sched.c 200 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <asm/tlb.h>
  69. #include <asm/irq_regs.h>
  70. /*
  71. * Scheduler clock - returns current time in nanosec units.
  72. * This is default implementation.
  73. * Architectures and sub-architectures can override this.
  74. */
  75. unsigned long long __attribute__((weak)) sched_clock(void)
  76. {
  77. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  78. }
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. #ifdef CONFIG_GROUP_SCHED
  145. #include <linux/cgroup.h>
  146. struct cfs_rq;
  147. static LIST_HEAD(task_groups);
  148. /* task group related information */
  149. struct task_group {
  150. #ifdef CONFIG_CGROUP_SCHED
  151. struct cgroup_subsys_state css;
  152. #endif
  153. #ifdef CONFIG_FAIR_GROUP_SCHED
  154. /* schedulable entities of this group on each cpu */
  155. struct sched_entity **se;
  156. /* runqueue "owned" by this group on each cpu */
  157. struct cfs_rq **cfs_rq;
  158. /*
  159. * shares assigned to a task group governs how much of cpu bandwidth
  160. * is allocated to the group. The more shares a group has, the more is
  161. * the cpu bandwidth allocated to it.
  162. *
  163. * For ex, lets say that there are three task groups, A, B and C which
  164. * have been assigned shares 1000, 2000 and 3000 respectively. Then,
  165. * cpu bandwidth allocated by the scheduler to task groups A, B and C
  166. * should be:
  167. *
  168. * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
  169. * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
  170. * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
  171. *
  172. * The weight assigned to a task group's schedulable entities on every
  173. * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
  174. * group's shares. For ex: lets say that task group A has been
  175. * assigned shares of 1000 and there are two CPUs in a system. Then,
  176. *
  177. * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
  178. *
  179. * Note: It's not necessary that each of a task's group schedulable
  180. * entity have the same weight on all CPUs. If the group
  181. * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
  182. * better distribution of weight could be:
  183. *
  184. * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
  185. * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
  186. *
  187. * rebalance_shares() is responsible for distributing the shares of a
  188. * task groups like this among the group's schedulable entities across
  189. * cpus.
  190. *
  191. */
  192. unsigned long shares;
  193. #endif
  194. #ifdef CONFIG_RT_GROUP_SCHED
  195. struct sched_rt_entity **rt_se;
  196. struct rt_rq **rt_rq;
  197. u64 rt_runtime;
  198. #endif
  199. struct rcu_head rcu;
  200. struct list_head list;
  201. };
  202. #ifdef CONFIG_FAIR_GROUP_SCHED
  203. /* Default task group's sched entity on each cpu */
  204. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  205. /* Default task group's cfs_rq on each cpu */
  206. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  207. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  208. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  209. #endif
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  212. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  213. static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
  214. static struct rt_rq *init_rt_rq_p[NR_CPUS];
  215. #endif
  216. /* task_group_lock serializes add/remove of task groups and also changes to
  217. * a task group's cpu shares.
  218. */
  219. static DEFINE_SPINLOCK(task_group_lock);
  220. /* doms_cur_mutex serializes access to doms_cur[] array */
  221. static DEFINE_MUTEX(doms_cur_mutex);
  222. #ifdef CONFIG_FAIR_GROUP_SCHED
  223. #ifdef CONFIG_SMP
  224. /* kernel thread that runs rebalance_shares() periodically */
  225. static struct task_struct *lb_monitor_task;
  226. static int load_balance_monitor(void *unused);
  227. #endif
  228. static void set_se_shares(struct sched_entity *se, unsigned long shares);
  229. #ifdef CONFIG_USER_SCHED
  230. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  231. #else
  232. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  233. #endif
  234. #define MIN_GROUP_SHARES 2
  235. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  236. #endif
  237. /* Default task group.
  238. * Every task in system belong to this group at bootup.
  239. */
  240. struct task_group init_task_group = {
  241. #ifdef CONFIG_FAIR_GROUP_SCHED
  242. .se = init_sched_entity_p,
  243. .cfs_rq = init_cfs_rq_p,
  244. #endif
  245. #ifdef CONFIG_RT_GROUP_SCHED
  246. .rt_se = init_sched_rt_entity_p,
  247. .rt_rq = init_rt_rq_p,
  248. #endif
  249. };
  250. /* return group to which a task belongs */
  251. static inline struct task_group *task_group(struct task_struct *p)
  252. {
  253. struct task_group *tg;
  254. #ifdef CONFIG_USER_SCHED
  255. tg = p->user->tg;
  256. #elif defined(CONFIG_CGROUP_SCHED)
  257. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  258. struct task_group, css);
  259. #else
  260. tg = &init_task_group;
  261. #endif
  262. return tg;
  263. }
  264. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  265. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  266. {
  267. #ifdef CONFIG_FAIR_GROUP_SCHED
  268. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  269. p->se.parent = task_group(p)->se[cpu];
  270. #endif
  271. #ifdef CONFIG_RT_GROUP_SCHED
  272. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  273. p->rt.parent = task_group(p)->rt_se[cpu];
  274. #endif
  275. }
  276. static inline void lock_doms_cur(void)
  277. {
  278. mutex_lock(&doms_cur_mutex);
  279. }
  280. static inline void unlock_doms_cur(void)
  281. {
  282. mutex_unlock(&doms_cur_mutex);
  283. }
  284. #else
  285. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  286. static inline void lock_doms_cur(void) { }
  287. static inline void unlock_doms_cur(void) { }
  288. #endif /* CONFIG_GROUP_SCHED */
  289. /* CFS-related fields in a runqueue */
  290. struct cfs_rq {
  291. struct load_weight load;
  292. unsigned long nr_running;
  293. u64 exec_clock;
  294. u64 min_vruntime;
  295. struct rb_root tasks_timeline;
  296. struct rb_node *rb_leftmost;
  297. struct rb_node *rb_load_balance_curr;
  298. /* 'curr' points to currently running entity on this cfs_rq.
  299. * It is set to NULL otherwise (i.e when none are currently running).
  300. */
  301. struct sched_entity *curr;
  302. unsigned long nr_spread_over;
  303. #ifdef CONFIG_FAIR_GROUP_SCHED
  304. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  305. /*
  306. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  307. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  308. * (like users, containers etc.)
  309. *
  310. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  311. * list is used during load balance.
  312. */
  313. struct list_head leaf_cfs_rq_list;
  314. struct task_group *tg; /* group that "owns" this runqueue */
  315. #endif
  316. };
  317. /* Real-Time classes' related field in a runqueue: */
  318. struct rt_rq {
  319. struct rt_prio_array active;
  320. unsigned long rt_nr_running;
  321. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  322. int highest_prio; /* highest queued rt task prio */
  323. #endif
  324. #ifdef CONFIG_SMP
  325. unsigned long rt_nr_migratory;
  326. int overloaded;
  327. #endif
  328. int rt_throttled;
  329. u64 rt_time;
  330. #ifdef CONFIG_RT_GROUP_SCHED
  331. unsigned long rt_nr_boosted;
  332. struct rq *rq;
  333. struct list_head leaf_rt_rq_list;
  334. struct task_group *tg;
  335. struct sched_rt_entity *rt_se;
  336. #endif
  337. };
  338. #ifdef CONFIG_SMP
  339. /*
  340. * We add the notion of a root-domain which will be used to define per-domain
  341. * variables. Each exclusive cpuset essentially defines an island domain by
  342. * fully partitioning the member cpus from any other cpuset. Whenever a new
  343. * exclusive cpuset is created, we also create and attach a new root-domain
  344. * object.
  345. *
  346. */
  347. struct root_domain {
  348. atomic_t refcount;
  349. cpumask_t span;
  350. cpumask_t online;
  351. /*
  352. * The "RT overload" flag: it gets set if a CPU has more than
  353. * one runnable RT task.
  354. */
  355. cpumask_t rto_mask;
  356. atomic_t rto_count;
  357. };
  358. /*
  359. * By default the system creates a single root-domain with all cpus as
  360. * members (mimicking the global state we have today).
  361. */
  362. static struct root_domain def_root_domain;
  363. #endif
  364. /*
  365. * This is the main, per-CPU runqueue data structure.
  366. *
  367. * Locking rule: those places that want to lock multiple runqueues
  368. * (such as the load balancing or the thread migration code), lock
  369. * acquire operations must be ordered by ascending &runqueue.
  370. */
  371. struct rq {
  372. /* runqueue lock: */
  373. spinlock_t lock;
  374. /*
  375. * nr_running and cpu_load should be in the same cacheline because
  376. * remote CPUs use both these fields when doing load calculation.
  377. */
  378. unsigned long nr_running;
  379. #define CPU_LOAD_IDX_MAX 5
  380. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  381. unsigned char idle_at_tick;
  382. #ifdef CONFIG_NO_HZ
  383. unsigned char in_nohz_recently;
  384. #endif
  385. /* capture load from *all* tasks on this cpu: */
  386. struct load_weight load;
  387. unsigned long nr_load_updates;
  388. u64 nr_switches;
  389. struct cfs_rq cfs;
  390. struct rt_rq rt;
  391. u64 rt_period_expire;
  392. int rt_throttled;
  393. #ifdef CONFIG_FAIR_GROUP_SCHED
  394. /* list of leaf cfs_rq on this cpu: */
  395. struct list_head leaf_cfs_rq_list;
  396. #endif
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. struct list_head leaf_rt_rq_list;
  399. #endif
  400. /*
  401. * This is part of a global counter where only the total sum
  402. * over all CPUs matters. A task can increase this counter on
  403. * one CPU and if it got migrated afterwards it may decrease
  404. * it on another CPU. Always updated under the runqueue lock:
  405. */
  406. unsigned long nr_uninterruptible;
  407. struct task_struct *curr, *idle;
  408. unsigned long next_balance;
  409. struct mm_struct *prev_mm;
  410. u64 clock, prev_clock_raw;
  411. s64 clock_max_delta;
  412. unsigned int clock_warps, clock_overflows, clock_underflows;
  413. u64 idle_clock;
  414. unsigned int clock_deep_idle_events;
  415. u64 tick_timestamp;
  416. atomic_t nr_iowait;
  417. #ifdef CONFIG_SMP
  418. struct root_domain *rd;
  419. struct sched_domain *sd;
  420. /* For active balancing */
  421. int active_balance;
  422. int push_cpu;
  423. /* cpu of this runqueue: */
  424. int cpu;
  425. struct task_struct *migration_thread;
  426. struct list_head migration_queue;
  427. #endif
  428. #ifdef CONFIG_SCHED_HRTICK
  429. unsigned long hrtick_flags;
  430. ktime_t hrtick_expire;
  431. struct hrtimer hrtick_timer;
  432. #endif
  433. #ifdef CONFIG_SCHEDSTATS
  434. /* latency stats */
  435. struct sched_info rq_sched_info;
  436. /* sys_sched_yield() stats */
  437. unsigned int yld_exp_empty;
  438. unsigned int yld_act_empty;
  439. unsigned int yld_both_empty;
  440. unsigned int yld_count;
  441. /* schedule() stats */
  442. unsigned int sched_switch;
  443. unsigned int sched_count;
  444. unsigned int sched_goidle;
  445. /* try_to_wake_up() stats */
  446. unsigned int ttwu_count;
  447. unsigned int ttwu_local;
  448. /* BKL stats */
  449. unsigned int bkl_count;
  450. #endif
  451. struct lock_class_key rq_lock_key;
  452. };
  453. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  454. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  455. {
  456. rq->curr->sched_class->check_preempt_curr(rq, p);
  457. }
  458. static inline int cpu_of(struct rq *rq)
  459. {
  460. #ifdef CONFIG_SMP
  461. return rq->cpu;
  462. #else
  463. return 0;
  464. #endif
  465. }
  466. /*
  467. * Update the per-runqueue clock, as finegrained as the platform can give
  468. * us, but without assuming monotonicity, etc.:
  469. */
  470. static void __update_rq_clock(struct rq *rq)
  471. {
  472. u64 prev_raw = rq->prev_clock_raw;
  473. u64 now = sched_clock();
  474. s64 delta = now - prev_raw;
  475. u64 clock = rq->clock;
  476. #ifdef CONFIG_SCHED_DEBUG
  477. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  478. #endif
  479. /*
  480. * Protect against sched_clock() occasionally going backwards:
  481. */
  482. if (unlikely(delta < 0)) {
  483. clock++;
  484. rq->clock_warps++;
  485. } else {
  486. /*
  487. * Catch too large forward jumps too:
  488. */
  489. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  490. if (clock < rq->tick_timestamp + TICK_NSEC)
  491. clock = rq->tick_timestamp + TICK_NSEC;
  492. else
  493. clock++;
  494. rq->clock_overflows++;
  495. } else {
  496. if (unlikely(delta > rq->clock_max_delta))
  497. rq->clock_max_delta = delta;
  498. clock += delta;
  499. }
  500. }
  501. rq->prev_clock_raw = now;
  502. rq->clock = clock;
  503. }
  504. static void update_rq_clock(struct rq *rq)
  505. {
  506. if (likely(smp_processor_id() == cpu_of(rq)))
  507. __update_rq_clock(rq);
  508. }
  509. /*
  510. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  511. * See detach_destroy_domains: synchronize_sched for details.
  512. *
  513. * The domain tree of any CPU may only be accessed from within
  514. * preempt-disabled sections.
  515. */
  516. #define for_each_domain(cpu, __sd) \
  517. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  518. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  519. #define this_rq() (&__get_cpu_var(runqueues))
  520. #define task_rq(p) cpu_rq(task_cpu(p))
  521. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  522. unsigned long rt_needs_cpu(int cpu)
  523. {
  524. struct rq *rq = cpu_rq(cpu);
  525. u64 delta;
  526. if (!rq->rt_throttled)
  527. return 0;
  528. if (rq->clock > rq->rt_period_expire)
  529. return 1;
  530. delta = rq->rt_period_expire - rq->clock;
  531. do_div(delta, NSEC_PER_SEC / HZ);
  532. return (unsigned long)delta;
  533. }
  534. /*
  535. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  536. */
  537. #ifdef CONFIG_SCHED_DEBUG
  538. # define const_debug __read_mostly
  539. #else
  540. # define const_debug static const
  541. #endif
  542. /*
  543. * Debugging: various feature bits
  544. */
  545. enum {
  546. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  547. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  548. SCHED_FEAT_START_DEBIT = 4,
  549. SCHED_FEAT_TREE_AVG = 8,
  550. SCHED_FEAT_APPROX_AVG = 16,
  551. SCHED_FEAT_HRTICK = 32,
  552. SCHED_FEAT_DOUBLE_TICK = 64,
  553. };
  554. const_debug unsigned int sysctl_sched_features =
  555. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  556. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  557. SCHED_FEAT_START_DEBIT * 1 |
  558. SCHED_FEAT_TREE_AVG * 0 |
  559. SCHED_FEAT_APPROX_AVG * 0 |
  560. SCHED_FEAT_HRTICK * 1 |
  561. SCHED_FEAT_DOUBLE_TICK * 0;
  562. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  563. /*
  564. * Number of tasks to iterate in a single balance run.
  565. * Limited because this is done with IRQs disabled.
  566. */
  567. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  568. /*
  569. * period over which we measure -rt task cpu usage in us.
  570. * default: 1s
  571. */
  572. unsigned int sysctl_sched_rt_period = 1000000;
  573. /*
  574. * part of the period that we allow rt tasks to run in us.
  575. * default: 0.95s
  576. */
  577. int sysctl_sched_rt_runtime = 950000;
  578. /*
  579. * single value that denotes runtime == period, ie unlimited time.
  580. */
  581. #define RUNTIME_INF ((u64)~0ULL)
  582. /*
  583. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  584. * clock constructed from sched_clock():
  585. */
  586. unsigned long long cpu_clock(int cpu)
  587. {
  588. unsigned long long now;
  589. unsigned long flags;
  590. struct rq *rq;
  591. local_irq_save(flags);
  592. rq = cpu_rq(cpu);
  593. /*
  594. * Only call sched_clock() if the scheduler has already been
  595. * initialized (some code might call cpu_clock() very early):
  596. */
  597. if (rq->idle)
  598. update_rq_clock(rq);
  599. now = rq->clock;
  600. local_irq_restore(flags);
  601. return now;
  602. }
  603. EXPORT_SYMBOL_GPL(cpu_clock);
  604. #ifndef prepare_arch_switch
  605. # define prepare_arch_switch(next) do { } while (0)
  606. #endif
  607. #ifndef finish_arch_switch
  608. # define finish_arch_switch(prev) do { } while (0)
  609. #endif
  610. static inline int task_current(struct rq *rq, struct task_struct *p)
  611. {
  612. return rq->curr == p;
  613. }
  614. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  615. static inline int task_running(struct rq *rq, struct task_struct *p)
  616. {
  617. return task_current(rq, p);
  618. }
  619. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  620. {
  621. }
  622. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  623. {
  624. #ifdef CONFIG_DEBUG_SPINLOCK
  625. /* this is a valid case when another task releases the spinlock */
  626. rq->lock.owner = current;
  627. #endif
  628. /*
  629. * If we are tracking spinlock dependencies then we have to
  630. * fix up the runqueue lock - which gets 'carried over' from
  631. * prev into current:
  632. */
  633. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  634. spin_unlock_irq(&rq->lock);
  635. }
  636. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  637. static inline int task_running(struct rq *rq, struct task_struct *p)
  638. {
  639. #ifdef CONFIG_SMP
  640. return p->oncpu;
  641. #else
  642. return task_current(rq, p);
  643. #endif
  644. }
  645. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  646. {
  647. #ifdef CONFIG_SMP
  648. /*
  649. * We can optimise this out completely for !SMP, because the
  650. * SMP rebalancing from interrupt is the only thing that cares
  651. * here.
  652. */
  653. next->oncpu = 1;
  654. #endif
  655. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  656. spin_unlock_irq(&rq->lock);
  657. #else
  658. spin_unlock(&rq->lock);
  659. #endif
  660. }
  661. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  662. {
  663. #ifdef CONFIG_SMP
  664. /*
  665. * After ->oncpu is cleared, the task can be moved to a different CPU.
  666. * We must ensure this doesn't happen until the switch is completely
  667. * finished.
  668. */
  669. smp_wmb();
  670. prev->oncpu = 0;
  671. #endif
  672. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  673. local_irq_enable();
  674. #endif
  675. }
  676. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  677. /*
  678. * __task_rq_lock - lock the runqueue a given task resides on.
  679. * Must be called interrupts disabled.
  680. */
  681. static inline struct rq *__task_rq_lock(struct task_struct *p)
  682. __acquires(rq->lock)
  683. {
  684. for (;;) {
  685. struct rq *rq = task_rq(p);
  686. spin_lock(&rq->lock);
  687. if (likely(rq == task_rq(p)))
  688. return rq;
  689. spin_unlock(&rq->lock);
  690. }
  691. }
  692. /*
  693. * task_rq_lock - lock the runqueue a given task resides on and disable
  694. * interrupts. Note the ordering: we can safely lookup the task_rq without
  695. * explicitly disabling preemption.
  696. */
  697. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  698. __acquires(rq->lock)
  699. {
  700. struct rq *rq;
  701. for (;;) {
  702. local_irq_save(*flags);
  703. rq = task_rq(p);
  704. spin_lock(&rq->lock);
  705. if (likely(rq == task_rq(p)))
  706. return rq;
  707. spin_unlock_irqrestore(&rq->lock, *flags);
  708. }
  709. }
  710. static void __task_rq_unlock(struct rq *rq)
  711. __releases(rq->lock)
  712. {
  713. spin_unlock(&rq->lock);
  714. }
  715. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  716. __releases(rq->lock)
  717. {
  718. spin_unlock_irqrestore(&rq->lock, *flags);
  719. }
  720. /*
  721. * this_rq_lock - lock this runqueue and disable interrupts.
  722. */
  723. static struct rq *this_rq_lock(void)
  724. __acquires(rq->lock)
  725. {
  726. struct rq *rq;
  727. local_irq_disable();
  728. rq = this_rq();
  729. spin_lock(&rq->lock);
  730. return rq;
  731. }
  732. /*
  733. * We are going deep-idle (irqs are disabled):
  734. */
  735. void sched_clock_idle_sleep_event(void)
  736. {
  737. struct rq *rq = cpu_rq(smp_processor_id());
  738. spin_lock(&rq->lock);
  739. __update_rq_clock(rq);
  740. spin_unlock(&rq->lock);
  741. rq->clock_deep_idle_events++;
  742. }
  743. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  744. /*
  745. * We just idled delta nanoseconds (called with irqs disabled):
  746. */
  747. void sched_clock_idle_wakeup_event(u64 delta_ns)
  748. {
  749. struct rq *rq = cpu_rq(smp_processor_id());
  750. u64 now = sched_clock();
  751. rq->idle_clock += delta_ns;
  752. /*
  753. * Override the previous timestamp and ignore all
  754. * sched_clock() deltas that occured while we idled,
  755. * and use the PM-provided delta_ns to advance the
  756. * rq clock:
  757. */
  758. spin_lock(&rq->lock);
  759. rq->prev_clock_raw = now;
  760. rq->clock += delta_ns;
  761. spin_unlock(&rq->lock);
  762. touch_softlockup_watchdog();
  763. }
  764. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  765. static void __resched_task(struct task_struct *p, int tif_bit);
  766. static inline void resched_task(struct task_struct *p)
  767. {
  768. __resched_task(p, TIF_NEED_RESCHED);
  769. }
  770. #ifdef CONFIG_SCHED_HRTICK
  771. /*
  772. * Use HR-timers to deliver accurate preemption points.
  773. *
  774. * Its all a bit involved since we cannot program an hrt while holding the
  775. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  776. * reschedule event.
  777. *
  778. * When we get rescheduled we reprogram the hrtick_timer outside of the
  779. * rq->lock.
  780. */
  781. static inline void resched_hrt(struct task_struct *p)
  782. {
  783. __resched_task(p, TIF_HRTICK_RESCHED);
  784. }
  785. static inline void resched_rq(struct rq *rq)
  786. {
  787. unsigned long flags;
  788. spin_lock_irqsave(&rq->lock, flags);
  789. resched_task(rq->curr);
  790. spin_unlock_irqrestore(&rq->lock, flags);
  791. }
  792. enum {
  793. HRTICK_SET, /* re-programm hrtick_timer */
  794. HRTICK_RESET, /* not a new slice */
  795. };
  796. /*
  797. * Use hrtick when:
  798. * - enabled by features
  799. * - hrtimer is actually high res
  800. */
  801. static inline int hrtick_enabled(struct rq *rq)
  802. {
  803. if (!sched_feat(HRTICK))
  804. return 0;
  805. return hrtimer_is_hres_active(&rq->hrtick_timer);
  806. }
  807. /*
  808. * Called to set the hrtick timer state.
  809. *
  810. * called with rq->lock held and irqs disabled
  811. */
  812. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  813. {
  814. assert_spin_locked(&rq->lock);
  815. /*
  816. * preempt at: now + delay
  817. */
  818. rq->hrtick_expire =
  819. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  820. /*
  821. * indicate we need to program the timer
  822. */
  823. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  824. if (reset)
  825. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  826. /*
  827. * New slices are called from the schedule path and don't need a
  828. * forced reschedule.
  829. */
  830. if (reset)
  831. resched_hrt(rq->curr);
  832. }
  833. static void hrtick_clear(struct rq *rq)
  834. {
  835. if (hrtimer_active(&rq->hrtick_timer))
  836. hrtimer_cancel(&rq->hrtick_timer);
  837. }
  838. /*
  839. * Update the timer from the possible pending state.
  840. */
  841. static void hrtick_set(struct rq *rq)
  842. {
  843. ktime_t time;
  844. int set, reset;
  845. unsigned long flags;
  846. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  847. spin_lock_irqsave(&rq->lock, flags);
  848. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  849. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  850. time = rq->hrtick_expire;
  851. clear_thread_flag(TIF_HRTICK_RESCHED);
  852. spin_unlock_irqrestore(&rq->lock, flags);
  853. if (set) {
  854. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  855. if (reset && !hrtimer_active(&rq->hrtick_timer))
  856. resched_rq(rq);
  857. } else
  858. hrtick_clear(rq);
  859. }
  860. /*
  861. * High-resolution timer tick.
  862. * Runs from hardirq context with interrupts disabled.
  863. */
  864. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  865. {
  866. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  867. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  868. spin_lock(&rq->lock);
  869. __update_rq_clock(rq);
  870. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  871. spin_unlock(&rq->lock);
  872. return HRTIMER_NORESTART;
  873. }
  874. static inline void init_rq_hrtick(struct rq *rq)
  875. {
  876. rq->hrtick_flags = 0;
  877. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  878. rq->hrtick_timer.function = hrtick;
  879. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  880. }
  881. void hrtick_resched(void)
  882. {
  883. struct rq *rq;
  884. unsigned long flags;
  885. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  886. return;
  887. local_irq_save(flags);
  888. rq = cpu_rq(smp_processor_id());
  889. hrtick_set(rq);
  890. local_irq_restore(flags);
  891. }
  892. #else
  893. static inline void hrtick_clear(struct rq *rq)
  894. {
  895. }
  896. static inline void hrtick_set(struct rq *rq)
  897. {
  898. }
  899. static inline void init_rq_hrtick(struct rq *rq)
  900. {
  901. }
  902. void hrtick_resched(void)
  903. {
  904. }
  905. #endif
  906. /*
  907. * resched_task - mark a task 'to be rescheduled now'.
  908. *
  909. * On UP this means the setting of the need_resched flag, on SMP it
  910. * might also involve a cross-CPU call to trigger the scheduler on
  911. * the target CPU.
  912. */
  913. #ifdef CONFIG_SMP
  914. #ifndef tsk_is_polling
  915. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  916. #endif
  917. static void __resched_task(struct task_struct *p, int tif_bit)
  918. {
  919. int cpu;
  920. assert_spin_locked(&task_rq(p)->lock);
  921. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  922. return;
  923. set_tsk_thread_flag(p, tif_bit);
  924. cpu = task_cpu(p);
  925. if (cpu == smp_processor_id())
  926. return;
  927. /* NEED_RESCHED must be visible before we test polling */
  928. smp_mb();
  929. if (!tsk_is_polling(p))
  930. smp_send_reschedule(cpu);
  931. }
  932. static void resched_cpu(int cpu)
  933. {
  934. struct rq *rq = cpu_rq(cpu);
  935. unsigned long flags;
  936. if (!spin_trylock_irqsave(&rq->lock, flags))
  937. return;
  938. resched_task(cpu_curr(cpu));
  939. spin_unlock_irqrestore(&rq->lock, flags);
  940. }
  941. #else
  942. static void __resched_task(struct task_struct *p, int tif_bit)
  943. {
  944. assert_spin_locked(&task_rq(p)->lock);
  945. set_tsk_thread_flag(p, tif_bit);
  946. }
  947. #endif
  948. #if BITS_PER_LONG == 32
  949. # define WMULT_CONST (~0UL)
  950. #else
  951. # define WMULT_CONST (1UL << 32)
  952. #endif
  953. #define WMULT_SHIFT 32
  954. /*
  955. * Shift right and round:
  956. */
  957. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  958. static unsigned long
  959. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  960. struct load_weight *lw)
  961. {
  962. u64 tmp;
  963. if (unlikely(!lw->inv_weight))
  964. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  965. tmp = (u64)delta_exec * weight;
  966. /*
  967. * Check whether we'd overflow the 64-bit multiplication:
  968. */
  969. if (unlikely(tmp > WMULT_CONST))
  970. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  971. WMULT_SHIFT/2);
  972. else
  973. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  974. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  975. }
  976. static inline unsigned long
  977. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  978. {
  979. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  980. }
  981. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  982. {
  983. lw->weight += inc;
  984. }
  985. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  986. {
  987. lw->weight -= dec;
  988. }
  989. /*
  990. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  991. * of tasks with abnormal "nice" values across CPUs the contribution that
  992. * each task makes to its run queue's load is weighted according to its
  993. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  994. * scaled version of the new time slice allocation that they receive on time
  995. * slice expiry etc.
  996. */
  997. #define WEIGHT_IDLEPRIO 2
  998. #define WMULT_IDLEPRIO (1 << 31)
  999. /*
  1000. * Nice levels are multiplicative, with a gentle 10% change for every
  1001. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1002. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1003. * that remained on nice 0.
  1004. *
  1005. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1006. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1007. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1008. * If a task goes up by ~10% and another task goes down by ~10% then
  1009. * the relative distance between them is ~25%.)
  1010. */
  1011. static const int prio_to_weight[40] = {
  1012. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1013. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1014. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1015. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1016. /* 0 */ 1024, 820, 655, 526, 423,
  1017. /* 5 */ 335, 272, 215, 172, 137,
  1018. /* 10 */ 110, 87, 70, 56, 45,
  1019. /* 15 */ 36, 29, 23, 18, 15,
  1020. };
  1021. /*
  1022. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1023. *
  1024. * In cases where the weight does not change often, we can use the
  1025. * precalculated inverse to speed up arithmetics by turning divisions
  1026. * into multiplications:
  1027. */
  1028. static const u32 prio_to_wmult[40] = {
  1029. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1030. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1031. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1032. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1033. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1034. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1035. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1036. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1037. };
  1038. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1039. /*
  1040. * runqueue iterator, to support SMP load-balancing between different
  1041. * scheduling classes, without having to expose their internal data
  1042. * structures to the load-balancing proper:
  1043. */
  1044. struct rq_iterator {
  1045. void *arg;
  1046. struct task_struct *(*start)(void *);
  1047. struct task_struct *(*next)(void *);
  1048. };
  1049. #ifdef CONFIG_SMP
  1050. static unsigned long
  1051. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1052. unsigned long max_load_move, struct sched_domain *sd,
  1053. enum cpu_idle_type idle, int *all_pinned,
  1054. int *this_best_prio, struct rq_iterator *iterator);
  1055. static int
  1056. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1057. struct sched_domain *sd, enum cpu_idle_type idle,
  1058. struct rq_iterator *iterator);
  1059. #endif
  1060. #ifdef CONFIG_CGROUP_CPUACCT
  1061. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1062. #else
  1063. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1064. #endif
  1065. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1066. {
  1067. update_load_add(&rq->load, load);
  1068. }
  1069. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1070. {
  1071. update_load_sub(&rq->load, load);
  1072. }
  1073. #ifdef CONFIG_SMP
  1074. static unsigned long source_load(int cpu, int type);
  1075. static unsigned long target_load(int cpu, int type);
  1076. static unsigned long cpu_avg_load_per_task(int cpu);
  1077. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1078. #endif /* CONFIG_SMP */
  1079. #include "sched_stats.h"
  1080. #include "sched_idletask.c"
  1081. #include "sched_fair.c"
  1082. #include "sched_rt.c"
  1083. #ifdef CONFIG_SCHED_DEBUG
  1084. # include "sched_debug.c"
  1085. #endif
  1086. #define sched_class_highest (&rt_sched_class)
  1087. static void inc_nr_running(struct rq *rq)
  1088. {
  1089. rq->nr_running++;
  1090. }
  1091. static void dec_nr_running(struct rq *rq)
  1092. {
  1093. rq->nr_running--;
  1094. }
  1095. static void set_load_weight(struct task_struct *p)
  1096. {
  1097. if (task_has_rt_policy(p)) {
  1098. p->se.load.weight = prio_to_weight[0] * 2;
  1099. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1100. return;
  1101. }
  1102. /*
  1103. * SCHED_IDLE tasks get minimal weight:
  1104. */
  1105. if (p->policy == SCHED_IDLE) {
  1106. p->se.load.weight = WEIGHT_IDLEPRIO;
  1107. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1108. return;
  1109. }
  1110. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1111. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1112. }
  1113. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1114. {
  1115. sched_info_queued(p);
  1116. p->sched_class->enqueue_task(rq, p, wakeup);
  1117. p->se.on_rq = 1;
  1118. }
  1119. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1120. {
  1121. p->sched_class->dequeue_task(rq, p, sleep);
  1122. p->se.on_rq = 0;
  1123. }
  1124. /*
  1125. * __normal_prio - return the priority that is based on the static prio
  1126. */
  1127. static inline int __normal_prio(struct task_struct *p)
  1128. {
  1129. return p->static_prio;
  1130. }
  1131. /*
  1132. * Calculate the expected normal priority: i.e. priority
  1133. * without taking RT-inheritance into account. Might be
  1134. * boosted by interactivity modifiers. Changes upon fork,
  1135. * setprio syscalls, and whenever the interactivity
  1136. * estimator recalculates.
  1137. */
  1138. static inline int normal_prio(struct task_struct *p)
  1139. {
  1140. int prio;
  1141. if (task_has_rt_policy(p))
  1142. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1143. else
  1144. prio = __normal_prio(p);
  1145. return prio;
  1146. }
  1147. /*
  1148. * Calculate the current priority, i.e. the priority
  1149. * taken into account by the scheduler. This value might
  1150. * be boosted by RT tasks, or might be boosted by
  1151. * interactivity modifiers. Will be RT if the task got
  1152. * RT-boosted. If not then it returns p->normal_prio.
  1153. */
  1154. static int effective_prio(struct task_struct *p)
  1155. {
  1156. p->normal_prio = normal_prio(p);
  1157. /*
  1158. * If we are RT tasks or we were boosted to RT priority,
  1159. * keep the priority unchanged. Otherwise, update priority
  1160. * to the normal priority:
  1161. */
  1162. if (!rt_prio(p->prio))
  1163. return p->normal_prio;
  1164. return p->prio;
  1165. }
  1166. /*
  1167. * activate_task - move a task to the runqueue.
  1168. */
  1169. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1170. {
  1171. if (task_contributes_to_load(p))
  1172. rq->nr_uninterruptible--;
  1173. enqueue_task(rq, p, wakeup);
  1174. inc_nr_running(rq);
  1175. }
  1176. /*
  1177. * deactivate_task - remove a task from the runqueue.
  1178. */
  1179. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1180. {
  1181. if (task_contributes_to_load(p))
  1182. rq->nr_uninterruptible++;
  1183. dequeue_task(rq, p, sleep);
  1184. dec_nr_running(rq);
  1185. }
  1186. /**
  1187. * task_curr - is this task currently executing on a CPU?
  1188. * @p: the task in question.
  1189. */
  1190. inline int task_curr(const struct task_struct *p)
  1191. {
  1192. return cpu_curr(task_cpu(p)) == p;
  1193. }
  1194. /* Used instead of source_load when we know the type == 0 */
  1195. unsigned long weighted_cpuload(const int cpu)
  1196. {
  1197. return cpu_rq(cpu)->load.weight;
  1198. }
  1199. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1200. {
  1201. set_task_rq(p, cpu);
  1202. #ifdef CONFIG_SMP
  1203. /*
  1204. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1205. * successfuly executed on another CPU. We must ensure that updates of
  1206. * per-task data have been completed by this moment.
  1207. */
  1208. smp_wmb();
  1209. task_thread_info(p)->cpu = cpu;
  1210. #endif
  1211. }
  1212. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1213. const struct sched_class *prev_class,
  1214. int oldprio, int running)
  1215. {
  1216. if (prev_class != p->sched_class) {
  1217. if (prev_class->switched_from)
  1218. prev_class->switched_from(rq, p, running);
  1219. p->sched_class->switched_to(rq, p, running);
  1220. } else
  1221. p->sched_class->prio_changed(rq, p, oldprio, running);
  1222. }
  1223. #ifdef CONFIG_SMP
  1224. /*
  1225. * Is this task likely cache-hot:
  1226. */
  1227. static int
  1228. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1229. {
  1230. s64 delta;
  1231. if (p->sched_class != &fair_sched_class)
  1232. return 0;
  1233. if (sysctl_sched_migration_cost == -1)
  1234. return 1;
  1235. if (sysctl_sched_migration_cost == 0)
  1236. return 0;
  1237. delta = now - p->se.exec_start;
  1238. return delta < (s64)sysctl_sched_migration_cost;
  1239. }
  1240. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1241. {
  1242. int old_cpu = task_cpu(p);
  1243. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1244. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1245. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1246. u64 clock_offset;
  1247. clock_offset = old_rq->clock - new_rq->clock;
  1248. #ifdef CONFIG_SCHEDSTATS
  1249. if (p->se.wait_start)
  1250. p->se.wait_start -= clock_offset;
  1251. if (p->se.sleep_start)
  1252. p->se.sleep_start -= clock_offset;
  1253. if (p->se.block_start)
  1254. p->se.block_start -= clock_offset;
  1255. if (old_cpu != new_cpu) {
  1256. schedstat_inc(p, se.nr_migrations);
  1257. if (task_hot(p, old_rq->clock, NULL))
  1258. schedstat_inc(p, se.nr_forced2_migrations);
  1259. }
  1260. #endif
  1261. p->se.vruntime -= old_cfsrq->min_vruntime -
  1262. new_cfsrq->min_vruntime;
  1263. __set_task_cpu(p, new_cpu);
  1264. }
  1265. struct migration_req {
  1266. struct list_head list;
  1267. struct task_struct *task;
  1268. int dest_cpu;
  1269. struct completion done;
  1270. };
  1271. /*
  1272. * The task's runqueue lock must be held.
  1273. * Returns true if you have to wait for migration thread.
  1274. */
  1275. static int
  1276. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1277. {
  1278. struct rq *rq = task_rq(p);
  1279. /*
  1280. * If the task is not on a runqueue (and not running), then
  1281. * it is sufficient to simply update the task's cpu field.
  1282. */
  1283. if (!p->se.on_rq && !task_running(rq, p)) {
  1284. set_task_cpu(p, dest_cpu);
  1285. return 0;
  1286. }
  1287. init_completion(&req->done);
  1288. req->task = p;
  1289. req->dest_cpu = dest_cpu;
  1290. list_add(&req->list, &rq->migration_queue);
  1291. return 1;
  1292. }
  1293. /*
  1294. * wait_task_inactive - wait for a thread to unschedule.
  1295. *
  1296. * The caller must ensure that the task *will* unschedule sometime soon,
  1297. * else this function might spin for a *long* time. This function can't
  1298. * be called with interrupts off, or it may introduce deadlock with
  1299. * smp_call_function() if an IPI is sent by the same process we are
  1300. * waiting to become inactive.
  1301. */
  1302. void wait_task_inactive(struct task_struct *p)
  1303. {
  1304. unsigned long flags;
  1305. int running, on_rq;
  1306. struct rq *rq;
  1307. for (;;) {
  1308. /*
  1309. * We do the initial early heuristics without holding
  1310. * any task-queue locks at all. We'll only try to get
  1311. * the runqueue lock when things look like they will
  1312. * work out!
  1313. */
  1314. rq = task_rq(p);
  1315. /*
  1316. * If the task is actively running on another CPU
  1317. * still, just relax and busy-wait without holding
  1318. * any locks.
  1319. *
  1320. * NOTE! Since we don't hold any locks, it's not
  1321. * even sure that "rq" stays as the right runqueue!
  1322. * But we don't care, since "task_running()" will
  1323. * return false if the runqueue has changed and p
  1324. * is actually now running somewhere else!
  1325. */
  1326. while (task_running(rq, p))
  1327. cpu_relax();
  1328. /*
  1329. * Ok, time to look more closely! We need the rq
  1330. * lock now, to be *sure*. If we're wrong, we'll
  1331. * just go back and repeat.
  1332. */
  1333. rq = task_rq_lock(p, &flags);
  1334. running = task_running(rq, p);
  1335. on_rq = p->se.on_rq;
  1336. task_rq_unlock(rq, &flags);
  1337. /*
  1338. * Was it really running after all now that we
  1339. * checked with the proper locks actually held?
  1340. *
  1341. * Oops. Go back and try again..
  1342. */
  1343. if (unlikely(running)) {
  1344. cpu_relax();
  1345. continue;
  1346. }
  1347. /*
  1348. * It's not enough that it's not actively running,
  1349. * it must be off the runqueue _entirely_, and not
  1350. * preempted!
  1351. *
  1352. * So if it wa still runnable (but just not actively
  1353. * running right now), it's preempted, and we should
  1354. * yield - it could be a while.
  1355. */
  1356. if (unlikely(on_rq)) {
  1357. schedule_timeout_uninterruptible(1);
  1358. continue;
  1359. }
  1360. /*
  1361. * Ahh, all good. It wasn't running, and it wasn't
  1362. * runnable, which means that it will never become
  1363. * running in the future either. We're all done!
  1364. */
  1365. break;
  1366. }
  1367. }
  1368. /***
  1369. * kick_process - kick a running thread to enter/exit the kernel
  1370. * @p: the to-be-kicked thread
  1371. *
  1372. * Cause a process which is running on another CPU to enter
  1373. * kernel-mode, without any delay. (to get signals handled.)
  1374. *
  1375. * NOTE: this function doesnt have to take the runqueue lock,
  1376. * because all it wants to ensure is that the remote task enters
  1377. * the kernel. If the IPI races and the task has been migrated
  1378. * to another CPU then no harm is done and the purpose has been
  1379. * achieved as well.
  1380. */
  1381. void kick_process(struct task_struct *p)
  1382. {
  1383. int cpu;
  1384. preempt_disable();
  1385. cpu = task_cpu(p);
  1386. if ((cpu != smp_processor_id()) && task_curr(p))
  1387. smp_send_reschedule(cpu);
  1388. preempt_enable();
  1389. }
  1390. /*
  1391. * Return a low guess at the load of a migration-source cpu weighted
  1392. * according to the scheduling class and "nice" value.
  1393. *
  1394. * We want to under-estimate the load of migration sources, to
  1395. * balance conservatively.
  1396. */
  1397. static unsigned long source_load(int cpu, int type)
  1398. {
  1399. struct rq *rq = cpu_rq(cpu);
  1400. unsigned long total = weighted_cpuload(cpu);
  1401. if (type == 0)
  1402. return total;
  1403. return min(rq->cpu_load[type-1], total);
  1404. }
  1405. /*
  1406. * Return a high guess at the load of a migration-target cpu weighted
  1407. * according to the scheduling class and "nice" value.
  1408. */
  1409. static unsigned long target_load(int cpu, int type)
  1410. {
  1411. struct rq *rq = cpu_rq(cpu);
  1412. unsigned long total = weighted_cpuload(cpu);
  1413. if (type == 0)
  1414. return total;
  1415. return max(rq->cpu_load[type-1], total);
  1416. }
  1417. /*
  1418. * Return the average load per task on the cpu's run queue
  1419. */
  1420. static unsigned long cpu_avg_load_per_task(int cpu)
  1421. {
  1422. struct rq *rq = cpu_rq(cpu);
  1423. unsigned long total = weighted_cpuload(cpu);
  1424. unsigned long n = rq->nr_running;
  1425. return n ? total / n : SCHED_LOAD_SCALE;
  1426. }
  1427. /*
  1428. * find_idlest_group finds and returns the least busy CPU group within the
  1429. * domain.
  1430. */
  1431. static struct sched_group *
  1432. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1433. {
  1434. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1435. unsigned long min_load = ULONG_MAX, this_load = 0;
  1436. int load_idx = sd->forkexec_idx;
  1437. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1438. do {
  1439. unsigned long load, avg_load;
  1440. int local_group;
  1441. int i;
  1442. /* Skip over this group if it has no CPUs allowed */
  1443. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1444. continue;
  1445. local_group = cpu_isset(this_cpu, group->cpumask);
  1446. /* Tally up the load of all CPUs in the group */
  1447. avg_load = 0;
  1448. for_each_cpu_mask(i, group->cpumask) {
  1449. /* Bias balancing toward cpus of our domain */
  1450. if (local_group)
  1451. load = source_load(i, load_idx);
  1452. else
  1453. load = target_load(i, load_idx);
  1454. avg_load += load;
  1455. }
  1456. /* Adjust by relative CPU power of the group */
  1457. avg_load = sg_div_cpu_power(group,
  1458. avg_load * SCHED_LOAD_SCALE);
  1459. if (local_group) {
  1460. this_load = avg_load;
  1461. this = group;
  1462. } else if (avg_load < min_load) {
  1463. min_load = avg_load;
  1464. idlest = group;
  1465. }
  1466. } while (group = group->next, group != sd->groups);
  1467. if (!idlest || 100*this_load < imbalance*min_load)
  1468. return NULL;
  1469. return idlest;
  1470. }
  1471. /*
  1472. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1473. */
  1474. static int
  1475. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1476. {
  1477. cpumask_t tmp;
  1478. unsigned long load, min_load = ULONG_MAX;
  1479. int idlest = -1;
  1480. int i;
  1481. /* Traverse only the allowed CPUs */
  1482. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1483. for_each_cpu_mask(i, tmp) {
  1484. load = weighted_cpuload(i);
  1485. if (load < min_load || (load == min_load && i == this_cpu)) {
  1486. min_load = load;
  1487. idlest = i;
  1488. }
  1489. }
  1490. return idlest;
  1491. }
  1492. /*
  1493. * sched_balance_self: balance the current task (running on cpu) in domains
  1494. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1495. * SD_BALANCE_EXEC.
  1496. *
  1497. * Balance, ie. select the least loaded group.
  1498. *
  1499. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1500. *
  1501. * preempt must be disabled.
  1502. */
  1503. static int sched_balance_self(int cpu, int flag)
  1504. {
  1505. struct task_struct *t = current;
  1506. struct sched_domain *tmp, *sd = NULL;
  1507. for_each_domain(cpu, tmp) {
  1508. /*
  1509. * If power savings logic is enabled for a domain, stop there.
  1510. */
  1511. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1512. break;
  1513. if (tmp->flags & flag)
  1514. sd = tmp;
  1515. }
  1516. while (sd) {
  1517. cpumask_t span;
  1518. struct sched_group *group;
  1519. int new_cpu, weight;
  1520. if (!(sd->flags & flag)) {
  1521. sd = sd->child;
  1522. continue;
  1523. }
  1524. span = sd->span;
  1525. group = find_idlest_group(sd, t, cpu);
  1526. if (!group) {
  1527. sd = sd->child;
  1528. continue;
  1529. }
  1530. new_cpu = find_idlest_cpu(group, t, cpu);
  1531. if (new_cpu == -1 || new_cpu == cpu) {
  1532. /* Now try balancing at a lower domain level of cpu */
  1533. sd = sd->child;
  1534. continue;
  1535. }
  1536. /* Now try balancing at a lower domain level of new_cpu */
  1537. cpu = new_cpu;
  1538. sd = NULL;
  1539. weight = cpus_weight(span);
  1540. for_each_domain(cpu, tmp) {
  1541. if (weight <= cpus_weight(tmp->span))
  1542. break;
  1543. if (tmp->flags & flag)
  1544. sd = tmp;
  1545. }
  1546. /* while loop will break here if sd == NULL */
  1547. }
  1548. return cpu;
  1549. }
  1550. #endif /* CONFIG_SMP */
  1551. /***
  1552. * try_to_wake_up - wake up a thread
  1553. * @p: the to-be-woken-up thread
  1554. * @state: the mask of task states that can be woken
  1555. * @sync: do a synchronous wakeup?
  1556. *
  1557. * Put it on the run-queue if it's not already there. The "current"
  1558. * thread is always on the run-queue (except when the actual
  1559. * re-schedule is in progress), and as such you're allowed to do
  1560. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1561. * runnable without the overhead of this.
  1562. *
  1563. * returns failure only if the task is already active.
  1564. */
  1565. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1566. {
  1567. int cpu, orig_cpu, this_cpu, success = 0;
  1568. unsigned long flags;
  1569. long old_state;
  1570. struct rq *rq;
  1571. smp_wmb();
  1572. rq = task_rq_lock(p, &flags);
  1573. old_state = p->state;
  1574. if (!(old_state & state))
  1575. goto out;
  1576. if (p->se.on_rq)
  1577. goto out_running;
  1578. cpu = task_cpu(p);
  1579. orig_cpu = cpu;
  1580. this_cpu = smp_processor_id();
  1581. #ifdef CONFIG_SMP
  1582. if (unlikely(task_running(rq, p)))
  1583. goto out_activate;
  1584. cpu = p->sched_class->select_task_rq(p, sync);
  1585. if (cpu != orig_cpu) {
  1586. set_task_cpu(p, cpu);
  1587. task_rq_unlock(rq, &flags);
  1588. /* might preempt at this point */
  1589. rq = task_rq_lock(p, &flags);
  1590. old_state = p->state;
  1591. if (!(old_state & state))
  1592. goto out;
  1593. if (p->se.on_rq)
  1594. goto out_running;
  1595. this_cpu = smp_processor_id();
  1596. cpu = task_cpu(p);
  1597. }
  1598. #ifdef CONFIG_SCHEDSTATS
  1599. schedstat_inc(rq, ttwu_count);
  1600. if (cpu == this_cpu)
  1601. schedstat_inc(rq, ttwu_local);
  1602. else {
  1603. struct sched_domain *sd;
  1604. for_each_domain(this_cpu, sd) {
  1605. if (cpu_isset(cpu, sd->span)) {
  1606. schedstat_inc(sd, ttwu_wake_remote);
  1607. break;
  1608. }
  1609. }
  1610. }
  1611. #endif
  1612. out_activate:
  1613. #endif /* CONFIG_SMP */
  1614. schedstat_inc(p, se.nr_wakeups);
  1615. if (sync)
  1616. schedstat_inc(p, se.nr_wakeups_sync);
  1617. if (orig_cpu != cpu)
  1618. schedstat_inc(p, se.nr_wakeups_migrate);
  1619. if (cpu == this_cpu)
  1620. schedstat_inc(p, se.nr_wakeups_local);
  1621. else
  1622. schedstat_inc(p, se.nr_wakeups_remote);
  1623. update_rq_clock(rq);
  1624. activate_task(rq, p, 1);
  1625. check_preempt_curr(rq, p);
  1626. success = 1;
  1627. out_running:
  1628. p->state = TASK_RUNNING;
  1629. #ifdef CONFIG_SMP
  1630. if (p->sched_class->task_wake_up)
  1631. p->sched_class->task_wake_up(rq, p);
  1632. #endif
  1633. out:
  1634. task_rq_unlock(rq, &flags);
  1635. return success;
  1636. }
  1637. int wake_up_process(struct task_struct *p)
  1638. {
  1639. return try_to_wake_up(p, TASK_ALL, 0);
  1640. }
  1641. EXPORT_SYMBOL(wake_up_process);
  1642. int wake_up_state(struct task_struct *p, unsigned int state)
  1643. {
  1644. return try_to_wake_up(p, state, 0);
  1645. }
  1646. /*
  1647. * Perform scheduler related setup for a newly forked process p.
  1648. * p is forked by current.
  1649. *
  1650. * __sched_fork() is basic setup used by init_idle() too:
  1651. */
  1652. static void __sched_fork(struct task_struct *p)
  1653. {
  1654. p->se.exec_start = 0;
  1655. p->se.sum_exec_runtime = 0;
  1656. p->se.prev_sum_exec_runtime = 0;
  1657. #ifdef CONFIG_SCHEDSTATS
  1658. p->se.wait_start = 0;
  1659. p->se.sum_sleep_runtime = 0;
  1660. p->se.sleep_start = 0;
  1661. p->se.block_start = 0;
  1662. p->se.sleep_max = 0;
  1663. p->se.block_max = 0;
  1664. p->se.exec_max = 0;
  1665. p->se.slice_max = 0;
  1666. p->se.wait_max = 0;
  1667. #endif
  1668. INIT_LIST_HEAD(&p->rt.run_list);
  1669. p->se.on_rq = 0;
  1670. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1671. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1672. #endif
  1673. /*
  1674. * We mark the process as running here, but have not actually
  1675. * inserted it onto the runqueue yet. This guarantees that
  1676. * nobody will actually run it, and a signal or other external
  1677. * event cannot wake it up and insert it on the runqueue either.
  1678. */
  1679. p->state = TASK_RUNNING;
  1680. }
  1681. /*
  1682. * fork()/clone()-time setup:
  1683. */
  1684. void sched_fork(struct task_struct *p, int clone_flags)
  1685. {
  1686. int cpu = get_cpu();
  1687. __sched_fork(p);
  1688. #ifdef CONFIG_SMP
  1689. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1690. #endif
  1691. set_task_cpu(p, cpu);
  1692. /*
  1693. * Make sure we do not leak PI boosting priority to the child:
  1694. */
  1695. p->prio = current->normal_prio;
  1696. if (!rt_prio(p->prio))
  1697. p->sched_class = &fair_sched_class;
  1698. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1699. if (likely(sched_info_on()))
  1700. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1701. #endif
  1702. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1703. p->oncpu = 0;
  1704. #endif
  1705. #ifdef CONFIG_PREEMPT
  1706. /* Want to start with kernel preemption disabled. */
  1707. task_thread_info(p)->preempt_count = 1;
  1708. #endif
  1709. put_cpu();
  1710. }
  1711. /*
  1712. * wake_up_new_task - wake up a newly created task for the first time.
  1713. *
  1714. * This function will do some initial scheduler statistics housekeeping
  1715. * that must be done for every newly created context, then puts the task
  1716. * on the runqueue and wakes it.
  1717. */
  1718. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1719. {
  1720. unsigned long flags;
  1721. struct rq *rq;
  1722. rq = task_rq_lock(p, &flags);
  1723. BUG_ON(p->state != TASK_RUNNING);
  1724. update_rq_clock(rq);
  1725. p->prio = effective_prio(p);
  1726. if (!p->sched_class->task_new || !current->se.on_rq) {
  1727. activate_task(rq, p, 0);
  1728. } else {
  1729. /*
  1730. * Let the scheduling class do new task startup
  1731. * management (if any):
  1732. */
  1733. p->sched_class->task_new(rq, p);
  1734. inc_nr_running(rq);
  1735. }
  1736. check_preempt_curr(rq, p);
  1737. #ifdef CONFIG_SMP
  1738. if (p->sched_class->task_wake_up)
  1739. p->sched_class->task_wake_up(rq, p);
  1740. #endif
  1741. task_rq_unlock(rq, &flags);
  1742. }
  1743. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1744. /**
  1745. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1746. * @notifier: notifier struct to register
  1747. */
  1748. void preempt_notifier_register(struct preempt_notifier *notifier)
  1749. {
  1750. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1751. }
  1752. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1753. /**
  1754. * preempt_notifier_unregister - no longer interested in preemption notifications
  1755. * @notifier: notifier struct to unregister
  1756. *
  1757. * This is safe to call from within a preemption notifier.
  1758. */
  1759. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1760. {
  1761. hlist_del(&notifier->link);
  1762. }
  1763. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1764. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1765. {
  1766. struct preempt_notifier *notifier;
  1767. struct hlist_node *node;
  1768. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1769. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1770. }
  1771. static void
  1772. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1773. struct task_struct *next)
  1774. {
  1775. struct preempt_notifier *notifier;
  1776. struct hlist_node *node;
  1777. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1778. notifier->ops->sched_out(notifier, next);
  1779. }
  1780. #else
  1781. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1782. {
  1783. }
  1784. static void
  1785. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1786. struct task_struct *next)
  1787. {
  1788. }
  1789. #endif
  1790. /**
  1791. * prepare_task_switch - prepare to switch tasks
  1792. * @rq: the runqueue preparing to switch
  1793. * @prev: the current task that is being switched out
  1794. * @next: the task we are going to switch to.
  1795. *
  1796. * This is called with the rq lock held and interrupts off. It must
  1797. * be paired with a subsequent finish_task_switch after the context
  1798. * switch.
  1799. *
  1800. * prepare_task_switch sets up locking and calls architecture specific
  1801. * hooks.
  1802. */
  1803. static inline void
  1804. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1805. struct task_struct *next)
  1806. {
  1807. fire_sched_out_preempt_notifiers(prev, next);
  1808. prepare_lock_switch(rq, next);
  1809. prepare_arch_switch(next);
  1810. }
  1811. /**
  1812. * finish_task_switch - clean up after a task-switch
  1813. * @rq: runqueue associated with task-switch
  1814. * @prev: the thread we just switched away from.
  1815. *
  1816. * finish_task_switch must be called after the context switch, paired
  1817. * with a prepare_task_switch call before the context switch.
  1818. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1819. * and do any other architecture-specific cleanup actions.
  1820. *
  1821. * Note that we may have delayed dropping an mm in context_switch(). If
  1822. * so, we finish that here outside of the runqueue lock. (Doing it
  1823. * with the lock held can cause deadlocks; see schedule() for
  1824. * details.)
  1825. */
  1826. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1827. __releases(rq->lock)
  1828. {
  1829. struct mm_struct *mm = rq->prev_mm;
  1830. long prev_state;
  1831. rq->prev_mm = NULL;
  1832. /*
  1833. * A task struct has one reference for the use as "current".
  1834. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1835. * schedule one last time. The schedule call will never return, and
  1836. * the scheduled task must drop that reference.
  1837. * The test for TASK_DEAD must occur while the runqueue locks are
  1838. * still held, otherwise prev could be scheduled on another cpu, die
  1839. * there before we look at prev->state, and then the reference would
  1840. * be dropped twice.
  1841. * Manfred Spraul <manfred@colorfullife.com>
  1842. */
  1843. prev_state = prev->state;
  1844. finish_arch_switch(prev);
  1845. finish_lock_switch(rq, prev);
  1846. #ifdef CONFIG_SMP
  1847. if (current->sched_class->post_schedule)
  1848. current->sched_class->post_schedule(rq);
  1849. #endif
  1850. fire_sched_in_preempt_notifiers(current);
  1851. if (mm)
  1852. mmdrop(mm);
  1853. if (unlikely(prev_state == TASK_DEAD)) {
  1854. /*
  1855. * Remove function-return probe instances associated with this
  1856. * task and put them back on the free list.
  1857. */
  1858. kprobe_flush_task(prev);
  1859. put_task_struct(prev);
  1860. }
  1861. }
  1862. /**
  1863. * schedule_tail - first thing a freshly forked thread must call.
  1864. * @prev: the thread we just switched away from.
  1865. */
  1866. asmlinkage void schedule_tail(struct task_struct *prev)
  1867. __releases(rq->lock)
  1868. {
  1869. struct rq *rq = this_rq();
  1870. finish_task_switch(rq, prev);
  1871. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1872. /* In this case, finish_task_switch does not reenable preemption */
  1873. preempt_enable();
  1874. #endif
  1875. if (current->set_child_tid)
  1876. put_user(task_pid_vnr(current), current->set_child_tid);
  1877. }
  1878. /*
  1879. * context_switch - switch to the new MM and the new
  1880. * thread's register state.
  1881. */
  1882. static inline void
  1883. context_switch(struct rq *rq, struct task_struct *prev,
  1884. struct task_struct *next)
  1885. {
  1886. struct mm_struct *mm, *oldmm;
  1887. prepare_task_switch(rq, prev, next);
  1888. mm = next->mm;
  1889. oldmm = prev->active_mm;
  1890. /*
  1891. * For paravirt, this is coupled with an exit in switch_to to
  1892. * combine the page table reload and the switch backend into
  1893. * one hypercall.
  1894. */
  1895. arch_enter_lazy_cpu_mode();
  1896. if (unlikely(!mm)) {
  1897. next->active_mm = oldmm;
  1898. atomic_inc(&oldmm->mm_count);
  1899. enter_lazy_tlb(oldmm, next);
  1900. } else
  1901. switch_mm(oldmm, mm, next);
  1902. if (unlikely(!prev->mm)) {
  1903. prev->active_mm = NULL;
  1904. rq->prev_mm = oldmm;
  1905. }
  1906. /*
  1907. * Since the runqueue lock will be released by the next
  1908. * task (which is an invalid locking op but in the case
  1909. * of the scheduler it's an obvious special-case), so we
  1910. * do an early lockdep release here:
  1911. */
  1912. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1913. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1914. #endif
  1915. /* Here we just switch the register state and the stack. */
  1916. switch_to(prev, next, prev);
  1917. barrier();
  1918. /*
  1919. * this_rq must be evaluated again because prev may have moved
  1920. * CPUs since it called schedule(), thus the 'rq' on its stack
  1921. * frame will be invalid.
  1922. */
  1923. finish_task_switch(this_rq(), prev);
  1924. }
  1925. /*
  1926. * nr_running, nr_uninterruptible and nr_context_switches:
  1927. *
  1928. * externally visible scheduler statistics: current number of runnable
  1929. * threads, current number of uninterruptible-sleeping threads, total
  1930. * number of context switches performed since bootup.
  1931. */
  1932. unsigned long nr_running(void)
  1933. {
  1934. unsigned long i, sum = 0;
  1935. for_each_online_cpu(i)
  1936. sum += cpu_rq(i)->nr_running;
  1937. return sum;
  1938. }
  1939. unsigned long nr_uninterruptible(void)
  1940. {
  1941. unsigned long i, sum = 0;
  1942. for_each_possible_cpu(i)
  1943. sum += cpu_rq(i)->nr_uninterruptible;
  1944. /*
  1945. * Since we read the counters lockless, it might be slightly
  1946. * inaccurate. Do not allow it to go below zero though:
  1947. */
  1948. if (unlikely((long)sum < 0))
  1949. sum = 0;
  1950. return sum;
  1951. }
  1952. unsigned long long nr_context_switches(void)
  1953. {
  1954. int i;
  1955. unsigned long long sum = 0;
  1956. for_each_possible_cpu(i)
  1957. sum += cpu_rq(i)->nr_switches;
  1958. return sum;
  1959. }
  1960. unsigned long nr_iowait(void)
  1961. {
  1962. unsigned long i, sum = 0;
  1963. for_each_possible_cpu(i)
  1964. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1965. return sum;
  1966. }
  1967. unsigned long nr_active(void)
  1968. {
  1969. unsigned long i, running = 0, uninterruptible = 0;
  1970. for_each_online_cpu(i) {
  1971. running += cpu_rq(i)->nr_running;
  1972. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1973. }
  1974. if (unlikely((long)uninterruptible < 0))
  1975. uninterruptible = 0;
  1976. return running + uninterruptible;
  1977. }
  1978. /*
  1979. * Update rq->cpu_load[] statistics. This function is usually called every
  1980. * scheduler tick (TICK_NSEC).
  1981. */
  1982. static void update_cpu_load(struct rq *this_rq)
  1983. {
  1984. unsigned long this_load = this_rq->load.weight;
  1985. int i, scale;
  1986. this_rq->nr_load_updates++;
  1987. /* Update our load: */
  1988. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1989. unsigned long old_load, new_load;
  1990. /* scale is effectively 1 << i now, and >> i divides by scale */
  1991. old_load = this_rq->cpu_load[i];
  1992. new_load = this_load;
  1993. /*
  1994. * Round up the averaging division if load is increasing. This
  1995. * prevents us from getting stuck on 9 if the load is 10, for
  1996. * example.
  1997. */
  1998. if (new_load > old_load)
  1999. new_load += scale-1;
  2000. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2001. }
  2002. }
  2003. #ifdef CONFIG_SMP
  2004. /*
  2005. * double_rq_lock - safely lock two runqueues
  2006. *
  2007. * Note this does not disable interrupts like task_rq_lock,
  2008. * you need to do so manually before calling.
  2009. */
  2010. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2011. __acquires(rq1->lock)
  2012. __acquires(rq2->lock)
  2013. {
  2014. BUG_ON(!irqs_disabled());
  2015. if (rq1 == rq2) {
  2016. spin_lock(&rq1->lock);
  2017. __acquire(rq2->lock); /* Fake it out ;) */
  2018. } else {
  2019. if (rq1 < rq2) {
  2020. spin_lock(&rq1->lock);
  2021. spin_lock(&rq2->lock);
  2022. } else {
  2023. spin_lock(&rq2->lock);
  2024. spin_lock(&rq1->lock);
  2025. }
  2026. }
  2027. update_rq_clock(rq1);
  2028. update_rq_clock(rq2);
  2029. }
  2030. /*
  2031. * double_rq_unlock - safely unlock two runqueues
  2032. *
  2033. * Note this does not restore interrupts like task_rq_unlock,
  2034. * you need to do so manually after calling.
  2035. */
  2036. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2037. __releases(rq1->lock)
  2038. __releases(rq2->lock)
  2039. {
  2040. spin_unlock(&rq1->lock);
  2041. if (rq1 != rq2)
  2042. spin_unlock(&rq2->lock);
  2043. else
  2044. __release(rq2->lock);
  2045. }
  2046. /*
  2047. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2048. */
  2049. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2050. __releases(this_rq->lock)
  2051. __acquires(busiest->lock)
  2052. __acquires(this_rq->lock)
  2053. {
  2054. int ret = 0;
  2055. if (unlikely(!irqs_disabled())) {
  2056. /* printk() doesn't work good under rq->lock */
  2057. spin_unlock(&this_rq->lock);
  2058. BUG_ON(1);
  2059. }
  2060. if (unlikely(!spin_trylock(&busiest->lock))) {
  2061. if (busiest < this_rq) {
  2062. spin_unlock(&this_rq->lock);
  2063. spin_lock(&busiest->lock);
  2064. spin_lock(&this_rq->lock);
  2065. ret = 1;
  2066. } else
  2067. spin_lock(&busiest->lock);
  2068. }
  2069. return ret;
  2070. }
  2071. /*
  2072. * If dest_cpu is allowed for this process, migrate the task to it.
  2073. * This is accomplished by forcing the cpu_allowed mask to only
  2074. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2075. * the cpu_allowed mask is restored.
  2076. */
  2077. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2078. {
  2079. struct migration_req req;
  2080. unsigned long flags;
  2081. struct rq *rq;
  2082. rq = task_rq_lock(p, &flags);
  2083. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2084. || unlikely(cpu_is_offline(dest_cpu)))
  2085. goto out;
  2086. /* force the process onto the specified CPU */
  2087. if (migrate_task(p, dest_cpu, &req)) {
  2088. /* Need to wait for migration thread (might exit: take ref). */
  2089. struct task_struct *mt = rq->migration_thread;
  2090. get_task_struct(mt);
  2091. task_rq_unlock(rq, &flags);
  2092. wake_up_process(mt);
  2093. put_task_struct(mt);
  2094. wait_for_completion(&req.done);
  2095. return;
  2096. }
  2097. out:
  2098. task_rq_unlock(rq, &flags);
  2099. }
  2100. /*
  2101. * sched_exec - execve() is a valuable balancing opportunity, because at
  2102. * this point the task has the smallest effective memory and cache footprint.
  2103. */
  2104. void sched_exec(void)
  2105. {
  2106. int new_cpu, this_cpu = get_cpu();
  2107. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2108. put_cpu();
  2109. if (new_cpu != this_cpu)
  2110. sched_migrate_task(current, new_cpu);
  2111. }
  2112. /*
  2113. * pull_task - move a task from a remote runqueue to the local runqueue.
  2114. * Both runqueues must be locked.
  2115. */
  2116. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2117. struct rq *this_rq, int this_cpu)
  2118. {
  2119. deactivate_task(src_rq, p, 0);
  2120. set_task_cpu(p, this_cpu);
  2121. activate_task(this_rq, p, 0);
  2122. /*
  2123. * Note that idle threads have a prio of MAX_PRIO, for this test
  2124. * to be always true for them.
  2125. */
  2126. check_preempt_curr(this_rq, p);
  2127. }
  2128. /*
  2129. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2130. */
  2131. static
  2132. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2133. struct sched_domain *sd, enum cpu_idle_type idle,
  2134. int *all_pinned)
  2135. {
  2136. /*
  2137. * We do not migrate tasks that are:
  2138. * 1) running (obviously), or
  2139. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2140. * 3) are cache-hot on their current CPU.
  2141. */
  2142. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2143. schedstat_inc(p, se.nr_failed_migrations_affine);
  2144. return 0;
  2145. }
  2146. *all_pinned = 0;
  2147. if (task_running(rq, p)) {
  2148. schedstat_inc(p, se.nr_failed_migrations_running);
  2149. return 0;
  2150. }
  2151. /*
  2152. * Aggressive migration if:
  2153. * 1) task is cache cold, or
  2154. * 2) too many balance attempts have failed.
  2155. */
  2156. if (!task_hot(p, rq->clock, sd) ||
  2157. sd->nr_balance_failed > sd->cache_nice_tries) {
  2158. #ifdef CONFIG_SCHEDSTATS
  2159. if (task_hot(p, rq->clock, sd)) {
  2160. schedstat_inc(sd, lb_hot_gained[idle]);
  2161. schedstat_inc(p, se.nr_forced_migrations);
  2162. }
  2163. #endif
  2164. return 1;
  2165. }
  2166. if (task_hot(p, rq->clock, sd)) {
  2167. schedstat_inc(p, se.nr_failed_migrations_hot);
  2168. return 0;
  2169. }
  2170. return 1;
  2171. }
  2172. static unsigned long
  2173. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2174. unsigned long max_load_move, struct sched_domain *sd,
  2175. enum cpu_idle_type idle, int *all_pinned,
  2176. int *this_best_prio, struct rq_iterator *iterator)
  2177. {
  2178. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2179. struct task_struct *p;
  2180. long rem_load_move = max_load_move;
  2181. if (max_load_move == 0)
  2182. goto out;
  2183. pinned = 1;
  2184. /*
  2185. * Start the load-balancing iterator:
  2186. */
  2187. p = iterator->start(iterator->arg);
  2188. next:
  2189. if (!p || loops++ > sysctl_sched_nr_migrate)
  2190. goto out;
  2191. /*
  2192. * To help distribute high priority tasks across CPUs we don't
  2193. * skip a task if it will be the highest priority task (i.e. smallest
  2194. * prio value) on its new queue regardless of its load weight
  2195. */
  2196. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2197. SCHED_LOAD_SCALE_FUZZ;
  2198. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2199. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2200. p = iterator->next(iterator->arg);
  2201. goto next;
  2202. }
  2203. pull_task(busiest, p, this_rq, this_cpu);
  2204. pulled++;
  2205. rem_load_move -= p->se.load.weight;
  2206. /*
  2207. * We only want to steal up to the prescribed amount of weighted load.
  2208. */
  2209. if (rem_load_move > 0) {
  2210. if (p->prio < *this_best_prio)
  2211. *this_best_prio = p->prio;
  2212. p = iterator->next(iterator->arg);
  2213. goto next;
  2214. }
  2215. out:
  2216. /*
  2217. * Right now, this is one of only two places pull_task() is called,
  2218. * so we can safely collect pull_task() stats here rather than
  2219. * inside pull_task().
  2220. */
  2221. schedstat_add(sd, lb_gained[idle], pulled);
  2222. if (all_pinned)
  2223. *all_pinned = pinned;
  2224. return max_load_move - rem_load_move;
  2225. }
  2226. /*
  2227. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2228. * this_rq, as part of a balancing operation within domain "sd".
  2229. * Returns 1 if successful and 0 otherwise.
  2230. *
  2231. * Called with both runqueues locked.
  2232. */
  2233. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2234. unsigned long max_load_move,
  2235. struct sched_domain *sd, enum cpu_idle_type idle,
  2236. int *all_pinned)
  2237. {
  2238. const struct sched_class *class = sched_class_highest;
  2239. unsigned long total_load_moved = 0;
  2240. int this_best_prio = this_rq->curr->prio;
  2241. do {
  2242. total_load_moved +=
  2243. class->load_balance(this_rq, this_cpu, busiest,
  2244. max_load_move - total_load_moved,
  2245. sd, idle, all_pinned, &this_best_prio);
  2246. class = class->next;
  2247. } while (class && max_load_move > total_load_moved);
  2248. return total_load_moved > 0;
  2249. }
  2250. static int
  2251. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2252. struct sched_domain *sd, enum cpu_idle_type idle,
  2253. struct rq_iterator *iterator)
  2254. {
  2255. struct task_struct *p = iterator->start(iterator->arg);
  2256. int pinned = 0;
  2257. while (p) {
  2258. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2259. pull_task(busiest, p, this_rq, this_cpu);
  2260. /*
  2261. * Right now, this is only the second place pull_task()
  2262. * is called, so we can safely collect pull_task()
  2263. * stats here rather than inside pull_task().
  2264. */
  2265. schedstat_inc(sd, lb_gained[idle]);
  2266. return 1;
  2267. }
  2268. p = iterator->next(iterator->arg);
  2269. }
  2270. return 0;
  2271. }
  2272. /*
  2273. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2274. * part of active balancing operations within "domain".
  2275. * Returns 1 if successful and 0 otherwise.
  2276. *
  2277. * Called with both runqueues locked.
  2278. */
  2279. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2280. struct sched_domain *sd, enum cpu_idle_type idle)
  2281. {
  2282. const struct sched_class *class;
  2283. for (class = sched_class_highest; class; class = class->next)
  2284. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2285. return 1;
  2286. return 0;
  2287. }
  2288. /*
  2289. * find_busiest_group finds and returns the busiest CPU group within the
  2290. * domain. It calculates and returns the amount of weighted load which
  2291. * should be moved to restore balance via the imbalance parameter.
  2292. */
  2293. static struct sched_group *
  2294. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2295. unsigned long *imbalance, enum cpu_idle_type idle,
  2296. int *sd_idle, cpumask_t *cpus, int *balance)
  2297. {
  2298. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2299. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2300. unsigned long max_pull;
  2301. unsigned long busiest_load_per_task, busiest_nr_running;
  2302. unsigned long this_load_per_task, this_nr_running;
  2303. int load_idx, group_imb = 0;
  2304. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2305. int power_savings_balance = 1;
  2306. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2307. unsigned long min_nr_running = ULONG_MAX;
  2308. struct sched_group *group_min = NULL, *group_leader = NULL;
  2309. #endif
  2310. max_load = this_load = total_load = total_pwr = 0;
  2311. busiest_load_per_task = busiest_nr_running = 0;
  2312. this_load_per_task = this_nr_running = 0;
  2313. if (idle == CPU_NOT_IDLE)
  2314. load_idx = sd->busy_idx;
  2315. else if (idle == CPU_NEWLY_IDLE)
  2316. load_idx = sd->newidle_idx;
  2317. else
  2318. load_idx = sd->idle_idx;
  2319. do {
  2320. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2321. int local_group;
  2322. int i;
  2323. int __group_imb = 0;
  2324. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2325. unsigned long sum_nr_running, sum_weighted_load;
  2326. local_group = cpu_isset(this_cpu, group->cpumask);
  2327. if (local_group)
  2328. balance_cpu = first_cpu(group->cpumask);
  2329. /* Tally up the load of all CPUs in the group */
  2330. sum_weighted_load = sum_nr_running = avg_load = 0;
  2331. max_cpu_load = 0;
  2332. min_cpu_load = ~0UL;
  2333. for_each_cpu_mask(i, group->cpumask) {
  2334. struct rq *rq;
  2335. if (!cpu_isset(i, *cpus))
  2336. continue;
  2337. rq = cpu_rq(i);
  2338. if (*sd_idle && rq->nr_running)
  2339. *sd_idle = 0;
  2340. /* Bias balancing toward cpus of our domain */
  2341. if (local_group) {
  2342. if (idle_cpu(i) && !first_idle_cpu) {
  2343. first_idle_cpu = 1;
  2344. balance_cpu = i;
  2345. }
  2346. load = target_load(i, load_idx);
  2347. } else {
  2348. load = source_load(i, load_idx);
  2349. if (load > max_cpu_load)
  2350. max_cpu_load = load;
  2351. if (min_cpu_load > load)
  2352. min_cpu_load = load;
  2353. }
  2354. avg_load += load;
  2355. sum_nr_running += rq->nr_running;
  2356. sum_weighted_load += weighted_cpuload(i);
  2357. }
  2358. /*
  2359. * First idle cpu or the first cpu(busiest) in this sched group
  2360. * is eligible for doing load balancing at this and above
  2361. * domains. In the newly idle case, we will allow all the cpu's
  2362. * to do the newly idle load balance.
  2363. */
  2364. if (idle != CPU_NEWLY_IDLE && local_group &&
  2365. balance_cpu != this_cpu && balance) {
  2366. *balance = 0;
  2367. goto ret;
  2368. }
  2369. total_load += avg_load;
  2370. total_pwr += group->__cpu_power;
  2371. /* Adjust by relative CPU power of the group */
  2372. avg_load = sg_div_cpu_power(group,
  2373. avg_load * SCHED_LOAD_SCALE);
  2374. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2375. __group_imb = 1;
  2376. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2377. if (local_group) {
  2378. this_load = avg_load;
  2379. this = group;
  2380. this_nr_running = sum_nr_running;
  2381. this_load_per_task = sum_weighted_load;
  2382. } else if (avg_load > max_load &&
  2383. (sum_nr_running > group_capacity || __group_imb)) {
  2384. max_load = avg_load;
  2385. busiest = group;
  2386. busiest_nr_running = sum_nr_running;
  2387. busiest_load_per_task = sum_weighted_load;
  2388. group_imb = __group_imb;
  2389. }
  2390. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2391. /*
  2392. * Busy processors will not participate in power savings
  2393. * balance.
  2394. */
  2395. if (idle == CPU_NOT_IDLE ||
  2396. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2397. goto group_next;
  2398. /*
  2399. * If the local group is idle or completely loaded
  2400. * no need to do power savings balance at this domain
  2401. */
  2402. if (local_group && (this_nr_running >= group_capacity ||
  2403. !this_nr_running))
  2404. power_savings_balance = 0;
  2405. /*
  2406. * If a group is already running at full capacity or idle,
  2407. * don't include that group in power savings calculations
  2408. */
  2409. if (!power_savings_balance || sum_nr_running >= group_capacity
  2410. || !sum_nr_running)
  2411. goto group_next;
  2412. /*
  2413. * Calculate the group which has the least non-idle load.
  2414. * This is the group from where we need to pick up the load
  2415. * for saving power
  2416. */
  2417. if ((sum_nr_running < min_nr_running) ||
  2418. (sum_nr_running == min_nr_running &&
  2419. first_cpu(group->cpumask) <
  2420. first_cpu(group_min->cpumask))) {
  2421. group_min = group;
  2422. min_nr_running = sum_nr_running;
  2423. min_load_per_task = sum_weighted_load /
  2424. sum_nr_running;
  2425. }
  2426. /*
  2427. * Calculate the group which is almost near its
  2428. * capacity but still has some space to pick up some load
  2429. * from other group and save more power
  2430. */
  2431. if (sum_nr_running <= group_capacity - 1) {
  2432. if (sum_nr_running > leader_nr_running ||
  2433. (sum_nr_running == leader_nr_running &&
  2434. first_cpu(group->cpumask) >
  2435. first_cpu(group_leader->cpumask))) {
  2436. group_leader = group;
  2437. leader_nr_running = sum_nr_running;
  2438. }
  2439. }
  2440. group_next:
  2441. #endif
  2442. group = group->next;
  2443. } while (group != sd->groups);
  2444. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2445. goto out_balanced;
  2446. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2447. if (this_load >= avg_load ||
  2448. 100*max_load <= sd->imbalance_pct*this_load)
  2449. goto out_balanced;
  2450. busiest_load_per_task /= busiest_nr_running;
  2451. if (group_imb)
  2452. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2453. /*
  2454. * We're trying to get all the cpus to the average_load, so we don't
  2455. * want to push ourselves above the average load, nor do we wish to
  2456. * reduce the max loaded cpu below the average load, as either of these
  2457. * actions would just result in more rebalancing later, and ping-pong
  2458. * tasks around. Thus we look for the minimum possible imbalance.
  2459. * Negative imbalances (*we* are more loaded than anyone else) will
  2460. * be counted as no imbalance for these purposes -- we can't fix that
  2461. * by pulling tasks to us. Be careful of negative numbers as they'll
  2462. * appear as very large values with unsigned longs.
  2463. */
  2464. if (max_load <= busiest_load_per_task)
  2465. goto out_balanced;
  2466. /*
  2467. * In the presence of smp nice balancing, certain scenarios can have
  2468. * max load less than avg load(as we skip the groups at or below
  2469. * its cpu_power, while calculating max_load..)
  2470. */
  2471. if (max_load < avg_load) {
  2472. *imbalance = 0;
  2473. goto small_imbalance;
  2474. }
  2475. /* Don't want to pull so many tasks that a group would go idle */
  2476. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2477. /* How much load to actually move to equalise the imbalance */
  2478. *imbalance = min(max_pull * busiest->__cpu_power,
  2479. (avg_load - this_load) * this->__cpu_power)
  2480. / SCHED_LOAD_SCALE;
  2481. /*
  2482. * if *imbalance is less than the average load per runnable task
  2483. * there is no gaurantee that any tasks will be moved so we'll have
  2484. * a think about bumping its value to force at least one task to be
  2485. * moved
  2486. */
  2487. if (*imbalance < busiest_load_per_task) {
  2488. unsigned long tmp, pwr_now, pwr_move;
  2489. unsigned int imbn;
  2490. small_imbalance:
  2491. pwr_move = pwr_now = 0;
  2492. imbn = 2;
  2493. if (this_nr_running) {
  2494. this_load_per_task /= this_nr_running;
  2495. if (busiest_load_per_task > this_load_per_task)
  2496. imbn = 1;
  2497. } else
  2498. this_load_per_task = SCHED_LOAD_SCALE;
  2499. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2500. busiest_load_per_task * imbn) {
  2501. *imbalance = busiest_load_per_task;
  2502. return busiest;
  2503. }
  2504. /*
  2505. * OK, we don't have enough imbalance to justify moving tasks,
  2506. * however we may be able to increase total CPU power used by
  2507. * moving them.
  2508. */
  2509. pwr_now += busiest->__cpu_power *
  2510. min(busiest_load_per_task, max_load);
  2511. pwr_now += this->__cpu_power *
  2512. min(this_load_per_task, this_load);
  2513. pwr_now /= SCHED_LOAD_SCALE;
  2514. /* Amount of load we'd subtract */
  2515. tmp = sg_div_cpu_power(busiest,
  2516. busiest_load_per_task * SCHED_LOAD_SCALE);
  2517. if (max_load > tmp)
  2518. pwr_move += busiest->__cpu_power *
  2519. min(busiest_load_per_task, max_load - tmp);
  2520. /* Amount of load we'd add */
  2521. if (max_load * busiest->__cpu_power <
  2522. busiest_load_per_task * SCHED_LOAD_SCALE)
  2523. tmp = sg_div_cpu_power(this,
  2524. max_load * busiest->__cpu_power);
  2525. else
  2526. tmp = sg_div_cpu_power(this,
  2527. busiest_load_per_task * SCHED_LOAD_SCALE);
  2528. pwr_move += this->__cpu_power *
  2529. min(this_load_per_task, this_load + tmp);
  2530. pwr_move /= SCHED_LOAD_SCALE;
  2531. /* Move if we gain throughput */
  2532. if (pwr_move > pwr_now)
  2533. *imbalance = busiest_load_per_task;
  2534. }
  2535. return busiest;
  2536. out_balanced:
  2537. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2538. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2539. goto ret;
  2540. if (this == group_leader && group_leader != group_min) {
  2541. *imbalance = min_load_per_task;
  2542. return group_min;
  2543. }
  2544. #endif
  2545. ret:
  2546. *imbalance = 0;
  2547. return NULL;
  2548. }
  2549. /*
  2550. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2551. */
  2552. static struct rq *
  2553. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2554. unsigned long imbalance, cpumask_t *cpus)
  2555. {
  2556. struct rq *busiest = NULL, *rq;
  2557. unsigned long max_load = 0;
  2558. int i;
  2559. for_each_cpu_mask(i, group->cpumask) {
  2560. unsigned long wl;
  2561. if (!cpu_isset(i, *cpus))
  2562. continue;
  2563. rq = cpu_rq(i);
  2564. wl = weighted_cpuload(i);
  2565. if (rq->nr_running == 1 && wl > imbalance)
  2566. continue;
  2567. if (wl > max_load) {
  2568. max_load = wl;
  2569. busiest = rq;
  2570. }
  2571. }
  2572. return busiest;
  2573. }
  2574. /*
  2575. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2576. * so long as it is large enough.
  2577. */
  2578. #define MAX_PINNED_INTERVAL 512
  2579. /*
  2580. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2581. * tasks if there is an imbalance.
  2582. */
  2583. static int load_balance(int this_cpu, struct rq *this_rq,
  2584. struct sched_domain *sd, enum cpu_idle_type idle,
  2585. int *balance)
  2586. {
  2587. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2588. struct sched_group *group;
  2589. unsigned long imbalance;
  2590. struct rq *busiest;
  2591. cpumask_t cpus = CPU_MASK_ALL;
  2592. unsigned long flags;
  2593. /*
  2594. * When power savings policy is enabled for the parent domain, idle
  2595. * sibling can pick up load irrespective of busy siblings. In this case,
  2596. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2597. * portraying it as CPU_NOT_IDLE.
  2598. */
  2599. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2600. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2601. sd_idle = 1;
  2602. schedstat_inc(sd, lb_count[idle]);
  2603. redo:
  2604. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2605. &cpus, balance);
  2606. if (*balance == 0)
  2607. goto out_balanced;
  2608. if (!group) {
  2609. schedstat_inc(sd, lb_nobusyg[idle]);
  2610. goto out_balanced;
  2611. }
  2612. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2613. if (!busiest) {
  2614. schedstat_inc(sd, lb_nobusyq[idle]);
  2615. goto out_balanced;
  2616. }
  2617. BUG_ON(busiest == this_rq);
  2618. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2619. ld_moved = 0;
  2620. if (busiest->nr_running > 1) {
  2621. /*
  2622. * Attempt to move tasks. If find_busiest_group has found
  2623. * an imbalance but busiest->nr_running <= 1, the group is
  2624. * still unbalanced. ld_moved simply stays zero, so it is
  2625. * correctly treated as an imbalance.
  2626. */
  2627. local_irq_save(flags);
  2628. double_rq_lock(this_rq, busiest);
  2629. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2630. imbalance, sd, idle, &all_pinned);
  2631. double_rq_unlock(this_rq, busiest);
  2632. local_irq_restore(flags);
  2633. /*
  2634. * some other cpu did the load balance for us.
  2635. */
  2636. if (ld_moved && this_cpu != smp_processor_id())
  2637. resched_cpu(this_cpu);
  2638. /* All tasks on this runqueue were pinned by CPU affinity */
  2639. if (unlikely(all_pinned)) {
  2640. cpu_clear(cpu_of(busiest), cpus);
  2641. if (!cpus_empty(cpus))
  2642. goto redo;
  2643. goto out_balanced;
  2644. }
  2645. }
  2646. if (!ld_moved) {
  2647. schedstat_inc(sd, lb_failed[idle]);
  2648. sd->nr_balance_failed++;
  2649. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2650. spin_lock_irqsave(&busiest->lock, flags);
  2651. /* don't kick the migration_thread, if the curr
  2652. * task on busiest cpu can't be moved to this_cpu
  2653. */
  2654. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2655. spin_unlock_irqrestore(&busiest->lock, flags);
  2656. all_pinned = 1;
  2657. goto out_one_pinned;
  2658. }
  2659. if (!busiest->active_balance) {
  2660. busiest->active_balance = 1;
  2661. busiest->push_cpu = this_cpu;
  2662. active_balance = 1;
  2663. }
  2664. spin_unlock_irqrestore(&busiest->lock, flags);
  2665. if (active_balance)
  2666. wake_up_process(busiest->migration_thread);
  2667. /*
  2668. * We've kicked active balancing, reset the failure
  2669. * counter.
  2670. */
  2671. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2672. }
  2673. } else
  2674. sd->nr_balance_failed = 0;
  2675. if (likely(!active_balance)) {
  2676. /* We were unbalanced, so reset the balancing interval */
  2677. sd->balance_interval = sd->min_interval;
  2678. } else {
  2679. /*
  2680. * If we've begun active balancing, start to back off. This
  2681. * case may not be covered by the all_pinned logic if there
  2682. * is only 1 task on the busy runqueue (because we don't call
  2683. * move_tasks).
  2684. */
  2685. if (sd->balance_interval < sd->max_interval)
  2686. sd->balance_interval *= 2;
  2687. }
  2688. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2689. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2690. return -1;
  2691. return ld_moved;
  2692. out_balanced:
  2693. schedstat_inc(sd, lb_balanced[idle]);
  2694. sd->nr_balance_failed = 0;
  2695. out_one_pinned:
  2696. /* tune up the balancing interval */
  2697. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2698. (sd->balance_interval < sd->max_interval))
  2699. sd->balance_interval *= 2;
  2700. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2701. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2702. return -1;
  2703. return 0;
  2704. }
  2705. /*
  2706. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2707. * tasks if there is an imbalance.
  2708. *
  2709. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2710. * this_rq is locked.
  2711. */
  2712. static int
  2713. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2714. {
  2715. struct sched_group *group;
  2716. struct rq *busiest = NULL;
  2717. unsigned long imbalance;
  2718. int ld_moved = 0;
  2719. int sd_idle = 0;
  2720. int all_pinned = 0;
  2721. cpumask_t cpus = CPU_MASK_ALL;
  2722. /*
  2723. * When power savings policy is enabled for the parent domain, idle
  2724. * sibling can pick up load irrespective of busy siblings. In this case,
  2725. * let the state of idle sibling percolate up as IDLE, instead of
  2726. * portraying it as CPU_NOT_IDLE.
  2727. */
  2728. if (sd->flags & SD_SHARE_CPUPOWER &&
  2729. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2730. sd_idle = 1;
  2731. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2732. redo:
  2733. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2734. &sd_idle, &cpus, NULL);
  2735. if (!group) {
  2736. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2737. goto out_balanced;
  2738. }
  2739. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2740. &cpus);
  2741. if (!busiest) {
  2742. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2743. goto out_balanced;
  2744. }
  2745. BUG_ON(busiest == this_rq);
  2746. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2747. ld_moved = 0;
  2748. if (busiest->nr_running > 1) {
  2749. /* Attempt to move tasks */
  2750. double_lock_balance(this_rq, busiest);
  2751. /* this_rq->clock is already updated */
  2752. update_rq_clock(busiest);
  2753. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2754. imbalance, sd, CPU_NEWLY_IDLE,
  2755. &all_pinned);
  2756. spin_unlock(&busiest->lock);
  2757. if (unlikely(all_pinned)) {
  2758. cpu_clear(cpu_of(busiest), cpus);
  2759. if (!cpus_empty(cpus))
  2760. goto redo;
  2761. }
  2762. }
  2763. if (!ld_moved) {
  2764. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2765. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2766. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2767. return -1;
  2768. } else
  2769. sd->nr_balance_failed = 0;
  2770. return ld_moved;
  2771. out_balanced:
  2772. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2773. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2774. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2775. return -1;
  2776. sd->nr_balance_failed = 0;
  2777. return 0;
  2778. }
  2779. /*
  2780. * idle_balance is called by schedule() if this_cpu is about to become
  2781. * idle. Attempts to pull tasks from other CPUs.
  2782. */
  2783. static void idle_balance(int this_cpu, struct rq *this_rq)
  2784. {
  2785. struct sched_domain *sd;
  2786. int pulled_task = -1;
  2787. unsigned long next_balance = jiffies + HZ;
  2788. for_each_domain(this_cpu, sd) {
  2789. unsigned long interval;
  2790. if (!(sd->flags & SD_LOAD_BALANCE))
  2791. continue;
  2792. if (sd->flags & SD_BALANCE_NEWIDLE)
  2793. /* If we've pulled tasks over stop searching: */
  2794. pulled_task = load_balance_newidle(this_cpu,
  2795. this_rq, sd);
  2796. interval = msecs_to_jiffies(sd->balance_interval);
  2797. if (time_after(next_balance, sd->last_balance + interval))
  2798. next_balance = sd->last_balance + interval;
  2799. if (pulled_task)
  2800. break;
  2801. }
  2802. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2803. /*
  2804. * We are going idle. next_balance may be set based on
  2805. * a busy processor. So reset next_balance.
  2806. */
  2807. this_rq->next_balance = next_balance;
  2808. }
  2809. }
  2810. /*
  2811. * active_load_balance is run by migration threads. It pushes running tasks
  2812. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2813. * running on each physical CPU where possible, and avoids physical /
  2814. * logical imbalances.
  2815. *
  2816. * Called with busiest_rq locked.
  2817. */
  2818. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2819. {
  2820. int target_cpu = busiest_rq->push_cpu;
  2821. struct sched_domain *sd;
  2822. struct rq *target_rq;
  2823. /* Is there any task to move? */
  2824. if (busiest_rq->nr_running <= 1)
  2825. return;
  2826. target_rq = cpu_rq(target_cpu);
  2827. /*
  2828. * This condition is "impossible", if it occurs
  2829. * we need to fix it. Originally reported by
  2830. * Bjorn Helgaas on a 128-cpu setup.
  2831. */
  2832. BUG_ON(busiest_rq == target_rq);
  2833. /* move a task from busiest_rq to target_rq */
  2834. double_lock_balance(busiest_rq, target_rq);
  2835. update_rq_clock(busiest_rq);
  2836. update_rq_clock(target_rq);
  2837. /* Search for an sd spanning us and the target CPU. */
  2838. for_each_domain(target_cpu, sd) {
  2839. if ((sd->flags & SD_LOAD_BALANCE) &&
  2840. cpu_isset(busiest_cpu, sd->span))
  2841. break;
  2842. }
  2843. if (likely(sd)) {
  2844. schedstat_inc(sd, alb_count);
  2845. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2846. sd, CPU_IDLE))
  2847. schedstat_inc(sd, alb_pushed);
  2848. else
  2849. schedstat_inc(sd, alb_failed);
  2850. }
  2851. spin_unlock(&target_rq->lock);
  2852. }
  2853. #ifdef CONFIG_NO_HZ
  2854. static struct {
  2855. atomic_t load_balancer;
  2856. cpumask_t cpu_mask;
  2857. } nohz ____cacheline_aligned = {
  2858. .load_balancer = ATOMIC_INIT(-1),
  2859. .cpu_mask = CPU_MASK_NONE,
  2860. };
  2861. /*
  2862. * This routine will try to nominate the ilb (idle load balancing)
  2863. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2864. * load balancing on behalf of all those cpus. If all the cpus in the system
  2865. * go into this tickless mode, then there will be no ilb owner (as there is
  2866. * no need for one) and all the cpus will sleep till the next wakeup event
  2867. * arrives...
  2868. *
  2869. * For the ilb owner, tick is not stopped. And this tick will be used
  2870. * for idle load balancing. ilb owner will still be part of
  2871. * nohz.cpu_mask..
  2872. *
  2873. * While stopping the tick, this cpu will become the ilb owner if there
  2874. * is no other owner. And will be the owner till that cpu becomes busy
  2875. * or if all cpus in the system stop their ticks at which point
  2876. * there is no need for ilb owner.
  2877. *
  2878. * When the ilb owner becomes busy, it nominates another owner, during the
  2879. * next busy scheduler_tick()
  2880. */
  2881. int select_nohz_load_balancer(int stop_tick)
  2882. {
  2883. int cpu = smp_processor_id();
  2884. if (stop_tick) {
  2885. cpu_set(cpu, nohz.cpu_mask);
  2886. cpu_rq(cpu)->in_nohz_recently = 1;
  2887. /*
  2888. * If we are going offline and still the leader, give up!
  2889. */
  2890. if (cpu_is_offline(cpu) &&
  2891. atomic_read(&nohz.load_balancer) == cpu) {
  2892. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2893. BUG();
  2894. return 0;
  2895. }
  2896. /* time for ilb owner also to sleep */
  2897. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2898. if (atomic_read(&nohz.load_balancer) == cpu)
  2899. atomic_set(&nohz.load_balancer, -1);
  2900. return 0;
  2901. }
  2902. if (atomic_read(&nohz.load_balancer) == -1) {
  2903. /* make me the ilb owner */
  2904. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2905. return 1;
  2906. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2907. return 1;
  2908. } else {
  2909. if (!cpu_isset(cpu, nohz.cpu_mask))
  2910. return 0;
  2911. cpu_clear(cpu, nohz.cpu_mask);
  2912. if (atomic_read(&nohz.load_balancer) == cpu)
  2913. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2914. BUG();
  2915. }
  2916. return 0;
  2917. }
  2918. #endif
  2919. static DEFINE_SPINLOCK(balancing);
  2920. /*
  2921. * It checks each scheduling domain to see if it is due to be balanced,
  2922. * and initiates a balancing operation if so.
  2923. *
  2924. * Balancing parameters are set up in arch_init_sched_domains.
  2925. */
  2926. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2927. {
  2928. int balance = 1;
  2929. struct rq *rq = cpu_rq(cpu);
  2930. unsigned long interval;
  2931. struct sched_domain *sd;
  2932. /* Earliest time when we have to do rebalance again */
  2933. unsigned long next_balance = jiffies + 60*HZ;
  2934. int update_next_balance = 0;
  2935. for_each_domain(cpu, sd) {
  2936. if (!(sd->flags & SD_LOAD_BALANCE))
  2937. continue;
  2938. interval = sd->balance_interval;
  2939. if (idle != CPU_IDLE)
  2940. interval *= sd->busy_factor;
  2941. /* scale ms to jiffies */
  2942. interval = msecs_to_jiffies(interval);
  2943. if (unlikely(!interval))
  2944. interval = 1;
  2945. if (interval > HZ*NR_CPUS/10)
  2946. interval = HZ*NR_CPUS/10;
  2947. if (sd->flags & SD_SERIALIZE) {
  2948. if (!spin_trylock(&balancing))
  2949. goto out;
  2950. }
  2951. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2952. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2953. /*
  2954. * We've pulled tasks over so either we're no
  2955. * longer idle, or one of our SMT siblings is
  2956. * not idle.
  2957. */
  2958. idle = CPU_NOT_IDLE;
  2959. }
  2960. sd->last_balance = jiffies;
  2961. }
  2962. if (sd->flags & SD_SERIALIZE)
  2963. spin_unlock(&balancing);
  2964. out:
  2965. if (time_after(next_balance, sd->last_balance + interval)) {
  2966. next_balance = sd->last_balance + interval;
  2967. update_next_balance = 1;
  2968. }
  2969. /*
  2970. * Stop the load balance at this level. There is another
  2971. * CPU in our sched group which is doing load balancing more
  2972. * actively.
  2973. */
  2974. if (!balance)
  2975. break;
  2976. }
  2977. /*
  2978. * next_balance will be updated only when there is a need.
  2979. * When the cpu is attached to null domain for ex, it will not be
  2980. * updated.
  2981. */
  2982. if (likely(update_next_balance))
  2983. rq->next_balance = next_balance;
  2984. }
  2985. /*
  2986. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2987. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2988. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2989. */
  2990. static void run_rebalance_domains(struct softirq_action *h)
  2991. {
  2992. int this_cpu = smp_processor_id();
  2993. struct rq *this_rq = cpu_rq(this_cpu);
  2994. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2995. CPU_IDLE : CPU_NOT_IDLE;
  2996. rebalance_domains(this_cpu, idle);
  2997. #ifdef CONFIG_NO_HZ
  2998. /*
  2999. * If this cpu is the owner for idle load balancing, then do the
  3000. * balancing on behalf of the other idle cpus whose ticks are
  3001. * stopped.
  3002. */
  3003. if (this_rq->idle_at_tick &&
  3004. atomic_read(&nohz.load_balancer) == this_cpu) {
  3005. cpumask_t cpus = nohz.cpu_mask;
  3006. struct rq *rq;
  3007. int balance_cpu;
  3008. cpu_clear(this_cpu, cpus);
  3009. for_each_cpu_mask(balance_cpu, cpus) {
  3010. /*
  3011. * If this cpu gets work to do, stop the load balancing
  3012. * work being done for other cpus. Next load
  3013. * balancing owner will pick it up.
  3014. */
  3015. if (need_resched())
  3016. break;
  3017. rebalance_domains(balance_cpu, CPU_IDLE);
  3018. rq = cpu_rq(balance_cpu);
  3019. if (time_after(this_rq->next_balance, rq->next_balance))
  3020. this_rq->next_balance = rq->next_balance;
  3021. }
  3022. }
  3023. #endif
  3024. }
  3025. /*
  3026. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3027. *
  3028. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3029. * idle load balancing owner or decide to stop the periodic load balancing,
  3030. * if the whole system is idle.
  3031. */
  3032. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3033. {
  3034. #ifdef CONFIG_NO_HZ
  3035. /*
  3036. * If we were in the nohz mode recently and busy at the current
  3037. * scheduler tick, then check if we need to nominate new idle
  3038. * load balancer.
  3039. */
  3040. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3041. rq->in_nohz_recently = 0;
  3042. if (atomic_read(&nohz.load_balancer) == cpu) {
  3043. cpu_clear(cpu, nohz.cpu_mask);
  3044. atomic_set(&nohz.load_balancer, -1);
  3045. }
  3046. if (atomic_read(&nohz.load_balancer) == -1) {
  3047. /*
  3048. * simple selection for now: Nominate the
  3049. * first cpu in the nohz list to be the next
  3050. * ilb owner.
  3051. *
  3052. * TBD: Traverse the sched domains and nominate
  3053. * the nearest cpu in the nohz.cpu_mask.
  3054. */
  3055. int ilb = first_cpu(nohz.cpu_mask);
  3056. if (ilb != NR_CPUS)
  3057. resched_cpu(ilb);
  3058. }
  3059. }
  3060. /*
  3061. * If this cpu is idle and doing idle load balancing for all the
  3062. * cpus with ticks stopped, is it time for that to stop?
  3063. */
  3064. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3065. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3066. resched_cpu(cpu);
  3067. return;
  3068. }
  3069. /*
  3070. * If this cpu is idle and the idle load balancing is done by
  3071. * someone else, then no need raise the SCHED_SOFTIRQ
  3072. */
  3073. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3074. cpu_isset(cpu, nohz.cpu_mask))
  3075. return;
  3076. #endif
  3077. if (time_after_eq(jiffies, rq->next_balance))
  3078. raise_softirq(SCHED_SOFTIRQ);
  3079. }
  3080. #else /* CONFIG_SMP */
  3081. /*
  3082. * on UP we do not need to balance between CPUs:
  3083. */
  3084. static inline void idle_balance(int cpu, struct rq *rq)
  3085. {
  3086. }
  3087. #endif
  3088. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3089. EXPORT_PER_CPU_SYMBOL(kstat);
  3090. /*
  3091. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3092. * that have not yet been banked in case the task is currently running.
  3093. */
  3094. unsigned long long task_sched_runtime(struct task_struct *p)
  3095. {
  3096. unsigned long flags;
  3097. u64 ns, delta_exec;
  3098. struct rq *rq;
  3099. rq = task_rq_lock(p, &flags);
  3100. ns = p->se.sum_exec_runtime;
  3101. if (task_current(rq, p)) {
  3102. update_rq_clock(rq);
  3103. delta_exec = rq->clock - p->se.exec_start;
  3104. if ((s64)delta_exec > 0)
  3105. ns += delta_exec;
  3106. }
  3107. task_rq_unlock(rq, &flags);
  3108. return ns;
  3109. }
  3110. /*
  3111. * Account user cpu time to a process.
  3112. * @p: the process that the cpu time gets accounted to
  3113. * @cputime: the cpu time spent in user space since the last update
  3114. */
  3115. void account_user_time(struct task_struct *p, cputime_t cputime)
  3116. {
  3117. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3118. cputime64_t tmp;
  3119. p->utime = cputime_add(p->utime, cputime);
  3120. /* Add user time to cpustat. */
  3121. tmp = cputime_to_cputime64(cputime);
  3122. if (TASK_NICE(p) > 0)
  3123. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3124. else
  3125. cpustat->user = cputime64_add(cpustat->user, tmp);
  3126. }
  3127. /*
  3128. * Account guest cpu time to a process.
  3129. * @p: the process that the cpu time gets accounted to
  3130. * @cputime: the cpu time spent in virtual machine since the last update
  3131. */
  3132. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3133. {
  3134. cputime64_t tmp;
  3135. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3136. tmp = cputime_to_cputime64(cputime);
  3137. p->utime = cputime_add(p->utime, cputime);
  3138. p->gtime = cputime_add(p->gtime, cputime);
  3139. cpustat->user = cputime64_add(cpustat->user, tmp);
  3140. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3141. }
  3142. /*
  3143. * Account scaled user cpu time to a process.
  3144. * @p: the process that the cpu time gets accounted to
  3145. * @cputime: the cpu time spent in user space since the last update
  3146. */
  3147. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3148. {
  3149. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3150. }
  3151. /*
  3152. * Account system cpu time to a process.
  3153. * @p: the process that the cpu time gets accounted to
  3154. * @hardirq_offset: the offset to subtract from hardirq_count()
  3155. * @cputime: the cpu time spent in kernel space since the last update
  3156. */
  3157. void account_system_time(struct task_struct *p, int hardirq_offset,
  3158. cputime_t cputime)
  3159. {
  3160. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3161. struct rq *rq = this_rq();
  3162. cputime64_t tmp;
  3163. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3164. return account_guest_time(p, cputime);
  3165. p->stime = cputime_add(p->stime, cputime);
  3166. /* Add system time to cpustat. */
  3167. tmp = cputime_to_cputime64(cputime);
  3168. if (hardirq_count() - hardirq_offset)
  3169. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3170. else if (softirq_count())
  3171. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3172. else if (p != rq->idle)
  3173. cpustat->system = cputime64_add(cpustat->system, tmp);
  3174. else if (atomic_read(&rq->nr_iowait) > 0)
  3175. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3176. else
  3177. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3178. /* Account for system time used */
  3179. acct_update_integrals(p);
  3180. }
  3181. /*
  3182. * Account scaled system cpu time to a process.
  3183. * @p: the process that the cpu time gets accounted to
  3184. * @hardirq_offset: the offset to subtract from hardirq_count()
  3185. * @cputime: the cpu time spent in kernel space since the last update
  3186. */
  3187. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3188. {
  3189. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3190. }
  3191. /*
  3192. * Account for involuntary wait time.
  3193. * @p: the process from which the cpu time has been stolen
  3194. * @steal: the cpu time spent in involuntary wait
  3195. */
  3196. void account_steal_time(struct task_struct *p, cputime_t steal)
  3197. {
  3198. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3199. cputime64_t tmp = cputime_to_cputime64(steal);
  3200. struct rq *rq = this_rq();
  3201. if (p == rq->idle) {
  3202. p->stime = cputime_add(p->stime, steal);
  3203. if (atomic_read(&rq->nr_iowait) > 0)
  3204. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3205. else
  3206. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3207. } else
  3208. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3209. }
  3210. /*
  3211. * This function gets called by the timer code, with HZ frequency.
  3212. * We call it with interrupts disabled.
  3213. *
  3214. * It also gets called by the fork code, when changing the parent's
  3215. * timeslices.
  3216. */
  3217. void scheduler_tick(void)
  3218. {
  3219. int cpu = smp_processor_id();
  3220. struct rq *rq = cpu_rq(cpu);
  3221. struct task_struct *curr = rq->curr;
  3222. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3223. spin_lock(&rq->lock);
  3224. __update_rq_clock(rq);
  3225. /*
  3226. * Let rq->clock advance by at least TICK_NSEC:
  3227. */
  3228. if (unlikely(rq->clock < next_tick)) {
  3229. rq->clock = next_tick;
  3230. rq->clock_underflows++;
  3231. }
  3232. rq->tick_timestamp = rq->clock;
  3233. update_cpu_load(rq);
  3234. curr->sched_class->task_tick(rq, curr, 0);
  3235. update_sched_rt_period(rq);
  3236. spin_unlock(&rq->lock);
  3237. #ifdef CONFIG_SMP
  3238. rq->idle_at_tick = idle_cpu(cpu);
  3239. trigger_load_balance(rq, cpu);
  3240. #endif
  3241. }
  3242. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3243. void __kprobes add_preempt_count(int val)
  3244. {
  3245. /*
  3246. * Underflow?
  3247. */
  3248. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3249. return;
  3250. preempt_count() += val;
  3251. /*
  3252. * Spinlock count overflowing soon?
  3253. */
  3254. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3255. PREEMPT_MASK - 10);
  3256. }
  3257. EXPORT_SYMBOL(add_preempt_count);
  3258. void __kprobes sub_preempt_count(int val)
  3259. {
  3260. /*
  3261. * Underflow?
  3262. */
  3263. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3264. return;
  3265. /*
  3266. * Is the spinlock portion underflowing?
  3267. */
  3268. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3269. !(preempt_count() & PREEMPT_MASK)))
  3270. return;
  3271. preempt_count() -= val;
  3272. }
  3273. EXPORT_SYMBOL(sub_preempt_count);
  3274. #endif
  3275. /*
  3276. * Print scheduling while atomic bug:
  3277. */
  3278. static noinline void __schedule_bug(struct task_struct *prev)
  3279. {
  3280. struct pt_regs *regs = get_irq_regs();
  3281. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3282. prev->comm, prev->pid, preempt_count());
  3283. debug_show_held_locks(prev);
  3284. if (irqs_disabled())
  3285. print_irqtrace_events(prev);
  3286. if (regs)
  3287. show_regs(regs);
  3288. else
  3289. dump_stack();
  3290. }
  3291. /*
  3292. * Various schedule()-time debugging checks and statistics:
  3293. */
  3294. static inline void schedule_debug(struct task_struct *prev)
  3295. {
  3296. /*
  3297. * Test if we are atomic. Since do_exit() needs to call into
  3298. * schedule() atomically, we ignore that path for now.
  3299. * Otherwise, whine if we are scheduling when we should not be.
  3300. */
  3301. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3302. __schedule_bug(prev);
  3303. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3304. schedstat_inc(this_rq(), sched_count);
  3305. #ifdef CONFIG_SCHEDSTATS
  3306. if (unlikely(prev->lock_depth >= 0)) {
  3307. schedstat_inc(this_rq(), bkl_count);
  3308. schedstat_inc(prev, sched_info.bkl_count);
  3309. }
  3310. #endif
  3311. }
  3312. /*
  3313. * Pick up the highest-prio task:
  3314. */
  3315. static inline struct task_struct *
  3316. pick_next_task(struct rq *rq, struct task_struct *prev)
  3317. {
  3318. const struct sched_class *class;
  3319. struct task_struct *p;
  3320. /*
  3321. * Optimization: we know that if all tasks are in
  3322. * the fair class we can call that function directly:
  3323. */
  3324. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3325. p = fair_sched_class.pick_next_task(rq);
  3326. if (likely(p))
  3327. return p;
  3328. }
  3329. class = sched_class_highest;
  3330. for ( ; ; ) {
  3331. p = class->pick_next_task(rq);
  3332. if (p)
  3333. return p;
  3334. /*
  3335. * Will never be NULL as the idle class always
  3336. * returns a non-NULL p:
  3337. */
  3338. class = class->next;
  3339. }
  3340. }
  3341. /*
  3342. * schedule() is the main scheduler function.
  3343. */
  3344. asmlinkage void __sched schedule(void)
  3345. {
  3346. struct task_struct *prev, *next;
  3347. long *switch_count;
  3348. struct rq *rq;
  3349. int cpu;
  3350. need_resched:
  3351. preempt_disable();
  3352. cpu = smp_processor_id();
  3353. rq = cpu_rq(cpu);
  3354. rcu_qsctr_inc(cpu);
  3355. prev = rq->curr;
  3356. switch_count = &prev->nivcsw;
  3357. release_kernel_lock(prev);
  3358. need_resched_nonpreemptible:
  3359. schedule_debug(prev);
  3360. hrtick_clear(rq);
  3361. /*
  3362. * Do the rq-clock update outside the rq lock:
  3363. */
  3364. local_irq_disable();
  3365. __update_rq_clock(rq);
  3366. spin_lock(&rq->lock);
  3367. clear_tsk_need_resched(prev);
  3368. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3369. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3370. unlikely(signal_pending(prev)))) {
  3371. prev->state = TASK_RUNNING;
  3372. } else {
  3373. deactivate_task(rq, prev, 1);
  3374. }
  3375. switch_count = &prev->nvcsw;
  3376. }
  3377. #ifdef CONFIG_SMP
  3378. if (prev->sched_class->pre_schedule)
  3379. prev->sched_class->pre_schedule(rq, prev);
  3380. #endif
  3381. if (unlikely(!rq->nr_running))
  3382. idle_balance(cpu, rq);
  3383. prev->sched_class->put_prev_task(rq, prev);
  3384. next = pick_next_task(rq, prev);
  3385. sched_info_switch(prev, next);
  3386. if (likely(prev != next)) {
  3387. rq->nr_switches++;
  3388. rq->curr = next;
  3389. ++*switch_count;
  3390. context_switch(rq, prev, next); /* unlocks the rq */
  3391. /*
  3392. * the context switch might have flipped the stack from under
  3393. * us, hence refresh the local variables.
  3394. */
  3395. cpu = smp_processor_id();
  3396. rq = cpu_rq(cpu);
  3397. } else
  3398. spin_unlock_irq(&rq->lock);
  3399. hrtick_set(rq);
  3400. if (unlikely(reacquire_kernel_lock(current) < 0))
  3401. goto need_resched_nonpreemptible;
  3402. preempt_enable_no_resched();
  3403. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3404. goto need_resched;
  3405. }
  3406. EXPORT_SYMBOL(schedule);
  3407. #ifdef CONFIG_PREEMPT
  3408. /*
  3409. * this is the entry point to schedule() from in-kernel preemption
  3410. * off of preempt_enable. Kernel preemptions off return from interrupt
  3411. * occur there and call schedule directly.
  3412. */
  3413. asmlinkage void __sched preempt_schedule(void)
  3414. {
  3415. struct thread_info *ti = current_thread_info();
  3416. struct task_struct *task = current;
  3417. int saved_lock_depth;
  3418. /*
  3419. * If there is a non-zero preempt_count or interrupts are disabled,
  3420. * we do not want to preempt the current task. Just return..
  3421. */
  3422. if (likely(ti->preempt_count || irqs_disabled()))
  3423. return;
  3424. do {
  3425. add_preempt_count(PREEMPT_ACTIVE);
  3426. /*
  3427. * We keep the big kernel semaphore locked, but we
  3428. * clear ->lock_depth so that schedule() doesnt
  3429. * auto-release the semaphore:
  3430. */
  3431. saved_lock_depth = task->lock_depth;
  3432. task->lock_depth = -1;
  3433. schedule();
  3434. task->lock_depth = saved_lock_depth;
  3435. sub_preempt_count(PREEMPT_ACTIVE);
  3436. /*
  3437. * Check again in case we missed a preemption opportunity
  3438. * between schedule and now.
  3439. */
  3440. barrier();
  3441. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3442. }
  3443. EXPORT_SYMBOL(preempt_schedule);
  3444. /*
  3445. * this is the entry point to schedule() from kernel preemption
  3446. * off of irq context.
  3447. * Note, that this is called and return with irqs disabled. This will
  3448. * protect us against recursive calling from irq.
  3449. */
  3450. asmlinkage void __sched preempt_schedule_irq(void)
  3451. {
  3452. struct thread_info *ti = current_thread_info();
  3453. struct task_struct *task = current;
  3454. int saved_lock_depth;
  3455. /* Catch callers which need to be fixed */
  3456. BUG_ON(ti->preempt_count || !irqs_disabled());
  3457. do {
  3458. add_preempt_count(PREEMPT_ACTIVE);
  3459. /*
  3460. * We keep the big kernel semaphore locked, but we
  3461. * clear ->lock_depth so that schedule() doesnt
  3462. * auto-release the semaphore:
  3463. */
  3464. saved_lock_depth = task->lock_depth;
  3465. task->lock_depth = -1;
  3466. local_irq_enable();
  3467. schedule();
  3468. local_irq_disable();
  3469. task->lock_depth = saved_lock_depth;
  3470. sub_preempt_count(PREEMPT_ACTIVE);
  3471. /*
  3472. * Check again in case we missed a preemption opportunity
  3473. * between schedule and now.
  3474. */
  3475. barrier();
  3476. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3477. }
  3478. #endif /* CONFIG_PREEMPT */
  3479. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3480. void *key)
  3481. {
  3482. return try_to_wake_up(curr->private, mode, sync);
  3483. }
  3484. EXPORT_SYMBOL(default_wake_function);
  3485. /*
  3486. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3487. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3488. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3489. *
  3490. * There are circumstances in which we can try to wake a task which has already
  3491. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3492. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3493. */
  3494. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3495. int nr_exclusive, int sync, void *key)
  3496. {
  3497. wait_queue_t *curr, *next;
  3498. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3499. unsigned flags = curr->flags;
  3500. if (curr->func(curr, mode, sync, key) &&
  3501. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3502. break;
  3503. }
  3504. }
  3505. /**
  3506. * __wake_up - wake up threads blocked on a waitqueue.
  3507. * @q: the waitqueue
  3508. * @mode: which threads
  3509. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3510. * @key: is directly passed to the wakeup function
  3511. */
  3512. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3513. int nr_exclusive, void *key)
  3514. {
  3515. unsigned long flags;
  3516. spin_lock_irqsave(&q->lock, flags);
  3517. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3518. spin_unlock_irqrestore(&q->lock, flags);
  3519. }
  3520. EXPORT_SYMBOL(__wake_up);
  3521. /*
  3522. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3523. */
  3524. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3525. {
  3526. __wake_up_common(q, mode, 1, 0, NULL);
  3527. }
  3528. /**
  3529. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3530. * @q: the waitqueue
  3531. * @mode: which threads
  3532. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3533. *
  3534. * The sync wakeup differs that the waker knows that it will schedule
  3535. * away soon, so while the target thread will be woken up, it will not
  3536. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3537. * with each other. This can prevent needless bouncing between CPUs.
  3538. *
  3539. * On UP it can prevent extra preemption.
  3540. */
  3541. void
  3542. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3543. {
  3544. unsigned long flags;
  3545. int sync = 1;
  3546. if (unlikely(!q))
  3547. return;
  3548. if (unlikely(!nr_exclusive))
  3549. sync = 0;
  3550. spin_lock_irqsave(&q->lock, flags);
  3551. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3552. spin_unlock_irqrestore(&q->lock, flags);
  3553. }
  3554. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3555. void complete(struct completion *x)
  3556. {
  3557. unsigned long flags;
  3558. spin_lock_irqsave(&x->wait.lock, flags);
  3559. x->done++;
  3560. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3561. spin_unlock_irqrestore(&x->wait.lock, flags);
  3562. }
  3563. EXPORT_SYMBOL(complete);
  3564. void complete_all(struct completion *x)
  3565. {
  3566. unsigned long flags;
  3567. spin_lock_irqsave(&x->wait.lock, flags);
  3568. x->done += UINT_MAX/2;
  3569. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3570. spin_unlock_irqrestore(&x->wait.lock, flags);
  3571. }
  3572. EXPORT_SYMBOL(complete_all);
  3573. static inline long __sched
  3574. do_wait_for_common(struct completion *x, long timeout, int state)
  3575. {
  3576. if (!x->done) {
  3577. DECLARE_WAITQUEUE(wait, current);
  3578. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3579. __add_wait_queue_tail(&x->wait, &wait);
  3580. do {
  3581. if ((state == TASK_INTERRUPTIBLE &&
  3582. signal_pending(current)) ||
  3583. (state == TASK_KILLABLE &&
  3584. fatal_signal_pending(current))) {
  3585. __remove_wait_queue(&x->wait, &wait);
  3586. return -ERESTARTSYS;
  3587. }
  3588. __set_current_state(state);
  3589. spin_unlock_irq(&x->wait.lock);
  3590. timeout = schedule_timeout(timeout);
  3591. spin_lock_irq(&x->wait.lock);
  3592. if (!timeout) {
  3593. __remove_wait_queue(&x->wait, &wait);
  3594. return timeout;
  3595. }
  3596. } while (!x->done);
  3597. __remove_wait_queue(&x->wait, &wait);
  3598. }
  3599. x->done--;
  3600. return timeout;
  3601. }
  3602. static long __sched
  3603. wait_for_common(struct completion *x, long timeout, int state)
  3604. {
  3605. might_sleep();
  3606. spin_lock_irq(&x->wait.lock);
  3607. timeout = do_wait_for_common(x, timeout, state);
  3608. spin_unlock_irq(&x->wait.lock);
  3609. return timeout;
  3610. }
  3611. void __sched wait_for_completion(struct completion *x)
  3612. {
  3613. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3614. }
  3615. EXPORT_SYMBOL(wait_for_completion);
  3616. unsigned long __sched
  3617. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3618. {
  3619. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3620. }
  3621. EXPORT_SYMBOL(wait_for_completion_timeout);
  3622. int __sched wait_for_completion_interruptible(struct completion *x)
  3623. {
  3624. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3625. if (t == -ERESTARTSYS)
  3626. return t;
  3627. return 0;
  3628. }
  3629. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3630. unsigned long __sched
  3631. wait_for_completion_interruptible_timeout(struct completion *x,
  3632. unsigned long timeout)
  3633. {
  3634. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3635. }
  3636. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3637. int __sched wait_for_completion_killable(struct completion *x)
  3638. {
  3639. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3640. if (t == -ERESTARTSYS)
  3641. return t;
  3642. return 0;
  3643. }
  3644. EXPORT_SYMBOL(wait_for_completion_killable);
  3645. static long __sched
  3646. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3647. {
  3648. unsigned long flags;
  3649. wait_queue_t wait;
  3650. init_waitqueue_entry(&wait, current);
  3651. __set_current_state(state);
  3652. spin_lock_irqsave(&q->lock, flags);
  3653. __add_wait_queue(q, &wait);
  3654. spin_unlock(&q->lock);
  3655. timeout = schedule_timeout(timeout);
  3656. spin_lock_irq(&q->lock);
  3657. __remove_wait_queue(q, &wait);
  3658. spin_unlock_irqrestore(&q->lock, flags);
  3659. return timeout;
  3660. }
  3661. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3662. {
  3663. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3664. }
  3665. EXPORT_SYMBOL(interruptible_sleep_on);
  3666. long __sched
  3667. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3668. {
  3669. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3670. }
  3671. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3672. void __sched sleep_on(wait_queue_head_t *q)
  3673. {
  3674. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3675. }
  3676. EXPORT_SYMBOL(sleep_on);
  3677. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3678. {
  3679. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3680. }
  3681. EXPORT_SYMBOL(sleep_on_timeout);
  3682. #ifdef CONFIG_RT_MUTEXES
  3683. /*
  3684. * rt_mutex_setprio - set the current priority of a task
  3685. * @p: task
  3686. * @prio: prio value (kernel-internal form)
  3687. *
  3688. * This function changes the 'effective' priority of a task. It does
  3689. * not touch ->normal_prio like __setscheduler().
  3690. *
  3691. * Used by the rt_mutex code to implement priority inheritance logic.
  3692. */
  3693. void rt_mutex_setprio(struct task_struct *p, int prio)
  3694. {
  3695. unsigned long flags;
  3696. int oldprio, on_rq, running;
  3697. struct rq *rq;
  3698. const struct sched_class *prev_class = p->sched_class;
  3699. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3700. rq = task_rq_lock(p, &flags);
  3701. update_rq_clock(rq);
  3702. oldprio = p->prio;
  3703. on_rq = p->se.on_rq;
  3704. running = task_current(rq, p);
  3705. if (on_rq) {
  3706. dequeue_task(rq, p, 0);
  3707. if (running)
  3708. p->sched_class->put_prev_task(rq, p);
  3709. }
  3710. if (rt_prio(prio))
  3711. p->sched_class = &rt_sched_class;
  3712. else
  3713. p->sched_class = &fair_sched_class;
  3714. p->prio = prio;
  3715. if (on_rq) {
  3716. if (running)
  3717. p->sched_class->set_curr_task(rq);
  3718. enqueue_task(rq, p, 0);
  3719. check_class_changed(rq, p, prev_class, oldprio, running);
  3720. }
  3721. task_rq_unlock(rq, &flags);
  3722. }
  3723. #endif
  3724. void set_user_nice(struct task_struct *p, long nice)
  3725. {
  3726. int old_prio, delta, on_rq;
  3727. unsigned long flags;
  3728. struct rq *rq;
  3729. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3730. return;
  3731. /*
  3732. * We have to be careful, if called from sys_setpriority(),
  3733. * the task might be in the middle of scheduling on another CPU.
  3734. */
  3735. rq = task_rq_lock(p, &flags);
  3736. update_rq_clock(rq);
  3737. /*
  3738. * The RT priorities are set via sched_setscheduler(), but we still
  3739. * allow the 'normal' nice value to be set - but as expected
  3740. * it wont have any effect on scheduling until the task is
  3741. * SCHED_FIFO/SCHED_RR:
  3742. */
  3743. if (task_has_rt_policy(p)) {
  3744. p->static_prio = NICE_TO_PRIO(nice);
  3745. goto out_unlock;
  3746. }
  3747. on_rq = p->se.on_rq;
  3748. if (on_rq)
  3749. dequeue_task(rq, p, 0);
  3750. p->static_prio = NICE_TO_PRIO(nice);
  3751. set_load_weight(p);
  3752. old_prio = p->prio;
  3753. p->prio = effective_prio(p);
  3754. delta = p->prio - old_prio;
  3755. if (on_rq) {
  3756. enqueue_task(rq, p, 0);
  3757. /*
  3758. * If the task increased its priority or is running and
  3759. * lowered its priority, then reschedule its CPU:
  3760. */
  3761. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3762. resched_task(rq->curr);
  3763. }
  3764. out_unlock:
  3765. task_rq_unlock(rq, &flags);
  3766. }
  3767. EXPORT_SYMBOL(set_user_nice);
  3768. /*
  3769. * can_nice - check if a task can reduce its nice value
  3770. * @p: task
  3771. * @nice: nice value
  3772. */
  3773. int can_nice(const struct task_struct *p, const int nice)
  3774. {
  3775. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3776. int nice_rlim = 20 - nice;
  3777. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3778. capable(CAP_SYS_NICE));
  3779. }
  3780. #ifdef __ARCH_WANT_SYS_NICE
  3781. /*
  3782. * sys_nice - change the priority of the current process.
  3783. * @increment: priority increment
  3784. *
  3785. * sys_setpriority is a more generic, but much slower function that
  3786. * does similar things.
  3787. */
  3788. asmlinkage long sys_nice(int increment)
  3789. {
  3790. long nice, retval;
  3791. /*
  3792. * Setpriority might change our priority at the same moment.
  3793. * We don't have to worry. Conceptually one call occurs first
  3794. * and we have a single winner.
  3795. */
  3796. if (increment < -40)
  3797. increment = -40;
  3798. if (increment > 40)
  3799. increment = 40;
  3800. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3801. if (nice < -20)
  3802. nice = -20;
  3803. if (nice > 19)
  3804. nice = 19;
  3805. if (increment < 0 && !can_nice(current, nice))
  3806. return -EPERM;
  3807. retval = security_task_setnice(current, nice);
  3808. if (retval)
  3809. return retval;
  3810. set_user_nice(current, nice);
  3811. return 0;
  3812. }
  3813. #endif
  3814. /**
  3815. * task_prio - return the priority value of a given task.
  3816. * @p: the task in question.
  3817. *
  3818. * This is the priority value as seen by users in /proc.
  3819. * RT tasks are offset by -200. Normal tasks are centered
  3820. * around 0, value goes from -16 to +15.
  3821. */
  3822. int task_prio(const struct task_struct *p)
  3823. {
  3824. return p->prio - MAX_RT_PRIO;
  3825. }
  3826. /**
  3827. * task_nice - return the nice value of a given task.
  3828. * @p: the task in question.
  3829. */
  3830. int task_nice(const struct task_struct *p)
  3831. {
  3832. return TASK_NICE(p);
  3833. }
  3834. EXPORT_SYMBOL_GPL(task_nice);
  3835. /**
  3836. * idle_cpu - is a given cpu idle currently?
  3837. * @cpu: the processor in question.
  3838. */
  3839. int idle_cpu(int cpu)
  3840. {
  3841. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3842. }
  3843. /**
  3844. * idle_task - return the idle task for a given cpu.
  3845. * @cpu: the processor in question.
  3846. */
  3847. struct task_struct *idle_task(int cpu)
  3848. {
  3849. return cpu_rq(cpu)->idle;
  3850. }
  3851. /**
  3852. * find_process_by_pid - find a process with a matching PID value.
  3853. * @pid: the pid in question.
  3854. */
  3855. static struct task_struct *find_process_by_pid(pid_t pid)
  3856. {
  3857. return pid ? find_task_by_vpid(pid) : current;
  3858. }
  3859. /* Actually do priority change: must hold rq lock. */
  3860. static void
  3861. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3862. {
  3863. BUG_ON(p->se.on_rq);
  3864. p->policy = policy;
  3865. switch (p->policy) {
  3866. case SCHED_NORMAL:
  3867. case SCHED_BATCH:
  3868. case SCHED_IDLE:
  3869. p->sched_class = &fair_sched_class;
  3870. break;
  3871. case SCHED_FIFO:
  3872. case SCHED_RR:
  3873. p->sched_class = &rt_sched_class;
  3874. break;
  3875. }
  3876. p->rt_priority = prio;
  3877. p->normal_prio = normal_prio(p);
  3878. /* we are holding p->pi_lock already */
  3879. p->prio = rt_mutex_getprio(p);
  3880. set_load_weight(p);
  3881. }
  3882. /**
  3883. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3884. * @p: the task in question.
  3885. * @policy: new policy.
  3886. * @param: structure containing the new RT priority.
  3887. *
  3888. * NOTE that the task may be already dead.
  3889. */
  3890. int sched_setscheduler(struct task_struct *p, int policy,
  3891. struct sched_param *param)
  3892. {
  3893. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3894. unsigned long flags;
  3895. const struct sched_class *prev_class = p->sched_class;
  3896. struct rq *rq;
  3897. /* may grab non-irq protected spin_locks */
  3898. BUG_ON(in_interrupt());
  3899. recheck:
  3900. /* double check policy once rq lock held */
  3901. if (policy < 0)
  3902. policy = oldpolicy = p->policy;
  3903. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3904. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3905. policy != SCHED_IDLE)
  3906. return -EINVAL;
  3907. /*
  3908. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3909. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3910. * SCHED_BATCH and SCHED_IDLE is 0.
  3911. */
  3912. if (param->sched_priority < 0 ||
  3913. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3914. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3915. return -EINVAL;
  3916. if (rt_policy(policy) != (param->sched_priority != 0))
  3917. return -EINVAL;
  3918. /*
  3919. * Allow unprivileged RT tasks to decrease priority:
  3920. */
  3921. if (!capable(CAP_SYS_NICE)) {
  3922. if (rt_policy(policy)) {
  3923. unsigned long rlim_rtprio;
  3924. if (!lock_task_sighand(p, &flags))
  3925. return -ESRCH;
  3926. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3927. unlock_task_sighand(p, &flags);
  3928. /* can't set/change the rt policy */
  3929. if (policy != p->policy && !rlim_rtprio)
  3930. return -EPERM;
  3931. /* can't increase priority */
  3932. if (param->sched_priority > p->rt_priority &&
  3933. param->sched_priority > rlim_rtprio)
  3934. return -EPERM;
  3935. }
  3936. /*
  3937. * Like positive nice levels, dont allow tasks to
  3938. * move out of SCHED_IDLE either:
  3939. */
  3940. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3941. return -EPERM;
  3942. /* can't change other user's priorities */
  3943. if ((current->euid != p->euid) &&
  3944. (current->euid != p->uid))
  3945. return -EPERM;
  3946. }
  3947. #ifdef CONFIG_RT_GROUP_SCHED
  3948. /*
  3949. * Do not allow realtime tasks into groups that have no runtime
  3950. * assigned.
  3951. */
  3952. if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
  3953. return -EPERM;
  3954. #endif
  3955. retval = security_task_setscheduler(p, policy, param);
  3956. if (retval)
  3957. return retval;
  3958. /*
  3959. * make sure no PI-waiters arrive (or leave) while we are
  3960. * changing the priority of the task:
  3961. */
  3962. spin_lock_irqsave(&p->pi_lock, flags);
  3963. /*
  3964. * To be able to change p->policy safely, the apropriate
  3965. * runqueue lock must be held.
  3966. */
  3967. rq = __task_rq_lock(p);
  3968. /* recheck policy now with rq lock held */
  3969. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3970. policy = oldpolicy = -1;
  3971. __task_rq_unlock(rq);
  3972. spin_unlock_irqrestore(&p->pi_lock, flags);
  3973. goto recheck;
  3974. }
  3975. update_rq_clock(rq);
  3976. on_rq = p->se.on_rq;
  3977. running = task_current(rq, p);
  3978. if (on_rq) {
  3979. deactivate_task(rq, p, 0);
  3980. if (running)
  3981. p->sched_class->put_prev_task(rq, p);
  3982. }
  3983. oldprio = p->prio;
  3984. __setscheduler(rq, p, policy, param->sched_priority);
  3985. if (on_rq) {
  3986. if (running)
  3987. p->sched_class->set_curr_task(rq);
  3988. activate_task(rq, p, 0);
  3989. check_class_changed(rq, p, prev_class, oldprio, running);
  3990. }
  3991. __task_rq_unlock(rq);
  3992. spin_unlock_irqrestore(&p->pi_lock, flags);
  3993. rt_mutex_adjust_pi(p);
  3994. return 0;
  3995. }
  3996. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3997. static int
  3998. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3999. {
  4000. struct sched_param lparam;
  4001. struct task_struct *p;
  4002. int retval;
  4003. if (!param || pid < 0)
  4004. return -EINVAL;
  4005. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4006. return -EFAULT;
  4007. rcu_read_lock();
  4008. retval = -ESRCH;
  4009. p = find_process_by_pid(pid);
  4010. if (p != NULL)
  4011. retval = sched_setscheduler(p, policy, &lparam);
  4012. rcu_read_unlock();
  4013. return retval;
  4014. }
  4015. /**
  4016. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4017. * @pid: the pid in question.
  4018. * @policy: new policy.
  4019. * @param: structure containing the new RT priority.
  4020. */
  4021. asmlinkage long
  4022. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4023. {
  4024. /* negative values for policy are not valid */
  4025. if (policy < 0)
  4026. return -EINVAL;
  4027. return do_sched_setscheduler(pid, policy, param);
  4028. }
  4029. /**
  4030. * sys_sched_setparam - set/change the RT priority of a thread
  4031. * @pid: the pid in question.
  4032. * @param: structure containing the new RT priority.
  4033. */
  4034. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4035. {
  4036. return do_sched_setscheduler(pid, -1, param);
  4037. }
  4038. /**
  4039. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4040. * @pid: the pid in question.
  4041. */
  4042. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4043. {
  4044. struct task_struct *p;
  4045. int retval;
  4046. if (pid < 0)
  4047. return -EINVAL;
  4048. retval = -ESRCH;
  4049. read_lock(&tasklist_lock);
  4050. p = find_process_by_pid(pid);
  4051. if (p) {
  4052. retval = security_task_getscheduler(p);
  4053. if (!retval)
  4054. retval = p->policy;
  4055. }
  4056. read_unlock(&tasklist_lock);
  4057. return retval;
  4058. }
  4059. /**
  4060. * sys_sched_getscheduler - get the RT priority of a thread
  4061. * @pid: the pid in question.
  4062. * @param: structure containing the RT priority.
  4063. */
  4064. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4065. {
  4066. struct sched_param lp;
  4067. struct task_struct *p;
  4068. int retval;
  4069. if (!param || pid < 0)
  4070. return -EINVAL;
  4071. read_lock(&tasklist_lock);
  4072. p = find_process_by_pid(pid);
  4073. retval = -ESRCH;
  4074. if (!p)
  4075. goto out_unlock;
  4076. retval = security_task_getscheduler(p);
  4077. if (retval)
  4078. goto out_unlock;
  4079. lp.sched_priority = p->rt_priority;
  4080. read_unlock(&tasklist_lock);
  4081. /*
  4082. * This one might sleep, we cannot do it with a spinlock held ...
  4083. */
  4084. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4085. return retval;
  4086. out_unlock:
  4087. read_unlock(&tasklist_lock);
  4088. return retval;
  4089. }
  4090. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  4091. {
  4092. cpumask_t cpus_allowed;
  4093. struct task_struct *p;
  4094. int retval;
  4095. get_online_cpus();
  4096. read_lock(&tasklist_lock);
  4097. p = find_process_by_pid(pid);
  4098. if (!p) {
  4099. read_unlock(&tasklist_lock);
  4100. put_online_cpus();
  4101. return -ESRCH;
  4102. }
  4103. /*
  4104. * It is not safe to call set_cpus_allowed with the
  4105. * tasklist_lock held. We will bump the task_struct's
  4106. * usage count and then drop tasklist_lock.
  4107. */
  4108. get_task_struct(p);
  4109. read_unlock(&tasklist_lock);
  4110. retval = -EPERM;
  4111. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4112. !capable(CAP_SYS_NICE))
  4113. goto out_unlock;
  4114. retval = security_task_setscheduler(p, 0, NULL);
  4115. if (retval)
  4116. goto out_unlock;
  4117. cpus_allowed = cpuset_cpus_allowed(p);
  4118. cpus_and(new_mask, new_mask, cpus_allowed);
  4119. again:
  4120. retval = set_cpus_allowed(p, new_mask);
  4121. if (!retval) {
  4122. cpus_allowed = cpuset_cpus_allowed(p);
  4123. if (!cpus_subset(new_mask, cpus_allowed)) {
  4124. /*
  4125. * We must have raced with a concurrent cpuset
  4126. * update. Just reset the cpus_allowed to the
  4127. * cpuset's cpus_allowed
  4128. */
  4129. new_mask = cpus_allowed;
  4130. goto again;
  4131. }
  4132. }
  4133. out_unlock:
  4134. put_task_struct(p);
  4135. put_online_cpus();
  4136. return retval;
  4137. }
  4138. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4139. cpumask_t *new_mask)
  4140. {
  4141. if (len < sizeof(cpumask_t)) {
  4142. memset(new_mask, 0, sizeof(cpumask_t));
  4143. } else if (len > sizeof(cpumask_t)) {
  4144. len = sizeof(cpumask_t);
  4145. }
  4146. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4147. }
  4148. /**
  4149. * sys_sched_setaffinity - set the cpu affinity of a process
  4150. * @pid: pid of the process
  4151. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4152. * @user_mask_ptr: user-space pointer to the new cpu mask
  4153. */
  4154. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4155. unsigned long __user *user_mask_ptr)
  4156. {
  4157. cpumask_t new_mask;
  4158. int retval;
  4159. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4160. if (retval)
  4161. return retval;
  4162. return sched_setaffinity(pid, new_mask);
  4163. }
  4164. /*
  4165. * Represents all cpu's present in the system
  4166. * In systems capable of hotplug, this map could dynamically grow
  4167. * as new cpu's are detected in the system via any platform specific
  4168. * method, such as ACPI for e.g.
  4169. */
  4170. cpumask_t cpu_present_map __read_mostly;
  4171. EXPORT_SYMBOL(cpu_present_map);
  4172. #ifndef CONFIG_SMP
  4173. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4174. EXPORT_SYMBOL(cpu_online_map);
  4175. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4176. EXPORT_SYMBOL(cpu_possible_map);
  4177. #endif
  4178. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4179. {
  4180. struct task_struct *p;
  4181. int retval;
  4182. get_online_cpus();
  4183. read_lock(&tasklist_lock);
  4184. retval = -ESRCH;
  4185. p = find_process_by_pid(pid);
  4186. if (!p)
  4187. goto out_unlock;
  4188. retval = security_task_getscheduler(p);
  4189. if (retval)
  4190. goto out_unlock;
  4191. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4192. out_unlock:
  4193. read_unlock(&tasklist_lock);
  4194. put_online_cpus();
  4195. return retval;
  4196. }
  4197. /**
  4198. * sys_sched_getaffinity - get the cpu affinity of a process
  4199. * @pid: pid of the process
  4200. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4201. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4202. */
  4203. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4204. unsigned long __user *user_mask_ptr)
  4205. {
  4206. int ret;
  4207. cpumask_t mask;
  4208. if (len < sizeof(cpumask_t))
  4209. return -EINVAL;
  4210. ret = sched_getaffinity(pid, &mask);
  4211. if (ret < 0)
  4212. return ret;
  4213. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4214. return -EFAULT;
  4215. return sizeof(cpumask_t);
  4216. }
  4217. /**
  4218. * sys_sched_yield - yield the current processor to other threads.
  4219. *
  4220. * This function yields the current CPU to other tasks. If there are no
  4221. * other threads running on this CPU then this function will return.
  4222. */
  4223. asmlinkage long sys_sched_yield(void)
  4224. {
  4225. struct rq *rq = this_rq_lock();
  4226. schedstat_inc(rq, yld_count);
  4227. current->sched_class->yield_task(rq);
  4228. /*
  4229. * Since we are going to call schedule() anyway, there's
  4230. * no need to preempt or enable interrupts:
  4231. */
  4232. __release(rq->lock);
  4233. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4234. _raw_spin_unlock(&rq->lock);
  4235. preempt_enable_no_resched();
  4236. schedule();
  4237. return 0;
  4238. }
  4239. static void __cond_resched(void)
  4240. {
  4241. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4242. __might_sleep(__FILE__, __LINE__);
  4243. #endif
  4244. /*
  4245. * The BKS might be reacquired before we have dropped
  4246. * PREEMPT_ACTIVE, which could trigger a second
  4247. * cond_resched() call.
  4248. */
  4249. do {
  4250. add_preempt_count(PREEMPT_ACTIVE);
  4251. schedule();
  4252. sub_preempt_count(PREEMPT_ACTIVE);
  4253. } while (need_resched());
  4254. }
  4255. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4256. int __sched _cond_resched(void)
  4257. {
  4258. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4259. system_state == SYSTEM_RUNNING) {
  4260. __cond_resched();
  4261. return 1;
  4262. }
  4263. return 0;
  4264. }
  4265. EXPORT_SYMBOL(_cond_resched);
  4266. #endif
  4267. /*
  4268. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4269. * call schedule, and on return reacquire the lock.
  4270. *
  4271. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4272. * operations here to prevent schedule() from being called twice (once via
  4273. * spin_unlock(), once by hand).
  4274. */
  4275. int cond_resched_lock(spinlock_t *lock)
  4276. {
  4277. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4278. int ret = 0;
  4279. if (spin_needbreak(lock) || resched) {
  4280. spin_unlock(lock);
  4281. if (resched && need_resched())
  4282. __cond_resched();
  4283. else
  4284. cpu_relax();
  4285. ret = 1;
  4286. spin_lock(lock);
  4287. }
  4288. return ret;
  4289. }
  4290. EXPORT_SYMBOL(cond_resched_lock);
  4291. int __sched cond_resched_softirq(void)
  4292. {
  4293. BUG_ON(!in_softirq());
  4294. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4295. local_bh_enable();
  4296. __cond_resched();
  4297. local_bh_disable();
  4298. return 1;
  4299. }
  4300. return 0;
  4301. }
  4302. EXPORT_SYMBOL(cond_resched_softirq);
  4303. /**
  4304. * yield - yield the current processor to other threads.
  4305. *
  4306. * This is a shortcut for kernel-space yielding - it marks the
  4307. * thread runnable and calls sys_sched_yield().
  4308. */
  4309. void __sched yield(void)
  4310. {
  4311. set_current_state(TASK_RUNNING);
  4312. sys_sched_yield();
  4313. }
  4314. EXPORT_SYMBOL(yield);
  4315. /*
  4316. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4317. * that process accounting knows that this is a task in IO wait state.
  4318. *
  4319. * But don't do that if it is a deliberate, throttling IO wait (this task
  4320. * has set its backing_dev_info: the queue against which it should throttle)
  4321. */
  4322. void __sched io_schedule(void)
  4323. {
  4324. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4325. delayacct_blkio_start();
  4326. atomic_inc(&rq->nr_iowait);
  4327. schedule();
  4328. atomic_dec(&rq->nr_iowait);
  4329. delayacct_blkio_end();
  4330. }
  4331. EXPORT_SYMBOL(io_schedule);
  4332. long __sched io_schedule_timeout(long timeout)
  4333. {
  4334. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4335. long ret;
  4336. delayacct_blkio_start();
  4337. atomic_inc(&rq->nr_iowait);
  4338. ret = schedule_timeout(timeout);
  4339. atomic_dec(&rq->nr_iowait);
  4340. delayacct_blkio_end();
  4341. return ret;
  4342. }
  4343. /**
  4344. * sys_sched_get_priority_max - return maximum RT priority.
  4345. * @policy: scheduling class.
  4346. *
  4347. * this syscall returns the maximum rt_priority that can be used
  4348. * by a given scheduling class.
  4349. */
  4350. asmlinkage long sys_sched_get_priority_max(int policy)
  4351. {
  4352. int ret = -EINVAL;
  4353. switch (policy) {
  4354. case SCHED_FIFO:
  4355. case SCHED_RR:
  4356. ret = MAX_USER_RT_PRIO-1;
  4357. break;
  4358. case SCHED_NORMAL:
  4359. case SCHED_BATCH:
  4360. case SCHED_IDLE:
  4361. ret = 0;
  4362. break;
  4363. }
  4364. return ret;
  4365. }
  4366. /**
  4367. * sys_sched_get_priority_min - return minimum RT priority.
  4368. * @policy: scheduling class.
  4369. *
  4370. * this syscall returns the minimum rt_priority that can be used
  4371. * by a given scheduling class.
  4372. */
  4373. asmlinkage long sys_sched_get_priority_min(int policy)
  4374. {
  4375. int ret = -EINVAL;
  4376. switch (policy) {
  4377. case SCHED_FIFO:
  4378. case SCHED_RR:
  4379. ret = 1;
  4380. break;
  4381. case SCHED_NORMAL:
  4382. case SCHED_BATCH:
  4383. case SCHED_IDLE:
  4384. ret = 0;
  4385. }
  4386. return ret;
  4387. }
  4388. /**
  4389. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4390. * @pid: pid of the process.
  4391. * @interval: userspace pointer to the timeslice value.
  4392. *
  4393. * this syscall writes the default timeslice value of a given process
  4394. * into the user-space timespec buffer. A value of '0' means infinity.
  4395. */
  4396. asmlinkage
  4397. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4398. {
  4399. struct task_struct *p;
  4400. unsigned int time_slice;
  4401. int retval;
  4402. struct timespec t;
  4403. if (pid < 0)
  4404. return -EINVAL;
  4405. retval = -ESRCH;
  4406. read_lock(&tasklist_lock);
  4407. p = find_process_by_pid(pid);
  4408. if (!p)
  4409. goto out_unlock;
  4410. retval = security_task_getscheduler(p);
  4411. if (retval)
  4412. goto out_unlock;
  4413. /*
  4414. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4415. * tasks that are on an otherwise idle runqueue:
  4416. */
  4417. time_slice = 0;
  4418. if (p->policy == SCHED_RR) {
  4419. time_slice = DEF_TIMESLICE;
  4420. } else {
  4421. struct sched_entity *se = &p->se;
  4422. unsigned long flags;
  4423. struct rq *rq;
  4424. rq = task_rq_lock(p, &flags);
  4425. if (rq->cfs.load.weight)
  4426. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4427. task_rq_unlock(rq, &flags);
  4428. }
  4429. read_unlock(&tasklist_lock);
  4430. jiffies_to_timespec(time_slice, &t);
  4431. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4432. return retval;
  4433. out_unlock:
  4434. read_unlock(&tasklist_lock);
  4435. return retval;
  4436. }
  4437. static const char stat_nam[] = "RSDTtZX";
  4438. void sched_show_task(struct task_struct *p)
  4439. {
  4440. unsigned long free = 0;
  4441. unsigned state;
  4442. state = p->state ? __ffs(p->state) + 1 : 0;
  4443. printk(KERN_INFO "%-13.13s %c", p->comm,
  4444. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4445. #if BITS_PER_LONG == 32
  4446. if (state == TASK_RUNNING)
  4447. printk(KERN_CONT " running ");
  4448. else
  4449. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4450. #else
  4451. if (state == TASK_RUNNING)
  4452. printk(KERN_CONT " running task ");
  4453. else
  4454. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4455. #endif
  4456. #ifdef CONFIG_DEBUG_STACK_USAGE
  4457. {
  4458. unsigned long *n = end_of_stack(p);
  4459. while (!*n)
  4460. n++;
  4461. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4462. }
  4463. #endif
  4464. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4465. task_pid_nr(p), task_pid_nr(p->real_parent));
  4466. show_stack(p, NULL);
  4467. }
  4468. void show_state_filter(unsigned long state_filter)
  4469. {
  4470. struct task_struct *g, *p;
  4471. #if BITS_PER_LONG == 32
  4472. printk(KERN_INFO
  4473. " task PC stack pid father\n");
  4474. #else
  4475. printk(KERN_INFO
  4476. " task PC stack pid father\n");
  4477. #endif
  4478. read_lock(&tasklist_lock);
  4479. do_each_thread(g, p) {
  4480. /*
  4481. * reset the NMI-timeout, listing all files on a slow
  4482. * console might take alot of time:
  4483. */
  4484. touch_nmi_watchdog();
  4485. if (!state_filter || (p->state & state_filter))
  4486. sched_show_task(p);
  4487. } while_each_thread(g, p);
  4488. touch_all_softlockup_watchdogs();
  4489. #ifdef CONFIG_SCHED_DEBUG
  4490. sysrq_sched_debug_show();
  4491. #endif
  4492. read_unlock(&tasklist_lock);
  4493. /*
  4494. * Only show locks if all tasks are dumped:
  4495. */
  4496. if (state_filter == -1)
  4497. debug_show_all_locks();
  4498. }
  4499. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4500. {
  4501. idle->sched_class = &idle_sched_class;
  4502. }
  4503. /**
  4504. * init_idle - set up an idle thread for a given CPU
  4505. * @idle: task in question
  4506. * @cpu: cpu the idle task belongs to
  4507. *
  4508. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4509. * flag, to make booting more robust.
  4510. */
  4511. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4512. {
  4513. struct rq *rq = cpu_rq(cpu);
  4514. unsigned long flags;
  4515. __sched_fork(idle);
  4516. idle->se.exec_start = sched_clock();
  4517. idle->prio = idle->normal_prio = MAX_PRIO;
  4518. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4519. __set_task_cpu(idle, cpu);
  4520. spin_lock_irqsave(&rq->lock, flags);
  4521. rq->curr = rq->idle = idle;
  4522. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4523. idle->oncpu = 1;
  4524. #endif
  4525. spin_unlock_irqrestore(&rq->lock, flags);
  4526. /* Set the preempt count _outside_ the spinlocks! */
  4527. task_thread_info(idle)->preempt_count = 0;
  4528. /*
  4529. * The idle tasks have their own, simple scheduling class:
  4530. */
  4531. idle->sched_class = &idle_sched_class;
  4532. }
  4533. /*
  4534. * In a system that switches off the HZ timer nohz_cpu_mask
  4535. * indicates which cpus entered this state. This is used
  4536. * in the rcu update to wait only for active cpus. For system
  4537. * which do not switch off the HZ timer nohz_cpu_mask should
  4538. * always be CPU_MASK_NONE.
  4539. */
  4540. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4541. /*
  4542. * Increase the granularity value when there are more CPUs,
  4543. * because with more CPUs the 'effective latency' as visible
  4544. * to users decreases. But the relationship is not linear,
  4545. * so pick a second-best guess by going with the log2 of the
  4546. * number of CPUs.
  4547. *
  4548. * This idea comes from the SD scheduler of Con Kolivas:
  4549. */
  4550. static inline void sched_init_granularity(void)
  4551. {
  4552. unsigned int factor = 1 + ilog2(num_online_cpus());
  4553. const unsigned long limit = 200000000;
  4554. sysctl_sched_min_granularity *= factor;
  4555. if (sysctl_sched_min_granularity > limit)
  4556. sysctl_sched_min_granularity = limit;
  4557. sysctl_sched_latency *= factor;
  4558. if (sysctl_sched_latency > limit)
  4559. sysctl_sched_latency = limit;
  4560. sysctl_sched_wakeup_granularity *= factor;
  4561. sysctl_sched_batch_wakeup_granularity *= factor;
  4562. }
  4563. #ifdef CONFIG_SMP
  4564. /*
  4565. * This is how migration works:
  4566. *
  4567. * 1) we queue a struct migration_req structure in the source CPU's
  4568. * runqueue and wake up that CPU's migration thread.
  4569. * 2) we down() the locked semaphore => thread blocks.
  4570. * 3) migration thread wakes up (implicitly it forces the migrated
  4571. * thread off the CPU)
  4572. * 4) it gets the migration request and checks whether the migrated
  4573. * task is still in the wrong runqueue.
  4574. * 5) if it's in the wrong runqueue then the migration thread removes
  4575. * it and puts it into the right queue.
  4576. * 6) migration thread up()s the semaphore.
  4577. * 7) we wake up and the migration is done.
  4578. */
  4579. /*
  4580. * Change a given task's CPU affinity. Migrate the thread to a
  4581. * proper CPU and schedule it away if the CPU it's executing on
  4582. * is removed from the allowed bitmask.
  4583. *
  4584. * NOTE: the caller must have a valid reference to the task, the
  4585. * task must not exit() & deallocate itself prematurely. The
  4586. * call is not atomic; no spinlocks may be held.
  4587. */
  4588. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4589. {
  4590. struct migration_req req;
  4591. unsigned long flags;
  4592. struct rq *rq;
  4593. int ret = 0;
  4594. rq = task_rq_lock(p, &flags);
  4595. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4596. ret = -EINVAL;
  4597. goto out;
  4598. }
  4599. if (p->sched_class->set_cpus_allowed)
  4600. p->sched_class->set_cpus_allowed(p, &new_mask);
  4601. else {
  4602. p->cpus_allowed = new_mask;
  4603. p->rt.nr_cpus_allowed = cpus_weight(new_mask);
  4604. }
  4605. /* Can the task run on the task's current CPU? If so, we're done */
  4606. if (cpu_isset(task_cpu(p), new_mask))
  4607. goto out;
  4608. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4609. /* Need help from migration thread: drop lock and wait. */
  4610. task_rq_unlock(rq, &flags);
  4611. wake_up_process(rq->migration_thread);
  4612. wait_for_completion(&req.done);
  4613. tlb_migrate_finish(p->mm);
  4614. return 0;
  4615. }
  4616. out:
  4617. task_rq_unlock(rq, &flags);
  4618. return ret;
  4619. }
  4620. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4621. /*
  4622. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4623. * this because either it can't run here any more (set_cpus_allowed()
  4624. * away from this CPU, or CPU going down), or because we're
  4625. * attempting to rebalance this task on exec (sched_exec).
  4626. *
  4627. * So we race with normal scheduler movements, but that's OK, as long
  4628. * as the task is no longer on this CPU.
  4629. *
  4630. * Returns non-zero if task was successfully migrated.
  4631. */
  4632. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4633. {
  4634. struct rq *rq_dest, *rq_src;
  4635. int ret = 0, on_rq;
  4636. if (unlikely(cpu_is_offline(dest_cpu)))
  4637. return ret;
  4638. rq_src = cpu_rq(src_cpu);
  4639. rq_dest = cpu_rq(dest_cpu);
  4640. double_rq_lock(rq_src, rq_dest);
  4641. /* Already moved. */
  4642. if (task_cpu(p) != src_cpu)
  4643. goto out;
  4644. /* Affinity changed (again). */
  4645. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4646. goto out;
  4647. on_rq = p->se.on_rq;
  4648. if (on_rq)
  4649. deactivate_task(rq_src, p, 0);
  4650. set_task_cpu(p, dest_cpu);
  4651. if (on_rq) {
  4652. activate_task(rq_dest, p, 0);
  4653. check_preempt_curr(rq_dest, p);
  4654. }
  4655. ret = 1;
  4656. out:
  4657. double_rq_unlock(rq_src, rq_dest);
  4658. return ret;
  4659. }
  4660. /*
  4661. * migration_thread - this is a highprio system thread that performs
  4662. * thread migration by bumping thread off CPU then 'pushing' onto
  4663. * another runqueue.
  4664. */
  4665. static int migration_thread(void *data)
  4666. {
  4667. int cpu = (long)data;
  4668. struct rq *rq;
  4669. rq = cpu_rq(cpu);
  4670. BUG_ON(rq->migration_thread != current);
  4671. set_current_state(TASK_INTERRUPTIBLE);
  4672. while (!kthread_should_stop()) {
  4673. struct migration_req *req;
  4674. struct list_head *head;
  4675. spin_lock_irq(&rq->lock);
  4676. if (cpu_is_offline(cpu)) {
  4677. spin_unlock_irq(&rq->lock);
  4678. goto wait_to_die;
  4679. }
  4680. if (rq->active_balance) {
  4681. active_load_balance(rq, cpu);
  4682. rq->active_balance = 0;
  4683. }
  4684. head = &rq->migration_queue;
  4685. if (list_empty(head)) {
  4686. spin_unlock_irq(&rq->lock);
  4687. schedule();
  4688. set_current_state(TASK_INTERRUPTIBLE);
  4689. continue;
  4690. }
  4691. req = list_entry(head->next, struct migration_req, list);
  4692. list_del_init(head->next);
  4693. spin_unlock(&rq->lock);
  4694. __migrate_task(req->task, cpu, req->dest_cpu);
  4695. local_irq_enable();
  4696. complete(&req->done);
  4697. }
  4698. __set_current_state(TASK_RUNNING);
  4699. return 0;
  4700. wait_to_die:
  4701. /* Wait for kthread_stop */
  4702. set_current_state(TASK_INTERRUPTIBLE);
  4703. while (!kthread_should_stop()) {
  4704. schedule();
  4705. set_current_state(TASK_INTERRUPTIBLE);
  4706. }
  4707. __set_current_state(TASK_RUNNING);
  4708. return 0;
  4709. }
  4710. #ifdef CONFIG_HOTPLUG_CPU
  4711. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4712. {
  4713. int ret;
  4714. local_irq_disable();
  4715. ret = __migrate_task(p, src_cpu, dest_cpu);
  4716. local_irq_enable();
  4717. return ret;
  4718. }
  4719. /*
  4720. * Figure out where task on dead CPU should go, use force if necessary.
  4721. * NOTE: interrupts should be disabled by the caller
  4722. */
  4723. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4724. {
  4725. unsigned long flags;
  4726. cpumask_t mask;
  4727. struct rq *rq;
  4728. int dest_cpu;
  4729. do {
  4730. /* On same node? */
  4731. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4732. cpus_and(mask, mask, p->cpus_allowed);
  4733. dest_cpu = any_online_cpu(mask);
  4734. /* On any allowed CPU? */
  4735. if (dest_cpu == NR_CPUS)
  4736. dest_cpu = any_online_cpu(p->cpus_allowed);
  4737. /* No more Mr. Nice Guy. */
  4738. if (dest_cpu == NR_CPUS) {
  4739. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4740. /*
  4741. * Try to stay on the same cpuset, where the
  4742. * current cpuset may be a subset of all cpus.
  4743. * The cpuset_cpus_allowed_locked() variant of
  4744. * cpuset_cpus_allowed() will not block. It must be
  4745. * called within calls to cpuset_lock/cpuset_unlock.
  4746. */
  4747. rq = task_rq_lock(p, &flags);
  4748. p->cpus_allowed = cpus_allowed;
  4749. dest_cpu = any_online_cpu(p->cpus_allowed);
  4750. task_rq_unlock(rq, &flags);
  4751. /*
  4752. * Don't tell them about moving exiting tasks or
  4753. * kernel threads (both mm NULL), since they never
  4754. * leave kernel.
  4755. */
  4756. if (p->mm && printk_ratelimit()) {
  4757. printk(KERN_INFO "process %d (%s) no "
  4758. "longer affine to cpu%d\n",
  4759. task_pid_nr(p), p->comm, dead_cpu);
  4760. }
  4761. }
  4762. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4763. }
  4764. /*
  4765. * While a dead CPU has no uninterruptible tasks queued at this point,
  4766. * it might still have a nonzero ->nr_uninterruptible counter, because
  4767. * for performance reasons the counter is not stricly tracking tasks to
  4768. * their home CPUs. So we just add the counter to another CPU's counter,
  4769. * to keep the global sum constant after CPU-down:
  4770. */
  4771. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4772. {
  4773. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4774. unsigned long flags;
  4775. local_irq_save(flags);
  4776. double_rq_lock(rq_src, rq_dest);
  4777. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4778. rq_src->nr_uninterruptible = 0;
  4779. double_rq_unlock(rq_src, rq_dest);
  4780. local_irq_restore(flags);
  4781. }
  4782. /* Run through task list and migrate tasks from the dead cpu. */
  4783. static void migrate_live_tasks(int src_cpu)
  4784. {
  4785. struct task_struct *p, *t;
  4786. read_lock(&tasklist_lock);
  4787. do_each_thread(t, p) {
  4788. if (p == current)
  4789. continue;
  4790. if (task_cpu(p) == src_cpu)
  4791. move_task_off_dead_cpu(src_cpu, p);
  4792. } while_each_thread(t, p);
  4793. read_unlock(&tasklist_lock);
  4794. }
  4795. /*
  4796. * Schedules idle task to be the next runnable task on current CPU.
  4797. * It does so by boosting its priority to highest possible.
  4798. * Used by CPU offline code.
  4799. */
  4800. void sched_idle_next(void)
  4801. {
  4802. int this_cpu = smp_processor_id();
  4803. struct rq *rq = cpu_rq(this_cpu);
  4804. struct task_struct *p = rq->idle;
  4805. unsigned long flags;
  4806. /* cpu has to be offline */
  4807. BUG_ON(cpu_online(this_cpu));
  4808. /*
  4809. * Strictly not necessary since rest of the CPUs are stopped by now
  4810. * and interrupts disabled on the current cpu.
  4811. */
  4812. spin_lock_irqsave(&rq->lock, flags);
  4813. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4814. update_rq_clock(rq);
  4815. activate_task(rq, p, 0);
  4816. spin_unlock_irqrestore(&rq->lock, flags);
  4817. }
  4818. /*
  4819. * Ensures that the idle task is using init_mm right before its cpu goes
  4820. * offline.
  4821. */
  4822. void idle_task_exit(void)
  4823. {
  4824. struct mm_struct *mm = current->active_mm;
  4825. BUG_ON(cpu_online(smp_processor_id()));
  4826. if (mm != &init_mm)
  4827. switch_mm(mm, &init_mm, current);
  4828. mmdrop(mm);
  4829. }
  4830. /* called under rq->lock with disabled interrupts */
  4831. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4832. {
  4833. struct rq *rq = cpu_rq(dead_cpu);
  4834. /* Must be exiting, otherwise would be on tasklist. */
  4835. BUG_ON(!p->exit_state);
  4836. /* Cannot have done final schedule yet: would have vanished. */
  4837. BUG_ON(p->state == TASK_DEAD);
  4838. get_task_struct(p);
  4839. /*
  4840. * Drop lock around migration; if someone else moves it,
  4841. * that's OK. No task can be added to this CPU, so iteration is
  4842. * fine.
  4843. */
  4844. spin_unlock_irq(&rq->lock);
  4845. move_task_off_dead_cpu(dead_cpu, p);
  4846. spin_lock_irq(&rq->lock);
  4847. put_task_struct(p);
  4848. }
  4849. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4850. static void migrate_dead_tasks(unsigned int dead_cpu)
  4851. {
  4852. struct rq *rq = cpu_rq(dead_cpu);
  4853. struct task_struct *next;
  4854. for ( ; ; ) {
  4855. if (!rq->nr_running)
  4856. break;
  4857. update_rq_clock(rq);
  4858. next = pick_next_task(rq, rq->curr);
  4859. if (!next)
  4860. break;
  4861. migrate_dead(dead_cpu, next);
  4862. }
  4863. }
  4864. #endif /* CONFIG_HOTPLUG_CPU */
  4865. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4866. static struct ctl_table sd_ctl_dir[] = {
  4867. {
  4868. .procname = "sched_domain",
  4869. .mode = 0555,
  4870. },
  4871. {0, },
  4872. };
  4873. static struct ctl_table sd_ctl_root[] = {
  4874. {
  4875. .ctl_name = CTL_KERN,
  4876. .procname = "kernel",
  4877. .mode = 0555,
  4878. .child = sd_ctl_dir,
  4879. },
  4880. {0, },
  4881. };
  4882. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4883. {
  4884. struct ctl_table *entry =
  4885. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4886. return entry;
  4887. }
  4888. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4889. {
  4890. struct ctl_table *entry;
  4891. /*
  4892. * In the intermediate directories, both the child directory and
  4893. * procname are dynamically allocated and could fail but the mode
  4894. * will always be set. In the lowest directory the names are
  4895. * static strings and all have proc handlers.
  4896. */
  4897. for (entry = *tablep; entry->mode; entry++) {
  4898. if (entry->child)
  4899. sd_free_ctl_entry(&entry->child);
  4900. if (entry->proc_handler == NULL)
  4901. kfree(entry->procname);
  4902. }
  4903. kfree(*tablep);
  4904. *tablep = NULL;
  4905. }
  4906. static void
  4907. set_table_entry(struct ctl_table *entry,
  4908. const char *procname, void *data, int maxlen,
  4909. mode_t mode, proc_handler *proc_handler)
  4910. {
  4911. entry->procname = procname;
  4912. entry->data = data;
  4913. entry->maxlen = maxlen;
  4914. entry->mode = mode;
  4915. entry->proc_handler = proc_handler;
  4916. }
  4917. static struct ctl_table *
  4918. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4919. {
  4920. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4921. if (table == NULL)
  4922. return NULL;
  4923. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4924. sizeof(long), 0644, proc_doulongvec_minmax);
  4925. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4926. sizeof(long), 0644, proc_doulongvec_minmax);
  4927. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4928. sizeof(int), 0644, proc_dointvec_minmax);
  4929. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4930. sizeof(int), 0644, proc_dointvec_minmax);
  4931. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4932. sizeof(int), 0644, proc_dointvec_minmax);
  4933. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4934. sizeof(int), 0644, proc_dointvec_minmax);
  4935. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4936. sizeof(int), 0644, proc_dointvec_minmax);
  4937. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4938. sizeof(int), 0644, proc_dointvec_minmax);
  4939. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4940. sizeof(int), 0644, proc_dointvec_minmax);
  4941. set_table_entry(&table[9], "cache_nice_tries",
  4942. &sd->cache_nice_tries,
  4943. sizeof(int), 0644, proc_dointvec_minmax);
  4944. set_table_entry(&table[10], "flags", &sd->flags,
  4945. sizeof(int), 0644, proc_dointvec_minmax);
  4946. /* &table[11] is terminator */
  4947. return table;
  4948. }
  4949. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4950. {
  4951. struct ctl_table *entry, *table;
  4952. struct sched_domain *sd;
  4953. int domain_num = 0, i;
  4954. char buf[32];
  4955. for_each_domain(cpu, sd)
  4956. domain_num++;
  4957. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4958. if (table == NULL)
  4959. return NULL;
  4960. i = 0;
  4961. for_each_domain(cpu, sd) {
  4962. snprintf(buf, 32, "domain%d", i);
  4963. entry->procname = kstrdup(buf, GFP_KERNEL);
  4964. entry->mode = 0555;
  4965. entry->child = sd_alloc_ctl_domain_table(sd);
  4966. entry++;
  4967. i++;
  4968. }
  4969. return table;
  4970. }
  4971. static struct ctl_table_header *sd_sysctl_header;
  4972. static void register_sched_domain_sysctl(void)
  4973. {
  4974. int i, cpu_num = num_online_cpus();
  4975. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4976. char buf[32];
  4977. WARN_ON(sd_ctl_dir[0].child);
  4978. sd_ctl_dir[0].child = entry;
  4979. if (entry == NULL)
  4980. return;
  4981. for_each_online_cpu(i) {
  4982. snprintf(buf, 32, "cpu%d", i);
  4983. entry->procname = kstrdup(buf, GFP_KERNEL);
  4984. entry->mode = 0555;
  4985. entry->child = sd_alloc_ctl_cpu_table(i);
  4986. entry++;
  4987. }
  4988. WARN_ON(sd_sysctl_header);
  4989. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4990. }
  4991. /* may be called multiple times per register */
  4992. static void unregister_sched_domain_sysctl(void)
  4993. {
  4994. if (sd_sysctl_header)
  4995. unregister_sysctl_table(sd_sysctl_header);
  4996. sd_sysctl_header = NULL;
  4997. if (sd_ctl_dir[0].child)
  4998. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4999. }
  5000. #else
  5001. static void register_sched_domain_sysctl(void)
  5002. {
  5003. }
  5004. static void unregister_sched_domain_sysctl(void)
  5005. {
  5006. }
  5007. #endif
  5008. /*
  5009. * migration_call - callback that gets triggered when a CPU is added.
  5010. * Here we can start up the necessary migration thread for the new CPU.
  5011. */
  5012. static int __cpuinit
  5013. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5014. {
  5015. struct task_struct *p;
  5016. int cpu = (long)hcpu;
  5017. unsigned long flags;
  5018. struct rq *rq;
  5019. switch (action) {
  5020. case CPU_UP_PREPARE:
  5021. case CPU_UP_PREPARE_FROZEN:
  5022. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5023. if (IS_ERR(p))
  5024. return NOTIFY_BAD;
  5025. kthread_bind(p, cpu);
  5026. /* Must be high prio: stop_machine expects to yield to it. */
  5027. rq = task_rq_lock(p, &flags);
  5028. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5029. task_rq_unlock(rq, &flags);
  5030. cpu_rq(cpu)->migration_thread = p;
  5031. break;
  5032. case CPU_ONLINE:
  5033. case CPU_ONLINE_FROZEN:
  5034. /* Strictly unnecessary, as first user will wake it. */
  5035. wake_up_process(cpu_rq(cpu)->migration_thread);
  5036. /* Update our root-domain */
  5037. rq = cpu_rq(cpu);
  5038. spin_lock_irqsave(&rq->lock, flags);
  5039. if (rq->rd) {
  5040. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5041. cpu_set(cpu, rq->rd->online);
  5042. }
  5043. spin_unlock_irqrestore(&rq->lock, flags);
  5044. break;
  5045. #ifdef CONFIG_HOTPLUG_CPU
  5046. case CPU_UP_CANCELED:
  5047. case CPU_UP_CANCELED_FROZEN:
  5048. if (!cpu_rq(cpu)->migration_thread)
  5049. break;
  5050. /* Unbind it from offline cpu so it can run. Fall thru. */
  5051. kthread_bind(cpu_rq(cpu)->migration_thread,
  5052. any_online_cpu(cpu_online_map));
  5053. kthread_stop(cpu_rq(cpu)->migration_thread);
  5054. cpu_rq(cpu)->migration_thread = NULL;
  5055. break;
  5056. case CPU_DEAD:
  5057. case CPU_DEAD_FROZEN:
  5058. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5059. migrate_live_tasks(cpu);
  5060. rq = cpu_rq(cpu);
  5061. kthread_stop(rq->migration_thread);
  5062. rq->migration_thread = NULL;
  5063. /* Idle task back to normal (off runqueue, low prio) */
  5064. spin_lock_irq(&rq->lock);
  5065. update_rq_clock(rq);
  5066. deactivate_task(rq, rq->idle, 0);
  5067. rq->idle->static_prio = MAX_PRIO;
  5068. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5069. rq->idle->sched_class = &idle_sched_class;
  5070. migrate_dead_tasks(cpu);
  5071. spin_unlock_irq(&rq->lock);
  5072. cpuset_unlock();
  5073. migrate_nr_uninterruptible(rq);
  5074. BUG_ON(rq->nr_running != 0);
  5075. /*
  5076. * No need to migrate the tasks: it was best-effort if
  5077. * they didn't take sched_hotcpu_mutex. Just wake up
  5078. * the requestors.
  5079. */
  5080. spin_lock_irq(&rq->lock);
  5081. while (!list_empty(&rq->migration_queue)) {
  5082. struct migration_req *req;
  5083. req = list_entry(rq->migration_queue.next,
  5084. struct migration_req, list);
  5085. list_del_init(&req->list);
  5086. complete(&req->done);
  5087. }
  5088. spin_unlock_irq(&rq->lock);
  5089. break;
  5090. case CPU_DOWN_PREPARE:
  5091. /* Update our root-domain */
  5092. rq = cpu_rq(cpu);
  5093. spin_lock_irqsave(&rq->lock, flags);
  5094. if (rq->rd) {
  5095. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5096. cpu_clear(cpu, rq->rd->online);
  5097. }
  5098. spin_unlock_irqrestore(&rq->lock, flags);
  5099. break;
  5100. #endif
  5101. }
  5102. return NOTIFY_OK;
  5103. }
  5104. /* Register at highest priority so that task migration (migrate_all_tasks)
  5105. * happens before everything else.
  5106. */
  5107. static struct notifier_block __cpuinitdata migration_notifier = {
  5108. .notifier_call = migration_call,
  5109. .priority = 10
  5110. };
  5111. void __init migration_init(void)
  5112. {
  5113. void *cpu = (void *)(long)smp_processor_id();
  5114. int err;
  5115. /* Start one for the boot CPU: */
  5116. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5117. BUG_ON(err == NOTIFY_BAD);
  5118. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5119. register_cpu_notifier(&migration_notifier);
  5120. }
  5121. #endif
  5122. #ifdef CONFIG_SMP
  5123. /* Number of possible processor ids */
  5124. int nr_cpu_ids __read_mostly = NR_CPUS;
  5125. EXPORT_SYMBOL(nr_cpu_ids);
  5126. #ifdef CONFIG_SCHED_DEBUG
  5127. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  5128. {
  5129. struct sched_group *group = sd->groups;
  5130. cpumask_t groupmask;
  5131. char str[NR_CPUS];
  5132. cpumask_scnprintf(str, NR_CPUS, sd->span);
  5133. cpus_clear(groupmask);
  5134. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5135. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5136. printk("does not load-balance\n");
  5137. if (sd->parent)
  5138. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5139. " has parent");
  5140. return -1;
  5141. }
  5142. printk(KERN_CONT "span %s\n", str);
  5143. if (!cpu_isset(cpu, sd->span)) {
  5144. printk(KERN_ERR "ERROR: domain->span does not contain "
  5145. "CPU%d\n", cpu);
  5146. }
  5147. if (!cpu_isset(cpu, group->cpumask)) {
  5148. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5149. " CPU%d\n", cpu);
  5150. }
  5151. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5152. do {
  5153. if (!group) {
  5154. printk("\n");
  5155. printk(KERN_ERR "ERROR: group is NULL\n");
  5156. break;
  5157. }
  5158. if (!group->__cpu_power) {
  5159. printk(KERN_CONT "\n");
  5160. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5161. "set\n");
  5162. break;
  5163. }
  5164. if (!cpus_weight(group->cpumask)) {
  5165. printk(KERN_CONT "\n");
  5166. printk(KERN_ERR "ERROR: empty group\n");
  5167. break;
  5168. }
  5169. if (cpus_intersects(groupmask, group->cpumask)) {
  5170. printk(KERN_CONT "\n");
  5171. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5172. break;
  5173. }
  5174. cpus_or(groupmask, groupmask, group->cpumask);
  5175. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  5176. printk(KERN_CONT " %s", str);
  5177. group = group->next;
  5178. } while (group != sd->groups);
  5179. printk(KERN_CONT "\n");
  5180. if (!cpus_equal(sd->span, groupmask))
  5181. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5182. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  5183. printk(KERN_ERR "ERROR: parent span is not a superset "
  5184. "of domain->span\n");
  5185. return 0;
  5186. }
  5187. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5188. {
  5189. int level = 0;
  5190. if (!sd) {
  5191. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5192. return;
  5193. }
  5194. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5195. for (;;) {
  5196. if (sched_domain_debug_one(sd, cpu, level))
  5197. break;
  5198. level++;
  5199. sd = sd->parent;
  5200. if (!sd)
  5201. break;
  5202. }
  5203. }
  5204. #else
  5205. # define sched_domain_debug(sd, cpu) do { } while (0)
  5206. #endif
  5207. static int sd_degenerate(struct sched_domain *sd)
  5208. {
  5209. if (cpus_weight(sd->span) == 1)
  5210. return 1;
  5211. /* Following flags need at least 2 groups */
  5212. if (sd->flags & (SD_LOAD_BALANCE |
  5213. SD_BALANCE_NEWIDLE |
  5214. SD_BALANCE_FORK |
  5215. SD_BALANCE_EXEC |
  5216. SD_SHARE_CPUPOWER |
  5217. SD_SHARE_PKG_RESOURCES)) {
  5218. if (sd->groups != sd->groups->next)
  5219. return 0;
  5220. }
  5221. /* Following flags don't use groups */
  5222. if (sd->flags & (SD_WAKE_IDLE |
  5223. SD_WAKE_AFFINE |
  5224. SD_WAKE_BALANCE))
  5225. return 0;
  5226. return 1;
  5227. }
  5228. static int
  5229. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5230. {
  5231. unsigned long cflags = sd->flags, pflags = parent->flags;
  5232. if (sd_degenerate(parent))
  5233. return 1;
  5234. if (!cpus_equal(sd->span, parent->span))
  5235. return 0;
  5236. /* Does parent contain flags not in child? */
  5237. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5238. if (cflags & SD_WAKE_AFFINE)
  5239. pflags &= ~SD_WAKE_BALANCE;
  5240. /* Flags needing groups don't count if only 1 group in parent */
  5241. if (parent->groups == parent->groups->next) {
  5242. pflags &= ~(SD_LOAD_BALANCE |
  5243. SD_BALANCE_NEWIDLE |
  5244. SD_BALANCE_FORK |
  5245. SD_BALANCE_EXEC |
  5246. SD_SHARE_CPUPOWER |
  5247. SD_SHARE_PKG_RESOURCES);
  5248. }
  5249. if (~cflags & pflags)
  5250. return 0;
  5251. return 1;
  5252. }
  5253. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5254. {
  5255. unsigned long flags;
  5256. const struct sched_class *class;
  5257. spin_lock_irqsave(&rq->lock, flags);
  5258. if (rq->rd) {
  5259. struct root_domain *old_rd = rq->rd;
  5260. for (class = sched_class_highest; class; class = class->next) {
  5261. if (class->leave_domain)
  5262. class->leave_domain(rq);
  5263. }
  5264. cpu_clear(rq->cpu, old_rd->span);
  5265. cpu_clear(rq->cpu, old_rd->online);
  5266. if (atomic_dec_and_test(&old_rd->refcount))
  5267. kfree(old_rd);
  5268. }
  5269. atomic_inc(&rd->refcount);
  5270. rq->rd = rd;
  5271. cpu_set(rq->cpu, rd->span);
  5272. if (cpu_isset(rq->cpu, cpu_online_map))
  5273. cpu_set(rq->cpu, rd->online);
  5274. for (class = sched_class_highest; class; class = class->next) {
  5275. if (class->join_domain)
  5276. class->join_domain(rq);
  5277. }
  5278. spin_unlock_irqrestore(&rq->lock, flags);
  5279. }
  5280. static void init_rootdomain(struct root_domain *rd)
  5281. {
  5282. memset(rd, 0, sizeof(*rd));
  5283. cpus_clear(rd->span);
  5284. cpus_clear(rd->online);
  5285. }
  5286. static void init_defrootdomain(void)
  5287. {
  5288. init_rootdomain(&def_root_domain);
  5289. atomic_set(&def_root_domain.refcount, 1);
  5290. }
  5291. static struct root_domain *alloc_rootdomain(void)
  5292. {
  5293. struct root_domain *rd;
  5294. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5295. if (!rd)
  5296. return NULL;
  5297. init_rootdomain(rd);
  5298. return rd;
  5299. }
  5300. /*
  5301. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5302. * hold the hotplug lock.
  5303. */
  5304. static void
  5305. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5306. {
  5307. struct rq *rq = cpu_rq(cpu);
  5308. struct sched_domain *tmp;
  5309. /* Remove the sched domains which do not contribute to scheduling. */
  5310. for (tmp = sd; tmp; tmp = tmp->parent) {
  5311. struct sched_domain *parent = tmp->parent;
  5312. if (!parent)
  5313. break;
  5314. if (sd_parent_degenerate(tmp, parent)) {
  5315. tmp->parent = parent->parent;
  5316. if (parent->parent)
  5317. parent->parent->child = tmp;
  5318. }
  5319. }
  5320. if (sd && sd_degenerate(sd)) {
  5321. sd = sd->parent;
  5322. if (sd)
  5323. sd->child = NULL;
  5324. }
  5325. sched_domain_debug(sd, cpu);
  5326. rq_attach_root(rq, rd);
  5327. rcu_assign_pointer(rq->sd, sd);
  5328. }
  5329. /* cpus with isolated domains */
  5330. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5331. /* Setup the mask of cpus configured for isolated domains */
  5332. static int __init isolated_cpu_setup(char *str)
  5333. {
  5334. int ints[NR_CPUS], i;
  5335. str = get_options(str, ARRAY_SIZE(ints), ints);
  5336. cpus_clear(cpu_isolated_map);
  5337. for (i = 1; i <= ints[0]; i++)
  5338. if (ints[i] < NR_CPUS)
  5339. cpu_set(ints[i], cpu_isolated_map);
  5340. return 1;
  5341. }
  5342. __setup("isolcpus=", isolated_cpu_setup);
  5343. /*
  5344. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5345. * to a function which identifies what group(along with sched group) a CPU
  5346. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5347. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5348. *
  5349. * init_sched_build_groups will build a circular linked list of the groups
  5350. * covered by the given span, and will set each group's ->cpumask correctly,
  5351. * and ->cpu_power to 0.
  5352. */
  5353. static void
  5354. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5355. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5356. struct sched_group **sg))
  5357. {
  5358. struct sched_group *first = NULL, *last = NULL;
  5359. cpumask_t covered = CPU_MASK_NONE;
  5360. int i;
  5361. for_each_cpu_mask(i, span) {
  5362. struct sched_group *sg;
  5363. int group = group_fn(i, cpu_map, &sg);
  5364. int j;
  5365. if (cpu_isset(i, covered))
  5366. continue;
  5367. sg->cpumask = CPU_MASK_NONE;
  5368. sg->__cpu_power = 0;
  5369. for_each_cpu_mask(j, span) {
  5370. if (group_fn(j, cpu_map, NULL) != group)
  5371. continue;
  5372. cpu_set(j, covered);
  5373. cpu_set(j, sg->cpumask);
  5374. }
  5375. if (!first)
  5376. first = sg;
  5377. if (last)
  5378. last->next = sg;
  5379. last = sg;
  5380. }
  5381. last->next = first;
  5382. }
  5383. #define SD_NODES_PER_DOMAIN 16
  5384. #ifdef CONFIG_NUMA
  5385. /**
  5386. * find_next_best_node - find the next node to include in a sched_domain
  5387. * @node: node whose sched_domain we're building
  5388. * @used_nodes: nodes already in the sched_domain
  5389. *
  5390. * Find the next node to include in a given scheduling domain. Simply
  5391. * finds the closest node not already in the @used_nodes map.
  5392. *
  5393. * Should use nodemask_t.
  5394. */
  5395. static int find_next_best_node(int node, unsigned long *used_nodes)
  5396. {
  5397. int i, n, val, min_val, best_node = 0;
  5398. min_val = INT_MAX;
  5399. for (i = 0; i < MAX_NUMNODES; i++) {
  5400. /* Start at @node */
  5401. n = (node + i) % MAX_NUMNODES;
  5402. if (!nr_cpus_node(n))
  5403. continue;
  5404. /* Skip already used nodes */
  5405. if (test_bit(n, used_nodes))
  5406. continue;
  5407. /* Simple min distance search */
  5408. val = node_distance(node, n);
  5409. if (val < min_val) {
  5410. min_val = val;
  5411. best_node = n;
  5412. }
  5413. }
  5414. set_bit(best_node, used_nodes);
  5415. return best_node;
  5416. }
  5417. /**
  5418. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5419. * @node: node whose cpumask we're constructing
  5420. * @size: number of nodes to include in this span
  5421. *
  5422. * Given a node, construct a good cpumask for its sched_domain to span. It
  5423. * should be one that prevents unnecessary balancing, but also spreads tasks
  5424. * out optimally.
  5425. */
  5426. static cpumask_t sched_domain_node_span(int node)
  5427. {
  5428. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5429. cpumask_t span, nodemask;
  5430. int i;
  5431. cpus_clear(span);
  5432. bitmap_zero(used_nodes, MAX_NUMNODES);
  5433. nodemask = node_to_cpumask(node);
  5434. cpus_or(span, span, nodemask);
  5435. set_bit(node, used_nodes);
  5436. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5437. int next_node = find_next_best_node(node, used_nodes);
  5438. nodemask = node_to_cpumask(next_node);
  5439. cpus_or(span, span, nodemask);
  5440. }
  5441. return span;
  5442. }
  5443. #endif
  5444. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5445. /*
  5446. * SMT sched-domains:
  5447. */
  5448. #ifdef CONFIG_SCHED_SMT
  5449. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5450. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5451. static int
  5452. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5453. {
  5454. if (sg)
  5455. *sg = &per_cpu(sched_group_cpus, cpu);
  5456. return cpu;
  5457. }
  5458. #endif
  5459. /*
  5460. * multi-core sched-domains:
  5461. */
  5462. #ifdef CONFIG_SCHED_MC
  5463. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5464. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5465. #endif
  5466. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5467. static int
  5468. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5469. {
  5470. int group;
  5471. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5472. cpus_and(mask, mask, *cpu_map);
  5473. group = first_cpu(mask);
  5474. if (sg)
  5475. *sg = &per_cpu(sched_group_core, group);
  5476. return group;
  5477. }
  5478. #elif defined(CONFIG_SCHED_MC)
  5479. static int
  5480. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5481. {
  5482. if (sg)
  5483. *sg = &per_cpu(sched_group_core, cpu);
  5484. return cpu;
  5485. }
  5486. #endif
  5487. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5488. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5489. static int
  5490. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5491. {
  5492. int group;
  5493. #ifdef CONFIG_SCHED_MC
  5494. cpumask_t mask = cpu_coregroup_map(cpu);
  5495. cpus_and(mask, mask, *cpu_map);
  5496. group = first_cpu(mask);
  5497. #elif defined(CONFIG_SCHED_SMT)
  5498. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5499. cpus_and(mask, mask, *cpu_map);
  5500. group = first_cpu(mask);
  5501. #else
  5502. group = cpu;
  5503. #endif
  5504. if (sg)
  5505. *sg = &per_cpu(sched_group_phys, group);
  5506. return group;
  5507. }
  5508. #ifdef CONFIG_NUMA
  5509. /*
  5510. * The init_sched_build_groups can't handle what we want to do with node
  5511. * groups, so roll our own. Now each node has its own list of groups which
  5512. * gets dynamically allocated.
  5513. */
  5514. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5515. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5516. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5517. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5518. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5519. struct sched_group **sg)
  5520. {
  5521. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5522. int group;
  5523. cpus_and(nodemask, nodemask, *cpu_map);
  5524. group = first_cpu(nodemask);
  5525. if (sg)
  5526. *sg = &per_cpu(sched_group_allnodes, group);
  5527. return group;
  5528. }
  5529. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5530. {
  5531. struct sched_group *sg = group_head;
  5532. int j;
  5533. if (!sg)
  5534. return;
  5535. do {
  5536. for_each_cpu_mask(j, sg->cpumask) {
  5537. struct sched_domain *sd;
  5538. sd = &per_cpu(phys_domains, j);
  5539. if (j != first_cpu(sd->groups->cpumask)) {
  5540. /*
  5541. * Only add "power" once for each
  5542. * physical package.
  5543. */
  5544. continue;
  5545. }
  5546. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5547. }
  5548. sg = sg->next;
  5549. } while (sg != group_head);
  5550. }
  5551. #endif
  5552. #ifdef CONFIG_NUMA
  5553. /* Free memory allocated for various sched_group structures */
  5554. static void free_sched_groups(const cpumask_t *cpu_map)
  5555. {
  5556. int cpu, i;
  5557. for_each_cpu_mask(cpu, *cpu_map) {
  5558. struct sched_group **sched_group_nodes
  5559. = sched_group_nodes_bycpu[cpu];
  5560. if (!sched_group_nodes)
  5561. continue;
  5562. for (i = 0; i < MAX_NUMNODES; i++) {
  5563. cpumask_t nodemask = node_to_cpumask(i);
  5564. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5565. cpus_and(nodemask, nodemask, *cpu_map);
  5566. if (cpus_empty(nodemask))
  5567. continue;
  5568. if (sg == NULL)
  5569. continue;
  5570. sg = sg->next;
  5571. next_sg:
  5572. oldsg = sg;
  5573. sg = sg->next;
  5574. kfree(oldsg);
  5575. if (oldsg != sched_group_nodes[i])
  5576. goto next_sg;
  5577. }
  5578. kfree(sched_group_nodes);
  5579. sched_group_nodes_bycpu[cpu] = NULL;
  5580. }
  5581. }
  5582. #else
  5583. static void free_sched_groups(const cpumask_t *cpu_map)
  5584. {
  5585. }
  5586. #endif
  5587. /*
  5588. * Initialize sched groups cpu_power.
  5589. *
  5590. * cpu_power indicates the capacity of sched group, which is used while
  5591. * distributing the load between different sched groups in a sched domain.
  5592. * Typically cpu_power for all the groups in a sched domain will be same unless
  5593. * there are asymmetries in the topology. If there are asymmetries, group
  5594. * having more cpu_power will pickup more load compared to the group having
  5595. * less cpu_power.
  5596. *
  5597. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5598. * the maximum number of tasks a group can handle in the presence of other idle
  5599. * or lightly loaded groups in the same sched domain.
  5600. */
  5601. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5602. {
  5603. struct sched_domain *child;
  5604. struct sched_group *group;
  5605. WARN_ON(!sd || !sd->groups);
  5606. if (cpu != first_cpu(sd->groups->cpumask))
  5607. return;
  5608. child = sd->child;
  5609. sd->groups->__cpu_power = 0;
  5610. /*
  5611. * For perf policy, if the groups in child domain share resources
  5612. * (for example cores sharing some portions of the cache hierarchy
  5613. * or SMT), then set this domain groups cpu_power such that each group
  5614. * can handle only one task, when there are other idle groups in the
  5615. * same sched domain.
  5616. */
  5617. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5618. (child->flags &
  5619. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5620. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5621. return;
  5622. }
  5623. /*
  5624. * add cpu_power of each child group to this groups cpu_power
  5625. */
  5626. group = child->groups;
  5627. do {
  5628. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5629. group = group->next;
  5630. } while (group != child->groups);
  5631. }
  5632. /*
  5633. * Build sched domains for a given set of cpus and attach the sched domains
  5634. * to the individual cpus
  5635. */
  5636. static int build_sched_domains(const cpumask_t *cpu_map)
  5637. {
  5638. int i;
  5639. struct root_domain *rd;
  5640. #ifdef CONFIG_NUMA
  5641. struct sched_group **sched_group_nodes = NULL;
  5642. int sd_allnodes = 0;
  5643. /*
  5644. * Allocate the per-node list of sched groups
  5645. */
  5646. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5647. GFP_KERNEL);
  5648. if (!sched_group_nodes) {
  5649. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5650. return -ENOMEM;
  5651. }
  5652. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5653. #endif
  5654. rd = alloc_rootdomain();
  5655. if (!rd) {
  5656. printk(KERN_WARNING "Cannot alloc root domain\n");
  5657. return -ENOMEM;
  5658. }
  5659. /*
  5660. * Set up domains for cpus specified by the cpu_map.
  5661. */
  5662. for_each_cpu_mask(i, *cpu_map) {
  5663. struct sched_domain *sd = NULL, *p;
  5664. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5665. cpus_and(nodemask, nodemask, *cpu_map);
  5666. #ifdef CONFIG_NUMA
  5667. if (cpus_weight(*cpu_map) >
  5668. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5669. sd = &per_cpu(allnodes_domains, i);
  5670. *sd = SD_ALLNODES_INIT;
  5671. sd->span = *cpu_map;
  5672. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5673. p = sd;
  5674. sd_allnodes = 1;
  5675. } else
  5676. p = NULL;
  5677. sd = &per_cpu(node_domains, i);
  5678. *sd = SD_NODE_INIT;
  5679. sd->span = sched_domain_node_span(cpu_to_node(i));
  5680. sd->parent = p;
  5681. if (p)
  5682. p->child = sd;
  5683. cpus_and(sd->span, sd->span, *cpu_map);
  5684. #endif
  5685. p = sd;
  5686. sd = &per_cpu(phys_domains, i);
  5687. *sd = SD_CPU_INIT;
  5688. sd->span = nodemask;
  5689. sd->parent = p;
  5690. if (p)
  5691. p->child = sd;
  5692. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5693. #ifdef CONFIG_SCHED_MC
  5694. p = sd;
  5695. sd = &per_cpu(core_domains, i);
  5696. *sd = SD_MC_INIT;
  5697. sd->span = cpu_coregroup_map(i);
  5698. cpus_and(sd->span, sd->span, *cpu_map);
  5699. sd->parent = p;
  5700. p->child = sd;
  5701. cpu_to_core_group(i, cpu_map, &sd->groups);
  5702. #endif
  5703. #ifdef CONFIG_SCHED_SMT
  5704. p = sd;
  5705. sd = &per_cpu(cpu_domains, i);
  5706. *sd = SD_SIBLING_INIT;
  5707. sd->span = per_cpu(cpu_sibling_map, i);
  5708. cpus_and(sd->span, sd->span, *cpu_map);
  5709. sd->parent = p;
  5710. p->child = sd;
  5711. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5712. #endif
  5713. }
  5714. #ifdef CONFIG_SCHED_SMT
  5715. /* Set up CPU (sibling) groups */
  5716. for_each_cpu_mask(i, *cpu_map) {
  5717. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5718. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5719. if (i != first_cpu(this_sibling_map))
  5720. continue;
  5721. init_sched_build_groups(this_sibling_map, cpu_map,
  5722. &cpu_to_cpu_group);
  5723. }
  5724. #endif
  5725. #ifdef CONFIG_SCHED_MC
  5726. /* Set up multi-core groups */
  5727. for_each_cpu_mask(i, *cpu_map) {
  5728. cpumask_t this_core_map = cpu_coregroup_map(i);
  5729. cpus_and(this_core_map, this_core_map, *cpu_map);
  5730. if (i != first_cpu(this_core_map))
  5731. continue;
  5732. init_sched_build_groups(this_core_map, cpu_map,
  5733. &cpu_to_core_group);
  5734. }
  5735. #endif
  5736. /* Set up physical groups */
  5737. for (i = 0; i < MAX_NUMNODES; i++) {
  5738. cpumask_t nodemask = node_to_cpumask(i);
  5739. cpus_and(nodemask, nodemask, *cpu_map);
  5740. if (cpus_empty(nodemask))
  5741. continue;
  5742. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5743. }
  5744. #ifdef CONFIG_NUMA
  5745. /* Set up node groups */
  5746. if (sd_allnodes)
  5747. init_sched_build_groups(*cpu_map, cpu_map,
  5748. &cpu_to_allnodes_group);
  5749. for (i = 0; i < MAX_NUMNODES; i++) {
  5750. /* Set up node groups */
  5751. struct sched_group *sg, *prev;
  5752. cpumask_t nodemask = node_to_cpumask(i);
  5753. cpumask_t domainspan;
  5754. cpumask_t covered = CPU_MASK_NONE;
  5755. int j;
  5756. cpus_and(nodemask, nodemask, *cpu_map);
  5757. if (cpus_empty(nodemask)) {
  5758. sched_group_nodes[i] = NULL;
  5759. continue;
  5760. }
  5761. domainspan = sched_domain_node_span(i);
  5762. cpus_and(domainspan, domainspan, *cpu_map);
  5763. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5764. if (!sg) {
  5765. printk(KERN_WARNING "Can not alloc domain group for "
  5766. "node %d\n", i);
  5767. goto error;
  5768. }
  5769. sched_group_nodes[i] = sg;
  5770. for_each_cpu_mask(j, nodemask) {
  5771. struct sched_domain *sd;
  5772. sd = &per_cpu(node_domains, j);
  5773. sd->groups = sg;
  5774. }
  5775. sg->__cpu_power = 0;
  5776. sg->cpumask = nodemask;
  5777. sg->next = sg;
  5778. cpus_or(covered, covered, nodemask);
  5779. prev = sg;
  5780. for (j = 0; j < MAX_NUMNODES; j++) {
  5781. cpumask_t tmp, notcovered;
  5782. int n = (i + j) % MAX_NUMNODES;
  5783. cpus_complement(notcovered, covered);
  5784. cpus_and(tmp, notcovered, *cpu_map);
  5785. cpus_and(tmp, tmp, domainspan);
  5786. if (cpus_empty(tmp))
  5787. break;
  5788. nodemask = node_to_cpumask(n);
  5789. cpus_and(tmp, tmp, nodemask);
  5790. if (cpus_empty(tmp))
  5791. continue;
  5792. sg = kmalloc_node(sizeof(struct sched_group),
  5793. GFP_KERNEL, i);
  5794. if (!sg) {
  5795. printk(KERN_WARNING
  5796. "Can not alloc domain group for node %d\n", j);
  5797. goto error;
  5798. }
  5799. sg->__cpu_power = 0;
  5800. sg->cpumask = tmp;
  5801. sg->next = prev->next;
  5802. cpus_or(covered, covered, tmp);
  5803. prev->next = sg;
  5804. prev = sg;
  5805. }
  5806. }
  5807. #endif
  5808. /* Calculate CPU power for physical packages and nodes */
  5809. #ifdef CONFIG_SCHED_SMT
  5810. for_each_cpu_mask(i, *cpu_map) {
  5811. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5812. init_sched_groups_power(i, sd);
  5813. }
  5814. #endif
  5815. #ifdef CONFIG_SCHED_MC
  5816. for_each_cpu_mask(i, *cpu_map) {
  5817. struct sched_domain *sd = &per_cpu(core_domains, i);
  5818. init_sched_groups_power(i, sd);
  5819. }
  5820. #endif
  5821. for_each_cpu_mask(i, *cpu_map) {
  5822. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5823. init_sched_groups_power(i, sd);
  5824. }
  5825. #ifdef CONFIG_NUMA
  5826. for (i = 0; i < MAX_NUMNODES; i++)
  5827. init_numa_sched_groups_power(sched_group_nodes[i]);
  5828. if (sd_allnodes) {
  5829. struct sched_group *sg;
  5830. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5831. init_numa_sched_groups_power(sg);
  5832. }
  5833. #endif
  5834. /* Attach the domains */
  5835. for_each_cpu_mask(i, *cpu_map) {
  5836. struct sched_domain *sd;
  5837. #ifdef CONFIG_SCHED_SMT
  5838. sd = &per_cpu(cpu_domains, i);
  5839. #elif defined(CONFIG_SCHED_MC)
  5840. sd = &per_cpu(core_domains, i);
  5841. #else
  5842. sd = &per_cpu(phys_domains, i);
  5843. #endif
  5844. cpu_attach_domain(sd, rd, i);
  5845. }
  5846. return 0;
  5847. #ifdef CONFIG_NUMA
  5848. error:
  5849. free_sched_groups(cpu_map);
  5850. return -ENOMEM;
  5851. #endif
  5852. }
  5853. static cpumask_t *doms_cur; /* current sched domains */
  5854. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5855. /*
  5856. * Special case: If a kmalloc of a doms_cur partition (array of
  5857. * cpumask_t) fails, then fallback to a single sched domain,
  5858. * as determined by the single cpumask_t fallback_doms.
  5859. */
  5860. static cpumask_t fallback_doms;
  5861. /*
  5862. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5863. * For now this just excludes isolated cpus, but could be used to
  5864. * exclude other special cases in the future.
  5865. */
  5866. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5867. {
  5868. int err;
  5869. ndoms_cur = 1;
  5870. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5871. if (!doms_cur)
  5872. doms_cur = &fallback_doms;
  5873. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5874. err = build_sched_domains(doms_cur);
  5875. register_sched_domain_sysctl();
  5876. return err;
  5877. }
  5878. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5879. {
  5880. free_sched_groups(cpu_map);
  5881. }
  5882. /*
  5883. * Detach sched domains from a group of cpus specified in cpu_map
  5884. * These cpus will now be attached to the NULL domain
  5885. */
  5886. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5887. {
  5888. int i;
  5889. unregister_sched_domain_sysctl();
  5890. for_each_cpu_mask(i, *cpu_map)
  5891. cpu_attach_domain(NULL, &def_root_domain, i);
  5892. synchronize_sched();
  5893. arch_destroy_sched_domains(cpu_map);
  5894. }
  5895. /*
  5896. * Partition sched domains as specified by the 'ndoms_new'
  5897. * cpumasks in the array doms_new[] of cpumasks. This compares
  5898. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5899. * It destroys each deleted domain and builds each new domain.
  5900. *
  5901. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5902. * The masks don't intersect (don't overlap.) We should setup one
  5903. * sched domain for each mask. CPUs not in any of the cpumasks will
  5904. * not be load balanced. If the same cpumask appears both in the
  5905. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5906. * it as it is.
  5907. *
  5908. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5909. * ownership of it and will kfree it when done with it. If the caller
  5910. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5911. * and partition_sched_domains() will fallback to the single partition
  5912. * 'fallback_doms'.
  5913. *
  5914. * Call with hotplug lock held
  5915. */
  5916. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5917. {
  5918. int i, j;
  5919. lock_doms_cur();
  5920. /* always unregister in case we don't destroy any domains */
  5921. unregister_sched_domain_sysctl();
  5922. if (doms_new == NULL) {
  5923. ndoms_new = 1;
  5924. doms_new = &fallback_doms;
  5925. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5926. }
  5927. /* Destroy deleted domains */
  5928. for (i = 0; i < ndoms_cur; i++) {
  5929. for (j = 0; j < ndoms_new; j++) {
  5930. if (cpus_equal(doms_cur[i], doms_new[j]))
  5931. goto match1;
  5932. }
  5933. /* no match - a current sched domain not in new doms_new[] */
  5934. detach_destroy_domains(doms_cur + i);
  5935. match1:
  5936. ;
  5937. }
  5938. /* Build new domains */
  5939. for (i = 0; i < ndoms_new; i++) {
  5940. for (j = 0; j < ndoms_cur; j++) {
  5941. if (cpus_equal(doms_new[i], doms_cur[j]))
  5942. goto match2;
  5943. }
  5944. /* no match - add a new doms_new */
  5945. build_sched_domains(doms_new + i);
  5946. match2:
  5947. ;
  5948. }
  5949. /* Remember the new sched domains */
  5950. if (doms_cur != &fallback_doms)
  5951. kfree(doms_cur);
  5952. doms_cur = doms_new;
  5953. ndoms_cur = ndoms_new;
  5954. register_sched_domain_sysctl();
  5955. unlock_doms_cur();
  5956. }
  5957. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5958. static int arch_reinit_sched_domains(void)
  5959. {
  5960. int err;
  5961. get_online_cpus();
  5962. detach_destroy_domains(&cpu_online_map);
  5963. err = arch_init_sched_domains(&cpu_online_map);
  5964. put_online_cpus();
  5965. return err;
  5966. }
  5967. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5968. {
  5969. int ret;
  5970. if (buf[0] != '0' && buf[0] != '1')
  5971. return -EINVAL;
  5972. if (smt)
  5973. sched_smt_power_savings = (buf[0] == '1');
  5974. else
  5975. sched_mc_power_savings = (buf[0] == '1');
  5976. ret = arch_reinit_sched_domains();
  5977. return ret ? ret : count;
  5978. }
  5979. #ifdef CONFIG_SCHED_MC
  5980. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5981. {
  5982. return sprintf(page, "%u\n", sched_mc_power_savings);
  5983. }
  5984. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5985. const char *buf, size_t count)
  5986. {
  5987. return sched_power_savings_store(buf, count, 0);
  5988. }
  5989. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5990. sched_mc_power_savings_store);
  5991. #endif
  5992. #ifdef CONFIG_SCHED_SMT
  5993. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5994. {
  5995. return sprintf(page, "%u\n", sched_smt_power_savings);
  5996. }
  5997. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5998. const char *buf, size_t count)
  5999. {
  6000. return sched_power_savings_store(buf, count, 1);
  6001. }
  6002. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6003. sched_smt_power_savings_store);
  6004. #endif
  6005. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6006. {
  6007. int err = 0;
  6008. #ifdef CONFIG_SCHED_SMT
  6009. if (smt_capable())
  6010. err = sysfs_create_file(&cls->kset.kobj,
  6011. &attr_sched_smt_power_savings.attr);
  6012. #endif
  6013. #ifdef CONFIG_SCHED_MC
  6014. if (!err && mc_capable())
  6015. err = sysfs_create_file(&cls->kset.kobj,
  6016. &attr_sched_mc_power_savings.attr);
  6017. #endif
  6018. return err;
  6019. }
  6020. #endif
  6021. /*
  6022. * Force a reinitialization of the sched domains hierarchy. The domains
  6023. * and groups cannot be updated in place without racing with the balancing
  6024. * code, so we temporarily attach all running cpus to the NULL domain
  6025. * which will prevent rebalancing while the sched domains are recalculated.
  6026. */
  6027. static int update_sched_domains(struct notifier_block *nfb,
  6028. unsigned long action, void *hcpu)
  6029. {
  6030. switch (action) {
  6031. case CPU_UP_PREPARE:
  6032. case CPU_UP_PREPARE_FROZEN:
  6033. case CPU_DOWN_PREPARE:
  6034. case CPU_DOWN_PREPARE_FROZEN:
  6035. detach_destroy_domains(&cpu_online_map);
  6036. return NOTIFY_OK;
  6037. case CPU_UP_CANCELED:
  6038. case CPU_UP_CANCELED_FROZEN:
  6039. case CPU_DOWN_FAILED:
  6040. case CPU_DOWN_FAILED_FROZEN:
  6041. case CPU_ONLINE:
  6042. case CPU_ONLINE_FROZEN:
  6043. case CPU_DEAD:
  6044. case CPU_DEAD_FROZEN:
  6045. /*
  6046. * Fall through and re-initialise the domains.
  6047. */
  6048. break;
  6049. default:
  6050. return NOTIFY_DONE;
  6051. }
  6052. /* The hotplug lock is already held by cpu_up/cpu_down */
  6053. arch_init_sched_domains(&cpu_online_map);
  6054. return NOTIFY_OK;
  6055. }
  6056. void __init sched_init_smp(void)
  6057. {
  6058. cpumask_t non_isolated_cpus;
  6059. get_online_cpus();
  6060. arch_init_sched_domains(&cpu_online_map);
  6061. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6062. if (cpus_empty(non_isolated_cpus))
  6063. cpu_set(smp_processor_id(), non_isolated_cpus);
  6064. put_online_cpus();
  6065. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6066. hotcpu_notifier(update_sched_domains, 0);
  6067. /* Move init over to a non-isolated CPU */
  6068. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  6069. BUG();
  6070. sched_init_granularity();
  6071. #ifdef CONFIG_FAIR_GROUP_SCHED
  6072. if (nr_cpu_ids == 1)
  6073. return;
  6074. lb_monitor_task = kthread_create(load_balance_monitor, NULL,
  6075. "group_balance");
  6076. if (!IS_ERR(lb_monitor_task)) {
  6077. lb_monitor_task->flags |= PF_NOFREEZE;
  6078. wake_up_process(lb_monitor_task);
  6079. } else {
  6080. printk(KERN_ERR "Could not create load balance monitor thread"
  6081. "(error = %ld) \n", PTR_ERR(lb_monitor_task));
  6082. }
  6083. #endif
  6084. }
  6085. #else
  6086. void __init sched_init_smp(void)
  6087. {
  6088. sched_init_granularity();
  6089. }
  6090. #endif /* CONFIG_SMP */
  6091. int in_sched_functions(unsigned long addr)
  6092. {
  6093. return in_lock_functions(addr) ||
  6094. (addr >= (unsigned long)__sched_text_start
  6095. && addr < (unsigned long)__sched_text_end);
  6096. }
  6097. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6098. {
  6099. cfs_rq->tasks_timeline = RB_ROOT;
  6100. #ifdef CONFIG_FAIR_GROUP_SCHED
  6101. cfs_rq->rq = rq;
  6102. #endif
  6103. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6104. }
  6105. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6106. {
  6107. struct rt_prio_array *array;
  6108. int i;
  6109. array = &rt_rq->active;
  6110. for (i = 0; i < MAX_RT_PRIO; i++) {
  6111. INIT_LIST_HEAD(array->queue + i);
  6112. __clear_bit(i, array->bitmap);
  6113. }
  6114. /* delimiter for bitsearch: */
  6115. __set_bit(MAX_RT_PRIO, array->bitmap);
  6116. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6117. rt_rq->highest_prio = MAX_RT_PRIO;
  6118. #endif
  6119. #ifdef CONFIG_SMP
  6120. rt_rq->rt_nr_migratory = 0;
  6121. rt_rq->overloaded = 0;
  6122. #endif
  6123. rt_rq->rt_time = 0;
  6124. rt_rq->rt_throttled = 0;
  6125. #ifdef CONFIG_RT_GROUP_SCHED
  6126. rt_rq->rt_nr_boosted = 0;
  6127. rt_rq->rq = rq;
  6128. #endif
  6129. }
  6130. #ifdef CONFIG_FAIR_GROUP_SCHED
  6131. static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
  6132. struct cfs_rq *cfs_rq, struct sched_entity *se,
  6133. int cpu, int add)
  6134. {
  6135. tg->cfs_rq[cpu] = cfs_rq;
  6136. init_cfs_rq(cfs_rq, rq);
  6137. cfs_rq->tg = tg;
  6138. if (add)
  6139. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6140. tg->se[cpu] = se;
  6141. se->cfs_rq = &rq->cfs;
  6142. se->my_q = cfs_rq;
  6143. se->load.weight = tg->shares;
  6144. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6145. se->parent = NULL;
  6146. }
  6147. #endif
  6148. #ifdef CONFIG_RT_GROUP_SCHED
  6149. static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
  6150. struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
  6151. int cpu, int add)
  6152. {
  6153. tg->rt_rq[cpu] = rt_rq;
  6154. init_rt_rq(rt_rq, rq);
  6155. rt_rq->tg = tg;
  6156. rt_rq->rt_se = rt_se;
  6157. if (add)
  6158. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6159. tg->rt_se[cpu] = rt_se;
  6160. rt_se->rt_rq = &rq->rt;
  6161. rt_se->my_q = rt_rq;
  6162. rt_se->parent = NULL;
  6163. INIT_LIST_HEAD(&rt_se->run_list);
  6164. }
  6165. #endif
  6166. void __init sched_init(void)
  6167. {
  6168. int highest_cpu = 0;
  6169. int i, j;
  6170. #ifdef CONFIG_SMP
  6171. init_defrootdomain();
  6172. #endif
  6173. #ifdef CONFIG_GROUP_SCHED
  6174. list_add(&init_task_group.list, &task_groups);
  6175. #endif
  6176. for_each_possible_cpu(i) {
  6177. struct rq *rq;
  6178. rq = cpu_rq(i);
  6179. spin_lock_init(&rq->lock);
  6180. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6181. rq->nr_running = 0;
  6182. rq->clock = 1;
  6183. init_cfs_rq(&rq->cfs, rq);
  6184. init_rt_rq(&rq->rt, rq);
  6185. #ifdef CONFIG_FAIR_GROUP_SCHED
  6186. init_task_group.shares = init_task_group_load;
  6187. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6188. init_tg_cfs_entry(rq, &init_task_group,
  6189. &per_cpu(init_cfs_rq, i),
  6190. &per_cpu(init_sched_entity, i), i, 1);
  6191. #endif
  6192. #ifdef CONFIG_RT_GROUP_SCHED
  6193. init_task_group.rt_runtime =
  6194. sysctl_sched_rt_runtime * NSEC_PER_USEC;
  6195. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6196. init_tg_rt_entry(rq, &init_task_group,
  6197. &per_cpu(init_rt_rq, i),
  6198. &per_cpu(init_sched_rt_entity, i), i, 1);
  6199. #endif
  6200. rq->rt_period_expire = 0;
  6201. rq->rt_throttled = 0;
  6202. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6203. rq->cpu_load[j] = 0;
  6204. #ifdef CONFIG_SMP
  6205. rq->sd = NULL;
  6206. rq->rd = NULL;
  6207. rq->active_balance = 0;
  6208. rq->next_balance = jiffies;
  6209. rq->push_cpu = 0;
  6210. rq->cpu = i;
  6211. rq->migration_thread = NULL;
  6212. INIT_LIST_HEAD(&rq->migration_queue);
  6213. rq_attach_root(rq, &def_root_domain);
  6214. #endif
  6215. init_rq_hrtick(rq);
  6216. atomic_set(&rq->nr_iowait, 0);
  6217. highest_cpu = i;
  6218. }
  6219. set_load_weight(&init_task);
  6220. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6221. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6222. #endif
  6223. #ifdef CONFIG_SMP
  6224. nr_cpu_ids = highest_cpu + 1;
  6225. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6226. #endif
  6227. #ifdef CONFIG_RT_MUTEXES
  6228. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6229. #endif
  6230. /*
  6231. * The boot idle thread does lazy MMU switching as well:
  6232. */
  6233. atomic_inc(&init_mm.mm_count);
  6234. enter_lazy_tlb(&init_mm, current);
  6235. /*
  6236. * Make us the idle thread. Technically, schedule() should not be
  6237. * called from this thread, however somewhere below it might be,
  6238. * but because we are the idle thread, we just pick up running again
  6239. * when this runqueue becomes "idle".
  6240. */
  6241. init_idle(current, smp_processor_id());
  6242. /*
  6243. * During early bootup we pretend to be a normal task:
  6244. */
  6245. current->sched_class = &fair_sched_class;
  6246. }
  6247. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6248. void __might_sleep(char *file, int line)
  6249. {
  6250. #ifdef in_atomic
  6251. static unsigned long prev_jiffy; /* ratelimiting */
  6252. if ((in_atomic() || irqs_disabled()) &&
  6253. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6254. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6255. return;
  6256. prev_jiffy = jiffies;
  6257. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6258. " context at %s:%d\n", file, line);
  6259. printk("in_atomic():%d, irqs_disabled():%d\n",
  6260. in_atomic(), irqs_disabled());
  6261. debug_show_held_locks(current);
  6262. if (irqs_disabled())
  6263. print_irqtrace_events(current);
  6264. dump_stack();
  6265. }
  6266. #endif
  6267. }
  6268. EXPORT_SYMBOL(__might_sleep);
  6269. #endif
  6270. #ifdef CONFIG_MAGIC_SYSRQ
  6271. static void normalize_task(struct rq *rq, struct task_struct *p)
  6272. {
  6273. int on_rq;
  6274. update_rq_clock(rq);
  6275. on_rq = p->se.on_rq;
  6276. if (on_rq)
  6277. deactivate_task(rq, p, 0);
  6278. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6279. if (on_rq) {
  6280. activate_task(rq, p, 0);
  6281. resched_task(rq->curr);
  6282. }
  6283. }
  6284. void normalize_rt_tasks(void)
  6285. {
  6286. struct task_struct *g, *p;
  6287. unsigned long flags;
  6288. struct rq *rq;
  6289. read_lock_irqsave(&tasklist_lock, flags);
  6290. do_each_thread(g, p) {
  6291. /*
  6292. * Only normalize user tasks:
  6293. */
  6294. if (!p->mm)
  6295. continue;
  6296. p->se.exec_start = 0;
  6297. #ifdef CONFIG_SCHEDSTATS
  6298. p->se.wait_start = 0;
  6299. p->se.sleep_start = 0;
  6300. p->se.block_start = 0;
  6301. #endif
  6302. task_rq(p)->clock = 0;
  6303. if (!rt_task(p)) {
  6304. /*
  6305. * Renice negative nice level userspace
  6306. * tasks back to 0:
  6307. */
  6308. if (TASK_NICE(p) < 0 && p->mm)
  6309. set_user_nice(p, 0);
  6310. continue;
  6311. }
  6312. spin_lock(&p->pi_lock);
  6313. rq = __task_rq_lock(p);
  6314. normalize_task(rq, p);
  6315. __task_rq_unlock(rq);
  6316. spin_unlock(&p->pi_lock);
  6317. } while_each_thread(g, p);
  6318. read_unlock_irqrestore(&tasklist_lock, flags);
  6319. }
  6320. #endif /* CONFIG_MAGIC_SYSRQ */
  6321. #ifdef CONFIG_IA64
  6322. /*
  6323. * These functions are only useful for the IA64 MCA handling.
  6324. *
  6325. * They can only be called when the whole system has been
  6326. * stopped - every CPU needs to be quiescent, and no scheduling
  6327. * activity can take place. Using them for anything else would
  6328. * be a serious bug, and as a result, they aren't even visible
  6329. * under any other configuration.
  6330. */
  6331. /**
  6332. * curr_task - return the current task for a given cpu.
  6333. * @cpu: the processor in question.
  6334. *
  6335. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6336. */
  6337. struct task_struct *curr_task(int cpu)
  6338. {
  6339. return cpu_curr(cpu);
  6340. }
  6341. /**
  6342. * set_curr_task - set the current task for a given cpu.
  6343. * @cpu: the processor in question.
  6344. * @p: the task pointer to set.
  6345. *
  6346. * Description: This function must only be used when non-maskable interrupts
  6347. * are serviced on a separate stack. It allows the architecture to switch the
  6348. * notion of the current task on a cpu in a non-blocking manner. This function
  6349. * must be called with all CPU's synchronized, and interrupts disabled, the
  6350. * and caller must save the original value of the current task (see
  6351. * curr_task() above) and restore that value before reenabling interrupts and
  6352. * re-starting the system.
  6353. *
  6354. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6355. */
  6356. void set_curr_task(int cpu, struct task_struct *p)
  6357. {
  6358. cpu_curr(cpu) = p;
  6359. }
  6360. #endif
  6361. #ifdef CONFIG_GROUP_SCHED
  6362. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6363. /*
  6364. * distribute shares of all task groups among their schedulable entities,
  6365. * to reflect load distribution across cpus.
  6366. */
  6367. static int rebalance_shares(struct sched_domain *sd, int this_cpu)
  6368. {
  6369. struct cfs_rq *cfs_rq;
  6370. struct rq *rq = cpu_rq(this_cpu);
  6371. cpumask_t sdspan = sd->span;
  6372. int balanced = 1;
  6373. /* Walk thr' all the task groups that we have */
  6374. for_each_leaf_cfs_rq(rq, cfs_rq) {
  6375. int i;
  6376. unsigned long total_load = 0, total_shares;
  6377. struct task_group *tg = cfs_rq->tg;
  6378. /* Gather total task load of this group across cpus */
  6379. for_each_cpu_mask(i, sdspan)
  6380. total_load += tg->cfs_rq[i]->load.weight;
  6381. /* Nothing to do if this group has no load */
  6382. if (!total_load)
  6383. continue;
  6384. /*
  6385. * tg->shares represents the number of cpu shares the task group
  6386. * is eligible to hold on a single cpu. On N cpus, it is
  6387. * eligible to hold (N * tg->shares) number of cpu shares.
  6388. */
  6389. total_shares = tg->shares * cpus_weight(sdspan);
  6390. /*
  6391. * redistribute total_shares across cpus as per the task load
  6392. * distribution.
  6393. */
  6394. for_each_cpu_mask(i, sdspan) {
  6395. unsigned long local_load, local_shares;
  6396. local_load = tg->cfs_rq[i]->load.weight;
  6397. local_shares = (local_load * total_shares) / total_load;
  6398. if (!local_shares)
  6399. local_shares = MIN_GROUP_SHARES;
  6400. if (local_shares == tg->se[i]->load.weight)
  6401. continue;
  6402. spin_lock_irq(&cpu_rq(i)->lock);
  6403. set_se_shares(tg->se[i], local_shares);
  6404. spin_unlock_irq(&cpu_rq(i)->lock);
  6405. balanced = 0;
  6406. }
  6407. }
  6408. return balanced;
  6409. }
  6410. /*
  6411. * How frequently should we rebalance_shares() across cpus?
  6412. *
  6413. * The more frequently we rebalance shares, the more accurate is the fairness
  6414. * of cpu bandwidth distribution between task groups. However higher frequency
  6415. * also implies increased scheduling overhead.
  6416. *
  6417. * sysctl_sched_min_bal_int_shares represents the minimum interval between
  6418. * consecutive calls to rebalance_shares() in the same sched domain.
  6419. *
  6420. * sysctl_sched_max_bal_int_shares represents the maximum interval between
  6421. * consecutive calls to rebalance_shares() in the same sched domain.
  6422. *
  6423. * These settings allows for the appropriate trade-off between accuracy of
  6424. * fairness and the associated overhead.
  6425. *
  6426. */
  6427. /* default: 8ms, units: milliseconds */
  6428. const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
  6429. /* default: 128ms, units: milliseconds */
  6430. const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
  6431. /* kernel thread that runs rebalance_shares() periodically */
  6432. static int load_balance_monitor(void *unused)
  6433. {
  6434. unsigned int timeout = sysctl_sched_min_bal_int_shares;
  6435. struct sched_param schedparm;
  6436. int ret;
  6437. /*
  6438. * We don't want this thread's execution to be limited by the shares
  6439. * assigned to default group (init_task_group). Hence make it run
  6440. * as a SCHED_RR RT task at the lowest priority.
  6441. */
  6442. schedparm.sched_priority = 1;
  6443. ret = sched_setscheduler(current, SCHED_RR, &schedparm);
  6444. if (ret)
  6445. printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
  6446. " monitor thread (error = %d) \n", ret);
  6447. while (!kthread_should_stop()) {
  6448. int i, cpu, balanced = 1;
  6449. /* Prevent cpus going down or coming up */
  6450. get_online_cpus();
  6451. /* lockout changes to doms_cur[] array */
  6452. lock_doms_cur();
  6453. /*
  6454. * Enter a rcu read-side critical section to safely walk rq->sd
  6455. * chain on various cpus and to walk task group list
  6456. * (rq->leaf_cfs_rq_list) in rebalance_shares().
  6457. */
  6458. rcu_read_lock();
  6459. for (i = 0; i < ndoms_cur; i++) {
  6460. cpumask_t cpumap = doms_cur[i];
  6461. struct sched_domain *sd = NULL, *sd_prev = NULL;
  6462. cpu = first_cpu(cpumap);
  6463. /* Find the highest domain at which to balance shares */
  6464. for_each_domain(cpu, sd) {
  6465. if (!(sd->flags & SD_LOAD_BALANCE))
  6466. continue;
  6467. sd_prev = sd;
  6468. }
  6469. sd = sd_prev;
  6470. /* sd == NULL? No load balance reqd in this domain */
  6471. if (!sd)
  6472. continue;
  6473. balanced &= rebalance_shares(sd, cpu);
  6474. }
  6475. rcu_read_unlock();
  6476. unlock_doms_cur();
  6477. put_online_cpus();
  6478. if (!balanced)
  6479. timeout = sysctl_sched_min_bal_int_shares;
  6480. else if (timeout < sysctl_sched_max_bal_int_shares)
  6481. timeout *= 2;
  6482. msleep_interruptible(timeout);
  6483. }
  6484. return 0;
  6485. }
  6486. #endif /* CONFIG_SMP */
  6487. #ifdef CONFIG_FAIR_GROUP_SCHED
  6488. static void free_fair_sched_group(struct task_group *tg)
  6489. {
  6490. int i;
  6491. for_each_possible_cpu(i) {
  6492. if (tg->cfs_rq)
  6493. kfree(tg->cfs_rq[i]);
  6494. if (tg->se)
  6495. kfree(tg->se[i]);
  6496. }
  6497. kfree(tg->cfs_rq);
  6498. kfree(tg->se);
  6499. }
  6500. static int alloc_fair_sched_group(struct task_group *tg)
  6501. {
  6502. struct cfs_rq *cfs_rq;
  6503. struct sched_entity *se;
  6504. struct rq *rq;
  6505. int i;
  6506. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6507. if (!tg->cfs_rq)
  6508. goto err;
  6509. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6510. if (!tg->se)
  6511. goto err;
  6512. tg->shares = NICE_0_LOAD;
  6513. for_each_possible_cpu(i) {
  6514. rq = cpu_rq(i);
  6515. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6516. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6517. if (!cfs_rq)
  6518. goto err;
  6519. se = kmalloc_node(sizeof(struct sched_entity),
  6520. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6521. if (!se)
  6522. goto err;
  6523. init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
  6524. }
  6525. return 1;
  6526. err:
  6527. return 0;
  6528. }
  6529. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6530. {
  6531. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6532. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6533. }
  6534. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6535. {
  6536. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6537. }
  6538. #else
  6539. static inline void free_fair_sched_group(struct task_group *tg)
  6540. {
  6541. }
  6542. static inline int alloc_fair_sched_group(struct task_group *tg)
  6543. {
  6544. return 1;
  6545. }
  6546. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6547. {
  6548. }
  6549. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6550. {
  6551. }
  6552. #endif
  6553. #ifdef CONFIG_RT_GROUP_SCHED
  6554. static void free_rt_sched_group(struct task_group *tg)
  6555. {
  6556. int i;
  6557. for_each_possible_cpu(i) {
  6558. if (tg->rt_rq)
  6559. kfree(tg->rt_rq[i]);
  6560. if (tg->rt_se)
  6561. kfree(tg->rt_se[i]);
  6562. }
  6563. kfree(tg->rt_rq);
  6564. kfree(tg->rt_se);
  6565. }
  6566. static int alloc_rt_sched_group(struct task_group *tg)
  6567. {
  6568. struct rt_rq *rt_rq;
  6569. struct sched_rt_entity *rt_se;
  6570. struct rq *rq;
  6571. int i;
  6572. tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
  6573. if (!tg->rt_rq)
  6574. goto err;
  6575. tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
  6576. if (!tg->rt_se)
  6577. goto err;
  6578. tg->rt_runtime = 0;
  6579. for_each_possible_cpu(i) {
  6580. rq = cpu_rq(i);
  6581. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6582. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6583. if (!rt_rq)
  6584. goto err;
  6585. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6586. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6587. if (!rt_se)
  6588. goto err;
  6589. init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
  6590. }
  6591. return 1;
  6592. err:
  6593. return 0;
  6594. }
  6595. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6596. {
  6597. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6598. &cpu_rq(cpu)->leaf_rt_rq_list);
  6599. }
  6600. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6601. {
  6602. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6603. }
  6604. #else
  6605. static inline void free_rt_sched_group(struct task_group *tg)
  6606. {
  6607. }
  6608. static inline int alloc_rt_sched_group(struct task_group *tg)
  6609. {
  6610. return 1;
  6611. }
  6612. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6613. {
  6614. }
  6615. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6616. {
  6617. }
  6618. #endif
  6619. static void free_sched_group(struct task_group *tg)
  6620. {
  6621. free_fair_sched_group(tg);
  6622. free_rt_sched_group(tg);
  6623. kfree(tg);
  6624. }
  6625. /* allocate runqueue etc for a new task group */
  6626. struct task_group *sched_create_group(void)
  6627. {
  6628. struct task_group *tg;
  6629. unsigned long flags;
  6630. int i;
  6631. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6632. if (!tg)
  6633. return ERR_PTR(-ENOMEM);
  6634. if (!alloc_fair_sched_group(tg))
  6635. goto err;
  6636. if (!alloc_rt_sched_group(tg))
  6637. goto err;
  6638. spin_lock_irqsave(&task_group_lock, flags);
  6639. for_each_possible_cpu(i) {
  6640. register_fair_sched_group(tg, i);
  6641. register_rt_sched_group(tg, i);
  6642. }
  6643. list_add_rcu(&tg->list, &task_groups);
  6644. spin_unlock_irqrestore(&task_group_lock, flags);
  6645. return tg;
  6646. err:
  6647. free_sched_group(tg);
  6648. return ERR_PTR(-ENOMEM);
  6649. }
  6650. /* rcu callback to free various structures associated with a task group */
  6651. static void free_sched_group_rcu(struct rcu_head *rhp)
  6652. {
  6653. /* now it should be safe to free those cfs_rqs */
  6654. free_sched_group(container_of(rhp, struct task_group, rcu));
  6655. }
  6656. /* Destroy runqueue etc associated with a task group */
  6657. void sched_destroy_group(struct task_group *tg)
  6658. {
  6659. unsigned long flags;
  6660. int i;
  6661. spin_lock_irqsave(&task_group_lock, flags);
  6662. for_each_possible_cpu(i) {
  6663. unregister_fair_sched_group(tg, i);
  6664. unregister_rt_sched_group(tg, i);
  6665. }
  6666. list_del_rcu(&tg->list);
  6667. spin_unlock_irqrestore(&task_group_lock, flags);
  6668. /* wait for possible concurrent references to cfs_rqs complete */
  6669. call_rcu(&tg->rcu, free_sched_group_rcu);
  6670. }
  6671. /* change task's runqueue when it moves between groups.
  6672. * The caller of this function should have put the task in its new group
  6673. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6674. * reflect its new group.
  6675. */
  6676. void sched_move_task(struct task_struct *tsk)
  6677. {
  6678. int on_rq, running;
  6679. unsigned long flags;
  6680. struct rq *rq;
  6681. rq = task_rq_lock(tsk, &flags);
  6682. update_rq_clock(rq);
  6683. running = task_current(rq, tsk);
  6684. on_rq = tsk->se.on_rq;
  6685. if (on_rq) {
  6686. dequeue_task(rq, tsk, 0);
  6687. if (unlikely(running))
  6688. tsk->sched_class->put_prev_task(rq, tsk);
  6689. }
  6690. set_task_rq(tsk, task_cpu(tsk));
  6691. if (on_rq) {
  6692. if (unlikely(running))
  6693. tsk->sched_class->set_curr_task(rq);
  6694. enqueue_task(rq, tsk, 0);
  6695. }
  6696. task_rq_unlock(rq, &flags);
  6697. }
  6698. #ifdef CONFIG_FAIR_GROUP_SCHED
  6699. /* rq->lock to be locked by caller */
  6700. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6701. {
  6702. struct cfs_rq *cfs_rq = se->cfs_rq;
  6703. struct rq *rq = cfs_rq->rq;
  6704. int on_rq;
  6705. if (!shares)
  6706. shares = MIN_GROUP_SHARES;
  6707. on_rq = se->on_rq;
  6708. if (on_rq) {
  6709. dequeue_entity(cfs_rq, se, 0);
  6710. dec_cpu_load(rq, se->load.weight);
  6711. }
  6712. se->load.weight = shares;
  6713. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6714. if (on_rq) {
  6715. enqueue_entity(cfs_rq, se, 0);
  6716. inc_cpu_load(rq, se->load.weight);
  6717. }
  6718. }
  6719. static DEFINE_MUTEX(shares_mutex);
  6720. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6721. {
  6722. int i;
  6723. unsigned long flags;
  6724. mutex_lock(&shares_mutex);
  6725. if (tg->shares == shares)
  6726. goto done;
  6727. if (shares < MIN_GROUP_SHARES)
  6728. shares = MIN_GROUP_SHARES;
  6729. /*
  6730. * Prevent any load balance activity (rebalance_shares,
  6731. * load_balance_fair) from referring to this group first,
  6732. * by taking it off the rq->leaf_cfs_rq_list on each cpu.
  6733. */
  6734. spin_lock_irqsave(&task_group_lock, flags);
  6735. for_each_possible_cpu(i)
  6736. unregister_fair_sched_group(tg, i);
  6737. spin_unlock_irqrestore(&task_group_lock, flags);
  6738. /* wait for any ongoing reference to this group to finish */
  6739. synchronize_sched();
  6740. /*
  6741. * Now we are free to modify the group's share on each cpu
  6742. * w/o tripping rebalance_share or load_balance_fair.
  6743. */
  6744. tg->shares = shares;
  6745. for_each_possible_cpu(i) {
  6746. spin_lock_irq(&cpu_rq(i)->lock);
  6747. set_se_shares(tg->se[i], shares);
  6748. spin_unlock_irq(&cpu_rq(i)->lock);
  6749. }
  6750. /*
  6751. * Enable load balance activity on this group, by inserting it back on
  6752. * each cpu's rq->leaf_cfs_rq_list.
  6753. */
  6754. spin_lock_irqsave(&task_group_lock, flags);
  6755. for_each_possible_cpu(i)
  6756. register_fair_sched_group(tg, i);
  6757. spin_unlock_irqrestore(&task_group_lock, flags);
  6758. done:
  6759. mutex_unlock(&shares_mutex);
  6760. return 0;
  6761. }
  6762. unsigned long sched_group_shares(struct task_group *tg)
  6763. {
  6764. return tg->shares;
  6765. }
  6766. #endif
  6767. #ifdef CONFIG_RT_GROUP_SCHED
  6768. /*
  6769. * Ensure that the real time constraints are schedulable.
  6770. */
  6771. static DEFINE_MUTEX(rt_constraints_mutex);
  6772. static unsigned long to_ratio(u64 period, u64 runtime)
  6773. {
  6774. if (runtime == RUNTIME_INF)
  6775. return 1ULL << 16;
  6776. runtime *= (1ULL << 16);
  6777. div64_64(runtime, period);
  6778. return runtime;
  6779. }
  6780. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6781. {
  6782. struct task_group *tgi;
  6783. unsigned long total = 0;
  6784. unsigned long global_ratio =
  6785. to_ratio(sysctl_sched_rt_period,
  6786. sysctl_sched_rt_runtime < 0 ?
  6787. RUNTIME_INF : sysctl_sched_rt_runtime);
  6788. rcu_read_lock();
  6789. list_for_each_entry_rcu(tgi, &task_groups, list) {
  6790. if (tgi == tg)
  6791. continue;
  6792. total += to_ratio(period, tgi->rt_runtime);
  6793. }
  6794. rcu_read_unlock();
  6795. return total + to_ratio(period, runtime) < global_ratio;
  6796. }
  6797. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6798. {
  6799. u64 rt_runtime, rt_period;
  6800. int err = 0;
  6801. rt_period = sysctl_sched_rt_period * NSEC_PER_USEC;
  6802. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6803. if (rt_runtime_us == -1)
  6804. rt_runtime = rt_period;
  6805. mutex_lock(&rt_constraints_mutex);
  6806. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  6807. err = -EINVAL;
  6808. goto unlock;
  6809. }
  6810. if (rt_runtime_us == -1)
  6811. rt_runtime = RUNTIME_INF;
  6812. tg->rt_runtime = rt_runtime;
  6813. unlock:
  6814. mutex_unlock(&rt_constraints_mutex);
  6815. return err;
  6816. }
  6817. long sched_group_rt_runtime(struct task_group *tg)
  6818. {
  6819. u64 rt_runtime_us;
  6820. if (tg->rt_runtime == RUNTIME_INF)
  6821. return -1;
  6822. rt_runtime_us = tg->rt_runtime;
  6823. do_div(rt_runtime_us, NSEC_PER_USEC);
  6824. return rt_runtime_us;
  6825. }
  6826. #endif
  6827. #endif /* CONFIG_GROUP_SCHED */
  6828. #ifdef CONFIG_CGROUP_SCHED
  6829. /* return corresponding task_group object of a cgroup */
  6830. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6831. {
  6832. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6833. struct task_group, css);
  6834. }
  6835. static struct cgroup_subsys_state *
  6836. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6837. {
  6838. struct task_group *tg;
  6839. if (!cgrp->parent) {
  6840. /* This is early initialization for the top cgroup */
  6841. init_task_group.css.cgroup = cgrp;
  6842. return &init_task_group.css;
  6843. }
  6844. /* we support only 1-level deep hierarchical scheduler atm */
  6845. if (cgrp->parent->parent)
  6846. return ERR_PTR(-EINVAL);
  6847. tg = sched_create_group();
  6848. if (IS_ERR(tg))
  6849. return ERR_PTR(-ENOMEM);
  6850. /* Bind the cgroup to task_group object we just created */
  6851. tg->css.cgroup = cgrp;
  6852. return &tg->css;
  6853. }
  6854. static void
  6855. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6856. {
  6857. struct task_group *tg = cgroup_tg(cgrp);
  6858. sched_destroy_group(tg);
  6859. }
  6860. static int
  6861. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6862. struct task_struct *tsk)
  6863. {
  6864. #ifdef CONFIG_RT_GROUP_SCHED
  6865. /* Don't accept realtime tasks when there is no way for them to run */
  6866. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
  6867. return -EINVAL;
  6868. #else
  6869. /* We don't support RT-tasks being in separate groups */
  6870. if (tsk->sched_class != &fair_sched_class)
  6871. return -EINVAL;
  6872. #endif
  6873. return 0;
  6874. }
  6875. static void
  6876. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6877. struct cgroup *old_cont, struct task_struct *tsk)
  6878. {
  6879. sched_move_task(tsk);
  6880. }
  6881. #ifdef CONFIG_FAIR_GROUP_SCHED
  6882. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6883. u64 shareval)
  6884. {
  6885. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6886. }
  6887. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6888. {
  6889. struct task_group *tg = cgroup_tg(cgrp);
  6890. return (u64) tg->shares;
  6891. }
  6892. #endif
  6893. #ifdef CONFIG_RT_GROUP_SCHED
  6894. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6895. struct file *file,
  6896. const char __user *userbuf,
  6897. size_t nbytes, loff_t *unused_ppos)
  6898. {
  6899. char buffer[64];
  6900. int retval = 0;
  6901. s64 val;
  6902. char *end;
  6903. if (!nbytes)
  6904. return -EINVAL;
  6905. if (nbytes >= sizeof(buffer))
  6906. return -E2BIG;
  6907. if (copy_from_user(buffer, userbuf, nbytes))
  6908. return -EFAULT;
  6909. buffer[nbytes] = 0; /* nul-terminate */
  6910. /* strip newline if necessary */
  6911. if (nbytes && (buffer[nbytes-1] == '\n'))
  6912. buffer[nbytes-1] = 0;
  6913. val = simple_strtoll(buffer, &end, 0);
  6914. if (*end)
  6915. return -EINVAL;
  6916. /* Pass to subsystem */
  6917. retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6918. if (!retval)
  6919. retval = nbytes;
  6920. return retval;
  6921. }
  6922. static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
  6923. struct file *file,
  6924. char __user *buf, size_t nbytes,
  6925. loff_t *ppos)
  6926. {
  6927. char tmp[64];
  6928. long val = sched_group_rt_runtime(cgroup_tg(cgrp));
  6929. int len = sprintf(tmp, "%ld\n", val);
  6930. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  6931. }
  6932. #endif
  6933. static struct cftype cpu_files[] = {
  6934. #ifdef CONFIG_FAIR_GROUP_SCHED
  6935. {
  6936. .name = "shares",
  6937. .read_uint = cpu_shares_read_uint,
  6938. .write_uint = cpu_shares_write_uint,
  6939. },
  6940. #endif
  6941. #ifdef CONFIG_RT_GROUP_SCHED
  6942. {
  6943. .name = "rt_runtime_us",
  6944. .read = cpu_rt_runtime_read,
  6945. .write = cpu_rt_runtime_write,
  6946. },
  6947. #endif
  6948. };
  6949. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6950. {
  6951. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6952. }
  6953. struct cgroup_subsys cpu_cgroup_subsys = {
  6954. .name = "cpu",
  6955. .create = cpu_cgroup_create,
  6956. .destroy = cpu_cgroup_destroy,
  6957. .can_attach = cpu_cgroup_can_attach,
  6958. .attach = cpu_cgroup_attach,
  6959. .populate = cpu_cgroup_populate,
  6960. .subsys_id = cpu_cgroup_subsys_id,
  6961. .early_init = 1,
  6962. };
  6963. #endif /* CONFIG_CGROUP_SCHED */
  6964. #ifdef CONFIG_CGROUP_CPUACCT
  6965. /*
  6966. * CPU accounting code for task groups.
  6967. *
  6968. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6969. * (balbir@in.ibm.com).
  6970. */
  6971. /* track cpu usage of a group of tasks */
  6972. struct cpuacct {
  6973. struct cgroup_subsys_state css;
  6974. /* cpuusage holds pointer to a u64-type object on every cpu */
  6975. u64 *cpuusage;
  6976. };
  6977. struct cgroup_subsys cpuacct_subsys;
  6978. /* return cpu accounting group corresponding to this container */
  6979. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6980. {
  6981. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6982. struct cpuacct, css);
  6983. }
  6984. /* return cpu accounting group to which this task belongs */
  6985. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6986. {
  6987. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6988. struct cpuacct, css);
  6989. }
  6990. /* create a new cpu accounting group */
  6991. static struct cgroup_subsys_state *cpuacct_create(
  6992. struct cgroup_subsys *ss, struct cgroup *cont)
  6993. {
  6994. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6995. if (!ca)
  6996. return ERR_PTR(-ENOMEM);
  6997. ca->cpuusage = alloc_percpu(u64);
  6998. if (!ca->cpuusage) {
  6999. kfree(ca);
  7000. return ERR_PTR(-ENOMEM);
  7001. }
  7002. return &ca->css;
  7003. }
  7004. /* destroy an existing cpu accounting group */
  7005. static void
  7006. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  7007. {
  7008. struct cpuacct *ca = cgroup_ca(cont);
  7009. free_percpu(ca->cpuusage);
  7010. kfree(ca);
  7011. }
  7012. /* return total cpu usage (in nanoseconds) of a group */
  7013. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  7014. {
  7015. struct cpuacct *ca = cgroup_ca(cont);
  7016. u64 totalcpuusage = 0;
  7017. int i;
  7018. for_each_possible_cpu(i) {
  7019. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7020. /*
  7021. * Take rq->lock to make 64-bit addition safe on 32-bit
  7022. * platforms.
  7023. */
  7024. spin_lock_irq(&cpu_rq(i)->lock);
  7025. totalcpuusage += *cpuusage;
  7026. spin_unlock_irq(&cpu_rq(i)->lock);
  7027. }
  7028. return totalcpuusage;
  7029. }
  7030. static struct cftype files[] = {
  7031. {
  7032. .name = "usage",
  7033. .read_uint = cpuusage_read,
  7034. },
  7035. };
  7036. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7037. {
  7038. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  7039. }
  7040. /*
  7041. * charge this task's execution time to its accounting group.
  7042. *
  7043. * called with rq->lock held.
  7044. */
  7045. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7046. {
  7047. struct cpuacct *ca;
  7048. if (!cpuacct_subsys.active)
  7049. return;
  7050. ca = task_ca(tsk);
  7051. if (ca) {
  7052. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7053. *cpuusage += cputime;
  7054. }
  7055. }
  7056. struct cgroup_subsys cpuacct_subsys = {
  7057. .name = "cpuacct",
  7058. .create = cpuacct_create,
  7059. .destroy = cpuacct_destroy,
  7060. .populate = cpuacct_populate,
  7061. .subsys_id = cpuacct_subsys_id,
  7062. };
  7063. #endif /* CONFIG_CGROUP_CPUACCT */