process_64.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784
  1. /* arch/sparc64/kernel/process.c
  2. *
  3. * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <stdarg.h>
  11. #include <linux/errno.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/fs.h>
  17. #include <linux/smp.h>
  18. #include <linux/stddef.h>
  19. #include <linux/ptrace.h>
  20. #include <linux/slab.h>
  21. #include <linux/user.h>
  22. #include <linux/delay.h>
  23. #include <linux/compat.h>
  24. #include <linux/tick.h>
  25. #include <linux/init.h>
  26. #include <linux/cpu.h>
  27. #include <linux/elfcore.h>
  28. #include <linux/sysrq.h>
  29. #include <linux/nmi.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/system.h>
  32. #include <asm/page.h>
  33. #include <asm/pgalloc.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/processor.h>
  36. #include <asm/pstate.h>
  37. #include <asm/elf.h>
  38. #include <asm/fpumacro.h>
  39. #include <asm/head.h>
  40. #include <asm/cpudata.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/unistd.h>
  43. #include <asm/hypervisor.h>
  44. #include <asm/syscalls.h>
  45. #include <asm/irq_regs.h>
  46. #include <asm/smp.h>
  47. #include "kstack.h"
  48. static void sparc64_yield(int cpu)
  49. {
  50. if (tlb_type != hypervisor) {
  51. touch_nmi_watchdog();
  52. return;
  53. }
  54. clear_thread_flag(TIF_POLLING_NRFLAG);
  55. smp_mb__after_clear_bit();
  56. while (!need_resched() && !cpu_is_offline(cpu)) {
  57. unsigned long pstate;
  58. /* Disable interrupts. */
  59. __asm__ __volatile__(
  60. "rdpr %%pstate, %0\n\t"
  61. "andn %0, %1, %0\n\t"
  62. "wrpr %0, %%g0, %%pstate"
  63. : "=&r" (pstate)
  64. : "i" (PSTATE_IE));
  65. if (!need_resched() && !cpu_is_offline(cpu))
  66. sun4v_cpu_yield();
  67. /* Re-enable interrupts. */
  68. __asm__ __volatile__(
  69. "rdpr %%pstate, %0\n\t"
  70. "or %0, %1, %0\n\t"
  71. "wrpr %0, %%g0, %%pstate"
  72. : "=&r" (pstate)
  73. : "i" (PSTATE_IE));
  74. }
  75. set_thread_flag(TIF_POLLING_NRFLAG);
  76. }
  77. /* The idle loop on sparc64. */
  78. void cpu_idle(void)
  79. {
  80. int cpu = smp_processor_id();
  81. set_thread_flag(TIF_POLLING_NRFLAG);
  82. while(1) {
  83. tick_nohz_stop_sched_tick(1);
  84. while (!need_resched() && !cpu_is_offline(cpu))
  85. sparc64_yield(cpu);
  86. tick_nohz_restart_sched_tick();
  87. preempt_enable_no_resched();
  88. #ifdef CONFIG_HOTPLUG_CPU
  89. if (cpu_is_offline(cpu))
  90. cpu_play_dead();
  91. #endif
  92. schedule();
  93. preempt_disable();
  94. }
  95. }
  96. #ifdef CONFIG_COMPAT
  97. static void show_regwindow32(struct pt_regs *regs)
  98. {
  99. struct reg_window32 __user *rw;
  100. struct reg_window32 r_w;
  101. mm_segment_t old_fs;
  102. __asm__ __volatile__ ("flushw");
  103. rw = compat_ptr((unsigned)regs->u_regs[14]);
  104. old_fs = get_fs();
  105. set_fs (USER_DS);
  106. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  107. set_fs (old_fs);
  108. return;
  109. }
  110. set_fs (old_fs);
  111. printk("l0: %08x l1: %08x l2: %08x l3: %08x "
  112. "l4: %08x l5: %08x l6: %08x l7: %08x\n",
  113. r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
  114. r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
  115. printk("i0: %08x i1: %08x i2: %08x i3: %08x "
  116. "i4: %08x i5: %08x i6: %08x i7: %08x\n",
  117. r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
  118. r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
  119. }
  120. #else
  121. #define show_regwindow32(regs) do { } while (0)
  122. #endif
  123. static void show_regwindow(struct pt_regs *regs)
  124. {
  125. struct reg_window __user *rw;
  126. struct reg_window *rwk;
  127. struct reg_window r_w;
  128. mm_segment_t old_fs;
  129. if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
  130. __asm__ __volatile__ ("flushw");
  131. rw = (struct reg_window __user *)
  132. (regs->u_regs[14] + STACK_BIAS);
  133. rwk = (struct reg_window *)
  134. (regs->u_regs[14] + STACK_BIAS);
  135. if (!(regs->tstate & TSTATE_PRIV)) {
  136. old_fs = get_fs();
  137. set_fs (USER_DS);
  138. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  139. set_fs (old_fs);
  140. return;
  141. }
  142. rwk = &r_w;
  143. set_fs (old_fs);
  144. }
  145. } else {
  146. show_regwindow32(regs);
  147. return;
  148. }
  149. printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
  150. rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
  151. printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
  152. rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
  153. printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
  154. rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
  155. printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
  156. rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
  157. if (regs->tstate & TSTATE_PRIV)
  158. printk("I7: <%pS>\n", (void *) rwk->ins[7]);
  159. }
  160. void show_regs(struct pt_regs *regs)
  161. {
  162. printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
  163. regs->tpc, regs->tnpc, regs->y, print_tainted());
  164. printk("TPC: <%pS>\n", (void *) regs->tpc);
  165. printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
  166. regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
  167. regs->u_regs[3]);
  168. printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
  169. regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
  170. regs->u_regs[7]);
  171. printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
  172. regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
  173. regs->u_regs[11]);
  174. printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
  175. regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
  176. regs->u_regs[15]);
  177. printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
  178. show_regwindow(regs);
  179. show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
  180. }
  181. struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
  182. static DEFINE_SPINLOCK(global_reg_snapshot_lock);
  183. static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
  184. int this_cpu)
  185. {
  186. flushw_all();
  187. global_reg_snapshot[this_cpu].tstate = regs->tstate;
  188. global_reg_snapshot[this_cpu].tpc = regs->tpc;
  189. global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
  190. global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
  191. if (regs->tstate & TSTATE_PRIV) {
  192. struct reg_window *rw;
  193. rw = (struct reg_window *)
  194. (regs->u_regs[UREG_FP] + STACK_BIAS);
  195. if (kstack_valid(tp, (unsigned long) rw)) {
  196. global_reg_snapshot[this_cpu].i7 = rw->ins[7];
  197. rw = (struct reg_window *)
  198. (rw->ins[6] + STACK_BIAS);
  199. if (kstack_valid(tp, (unsigned long) rw))
  200. global_reg_snapshot[this_cpu].rpc = rw->ins[7];
  201. }
  202. } else {
  203. global_reg_snapshot[this_cpu].i7 = 0;
  204. global_reg_snapshot[this_cpu].rpc = 0;
  205. }
  206. global_reg_snapshot[this_cpu].thread = tp;
  207. }
  208. /* In order to avoid hangs we do not try to synchronize with the
  209. * global register dump client cpus. The last store they make is to
  210. * the thread pointer, so do a short poll waiting for that to become
  211. * non-NULL.
  212. */
  213. static void __global_reg_poll(struct global_reg_snapshot *gp)
  214. {
  215. int limit = 0;
  216. while (!gp->thread && ++limit < 100) {
  217. barrier();
  218. udelay(1);
  219. }
  220. }
  221. void arch_trigger_all_cpu_backtrace(void)
  222. {
  223. struct thread_info *tp = current_thread_info();
  224. struct pt_regs *regs = get_irq_regs();
  225. unsigned long flags;
  226. int this_cpu, cpu;
  227. if (!regs)
  228. regs = tp->kregs;
  229. spin_lock_irqsave(&global_reg_snapshot_lock, flags);
  230. memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
  231. this_cpu = raw_smp_processor_id();
  232. __global_reg_self(tp, regs, this_cpu);
  233. smp_fetch_global_regs();
  234. for_each_online_cpu(cpu) {
  235. struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
  236. __global_reg_poll(gp);
  237. tp = gp->thread;
  238. printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
  239. (cpu == this_cpu ? '*' : ' '), cpu,
  240. gp->tstate, gp->tpc, gp->tnpc,
  241. ((tp && tp->task) ? tp->task->comm : "NULL"),
  242. ((tp && tp->task) ? tp->task->pid : -1));
  243. if (gp->tstate & TSTATE_PRIV) {
  244. printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
  245. (void *) gp->tpc,
  246. (void *) gp->o7,
  247. (void *) gp->i7,
  248. (void *) gp->rpc);
  249. } else {
  250. printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
  251. gp->tpc, gp->o7, gp->i7, gp->rpc);
  252. }
  253. }
  254. memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
  255. spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
  256. }
  257. #ifdef CONFIG_MAGIC_SYSRQ
  258. static void sysrq_handle_globreg(int key)
  259. {
  260. arch_trigger_all_cpu_backtrace();
  261. }
  262. static struct sysrq_key_op sparc_globalreg_op = {
  263. .handler = sysrq_handle_globreg,
  264. .help_msg = "Globalregs",
  265. .action_msg = "Show Global CPU Regs",
  266. };
  267. static int __init sparc_globreg_init(void)
  268. {
  269. return register_sysrq_key('y', &sparc_globalreg_op);
  270. }
  271. core_initcall(sparc_globreg_init);
  272. #endif
  273. unsigned long thread_saved_pc(struct task_struct *tsk)
  274. {
  275. struct thread_info *ti = task_thread_info(tsk);
  276. unsigned long ret = 0xdeadbeefUL;
  277. if (ti && ti->ksp) {
  278. unsigned long *sp;
  279. sp = (unsigned long *)(ti->ksp + STACK_BIAS);
  280. if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
  281. sp[14]) {
  282. unsigned long *fp;
  283. fp = (unsigned long *)(sp[14] + STACK_BIAS);
  284. if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
  285. ret = fp[15];
  286. }
  287. }
  288. return ret;
  289. }
  290. /* Free current thread data structures etc.. */
  291. void exit_thread(void)
  292. {
  293. struct thread_info *t = current_thread_info();
  294. if (t->utraps) {
  295. if (t->utraps[0] < 2)
  296. kfree (t->utraps);
  297. else
  298. t->utraps[0]--;
  299. }
  300. }
  301. void flush_thread(void)
  302. {
  303. struct thread_info *t = current_thread_info();
  304. struct mm_struct *mm;
  305. mm = t->task->mm;
  306. if (mm)
  307. tsb_context_switch(mm);
  308. set_thread_wsaved(0);
  309. /* Clear FPU register state. */
  310. t->fpsaved[0] = 0;
  311. }
  312. /* It's a bit more tricky when 64-bit tasks are involved... */
  313. static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
  314. {
  315. unsigned long fp, distance, rval;
  316. if (!(test_thread_flag(TIF_32BIT))) {
  317. csp += STACK_BIAS;
  318. psp += STACK_BIAS;
  319. __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
  320. fp += STACK_BIAS;
  321. } else
  322. __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
  323. /* Now align the stack as this is mandatory in the Sparc ABI
  324. * due to how register windows work. This hides the
  325. * restriction from thread libraries etc.
  326. */
  327. csp &= ~15UL;
  328. distance = fp - psp;
  329. rval = (csp - distance);
  330. if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
  331. rval = 0;
  332. else if (test_thread_flag(TIF_32BIT)) {
  333. if (put_user(((u32)csp),
  334. &(((struct reg_window32 __user *)rval)->ins[6])))
  335. rval = 0;
  336. } else {
  337. if (put_user(((u64)csp - STACK_BIAS),
  338. &(((struct reg_window __user *)rval)->ins[6])))
  339. rval = 0;
  340. else
  341. rval = rval - STACK_BIAS;
  342. }
  343. return rval;
  344. }
  345. /* Standard stuff. */
  346. static inline void shift_window_buffer(int first_win, int last_win,
  347. struct thread_info *t)
  348. {
  349. int i;
  350. for (i = first_win; i < last_win; i++) {
  351. t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
  352. memcpy(&t->reg_window[i], &t->reg_window[i+1],
  353. sizeof(struct reg_window));
  354. }
  355. }
  356. void synchronize_user_stack(void)
  357. {
  358. struct thread_info *t = current_thread_info();
  359. unsigned long window;
  360. flush_user_windows();
  361. if ((window = get_thread_wsaved()) != 0) {
  362. int winsize = sizeof(struct reg_window);
  363. int bias = 0;
  364. if (test_thread_flag(TIF_32BIT))
  365. winsize = sizeof(struct reg_window32);
  366. else
  367. bias = STACK_BIAS;
  368. window -= 1;
  369. do {
  370. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  371. struct reg_window *rwin = &t->reg_window[window];
  372. if (!copy_to_user((char __user *)sp, rwin, winsize)) {
  373. shift_window_buffer(window, get_thread_wsaved() - 1, t);
  374. set_thread_wsaved(get_thread_wsaved() - 1);
  375. }
  376. } while (window--);
  377. }
  378. }
  379. static void stack_unaligned(unsigned long sp)
  380. {
  381. siginfo_t info;
  382. info.si_signo = SIGBUS;
  383. info.si_errno = 0;
  384. info.si_code = BUS_ADRALN;
  385. info.si_addr = (void __user *) sp;
  386. info.si_trapno = 0;
  387. force_sig_info(SIGBUS, &info, current);
  388. }
  389. void fault_in_user_windows(void)
  390. {
  391. struct thread_info *t = current_thread_info();
  392. unsigned long window;
  393. int winsize = sizeof(struct reg_window);
  394. int bias = 0;
  395. if (test_thread_flag(TIF_32BIT))
  396. winsize = sizeof(struct reg_window32);
  397. else
  398. bias = STACK_BIAS;
  399. flush_user_windows();
  400. window = get_thread_wsaved();
  401. if (likely(window != 0)) {
  402. window -= 1;
  403. do {
  404. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  405. struct reg_window *rwin = &t->reg_window[window];
  406. if (unlikely(sp & 0x7UL))
  407. stack_unaligned(sp);
  408. if (unlikely(copy_to_user((char __user *)sp,
  409. rwin, winsize)))
  410. goto barf;
  411. } while (window--);
  412. }
  413. set_thread_wsaved(0);
  414. return;
  415. barf:
  416. set_thread_wsaved(window + 1);
  417. do_exit(SIGILL);
  418. }
  419. asmlinkage long sparc_do_fork(unsigned long clone_flags,
  420. unsigned long stack_start,
  421. struct pt_regs *regs,
  422. unsigned long stack_size)
  423. {
  424. int __user *parent_tid_ptr, *child_tid_ptr;
  425. unsigned long orig_i1 = regs->u_regs[UREG_I1];
  426. long ret;
  427. #ifdef CONFIG_COMPAT
  428. if (test_thread_flag(TIF_32BIT)) {
  429. parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
  430. child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
  431. } else
  432. #endif
  433. {
  434. parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
  435. child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
  436. }
  437. ret = do_fork(clone_flags, stack_start,
  438. regs, stack_size,
  439. parent_tid_ptr, child_tid_ptr);
  440. /* If we get an error and potentially restart the system
  441. * call, we're screwed because copy_thread() clobbered
  442. * the parent's %o1. So detect that case and restore it
  443. * here.
  444. */
  445. if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
  446. regs->u_regs[UREG_I1] = orig_i1;
  447. return ret;
  448. }
  449. /* Copy a Sparc thread. The fork() return value conventions
  450. * under SunOS are nothing short of bletcherous:
  451. * Parent --> %o0 == childs pid, %o1 == 0
  452. * Child --> %o0 == parents pid, %o1 == 1
  453. */
  454. int copy_thread(unsigned long clone_flags, unsigned long sp,
  455. unsigned long unused,
  456. struct task_struct *p, struct pt_regs *regs)
  457. {
  458. struct thread_info *t = task_thread_info(p);
  459. struct sparc_stackf *parent_sf;
  460. unsigned long child_stack_sz;
  461. char *child_trap_frame;
  462. int kernel_thread;
  463. kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
  464. parent_sf = ((struct sparc_stackf *) regs) - 1;
  465. /* Calculate offset to stack_frame & pt_regs */
  466. child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
  467. (kernel_thread ? STACKFRAME_SZ : 0));
  468. child_trap_frame = (task_stack_page(p) +
  469. (THREAD_SIZE - child_stack_sz));
  470. memcpy(child_trap_frame, parent_sf, child_stack_sz);
  471. t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
  472. (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
  473. (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
  474. t->new_child = 1;
  475. t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
  476. t->kregs = (struct pt_regs *) (child_trap_frame +
  477. sizeof(struct sparc_stackf));
  478. t->fpsaved[0] = 0;
  479. if (kernel_thread) {
  480. struct sparc_stackf *child_sf = (struct sparc_stackf *)
  481. (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
  482. /* Zero terminate the stack backtrace. */
  483. child_sf->fp = NULL;
  484. t->kregs->u_regs[UREG_FP] =
  485. ((unsigned long) child_sf) - STACK_BIAS;
  486. t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
  487. t->kregs->u_regs[UREG_G6] = (unsigned long) t;
  488. t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
  489. } else {
  490. if (t->flags & _TIF_32BIT) {
  491. sp &= 0x00000000ffffffffUL;
  492. regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
  493. }
  494. t->kregs->u_regs[UREG_FP] = sp;
  495. t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
  496. if (sp != regs->u_regs[UREG_FP]) {
  497. unsigned long csp;
  498. csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
  499. if (!csp)
  500. return -EFAULT;
  501. t->kregs->u_regs[UREG_FP] = csp;
  502. }
  503. if (t->utraps)
  504. t->utraps[0]++;
  505. }
  506. /* Set the return value for the child. */
  507. t->kregs->u_regs[UREG_I0] = current->pid;
  508. t->kregs->u_regs[UREG_I1] = 1;
  509. /* Set the second return value for the parent. */
  510. regs->u_regs[UREG_I1] = 0;
  511. if (clone_flags & CLONE_SETTLS)
  512. t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
  513. return 0;
  514. }
  515. /*
  516. * This is the mechanism for creating a new kernel thread.
  517. *
  518. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  519. * who haven't done an "execve()") should use this: it will work within
  520. * a system call from a "real" process, but the process memory space will
  521. * not be freed until both the parent and the child have exited.
  522. */
  523. pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  524. {
  525. long retval;
  526. /* If the parent runs before fn(arg) is called by the child,
  527. * the input registers of this function can be clobbered.
  528. * So we stash 'fn' and 'arg' into global registers which
  529. * will not be modified by the parent.
  530. */
  531. __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
  532. "mov %5, %%g3\n\t" /* Save ARG into global */
  533. "mov %1, %%g1\n\t" /* Clone syscall nr. */
  534. "mov %2, %%o0\n\t" /* Clone flags. */
  535. "mov 0, %%o1\n\t" /* usp arg == 0 */
  536. "t 0x6d\n\t" /* Linux/Sparc clone(). */
  537. "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
  538. " mov %%o0, %0\n\t"
  539. "jmpl %%g2, %%o7\n\t" /* Call the function. */
  540. " mov %%g3, %%o0\n\t" /* Set arg in delay. */
  541. "mov %3, %%g1\n\t"
  542. "t 0x6d\n\t" /* Linux/Sparc exit(). */
  543. /* Notreached by child. */
  544. "1:" :
  545. "=r" (retval) :
  546. "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
  547. "i" (__NR_exit), "r" (fn), "r" (arg) :
  548. "g1", "g2", "g3", "o0", "o1", "memory", "cc");
  549. return retval;
  550. }
  551. EXPORT_SYMBOL(kernel_thread);
  552. typedef struct {
  553. union {
  554. unsigned int pr_regs[32];
  555. unsigned long pr_dregs[16];
  556. } pr_fr;
  557. unsigned int __unused;
  558. unsigned int pr_fsr;
  559. unsigned char pr_qcnt;
  560. unsigned char pr_q_entrysize;
  561. unsigned char pr_en;
  562. unsigned int pr_q[64];
  563. } elf_fpregset_t32;
  564. /*
  565. * fill in the fpu structure for a core dump.
  566. */
  567. int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
  568. {
  569. unsigned long *kfpregs = current_thread_info()->fpregs;
  570. unsigned long fprs = current_thread_info()->fpsaved[0];
  571. if (test_thread_flag(TIF_32BIT)) {
  572. elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
  573. if (fprs & FPRS_DL)
  574. memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
  575. sizeof(unsigned int) * 32);
  576. else
  577. memset(&fpregs32->pr_fr.pr_regs[0], 0,
  578. sizeof(unsigned int) * 32);
  579. fpregs32->pr_qcnt = 0;
  580. fpregs32->pr_q_entrysize = 8;
  581. memset(&fpregs32->pr_q[0], 0,
  582. (sizeof(unsigned int) * 64));
  583. if (fprs & FPRS_FEF) {
  584. fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
  585. fpregs32->pr_en = 1;
  586. } else {
  587. fpregs32->pr_fsr = 0;
  588. fpregs32->pr_en = 0;
  589. }
  590. } else {
  591. if(fprs & FPRS_DL)
  592. memcpy(&fpregs->pr_regs[0], kfpregs,
  593. sizeof(unsigned int) * 32);
  594. else
  595. memset(&fpregs->pr_regs[0], 0,
  596. sizeof(unsigned int) * 32);
  597. if(fprs & FPRS_DU)
  598. memcpy(&fpregs->pr_regs[16], kfpregs+16,
  599. sizeof(unsigned int) * 32);
  600. else
  601. memset(&fpregs->pr_regs[16], 0,
  602. sizeof(unsigned int) * 32);
  603. if(fprs & FPRS_FEF) {
  604. fpregs->pr_fsr = current_thread_info()->xfsr[0];
  605. fpregs->pr_gsr = current_thread_info()->gsr[0];
  606. } else {
  607. fpregs->pr_fsr = fpregs->pr_gsr = 0;
  608. }
  609. fpregs->pr_fprs = fprs;
  610. }
  611. return 1;
  612. }
  613. EXPORT_SYMBOL(dump_fpu);
  614. /*
  615. * sparc_execve() executes a new program after the asm stub has set
  616. * things up for us. This should basically do what I want it to.
  617. */
  618. asmlinkage int sparc_execve(struct pt_regs *regs)
  619. {
  620. int error, base = 0;
  621. char *filename;
  622. /* User register window flush is done by entry.S */
  623. /* Check for indirect call. */
  624. if (regs->u_regs[UREG_G1] == 0)
  625. base = 1;
  626. filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
  627. error = PTR_ERR(filename);
  628. if (IS_ERR(filename))
  629. goto out;
  630. error = do_execve(filename,
  631. (const char __user *const __user *)
  632. regs->u_regs[base + UREG_I1],
  633. (const char __user *const __user *)
  634. regs->u_regs[base + UREG_I2], regs);
  635. putname(filename);
  636. if (!error) {
  637. fprs_write(0);
  638. current_thread_info()->xfsr[0] = 0;
  639. current_thread_info()->fpsaved[0] = 0;
  640. regs->tstate &= ~TSTATE_PEF;
  641. }
  642. out:
  643. return error;
  644. }
  645. unsigned long get_wchan(struct task_struct *task)
  646. {
  647. unsigned long pc, fp, bias = 0;
  648. struct thread_info *tp;
  649. struct reg_window *rw;
  650. unsigned long ret = 0;
  651. int count = 0;
  652. if (!task || task == current ||
  653. task->state == TASK_RUNNING)
  654. goto out;
  655. tp = task_thread_info(task);
  656. bias = STACK_BIAS;
  657. fp = task_thread_info(task)->ksp + bias;
  658. do {
  659. if (!kstack_valid(tp, fp))
  660. break;
  661. rw = (struct reg_window *) fp;
  662. pc = rw->ins[7];
  663. if (!in_sched_functions(pc)) {
  664. ret = pc;
  665. goto out;
  666. }
  667. fp = rw->ins[6] + bias;
  668. } while (++count < 16);
  669. out:
  670. return ret;
  671. }