. bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
  5280. if (!CHIP_IS_E1x(bp))
  5281. REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
  5282. bp->path_has_ovlan ? 7 : 6);
  5283. REG_WR(bp, SRC_REG_SOFT_RST, 1);
  5284. bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
  5285. #ifdef BCM_CNIC
  5286. REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
  5287. REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
  5288. REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
  5289. REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
  5290. REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
  5291. REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
  5292. REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
  5293. REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
  5294. REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
  5295. REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
  5296. #endif
  5297. REG_WR(bp, SRC_REG_SOFT_RST, 0);
  5298. if (sizeof(union cdu_context) != 1024)
  5299. /* we currently assume that a context is 1024 bytes */
  5300. dev_alert(&bp->pdev->dev, "please adjust the size "
  5301. "of cdu_context(%ld)\n",
  5302. (long)sizeof(union cdu_context));
  5303. bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
  5304. val = (4 << 24) + (0 << 12) + 1024;
  5305. REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
  5306. bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
  5307. REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
  5308. /* enable context validation interrupt from CFC */
  5309. REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
  5310. /* set the thresholds to prevent CFC/CDU race */
  5311. REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
  5312. bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
  5313. if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
  5314. REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
  5315. bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
  5316. bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
  5317. /* Reset PCIE errors for debug */
  5318. REG_WR(bp, 0x2814, 0xffffffff);
  5319. REG_WR(bp, 0x3820, 0xffffffff);
  5320. if (!CHIP_IS_E1x(bp)) {
  5321. REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
  5322. (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
  5323. PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
  5324. REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
  5325. (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
  5326. PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
  5327. PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
  5328. REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
  5329. (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
  5330. PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
  5331. PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
  5332. }
  5333. bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
  5334. if (!CHIP_IS_E1(bp)) {
  5335. /* in E3 this done in per-port section */
  5336. if (!CHIP_IS_E3(bp))
  5337. REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
  5338. }
  5339. if (CHIP_IS_E1H(bp))
  5340. /* not applicable for E2 (and above ...) */
  5341. REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
  5342. if (CHIP_REV_IS_SLOW(bp))
  5343. msleep(200);
  5344. /* finish CFC init */
  5345. val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
  5346. if (val != 1) {
  5347. BNX2X_ERR("CFC LL_INIT failed\n");
  5348. return -EBUSY;
  5349. }
  5350. val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
  5351. if (val != 1) {
  5352. BNX2X_ERR("CFC AC_INIT failed\n");
  5353. return -EBUSY;
  5354. }
  5355. val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
  5356. if (val != 1) {
  5357. BNX2X_ERR("CFC CAM_INIT failed\n");
  5358. return -EBUSY;
  5359. }
  5360. REG_WR(bp, CFC_REG_DEBUG0, 0);
  5361. if (CHIP_IS_E1(bp)) {
  5362. /* read NIG statistic
  5363. to see if this is our first up since powerup */
  5364. bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
  5365. val = *bnx2x_sp(bp, wb_data[0]);
  5366. /* do internal memory self test */
  5367. if ((val == 0) && bnx2x_int_mem_test(bp)) {
  5368. BNX2X_ERR("internal mem self test failed\n");
  5369. return -EBUSY;
  5370. }
  5371. }
  5372. bnx2x_setup_fan_failure_detection(bp);
  5373. /* clear PXP2 attentions */
  5374. REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
  5375. bnx2x_enable_blocks_attention(bp);
  5376. bnx2x_enable_blocks_parity(bp);
  5377. if (!BP_NOMCP(bp)) {
  5378. if (CHIP_IS_E1x(bp))
  5379. bnx2x__common_init_phy(bp);
  5380. } else
  5381. BNX2X_ERR("Bootcode is missing - can not initialize link\n");
  5382. return 0;
  5383. }
  5384. /**
  5385. * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
  5386. *
  5387. * @bp: driver handle
  5388. */
  5389. static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
  5390. {
  5391. int rc = bnx2x_init_hw_common(bp);
  5392. if (rc)
  5393. return rc;
  5394. /* In E2 2-PORT mode, same ext phy is used for the two paths */
  5395. if (!BP_NOMCP(bp))
  5396. bnx2x__common_init_phy(bp);
  5397. return 0;
  5398. }
  5399. static int bnx2x_init_hw_port(struct bnx2x *bp)
  5400. {
  5401. int port = BP_PORT(bp);
  5402. int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
  5403. u32 low, high;
  5404. u32 val;
  5405. bnx2x__link_reset(bp);
  5406. DP(BNX2X_MSG_MCP, "starting port init port %d\n", port);
  5407. REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
  5408. bnx2x_init_block(bp, BLOCK_MISC, init_phase);
  5409. bnx2x_init_block(bp, BLOCK_PXP, init_phase);
  5410. bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
  5411. /* Timers bug workaround: disables the pf_master bit in pglue at
  5412. * common phase, we need to enable it here before any dmae access are
  5413. * attempted. Therefore we manually added the enable-master to the
  5414. * port phase (it also happens in the function phase)
  5415. */
  5416. if (!CHIP_IS_E1x(bp))
  5417. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
  5418. bnx2x_init_block(bp, BLOCK_ATC, init_phase);
  5419. bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
  5420. bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
  5421. bnx2x_init_block(bp, BLOCK_QM, init_phase);
  5422. bnx2x_init_block(bp, BLOCK_TCM, init_phase);
  5423. bnx2x_init_block(bp, BLOCK_UCM, init_phase);
  5424. bnx2x_init_block(bp, BLOCK_CCM, init_phase);
  5425. bnx2x_init_block(bp, BLOCK_XCM, init_phase);
  5426. /* QM cid (connection) count */
  5427. bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
  5428. #ifdef BCM_CNIC
  5429. bnx2x_init_block(bp, BLOCK_TM, init_phase);
  5430. REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
  5431. REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
  5432. #endif
  5433. bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
  5434. if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
  5435. bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
  5436. if (IS_MF(bp))
  5437. low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
  5438. else if (bp->dev->mtu > 4096) {
  5439. if (bp->flags & ONE_PORT_FLAG)
  5440. low = 160;
  5441. else {
  5442. val = bp->dev->mtu;
  5443. /* (24*1024 + val*4)/256 */
  5444. low = 96 + (val/64) +
  5445. ((val % 64) ? 1 : 0);
  5446. }
  5447. } else
  5448. low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
  5449. high = low + 56; /* 14*1024/256 */
  5450. REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
  5451. REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
  5452. }
  5453. if (CHIP_MODE_IS_4_PORT(bp))
  5454. REG_WR(bp, (BP_PORT(bp) ?
  5455. BRB1_REG_MAC_GUARANTIED_1 :
  5456. BRB1_REG_MAC_GUARANTIED_0), 40);
  5457. bnx2x_init_block(bp, BLOCK_PRS, init_phase);
  5458. if (CHIP_IS_E3B0(bp))
  5459. /* Ovlan exists only if we are in multi-function +
  5460. * switch-dependent mode, in switch-independent there
  5461. * is no ovlan headers
  5462. */
  5463. REG_WR(bp, BP_PORT(bp) ?
  5464. PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
  5465. PRS_REG_HDRS_AFTER_BASIC_PORT_0,
  5466. (bp->path_has_ovlan ? 7 : 6));
  5467. bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
  5468. bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
  5469. bnx2x_init_block(bp, BLOCK_USDM, init_phase);
  5470. bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
  5471. bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
  5472. bnx2x_init_block(bp, BLOCK_USEM, init_phase);
  5473. bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
  5474. bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
  5475. bnx2x_init_block(bp, BLOCK_UPB, init_phase);
  5476. bnx2x_init_block(bp, BLOCK_XPB, init_phase);
  5477. bnx2x_init_block(bp, BLOCK_PBF, init_phase);
  5478. if (CHIP_IS_E1x(bp)) {
  5479. /* configure PBF to work without PAUSE mtu 9000 */
  5480. REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
  5481. /* update threshold */
  5482. REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
  5483. /* update init credit */
  5484. REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
  5485. /* probe changes */
  5486. REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
  5487. udelay(50);
  5488. REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
  5489. }
  5490. #ifdef BCM_CNIC
  5491. bnx2x_init_block(bp, BLOCK_SRC, init_phase);
  5492. #endif
  5493. bnx2x_init_block(bp, BLOCK_CDU, init_phase);
  5494. bnx2x_init_block(bp, BLOCK_CFC, init_phase);
  5495. if (CHIP_IS_E1(bp)) {
  5496. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
  5497. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
  5498. }
  5499. bnx2x_init_block(bp, BLOCK_HC, init_phase);
  5500. bnx2x_init_block(bp, BLOCK_IGU, init_phase);
  5501. bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
  5502. /* init aeu_mask_attn_func_0/1:
  5503. * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
  5504. * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
  5505. * bits 4-7 are used for "per vn group attention" */
  5506. val = IS_MF(bp) ? 0xF7 : 0x7;
  5507. /* Enable DCBX attention for all but E1 */
  5508. val |= CHIP_IS_E1(bp) ? 0 : 0x10;
  5509. REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
  5510. bnx2x_init_block(bp, BLOCK_NIG, init_phase);
  5511. if (!CHIP_IS_E1x(bp)) {
  5512. /* Bit-map indicating which L2 hdrs may appear after the
  5513. * basic Ethernet header
  5514. */
  5515. REG_WR(bp, BP_PORT(bp) ?
  5516. NIG_REG_P1_HDRS_AFTER_BASIC :
  5517. NIG_REG_P0_HDRS_AFTER_BASIC,
  5518. IS_MF_SD(bp) ? 7 : 6);
  5519. if (CHIP_IS_E3(bp))
  5520. REG_WR(bp, BP_PORT(bp) ?
  5521. NIG_REG_LLH1_MF_MODE :
  5522. NIG_REG_LLH_MF_MODE, IS_MF(bp));
  5523. }
  5524. if (!CHIP_IS_E3(bp))
  5525. REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
  5526. if (!CHIP_IS_E1(bp)) {
  5527. /* 0x2 disable mf_ov, 0x1 enable */
  5528. REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
  5529. (IS_MF_SD(bp) ? 0x1 : 0x2));
  5530. if (!CHIP_IS_E1x(bp)) {
  5531. val = 0;
  5532. switch (bp->mf_mode) {
  5533. case MULTI_FUNCTION_SD:
  5534. val = 1;
  5535. break;
  5536. case MULTI_FUNCTION_SI:
  5537. val = 2;
  5538. break;
  5539. }
  5540. REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
  5541. NIG_REG_LLH0_CLS_TYPE), val);
  5542. }
  5543. {
  5544. REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
  5545. REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
  5546. REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
  5547. }
  5548. }
  5549. /* If SPIO5 is set to generate interrupts, enable it for this port */
  5550. val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
  5551. if (val & (1 << MISC_REGISTERS_SPIO_5)) {
  5552. u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
  5553. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
  5554. val = REG_RD(bp, reg_addr);
  5555. val |= AEU_INPUTS_ATTN_BITS_SPIO5;
  5556. REG_WR(bp, reg_addr, val);
  5557. }
  5558. return 0;
  5559. }
  5560. static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
  5561. {
  5562. int reg;
  5563. if (CHIP_IS_E1(bp))
  5564. reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
  5565. else
  5566. reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
  5567. bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
  5568. }
  5569. static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
  5570. {
  5571. bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
  5572. }
  5573. static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
  5574. {
  5575. u32 i, base = FUNC_ILT_BASE(func);
  5576. for (i = base; i < base + ILT_PER_FUNC; i++)
  5577. bnx2x_ilt_wr(bp, i, 0);
  5578. }
  5579. static int bnx2x_init_hw_func(struct bnx2x *bp)
  5580. {
  5581. int port = BP_PORT(bp);
  5582. int func = BP_FUNC(bp);
  5583. int init_phase = PHASE_PF0 + func;
  5584. struct bnx2x_ilt *ilt = BP_ILT(bp);
  5585. u16 cdu_ilt_start;
  5586. u32 addr, val;
  5587. u32 main_mem_base, main_mem_size, main_mem_prty_clr;
  5588. int i, main_mem_width;
  5589. DP(BNX2X_MSG_MCP, "starting func init func %d\n", func);
  5590. /* FLR cleanup - hmmm */
  5591. if (!CHIP_IS_E1x(bp))
  5592. bnx2x_pf_flr_clnup(bp);
  5593. /* set MSI reconfigure capability */
  5594. if (bp->common.int_block == INT_BLOCK_HC) {
  5595. addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
  5596. val = REG_RD(bp, addr);
  5597. val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
  5598. REG_WR(bp, addr, val);
  5599. }
  5600. bnx2x_init_block(bp, BLOCK_PXP, init_phase);
  5601. bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
  5602. ilt = BP_ILT(bp);
  5603. cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
  5604. for (i = 0; i < L2_ILT_LINES(bp); i++) {
  5605. ilt->lines[cdu_ilt_start + i].page =
  5606. bp->context.vcxt + (ILT_PAGE_CIDS * i);
  5607. ilt->lines[cdu_ilt_start + i].page_mapping =
  5608. bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
  5609. /* cdu ilt pages are allocated manually so there's no need to
  5610. set the size */
  5611. }
  5612. bnx2x_ilt_init_op(bp, INITOP_SET);
  5613. #ifdef BCM_CNIC
  5614. bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
  5615. /* T1 hash bits value determines the T1 number of entries */
  5616. REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
  5617. #endif
  5618. #ifndef BCM_CNIC
  5619. /* set NIC mode */
  5620. REG_WR(bp, PRS_REG_NIC_MODE, 1);
  5621. #endif /* BCM_CNIC */
  5622. if (!CHIP_IS_E1x(bp)) {
  5623. u32 pf_conf = IGU_PF_CONF_FUNC_EN;
  5624. /* Turn on a single ISR mode in IGU if driver is going to use
  5625. * INT#x or MSI
  5626. */
  5627. if (!(bp->flags & USING_MSIX_FLAG))
  5628. pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
  5629. /*
  5630. * Timers workaround bug: function init part.
  5631. * Need to wait 20msec after initializing ILT,
  5632. * needed to make sure there are no requests in
  5633. * one of the PXP internal queues with "old" ILT addresses
  5634. */
  5635. msleep(20);
  5636. /*
  5637. * Master enable - Due to WB DMAE writes performed before this
  5638. * register is re-initialized as part of the regular function
  5639. * init
  5640. */
  5641. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
  5642. /* Enable the function in IGU */
  5643. REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
  5644. }
  5645. bp->dmae_ready = 1;
  5646. bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
  5647. if (!CHIP_IS_E1x(bp))
  5648. REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
  5649. bnx2x_init_block(bp, BLOCK_ATC, init_phase);
  5650. bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
  5651. bnx2x_init_block(bp, BLOCK_NIG, init_phase);
  5652. bnx2x_init_block(bp, BLOCK_SRC, init_phase);
  5653. bnx2x_init_block(bp, BLOCK_MISC, init_phase);
  5654. bnx2x_init_block(bp, BLOCK_TCM, init_phase);
  5655. bnx2x_init_block(bp, BLOCK_UCM, init_phase);
  5656. bnx2x_init_block(bp, BLOCK_CCM, init_phase);
  5657. bnx2x_init_block(bp, BLOCK_XCM, init_phase);
  5658. bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
  5659. bnx2x_init_block(bp, BLOCK_USEM, init_phase);
  5660. bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
  5661. bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
  5662. if (!CHIP_IS_E1x(bp))
  5663. REG_WR(bp, QM_REG_PF_EN, 1);
  5664. if (!CHIP_IS_E1x(bp)) {
  5665. REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  5666. REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  5667. REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  5668. REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  5669. }
  5670. bnx2x_init_block(bp, BLOCK_QM, init_phase);
  5671. bnx2x_init_block(bp, BLOCK_TM, init_phase);
  5672. bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
  5673. bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
  5674. bnx2x_init_block(bp, BLOCK_PRS, init_phase);
  5675. bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
  5676. bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
  5677. bnx2x_init_block(bp, BLOCK_USDM, init_phase);
  5678. bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
  5679. bnx2x_init_block(bp, BLOCK_UPB, init_phase);
  5680. bnx2x_init_block(bp, BLOCK_XPB, init_phase);
  5681. bnx2x_init_block(bp, BLOCK_PBF, init_phase);
  5682. if (!CHIP_IS_E1x(bp))
  5683. REG_WR(bp, PBF_REG_DISABLE_PF, 0);
  5684. bnx2x_init_block(bp, BLOCK_CDU, init_phase);
  5685. bnx2x_init_block(bp, BLOCK_CFC, init_phase);
  5686. if (!CHIP_IS_E1x(bp))
  5687. REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
  5688. if (IS_MF(bp)) {
  5689. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
  5690. REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
  5691. }
  5692. bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
  5693. /* HC init per function */
  5694. if (bp->common.int_block == INT_BLOCK_HC) {
  5695. if (CHIP_IS_E1H(bp)) {
  5696. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
  5697. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
  5698. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
  5699. }
  5700. bnx2x_init_block(bp, BLOCK_HC, init_phase);
  5701. } else {
  5702. int num_segs, sb_idx, prod_offset;
  5703. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
  5704. if (!CHIP_IS_E1x(bp)) {
  5705. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
  5706. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
  5707. }
  5708. bnx2x_init_block(bp, BLOCK_IGU, init_phase);
  5709. if (!CHIP_IS_E1x(bp)) {
  5710. int dsb_idx = 0;
  5711. /**
  5712. * Producer memory:
  5713. * E2 mode: address 0-135 match to the mapping memory;
  5714. * 136 - PF0 default prod; 137 - PF1 default prod;
  5715. * 138 - PF2 default prod; 139 - PF3 default prod;
  5716. * 140 - PF0 attn prod; 141 - PF1 attn prod;
  5717. * 142 - PF2 attn prod; 143 - PF3 attn prod;
  5718. * 144-147 reserved.
  5719. *
  5720. * E1.5 mode - In backward compatible mode;
  5721. * for non default SB; each even line in the memory
  5722. * holds the U producer and each odd line hold
  5723. * the C producer. The first 128 producers are for
  5724. * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
  5725. * producers are for the DSB for each PF.
  5726. * Each PF has five segments: (the order inside each
  5727. * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
  5728. * 132-135 C prods; 136-139 X prods; 140-143 T prods;
  5729. * 144-147 attn prods;
  5730. */
  5731. /* non-default-status-blocks */
  5732. num_segs = CHIP_INT_MODE_IS_BC(bp) ?
  5733. IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
  5734. for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
  5735. prod_offset = (bp->igu_base_sb + sb_idx) *
  5736. num_segs;
  5737. for (i = 0; i < num_segs; i++) {
  5738. addr = IGU_REG_PROD_CONS_MEMORY +
  5739. (prod_offset + i) * 4;
  5740. REG_WR(bp, addr, 0);
  5741. }
  5742. /* send consumer update with value 0 */
  5743. bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
  5744. USTORM_ID, 0, IGU_INT_NOP, 1);
  5745. bnx2x_igu_clear_sb(bp,
  5746. bp->igu_base_sb + sb_idx);
  5747. }
  5748. /* default-status-blocks */
  5749. num_segs = CHIP_INT_MODE_IS_BC(bp) ?
  5750. IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
  5751. if (CHIP_MODE_IS_4_PORT(bp))
  5752. dsb_idx = BP_FUNC(bp);
  5753. else
  5754. dsb_idx = BP_VN(bp);
  5755. prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
  5756. IGU_BC_BASE_DSB_PROD + dsb_idx :
  5757. IGU_NORM_BASE_DSB_PROD + dsb_idx);
  5758. /*
  5759. * igu prods come in chunks of E1HVN_MAX (4) -
  5760. * does not matters what is the current chip mode
  5761. */
  5762. for (i = 0; i < (num_segs * E1HVN_MAX);
  5763. i += E1HVN_MAX) {
  5764. addr = IGU_REG_PROD_CONS_MEMORY +
  5765. (prod_offset + i)*4;
  5766. REG_WR(bp, addr, 0);
  5767. }
  5768. /* send consumer update with 0 */
  5769. if (CHIP_INT_MODE_IS_BC(bp)) {
  5770. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5771. USTORM_ID, 0, IGU_INT_NOP, 1);
  5772. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5773. CSTORM_ID, 0, IGU_INT_NOP, 1);
  5774. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5775. XSTORM_ID, 0, IGU_INT_NOP, 1);
  5776. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5777. TSTORM_ID, 0, IGU_INT_NOP, 1);
  5778. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5779. ATTENTION_ID, 0, IGU_INT_NOP, 1);
  5780. } else {
  5781. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5782. USTORM_ID, 0, IGU_INT_NOP, 1);
  5783. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  5784. ATTENTION_ID, 0, IGU_INT_NOP, 1);
  5785. }
  5786. bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
  5787. /* !!! these should become driver const once
  5788. rf-tool supports split-68 const */
  5789. REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
  5790. REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
  5791. REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
  5792. REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
  5793. REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
  5794. REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
  5795. }
  5796. }
  5797. /* Reset PCIE errors for debug */
  5798. REG_WR(bp, 0x2114, 0xffffffff);
  5799. REG_WR(bp, 0x2120, 0xffffffff);
  5800. if (CHIP_IS_E1x(bp)) {
  5801. main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
  5802. main_mem_base = HC_REG_MAIN_MEMORY +
  5803. BP_PORT(bp) * (main_mem_size * 4);
  5804. main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
  5805. main_mem_width = 8;
  5806. val = REG_RD(bp, main_mem_prty_clr);
  5807. if (val)
  5808. DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
  5809. "block during "
  5810. "function init (0x%x)!\n", val);
  5811. /* Clear "false" parity errors in MSI-X table */
  5812. for (i = main_mem_base;
  5813. i < main_mem_base + main_mem_size * 4;
  5814. i += main_mem_width) {
  5815. bnx2x_read_dmae(bp, i, main_mem_width / 4);
  5816. bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
  5817. i, main_mem_width / 4);
  5818. }
  5819. /* Clear HC parity attention */
  5820. REG_RD(bp, main_mem_prty_clr);
  5821. }
  5822. #ifdef BNX2X_STOP_ON_ERROR
  5823. /* Enable STORMs SP logging */
  5824. REG_WR8(bp, BAR_USTRORM_INTMEM +
  5825. USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  5826. REG_WR8(bp, BAR_TSTRORM_INTMEM +
  5827. TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  5828. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  5829. CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  5830. REG_WR8(bp, BAR_XSTRORM_INTMEM +
  5831. XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  5832. #endif
  5833. bnx2x_phy_probe(&bp->link_params);
  5834. return 0;
  5835. }
  5836. void bnx2x_free_mem(struct bnx2x *bp)
  5837. {
  5838. /* fastpath */
  5839. bnx2x_free_fp_mem(bp);
  5840. /* end of fastpath */
  5841. BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
  5842. sizeof(struct host_sp_status_block));
  5843. BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
  5844. bp->fw_stats_data_sz + bp->fw_stats_req_sz);
  5845. BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
  5846. sizeof(struct bnx2x_slowpath));
  5847. BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
  5848. bp->context.size);
  5849. bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
  5850. BNX2X_FREE(bp->ilt->lines);
  5851. #ifdef BCM_CNIC
  5852. if (!CHIP_IS_E1x(bp))
  5853. BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
  5854. sizeof(struct host_hc_status_block_e2));
  5855. else
  5856. BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
  5857. sizeof(struct host_hc_status_block_e1x));
  5858. BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
  5859. #endif
  5860. BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
  5861. BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
  5862. BCM_PAGE_SIZE * NUM_EQ_PAGES);
  5863. }
  5864. static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
  5865. {
  5866. int num_groups;
  5867. int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
  5868. /* number of queues for statistics is number of eth queues + FCoE */
  5869. u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
  5870. /* Total number of FW statistics requests =
  5871. * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
  5872. * num of queues
  5873. */
  5874. bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
  5875. /* Request is built from stats_query_header and an array of
  5876. * stats_query_cmd_group each of which contains
  5877. * STATS_QUERY_CMD_COUNT rules. The real number or requests is
  5878. * configured in the stats_query_header.
  5879. */
  5880. num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
  5881. (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
  5882. bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
  5883. num_groups * sizeof(struct stats_query_cmd_group);
  5884. /* Data for statistics requests + stats_conter
  5885. *
  5886. * stats_counter holds per-STORM counters that are incremented
  5887. * when STORM has finished with the current request.
  5888. *
  5889. * memory for FCoE offloaded statistics are counted anyway,
  5890. * even if they will not be sent.
  5891. */
  5892. bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
  5893. sizeof(struct per_pf_stats) +
  5894. sizeof(struct fcoe_statistics_params) +
  5895. sizeof(struct per_queue_stats) * num_queue_stats +
  5896. sizeof(struct stats_counter);
  5897. BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
  5898. bp->fw_stats_data_sz + bp->fw_stats_req_sz);
  5899. /* Set shortcuts */
  5900. bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
  5901. bp->fw_stats_req_mapping = bp->fw_stats_mapping;
  5902. bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
  5903. ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
  5904. bp->fw_stats_data_mapping = bp->fw_stats_mapping +
  5905. bp->fw_stats_req_sz;
  5906. return 0;
  5907. alloc_mem_err:
  5908. BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
  5909. bp->fw_stats_data_sz + bp->fw_stats_req_sz);
  5910. return -ENOMEM;
  5911. }
  5912. int bnx2x_alloc_mem(struct bnx2x *bp)
  5913. {
  5914. #ifdef BCM_CNIC
  5915. if (!CHIP_IS_E1x(bp))
  5916. /* size = the status block + ramrod buffers */
  5917. BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
  5918. sizeof(struct host_hc_status_block_e2));
  5919. else
  5920. BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
  5921. sizeof(struct host_hc_status_block_e1x));
  5922. /* allocate searcher T2 table */
  5923. BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
  5924. #endif
  5925. BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
  5926. sizeof(struct host_sp_status_block));
  5927. BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
  5928. sizeof(struct bnx2x_slowpath));
  5929. /* Allocated memory for FW statistics */
  5930. if (bnx2x_alloc_fw_stats_mem(bp))
  5931. goto alloc_mem_err;
  5932. bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
  5933. BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
  5934. bp->context.size);
  5935. BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
  5936. if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
  5937. goto alloc_mem_err;
  5938. /* Slow path ring */
  5939. BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
  5940. /* EQ */
  5941. BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
  5942. BCM_PAGE_SIZE * NUM_EQ_PAGES);
  5943. /* fastpath */
  5944. /* need to be done at the end, since it's self adjusting to amount
  5945. * of memory available for RSS queues
  5946. */
  5947. if (bnx2x_alloc_fp_mem(bp))
  5948. goto alloc_mem_err;
  5949. return 0;
  5950. alloc_mem_err:
  5951. bnx2x_free_mem(bp);
  5952. return -ENOMEM;
  5953. }
  5954. /*
  5955. * Init service functions
  5956. */
  5957. int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
  5958. struct bnx2x_vlan_mac_obj *obj, bool set,
  5959. int mac_type, unsigned long *ramrod_flags)
  5960. {
  5961. int rc;
  5962. struct bnx2x_vlan_mac_ramrod_params ramrod_param;
  5963. memset(&ramrod_param, 0, sizeof(ramrod_param));
  5964. /* Fill general parameters */
  5965. ramrod_param.vlan_mac_obj = obj;
  5966. ramrod_param.ramrod_flags = *ramrod_flags;
  5967. /* Fill a user request section if needed */
  5968. if (!test_bit(RAMROD_CONT, ramrod_flags)) {
  5969. memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
  5970. __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
  5971. /* Set the command: ADD or DEL */
  5972. if (set)
  5973. ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
  5974. else
  5975. ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
  5976. }
  5977. rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
  5978. if (rc < 0)
  5979. BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
  5980. return rc;
  5981. }
  5982. int bnx2x_del_all_macs(struct bnx2x *bp,
  5983. struct bnx2x_vlan_mac_obj *mac_obj,
  5984. int mac_type, bool wait_for_comp)
  5985. {
  5986. int rc;
  5987. unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
  5988. /* Wait for completion of requested */
  5989. if (wait_for_comp)
  5990. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  5991. /* Set the mac type of addresses we want to clear */
  5992. __set_bit(mac_type, &vlan_mac_flags);
  5993. rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
  5994. if (rc < 0)
  5995. BNX2X_ERR("Failed to delete MACs: %d\n", rc);
  5996. return rc;
  5997. }
  5998. int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
  5999. {
  6000. unsigned long ramrod_flags = 0;
  6001. #ifdef BCM_CNIC
  6002. if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
  6003. DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
  6004. return 0;
  6005. }
  6006. #endif
  6007. DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
  6008. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  6009. /* Eth MAC is set on RSS leading client (fp[0]) */
  6010. return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
  6011. BNX2X_ETH_MAC, &ramrod_flags);
  6012. }
  6013. int bnx2x_setup_leading(struct bnx2x *bp)
  6014. {
  6015. return bnx2x_setup_queue(bp, &bp->fp[0], 1);
  6016. }
  6017. /**
  6018. * bnx2x_set_int_mode - configure interrupt mode
  6019. *
  6020. * @bp: driver handle
  6021. *
  6022. * In case of MSI-X it will also try to enable MSI-X.
  6023. */
  6024. static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
  6025. {
  6026. switch (int_mode) {
  6027. case INT_MODE_MSI:
  6028. bnx2x_enable_msi(bp);
  6029. /* falling through... */
  6030. case INT_MODE_INTx:
  6031. bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
  6032. DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
  6033. break;
  6034. default:
  6035. /* Set number of queues according to bp->multi_mode value */
  6036. bnx2x_set_num_queues(bp);
  6037. DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
  6038. bp->num_queues);
  6039. /* if we can't use MSI-X we only need one fp,
  6040. * so try to enable MSI-X with the requested number of fp's
  6041. * and fallback to MSI or legacy INTx with one fp
  6042. */
  6043. if (bnx2x_enable_msix(bp)) {
  6044. /* failed to enable MSI-X */
  6045. if (bp->multi_mode)
  6046. DP(NETIF_MSG_IFUP,
  6047. "Multi requested but failed to "
  6048. "enable MSI-X (%d), "
  6049. "set number of queues to %d\n",
  6050. bp->num_queues,
  6051. 1 + NON_ETH_CONTEXT_USE);
  6052. bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
  6053. /* Try to enable MSI */
  6054. if (!(bp->flags & DISABLE_MSI_FLAG))
  6055. bnx2x_enable_msi(bp);
  6056. }
  6057. break;
  6058. }
  6059. }
  6060. /* must be called prioir to any HW initializations */
  6061. static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
  6062. {
  6063. return L2_ILT_LINES(bp);
  6064. }
  6065. void bnx2x_ilt_set_info(struct bnx2x *bp)
  6066. {
  6067. struct ilt_client_info *ilt_client;
  6068. struct bnx2x_ilt *ilt = BP_ILT(bp);
  6069. u16 line = 0;
  6070. ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
  6071. DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
  6072. /* CDU */
  6073. ilt_client = &ilt->clients[ILT_CLIENT_CDU];
  6074. ilt_client->client_num = ILT_CLIENT_CDU;
  6075. ilt_client->page_size = CDU_ILT_PAGE_SZ;
  6076. ilt_client->flags = ILT_CLIENT_SKIP_MEM;
  6077. ilt_client->start = line;
  6078. line += bnx2x_cid_ilt_lines(bp);
  6079. #ifdef BCM_CNIC
  6080. line += CNIC_ILT_LINES;
  6081. #endif
  6082. ilt_client->end = line - 1;
  6083. DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
  6084. "flags 0x%x, hw psz %d\n",
  6085. ilt_client->start,
  6086. ilt_client->end,
  6087. ilt_client->page_size,
  6088. ilt_client->flags,
  6089. ilog2(ilt_client->page_size >> 12));
  6090. /* QM */
  6091. if (QM_INIT(bp->qm_cid_count)) {
  6092. ilt_client = &ilt->clients[ILT_CLIENT_QM];
  6093. ilt_client->client_num = ILT_CLIENT_QM;
  6094. ilt_client->page_size = QM_ILT_PAGE_SZ;
  6095. ilt_client->flags = 0;
  6096. ilt_client->start = line;
  6097. /* 4 bytes for each cid */
  6098. line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
  6099. QM_ILT_PAGE_SZ);
  6100. ilt_client->end = line - 1;
  6101. DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
  6102. "flags 0x%x, hw psz %d\n",
  6103. ilt_client->start,
  6104. ilt_client->end,
  6105. ilt_client->page_size,
  6106. ilt_client->flags,
  6107. ilog2(ilt_client->page_size >> 12));
  6108. }
  6109. /* SRC */
  6110. ilt_client = &ilt->clients[ILT_CLIENT_SRC];
  6111. #ifdef BCM_CNIC
  6112. ilt_client->client_num = ILT_CLIENT_SRC;
  6113. ilt_client->page_size = SRC_ILT_PAGE_SZ;
  6114. ilt_client->flags = 0;
  6115. ilt_client->start = line;
  6116. line += SRC_ILT_LINES;
  6117. ilt_client->end = line - 1;
  6118. DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
  6119. "flags 0x%x, hw psz %d\n",
  6120. ilt_client->start,
  6121. ilt_client->end,
  6122. ilt_client->page_size,
  6123. ilt_client->flags,
  6124. ilog2(ilt_client->page_size >> 12));
  6125. #else
  6126. ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
  6127. #endif
  6128. /* TM */
  6129. ilt_client = &ilt->clients[ILT_CLIENT_TM];
  6130. #ifdef BCM_CNIC
  6131. ilt_client->client_num = ILT_CLIENT_TM;
  6132. ilt_client->page_size = TM_ILT_PAGE_SZ;
  6133. ilt_client->flags = 0;
  6134. ilt_client->start = line;
  6135. line += TM_ILT_LINES;
  6136. ilt_client->end = line - 1;
  6137. DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
  6138. "flags 0x%x, hw psz %d\n",
  6139. ilt_client->start,
  6140. ilt_client->end,
  6141. ilt_client->page_size,
  6142. ilt_client->flags,
  6143. ilog2(ilt_client->page_size >> 12));
  6144. #else
  6145. ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
  6146. #endif
  6147. BUG_ON(line > ILT_MAX_LINES);
  6148. }
  6149. /**
  6150. * bnx2x_pf_q_prep_init - prepare INIT transition parameters
  6151. *
  6152. * @bp: driver handle
  6153. * @fp: pointer to fastpath
  6154. * @init_params: pointer to parameters structure
  6155. *
  6156. * parameters configured:
  6157. * - HC configuration
  6158. * - Queue's CDU context
  6159. */
  6160. static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
  6161. struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
  6162. {
  6163. u8 cos;
  6164. /* FCoE Queue uses Default SB, thus has no HC capabilities */
  6165. if (!IS_FCOE_FP(fp)) {
  6166. __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
  6167. __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
  6168. /* If HC is supporterd, enable host coalescing in the transition
  6169. * to INIT state.
  6170. */
  6171. __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
  6172. __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
  6173. /* HC rate */
  6174. init_params->rx.hc_rate = bp->rx_ticks ?
  6175. (1000000 / bp->rx_ticks) : 0;
  6176. init_params->tx.hc_rate = bp->tx_ticks ?
  6177. (1000000 / bp->tx_ticks) : 0;
  6178. /* FW SB ID */
  6179. init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
  6180. fp->fw_sb_id;
  6181. /*
  6182. * CQ index among the SB indices: FCoE clients uses the default
  6183. * SB, therefore it's different.
  6184. */
  6185. init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
  6186. init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
  6187. }
  6188. /* set maximum number of COSs supported by this queue */
  6189. init_params->max_cos = fp->max_cos;
  6190. DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
  6191. fp->index, init_params->max_cos);
  6192. /* set the context pointers queue object */
  6193. for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
  6194. init_params->cxts[cos] =
  6195. &bp->context.vcxt[fp->txdata[cos].cid].eth;
  6196. }
  6197. int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
  6198. struct bnx2x_queue_state_params *q_params,
  6199. struct bnx2x_queue_setup_tx_only_params *tx_only_params,
  6200. int tx_index, bool leading)
  6201. {
  6202. memset(tx_only_params, 0, sizeof(*tx_only_params));
  6203. /* Set the command */
  6204. q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
  6205. /* Set tx-only QUEUE flags: don't zero statistics */
  6206. tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
  6207. /* choose the index of the cid to send the slow path on */
  6208. tx_only_params->cid_index = tx_index;
  6209. /* Set general TX_ONLY_SETUP parameters */
  6210. bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
  6211. /* Set Tx TX_ONLY_SETUP parameters */
  6212. bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
  6213. DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
  6214. "cos %d, primary cid %d, cid %d, "
  6215. "client id %d, sp-client id %d, flags %lx\n",
  6216. tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
  6217. q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
  6218. tx_only_params->gen_params.spcl_id, tx_only_params->flags);
  6219. /* send the ramrod */
  6220. return bnx2x_queue_state_change(bp, q_params);
  6221. }
  6222. /**
  6223. * bnx2x_setup_queue - setup queue
  6224. *
  6225. * @bp: driver handle
  6226. * @fp: pointer to fastpath
  6227. * @leading: is leading
  6228. *
  6229. * This function performs 2 steps in a Queue state machine
  6230. * actually: 1) RESET->INIT 2) INIT->SETUP
  6231. */
  6232. int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
  6233. bool leading)
  6234. {
  6235. struct bnx2x_queue_state_params q_params = {0};
  6236. struct bnx2x_queue_setup_params *setup_params =
  6237. &q_params.params.setup;
  6238. struct bnx2x_queue_setup_tx_only_params *tx_only_params =
  6239. &q_params.params.tx_only;
  6240. int rc;
  6241. u8 tx_index;
  6242. DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
  6243. /* reset IGU state skip FCoE L2 queue */
  6244. if (!IS_FCOE_FP(fp))
  6245. bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
  6246. IGU_INT_ENABLE, 0);
  6247. q_params.q_obj = &fp->q_obj;
  6248. /* We want to wait for completion in this context */
  6249. __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
  6250. /* Prepare the INIT parameters */
  6251. bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
  6252. /* Set the command */
  6253. q_params.cmd = BNX2X_Q_CMD_INIT;
  6254. /* Change the state to INIT */
  6255. rc = bnx2x_queue_state_change(bp, &q_params);
  6256. if (rc) {
  6257. BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
  6258. return rc;
  6259. }
  6260. DP(BNX2X_MSG_SP, "init complete\n");
  6261. /* Now move the Queue to the SETUP state... */
  6262. memset(setup_params, 0, sizeof(*setup_params));
  6263. /* Set QUEUE flags */
  6264. setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
  6265. /* Set general SETUP parameters */
  6266. bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
  6267. FIRST_TX_COS_INDEX);
  6268. bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
  6269. &setup_params->rxq_params);
  6270. bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
  6271. FIRST_TX_COS_INDEX);
  6272. /* Set the command */
  6273. q_params.cmd = BNX2X_Q_CMD_SETUP;
  6274. /* Change the state to SETUP */
  6275. rc = bnx2x_queue_state_change(bp, &q_params);
  6276. if (rc) {
  6277. BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
  6278. return rc;
  6279. }
  6280. /* loop through the relevant tx-only indices */
  6281. for (tx_index = FIRST_TX_ONLY_COS_INDEX;
  6282. tx_index < fp->max_cos;
  6283. tx_index++) {
  6284. /* prepare and send tx-only ramrod*/
  6285. rc = bnx2x_setup_tx_only(bp, fp, &q_params,
  6286. tx_only_params, tx_index, leading);
  6287. if (rc) {
  6288. BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
  6289. fp->index, tx_index);
  6290. return rc;
  6291. }
  6292. }
  6293. return rc;
  6294. }
  6295. static int bnx2x_stop_queue(struct bnx2x *bp, int index)
  6296. {
  6297. struct bnx2x_fastpath *fp = &bp->fp[index];
  6298. struct bnx2x_fp_txdata *txdata;
  6299. struct bnx2x_queue_state_params q_params = {0};
  6300. int rc, tx_index;
  6301. DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
  6302. q_params.q_obj = &fp->q_obj;
  6303. /* We want to wait for completion in this context */
  6304. __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
  6305. /* close tx-only connections */
  6306. for (tx_index = FIRST_TX_ONLY_COS_INDEX;
  6307. tx_index < fp->max_cos;
  6308. tx_index++){
  6309. /* ascertain this is a normal queue*/
  6310. txdata = &fp->txdata[tx_index];
  6311. DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
  6312. txdata->txq_index);
  6313. /* send halt terminate on tx-only connection */
  6314. q_params.cmd = BNX2X_Q_CMD_TERMINATE;
  6315. memset(&q_params.params.terminate, 0,
  6316. sizeof(q_params.params.terminate));
  6317. q_params.params.terminate.cid_index = tx_index;
  6318. rc = bnx2x_queue_state_change(bp, &q_params);
  6319. if (rc)
  6320. return rc;
  6321. /* send halt terminate on tx-only connection */
  6322. q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
  6323. memset(&q_params.params.cfc_del, 0,
  6324. sizeof(q_params.params.cfc_del));
  6325. q_params.params.cfc_del.cid_index = tx_index;
  6326. rc = bnx2x_queue_state_change(bp, &q_params);
  6327. if (rc)
  6328. return rc;
  6329. }
  6330. /* Stop the primary connection: */
  6331. /* ...halt the connection */
  6332. q_params.cmd = BNX2X_Q_CMD_HALT;
  6333. rc = bnx2x_queue_state_change(bp, &q_params);
  6334. if (rc)
  6335. return rc;
  6336. /* ...terminate the connection */
  6337. q_params.cmd = BNX2X_Q_CMD_TERMINATE;
  6338. memset(&q_params.params.terminate, 0,
  6339. sizeof(q_params.params.terminate));
  6340. q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
  6341. rc = bnx2x_queue_state_change(bp, &q_params);
  6342. if (rc)
  6343. return rc;
  6344. /* ...delete cfc entry */
  6345. q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
  6346. memset(&q_params.params.cfc_del, 0,
  6347. sizeof(q_params.params.cfc_del));
  6348. q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
  6349. return bnx2x_queue_state_change(bp, &q_params);
  6350. }
  6351. static void bnx2x_reset_func(struct bnx2x *bp)
  6352. {
  6353. int port = BP_PORT(bp);
  6354. int func = BP_FUNC(bp);
  6355. int i;
  6356. /* Disable the function in the FW */
  6357. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
  6358. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
  6359. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
  6360. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
  6361. /* FP SBs */
  6362. for_each_eth_queue(bp, i) {
  6363. struct bnx2x_fastpath *fp = &bp->fp[i];
  6364. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  6365. CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
  6366. SB_DISABLED);
  6367. }
  6368. #ifdef BCM_CNIC
  6369. /* CNIC SB */
  6370. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  6371. CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
  6372. SB_DISABLED);
  6373. #endif
  6374. /* SP SB */
  6375. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  6376. CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
  6377. SB_DISABLED);
  6378. for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
  6379. REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
  6380. 0);
  6381. /* Configure IGU */
  6382. if (bp->common.int_block == INT_BLOCK_HC) {
  6383. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
  6384. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
  6385. } else {
  6386. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
  6387. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
  6388. }
  6389. #ifdef BCM_CNIC
  6390. /* Disable Timer scan */
  6391. REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
  6392. /*
  6393. * Wait for at least 10ms and up to 2 second for the timers scan to
  6394. * complete
  6395. */
  6396. for (i = 0; i < 200; i++) {
  6397. msleep(10);
  6398. if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
  6399. break;
  6400. }
  6401. #endif
  6402. /* Clear ILT */
  6403. bnx2x_clear_func_ilt(bp, func);
  6404. /* Timers workaround bug for E2: if this is vnic-3,
  6405. * we need to set the entire ilt range for this timers.
  6406. */
  6407. if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
  6408. struct ilt_client_info ilt_cli;
  6409. /* use dummy TM client */
  6410. memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
  6411. ilt_cli.start = 0;
  6412. ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
  6413. ilt_cli.client_num = ILT_CLIENT_TM;
  6414. bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
  6415. }
  6416. /* this assumes that reset_port() called before reset_func()*/
  6417. if (!CHIP_IS_E1x(bp))
  6418. bnx2x_pf_disable(bp);
  6419. bp->dmae_ready = 0;
  6420. }
  6421. static void bnx2x_reset_port(struct bnx2x *bp)
  6422. {
  6423. int port = BP_PORT(bp);
  6424. u32 val;
  6425. /* Reset physical Link */
  6426. bnx2x__link_reset(bp);
  6427. REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
  6428. /* Do not rcv packets to BRB */
  6429. REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
  6430. /* Do not direct rcv packets that are not for MCP to the BRB */
  6431. REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
  6432. NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
  6433. /* Configure AEU */
  6434. REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
  6435. msleep(100);
  6436. /* Check for BRB port occupancy */
  6437. val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
  6438. if (val)
  6439. DP(NETIF_MSG_IFDOWN,
  6440. "BRB1 is not empty %d blocks are occupied\n", val);
  6441. /* TODO: Close Doorbell port? */
  6442. }
  6443. static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
  6444. {
  6445. struct bnx2x_func_state_params func_params = {0};
  6446. /* Prepare parameters for function state transitions */
  6447. __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
  6448. func_params.f_obj = &bp->func_obj;
  6449. func_params.cmd = BNX2X_F_CMD_HW_RESET;
  6450. func_params.params.hw_init.load_phase = load_code;
  6451. return bnx2x_func_state_change(bp, &func_params);
  6452. }
  6453. static inline int bnx2x_func_stop(struct bnx2x *bp)
  6454. {
  6455. struct bnx2x_func_state_params func_params = {0};
  6456. int rc;
  6457. /* Prepare parameters for function state transitions */
  6458. __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
  6459. func_params.f_obj = &bp->func_obj;
  6460. func_params.cmd = BNX2X_F_CMD_STOP;
  6461. /*
  6462. * Try to stop the function the 'good way'. If fails (in case
  6463. * of a parity error during bnx2x_chip_cleanup()) and we are
  6464. * not in a debug mode, perform a state transaction in order to
  6465. * enable further HW_RESET transaction.
  6466. */
  6467. rc = bnx2x_func_state_change(bp, &func_params);
  6468. if (rc) {
  6469. #ifdef BNX2X_STOP_ON_ERROR
  6470. return rc;
  6471. #else
  6472. BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
  6473. "transaction\n");
  6474. __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
  6475. return bnx2x_func_state_change(bp, &func_params);
  6476. #endif
  6477. }
  6478. return 0;
  6479. }
  6480. /**
  6481. * bnx2x_send_unload_req - request unload mode from the MCP.
  6482. *
  6483. * @bp: driver handle
  6484. * @unload_mode: requested function's unload mode
  6485. *
  6486. * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
  6487. */
  6488. u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
  6489. {
  6490. u32 reset_code = 0;
  6491. int port = BP_PORT(bp);
  6492. /* Select the UNLOAD request mode */
  6493. if (unload_mode == UNLOAD_NORMAL)
  6494. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
  6495. else if (bp->flags & NO_WOL_FLAG)
  6496. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
  6497. else if (bp->wol) {
  6498. u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
  6499. u8 *mac_addr = bp->dev->dev_addr;
  6500. u32 val;
  6501. u16 pmc;
  6502. /* The mac address is written to entries 1-4 to
  6503. * preserve entry 0 which is used by the PMF
  6504. */
  6505. u8 entry = (BP_VN(bp) + 1)*8;
  6506. val = (mac_addr[0] << 8) | mac_addr[1];
  6507. EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
  6508. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  6509. (mac_addr[4] << 8) | mac_addr[5];
  6510. EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
  6511. /* Enable the PME and clear the status */
  6512. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
  6513. pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
  6514. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
  6515. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
  6516. } else
  6517. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
  6518. /* Send the request to the MCP */
  6519. if (!BP_NOMCP(bp))
  6520. reset_code = bnx2x_fw_command(bp, reset_code, 0);
  6521. else {
  6522. int path = BP_PATH(bp);
  6523. DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] "
  6524. "%d, %d, %d\n",
  6525. path, load_count[path][0], load_count[path][1],
  6526. load_count[path][2]);
  6527. load_count[path][0]--;
  6528. load_count[path][1 + port]--;
  6529. DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] "
  6530. "%d, %d, %d\n",
  6531. path, load_count[path][0], load_count[path][1],
  6532. load_count[path][2]);
  6533. if (load_count[path][0] == 0)
  6534. reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
  6535. else if (load_count[path][1 + port] == 0)
  6536. reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
  6537. else
  6538. reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
  6539. }
  6540. return reset_code;
  6541. }
  6542. /**
  6543. * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
  6544. *
  6545. * @bp: driver handle
  6546. */
  6547. void bnx2x_send_unload_done(struct bnx2x *bp)
  6548. {
  6549. /* Report UNLOAD_DONE to MCP */
  6550. if (!BP_NOMCP(bp))
  6551. bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
  6552. }
  6553. static inline int bnx2x_func_wait_started(struct bnx2x *bp)
  6554. {
  6555. int tout = 50;
  6556. int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
  6557. if (!bp->port.pmf)
  6558. return 0;
  6559. /*
  6560. * (assumption: No Attention from MCP at this stage)
  6561. * PMF probably in the middle of TXdisable/enable transaction
  6562. * 1. Sync IRS for default SB
  6563. * 2. Sync SP queue - this guarantes us that attention handling started
  6564. * 3. Wait, that TXdisable/enable transaction completes
  6565. *
  6566. * 1+2 guranty that if DCBx attention was scheduled it already changed
  6567. * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
  6568. * received complettion for the transaction the state is TX_STOPPED.
  6569. * State will return to STARTED after completion of TX_STOPPED-->STARTED
  6570. * transaction.
  6571. */
  6572. /* make sure default SB ISR is done */
  6573. if (msix)
  6574. synchronize_irq(bp->msix_table[0].vector);
  6575. else
  6576. synchronize_irq(bp->pdev->irq);
  6577. flush_workqueue(bnx2x_wq);
  6578. while (bnx2x_func_get_state(bp, &bp->func_obj) !=
  6579. BNX2X_F_STATE_STARTED && tout--)
  6580. msleep(20);
  6581. if (bnx2x_func_get_state(bp, &bp->func_obj) !=
  6582. BNX2X_F_STATE_STARTED) {
  6583. #ifdef BNX2X_STOP_ON_ERROR
  6584. return -EBUSY;
  6585. #else
  6586. /*
  6587. * Failed to complete the transaction in a "good way"
  6588. * Force both transactions with CLR bit
  6589. */
  6590. struct bnx2x_func_state_params func_params = {0};
  6591. DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
  6592. "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
  6593. func_params.f_obj = &bp->func_obj;
  6594. __set_bit(RAMROD_DRV_CLR_ONLY,
  6595. &func_params.ramrod_flags);
  6596. /* STARTED-->TX_ST0PPED */
  6597. func_params.cmd = BNX2X_F_CMD_TX_STOP;
  6598. bnx2x_func_state_change(bp, &func_params);
  6599. /* TX_ST0PPED-->STARTED */
  6600. func_params.cmd = BNX2X_F_CMD_TX_START;
  6601. return bnx2x_func_state_change(bp, &func_params);
  6602. #endif
  6603. }
  6604. return 0;
  6605. }
  6606. void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
  6607. {
  6608. int port = BP_PORT(bp);
  6609. int i, rc = 0;
  6610. u8 cos;
  6611. struct bnx2x_mcast_ramrod_params rparam = {0};
  6612. u32 reset_code;
  6613. /* Wait until tx fastpath tasks complete */
  6614. for_each_tx_queue(bp, i) {
  6615. struct bnx2x_fastpath *fp = &bp->fp[i];
  6616. for_each_cos_in_tx_queue(fp, cos)
  6617. rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
  6618. #ifdef BNX2X_STOP_ON_ERROR
  6619. if (rc)
  6620. return;
  6621. #endif
  6622. }
  6623. /* Give HW time to discard old tx messages */
  6624. usleep_range(1000, 1000);
  6625. /* Clean all ETH MACs */
  6626. rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
  6627. if (rc < 0)
  6628. BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
  6629. /* Clean up UC list */
  6630. rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
  6631. true);
  6632. if (rc < 0)
  6633. BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
  6634. "%d\n", rc);
  6635. /* Disable LLH */
  6636. if (!CHIP_IS_E1(bp))
  6637. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
  6638. /* Set "drop all" (stop Rx).
  6639. * We need to take a netif_addr_lock() here in order to prevent
  6640. * a race between the completion code and this code.
  6641. */
  6642. netif_addr_lock_bh(bp->dev);
  6643. /* Schedule the rx_mode command */
  6644. if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
  6645. set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
  6646. else
  6647. bnx2x_set_storm_rx_mode(bp);
  6648. /* Cleanup multicast configuration */
  6649. rparam.mcast_obj = &bp->mcast_obj;
  6650. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
  6651. if (rc < 0)
  6652. BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
  6653. netif_addr_unlock_bh(bp->dev);
  6654. /*
  6655. * Send the UNLOAD_REQUEST to the MCP. This will return if
  6656. * this function should perform FUNC, PORT or COMMON HW
  6657. * reset.
  6658. */
  6659. reset_code = bnx2x_send_unload_req(bp, unload_mode);
  6660. /*
  6661. * (assumption: No Attention from MCP at this stage)
  6662. * PMF probably in the middle of TXdisable/enable transaction
  6663. */
  6664. rc = bnx2x_func_wait_started(bp);
  6665. if (rc) {
  6666. BNX2X_ERR("bnx2x_func_wait_started failed\n");
  6667. #ifdef BNX2X_STOP_ON_ERROR
  6668. return;
  6669. #endif
  6670. }
  6671. /* Close multi and leading connections
  6672. * Completions for ramrods are collected in a synchronous way
  6673. */
  6674. for_each_queue(bp, i)
  6675. if (bnx2x_stop_queue(bp, i))
  6676. #ifdef BNX2X_STOP_ON_ERROR
  6677. return;
  6678. #else
  6679. goto unload_error;
  6680. #endif
  6681. /* If SP settings didn't get completed so far - something
  6682. * very wrong has happen.
  6683. */
  6684. if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
  6685. BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
  6686. #ifndef BNX2X_STOP_ON_ERROR
  6687. unload_error:
  6688. #endif
  6689. rc = bnx2x_func_stop(bp);
  6690. if (rc) {
  6691. BNX2X_ERR("Function stop failed!\n");
  6692. #ifdef BNX2X_STOP_ON_ERROR
  6693. return;
  6694. #endif
  6695. }
  6696. /* Disable HW interrupts, NAPI */
  6697. bnx2x_netif_stop(bp, 1);
  6698. /* Release IRQs */
  6699. bnx2x_free_irq(bp);
  6700. /* Reset the chip */
  6701. rc = bnx2x_reset_hw(bp, reset_code);
  6702. if (rc)
  6703. BNX2X_ERR("HW_RESET failed\n");
  6704. /* Report UNLOAD_DONE to MCP */
  6705. bnx2x_send_unload_done(bp);
  6706. }
  6707. void bnx2x_disable_close_the_gate(struct bnx2x *bp)
  6708. {
  6709. u32 val;
  6710. DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
  6711. if (CHIP_IS_E1(bp)) {
  6712. int port = BP_PORT(bp);
  6713. u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  6714. MISC_REG_AEU_MASK_ATTN_FUNC_0;
  6715. val = REG_RD(bp, addr);
  6716. val &= ~(0x300);
  6717. REG_WR(bp, addr, val);
  6718. } else {
  6719. val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
  6720. val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
  6721. MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
  6722. REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
  6723. }
  6724. }
  6725. /* Close gates #2, #3 and #4: */
  6726. static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
  6727. {
  6728. u32 val;
  6729. /* Gates #2 and #4a are closed/opened for "not E1" only */
  6730. if (!CHIP_IS_E1(bp)) {
  6731. /* #4 */
  6732. REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
  6733. /* #2 */
  6734. REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
  6735. }
  6736. /* #3 */
  6737. if (CHIP_IS_E1x(bp)) {
  6738. /* Prevent interrupts from HC on both ports */
  6739. val = REG_RD(bp, HC_REG_CONFIG_1);
  6740. REG_WR(bp, HC_REG_CONFIG_1,
  6741. (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
  6742. (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
  6743. val = REG_RD(bp, HC_REG_CONFIG_0);
  6744. REG_WR(bp, HC_REG_CONFIG_0,
  6745. (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
  6746. (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
  6747. } else {
  6748. /* Prevent incomming interrupts in IGU */
  6749. val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
  6750. REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
  6751. (!close) ?
  6752. (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
  6753. (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
  6754. }
  6755. DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
  6756. close ? "closing" : "opening");
  6757. mmiowb();
  6758. }
  6759. #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
  6760. static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
  6761. {
  6762. /* Do some magic... */
  6763. u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
  6764. *magic_val = val & SHARED_MF_CLP_MAGIC;
  6765. MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
  6766. }
  6767. /**
  6768. * bnx2x_clp_reset_done - restore the value of the `magic' bit.
  6769. *
  6770. * @bp: driver handle
  6771. * @magic_val: old value of the `magic' bit.
  6772. */
  6773. static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
  6774. {
  6775. /* Restore the `magic' bit value... */
  6776. u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
  6777. MF_CFG_WR(bp, shared_mf_config.clp_mb,
  6778. (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
  6779. }
  6780. /**
  6781. * bnx2x_reset_mcp_prep - prepare for MCP reset.
  6782. *
  6783. * @bp: driver handle
  6784. * @magic_val: old value of 'magic' bit.
  6785. *
  6786. * Takes care of CLP configurations.
  6787. */
  6788. static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
  6789. {
  6790. u32 shmem;
  6791. u32 validity_offset;
  6792. DP(NETIF_MSG_HW, "Starting\n");
  6793. /* Set `magic' bit in order to save MF config */
  6794. if (!CHIP_IS_E1(bp))
  6795. bnx2x_clp_reset_prep(bp, magic_val);
  6796. /* Get shmem offset */
  6797. shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
  6798. validity_offset = offsetof(struct shmem_region, validity_map[0]);
  6799. /* Clear validity map flags */
  6800. if (shmem > 0)
  6801. REG_WR(bp, shmem + validity_offset, 0);
  6802. }
  6803. #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
  6804. #define MCP_ONE_TIMEOUT 100 /* 100 ms */
  6805. /**
  6806. * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
  6807. *
  6808. * @bp: driver handle
  6809. */
  6810. static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
  6811. {
  6812. /* special handling for emulation and FPGA,
  6813. wait 10 times longer */
  6814. if (CHIP_REV_IS_SLOW(bp))
  6815. msleep(MCP_ONE_TIMEOUT*10);
  6816. else
  6817. msleep(MCP_ONE_TIMEOUT);
  6818. }
  6819. /*
  6820. * initializes bp->common.shmem_base and waits for validity signature to appear
  6821. */
  6822. static int bnx2x_init_shmem(struct bnx2x *bp)
  6823. {
  6824. int cnt = 0;
  6825. u32 val = 0;
  6826. do {
  6827. bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
  6828. if (bp->common.shmem_base) {
  6829. val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
  6830. if (val & SHR_MEM_VALIDITY_MB)
  6831. return 0;
  6832. }
  6833. bnx2x_mcp_wait_one(bp);
  6834. } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
  6835. BNX2X_ERR("BAD MCP validity signature\n");
  6836. return -ENODEV;
  6837. }
  6838. static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
  6839. {
  6840. int rc = bnx2x_init_shmem(bp);
  6841. /* Restore the `magic' bit value */
  6842. if (!CHIP_IS_E1(bp))
  6843. bnx2x_clp_reset_done(bp, magic_val);
  6844. return rc;
  6845. }
  6846. static void bnx2x_pxp_prep(struct bnx2x *bp)
  6847. {
  6848. if (!CHIP_IS_E1(bp)) {
  6849. REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
  6850. REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
  6851. mmiowb();
  6852. }
  6853. }
  6854. /*
  6855. * Reset the whole chip except for:
  6856. * - PCIE core
  6857. * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
  6858. * one reset bit)
  6859. * - IGU
  6860. * - MISC (including AEU)
  6861. * - GRC
  6862. * - RBCN, RBCP
  6863. */
  6864. static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
  6865. {
  6866. u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
  6867. u32 global_bits2, stay_reset2;
  6868. /*
  6869. * Bits that have to be set in reset_mask2 if we want to reset 'global'
  6870. * (per chip) blocks.
  6871. */
  6872. global_bits2 =
  6873. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
  6874. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
  6875. /* Don't reset the following blocks */
  6876. not_reset_mask1 =
  6877. MISC_REGISTERS_RESET_REG_1_RST_HC |
  6878. MISC_REGISTERS_RESET_REG_1_RST_PXPV |
  6879. MISC_REGISTERS_RESET_REG_1_RST_PXP;
  6880. not_reset_mask2 =
  6881. MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
  6882. MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
  6883. MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
  6884. MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
  6885. MISC_REGISTERS_RESET_REG_2_RST_RBCN |
  6886. MISC_REGISTERS_RESET_REG_2_RST_GRC |
  6887. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
  6888. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
  6889. MISC_REGISTERS_RESET_REG_2_RST_ATC |
  6890. MISC_REGISTERS_RESET_REG_2_PGLC;
  6891. /*
  6892. * Keep the following blocks in reset:
  6893. * - all xxMACs are handled by the bnx2x_link code.
  6894. */
  6895. stay_reset2 =
  6896. MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
  6897. MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
  6898. MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
  6899. MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
  6900. MISC_REGISTERS_RESET_REG_2_UMAC0 |
  6901. MISC_REGISTERS_RESET_REG_2_UMAC1 |
  6902. MISC_REGISTERS_RESET_REG_2_XMAC |
  6903. MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
  6904. /* Full reset masks according to the chip */
  6905. reset_mask1 = 0xffffffff;
  6906. if (CHIP_IS_E1(bp))
  6907. reset_mask2 = 0xffff;
  6908. else if (CHIP_IS_E1H(bp))
  6909. reset_mask2 = 0x1ffff;
  6910. else if (CHIP_IS_E2(bp))
  6911. reset_mask2 = 0xfffff;
  6912. else /* CHIP_IS_E3 */
  6913. reset_mask2 = 0x3ffffff;
  6914. /* Don't reset global blocks unless we need to */
  6915. if (!global)
  6916. reset_mask2 &= ~global_bits2;
  6917. /*
  6918. * In case of attention in the QM, we need to reset PXP
  6919. * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
  6920. * because otherwise QM reset would release 'close the gates' shortly
  6921. * before resetting the PXP, then the PSWRQ would send a write
  6922. * request to PGLUE. Then when PXP is reset, PGLUE would try to
  6923. * read the payload data from PSWWR, but PSWWR would not
  6924. * respond. The write queue in PGLUE would stuck, dmae commands
  6925. * would not return. Therefore it's important to reset the second
  6926. * reset register (containing the
  6927. * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
  6928. * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
  6929. * bit).
  6930. */
  6931. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
  6932. reset_mask2 & (~not_reset_mask2));
  6933. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  6934. reset_mask1 & (~not_reset_mask1));
  6935. barrier();
  6936. mmiowb();
  6937. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
  6938. reset_mask2 & (~stay_reset2));
  6939. barrier();
  6940. mmiowb();
  6941. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
  6942. mmiowb();
  6943. }
  6944. /**
  6945. * bnx2x_er_poll_igu_vq - poll for pending writes bit.
  6946. * It should get cleared in no more than 1s.
  6947. *
  6948. * @bp: driver handle
  6949. *
  6950. * It should get cleared in no more than 1s. Returns 0 if
  6951. * pending writes bit gets cleared.
  6952. */
  6953. static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
  6954. {
  6955. u32 cnt = 1000;
  6956. u32 pend_bits = 0;
  6957. do {
  6958. pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
  6959. if (pend_bits == 0)
  6960. break;
  6961. usleep_range(1000, 1000);
  6962. } while (cnt-- > 0);
  6963. if (cnt <= 0) {
  6964. BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
  6965. pend_bits);
  6966. return -EBUSY;
  6967. }
  6968. return 0;
  6969. }
  6970. static int bnx2x_process_kill(struct bnx2x *bp, bool global)
  6971. {
  6972. int cnt = 1000;
  6973. u32 val = 0;
  6974. u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
  6975. /* Empty the Tetris buffer, wait for 1s */
  6976. do {
  6977. sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
  6978. blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
  6979. port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
  6980. port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
  6981. pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
  6982. if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
  6983. ((port_is_idle_0 & 0x1) == 0x1) &&
  6984. ((port_is_idle_1 & 0x1) == 0x1) &&
  6985. (pgl_exp_rom2 == 0xffffffff))
  6986. break;
  6987. usleep_range(1000, 1000);
  6988. } while (cnt-- > 0);
  6989. if (cnt <= 0) {
  6990. DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
  6991. " are still"
  6992. " outstanding read requests after 1s!\n");
  6993. DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
  6994. " port_is_idle_0=0x%08x,"
  6995. " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
  6996. sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
  6997. pgl_exp_rom2);
  6998. return -EAGAIN;
  6999. }
  7000. barrier();
  7001. /* Close gates #2, #3 and #4 */
  7002. bnx2x_set_234_gates(bp, true);
  7003. /* Poll for IGU VQs for 57712 and newer chips */
  7004. if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
  7005. return -EAGAIN;
  7006. /* TBD: Indicate that "process kill" is in progress to MCP */
  7007. /* Clear "unprepared" bit */
  7008. REG_WR(bp, MISC_REG_UNPREPARED, 0);
  7009. barrier();
  7010. /* Make sure all is written to the chip before the reset */
  7011. mmiowb();
  7012. /* Wait for 1ms to empty GLUE and PCI-E core queues,
  7013. * PSWHST, GRC and PSWRD Tetris buffer.
  7014. */
  7015. usleep_range(1000, 1000);
  7016. /* Prepare to chip reset: */
  7017. /* MCP */
  7018. if (global)
  7019. bnx2x_reset_mcp_prep(bp, &val);
  7020. /* PXP */
  7021. bnx2x_pxp_prep(bp);
  7022. barrier();
  7023. /* reset the chip */
  7024. bnx2x_process_kill_chip_reset(bp, global);
  7025. barrier();
  7026. /* Recover after reset: */
  7027. /* MCP */
  7028. if (global && bnx2x_reset_mcp_comp(bp, val))
  7029. return -EAGAIN;
  7030. /* TBD: Add resetting the NO_MCP mode DB here */
  7031. /* PXP */
  7032. bnx2x_pxp_prep(bp);
  7033. /* Open the gates #2, #3 and #4 */
  7034. bnx2x_set_234_gates(bp, false);
  7035. /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
  7036. * reset state, re-enable attentions. */
  7037. return 0;
  7038. }
  7039. int bnx2x_leader_reset(struct bnx2x *bp)
  7040. {
  7041. int rc = 0;
  7042. bool global = bnx2x_reset_is_global(bp);
  7043. /* Try to recover after the failure */
  7044. if (bnx2x_process_kill(bp, global)) {
  7045. netdev_err(bp->dev, "Something bad had happen on engine %d! "
  7046. "Aii!\n", BP_PATH(bp));
  7047. rc = -EAGAIN;
  7048. goto exit_leader_reset;
  7049. }
  7050. /*
  7051. * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
  7052. * state.
  7053. */
  7054. bnx2x_set_reset_done(bp);
  7055. if (global)
  7056. bnx2x_clear_reset_global(bp);
  7057. exit_leader_reset:
  7058. bp->is_leader = 0;
  7059. bnx2x_release_leader_lock(bp);
  7060. smp_mb();
  7061. return rc;
  7062. }
  7063. static inline void bnx2x_recovery_failed(struct bnx2x *bp)
  7064. {
  7065. netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
  7066. /* Disconnect this device */
  7067. netif_device_detach(bp->dev);
  7068. /*
  7069. * Block ifup for all function on this engine until "process kill"
  7070. * or power cycle.
  7071. */
  7072. bnx2x_set_reset_in_progress(bp);
  7073. /* Shut down the power */
  7074. bnx2x_set_power_state(bp, PCI_D3hot);
  7075. bp->recovery_state = BNX2X_RECOVERY_FAILED;
  7076. smp_mb();
  7077. }
  7078. /*
  7079. * Assumption: runs under rtnl lock. This together with the fact
  7080. * that it's called only from bnx2x_sp_rtnl() ensure that it
  7081. * will never be called when netif_running(bp->dev) is false.
  7082. */
  7083. static void bnx2x_parity_recover(struct bnx2x *bp)
  7084. {
  7085. bool global = false;
  7086. DP(NETIF_MSG_HW, "Handling parity\n");
  7087. while (1) {
  7088. switch (bp->recovery_state) {
  7089. case BNX2X_RECOVERY_INIT:
  7090. DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
  7091. bnx2x_chk_parity_attn(bp, &global, false);
  7092. /* Try to get a LEADER_LOCK HW lock */
  7093. if (bnx2x_trylock_leader_lock(bp)) {
  7094. bnx2x_set_reset_in_progress(bp);
  7095. /*
  7096. * Check if there is a global attention and if
  7097. * there was a global attention, set the global
  7098. * reset bit.
  7099. */
  7100. if (global)
  7101. bnx2x_set_reset_global(bp);
  7102. bp->is_leader = 1;
  7103. }
  7104. /* Stop the driver */
  7105. /* If interface has been removed - break */
  7106. if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
  7107. return;
  7108. bp->recovery_state = BNX2X_RECOVERY_WAIT;
  7109. /*
  7110. * Reset MCP command sequence number and MCP mail box
  7111. * sequence as we are going to reset the MCP.
  7112. */
  7113. if (global) {
  7114. bp->fw_seq = 0;
  7115. bp->fw_drv_pulse_wr_seq = 0;
  7116. }
  7117. /* Ensure "is_leader", MCP command sequence and
  7118. * "recovery_state" update values are seen on other
  7119. * CPUs.
  7120. */
  7121. smp_mb();
  7122. break;
  7123. case BNX2X_RECOVERY_WAIT:
  7124. DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
  7125. if (bp->is_leader) {
  7126. int other_engine = BP_PATH(bp) ? 0 : 1;
  7127. u32 other_load_counter =
  7128. bnx2x_get_load_cnt(bp, other_engine);
  7129. u32 load_counter =
  7130. bnx2x_get_load_cnt(bp, BP_PATH(bp));
  7131. global = bnx2x_reset_is_global(bp);
  7132. /*
  7133. * In case of a parity in a global block, let
  7134. * the first leader that performs a
  7135. * leader_reset() reset the global blocks in
  7136. * order to clear global attentions. Otherwise
  7137. * the the gates will remain closed for that
  7138. * engine.
  7139. */
  7140. if (load_counter ||
  7141. (global && other_load_counter)) {
  7142. /* Wait until all other functions get
  7143. * down.
  7144. */
  7145. schedule_delayed_work(&bp->sp_rtnl_task,
  7146. HZ/10);
  7147. return;
  7148. } else {
  7149. /* If all other functions got down -
  7150. * try to bring the chip back to
  7151. * normal. In any case it's an exit
  7152. * point for a leader.
  7153. */
  7154. if (bnx2x_leader_reset(bp)) {
  7155. bnx2x_recovery_failed(bp);
  7156. return;
  7157. }
  7158. /* If we are here, means that the
  7159. * leader has succeeded and doesn't
  7160. * want to be a leader any more. Try
  7161. * to continue as a none-leader.
  7162. */
  7163. break;
  7164. }
  7165. } else { /* non-leader */
  7166. if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
  7167. /* Try to get a LEADER_LOCK HW lock as
  7168. * long as a former leader may have
  7169. * been unloaded by the user or
  7170. * released a leadership by another
  7171. * reason.
  7172. */
  7173. if (bnx2x_trylock_leader_lock(bp)) {
  7174. /* I'm a leader now! Restart a
  7175. * switch case.
  7176. */
  7177. bp->is_leader = 1;
  7178. break;
  7179. }
  7180. schedule_delayed_work(&bp->sp_rtnl_task,
  7181. HZ/10);
  7182. return;
  7183. } else {
  7184. /*
  7185. * If there was a global attention, wait
  7186. * for it to be cleared.
  7187. */
  7188. if (bnx2x_reset_is_global(bp)) {
  7189. schedule_delayed_work(
  7190. &bp->sp_rtnl_task,
  7191. HZ/10);
  7192. return;
  7193. }
  7194. if (bnx2x_nic_load(bp, LOAD_NORMAL))
  7195. bnx2x_recovery_failed(bp);
  7196. else {
  7197. bp->recovery_state =
  7198. BNX2X_RECOVERY_DONE;
  7199. smp_mb();
  7200. }
  7201. return;
  7202. }
  7203. }
  7204. default:
  7205. return;
  7206. }
  7207. }
  7208. }
  7209. /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
  7210. * scheduled on a general queue in order to prevent a dead lock.
  7211. */
  7212. static void bnx2x_sp_rtnl_task(struct work_struct *work)
  7213. {
  7214. struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
  7215. rtnl_lock();
  7216. if (!netif_running(bp->dev))
  7217. goto sp_rtnl_exit;
  7218. /* if stop on error is defined no recovery flows should be executed */
  7219. #ifdef BNX2X_STOP_ON_ERROR
  7220. BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
  7221. "so reset not done to allow debug dump,\n"
  7222. "you will need to reboot when done\n");
  7223. goto sp_rtnl_not_reset;
  7224. #endif
  7225. if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
  7226. /*
  7227. * Clear all pending SP commands as we are going to reset the
  7228. * function anyway.
  7229. */
  7230. bp->sp_rtnl_state = 0;
  7231. smp_mb();
  7232. bnx2x_parity_recover(bp);
  7233. goto sp_rtnl_exit;
  7234. }
  7235. if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
  7236. /*
  7237. * Clear all pending SP commands as we are going to reset the
  7238. * function anyway.
  7239. */
  7240. bp->sp_rtnl_state = 0;
  7241. smp_mb();
  7242. bnx2x_nic_unload(bp, UNLOAD_NORMAL);
  7243. bnx2x_nic_load(bp, LOAD_NORMAL);
  7244. goto sp_rtnl_exit;
  7245. }
  7246. #ifdef BNX2X_STOP_ON_ERROR
  7247. sp_rtnl_not_reset:
  7248. #endif
  7249. if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
  7250. bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
  7251. /*
  7252. * in case of fan failure we need to reset id if the "stop on error"
  7253. * debug flag is set, since we trying to prevent permanent overheating
  7254. * damage
  7255. */
  7256. if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
  7257. DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
  7258. netif_device_detach(bp->dev);
  7259. bnx2x_close(bp->dev);
  7260. }
  7261. sp_rtnl_exit:
  7262. rtnl_unlock();
  7263. }
  7264. /* end of nic load/unload */
  7265. static void bnx2x_period_task(struct work_struct *work)
  7266. {
  7267. struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
  7268. if (!netif_running(bp->dev))
  7269. goto period_task_exit;
  7270. if (CHIP_REV_IS_SLOW(bp)) {
  7271. BNX2X_ERR("period task called on emulation, ignoring\n");
  7272. goto period_task_exit;
  7273. }
  7274. bnx2x_acquire_phy_lock(bp);
  7275. /*
  7276. * The barrier is needed to ensure the ordering between the writing to
  7277. * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
  7278. * the reading here.
  7279. */
  7280. smp_mb();
  7281. if (bp->port.pmf) {
  7282. bnx2x_period_func(&bp->link_params, &bp->link_vars);
  7283. /* Re-queue task in 1 sec */
  7284. queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
  7285. }
  7286. bnx2x_release_phy_lock(bp);
  7287. period_task_exit:
  7288. return;
  7289. }
  7290. /*
  7291. * Init service functions
  7292. */
  7293. static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
  7294. {
  7295. u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
  7296. u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
  7297. return base + (BP_ABS_FUNC(bp)) * stride;
  7298. }
  7299. static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
  7300. {
  7301. u32 reg = bnx2x_get_pretend_reg(bp);
  7302. /* Flush all outstanding writes */
  7303. mmiowb();
  7304. /* Pretend to be function 0 */
  7305. REG_WR(bp, reg, 0);
  7306. REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
  7307. /* From now we are in the "like-E1" mode */
  7308. bnx2x_int_disable(bp);
  7309. /* Flush all outstanding writes */
  7310. mmiowb();
  7311. /* Restore the original function */
  7312. REG_WR(bp, reg, BP_ABS_FUNC(bp));
  7313. REG_RD(bp, reg);
  7314. }
  7315. static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
  7316. {
  7317. if (CHIP_IS_E1(bp))
  7318. bnx2x_int_disable(bp);
  7319. else
  7320. bnx2x_undi_int_disable_e1h(bp);
  7321. }
  7322. static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
  7323. {
  7324. u32 val;
  7325. /* Check if there is any driver already loaded */
  7326. val = REG_RD(bp, MISC_REG_UNPREPARED);
  7327. if (val == 0x1) {
  7328. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  7329. /*
  7330. * Check if it is the UNDI driver
  7331. * UNDI driver initializes CID offset for normal bell to 0x7
  7332. */
  7333. val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
  7334. if (val == 0x7) {
  7335. u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
  7336. /* save our pf_num */
  7337. int orig_pf_num = bp->pf_num;
  7338. int port;
  7339. u32 swap_en, swap_val, value;
  7340. /* clear the UNDI indication */
  7341. REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
  7342. BNX2X_DEV_INFO("UNDI is active! reset device\n");
  7343. /* try unload UNDI on port 0 */
  7344. bp->pf_num = 0;
  7345. bp->fw_seq =
  7346. (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
  7347. DRV_MSG_SEQ_NUMBER_MASK);
  7348. reset_code = bnx2x_fw_command(bp, reset_code, 0);
  7349. /* if UNDI is loaded on the other port */
  7350. if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
  7351. /* send "DONE" for previous unload */
  7352. bnx2x_fw_command(bp,
  7353. DRV_MSG_CODE_UNLOAD_DONE, 0);
  7354. /* unload UNDI on port 1 */
  7355. bp->pf_num = 1;
  7356. bp->fw_seq =
  7357. (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
  7358. DRV_MSG_SEQ_NUMBER_MASK);
  7359. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
  7360. bnx2x_fw_command(bp, reset_code, 0);
  7361. }
  7362. bnx2x_undi_int_disable(bp);
  7363. port = BP_PORT(bp);
  7364. /* close input traffic and wait for it */
  7365. /* Do not rcv packets to BRB */
  7366. REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
  7367. NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
  7368. /* Do not direct rcv packets that are not for MCP to
  7369. * the BRB */
  7370. REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
  7371. NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
  7372. /* clear AEU */
  7373. REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  7374. MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
  7375. msleep(10);
  7376. /* save NIG port swap info */
  7377. swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
  7378. swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
  7379. /* reset device */
  7380. REG_WR(bp,
  7381. GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  7382. 0xd3ffffff);
  7383. value = 0x1400;
  7384. if (CHIP_IS_E3(bp)) {
  7385. value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
  7386. value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
  7387. }
  7388. REG_WR(bp,
  7389. GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
  7390. value);
  7391. /* take the NIG out of reset and restore swap values */
  7392. REG_WR(bp,
  7393. GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
  7394. MISC_REGISTERS_RESET_REG_1_RST_NIG);
  7395. REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
  7396. REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
  7397. /* send unload done to the MCP */
  7398. bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
  7399. /* restore our func and fw_seq */
  7400. bp->pf_num = orig_pf_num;
  7401. bp->fw_seq =
  7402. (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
  7403. DRV_MSG_SEQ_NUMBER_MASK);
  7404. }
  7405. /* now it's safe to release the lock */
  7406. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  7407. }
  7408. }
  7409. static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
  7410. {
  7411. u32 val, val2, val3, val4, id, boot_mode;
  7412. u16 pmc;
  7413. /* Get the chip revision id and number. */
  7414. /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
  7415. val = REG_RD(bp, MISC_REG_CHIP_NUM);
  7416. id = ((val & 0xffff) << 16);
  7417. val = REG_RD(bp, MISC_REG_CHIP_REV);
  7418. id |= ((val & 0xf) << 12);
  7419. val = REG_RD(bp, MISC_REG_CHIP_METAL);
  7420. id |= ((val & 0xff) << 4);
  7421. val = REG_RD(bp, MISC_REG_BOND_ID);
  7422. id |= (val & 0xf);
  7423. bp->common.chip_id = id;
  7424. /* Set doorbell size */
  7425. bp->db_size = (1 << BNX2X_DB_SHIFT);
  7426. if (!CHIP_IS_E1x(bp)) {
  7427. val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
  7428. if ((val & 1) == 0)
  7429. val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
  7430. else
  7431. val = (val >> 1) & 1;
  7432. BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
  7433. "2_PORT_MODE");
  7434. bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
  7435. CHIP_2_PORT_MODE;
  7436. if (CHIP_MODE_IS_4_PORT(bp))
  7437. bp->pfid = (bp->pf_num >> 1); /* 0..3 */
  7438. else
  7439. bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
  7440. } else {
  7441. bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
  7442. bp->pfid = bp->pf_num; /* 0..7 */
  7443. }
  7444. bp->link_params.chip_id = bp->common.chip_id;
  7445. BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
  7446. val = (REG_RD(bp, 0x2874) & 0x55);
  7447. if ((bp->common.chip_id & 0x1) ||
  7448. (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
  7449. bp->flags |= ONE_PORT_FLAG;
  7450. BNX2X_DEV_INFO("single port device\n");
  7451. }
  7452. val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
  7453. bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
  7454. (val & MCPR_NVM_CFG4_FLASH_SIZE));
  7455. BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
  7456. bp->common.flash_size, bp->common.flash_size);
  7457. bnx2x_init_shmem(bp);
  7458. bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
  7459. MISC_REG_GENERIC_CR_1 :
  7460. MISC_REG_GENERIC_CR_0));
  7461. bp->link_params.shmem_base = bp->common.shmem_base;
  7462. bp->link_params.shmem2_base = bp->common.shmem2_base;
  7463. BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
  7464. bp->common.shmem_base, bp->common.shmem2_base);
  7465. if (!bp->common.shmem_base) {
  7466. BNX2X_DEV_INFO("MCP not active\n");
  7467. bp->flags |= NO_MCP_FLAG;
  7468. return;
  7469. }
  7470. bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
  7471. BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
  7472. bp->link_params.hw_led_mode = ((bp->common.hw_config &
  7473. SHARED_HW_CFG_LED_MODE_MASK) >>
  7474. SHARED_HW_CFG_LED_MODE_SHIFT);
  7475. bp->link_params.feature_config_flags = 0;
  7476. val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
  7477. if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
  7478. bp->link_params.feature_config_flags |=
  7479. FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
  7480. else
  7481. bp->link_params.feature_config_flags &=
  7482. ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
  7483. val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
  7484. bp->common.bc_ver = val;
  7485. BNX2X_DEV_INFO("bc_ver %X\n", val);
  7486. if (val < BNX2X_BC_VER) {
  7487. /* for now only warn
  7488. * later we might need to enforce this */
  7489. BNX2X_ERR("This driver needs bc_ver %X but found %X, "
  7490. "please upgrade BC\n", BNX2X_BC_VER, val);
  7491. }
  7492. bp->link_params.feature_config_flags |=
  7493. (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
  7494. FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
  7495. bp->link_params.feature_config_flags |=
  7496. (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
  7497. FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
  7498. bp->link_params.feature_config_flags |=
  7499. (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
  7500. FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
  7501. bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
  7502. BC_SUPPORTS_PFC_STATS : 0;
  7503. boot_mode = SHMEM_RD(bp,
  7504. dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
  7505. PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
  7506. switch (boot_mode) {
  7507. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
  7508. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
  7509. break;
  7510. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
  7511. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
  7512. break;
  7513. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
  7514. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
  7515. break;
  7516. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
  7517. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
  7518. break;
  7519. }
  7520. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
  7521. bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
  7522. BNX2X_DEV_INFO("%sWoL capable\n",
  7523. (bp->flags & NO_WOL_FLAG) ? "not " : "");
  7524. val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
  7525. val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
  7526. val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
  7527. val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
  7528. dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
  7529. val, val2, val3, val4);
  7530. }
  7531. #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
  7532. #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
  7533. static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
  7534. {
  7535. int pfid = BP_FUNC(bp);
  7536. int igu_sb_id;
  7537. u32 val;
  7538. u8 fid, igu_sb_cnt = 0;
  7539. bp->igu_base_sb = 0xff;
  7540. if (CHIP_INT_MODE_IS_BC(bp)) {
  7541. int vn = BP_VN(bp);
  7542. igu_sb_cnt = bp->igu_sb_cnt;
  7543. bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
  7544. FP_SB_MAX_E1x;
  7545. bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
  7546. (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
  7547. return;
  7548. }
  7549. /* IGU in normal mode - read CAM */
  7550. for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
  7551. igu_sb_id++) {
  7552. val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
  7553. if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
  7554. continue;
  7555. fid = IGU_FID(val);
  7556. if ((fid & IGU_FID_ENCODE_IS_PF)) {
  7557. if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
  7558. continue;
  7559. if (IGU_VEC(val) == 0)
  7560. /* default status block */
  7561. bp->igu_dsb_id = igu_sb_id;
  7562. else {
  7563. if (bp->igu_base_sb == 0xff)
  7564. bp->igu_base_sb = igu_sb_id;
  7565. igu_sb_cnt++;
  7566. }
  7567. }
  7568. }
  7569. #ifdef CONFIG_PCI_MSI
  7570. /*
  7571. * It's expected that number of CAM entries for this functions is equal
  7572. * to the number evaluated based on the MSI-X table size. We want a
  7573. * harsh warning if these values are different!
  7574. */
  7575. WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
  7576. #endif
  7577. if (igu_sb_cnt == 0)
  7578. BNX2X_ERR("CAM configuration error\n");
  7579. }
  7580. static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
  7581. u32 switch_cfg)
  7582. {
  7583. int cfg_size = 0, idx, port = BP_PORT(bp);
  7584. /* Aggregation of supported attributes of all external phys */
  7585. bp->port.supported[0] = 0;
  7586. bp->port.supported[1] = 0;
  7587. switch (bp->link_params.num_phys) {
  7588. case 1:
  7589. bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
  7590. cfg_size = 1;
  7591. break;
  7592. case 2:
  7593. bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
  7594. cfg_size = 1;
  7595. break;
  7596. case 3:
  7597. if (bp->link_params.multi_phy_config &
  7598. PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
  7599. bp->port.supported[1] =
  7600. bp->link_params.phy[EXT_PHY1].supported;
  7601. bp->port.supported[0] =
  7602. bp->link_params.phy[EXT_PHY2].supported;
  7603. } else {
  7604. bp->port.supported[0] =
  7605. bp->link_params.phy[EXT_PHY1].supported;
  7606. bp->port.supported[1] =
  7607. bp->link_params.phy[EXT_PHY2].supported;
  7608. }
  7609. cfg_size = 2;
  7610. break;
  7611. }
  7612. if (!(bp->port.supported[0] || bp->port.supported[1])) {
  7613. BNX2X_ERR("NVRAM config error. BAD phy config."
  7614. "PHY1 config 0x%x, PHY2 config 0x%x\n",
  7615. SHMEM_RD(bp,
  7616. dev_info.port_hw_config[port].external_phy_config),
  7617. SHMEM_RD(bp,
  7618. dev_info.port_hw_config[port].external_phy_config2));
  7619. return;
  7620. }
  7621. if (CHIP_IS_E3(bp))
  7622. bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
  7623. else {
  7624. switch (switch_cfg) {
  7625. case SWITCH_CFG_1G:
  7626. bp->port.phy_addr = REG_RD(
  7627. bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
  7628. break;
  7629. case SWITCH_CFG_10G:
  7630. bp->port.phy_addr = REG_RD(
  7631. bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
  7632. break;
  7633. default:
  7634. BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
  7635. bp->port.link_config[0]);
  7636. return;
  7637. }
  7638. }
  7639. BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
  7640. /* mask what we support according to speed_cap_mask per configuration */
  7641. for (idx = 0; idx < cfg_size; idx++) {
  7642. if (!(bp->link_params.speed_cap_mask[idx] &
  7643. PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
  7644. bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
  7645. if (!(bp->link_params.speed_cap_mask[idx] &
  7646. PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
  7647. bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
  7648. if (!(bp->link_params.speed_cap_mask[idx] &
  7649. PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
  7650. bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
  7651. if (!(bp->link_params.speed_cap_mask[idx] &
  7652. PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
  7653. bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
  7654. if (!(bp->link_params.speed_cap_mask[idx] &
  7655. PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
  7656. bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
  7657. SUPPORTED_1000baseT_Full);
  7658. if (!(bp->link_params.speed_cap_mask[idx] &
  7659. PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
  7660. bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
  7661. if (!(bp->link_params.speed_cap_mask[idx] &
  7662. PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
  7663. bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
  7664. }
  7665. BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
  7666. bp->port.supported[1]);
  7667. }
  7668. static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
  7669. {
  7670. u32 link_config, idx, cfg_size = 0;
  7671. bp->port.advertising[0] = 0;
  7672. bp->port.advertising[1] = 0;
  7673. switch (bp->link_params.num_phys) {
  7674. case 1:
  7675. case 2:
  7676. cfg_size = 1;
  7677. break;
  7678. case 3:
  7679. cfg_size = 2;
  7680. break;
  7681. }
  7682. for (idx = 0; idx < cfg_size; idx++) {
  7683. bp->link_params.req_duplex[idx] = DUPLEX_FULL;
  7684. link_config = bp->port.link_config[idx];
  7685. switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
  7686. case PORT_FEATURE_LINK_SPEED_AUTO:
  7687. if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
  7688. bp->link_params.req_line_speed[idx] =
  7689. SPEED_AUTO_NEG;
  7690. bp->port.advertising[idx] |=
  7691. bp->port.supported[idx];
  7692. } else {
  7693. /* force 10G, no AN */
  7694. bp->link_params.req_line_speed[idx] =
  7695. SPEED_10000;
  7696. bp->port.advertising[idx] |=
  7697. (ADVERTISED_10000baseT_Full |
  7698. ADVERTISED_FIBRE);
  7699. continue;
  7700. }
  7701. break;
  7702. case PORT_FEATURE_LINK_SPEED_10M_FULL:
  7703. if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
  7704. bp->link_params.req_line_speed[idx] =
  7705. SPEED_10;
  7706. bp->port.advertising[idx] |=
  7707. (ADVERTISED_10baseT_Full |
  7708. ADVERTISED_TP);
  7709. } else {
  7710. BNX2X_ERR("NVRAM config error. "
  7711. "Invalid link_config 0x%x"
  7712. " speed_cap_mask 0x%x\n",
  7713. link_config,
  7714. bp->link_params.speed_cap_mask[idx]);
  7715. return;
  7716. }
  7717. break;
  7718. case PORT_FEATURE_LINK_SPEED_10M_HALF:
  7719. if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
  7720. bp->link_params.req_line_speed[idx] =
  7721. SPEED_10;
  7722. bp->link_params.req_duplex[idx] =
  7723. DUPLEX_HALF;
  7724. bp->port.advertising[idx] |=
  7725. (ADVERTISED_10baseT_Half |
  7726. ADVERTISED_TP);
  7727. } else {
  7728. BNX2X_ERR("NVRAM config error. "
  7729. "Invalid link_config 0x%x"
  7730. " speed_cap_mask 0x%x\n",
  7731. link_config,
  7732. bp->link_params.speed_cap_mask[idx]);
  7733. return;
  7734. }
  7735. break;
  7736. case PORT_FEATURE_LINK_SPEED_100M_FULL:
  7737. if (bp->port.supported[idx] &
  7738. SUPPORTED_100baseT_Full) {
  7739. bp->link_params.req_line_speed[idx] =
  7740. SPEED_100;
  7741. bp->port.advertising[idx] |=
  7742. (ADVERTISED_100baseT_Full |
  7743. ADVERTISED_TP);
  7744. } else {
  7745. BNX2X_ERR("NVRAM config error. "
  7746. "Invalid link_config 0x%x"
  7747. " speed_cap_mask 0x%x\n",
  7748. link_config,
  7749. bp->link_params.speed_cap_mask[idx]);
  7750. return;
  7751. }
  7752. break;
  7753. case PORT_FEATURE_LINK_SPEED_100M_HALF:
  7754. if (bp->port.supported[idx] &
  7755. SUPPORTED_100baseT_Half) {
  7756. bp->link_params.req_line_speed[idx] =
  7757. SPEED_100;
  7758. bp->link_params.req_duplex[idx] =
  7759. DUPLEX_HALF;
  7760. bp->port.advertising[idx] |=
  7761. (ADVERTISED_100baseT_Half |
  7762. ADVERTISED_TP);
  7763. } else {
  7764. BNX2X_ERR("NVRAM config error. "
  7765. "Invalid link_config 0x%x"
  7766. " speed_cap_mask 0x%x\n",
  7767. link_config,
  7768. bp->link_params.speed_cap_mask[idx]);
  7769. return;
  7770. }
  7771. break;
  7772. case PORT_FEATURE_LINK_SPEED_1G:
  7773. if (bp->port.supported[idx] &
  7774. SUPPORTED_1000baseT_Full) {
  7775. bp->link_params.req_line_speed[idx] =
  7776. SPEED_1000;
  7777. bp->port.advertising[idx] |=
  7778. (ADVERTISED_1000baseT_Full |
  7779. ADVERTISED_TP);
  7780. } else {
  7781. BNX2X_ERR("NVRAM config error. "
  7782. "Invalid link_config 0x%x"
  7783. " speed_cap_mask 0x%x\n",
  7784. link_config,
  7785. bp->link_params.speed_cap_mask[idx]);
  7786. return;
  7787. }
  7788. break;
  7789. case PORT_FEATURE_LINK_SPEED_2_5G:
  7790. if (bp->port.supported[idx] &
  7791. SUPPORTED_2500baseX_Full) {
  7792. bp->link_params.req_line_speed[idx] =
  7793. SPEED_2500;
  7794. bp->port.advertising[idx] |=
  7795. (ADVERTISED_2500baseX_Full |
  7796. ADVERTISED_TP);
  7797. } else {
  7798. BNX2X_ERR("NVRAM config error. "
  7799. "Invalid link_config 0x%x"
  7800. " speed_cap_mask 0x%x\n",
  7801. link_config,
  7802. bp->link_params.speed_cap_mask[idx]);
  7803. return;
  7804. }
  7805. break;
  7806. case PORT_FEATURE_LINK_SPEED_10G_CX4:
  7807. if (bp->port.supported[idx] &
  7808. SUPPORTED_10000baseT_Full) {
  7809. bp->link_params.req_line_speed[idx] =
  7810. SPEED_10000;
  7811. bp->port.advertising[idx] |=
  7812. (ADVERTISED_10000baseT_Full |
  7813. ADVERTISED_FIBRE);
  7814. } else {
  7815. BNX2X_ERR("NVRAM config error. "
  7816. "Invalid link_config 0x%x"
  7817. " speed_cap_mask 0x%x\n",
  7818. link_config,
  7819. bp->link_params.speed_cap_mask[idx]);
  7820. return;
  7821. }
  7822. break;
  7823. case PORT_FEATURE_LINK_SPEED_20G:
  7824. bp->link_params.req_line_speed[idx] = SPEED_20000;
  7825. break;
  7826. default:
  7827. BNX2X_ERR("NVRAM config error. "
  7828. "BAD link speed link_config 0x%x\n",
  7829. link_config);
  7830. bp->link_params.req_line_speed[idx] =
  7831. SPEED_AUTO_NEG;
  7832. bp->port.advertising[idx] =
  7833. bp->port.supported[idx];
  7834. break;
  7835. }
  7836. bp->link_params.req_flow_ctrl[idx] = (link_config &
  7837. PORT_FEATURE_FLOW_CONTROL_MASK);
  7838. if ((bp->link_params.req_flow_ctrl[idx] ==
  7839. BNX2X_FLOW_CTRL_AUTO) &&
  7840. !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
  7841. bp->link_params.req_flow_ctrl[idx] =
  7842. BNX2X_FLOW_CTRL_NONE;
  7843. }
  7844. BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
  7845. " 0x%x advertising 0x%x\n",
  7846. bp->link_params.req_line_speed[idx],
  7847. bp->link_params.req_duplex[idx],
  7848. bp->link_params.req_flow_ctrl[idx],
  7849. bp->port.advertising[idx]);
  7850. }
  7851. }
  7852. static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
  7853. {
  7854. mac_hi = cpu_to_be16(mac_hi);
  7855. mac_lo = cpu_to_be32(mac_lo);
  7856. memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
  7857. memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
  7858. }
  7859. static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
  7860. {
  7861. int port = BP_PORT(bp);
  7862. u32 config;
  7863. u32 ext_phy_type, ext_phy_config;
  7864. bp->link_params.bp = bp;
  7865. bp->link_params.port = port;
  7866. bp->link_params.lane_config =
  7867. SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
  7868. bp->link_params.speed_cap_mask[0] =
  7869. SHMEM_RD(bp,
  7870. dev_info.port_hw_config[port].speed_capability_mask);
  7871. bp->link_params.speed_cap_mask[1] =
  7872. SHMEM_RD(bp,
  7873. dev_info.port_hw_config[port].speed_capability_mask2);
  7874. bp->port.link_config[0] =
  7875. SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
  7876. bp->port.link_config[1] =
  7877. SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
  7878. bp->link_params.multi_phy_config =
  7879. SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
  7880. /* If the device is capable of WoL, set the default state according
  7881. * to the HW
  7882. */
  7883. config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
  7884. bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
  7885. (config & PORT_FEATURE_WOL_ENABLED));
  7886. BNX2X_DEV_INFO("lane_config 0x%08x "
  7887. "speed_cap_mask0 0x%08x link_config0 0x%08x\n",
  7888. bp->link_params.lane_config,
  7889. bp->link_params.speed_cap_mask[0],
  7890. bp->port.link_config[0]);
  7891. bp->link_params.switch_cfg = (bp->port.link_config[0] &
  7892. PORT_FEATURE_CONNECTED_SWITCH_MASK);
  7893. bnx2x_phy_probe(&bp->link_params);
  7894. bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
  7895. bnx2x_link_settings_requested(bp);
  7896. /*
  7897. * If connected directly, work with the internal PHY, otherwise, work
  7898. * with the external PHY
  7899. */
  7900. ext_phy_config =
  7901. SHMEM_RD(bp,
  7902. dev_info.port_hw_config[port].external_phy_config);
  7903. ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
  7904. if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
  7905. bp->mdio.prtad = bp->port.phy_addr;
  7906. else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
  7907. (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
  7908. bp->mdio.prtad =
  7909. XGXS_EXT_PHY_ADDR(ext_phy_config);
  7910. /*
  7911. * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
  7912. * In MF mode, it is set to cover self test cases
  7913. */
  7914. if (IS_MF(bp))
  7915. bp->port.need_hw_lock = 1;
  7916. else
  7917. bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
  7918. bp->common.shmem_base,
  7919. bp->common.shmem2_base);
  7920. }
  7921. void bnx2x_get_iscsi_info(struct bnx2x *bp)
  7922. {
  7923. #ifdef BCM_CNIC
  7924. int port = BP_PORT(bp);
  7925. u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
  7926. drv_lic_key[port].max_iscsi_conn);
  7927. /* Get the number of maximum allowed iSCSI connections */
  7928. bp->cnic_eth_dev.max_iscsi_conn =
  7929. (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
  7930. BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
  7931. BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
  7932. bp->cnic_eth_dev.max_iscsi_conn);
  7933. /*
  7934. * If maximum allowed number of connections is zero -
  7935. * disable the feature.
  7936. */
  7937. if (!bp->cnic_eth_dev.max_iscsi_conn)
  7938. bp->flags |= NO_ISCSI_FLAG;
  7939. #else
  7940. bp->flags |= NO_ISCSI_FLAG;
  7941. #endif
  7942. }
  7943. static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
  7944. {
  7945. #ifdef BCM_CNIC
  7946. int port = BP_PORT(bp);
  7947. int func = BP_ABS_FUNC(bp);
  7948. u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
  7949. drv_lic_key[port].max_fcoe_conn);
  7950. /* Get the number of maximum allowed FCoE connections */
  7951. bp->cnic_eth_dev.max_fcoe_conn =
  7952. (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
  7953. BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
  7954. /* Read the WWN: */
  7955. if (!IS_MF(bp)) {
  7956. /* Port info */
  7957. bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
  7958. SHMEM_RD(bp,
  7959. dev_info.port_hw_config[port].
  7960. fcoe_wwn_port_name_upper);
  7961. bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
  7962. SHMEM_RD(bp,
  7963. dev_info.port_hw_config[port].
  7964. fcoe_wwn_port_name_lower);
  7965. /* Node info */
  7966. bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
  7967. SHMEM_RD(bp,
  7968. dev_info.port_hw_config[port].
  7969. fcoe_wwn_node_name_upper);
  7970. bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
  7971. SHMEM_RD(bp,
  7972. dev_info.port_hw_config[port].
  7973. fcoe_wwn_node_name_lower);
  7974. } else if (!IS_MF_SD(bp)) {
  7975. u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
  7976. /*
  7977. * Read the WWN info only if the FCoE feature is enabled for
  7978. * this function.
  7979. */
  7980. if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
  7981. /* Port info */
  7982. bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
  7983. MF_CFG_RD(bp, func_ext_config[func].
  7984. fcoe_wwn_port_name_upper);
  7985. bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
  7986. MF_CFG_RD(bp, func_ext_config[func].
  7987. fcoe_wwn_port_name_lower);
  7988. /* Node info */
  7989. bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
  7990. MF_CFG_RD(bp, func_ext_config[func].
  7991. fcoe_wwn_node_name_upper);
  7992. bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
  7993. MF_CFG_RD(bp, func_ext_config[func].
  7994. fcoe_wwn_node_name_lower);
  7995. }
  7996. }
  7997. BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
  7998. /*
  7999. * If maximum allowed number of connections is zero -
  8000. * disable the feature.
  8001. */
  8002. if (!bp->cnic_eth_dev.max_fcoe_conn)
  8003. bp->flags |= NO_FCOE_FLAG;
  8004. #else
  8005. bp->flags |= NO_FCOE_FLAG;
  8006. #endif
  8007. }
  8008. static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
  8009. {
  8010. /*
  8011. * iSCSI may be dynamically disabled but reading
  8012. * info here we will decrease memory usage by driver
  8013. * if the feature is disabled for good
  8014. */
  8015. bnx2x_get_iscsi_info(bp);
  8016. bnx2x_get_fcoe_info(bp);
  8017. }
  8018. static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
  8019. {
  8020. u32 val, val2;
  8021. int func = BP_ABS_FUNC(bp);
  8022. int port = BP_PORT(bp);
  8023. #ifdef BCM_CNIC
  8024. u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
  8025. u8 *fip_mac = bp->fip_mac;
  8026. #endif
  8027. /* Zero primary MAC configuration */
  8028. memset(bp->dev->dev_addr, 0, ETH_ALEN);
  8029. if (BP_NOMCP(bp)) {
  8030. BNX2X_ERROR("warning: random MAC workaround active\n");
  8031. random_ether_addr(bp->dev->dev_addr);
  8032. } else if (IS_MF(bp)) {
  8033. val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
  8034. val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
  8035. if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
  8036. (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
  8037. bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
  8038. #ifdef BCM_CNIC
  8039. /*
  8040. * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
  8041. * FCoE MAC then the appropriate feature should be disabled.
  8042. */
  8043. if (IS_MF_SI(bp)) {
  8044. u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
  8045. if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
  8046. val2 = MF_CFG_RD(bp, func_ext_config[func].
  8047. iscsi_mac_addr_upper);
  8048. val = MF_CFG_RD(bp, func_ext_config[func].
  8049. iscsi_mac_addr_lower);
  8050. bnx2x_set_mac_buf(iscsi_mac, val, val2);
  8051. BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
  8052. iscsi_mac);
  8053. } else
  8054. bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
  8055. if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
  8056. val2 = MF_CFG_RD(bp, func_ext_config[func].
  8057. fcoe_mac_addr_upper);
  8058. val = MF_CFG_RD(bp, func_ext_config[func].
  8059. fcoe_mac_addr_lower);
  8060. bnx2x_set_mac_buf(fip_mac, val, val2);
  8061. BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
  8062. fip_mac);
  8063. } else
  8064. bp->flags |= NO_FCOE_FLAG;
  8065. } else { /* SD mode */
  8066. if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
  8067. /* use primary mac as iscsi mac */
  8068. memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
  8069. /* Zero primary MAC configuration */
  8070. memset(bp->dev->dev_addr, 0, ETH_ALEN);
  8071. BNX2X_DEV_INFO("SD ISCSI MODE\n");
  8072. BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
  8073. iscsi_mac);
  8074. }
  8075. }
  8076. #endif
  8077. } else {
  8078. /* in SF read MACs from port configuration */
  8079. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
  8080. val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
  8081. bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
  8082. #ifdef BCM_CNIC
  8083. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
  8084. iscsi_mac_upper);
  8085. val = SHMEM_RD(bp, dev_info.port_hw_config[port].
  8086. iscsi_mac_lower);
  8087. bnx2x_set_mac_buf(iscsi_mac, val, val2);
  8088. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
  8089. fcoe_fip_mac_upper);
  8090. val = SHMEM_RD(bp, dev_info.port_hw_config[port].
  8091. fcoe_fip_mac_lower);
  8092. bnx2x_set_mac_buf(fip_mac, val, val2);
  8093. #endif
  8094. }
  8095. memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
  8096. memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
  8097. #ifdef BCM_CNIC
  8098. /* Set the FCoE MAC in MF_SD mode */
  8099. if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
  8100. memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
  8101. /* Disable iSCSI if MAC configuration is
  8102. * invalid.
  8103. */
  8104. if (!is_valid_ether_addr(iscsi_mac)) {
  8105. bp->flags |= NO_ISCSI_FLAG;
  8106. memset(iscsi_mac, 0, ETH_ALEN);
  8107. }
  8108. /* Disable FCoE if MAC configuration is
  8109. * invalid.
  8110. */
  8111. if (!is_valid_ether_addr(fip_mac)) {
  8112. bp->flags |= NO_FCOE_FLAG;
  8113. memset(bp->fip_mac, 0, ETH_ALEN);
  8114. }
  8115. #endif
  8116. if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
  8117. dev_err(&bp->pdev->dev,
  8118. "bad Ethernet MAC address configuration: "
  8119. "%pM, change it manually before bringing up "
  8120. "the appropriate network interface\n",
  8121. bp->dev->dev_addr);
  8122. }
  8123. static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
  8124. {
  8125. int /*abs*/func = BP_ABS_FUNC(bp);
  8126. int vn;
  8127. u32 val = 0;
  8128. int rc = 0;
  8129. bnx2x_get_common_hwinfo(bp);
  8130. /*
  8131. * initialize IGU parameters
  8132. */
  8133. if (CHIP_IS_E1x(bp)) {
  8134. bp->common.int_block = INT_BLOCK_HC;
  8135. bp->igu_dsb_id = DEF_SB_IGU_ID;
  8136. bp->igu_base_sb = 0;
  8137. } else {
  8138. bp->common.int_block = INT_BLOCK_IGU;
  8139. /* do not allow device reset during IGU info preocessing */
  8140. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  8141. val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
  8142. if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
  8143. int tout = 5000;
  8144. BNX2X_DEV_INFO("FORCING Normal Mode\n");
  8145. val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
  8146. REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
  8147. REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
  8148. while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
  8149. tout--;
  8150. usleep_range(1000, 1000);
  8151. }
  8152. if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
  8153. dev_err(&bp->pdev->dev,
  8154. "FORCING Normal Mode failed!!!\n");
  8155. return -EPERM;
  8156. }
  8157. }
  8158. if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
  8159. BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
  8160. bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
  8161. } else
  8162. BNX2X_DEV_INFO("IGU Normal Mode\n");
  8163. bnx2x_get_igu_cam_info(bp);
  8164. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  8165. }
  8166. /*
  8167. * set base FW non-default (fast path) status block id, this value is
  8168. * used to initialize the fw_sb_id saved on the fp/queue structure to
  8169. * determine the id used by the FW.
  8170. */
  8171. if (CHIP_IS_E1x(bp))
  8172. bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
  8173. else /*
  8174. * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
  8175. * the same queue are indicated on the same IGU SB). So we prefer
  8176. * FW and IGU SBs to be the same value.
  8177. */
  8178. bp->base_fw_ndsb = bp->igu_base_sb;
  8179. BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
  8180. "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
  8181. bp->igu_sb_cnt, bp->base_fw_ndsb);
  8182. /*
  8183. * Initialize MF configuration
  8184. */
  8185. bp->mf_ov = 0;
  8186. bp->mf_mode = 0;
  8187. vn = BP_VN(bp);
  8188. if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
  8189. BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
  8190. bp->common.shmem2_base, SHMEM2_RD(bp, size),
  8191. (u32)offsetof(struct shmem2_region, mf_cfg_addr));
  8192. if (SHMEM2_HAS(bp, mf_cfg_addr))
  8193. bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
  8194. else
  8195. bp->common.mf_cfg_base = bp->common.shmem_base +
  8196. offsetof(struct shmem_region, func_mb) +
  8197. E1H_FUNC_MAX * sizeof(struct drv_func_mb);
  8198. /*
  8199. * get mf configuration:
  8200. * 1. existence of MF configuration
  8201. * 2. MAC address must be legal (check only upper bytes)
  8202. * for Switch-Independent mode;
  8203. * OVLAN must be legal for Switch-Dependent mode
  8204. * 3. SF_MODE configures specific MF mode
  8205. */
  8206. if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
  8207. /* get mf configuration */
  8208. val = SHMEM_RD(bp,
  8209. dev_info.shared_feature_config.config);
  8210. val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
  8211. switch (val) {
  8212. case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
  8213. val = MF_CFG_RD(bp, func_mf_config[func].
  8214. mac_upper);
  8215. /* check for legal mac (upper bytes)*/
  8216. if (val != 0xffff) {
  8217. bp->mf_mode = MULTI_FUNCTION_SI;
  8218. bp->mf_config[vn] = MF_CFG_RD(bp,
  8219. func_mf_config[func].config);
  8220. } else
  8221. BNX2X_DEV_INFO("illegal MAC address "
  8222. "for SI\n");
  8223. break;
  8224. case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
  8225. /* get OV configuration */
  8226. val = MF_CFG_RD(bp,
  8227. func_mf_config[FUNC_0].e1hov_tag);
  8228. val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
  8229. if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
  8230. bp->mf_mode = MULTI_FUNCTION_SD;
  8231. bp->mf_config[vn] = MF_CFG_RD(bp,
  8232. func_mf_config[func].config);
  8233. } else
  8234. BNX2X_DEV_INFO("illegal OV for SD\n");
  8235. break;
  8236. default:
  8237. /* Unknown configuration: reset mf_config */
  8238. bp->mf_config[vn] = 0;
  8239. BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
  8240. }
  8241. }
  8242. BNX2X_DEV_INFO("%s function mode\n",
  8243. IS_MF(bp) ? "multi" : "single");
  8244. switch (bp->mf_mode) {
  8245. case MULTI_FUNCTION_SD:
  8246. val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
  8247. FUNC_MF_CFG_E1HOV_TAG_MASK;
  8248. if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
  8249. bp->mf_ov = val;
  8250. bp->path_has_ovlan = true;
  8251. BNX2X_DEV_INFO("MF OV for func %d is %d "
  8252. "(0x%04x)\n", func, bp->mf_ov,
  8253. bp->mf_ov);
  8254. } else {
  8255. dev_err(&bp->pdev->dev,
  8256. "No valid MF OV for func %d, "
  8257. "aborting\n", func);
  8258. return -EPERM;
  8259. }
  8260. break;
  8261. case MULTI_FUNCTION_SI:
  8262. BNX2X_DEV_INFO("func %d is in MF "
  8263. "switch-independent mode\n", func);
  8264. break;
  8265. default:
  8266. if (vn) {
  8267. dev_err(&bp->pdev->dev,
  8268. "VN %d is in a single function mode, "
  8269. "aborting\n", vn);
  8270. return -EPERM;
  8271. }
  8272. break;
  8273. }
  8274. /* check if other port on the path needs ovlan:
  8275. * Since MF configuration is shared between ports
  8276. * Possible mixed modes are only
  8277. * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
  8278. */
  8279. if (CHIP_MODE_IS_4_PORT(bp) &&
  8280. !bp->path_has_ovlan &&
  8281. !IS_MF(bp) &&
  8282. bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
  8283. u8 other_port = !BP_PORT(bp);
  8284. u8 other_func = BP_PATH(bp) + 2*other_port;
  8285. val = MF_CFG_RD(bp,
  8286. func_mf_config[other_func].e1hov_tag);
  8287. if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
  8288. bp->path_has_ovlan = true;
  8289. }
  8290. }
  8291. /* adjust igu_sb_cnt to MF for E1x */
  8292. if (CHIP_IS_E1x(bp) && IS_MF(bp))
  8293. bp->igu_sb_cnt /= E1HVN_MAX;
  8294. /* port info */
  8295. bnx2x_get_port_hwinfo(bp);
  8296. /* Get MAC addresses */
  8297. bnx2x_get_mac_hwinfo(bp);
  8298. bnx2x_get_cnic_info(bp);
  8299. /* Get current FW pulse sequence */
  8300. if (!BP_NOMCP(bp)) {
  8301. int mb_idx = BP_FW_MB_IDX(bp);
  8302. bp->fw_drv_pulse_wr_seq =
  8303. (SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
  8304. DRV_PULSE_SEQ_MASK);
  8305. BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
  8306. }
  8307. return rc;
  8308. }
  8309. static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
  8310. {
  8311. int cnt, i, block_end, rodi;
  8312. char vpd_start[BNX2X_VPD_LEN+1];
  8313. char str_id_reg[VENDOR_ID_LEN+1];
  8314. char str_id_cap[VENDOR_ID_LEN+1];
  8315. char *vpd_data;
  8316. char *vpd_extended_data = NULL;
  8317. u8 len;
  8318. cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
  8319. memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
  8320. if (cnt < BNX2X_VPD_LEN)
  8321. goto out_not_found;
  8322. /* VPD RO tag should be first tag after identifier string, hence
  8323. * we should be able to find it in first BNX2X_VPD_LEN chars
  8324. */
  8325. i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
  8326. PCI_VPD_LRDT_RO_DATA);
  8327. if (i < 0)
  8328. goto out_not_found;
  8329. block_end = i + PCI_VPD_LRDT_TAG_SIZE +
  8330. pci_vpd_lrdt_size(&vpd_start[i]);
  8331. i += PCI_VPD_LRDT_TAG_SIZE;
  8332. if (block_end > BNX2X_VPD_LEN) {
  8333. vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
  8334. if (vpd_extended_data == NULL)
  8335. goto out_not_found;
  8336. /* read rest of vpd image into vpd_extended_data */
  8337. memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
  8338. cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
  8339. block_end - BNX2X_VPD_LEN,
  8340. vpd_extended_data + BNX2X_VPD_LEN);
  8341. if (cnt < (block_end - BNX2X_VPD_LEN))
  8342. goto out_not_found;
  8343. vpd_data = vpd_extended_data;
  8344. } else
  8345. vpd_data = vpd_start;
  8346. /* now vpd_data holds full vpd content in both cases */
  8347. rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
  8348. PCI_VPD_RO_KEYWORD_MFR_ID);
  8349. if (rodi < 0)
  8350. goto out_not_found;
  8351. len = pci_vpd_info_field_size(&vpd_data[rodi]);
  8352. if (len != VENDOR_ID_LEN)
  8353. goto out_not_found;
  8354. rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
  8355. /* vendor specific info */
  8356. snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
  8357. snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
  8358. if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
  8359. !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
  8360. rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
  8361. PCI_VPD_RO_KEYWORD_VENDOR0);
  8362. if (rodi >= 0) {
  8363. len = pci_vpd_info_field_size(&vpd_data[rodi]);
  8364. rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
  8365. if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
  8366. memcpy(bp->fw_ver, &vpd_data[rodi], len);
  8367. bp->fw_ver[len] = ' ';
  8368. }
  8369. }
  8370. kfree(vpd_extended_data);
  8371. return;
  8372. }
  8373. out_not_found:
  8374. kfree(vpd_extended_data);
  8375. return;
  8376. }
  8377. static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
  8378. {
  8379. u32 flags = 0;
  8380. if (CHIP_REV_IS_FPGA(bp))
  8381. SET_FLAGS(flags, MODE_FPGA);
  8382. else if (CHIP_REV_IS_EMUL(bp))
  8383. SET_FLAGS(flags, MODE_EMUL);
  8384. else
  8385. SET_FLAGS(flags, MODE_ASIC);
  8386. if (CHIP_MODE_IS_4_PORT(bp))
  8387. SET_FLAGS(flags, MODE_PORT4);
  8388. else
  8389. SET_FLAGS(flags, MODE_PORT2);
  8390. if (CHIP_IS_E2(bp))
  8391. SET_FLAGS(flags, MODE_E2);
  8392. else if (CHIP_IS_E3(bp)) {
  8393. SET_FLAGS(flags, MODE_E3);
  8394. if (CHIP_REV(bp) == CHIP_REV_Ax)
  8395. SET_FLAGS(flags, MODE_E3_A0);
  8396. else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
  8397. SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
  8398. }
  8399. if (IS_MF(bp)) {
  8400. SET_FLAGS(flags, MODE_MF);
  8401. switch (bp->mf_mode) {
  8402. case MULTI_FUNCTION_SD:
  8403. SET_FLAGS(flags, MODE_MF_SD);
  8404. break;
  8405. case MULTI_FUNCTION_SI:
  8406. SET_FLAGS(flags, MODE_MF_SI);
  8407. break;
  8408. }
  8409. } else
  8410. SET_FLAGS(flags, MODE_SF);
  8411. #if defined(__LITTLE_ENDIAN)
  8412. SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
  8413. #else /*(__BIG_ENDIAN)*/
  8414. SET_FLAGS(flags, MODE_BIG_ENDIAN);
  8415. #endif
  8416. INIT_MODE_FLAGS(bp) = flags;
  8417. }
  8418. static int __devinit bnx2x_init_bp(struct bnx2x *bp)
  8419. {
  8420. int func;
  8421. int timer_interval;
  8422. int rc;
  8423. mutex_init(&bp->port.phy_mutex);
  8424. mutex_init(&bp->fw_mb_mutex);
  8425. spin_lock_init(&bp->stats_lock);
  8426. #ifdef BCM_CNIC
  8427. mutex_init(&bp->cnic_mutex);
  8428. #endif
  8429. INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
  8430. INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
  8431. INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
  8432. rc = bnx2x_get_hwinfo(bp);
  8433. if (rc)
  8434. return rc;
  8435. bnx2x_set_modes_bitmap(bp);
  8436. rc = bnx2x_alloc_mem_bp(bp);
  8437. if (rc)
  8438. return rc;
  8439. bnx2x_read_fwinfo(bp);
  8440. func = BP_FUNC(bp);
  8441. /* need to reset chip if undi was active */
  8442. if (!BP_NOMCP(bp))
  8443. bnx2x_undi_unload(bp);
  8444. /* init fw_seq after undi_unload! */
  8445. if (!BP_NOMCP(bp)) {
  8446. bp->fw_seq =
  8447. (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
  8448. DRV_MSG_SEQ_NUMBER_MASK);
  8449. BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
  8450. }
  8451. if (CHIP_REV_IS_FPGA(bp))
  8452. dev_err(&bp->pdev->dev, "FPGA detected\n");
  8453. if (BP_NOMCP(bp) && (func == 0))
  8454. dev_err(&bp->pdev->dev, "MCP disabled, "
  8455. "must load devices in order!\n");
  8456. bp->multi_mode = multi_mode;
  8457. bp->disable_tpa = disable_tpa;
  8458. #ifdef BCM_CNIC
  8459. bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
  8460. #endif
  8461. /* Set TPA flags */
  8462. if (bp->disable_tpa) {
  8463. bp->flags &= ~TPA_ENABLE_FLAG;
  8464. bp->dev->features &= ~NETIF_F_LRO;
  8465. } else {
  8466. bp->flags |= TPA_ENABLE_FLAG;
  8467. bp->dev->features |= NETIF_F_LRO;
  8468. }
  8469. if (CHIP_IS_E1(bp))
  8470. bp->dropless_fc = 0;
  8471. else
  8472. bp->dropless_fc = dropless_fc;
  8473. bp->mrrs = mrrs;
  8474. bp->tx_ring_size = MAX_TX_AVAIL;
  8475. /* make sure that the numbers are in the right granularity */
  8476. bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
  8477. bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
  8478. timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
  8479. bp->current_interval = (poll ? poll : timer_interval);
  8480. init_timer(&bp->timer);
  8481. bp->timer.expires = jiffies + bp->current_interval;
  8482. bp->timer.data = (unsigned long) bp;
  8483. bp->timer.function = bnx2x_timer;
  8484. bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
  8485. bnx2x_dcbx_init_params(bp);
  8486. #ifdef BCM_CNIC
  8487. if (CHIP_IS_E1x(bp))
  8488. bp->cnic_base_cl_id = FP_SB_MAX_E1x;
  8489. else
  8490. bp->cnic_base_cl_id = FP_SB_MAX_E2;
  8491. #endif
  8492. /* multiple tx priority */
  8493. if (CHIP_IS_E1x(bp))
  8494. bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
  8495. if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
  8496. bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
  8497. if (CHIP_IS_E3B0(bp))
  8498. bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
  8499. return rc;
  8500. }
  8501. /****************************************************************************
  8502. * General service functions
  8503. ****************************************************************************/
  8504. /*
  8505. * net_device service functions
  8506. */
  8507. /* called with rtnl_lock */
  8508. static int bnx2x_open(struct net_device *dev)
  8509. {
  8510. struct bnx2x *bp = netdev_priv(dev);
  8511. bool global = false;
  8512. int other_engine = BP_PATH(bp) ? 0 : 1;
  8513. u32 other_load_counter, load_counter;
  8514. netif_carrier_off(dev);
  8515. bnx2x_set_power_state(bp, PCI_D0);
  8516. other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
  8517. load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
  8518. /*
  8519. * If parity had happen during the unload, then attentions
  8520. * and/or RECOVERY_IN_PROGRES may still be set. In this case we
  8521. * want the first function loaded on the current engine to
  8522. * complete the recovery.
  8523. */
  8524. if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
  8525. bnx2x_chk_parity_attn(bp, &global, true))
  8526. do {
  8527. /*
  8528. * If there are attentions and they are in a global
  8529. * blocks, set the GLOBAL_RESET bit regardless whether
  8530. * it will be this function that will complete the
  8531. * recovery or not.
  8532. */
  8533. if (global)
  8534. bnx2x_set_reset_global(bp);
  8535. /*
  8536. * Only the first function on the current engine should
  8537. * try to recover in open. In case of attentions in
  8538. * global blocks only the first in the chip should try
  8539. * to recover.
  8540. */
  8541. if ((!load_counter &&
  8542. (!global || !other_load_counter)) &&
  8543. bnx2x_trylock_leader_lock(bp) &&
  8544. !bnx2x_leader_reset(bp)) {
  8545. netdev_info(bp->dev, "Recovered in open\n");
  8546. break;
  8547. }
  8548. /* recovery has failed... */
  8549. bnx2x_set_power_state(bp, PCI_D3hot);
  8550. bp->recovery_state = BNX2X_RECOVERY_FAILED;
  8551. netdev_err(bp->dev, "Recovery flow hasn't been properly"
  8552. " completed yet. Try again later. If u still see this"
  8553. " message after a few retries then power cycle is"
  8554. " required.\n");
  8555. return -EAGAIN;
  8556. } while (0);
  8557. bp->recovery_state = BNX2X_RECOVERY_DONE;
  8558. return bnx2x_nic_load(bp, LOAD_OPEN);
  8559. }
  8560. /* called with rtnl_lock */
  8561. int bnx2x_close(struct net_device *dev)
  8562. {
  8563. struct bnx2x *bp = netdev_priv(dev);
  8564. /* Unload the driver, release IRQs */
  8565. bnx2x_nic_unload(bp, UNLOAD_CLOSE);
  8566. /* Power off */
  8567. bnx2x_set_power_state(bp, PCI_D3hot);
  8568. return 0;
  8569. }
  8570. static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
  8571. struct bnx2x_mcast_ramrod_params *p)
  8572. {
  8573. int mc_count = netdev_mc_count(bp->dev);
  8574. struct bnx2x_mcast_list_elem *mc_mac =
  8575. kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
  8576. struct netdev_hw_addr *ha;
  8577. if (!mc_mac)
  8578. return -ENOMEM;
  8579. INIT_LIST_HEAD(&p->mcast_list);
  8580. netdev_for_each_mc_addr(ha, bp->dev) {
  8581. mc_mac->mac = bnx2x_mc_addr(ha);
  8582. list_add_tail(&mc_mac->link, &p->mcast_list);
  8583. mc_mac++;
  8584. }
  8585. p->mcast_list_len = mc_count;
  8586. return 0;
  8587. }
  8588. static inline void bnx2x_free_mcast_macs_list(
  8589. struct bnx2x_mcast_ramrod_params *p)
  8590. {
  8591. struct bnx2x_mcast_list_elem *mc_mac =
  8592. list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
  8593. link);
  8594. WARN_ON(!mc_mac);
  8595. kfree(mc_mac);
  8596. }
  8597. /**
  8598. * bnx2x_set_uc_list - configure a new unicast MACs list.
  8599. *
  8600. * @bp: driver handle
  8601. *
  8602. * We will use zero (0) as a MAC type for these MACs.
  8603. */
  8604. static inline int bnx2x_set_uc_list(struct bnx2x *bp)
  8605. {
  8606. int rc;
  8607. struct net_device *dev = bp->dev;
  8608. struct netdev_hw_addr *ha;
  8609. struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
  8610. unsigned long ramrod_flags = 0;
  8611. /* First schedule a cleanup up of old configuration */
  8612. rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
  8613. if (rc < 0) {
  8614. BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
  8615. return rc;
  8616. }
  8617. netdev_for_each_uc_addr(ha, dev) {
  8618. rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
  8619. BNX2X_UC_LIST_MAC, &ramrod_flags);
  8620. if (rc < 0) {
  8621. BNX2X_ERR("Failed to schedule ADD operations: %d\n",
  8622. rc);
  8623. return rc;
  8624. }
  8625. }
  8626. /* Execute the pending commands */
  8627. __set_bit(RAMROD_CONT, &ramrod_flags);
  8628. return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
  8629. BNX2X_UC_LIST_MAC, &ramrod_flags);
  8630. }
  8631. static inline int bnx2x_set_mc_list(struct bnx2x *bp)
  8632. {
  8633. struct net_device *dev = bp->dev;
  8634. struct bnx2x_mcast_ramrod_params rparam = {0};
  8635. int rc = 0;
  8636. rparam.mcast_obj = &bp->mcast_obj;
  8637. /* first, clear all configured multicast MACs */
  8638. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
  8639. if (rc < 0) {
  8640. BNX2X_ERR("Failed to clear multicast "
  8641. "configuration: %d\n", rc);
  8642. return rc;
  8643. }
  8644. /* then, configure a new MACs list */
  8645. if (netdev_mc_count(dev)) {
  8646. rc = bnx2x_init_mcast_macs_list(bp, &rparam);
  8647. if (rc) {
  8648. BNX2X_ERR("Failed to create multicast MACs "
  8649. "list: %d\n", rc);
  8650. return rc;
  8651. }
  8652. /* Now add the new MACs */
  8653. rc = bnx2x_config_mcast(bp, &rparam,
  8654. BNX2X_MCAST_CMD_ADD);
  8655. if (rc < 0)
  8656. BNX2X_ERR("Failed to set a new multicast "
  8657. "configuration: %d\n", rc);
  8658. bnx2x_free_mcast_macs_list(&rparam);
  8659. }
  8660. return rc;
  8661. }
  8662. /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
  8663. void bnx2x_set_rx_mode(struct net_device *dev)
  8664. {
  8665. struct bnx2x *bp = netdev_priv(dev);
  8666. u32 rx_mode = BNX2X_RX_MODE_NORMAL;
  8667. if (bp->state != BNX2X_STATE_OPEN) {
  8668. DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
  8669. return;
  8670. }
  8671. DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
  8672. if (dev->flags & IFF_PROMISC)
  8673. rx_mode = BNX2X_RX_MODE_PROMISC;
  8674. else if ((dev->flags & IFF_ALLMULTI) ||
  8675. ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
  8676. CHIP_IS_E1(bp)))
  8677. rx_mode = BNX2X_RX_MODE_ALLMULTI;
  8678. else {
  8679. /* some multicasts */
  8680. if (bnx2x_set_mc_list(bp) < 0)
  8681. rx_mode = BNX2X_RX_MODE_ALLMULTI;
  8682. if (bnx2x_set_uc_list(bp) < 0)
  8683. rx_mode = BNX2X_RX_MODE_PROMISC;
  8684. }
  8685. bp->rx_mode = rx_mode;
  8686. #ifdef BCM_CNIC
  8687. /* handle ISCSI SD mode */
  8688. if (IS_MF_ISCSI_SD(bp))
  8689. bp->rx_mode = BNX2X_RX_MODE_NONE;
  8690. #endif
  8691. /* Schedule the rx_mode command */
  8692. if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
  8693. set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
  8694. return;
  8695. }
  8696. bnx2x_set_storm_rx_mode(bp);
  8697. }
  8698. /* called with rtnl_lock */
  8699. static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
  8700. int devad, u16 addr)
  8701. {
  8702. struct bnx2x *bp = netdev_priv(netdev);
  8703. u16 value;
  8704. int rc;
  8705. DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
  8706. prtad, devad, addr);
  8707. /* The HW expects different devad if CL22 is used */
  8708. devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
  8709. bnx2x_acquire_phy_lock(bp);
  8710. rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
  8711. bnx2x_release_phy_lock(bp);
  8712. DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
  8713. if (!rc)
  8714. rc = value;
  8715. return rc;
  8716. }
  8717. /* called with rtnl_lock */
  8718. static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
  8719. u16 addr, u16 value)
  8720. {
  8721. struct bnx2x *bp = netdev_priv(netdev);
  8722. int rc;
  8723. DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
  8724. " value 0x%x\n", prtad, devad, addr, value);
  8725. /* The HW expects different devad if CL22 is used */
  8726. devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
  8727. bnx2x_acquire_phy_lock(bp);
  8728. rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
  8729. bnx2x_release_phy_lock(bp);
  8730. return rc;
  8731. }
  8732. /* called with rtnl_lock */
  8733. static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  8734. {
  8735. struct bnx2x *bp = netdev_priv(dev);
  8736. struct mii_ioctl_data *mdio = if_mii(ifr);
  8737. DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
  8738. mdio->phy_id, mdio->reg_num, mdio->val_in);
  8739. if (!netif_running(dev))
  8740. return -EAGAIN;
  8741. return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
  8742. }
  8743. #ifdef CONFIG_NET_POLL_CONTROLLER
  8744. static void poll_bnx2x(struct net_device *dev)
  8745. {
  8746. struct bnx2x *bp = netdev_priv(dev);
  8747. disable_irq(bp->pdev->irq);
  8748. bnx2x_interrupt(bp->pdev->irq, dev);
  8749. enable_irq(bp->pdev->irq);
  8750. }
  8751. #endif
  8752. static int bnx2x_validate_addr(struct net_device *dev)
  8753. {
  8754. struct bnx2x *bp = netdev_priv(dev);
  8755. if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
  8756. return -EADDRNOTAVAIL;
  8757. return 0;
  8758. }
  8759. static const struct net_device_ops bnx2x_netdev_ops = {
  8760. .ndo_open = bnx2x_open,
  8761. .ndo_stop = bnx2x_close,
  8762. .ndo_start_xmit = bnx2x_start_xmit,
  8763. .ndo_select_queue = bnx2x_select_queue,
  8764. .ndo_set_rx_mode = bnx2x_set_rx_mode,
  8765. .ndo_set_mac_address = bnx2x_change_mac_addr,
  8766. .ndo_validate_addr = bnx2x_validate_addr,
  8767. .ndo_do_ioctl = bnx2x_ioctl,
  8768. .ndo_change_mtu = bnx2x_change_mtu,
  8769. .ndo_fix_features = bnx2x_fix_features,
  8770. .ndo_set_features = bnx2x_set_features,
  8771. .ndo_tx_timeout = bnx2x_tx_timeout,
  8772. #ifdef CONFIG_NET_POLL_CONTROLLER
  8773. .ndo_poll_controller = poll_bnx2x,
  8774. #endif
  8775. .ndo_setup_tc = bnx2x_setup_tc,
  8776. #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
  8777. .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
  8778. #endif
  8779. };
  8780. static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
  8781. {
  8782. struct device *dev = &bp->pdev->dev;
  8783. if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
  8784. bp->flags |= USING_DAC_FLAG;
  8785. if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
  8786. dev_err(dev, "dma_set_coherent_mask failed, "
  8787. "aborting\n");
  8788. return -EIO;
  8789. }
  8790. } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
  8791. dev_err(dev, "System does not support DMA, aborting\n");
  8792. return -EIO;
  8793. }
  8794. return 0;
  8795. }
  8796. static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
  8797. struct net_device *dev,
  8798. unsigned long board_type)
  8799. {
  8800. struct bnx2x *bp;
  8801. int rc;
  8802. u32 pci_cfg_dword;
  8803. bool chip_is_e1x = (board_type == BCM57710 ||
  8804. board_type == BCM57711 ||
  8805. board_type == BCM57711E);
  8806. SET_NETDEV_DEV(dev, &pdev->dev);
  8807. bp = netdev_priv(dev);
  8808. bp->dev = dev;
  8809. bp->pdev = pdev;
  8810. bp->flags = 0;
  8811. rc = pci_enable_device(pdev);
  8812. if (rc) {
  8813. dev_err(&bp->pdev->dev,
  8814. "Cannot enable PCI device, aborting\n");
  8815. goto err_out;
  8816. }
  8817. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  8818. dev_err(&bp->pdev->dev,
  8819. "Cannot find PCI device base address, aborting\n");
  8820. rc = -ENODEV;
  8821. goto err_out_disable;
  8822. }
  8823. if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8824. dev_err(&bp->pdev->dev, "Cannot find second PCI device"
  8825. " base address, aborting\n");
  8826. rc = -ENODEV;
  8827. goto err_out_disable;
  8828. }
  8829. if (atomic_read(&pdev->enable_cnt) == 1) {
  8830. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  8831. if (rc) {
  8832. dev_err(&bp->pdev->dev,
  8833. "Cannot obtain PCI resources, aborting\n");
  8834. goto err_out_disable;
  8835. }
  8836. pci_set_master(pdev);
  8837. pci_save_state(pdev);
  8838. }
  8839. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  8840. if (bp->pm_cap == 0) {
  8841. dev_err(&bp->pdev->dev,
  8842. "Cannot find power management capability, aborting\n");
  8843. rc = -EIO;
  8844. goto err_out_release;
  8845. }
  8846. if (!pci_is_pcie(pdev)) {
  8847. dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
  8848. rc = -EIO;
  8849. goto err_out_release;
  8850. }
  8851. rc = bnx2x_set_coherency_mask(bp);
  8852. if (rc)
  8853. goto err_out_release;
  8854. dev->mem_start = pci_resource_start(pdev, 0);
  8855. dev->base_addr = dev->mem_start;
  8856. dev->mem_end = pci_resource_end(pdev, 0);
  8857. dev->irq = pdev->irq;
  8858. bp->regview = pci_ioremap_bar(pdev, 0);
  8859. if (!bp->regview) {
  8860. dev_err(&bp->pdev->dev,
  8861. "Cannot map register space, aborting\n");
  8862. rc = -ENOMEM;
  8863. goto err_out_release;
  8864. }
  8865. /* In E1/E1H use pci device function given by kernel.
  8866. * In E2/E3 read physical function from ME register since these chips
  8867. * support Physical Device Assignment where kernel BDF maybe arbitrary
  8868. * (depending on hypervisor).
  8869. */
  8870. if (chip_is_e1x)
  8871. bp->pf_num = PCI_FUNC(pdev->devfn);
  8872. else {/* chip is E2/3*/
  8873. pci_read_config_dword(bp->pdev,
  8874. PCICFG_ME_REGISTER, &pci_cfg_dword);
  8875. bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
  8876. ME_REG_ABS_PF_NUM_SHIFT);
  8877. }
  8878. DP(BNX2X_MSG_SP, "me reg PF num: %d\n", bp->pf_num);
  8879. bnx2x_set_power_state(bp, PCI_D0);
  8880. /* clean indirect addresses */
  8881. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
  8882. PCICFG_VENDOR_ID_OFFSET);
  8883. /*
  8884. * Clean the following indirect addresses for all functions since it
  8885. * is not used by the driver.
  8886. */
  8887. REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
  8888. REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
  8889. REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
  8890. REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
  8891. if (chip_is_e1x) {
  8892. REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
  8893. REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
  8894. REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
  8895. REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
  8896. }
  8897. /*
  8898. * Enable internal target-read (in case we are probed after PF FLR).
  8899. * Must be done prior to any BAR read access. Only for 57712 and up
  8900. */
  8901. if (!chip_is_e1x)
  8902. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
  8903. /* Reset the load counter */
  8904. bnx2x_clear_load_cnt(bp);
  8905. dev->watchdog_timeo = TX_TIMEOUT;
  8906. dev->netdev_ops = &bnx2x_netdev_ops;
  8907. bnx2x_set_ethtool_ops(dev);
  8908. dev->priv_flags |= IFF_UNICAST_FLT;
  8909. dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  8910. NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
  8911. NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
  8912. dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  8913. NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
  8914. dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
  8915. if (bp->flags & USING_DAC_FLAG)
  8916. dev->features |= NETIF_F_HIGHDMA;
  8917. /* Add Loopback capability to the device */
  8918. dev->hw_features |= NETIF_F_LOOPBACK;
  8919. #ifdef BCM_DCBNL
  8920. dev->dcbnl_ops = &bnx2x_dcbnl_ops;
  8921. #endif
  8922. /* get_port_hwinfo() will set prtad and mmds properly */
  8923. bp->mdio.prtad = MDIO_PRTAD_NONE;
  8924. bp->mdio.mmds = 0;
  8925. bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
  8926. bp->mdio.dev = dev;
  8927. bp->mdio.mdio_read = bnx2x_mdio_read;
  8928. bp->mdio.mdio_write = bnx2x_mdio_write;
  8929. return 0;
  8930. err_out_release:
  8931. if (atomic_read(&pdev->enable_cnt) == 1)
  8932. pci_release_regions(pdev);
  8933. err_out_disable:
  8934. pci_disable_device(pdev);
  8935. pci_set_drvdata(pdev, NULL);
  8936. err_out:
  8937. return rc;
  8938. }
  8939. static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
  8940. int *width, int *speed)
  8941. {
  8942. u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
  8943. *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
  8944. /* return value of 1=2.5GHz 2=5GHz */
  8945. *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
  8946. }
  8947. static int bnx2x_check_firmware(struct bnx2x *bp)
  8948. {
  8949. const struct firmware *firmware = bp->firmware;
  8950. struct bnx2x_fw_file_hdr *fw_hdr;
  8951. struct bnx2x_fw_file_section *sections;
  8952. u32 offset, len, num_ops;
  8953. u16 *ops_offsets;
  8954. int i;
  8955. const u8 *fw_ver;
  8956. if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
  8957. return -EINVAL;
  8958. fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
  8959. sections = (struct bnx2x_fw_file_section *)fw_hdr;
  8960. /* Make sure none of the offsets and sizes make us read beyond
  8961. * the end of the firmware data */
  8962. for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
  8963. offset = be32_to_cpu(sections[i].offset);
  8964. len = be32_to_cpu(sections[i].len);
  8965. if (offset + len > firmware->size) {
  8966. dev_err(&bp->pdev->dev,
  8967. "Section %d length is out of bounds\n", i);
  8968. return -EINVAL;
  8969. }
  8970. }
  8971. /* Likewise for the init_ops offsets */
  8972. offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
  8973. ops_offsets = (u16 *)(firmware->data + offset);
  8974. num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
  8975. for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
  8976. if (be16_to_cpu(ops_offsets[i]) > num_ops) {
  8977. dev_err(&bp->pdev->dev,
  8978. "Section offset %d is out of bounds\n", i);
  8979. return -EINVAL;
  8980. }
  8981. }
  8982. /* Check FW version */
  8983. offset = be32_to_cpu(fw_hdr->fw_version.offset);
  8984. fw_ver = firmware->data + offset;
  8985. if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
  8986. (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
  8987. (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
  8988. (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
  8989. dev_err(&bp->pdev->dev,
  8990. "Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
  8991. fw_ver[0], fw_ver[1], fw_ver[2],
  8992. fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
  8993. BCM_5710_FW_MINOR_VERSION,
  8994. BCM_5710_FW_REVISION_VERSION,
  8995. BCM_5710_FW_ENGINEERING_VERSION);
  8996. return -EINVAL;
  8997. }
  8998. return 0;
  8999. }
  9000. static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
  9001. {
  9002. const __be32 *source = (const __be32 *)_source;
  9003. u32 *target = (u32 *)_target;
  9004. u32 i;
  9005. for (i = 0; i < n/4; i++)
  9006. target[i] = be32_to_cpu(source[i]);
  9007. }
  9008. /*
  9009. Ops array is stored in the following format:
  9010. {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
  9011. */
  9012. static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
  9013. {
  9014. const __be32 *source = (const __be32 *)_source;
  9015. struct raw_op *target = (struct raw_op *)_target;
  9016. u32 i, j, tmp;
  9017. for (i = 0, j = 0; i < n/8; i++, j += 2) {
  9018. tmp = be32_to_cpu(source[j]);
  9019. target[i].op = (tmp >> 24) & 0xff;
  9020. target[i].offset = tmp & 0xffffff;
  9021. target[i].raw_data = be32_to_cpu(source[j + 1]);
  9022. }
  9023. }
  9024. /**
  9025. * IRO array is stored in the following format:
  9026. * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
  9027. */
  9028. static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
  9029. {
  9030. const __be32 *source = (const __be32 *)_source;
  9031. struct iro *target = (struct iro *)_target;
  9032. u32 i, j, tmp;
  9033. for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
  9034. target[i].base = be32_to_cpu(source[j]);
  9035. j++;
  9036. tmp = be32_to_cpu(source[j]);
  9037. target[i].m1 = (tmp >> 16) & 0xffff;
  9038. target[i].m2 = tmp & 0xffff;
  9039. j++;
  9040. tmp = be32_to_cpu(source[j]);
  9041. target[i].m3 = (tmp >> 16) & 0xffff;
  9042. target[i].size = tmp & 0xffff;
  9043. j++;
  9044. }
  9045. }
  9046. static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
  9047. {
  9048. const __be16 *source = (const __be16 *)_source;
  9049. u16 *target = (u16 *)_target;
  9050. u32 i;
  9051. for (i = 0; i < n/2; i++)
  9052. target[i] = be16_to_cpu(source[i]);
  9053. }
  9054. #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
  9055. do { \
  9056. u32 len = be32_to_cpu(fw_hdr->arr.len); \
  9057. bp->arr = kmalloc(len, GFP_KERNEL); \
  9058. if (!bp->arr) { \
  9059. pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
  9060. goto lbl; \
  9061. } \
  9062. func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
  9063. (u8 *)bp->arr, len); \
  9064. } while (0)
  9065. int bnx2x_init_firmware(struct bnx2x *bp)
  9066. {
  9067. struct bnx2x_fw_file_hdr *fw_hdr;
  9068. int rc;
  9069. if (!bp->firmware) {
  9070. const char *fw_file_name;
  9071. if (CHIP_IS_E1(bp))
  9072. fw_file_name = FW_FILE_NAME_E1;
  9073. else if (CHIP_IS_E1H(bp))
  9074. fw_file_name = FW_FILE_NAME_E1H;
  9075. else if (!CHIP_IS_E1x(bp))
  9076. fw_file_name = FW_FILE_NAME_E2;
  9077. else {
  9078. BNX2X_ERR("Unsupported chip revision\n");
  9079. return -EINVAL;
  9080. }
  9081. BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
  9082. rc = request_firmware(&bp->firmware, fw_file_name,
  9083. &bp->pdev->dev);
  9084. if (rc) {
  9085. BNX2X_ERR("Can't load firmware file %s\n",
  9086. fw_file_name);
  9087. goto request_firmware_exit;
  9088. }
  9089. rc = bnx2x_check_firmware(bp);
  9090. if (rc) {
  9091. BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
  9092. goto request_firmware_exit;
  9093. }
  9094. }
  9095. fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
  9096. /* Initialize the pointers to the init arrays */
  9097. /* Blob */
  9098. BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
  9099. /* Opcodes */
  9100. BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
  9101. /* Offsets */
  9102. BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
  9103. be16_to_cpu_n);
  9104. /* STORMs firmware */
  9105. INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  9106. be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
  9107. INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
  9108. be32_to_cpu(fw_hdr->tsem_pram_data.offset);
  9109. INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  9110. be32_to_cpu(fw_hdr->usem_int_table_data.offset);
  9111. INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
  9112. be32_to_cpu(fw_hdr->usem_pram_data.offset);
  9113. INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  9114. be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
  9115. INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
  9116. be32_to_cpu(fw_hdr->xsem_pram_data.offset);
  9117. INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  9118. be32_to_cpu(fw_hdr->csem_int_table_data.offset);
  9119. INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
  9120. be32_to_cpu(fw_hdr->csem_pram_data.offset);
  9121. /* IRO */
  9122. BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
  9123. return 0;
  9124. iro_alloc_err:
  9125. kfree(bp->init_ops_offsets);
  9126. init_offsets_alloc_err:
  9127. kfree(bp->init_ops);
  9128. init_ops_alloc_err:
  9129. kfree(bp->init_data);
  9130. request_firmware_exit:
  9131. release_firmware(bp->firmware);
  9132. return rc;
  9133. }
  9134. static void bnx2x_release_firmware(struct bnx2x *bp)
  9135. {
  9136. kfree(bp->init_ops_offsets);
  9137. kfree(bp->init_ops);
  9138. kfree(bp->init_data);
  9139. release_firmware(bp->firmware);
  9140. bp->firmware = NULL;
  9141. }
  9142. static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
  9143. .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
  9144. .init_hw_cmn = bnx2x_init_hw_common,
  9145. .init_hw_port = bnx2x_init_hw_port,
  9146. .init_hw_func = bnx2x_init_hw_func,
  9147. .reset_hw_cmn = bnx2x_reset_common,
  9148. .reset_hw_port = bnx2x_reset_port,
  9149. .reset_hw_func = bnx2x_reset_func,
  9150. .gunzip_init = bnx2x_gunzip_init,
  9151. .gunzip_end = bnx2x_gunzip_end,
  9152. .init_fw = bnx2x_init_firmware,
  9153. .release_fw = bnx2x_release_firmware,
  9154. };
  9155. void bnx2x__init_func_obj(struct bnx2x *bp)
  9156. {
  9157. /* Prepare DMAE related driver resources */
  9158. bnx2x_setup_dmae(bp);
  9159. bnx2x_init_func_obj(bp, &bp->func_obj,
  9160. bnx2x_sp(bp, func_rdata),
  9161. bnx2x_sp_mapping(bp, func_rdata),
  9162. &bnx2x_func_sp_drv);
  9163. }
  9164. /* must be called after sriov-enable */
  9165. static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
  9166. {
  9167. int cid_count = BNX2X_L2_CID_COUNT(bp);
  9168. #ifdef BCM_CNIC
  9169. cid_count += CNIC_CID_MAX;
  9170. #endif
  9171. return roundup(cid_count, QM_CID_ROUND);
  9172. }
  9173. /**
  9174. * bnx2x_get_num_none_def_sbs - return the number of none default SBs
  9175. *
  9176. * @dev: pci device
  9177. *
  9178. */
  9179. static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
  9180. {
  9181. int pos;
  9182. u16 control;
  9183. pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
  9184. /*
  9185. * If MSI-X is not supported - return number of SBs needed to support
  9186. * one fast path queue: one FP queue + SB for CNIC
  9187. */
  9188. if (!pos)
  9189. return 1 + CNIC_PRESENT;
  9190. /*
  9191. * The value in the PCI configuration space is the index of the last
  9192. * entry, namely one less than the actual size of the table, which is
  9193. * exactly what we want to return from this function: number of all SBs
  9194. * without the default SB.
  9195. */
  9196. pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
  9197. return control & PCI_MSIX_FLAGS_QSIZE;
  9198. }
  9199. static int __devinit bnx2x_init_one(struct pci_dev *pdev,
  9200. const struct pci_device_id *ent)
  9201. {
  9202. struct net_device *dev = NULL;
  9203. struct bnx2x *bp;
  9204. int pcie_width, pcie_speed;
  9205. int rc, max_non_def_sbs;
  9206. int rx_count, tx_count, rss_count;
  9207. /*
  9208. * An estimated maximum supported CoS number according to the chip
  9209. * version.
  9210. * We will try to roughly estimate the maximum number of CoSes this chip
  9211. * may support in order to minimize the memory allocated for Tx
  9212. * netdev_queue's. This number will be accurately calculated during the
  9213. * initialization of bp->max_cos based on the chip versions AND chip
  9214. * revision in the bnx2x_init_bp().
  9215. */
  9216. u8 max_cos_est = 0;
  9217. switch (ent->driver_data) {
  9218. case BCM57710:
  9219. case BCM57711:
  9220. case BCM57711E:
  9221. max_cos_est = BNX2X_MULTI_TX_COS_E1X;
  9222. break;
  9223. case BCM57712:
  9224. case BCM57712_MF:
  9225. max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
  9226. break;
  9227. case BCM57800:
  9228. case BCM57800_MF:
  9229. case BCM57810:
  9230. case BCM57810_MF:
  9231. case BCM57840:
  9232. case BCM57840_MF:
  9233. max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
  9234. break;
  9235. default:
  9236. pr_err("Unknown board_type (%ld), aborting\n",
  9237. ent->driver_data);
  9238. return -ENODEV;
  9239. }
  9240. max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
  9241. /* !!! FIXME !!!
  9242. * Do not allow the maximum SB count to grow above 16
  9243. * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
  9244. * We will use the FP_SB_MAX_E1x macro for this matter.
  9245. */
  9246. max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
  9247. WARN_ON(!max_non_def_sbs);
  9248. /* Maximum number of RSS queues: one IGU SB goes to CNIC */
  9249. rss_count = max_non_def_sbs - CNIC_PRESENT;
  9250. /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
  9251. rx_count = rss_count + FCOE_PRESENT;
  9252. /*
  9253. * Maximum number of netdev Tx queues:
  9254. * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
  9255. */
  9256. tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
  9257. /* dev zeroed in init_etherdev */
  9258. dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
  9259. if (!dev) {
  9260. dev_err(&pdev->dev, "Cannot allocate net device\n");
  9261. return -ENOMEM;
  9262. }
  9263. bp = netdev_priv(dev);
  9264. DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
  9265. tx_count, rx_count);
  9266. bp->igu_sb_cnt = max_non_def_sbs;
  9267. bp->msg_enable = debug;
  9268. pci_set_drvdata(pdev, dev);
  9269. rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
  9270. if (rc < 0) {
  9271. free_netdev(dev);
  9272. return rc;
  9273. }
  9274. DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
  9275. rc = bnx2x_init_bp(bp);
  9276. if (rc)
  9277. goto init_one_exit;
  9278. /*
  9279. * Map doorbels here as we need the real value of bp->max_cos which
  9280. * is initialized in bnx2x_init_bp().
  9281. */
  9282. bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
  9283. min_t(u64, BNX2X_DB_SIZE(bp),
  9284. pci_resource_len(pdev, 2)));
  9285. if (!bp->doorbells) {
  9286. dev_err(&bp->pdev->dev,
  9287. "Cannot map doorbell space, aborting\n");
  9288. rc = -ENOMEM;
  9289. goto init_one_exit;
  9290. }
  9291. /* calc qm_cid_count */
  9292. bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
  9293. #ifdef BCM_CNIC
  9294. /* disable FCOE L2 queue for E1x */
  9295. if (CHIP_IS_E1x(bp))
  9296. bp->flags |= NO_FCOE_FLAG;
  9297. #endif
  9298. /* Configure interrupt mode: try to enable MSI-X/MSI if
  9299. * needed, set bp->num_queues appropriately.
  9300. */
  9301. bnx2x_set_int_mode(bp);
  9302. /* Add all NAPI objects */
  9303. bnx2x_add_all_napi(bp);
  9304. rc = register_netdev(dev);
  9305. if (rc) {
  9306. dev_err(&pdev->dev, "Cannot register net device\n");
  9307. goto init_one_exit;
  9308. }
  9309. #ifdef BCM_CNIC
  9310. if (!NO_FCOE(bp)) {
  9311. /* Add storage MAC address */
  9312. rtnl_lock();
  9313. dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
  9314. rtnl_unlock();
  9315. }
  9316. #endif
  9317. bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
  9318. netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
  9319. board_info[ent->driver_data].name,
  9320. (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
  9321. pcie_width,
  9322. ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
  9323. (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
  9324. "5GHz (Gen2)" : "2.5GHz",
  9325. dev->base_addr, bp->pdev->irq, dev->dev_addr);
  9326. return 0;
  9327. init_one_exit:
  9328. if (bp->regview)
  9329. iounmap(bp->regview);
  9330. if (bp->doorbells)
  9331. iounmap(bp->doorbells);
  9332. free_netdev(dev);
  9333. if (atomic_read(&pdev->enable_cnt) == 1)
  9334. pci_release_regions(pdev);
  9335. pci_disable_device(pdev);
  9336. pci_set_drvdata(pdev, NULL);
  9337. return rc;
  9338. }
  9339. static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
  9340. {
  9341. struct net_device *dev = pci_get_drvdata(pdev);
  9342. struct bnx2x *bp;
  9343. if (!dev) {
  9344. dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
  9345. return;
  9346. }
  9347. bp = netdev_priv(dev);
  9348. #ifdef BCM_CNIC
  9349. /* Delete storage MAC address */
  9350. if (!NO_FCOE(bp)) {
  9351. rtnl_lock();
  9352. dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
  9353. rtnl_unlock();
  9354. }
  9355. #endif
  9356. #ifdef BCM_DCBNL
  9357. /* Delete app tlvs from dcbnl */
  9358. bnx2x_dcbnl_update_applist(bp, true);
  9359. #endif
  9360. unregister_netdev(dev);
  9361. /* Delete all NAPI objects */
  9362. bnx2x_del_all_napi(bp);
  9363. /* Power on: we can't let PCI layer write to us while we are in D3 */
  9364. bnx2x_set_power_state(bp, PCI_D0);
  9365. /* Disable MSI/MSI-X */
  9366. bnx2x_disable_msi(bp);
  9367. /* Power off */
  9368. bnx2x_set_power_state(bp, PCI_D3hot);
  9369. /* Make sure RESET task is not scheduled before continuing */
  9370. cancel_delayed_work_sync(&bp->sp_rtnl_task);
  9371. if (bp->regview)
  9372. iounmap(bp->regview);
  9373. if (bp->doorbells)
  9374. iounmap(bp->doorbells);
  9375. bnx2x_release_firmware(bp);
  9376. bnx2x_free_mem_bp(bp);
  9377. free_netdev(dev);
  9378. if (atomic_read(&pdev->enable_cnt) == 1)
  9379. pci_release_regions(pdev);
  9380. pci_disable_device(pdev);
  9381. pci_set_drvdata(pdev, NULL);
  9382. }
  9383. static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
  9384. {
  9385. int i;
  9386. bp->state = BNX2X_STATE_ERROR;
  9387. bp->rx_mode = BNX2X_RX_MODE_NONE;
  9388. #ifdef BCM_CNIC
  9389. bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
  9390. #endif
  9391. /* Stop Tx */
  9392. bnx2x_tx_disable(bp);
  9393. bnx2x_netif_stop(bp, 0);
  9394. del_timer_sync(&bp->timer);
  9395. bnx2x_stats_handle(bp, STATS_EVENT_STOP);
  9396. /* Release IRQs */
  9397. bnx2x_free_irq(bp);
  9398. /* Free SKBs, SGEs, TPA pool and driver internals */
  9399. bnx2x_free_skbs(bp);
  9400. for_each_rx_queue(bp, i)
  9401. bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
  9402. bnx2x_free_mem(bp);
  9403. bp->state = BNX2X_STATE_CLOSED;
  9404. netif_carrier_off(bp->dev);
  9405. return 0;
  9406. }
  9407. static void bnx2x_eeh_recover(struct bnx2x *bp)
  9408. {
  9409. u32 val;
  9410. mutex_init(&bp->port.phy_mutex);
  9411. bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
  9412. bp->link_params.shmem_base = bp->common.shmem_base;
  9413. BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
  9414. if (!bp->common.shmem_base ||
  9415. (bp->common.shmem_base < 0xA0000) ||
  9416. (bp->common.shmem_base >= 0xC0000)) {
  9417. BNX2X_DEV_INFO("MCP not active\n");
  9418. bp->flags |= NO_MCP_FLAG;
  9419. return;
  9420. }
  9421. val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
  9422. if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
  9423. != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
  9424. BNX2X_ERR("BAD MCP validity signature\n");
  9425. if (!BP_NOMCP(bp)) {
  9426. bp->fw_seq =
  9427. (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
  9428. DRV_MSG_SEQ_NUMBER_MASK);
  9429. BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
  9430. }
  9431. }
  9432. /**
  9433. * bnx2x_io_error_detected - called when PCI error is detected
  9434. * @pdev: Pointer to PCI device
  9435. * @state: The current pci connection state
  9436. *
  9437. * This function is called after a PCI bus error affecting
  9438. * this device has been detected.
  9439. */
  9440. static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
  9441. pci_channel_state_t state)
  9442. {
  9443. struct net_device *dev = pci_get_drvdata(pdev);
  9444. struct bnx2x *bp = netdev_priv(dev);
  9445. rtnl_lock();
  9446. netif_device_detach(dev);
  9447. if (state == pci_channel_io_perm_failure) {
  9448. rtnl_unlock();
  9449. return PCI_ERS_RESULT_DISCONNECT;
  9450. }
  9451. if (netif_running(dev))
  9452. bnx2x_eeh_nic_unload(bp);
  9453. pci_disable_device(pdev);
  9454. rtnl_unlock();
  9455. /* Request a slot reset */
  9456. return PCI_ERS_RESULT_NEED_RESET;
  9457. }
  9458. /**
  9459. * bnx2x_io_slot_reset - called after the PCI bus has been reset
  9460. * @pdev: Pointer to PCI device
  9461. *
  9462. * Restart the card from scratch, as if from a cold-boot.
  9463. */
  9464. static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
  9465. {
  9466. struct net_device *dev = pci_get_drvdata(pdev);
  9467. struct bnx2x *bp = netdev_priv(dev);
  9468. rtnl_lock();
  9469. if (pci_enable_device(pdev)) {
  9470. dev_err(&pdev->dev,
  9471. "Cannot re-enable PCI device after reset\n");
  9472. rtnl_unlock();
  9473. return PCI_ERS_RESULT_DISCONNECT;
  9474. }
  9475. pci_set_master(pdev);
  9476. pci_restore_state(pdev);
  9477. if (netif_running(dev))
  9478. bnx2x_set_power_state(bp, PCI_D0);
  9479. rtnl_unlock();
  9480. return PCI_ERS_RESULT_RECOVERED;
  9481. }
  9482. /**
  9483. * bnx2x_io_resume - called when traffic can start flowing again
  9484. * @pdev: Pointer to PCI device
  9485. *
  9486. * This callback is called when the error recovery driver tells us that
  9487. * its OK to resume normal operation.
  9488. */
  9489. static void bnx2x_io_resume(struct pci_dev *pdev)
  9490. {
  9491. struct net_device *dev = pci_get_drvdata(pdev);
  9492. struct bnx2x *bp = netdev_priv(dev);
  9493. if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
  9494. netdev_err(bp->dev, "Handling parity error recovery. "
  9495. "Try again later\n");
  9496. return;
  9497. }
  9498. rtnl_lock();
  9499. bnx2x_eeh_recover(bp);
  9500. if (netif_running(dev))
  9501. bnx2x_nic_load(bp, LOAD_NORMAL);
  9502. netif_device_attach(dev);
  9503. rtnl_unlock();
  9504. }
  9505. static struct pci_error_handlers bnx2x_err_handler = {
  9506. .error_detected = bnx2x_io_error_detected,
  9507. .slot_reset = bnx2x_io_slot_reset,
  9508. .resume = bnx2x_io_resume,
  9509. };
  9510. static struct pci_driver bnx2x_pci_driver = {
  9511. .name = DRV_MODULE_NAME,
  9512. .id_table = bnx2x_pci_tbl,
  9513. .probe = bnx2x_init_one,
  9514. .remove = __devexit_p(bnx2x_remove_one),
  9515. .suspend = bnx2x_suspend,
  9516. .resume = bnx2x_resume,
  9517. .err_handler = &bnx2x_err_handler,
  9518. };
  9519. static int __init bnx2x_init(void)
  9520. {
  9521. int ret;
  9522. pr_info("%s", version);
  9523. bnx2x_wq = create_singlethread_workqueue("bnx2x");
  9524. if (bnx2x_wq == NULL) {
  9525. pr_err("Cannot create workqueue\n");
  9526. return -ENOMEM;
  9527. }
  9528. ret = pci_register_driver(&bnx2x_pci_driver);
  9529. if (ret) {
  9530. pr_err("Cannot register driver\n");
  9531. destroy_workqueue(bnx2x_wq);
  9532. }
  9533. return ret;
  9534. }
  9535. static void __exit bnx2x_cleanup(void)
  9536. {
  9537. pci_unregister_driver(&bnx2x_pci_driver);
  9538. destroy_workqueue(bnx2x_wq);
  9539. }
  9540. void bnx2x_notify_link_changed(struct bnx2x *bp)
  9541. {
  9542. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
  9543. }
  9544. module_init(bnx2x_init);
  9545. module_exit(bnx2x_cleanup);
  9546. #ifdef BCM_CNIC
  9547. /**
  9548. * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
  9549. *
  9550. * @bp: driver handle
  9551. * @set: set or clear the CAM entry
  9552. *
  9553. * This function will wait until the ramdord completion returns.
  9554. * Return 0 if success, -ENODEV if ramrod doesn't return.
  9555. */
  9556. static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
  9557. {
  9558. unsigned long ramrod_flags = 0;
  9559. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  9560. return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
  9561. &bp->iscsi_l2_mac_obj, true,
  9562. BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
  9563. }
  9564. /* count denotes the number of new completions we have seen */
  9565. static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
  9566. {
  9567. struct eth_spe *spe;
  9568. #ifdef BNX2X_STOP_ON_ERROR
  9569. if (unlikely(bp->panic))
  9570. return;
  9571. #endif
  9572. spin_lock_bh(&bp->spq_lock);
  9573. BUG_ON(bp->cnic_spq_pending < count);
  9574. bp->cnic_spq_pending -= count;
  9575. for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
  9576. u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
  9577. & SPE_HDR_CONN_TYPE) >>
  9578. SPE_HDR_CONN_TYPE_SHIFT;
  9579. u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
  9580. >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
  9581. /* Set validation for iSCSI L2 client before sending SETUP
  9582. * ramrod
  9583. */
  9584. if (type == ETH_CONNECTION_TYPE) {
  9585. if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
  9586. bnx2x_set_ctx_validation(bp, &bp->context.
  9587. vcxt[BNX2X_ISCSI_ETH_CID].eth,
  9588. BNX2X_ISCSI_ETH_CID);
  9589. }
  9590. /*
  9591. * There may be not more than 8 L2, not more than 8 L5 SPEs
  9592. * and in the air. We also check that number of outstanding
  9593. * COMMON ramrods is not more than the EQ and SPQ can
  9594. * accommodate.
  9595. */
  9596. if (type == ETH_CONNECTION_TYPE) {
  9597. if (!atomic_read(&bp->cq_spq_left))
  9598. break;
  9599. else
  9600. atomic_dec(&bp->cq_spq_left);
  9601. } else if (type == NONE_CONNECTION_TYPE) {
  9602. if (!atomic_read(&bp->eq_spq_left))
  9603. break;
  9604. else
  9605. atomic_dec(&bp->eq_spq_left);
  9606. } else if ((type == ISCSI_CONNECTION_TYPE) ||
  9607. (type == FCOE_CONNECTION_TYPE)) {
  9608. if (bp->cnic_spq_pending >=
  9609. bp->cnic_eth_dev.max_kwqe_pending)
  9610. break;
  9611. else
  9612. bp->cnic_spq_pending++;
  9613. } else {
  9614. BNX2X_ERR("Unknown SPE type: %d\n", type);
  9615. bnx2x_panic();
  9616. break;
  9617. }
  9618. spe = bnx2x_sp_get_next(bp);
  9619. *spe = *bp->cnic_kwq_cons;
  9620. DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
  9621. bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
  9622. if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
  9623. bp->cnic_kwq_cons = bp->cnic_kwq;
  9624. else
  9625. bp->cnic_kwq_cons++;
  9626. }
  9627. bnx2x_sp_prod_update(bp);
  9628. spin_unlock_bh(&bp->spq_lock);
  9629. }
  9630. static int bnx2x_cnic_sp_queue(struct net_device *dev,
  9631. struct kwqe_16 *kwqes[], u32 count)
  9632. {
  9633. struct bnx2x *bp = netdev_priv(dev);
  9634. int i;
  9635. #ifdef BNX2X_STOP_ON_ERROR
  9636. if (unlikely(bp->panic))
  9637. return -EIO;
  9638. #endif
  9639. spin_lock_bh(&bp->spq_lock);
  9640. for (i = 0; i < count; i++) {
  9641. struct eth_spe *spe = (struct eth_spe *)kwqes[i];
  9642. if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
  9643. break;
  9644. *bp->cnic_kwq_prod = *spe;
  9645. bp->cnic_kwq_pending++;
  9646. DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
  9647. spe->hdr.conn_and_cmd_data, spe->hdr.type,
  9648. spe->data.update_data_addr.hi,
  9649. spe->data.update_data_addr.lo,
  9650. bp->cnic_kwq_pending);
  9651. if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
  9652. bp->cnic_kwq_prod = bp->cnic_kwq;
  9653. else
  9654. bp->cnic_kwq_prod++;
  9655. }
  9656. spin_unlock_bh(&bp->spq_lock);
  9657. if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
  9658. bnx2x_cnic_sp_post(bp, 0);
  9659. return i;
  9660. }
  9661. static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
  9662. {
  9663. struct cnic_ops *c_ops;
  9664. int rc = 0;
  9665. mutex_lock(&bp->cnic_mutex);
  9666. c_ops = rcu_dereference_protected(bp->cnic_ops,
  9667. lockdep_is_held(&bp->cnic_mutex));
  9668. if (c_ops)
  9669. rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
  9670. mutex_unlock(&bp->cnic_mutex);
  9671. return rc;
  9672. }
  9673. static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
  9674. {
  9675. struct cnic_ops *c_ops;
  9676. int rc = 0;
  9677. rcu_read_lock();
  9678. c_ops = rcu_dereference(bp->cnic_ops);
  9679. if (c_ops)
  9680. rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
  9681. rcu_read_unlock();
  9682. return rc;
  9683. }
  9684. /*
  9685. * for commands that have no data
  9686. */
  9687. int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
  9688. {
  9689. struct cnic_ctl_info ctl = {0};
  9690. ctl.cmd = cmd;
  9691. return bnx2x_cnic_ctl_send(bp, &ctl);
  9692. }
  9693. static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
  9694. {
  9695. struct cnic_ctl_info ctl = {0};
  9696. /* first we tell CNIC and only then we count this as a completion */
  9697. ctl.cmd = CNIC_CTL_COMPLETION_CMD;
  9698. ctl.data.comp.cid = cid;
  9699. ctl.data.comp.error = err;
  9700. bnx2x_cnic_ctl_send_bh(bp, &ctl);
  9701. bnx2x_cnic_sp_post(bp, 0);
  9702. }
  9703. /* Called with netif_addr_lock_bh() taken.
  9704. * Sets an rx_mode config for an iSCSI ETH client.
  9705. * Doesn't block.
  9706. * Completion should be checked outside.
  9707. */
  9708. static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
  9709. {
  9710. unsigned long accept_flags = 0, ramrod_flags = 0;
  9711. u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
  9712. int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
  9713. if (start) {
  9714. /* Start accepting on iSCSI L2 ring. Accept all multicasts
  9715. * because it's the only way for UIO Queue to accept
  9716. * multicasts (in non-promiscuous mode only one Queue per
  9717. * function will receive multicast packets (leading in our
  9718. * case).
  9719. */
  9720. __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
  9721. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
  9722. __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
  9723. __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
  9724. /* Clear STOP_PENDING bit if START is requested */
  9725. clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
  9726. sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
  9727. } else
  9728. /* Clear START_PENDING bit if STOP is requested */
  9729. clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
  9730. if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
  9731. set_bit(sched_state, &bp->sp_state);
  9732. else {
  9733. __set_bit(RAMROD_RX, &ramrod_flags);
  9734. bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
  9735. ramrod_flags);
  9736. }
  9737. }
  9738. static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
  9739. {
  9740. struct bnx2x *bp = netdev_priv(dev);
  9741. int rc = 0;
  9742. switch (ctl->cmd) {
  9743. case DRV_CTL_CTXTBL_WR_CMD: {
  9744. u32 index = ctl->data.io.offset;
  9745. dma_addr_t addr = ctl->data.io.dma_addr;
  9746. bnx2x_ilt_wr(bp, index, addr);
  9747. break;
  9748. }
  9749. case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
  9750. int count = ctl->data.credit.credit_count;
  9751. bnx2x_cnic_sp_post(bp, count);
  9752. break;
  9753. }
  9754. /* rtnl_lock is held. */
  9755. case DRV_CTL_START_L2_CMD: {
  9756. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  9757. unsigned long sp_bits = 0;
  9758. /* Configure the iSCSI classification object */
  9759. bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
  9760. cp->iscsi_l2_client_id,
  9761. cp->iscsi_l2_cid, BP_FUNC(bp),
  9762. bnx2x_sp(bp, mac_rdata),
  9763. bnx2x_sp_mapping(bp, mac_rdata),
  9764. BNX2X_FILTER_MAC_PENDING,
  9765. &bp->sp_state, BNX2X_OBJ_TYPE_RX,
  9766. &bp->macs_pool);
  9767. /* Set iSCSI MAC address */
  9768. rc = bnx2x_set_iscsi_eth_mac_addr(bp);
  9769. if (rc)
  9770. break;
  9771. mmiowb();
  9772. barrier();
  9773. /* Start accepting on iSCSI L2 ring */
  9774. netif_addr_lock_bh(dev);
  9775. bnx2x_set_iscsi_eth_rx_mode(bp, true);
  9776. netif_addr_unlock_bh(dev);
  9777. /* bits to wait on */
  9778. __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
  9779. __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
  9780. if (!bnx2x_wait_sp_comp(bp, sp_bits))
  9781. BNX2X_ERR("rx_mode completion timed out!\n");
  9782. break;
  9783. }
  9784. /* rtnl_lock is held. */
  9785. case DRV_CTL_STOP_L2_CMD: {
  9786. unsigned long sp_bits = 0;
  9787. /* Stop accepting on iSCSI L2 ring */
  9788. netif_addr_lock_bh(dev);
  9789. bnx2x_set_iscsi_eth_rx_mode(bp, false);
  9790. netif_addr_unlock_bh(dev);
  9791. /* bits to wait on */
  9792. __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
  9793. __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
  9794. if (!bnx2x_wait_sp_comp(bp, sp_bits))
  9795. BNX2X_ERR("rx_mode completion timed out!\n");
  9796. mmiowb();
  9797. barrier();
  9798. /* Unset iSCSI L2 MAC */
  9799. rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
  9800. BNX2X_ISCSI_ETH_MAC, true);
  9801. break;
  9802. }
  9803. case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
  9804. int count = ctl->data.credit.credit_count;
  9805. smp_mb__before_atomic_inc();
  9806. atomic_add(count, &bp->cq_spq_left);
  9807. smp_mb__after_atomic_inc();
  9808. break;
  9809. }
  9810. case DRV_CTL_ULP_REGISTER_CMD: {
  9811. int ulp_type = ctl->data.ulp_type;
  9812. if (CHIP_IS_E3(bp)) {
  9813. int idx = BP_FW_MB_IDX(bp);
  9814. u32 cap;
  9815. cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
  9816. if (ulp_type == CNIC_ULP_ISCSI)
  9817. cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
  9818. else if (ulp_type == CNIC_ULP_FCOE)
  9819. cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
  9820. SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
  9821. }
  9822. break;
  9823. }
  9824. case DRV_CTL_ULP_UNREGISTER_CMD: {
  9825. int ulp_type = ctl->data.ulp_type;
  9826. if (CHIP_IS_E3(bp)) {
  9827. int idx = BP_FW_MB_IDX(bp);
  9828. u32 cap;
  9829. cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
  9830. if (ulp_type == CNIC_ULP_ISCSI)
  9831. cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
  9832. else if (ulp_type == CNIC_ULP_FCOE)
  9833. cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
  9834. SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
  9835. }
  9836. break;
  9837. }
  9838. default:
  9839. BNX2X_ERR("unknown command %x\n", ctl->cmd);
  9840. rc = -EINVAL;
  9841. }
  9842. return rc;
  9843. }
  9844. void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
  9845. {
  9846. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  9847. if (bp->flags & USING_MSIX_FLAG) {
  9848. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  9849. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  9850. cp->irq_arr[0].vector = bp->msix_table[1].vector;
  9851. } else {
  9852. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  9853. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  9854. }
  9855. if (!CHIP_IS_E1x(bp))
  9856. cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
  9857. else
  9858. cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
  9859. cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
  9860. cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
  9861. cp->irq_arr[1].status_blk = bp->def_status_blk;
  9862. cp->irq_arr[1].status_blk_num = DEF_SB_ID;
  9863. cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
  9864. cp->num_irq = 2;
  9865. }
  9866. static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  9867. void *data)
  9868. {
  9869. struct bnx2x *bp = netdev_priv(dev);
  9870. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  9871. if (ops == NULL)
  9872. return -EINVAL;
  9873. bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
  9874. if (!bp->cnic_kwq)
  9875. return -ENOMEM;
  9876. bp->cnic_kwq_cons = bp->cnic_kwq;
  9877. bp->cnic_kwq_prod = bp->cnic_kwq;
  9878. bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
  9879. bp->cnic_spq_pending = 0;
  9880. bp->cnic_kwq_pending = 0;
  9881. bp->cnic_data = data;
  9882. cp->num_irq = 0;
  9883. cp->drv_state |= CNIC_DRV_STATE_REGD;
  9884. cp->iro_arr = bp->iro_arr;
  9885. bnx2x_setup_cnic_irq_info(bp);
  9886. rcu_assign_pointer(bp->cnic_ops, ops);
  9887. return 0;
  9888. }
  9889. static int bnx2x_unregister_cnic(struct net_device *dev)
  9890. {
  9891. struct bnx2x *bp = netdev_priv(dev);
  9892. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  9893. mutex_lock(&bp->cnic_mutex);
  9894. cp->drv_state = 0;
  9895. RCU_INIT_POINTER(bp->cnic_ops, NULL);
  9896. mutex_unlock(&bp->cnic_mutex);
  9897. synchronize_rcu();
  9898. kfree(bp->cnic_kwq);
  9899. bp->cnic_kwq = NULL;
  9900. return 0;
  9901. }
  9902. struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
  9903. {
  9904. struct bnx2x *bp = netdev_priv(dev);
  9905. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  9906. /* If both iSCSI and FCoE are disabled - return NULL in
  9907. * order to indicate CNIC that it should not try to work
  9908. * with this device.
  9909. */
  9910. if (NO_ISCSI(bp) && NO_FCOE(bp))
  9911. return NULL;
  9912. cp->drv_owner = THIS_MODULE;
  9913. cp->chip_id = CHIP_ID(bp);
  9914. cp->pdev = bp->pdev;
  9915. cp->io_base = bp->regview;
  9916. cp->io_base2 = bp->doorbells;
  9917. cp->max_kwqe_pending = 8;
  9918. cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
  9919. cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
  9920. bnx2x_cid_ilt_lines(bp);
  9921. cp->ctx_tbl_len = CNIC_ILT_LINES;
  9922. cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
  9923. cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
  9924. cp->drv_ctl = bnx2x_drv_ctl;
  9925. cp->drv_register_cnic = bnx2x_register_cnic;
  9926. cp->drv_unregister_cnic = bnx2x_unregister_cnic;
  9927. cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
  9928. cp->iscsi_l2_client_id =
  9929. bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
  9930. cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
  9931. if (NO_ISCSI_OOO(bp))
  9932. cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
  9933. if (NO_ISCSI(bp))
  9934. cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
  9935. if (NO_FCOE(bp))
  9936. cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
  9937. DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
  9938. "starting cid %d\n",
  9939. cp->ctx_blk_size,
  9940. cp->ctx_tbl_offset,
  9941. cp->ctx_tbl_len,
  9942. cp->starting_cid);
  9943. return cp;
  9944. }
  9945. EXPORT_SYMBOL(bnx2x_cnic_probe);
  9946. #endif /* BCM_CNIC */