core.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. /*P:400
  2. * This contains run_guest() which actually calls into the Host<->Guest
  3. * Switcher and analyzes the return, such as determining if the Guest wants the
  4. * Host to do something. This file also contains useful helper routines.
  5. :*/
  6. #include <linux/module.h>
  7. #include <linux/stringify.h>
  8. #include <linux/stddef.h>
  9. #include <linux/io.h>
  10. #include <linux/mm.h>
  11. #include <linux/vmalloc.h>
  12. #include <linux/cpu.h>
  13. #include <linux/freezer.h>
  14. #include <linux/highmem.h>
  15. #include <linux/slab.h>
  16. #include <asm/paravirt.h>
  17. #include <asm/pgtable.h>
  18. #include <asm/uaccess.h>
  19. #include <asm/poll.h>
  20. #include <asm/asm-offsets.h>
  21. #include "lg.h"
  22. unsigned long switcher_addr;
  23. static struct vm_struct *switcher_vma;
  24. static struct page **switcher_page;
  25. /* This One Big lock protects all inter-guest data structures. */
  26. DEFINE_MUTEX(lguest_lock);
  27. /*H:010
  28. * We need to set up the Switcher at a high virtual address. Remember the
  29. * Switcher is a few hundred bytes of assembler code which actually changes the
  30. * CPU to run the Guest, and then changes back to the Host when a trap or
  31. * interrupt happens.
  32. *
  33. * The Switcher code must be at the same virtual address in the Guest as the
  34. * Host since it will be running as the switchover occurs.
  35. *
  36. * Trying to map memory at a particular address is an unusual thing to do, so
  37. * it's not a simple one-liner.
  38. */
  39. static __init int map_switcher(void)
  40. {
  41. int i, err;
  42. struct page **pagep;
  43. /*
  44. * Map the Switcher in to high memory.
  45. *
  46. * It turns out that if we choose the address 0xFFC00000 (4MB under the
  47. * top virtual address), it makes setting up the page tables really
  48. * easy.
  49. */
  50. /*
  51. * We allocate an array of struct page pointers. map_vm_area() wants
  52. * this, rather than just an array of pages.
  53. */
  54. switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
  55. GFP_KERNEL);
  56. if (!switcher_page) {
  57. err = -ENOMEM;
  58. goto out;
  59. }
  60. /*
  61. * Now we actually allocate the pages. The Guest will see these pages,
  62. * so we make sure they're zeroed.
  63. */
  64. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
  65. switcher_page[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
  66. if (!switcher_page[i]) {
  67. err = -ENOMEM;
  68. goto free_some_pages;
  69. }
  70. }
  71. switcher_addr = SWITCHER_ADDR;
  72. /*
  73. * First we check that the Switcher won't overlap the fixmap area at
  74. * the top of memory. It's currently nowhere near, but it could have
  75. * very strange effects if it ever happened.
  76. */
  77. if (switcher_addr + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
  78. err = -ENOMEM;
  79. printk("lguest: mapping switcher would thwack fixmap\n");
  80. goto free_pages;
  81. }
  82. /*
  83. * Now we reserve the "virtual memory area" we want. We might
  84. * not get it in theory, but in practice it's worked so far.
  85. * The end address needs +1 because __get_vm_area allocates an
  86. * extra guard page, so we need space for that.
  87. */
  88. switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
  89. VM_ALLOC, switcher_addr, switcher_addr
  90. + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
  91. if (!switcher_vma) {
  92. err = -ENOMEM;
  93. printk("lguest: could not map switcher pages high\n");
  94. goto free_pages;
  95. }
  96. /*
  97. * This code actually sets up the pages we've allocated to appear at
  98. * switcher_addr. map_vm_area() takes the vma we allocated above, the
  99. * kind of pages we're mapping (kernel pages), and a pointer to our
  100. * array of struct pages. It increments that pointer, but we don't
  101. * care.
  102. */
  103. pagep = switcher_page;
  104. err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
  105. if (err) {
  106. printk("lguest: map_vm_area failed: %i\n", err);
  107. goto free_vma;
  108. }
  109. /*
  110. * Now the Switcher is mapped at the right address, we can't fail!
  111. * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
  112. */
  113. memcpy(switcher_vma->addr, start_switcher_text,
  114. end_switcher_text - start_switcher_text);
  115. printk(KERN_INFO "lguest: mapped switcher at %p\n",
  116. switcher_vma->addr);
  117. /* And we succeeded... */
  118. return 0;
  119. free_vma:
  120. vunmap(switcher_vma->addr);
  121. free_pages:
  122. i = TOTAL_SWITCHER_PAGES;
  123. free_some_pages:
  124. for (--i; i >= 0; i--)
  125. __free_pages(switcher_page[i], 0);
  126. kfree(switcher_page);
  127. out:
  128. return err;
  129. }
  130. /*:*/
  131. /* Cleaning up the mapping when the module is unloaded is almost... too easy. */
  132. static void unmap_switcher(void)
  133. {
  134. unsigned int i;
  135. /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
  136. vunmap(switcher_vma->addr);
  137. /* Now we just need to free the pages we copied the switcher into */
  138. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
  139. __free_pages(switcher_page[i], 0);
  140. kfree(switcher_page);
  141. }
  142. /*H:032
  143. * Dealing With Guest Memory.
  144. *
  145. * Before we go too much further into the Host, we need to grok the routines
  146. * we use to deal with Guest memory.
  147. *
  148. * When the Guest gives us (what it thinks is) a physical address, we can use
  149. * the normal copy_from_user() & copy_to_user() on the corresponding place in
  150. * the memory region allocated by the Launcher.
  151. *
  152. * But we can't trust the Guest: it might be trying to access the Launcher
  153. * code. We have to check that the range is below the pfn_limit the Launcher
  154. * gave us. We have to make sure that addr + len doesn't give us a false
  155. * positive by overflowing, too.
  156. */
  157. bool lguest_address_ok(const struct lguest *lg,
  158. unsigned long addr, unsigned long len)
  159. {
  160. return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
  161. }
  162. /*
  163. * This routine copies memory from the Guest. Here we can see how useful the
  164. * kill_lguest() routine we met in the Launcher can be: we return a random
  165. * value (all zeroes) instead of needing to return an error.
  166. */
  167. void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
  168. {
  169. if (!lguest_address_ok(cpu->lg, addr, bytes)
  170. || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
  171. /* copy_from_user should do this, but as we rely on it... */
  172. memset(b, 0, bytes);
  173. kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
  174. }
  175. }
  176. /* This is the write (copy into Guest) version. */
  177. void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
  178. unsigned bytes)
  179. {
  180. if (!lguest_address_ok(cpu->lg, addr, bytes)
  181. || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
  182. kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
  183. }
  184. /*:*/
  185. /*H:030
  186. * Let's jump straight to the the main loop which runs the Guest.
  187. * Remember, this is called by the Launcher reading /dev/lguest, and we keep
  188. * going around and around until something interesting happens.
  189. */
  190. int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
  191. {
  192. /* We stop running once the Guest is dead. */
  193. while (!cpu->lg->dead) {
  194. unsigned int irq;
  195. bool more;
  196. /* First we run any hypercalls the Guest wants done. */
  197. if (cpu->hcall)
  198. do_hypercalls(cpu);
  199. /*
  200. * It's possible the Guest did a NOTIFY hypercall to the
  201. * Launcher.
  202. */
  203. if (cpu->pending_notify) {
  204. /*
  205. * Does it just needs to write to a registered
  206. * eventfd (ie. the appropriate virtqueue thread)?
  207. */
  208. if (!send_notify_to_eventfd(cpu)) {
  209. /* OK, we tell the main Launcher. */
  210. if (put_user(cpu->pending_notify, user))
  211. return -EFAULT;
  212. return sizeof(cpu->pending_notify);
  213. }
  214. }
  215. /*
  216. * All long-lived kernel loops need to check with this horrible
  217. * thing called the freezer. If the Host is trying to suspend,
  218. * it stops us.
  219. */
  220. try_to_freeze();
  221. /* Check for signals */
  222. if (signal_pending(current))
  223. return -ERESTARTSYS;
  224. /*
  225. * Check if there are any interrupts which can be delivered now:
  226. * if so, this sets up the hander to be executed when we next
  227. * run the Guest.
  228. */
  229. irq = interrupt_pending(cpu, &more);
  230. if (irq < LGUEST_IRQS)
  231. try_deliver_interrupt(cpu, irq, more);
  232. /*
  233. * Just make absolutely sure the Guest is still alive. One of
  234. * those hypercalls could have been fatal, for example.
  235. */
  236. if (cpu->lg->dead)
  237. break;
  238. /*
  239. * If the Guest asked to be stopped, we sleep. The Guest's
  240. * clock timer will wake us.
  241. */
  242. if (cpu->halted) {
  243. set_current_state(TASK_INTERRUPTIBLE);
  244. /*
  245. * Just before we sleep, make sure no interrupt snuck in
  246. * which we should be doing.
  247. */
  248. if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
  249. set_current_state(TASK_RUNNING);
  250. else
  251. schedule();
  252. continue;
  253. }
  254. /*
  255. * OK, now we're ready to jump into the Guest. First we put up
  256. * the "Do Not Disturb" sign:
  257. */
  258. local_irq_disable();
  259. /* Actually run the Guest until something happens. */
  260. lguest_arch_run_guest(cpu);
  261. /* Now we're ready to be interrupted or moved to other CPUs */
  262. local_irq_enable();
  263. /* Now we deal with whatever happened to the Guest. */
  264. lguest_arch_handle_trap(cpu);
  265. }
  266. /* Special case: Guest is 'dead' but wants a reboot. */
  267. if (cpu->lg->dead == ERR_PTR(-ERESTART))
  268. return -ERESTART;
  269. /* The Guest is dead => "No such file or directory" */
  270. return -ENOENT;
  271. }
  272. /*H:000
  273. * Welcome to the Host!
  274. *
  275. * By this point your brain has been tickled by the Guest code and numbed by
  276. * the Launcher code; prepare for it to be stretched by the Host code. This is
  277. * the heart. Let's begin at the initialization routine for the Host's lg
  278. * module.
  279. */
  280. static int __init init(void)
  281. {
  282. int err;
  283. /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
  284. if (get_kernel_rpl() != 0) {
  285. printk("lguest is afraid of being a guest\n");
  286. return -EPERM;
  287. }
  288. /* First we put the Switcher up in very high virtual memory. */
  289. err = map_switcher();
  290. if (err)
  291. goto out;
  292. /* Now we set up the pagetable implementation for the Guests. */
  293. err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
  294. if (err)
  295. goto unmap;
  296. /* We might need to reserve an interrupt vector. */
  297. err = init_interrupts();
  298. if (err)
  299. goto free_pgtables;
  300. /* /dev/lguest needs to be registered. */
  301. err = lguest_device_init();
  302. if (err)
  303. goto free_interrupts;
  304. /* Finally we do some architecture-specific setup. */
  305. lguest_arch_host_init();
  306. /* All good! */
  307. return 0;
  308. free_interrupts:
  309. free_interrupts();
  310. free_pgtables:
  311. free_pagetables();
  312. unmap:
  313. unmap_switcher();
  314. out:
  315. return err;
  316. }
  317. /* Cleaning up is just the same code, backwards. With a little French. */
  318. static void __exit fini(void)
  319. {
  320. lguest_device_remove();
  321. free_interrupts();
  322. free_pagetables();
  323. unmap_switcher();
  324. lguest_arch_host_fini();
  325. }
  326. /*:*/
  327. /*
  328. * The Host side of lguest can be a module. This is a nice way for people to
  329. * play with it.
  330. */
  331. module_init(init);
  332. module_exit(fini);
  333. MODULE_LICENSE("GPL");
  334. MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");