slab.c 115 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/uaccess.h>
  106. #include <linux/nodemask.h>
  107. #include <linux/mempolicy.h>
  108. #include <linux/mutex.h>
  109. #include <linux/fault-inject.h>
  110. #include <linux/rtmutex.h>
  111. #include <linux/reciprocal_div.h>
  112. #include <asm/cacheflush.h>
  113. #include <asm/tlbflush.h>
  114. #include <asm/page.h>
  115. /*
  116. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  117. * 0 for faster, smaller code (especially in the critical paths).
  118. *
  119. * STATS - 1 to collect stats for /proc/slabinfo.
  120. * 0 for faster, smaller code (especially in the critical paths).
  121. *
  122. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  123. */
  124. #ifdef CONFIG_DEBUG_SLAB
  125. #define DEBUG 1
  126. #define STATS 1
  127. #define FORCED_DEBUG 1
  128. #else
  129. #define DEBUG 0
  130. #define STATS 0
  131. #define FORCED_DEBUG 0
  132. #endif
  133. /* Shouldn't this be in a header file somewhere? */
  134. #define BYTES_PER_WORD sizeof(void *)
  135. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  136. #ifndef cache_line_size
  137. #define cache_line_size() L1_CACHE_BYTES
  138. #endif
  139. #ifndef ARCH_KMALLOC_MINALIGN
  140. /*
  141. * Enforce a minimum alignment for the kmalloc caches.
  142. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  143. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  144. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  145. * alignment larger than the alignment of a 64-bit integer.
  146. * ARCH_KMALLOC_MINALIGN allows that.
  147. * Note that increasing this value may disable some debug features.
  148. */
  149. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  150. #endif
  151. #ifndef ARCH_SLAB_MINALIGN
  152. /*
  153. * Enforce a minimum alignment for all caches.
  154. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  155. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  156. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  157. * some debug features.
  158. */
  159. #define ARCH_SLAB_MINALIGN 0
  160. #endif
  161. #ifndef ARCH_KMALLOC_FLAGS
  162. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  163. #endif
  164. /* Legal flag mask for kmem_cache_create(). */
  165. #if DEBUG
  166. # define CREATE_MASK (SLAB_RED_ZONE | \
  167. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  168. SLAB_CACHE_DMA | \
  169. SLAB_STORE_USER | \
  170. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  171. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  172. #else
  173. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  174. SLAB_CACHE_DMA | \
  175. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  176. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  177. #endif
  178. /*
  179. * kmem_bufctl_t:
  180. *
  181. * Bufctl's are used for linking objs within a slab
  182. * linked offsets.
  183. *
  184. * This implementation relies on "struct page" for locating the cache &
  185. * slab an object belongs to.
  186. * This allows the bufctl structure to be small (one int), but limits
  187. * the number of objects a slab (not a cache) can contain when off-slab
  188. * bufctls are used. The limit is the size of the largest general cache
  189. * that does not use off-slab slabs.
  190. * For 32bit archs with 4 kB pages, is this 56.
  191. * This is not serious, as it is only for large objects, when it is unwise
  192. * to have too many per slab.
  193. * Note: This limit can be raised by introducing a general cache whose size
  194. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  195. */
  196. typedef unsigned int kmem_bufctl_t;
  197. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  198. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  199. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  200. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  201. /*
  202. * struct slab
  203. *
  204. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  205. * for a slab, or allocated from an general cache.
  206. * Slabs are chained into three list: fully used, partial, fully free slabs.
  207. */
  208. struct slab {
  209. struct list_head list;
  210. unsigned long colouroff;
  211. void *s_mem; /* including colour offset */
  212. unsigned int inuse; /* num of objs active in slab */
  213. kmem_bufctl_t free;
  214. unsigned short nodeid;
  215. };
  216. /*
  217. * struct slab_rcu
  218. *
  219. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  220. * arrange for kmem_freepages to be called via RCU. This is useful if
  221. * we need to approach a kernel structure obliquely, from its address
  222. * obtained without the usual locking. We can lock the structure to
  223. * stabilize it and check it's still at the given address, only if we
  224. * can be sure that the memory has not been meanwhile reused for some
  225. * other kind of object (which our subsystem's lock might corrupt).
  226. *
  227. * rcu_read_lock before reading the address, then rcu_read_unlock after
  228. * taking the spinlock within the structure expected at that address.
  229. *
  230. * We assume struct slab_rcu can overlay struct slab when destroying.
  231. */
  232. struct slab_rcu {
  233. struct rcu_head head;
  234. struct kmem_cache *cachep;
  235. void *addr;
  236. };
  237. /*
  238. * struct array_cache
  239. *
  240. * Purpose:
  241. * - LIFO ordering, to hand out cache-warm objects from _alloc
  242. * - reduce the number of linked list operations
  243. * - reduce spinlock operations
  244. *
  245. * The limit is stored in the per-cpu structure to reduce the data cache
  246. * footprint.
  247. *
  248. */
  249. struct array_cache {
  250. unsigned int avail;
  251. unsigned int limit;
  252. unsigned int batchcount;
  253. unsigned int touched;
  254. spinlock_t lock;
  255. void *entry[]; /*
  256. * Must have this definition in here for the proper
  257. * alignment of array_cache. Also simplifies accessing
  258. * the entries.
  259. */
  260. };
  261. /*
  262. * bootstrap: The caches do not work without cpuarrays anymore, but the
  263. * cpuarrays are allocated from the generic caches...
  264. */
  265. #define BOOT_CPUCACHE_ENTRIES 1
  266. struct arraycache_init {
  267. struct array_cache cache;
  268. void *entries[BOOT_CPUCACHE_ENTRIES];
  269. };
  270. /*
  271. * The slab lists for all objects.
  272. */
  273. struct kmem_list3 {
  274. struct list_head slabs_partial; /* partial list first, better asm code */
  275. struct list_head slabs_full;
  276. struct list_head slabs_free;
  277. unsigned long free_objects;
  278. unsigned int free_limit;
  279. unsigned int colour_next; /* Per-node cache coloring */
  280. spinlock_t list_lock;
  281. struct array_cache *shared; /* shared per node */
  282. struct array_cache **alien; /* on other nodes */
  283. unsigned long next_reap; /* updated without locking */
  284. int free_touched; /* updated without locking */
  285. };
  286. /*
  287. * Need this for bootstrapping a per node allocator.
  288. */
  289. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  290. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  291. #define CACHE_CACHE 0
  292. #define SIZE_AC 1
  293. #define SIZE_L3 (1 + MAX_NUMNODES)
  294. static int drain_freelist(struct kmem_cache *cache,
  295. struct kmem_list3 *l3, int tofree);
  296. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  297. int node);
  298. static int enable_cpucache(struct kmem_cache *cachep);
  299. static void cache_reap(struct work_struct *unused);
  300. /*
  301. * This function must be completely optimized away if a constant is passed to
  302. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  303. */
  304. static __always_inline int index_of(const size_t size)
  305. {
  306. extern void __bad_size(void);
  307. if (__builtin_constant_p(size)) {
  308. int i = 0;
  309. #define CACHE(x) \
  310. if (size <=x) \
  311. return i; \
  312. else \
  313. i++;
  314. #include "linux/kmalloc_sizes.h"
  315. #undef CACHE
  316. __bad_size();
  317. } else
  318. __bad_size();
  319. return 0;
  320. }
  321. static int slab_early_init = 1;
  322. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  323. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  324. static void kmem_list3_init(struct kmem_list3 *parent)
  325. {
  326. INIT_LIST_HEAD(&parent->slabs_full);
  327. INIT_LIST_HEAD(&parent->slabs_partial);
  328. INIT_LIST_HEAD(&parent->slabs_free);
  329. parent->shared = NULL;
  330. parent->alien = NULL;
  331. parent->colour_next = 0;
  332. spin_lock_init(&parent->list_lock);
  333. parent->free_objects = 0;
  334. parent->free_touched = 0;
  335. }
  336. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  337. do { \
  338. INIT_LIST_HEAD(listp); \
  339. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  340. } while (0)
  341. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  342. do { \
  343. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  344. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  345. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  346. } while (0)
  347. /*
  348. * struct kmem_cache
  349. *
  350. * manages a cache.
  351. */
  352. struct kmem_cache {
  353. /* 1) per-cpu data, touched during every alloc/free */
  354. struct array_cache *array[NR_CPUS];
  355. /* 2) Cache tunables. Protected by cache_chain_mutex */
  356. unsigned int batchcount;
  357. unsigned int limit;
  358. unsigned int shared;
  359. unsigned int buffer_size;
  360. u32 reciprocal_buffer_size;
  361. /* 3) touched by every alloc & free from the backend */
  362. unsigned int flags; /* constant flags */
  363. unsigned int num; /* # of objs per slab */
  364. /* 4) cache_grow/shrink */
  365. /* order of pgs per slab (2^n) */
  366. unsigned int gfporder;
  367. /* force GFP flags, e.g. GFP_DMA */
  368. gfp_t gfpflags;
  369. size_t colour; /* cache colouring range */
  370. unsigned int colour_off; /* colour offset */
  371. struct kmem_cache *slabp_cache;
  372. unsigned int slab_size;
  373. unsigned int dflags; /* dynamic flags */
  374. /* constructor func */
  375. void (*ctor)(struct kmem_cache *, void *);
  376. /* 5) cache creation/removal */
  377. const char *name;
  378. struct list_head next;
  379. /* 6) statistics */
  380. #if STATS
  381. unsigned long num_active;
  382. unsigned long num_allocations;
  383. unsigned long high_mark;
  384. unsigned long grown;
  385. unsigned long reaped;
  386. unsigned long errors;
  387. unsigned long max_freeable;
  388. unsigned long node_allocs;
  389. unsigned long node_frees;
  390. unsigned long node_overflow;
  391. atomic_t allochit;
  392. atomic_t allocmiss;
  393. atomic_t freehit;
  394. atomic_t freemiss;
  395. #endif
  396. #if DEBUG
  397. /*
  398. * If debugging is enabled, then the allocator can add additional
  399. * fields and/or padding to every object. buffer_size contains the total
  400. * object size including these internal fields, the following two
  401. * variables contain the offset to the user object and its size.
  402. */
  403. int obj_offset;
  404. int obj_size;
  405. #endif
  406. /*
  407. * We put nodelists[] at the end of kmem_cache, because we want to size
  408. * this array to nr_node_ids slots instead of MAX_NUMNODES
  409. * (see kmem_cache_init())
  410. * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
  411. * is statically defined, so we reserve the max number of nodes.
  412. */
  413. struct kmem_list3 *nodelists[MAX_NUMNODES];
  414. /*
  415. * Do not add fields after nodelists[]
  416. */
  417. };
  418. #define CFLGS_OFF_SLAB (0x80000000UL)
  419. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  420. #define BATCHREFILL_LIMIT 16
  421. /*
  422. * Optimization question: fewer reaps means less probability for unnessary
  423. * cpucache drain/refill cycles.
  424. *
  425. * OTOH the cpuarrays can contain lots of objects,
  426. * which could lock up otherwise freeable slabs.
  427. */
  428. #define REAPTIMEOUT_CPUC (2*HZ)
  429. #define REAPTIMEOUT_LIST3 (4*HZ)
  430. #if STATS
  431. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  432. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  433. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  434. #define STATS_INC_GROWN(x) ((x)->grown++)
  435. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  436. #define STATS_SET_HIGH(x) \
  437. do { \
  438. if ((x)->num_active > (x)->high_mark) \
  439. (x)->high_mark = (x)->num_active; \
  440. } while (0)
  441. #define STATS_INC_ERR(x) ((x)->errors++)
  442. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  443. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  444. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  445. #define STATS_SET_FREEABLE(x, i) \
  446. do { \
  447. if ((x)->max_freeable < i) \
  448. (x)->max_freeable = i; \
  449. } while (0)
  450. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  451. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  452. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  453. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  454. #else
  455. #define STATS_INC_ACTIVE(x) do { } while (0)
  456. #define STATS_DEC_ACTIVE(x) do { } while (0)
  457. #define STATS_INC_ALLOCED(x) do { } while (0)
  458. #define STATS_INC_GROWN(x) do { } while (0)
  459. #define STATS_ADD_REAPED(x,y) do { } while (0)
  460. #define STATS_SET_HIGH(x) do { } while (0)
  461. #define STATS_INC_ERR(x) do { } while (0)
  462. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  463. #define STATS_INC_NODEFREES(x) do { } while (0)
  464. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  465. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  466. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  467. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  468. #define STATS_INC_FREEHIT(x) do { } while (0)
  469. #define STATS_INC_FREEMISS(x) do { } while (0)
  470. #endif
  471. #if DEBUG
  472. /*
  473. * memory layout of objects:
  474. * 0 : objp
  475. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  476. * the end of an object is aligned with the end of the real
  477. * allocation. Catches writes behind the end of the allocation.
  478. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  479. * redzone word.
  480. * cachep->obj_offset: The real object.
  481. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  482. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  483. * [BYTES_PER_WORD long]
  484. */
  485. static int obj_offset(struct kmem_cache *cachep)
  486. {
  487. return cachep->obj_offset;
  488. }
  489. static int obj_size(struct kmem_cache *cachep)
  490. {
  491. return cachep->obj_size;
  492. }
  493. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  494. {
  495. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  496. return (unsigned long long*) (objp + obj_offset(cachep) -
  497. sizeof(unsigned long long));
  498. }
  499. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  500. {
  501. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  502. if (cachep->flags & SLAB_STORE_USER)
  503. return (unsigned long long *)(objp + cachep->buffer_size -
  504. sizeof(unsigned long long) -
  505. REDZONE_ALIGN);
  506. return (unsigned long long *) (objp + cachep->buffer_size -
  507. sizeof(unsigned long long));
  508. }
  509. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  510. {
  511. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  512. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  513. }
  514. #else
  515. #define obj_offset(x) 0
  516. #define obj_size(cachep) (cachep->buffer_size)
  517. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  518. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  519. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  520. #endif
  521. /*
  522. * Do not go above this order unless 0 objects fit into the slab.
  523. */
  524. #define BREAK_GFP_ORDER_HI 1
  525. #define BREAK_GFP_ORDER_LO 0
  526. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  527. /*
  528. * Functions for storing/retrieving the cachep and or slab from the page
  529. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  530. * these are used to find the cache which an obj belongs to.
  531. */
  532. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  533. {
  534. page->lru.next = (struct list_head *)cache;
  535. }
  536. static inline struct kmem_cache *page_get_cache(struct page *page)
  537. {
  538. page = compound_head(page);
  539. BUG_ON(!PageSlab(page));
  540. return (struct kmem_cache *)page->lru.next;
  541. }
  542. static inline void page_set_slab(struct page *page, struct slab *slab)
  543. {
  544. page->lru.prev = (struct list_head *)slab;
  545. }
  546. static inline struct slab *page_get_slab(struct page *page)
  547. {
  548. BUG_ON(!PageSlab(page));
  549. return (struct slab *)page->lru.prev;
  550. }
  551. static inline struct kmem_cache *virt_to_cache(const void *obj)
  552. {
  553. struct page *page = virt_to_head_page(obj);
  554. return page_get_cache(page);
  555. }
  556. static inline struct slab *virt_to_slab(const void *obj)
  557. {
  558. struct page *page = virt_to_head_page(obj);
  559. return page_get_slab(page);
  560. }
  561. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  562. unsigned int idx)
  563. {
  564. return slab->s_mem + cache->buffer_size * idx;
  565. }
  566. /*
  567. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  568. * Using the fact that buffer_size is a constant for a particular cache,
  569. * we can replace (offset / cache->buffer_size) by
  570. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  571. */
  572. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  573. const struct slab *slab, void *obj)
  574. {
  575. u32 offset = (obj - slab->s_mem);
  576. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  577. }
  578. /*
  579. * These are the default caches for kmalloc. Custom caches can have other sizes.
  580. */
  581. struct cache_sizes malloc_sizes[] = {
  582. #define CACHE(x) { .cs_size = (x) },
  583. #include <linux/kmalloc_sizes.h>
  584. CACHE(ULONG_MAX)
  585. #undef CACHE
  586. };
  587. EXPORT_SYMBOL(malloc_sizes);
  588. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  589. struct cache_names {
  590. char *name;
  591. char *name_dma;
  592. };
  593. static struct cache_names __initdata cache_names[] = {
  594. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  595. #include <linux/kmalloc_sizes.h>
  596. {NULL,}
  597. #undef CACHE
  598. };
  599. static struct arraycache_init initarray_cache __initdata =
  600. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  601. static struct arraycache_init initarray_generic =
  602. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  603. /* internal cache of cache description objs */
  604. static struct kmem_cache cache_cache = {
  605. .batchcount = 1,
  606. .limit = BOOT_CPUCACHE_ENTRIES,
  607. .shared = 1,
  608. .buffer_size = sizeof(struct kmem_cache),
  609. .name = "kmem_cache",
  610. };
  611. #define BAD_ALIEN_MAGIC 0x01020304ul
  612. #ifdef CONFIG_LOCKDEP
  613. /*
  614. * Slab sometimes uses the kmalloc slabs to store the slab headers
  615. * for other slabs "off slab".
  616. * The locking for this is tricky in that it nests within the locks
  617. * of all other slabs in a few places; to deal with this special
  618. * locking we put on-slab caches into a separate lock-class.
  619. *
  620. * We set lock class for alien array caches which are up during init.
  621. * The lock annotation will be lost if all cpus of a node goes down and
  622. * then comes back up during hotplug
  623. */
  624. static struct lock_class_key on_slab_l3_key;
  625. static struct lock_class_key on_slab_alc_key;
  626. static inline void init_lock_keys(void)
  627. {
  628. int q;
  629. struct cache_sizes *s = malloc_sizes;
  630. while (s->cs_size != ULONG_MAX) {
  631. for_each_node(q) {
  632. struct array_cache **alc;
  633. int r;
  634. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  635. if (!l3 || OFF_SLAB(s->cs_cachep))
  636. continue;
  637. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  638. alc = l3->alien;
  639. /*
  640. * FIXME: This check for BAD_ALIEN_MAGIC
  641. * should go away when common slab code is taught to
  642. * work even without alien caches.
  643. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  644. * for alloc_alien_cache,
  645. */
  646. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  647. continue;
  648. for_each_node(r) {
  649. if (alc[r])
  650. lockdep_set_class(&alc[r]->lock,
  651. &on_slab_alc_key);
  652. }
  653. }
  654. s++;
  655. }
  656. }
  657. #else
  658. static inline void init_lock_keys(void)
  659. {
  660. }
  661. #endif
  662. /*
  663. * 1. Guard access to the cache-chain.
  664. * 2. Protect sanity of cpu_online_map against cpu hotplug events
  665. */
  666. static DEFINE_MUTEX(cache_chain_mutex);
  667. static struct list_head cache_chain;
  668. /*
  669. * chicken and egg problem: delay the per-cpu array allocation
  670. * until the general caches are up.
  671. */
  672. static enum {
  673. NONE,
  674. PARTIAL_AC,
  675. PARTIAL_L3,
  676. FULL
  677. } g_cpucache_up;
  678. /*
  679. * used by boot code to determine if it can use slab based allocator
  680. */
  681. int slab_is_available(void)
  682. {
  683. return g_cpucache_up == FULL;
  684. }
  685. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  686. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  687. {
  688. return cachep->array[smp_processor_id()];
  689. }
  690. static inline struct kmem_cache *__find_general_cachep(size_t size,
  691. gfp_t gfpflags)
  692. {
  693. struct cache_sizes *csizep = malloc_sizes;
  694. #if DEBUG
  695. /* This happens if someone tries to call
  696. * kmem_cache_create(), or __kmalloc(), before
  697. * the generic caches are initialized.
  698. */
  699. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  700. #endif
  701. if (!size)
  702. return ZERO_SIZE_PTR;
  703. while (size > csizep->cs_size)
  704. csizep++;
  705. /*
  706. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  707. * has cs_{dma,}cachep==NULL. Thus no special case
  708. * for large kmalloc calls required.
  709. */
  710. #ifdef CONFIG_ZONE_DMA
  711. if (unlikely(gfpflags & GFP_DMA))
  712. return csizep->cs_dmacachep;
  713. #endif
  714. return csizep->cs_cachep;
  715. }
  716. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  717. {
  718. return __find_general_cachep(size, gfpflags);
  719. }
  720. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  721. {
  722. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  723. }
  724. /*
  725. * Calculate the number of objects and left-over bytes for a given buffer size.
  726. */
  727. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  728. size_t align, int flags, size_t *left_over,
  729. unsigned int *num)
  730. {
  731. int nr_objs;
  732. size_t mgmt_size;
  733. size_t slab_size = PAGE_SIZE << gfporder;
  734. /*
  735. * The slab management structure can be either off the slab or
  736. * on it. For the latter case, the memory allocated for a
  737. * slab is used for:
  738. *
  739. * - The struct slab
  740. * - One kmem_bufctl_t for each object
  741. * - Padding to respect alignment of @align
  742. * - @buffer_size bytes for each object
  743. *
  744. * If the slab management structure is off the slab, then the
  745. * alignment will already be calculated into the size. Because
  746. * the slabs are all pages aligned, the objects will be at the
  747. * correct alignment when allocated.
  748. */
  749. if (flags & CFLGS_OFF_SLAB) {
  750. mgmt_size = 0;
  751. nr_objs = slab_size / buffer_size;
  752. if (nr_objs > SLAB_LIMIT)
  753. nr_objs = SLAB_LIMIT;
  754. } else {
  755. /*
  756. * Ignore padding for the initial guess. The padding
  757. * is at most @align-1 bytes, and @buffer_size is at
  758. * least @align. In the worst case, this result will
  759. * be one greater than the number of objects that fit
  760. * into the memory allocation when taking the padding
  761. * into account.
  762. */
  763. nr_objs = (slab_size - sizeof(struct slab)) /
  764. (buffer_size + sizeof(kmem_bufctl_t));
  765. /*
  766. * This calculated number will be either the right
  767. * amount, or one greater than what we want.
  768. */
  769. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  770. > slab_size)
  771. nr_objs--;
  772. if (nr_objs > SLAB_LIMIT)
  773. nr_objs = SLAB_LIMIT;
  774. mgmt_size = slab_mgmt_size(nr_objs, align);
  775. }
  776. *num = nr_objs;
  777. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  778. }
  779. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  780. static void __slab_error(const char *function, struct kmem_cache *cachep,
  781. char *msg)
  782. {
  783. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  784. function, cachep->name, msg);
  785. dump_stack();
  786. }
  787. /*
  788. * By default on NUMA we use alien caches to stage the freeing of
  789. * objects allocated from other nodes. This causes massive memory
  790. * inefficiencies when using fake NUMA setup to split memory into a
  791. * large number of small nodes, so it can be disabled on the command
  792. * line
  793. */
  794. static int use_alien_caches __read_mostly = 1;
  795. static int numa_platform __read_mostly = 1;
  796. static int __init noaliencache_setup(char *s)
  797. {
  798. use_alien_caches = 0;
  799. return 1;
  800. }
  801. __setup("noaliencache", noaliencache_setup);
  802. #ifdef CONFIG_NUMA
  803. /*
  804. * Special reaping functions for NUMA systems called from cache_reap().
  805. * These take care of doing round robin flushing of alien caches (containing
  806. * objects freed on different nodes from which they were allocated) and the
  807. * flushing of remote pcps by calling drain_node_pages.
  808. */
  809. static DEFINE_PER_CPU(unsigned long, reap_node);
  810. static void init_reap_node(int cpu)
  811. {
  812. int node;
  813. node = next_node(cpu_to_node(cpu), node_online_map);
  814. if (node == MAX_NUMNODES)
  815. node = first_node(node_online_map);
  816. per_cpu(reap_node, cpu) = node;
  817. }
  818. static void next_reap_node(void)
  819. {
  820. int node = __get_cpu_var(reap_node);
  821. node = next_node(node, node_online_map);
  822. if (unlikely(node >= MAX_NUMNODES))
  823. node = first_node(node_online_map);
  824. __get_cpu_var(reap_node) = node;
  825. }
  826. #else
  827. #define init_reap_node(cpu) do { } while (0)
  828. #define next_reap_node(void) do { } while (0)
  829. #endif
  830. /*
  831. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  832. * via the workqueue/eventd.
  833. * Add the CPU number into the expiration time to minimize the possibility of
  834. * the CPUs getting into lockstep and contending for the global cache chain
  835. * lock.
  836. */
  837. static void __cpuinit start_cpu_timer(int cpu)
  838. {
  839. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  840. /*
  841. * When this gets called from do_initcalls via cpucache_init(),
  842. * init_workqueues() has already run, so keventd will be setup
  843. * at that time.
  844. */
  845. if (keventd_up() && reap_work->work.func == NULL) {
  846. init_reap_node(cpu);
  847. INIT_DELAYED_WORK(reap_work, cache_reap);
  848. schedule_delayed_work_on(cpu, reap_work,
  849. __round_jiffies_relative(HZ, cpu));
  850. }
  851. }
  852. static struct array_cache *alloc_arraycache(int node, int entries,
  853. int batchcount)
  854. {
  855. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  856. struct array_cache *nc = NULL;
  857. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  858. if (nc) {
  859. nc->avail = 0;
  860. nc->limit = entries;
  861. nc->batchcount = batchcount;
  862. nc->touched = 0;
  863. spin_lock_init(&nc->lock);
  864. }
  865. return nc;
  866. }
  867. /*
  868. * Transfer objects in one arraycache to another.
  869. * Locking must be handled by the caller.
  870. *
  871. * Return the number of entries transferred.
  872. */
  873. static int transfer_objects(struct array_cache *to,
  874. struct array_cache *from, unsigned int max)
  875. {
  876. /* Figure out how many entries to transfer */
  877. int nr = min(min(from->avail, max), to->limit - to->avail);
  878. if (!nr)
  879. return 0;
  880. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  881. sizeof(void *) *nr);
  882. from->avail -= nr;
  883. to->avail += nr;
  884. to->touched = 1;
  885. return nr;
  886. }
  887. #ifndef CONFIG_NUMA
  888. #define drain_alien_cache(cachep, alien) do { } while (0)
  889. #define reap_alien(cachep, l3) do { } while (0)
  890. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  891. {
  892. return (struct array_cache **)BAD_ALIEN_MAGIC;
  893. }
  894. static inline void free_alien_cache(struct array_cache **ac_ptr)
  895. {
  896. }
  897. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  898. {
  899. return 0;
  900. }
  901. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  902. gfp_t flags)
  903. {
  904. return NULL;
  905. }
  906. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  907. gfp_t flags, int nodeid)
  908. {
  909. return NULL;
  910. }
  911. #else /* CONFIG_NUMA */
  912. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  913. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  914. static struct array_cache **alloc_alien_cache(int node, int limit)
  915. {
  916. struct array_cache **ac_ptr;
  917. int memsize = sizeof(void *) * nr_node_ids;
  918. int i;
  919. if (limit > 1)
  920. limit = 12;
  921. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  922. if (ac_ptr) {
  923. for_each_node(i) {
  924. if (i == node || !node_online(i)) {
  925. ac_ptr[i] = NULL;
  926. continue;
  927. }
  928. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  929. if (!ac_ptr[i]) {
  930. for (i--; i <= 0; i--)
  931. kfree(ac_ptr[i]);
  932. kfree(ac_ptr);
  933. return NULL;
  934. }
  935. }
  936. }
  937. return ac_ptr;
  938. }
  939. static void free_alien_cache(struct array_cache **ac_ptr)
  940. {
  941. int i;
  942. if (!ac_ptr)
  943. return;
  944. for_each_node(i)
  945. kfree(ac_ptr[i]);
  946. kfree(ac_ptr);
  947. }
  948. static void __drain_alien_cache(struct kmem_cache *cachep,
  949. struct array_cache *ac, int node)
  950. {
  951. struct kmem_list3 *rl3 = cachep->nodelists[node];
  952. if (ac->avail) {
  953. spin_lock(&rl3->list_lock);
  954. /*
  955. * Stuff objects into the remote nodes shared array first.
  956. * That way we could avoid the overhead of putting the objects
  957. * into the free lists and getting them back later.
  958. */
  959. if (rl3->shared)
  960. transfer_objects(rl3->shared, ac, ac->limit);
  961. free_block(cachep, ac->entry, ac->avail, node);
  962. ac->avail = 0;
  963. spin_unlock(&rl3->list_lock);
  964. }
  965. }
  966. /*
  967. * Called from cache_reap() to regularly drain alien caches round robin.
  968. */
  969. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  970. {
  971. int node = __get_cpu_var(reap_node);
  972. if (l3->alien) {
  973. struct array_cache *ac = l3->alien[node];
  974. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  975. __drain_alien_cache(cachep, ac, node);
  976. spin_unlock_irq(&ac->lock);
  977. }
  978. }
  979. }
  980. static void drain_alien_cache(struct kmem_cache *cachep,
  981. struct array_cache **alien)
  982. {
  983. int i = 0;
  984. struct array_cache *ac;
  985. unsigned long flags;
  986. for_each_online_node(i) {
  987. ac = alien[i];
  988. if (ac) {
  989. spin_lock_irqsave(&ac->lock, flags);
  990. __drain_alien_cache(cachep, ac, i);
  991. spin_unlock_irqrestore(&ac->lock, flags);
  992. }
  993. }
  994. }
  995. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  996. {
  997. struct slab *slabp = virt_to_slab(objp);
  998. int nodeid = slabp->nodeid;
  999. struct kmem_list3 *l3;
  1000. struct array_cache *alien = NULL;
  1001. int node;
  1002. node = numa_node_id();
  1003. /*
  1004. * Make sure we are not freeing a object from another node to the array
  1005. * cache on this cpu.
  1006. */
  1007. if (likely(slabp->nodeid == node))
  1008. return 0;
  1009. l3 = cachep->nodelists[node];
  1010. STATS_INC_NODEFREES(cachep);
  1011. if (l3->alien && l3->alien[nodeid]) {
  1012. alien = l3->alien[nodeid];
  1013. spin_lock(&alien->lock);
  1014. if (unlikely(alien->avail == alien->limit)) {
  1015. STATS_INC_ACOVERFLOW(cachep);
  1016. __drain_alien_cache(cachep, alien, nodeid);
  1017. }
  1018. alien->entry[alien->avail++] = objp;
  1019. spin_unlock(&alien->lock);
  1020. } else {
  1021. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  1022. free_block(cachep, &objp, 1, nodeid);
  1023. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  1024. }
  1025. return 1;
  1026. }
  1027. #endif
  1028. static void __cpuinit cpuup_canceled(long cpu)
  1029. {
  1030. struct kmem_cache *cachep;
  1031. struct kmem_list3 *l3 = NULL;
  1032. int node = cpu_to_node(cpu);
  1033. list_for_each_entry(cachep, &cache_chain, next) {
  1034. struct array_cache *nc;
  1035. struct array_cache *shared;
  1036. struct array_cache **alien;
  1037. cpumask_t mask;
  1038. mask = node_to_cpumask(node);
  1039. /* cpu is dead; no one can alloc from it. */
  1040. nc = cachep->array[cpu];
  1041. cachep->array[cpu] = NULL;
  1042. l3 = cachep->nodelists[node];
  1043. if (!l3)
  1044. goto free_array_cache;
  1045. spin_lock_irq(&l3->list_lock);
  1046. /* Free limit for this kmem_list3 */
  1047. l3->free_limit -= cachep->batchcount;
  1048. if (nc)
  1049. free_block(cachep, nc->entry, nc->avail, node);
  1050. if (!cpus_empty(mask)) {
  1051. spin_unlock_irq(&l3->list_lock);
  1052. goto free_array_cache;
  1053. }
  1054. shared = l3->shared;
  1055. if (shared) {
  1056. free_block(cachep, shared->entry,
  1057. shared->avail, node);
  1058. l3->shared = NULL;
  1059. }
  1060. alien = l3->alien;
  1061. l3->alien = NULL;
  1062. spin_unlock_irq(&l3->list_lock);
  1063. kfree(shared);
  1064. if (alien) {
  1065. drain_alien_cache(cachep, alien);
  1066. free_alien_cache(alien);
  1067. }
  1068. free_array_cache:
  1069. kfree(nc);
  1070. }
  1071. /*
  1072. * In the previous loop, all the objects were freed to
  1073. * the respective cache's slabs, now we can go ahead and
  1074. * shrink each nodelist to its limit.
  1075. */
  1076. list_for_each_entry(cachep, &cache_chain, next) {
  1077. l3 = cachep->nodelists[node];
  1078. if (!l3)
  1079. continue;
  1080. drain_freelist(cachep, l3, l3->free_objects);
  1081. }
  1082. }
  1083. static int __cpuinit cpuup_prepare(long cpu)
  1084. {
  1085. struct kmem_cache *cachep;
  1086. struct kmem_list3 *l3 = NULL;
  1087. int node = cpu_to_node(cpu);
  1088. const int memsize = sizeof(struct kmem_list3);
  1089. /*
  1090. * We need to do this right in the beginning since
  1091. * alloc_arraycache's are going to use this list.
  1092. * kmalloc_node allows us to add the slab to the right
  1093. * kmem_list3 and not this cpu's kmem_list3
  1094. */
  1095. list_for_each_entry(cachep, &cache_chain, next) {
  1096. /*
  1097. * Set up the size64 kmemlist for cpu before we can
  1098. * begin anything. Make sure some other cpu on this
  1099. * node has not already allocated this
  1100. */
  1101. if (!cachep->nodelists[node]) {
  1102. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1103. if (!l3)
  1104. goto bad;
  1105. kmem_list3_init(l3);
  1106. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1107. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1108. /*
  1109. * The l3s don't come and go as CPUs come and
  1110. * go. cache_chain_mutex is sufficient
  1111. * protection here.
  1112. */
  1113. cachep->nodelists[node] = l3;
  1114. }
  1115. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1116. cachep->nodelists[node]->free_limit =
  1117. (1 + nr_cpus_node(node)) *
  1118. cachep->batchcount + cachep->num;
  1119. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1120. }
  1121. /*
  1122. * Now we can go ahead with allocating the shared arrays and
  1123. * array caches
  1124. */
  1125. list_for_each_entry(cachep, &cache_chain, next) {
  1126. struct array_cache *nc;
  1127. struct array_cache *shared = NULL;
  1128. struct array_cache **alien = NULL;
  1129. nc = alloc_arraycache(node, cachep->limit,
  1130. cachep->batchcount);
  1131. if (!nc)
  1132. goto bad;
  1133. if (cachep->shared) {
  1134. shared = alloc_arraycache(node,
  1135. cachep->shared * cachep->batchcount,
  1136. 0xbaadf00d);
  1137. if (!shared) {
  1138. kfree(nc);
  1139. goto bad;
  1140. }
  1141. }
  1142. if (use_alien_caches) {
  1143. alien = alloc_alien_cache(node, cachep->limit);
  1144. if (!alien) {
  1145. kfree(shared);
  1146. kfree(nc);
  1147. goto bad;
  1148. }
  1149. }
  1150. cachep->array[cpu] = nc;
  1151. l3 = cachep->nodelists[node];
  1152. BUG_ON(!l3);
  1153. spin_lock_irq(&l3->list_lock);
  1154. if (!l3->shared) {
  1155. /*
  1156. * We are serialised from CPU_DEAD or
  1157. * CPU_UP_CANCELLED by the cpucontrol lock
  1158. */
  1159. l3->shared = shared;
  1160. shared = NULL;
  1161. }
  1162. #ifdef CONFIG_NUMA
  1163. if (!l3->alien) {
  1164. l3->alien = alien;
  1165. alien = NULL;
  1166. }
  1167. #endif
  1168. spin_unlock_irq(&l3->list_lock);
  1169. kfree(shared);
  1170. free_alien_cache(alien);
  1171. }
  1172. return 0;
  1173. bad:
  1174. cpuup_canceled(cpu);
  1175. return -ENOMEM;
  1176. }
  1177. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1178. unsigned long action, void *hcpu)
  1179. {
  1180. long cpu = (long)hcpu;
  1181. int err = 0;
  1182. switch (action) {
  1183. case CPU_LOCK_ACQUIRE:
  1184. mutex_lock(&cache_chain_mutex);
  1185. break;
  1186. case CPU_UP_PREPARE:
  1187. case CPU_UP_PREPARE_FROZEN:
  1188. err = cpuup_prepare(cpu);
  1189. break;
  1190. case CPU_ONLINE:
  1191. case CPU_ONLINE_FROZEN:
  1192. start_cpu_timer(cpu);
  1193. break;
  1194. #ifdef CONFIG_HOTPLUG_CPU
  1195. case CPU_DOWN_PREPARE:
  1196. case CPU_DOWN_PREPARE_FROZEN:
  1197. /*
  1198. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1199. * held so that if cache_reap() is invoked it cannot do
  1200. * anything expensive but will only modify reap_work
  1201. * and reschedule the timer.
  1202. */
  1203. cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
  1204. /* Now the cache_reaper is guaranteed to be not running. */
  1205. per_cpu(reap_work, cpu).work.func = NULL;
  1206. break;
  1207. case CPU_DOWN_FAILED:
  1208. case CPU_DOWN_FAILED_FROZEN:
  1209. start_cpu_timer(cpu);
  1210. break;
  1211. case CPU_DEAD:
  1212. case CPU_DEAD_FROZEN:
  1213. /*
  1214. * Even if all the cpus of a node are down, we don't free the
  1215. * kmem_list3 of any cache. This to avoid a race between
  1216. * cpu_down, and a kmalloc allocation from another cpu for
  1217. * memory from the node of the cpu going down. The list3
  1218. * structure is usually allocated from kmem_cache_create() and
  1219. * gets destroyed at kmem_cache_destroy().
  1220. */
  1221. /* fall through */
  1222. #endif
  1223. case CPU_UP_CANCELED:
  1224. case CPU_UP_CANCELED_FROZEN:
  1225. cpuup_canceled(cpu);
  1226. break;
  1227. case CPU_LOCK_RELEASE:
  1228. mutex_unlock(&cache_chain_mutex);
  1229. break;
  1230. }
  1231. return err ? NOTIFY_BAD : NOTIFY_OK;
  1232. }
  1233. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1234. &cpuup_callback, NULL, 0
  1235. };
  1236. /*
  1237. * swap the static kmem_list3 with kmalloced memory
  1238. */
  1239. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1240. int nodeid)
  1241. {
  1242. struct kmem_list3 *ptr;
  1243. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1244. BUG_ON(!ptr);
  1245. local_irq_disable();
  1246. memcpy(ptr, list, sizeof(struct kmem_list3));
  1247. /*
  1248. * Do not assume that spinlocks can be initialized via memcpy:
  1249. */
  1250. spin_lock_init(&ptr->list_lock);
  1251. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1252. cachep->nodelists[nodeid] = ptr;
  1253. local_irq_enable();
  1254. }
  1255. /*
  1256. * Initialisation. Called after the page allocator have been initialised and
  1257. * before smp_init().
  1258. */
  1259. void __init kmem_cache_init(void)
  1260. {
  1261. size_t left_over;
  1262. struct cache_sizes *sizes;
  1263. struct cache_names *names;
  1264. int i;
  1265. int order;
  1266. int node;
  1267. if (num_possible_nodes() == 1) {
  1268. use_alien_caches = 0;
  1269. numa_platform = 0;
  1270. }
  1271. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1272. kmem_list3_init(&initkmem_list3[i]);
  1273. if (i < MAX_NUMNODES)
  1274. cache_cache.nodelists[i] = NULL;
  1275. }
  1276. /*
  1277. * Fragmentation resistance on low memory - only use bigger
  1278. * page orders on machines with more than 32MB of memory.
  1279. */
  1280. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1281. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1282. /* Bootstrap is tricky, because several objects are allocated
  1283. * from caches that do not exist yet:
  1284. * 1) initialize the cache_cache cache: it contains the struct
  1285. * kmem_cache structures of all caches, except cache_cache itself:
  1286. * cache_cache is statically allocated.
  1287. * Initially an __init data area is used for the head array and the
  1288. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1289. * array at the end of the bootstrap.
  1290. * 2) Create the first kmalloc cache.
  1291. * The struct kmem_cache for the new cache is allocated normally.
  1292. * An __init data area is used for the head array.
  1293. * 3) Create the remaining kmalloc caches, with minimally sized
  1294. * head arrays.
  1295. * 4) Replace the __init data head arrays for cache_cache and the first
  1296. * kmalloc cache with kmalloc allocated arrays.
  1297. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1298. * the other cache's with kmalloc allocated memory.
  1299. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1300. */
  1301. node = numa_node_id();
  1302. /* 1) create the cache_cache */
  1303. INIT_LIST_HEAD(&cache_chain);
  1304. list_add(&cache_cache.next, &cache_chain);
  1305. cache_cache.colour_off = cache_line_size();
  1306. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1307. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
  1308. /*
  1309. * struct kmem_cache size depends on nr_node_ids, which
  1310. * can be less than MAX_NUMNODES.
  1311. */
  1312. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1313. nr_node_ids * sizeof(struct kmem_list3 *);
  1314. #if DEBUG
  1315. cache_cache.obj_size = cache_cache.buffer_size;
  1316. #endif
  1317. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1318. cache_line_size());
  1319. cache_cache.reciprocal_buffer_size =
  1320. reciprocal_value(cache_cache.buffer_size);
  1321. for (order = 0; order < MAX_ORDER; order++) {
  1322. cache_estimate(order, cache_cache.buffer_size,
  1323. cache_line_size(), 0, &left_over, &cache_cache.num);
  1324. if (cache_cache.num)
  1325. break;
  1326. }
  1327. BUG_ON(!cache_cache.num);
  1328. cache_cache.gfporder = order;
  1329. cache_cache.colour = left_over / cache_cache.colour_off;
  1330. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1331. sizeof(struct slab), cache_line_size());
  1332. /* 2+3) create the kmalloc caches */
  1333. sizes = malloc_sizes;
  1334. names = cache_names;
  1335. /*
  1336. * Initialize the caches that provide memory for the array cache and the
  1337. * kmem_list3 structures first. Without this, further allocations will
  1338. * bug.
  1339. */
  1340. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1341. sizes[INDEX_AC].cs_size,
  1342. ARCH_KMALLOC_MINALIGN,
  1343. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1344. NULL);
  1345. if (INDEX_AC != INDEX_L3) {
  1346. sizes[INDEX_L3].cs_cachep =
  1347. kmem_cache_create(names[INDEX_L3].name,
  1348. sizes[INDEX_L3].cs_size,
  1349. ARCH_KMALLOC_MINALIGN,
  1350. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1351. NULL);
  1352. }
  1353. slab_early_init = 0;
  1354. while (sizes->cs_size != ULONG_MAX) {
  1355. /*
  1356. * For performance, all the general caches are L1 aligned.
  1357. * This should be particularly beneficial on SMP boxes, as it
  1358. * eliminates "false sharing".
  1359. * Note for systems short on memory removing the alignment will
  1360. * allow tighter packing of the smaller caches.
  1361. */
  1362. if (!sizes->cs_cachep) {
  1363. sizes->cs_cachep = kmem_cache_create(names->name,
  1364. sizes->cs_size,
  1365. ARCH_KMALLOC_MINALIGN,
  1366. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1367. NULL);
  1368. }
  1369. #ifdef CONFIG_ZONE_DMA
  1370. sizes->cs_dmacachep = kmem_cache_create(
  1371. names->name_dma,
  1372. sizes->cs_size,
  1373. ARCH_KMALLOC_MINALIGN,
  1374. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1375. SLAB_PANIC,
  1376. NULL);
  1377. #endif
  1378. sizes++;
  1379. names++;
  1380. }
  1381. /* 4) Replace the bootstrap head arrays */
  1382. {
  1383. struct array_cache *ptr;
  1384. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1385. local_irq_disable();
  1386. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1387. memcpy(ptr, cpu_cache_get(&cache_cache),
  1388. sizeof(struct arraycache_init));
  1389. /*
  1390. * Do not assume that spinlocks can be initialized via memcpy:
  1391. */
  1392. spin_lock_init(&ptr->lock);
  1393. cache_cache.array[smp_processor_id()] = ptr;
  1394. local_irq_enable();
  1395. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1396. local_irq_disable();
  1397. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1398. != &initarray_generic.cache);
  1399. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1400. sizeof(struct arraycache_init));
  1401. /*
  1402. * Do not assume that spinlocks can be initialized via memcpy:
  1403. */
  1404. spin_lock_init(&ptr->lock);
  1405. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1406. ptr;
  1407. local_irq_enable();
  1408. }
  1409. /* 5) Replace the bootstrap kmem_list3's */
  1410. {
  1411. int nid;
  1412. /* Replace the static kmem_list3 structures for the boot cpu */
  1413. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
  1414. for_each_node_state(nid, N_NORMAL_MEMORY) {
  1415. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1416. &initkmem_list3[SIZE_AC + nid], nid);
  1417. if (INDEX_AC != INDEX_L3) {
  1418. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1419. &initkmem_list3[SIZE_L3 + nid], nid);
  1420. }
  1421. }
  1422. }
  1423. /* 6) resize the head arrays to their final sizes */
  1424. {
  1425. struct kmem_cache *cachep;
  1426. mutex_lock(&cache_chain_mutex);
  1427. list_for_each_entry(cachep, &cache_chain, next)
  1428. if (enable_cpucache(cachep))
  1429. BUG();
  1430. mutex_unlock(&cache_chain_mutex);
  1431. }
  1432. /* Annotate slab for lockdep -- annotate the malloc caches */
  1433. init_lock_keys();
  1434. /* Done! */
  1435. g_cpucache_up = FULL;
  1436. /*
  1437. * Register a cpu startup notifier callback that initializes
  1438. * cpu_cache_get for all new cpus
  1439. */
  1440. register_cpu_notifier(&cpucache_notifier);
  1441. /*
  1442. * The reap timers are started later, with a module init call: That part
  1443. * of the kernel is not yet operational.
  1444. */
  1445. }
  1446. static int __init cpucache_init(void)
  1447. {
  1448. int cpu;
  1449. /*
  1450. * Register the timers that return unneeded pages to the page allocator
  1451. */
  1452. for_each_online_cpu(cpu)
  1453. start_cpu_timer(cpu);
  1454. return 0;
  1455. }
  1456. __initcall(cpucache_init);
  1457. /*
  1458. * Interface to system's page allocator. No need to hold the cache-lock.
  1459. *
  1460. * If we requested dmaable memory, we will get it. Even if we
  1461. * did not request dmaable memory, we might get it, but that
  1462. * would be relatively rare and ignorable.
  1463. */
  1464. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1465. {
  1466. struct page *page;
  1467. int nr_pages;
  1468. int i;
  1469. #ifndef CONFIG_MMU
  1470. /*
  1471. * Nommu uses slab's for process anonymous memory allocations, and thus
  1472. * requires __GFP_COMP to properly refcount higher order allocations
  1473. */
  1474. flags |= __GFP_COMP;
  1475. #endif
  1476. flags |= cachep->gfpflags;
  1477. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1478. flags |= __GFP_RECLAIMABLE;
  1479. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1480. if (!page)
  1481. return NULL;
  1482. nr_pages = (1 << cachep->gfporder);
  1483. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1484. add_zone_page_state(page_zone(page),
  1485. NR_SLAB_RECLAIMABLE, nr_pages);
  1486. else
  1487. add_zone_page_state(page_zone(page),
  1488. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1489. for (i = 0; i < nr_pages; i++)
  1490. __SetPageSlab(page + i);
  1491. return page_address(page);
  1492. }
  1493. /*
  1494. * Interface to system's page release.
  1495. */
  1496. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1497. {
  1498. unsigned long i = (1 << cachep->gfporder);
  1499. struct page *page = virt_to_page(addr);
  1500. const unsigned long nr_freed = i;
  1501. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1502. sub_zone_page_state(page_zone(page),
  1503. NR_SLAB_RECLAIMABLE, nr_freed);
  1504. else
  1505. sub_zone_page_state(page_zone(page),
  1506. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1507. while (i--) {
  1508. BUG_ON(!PageSlab(page));
  1509. __ClearPageSlab(page);
  1510. page++;
  1511. }
  1512. if (current->reclaim_state)
  1513. current->reclaim_state->reclaimed_slab += nr_freed;
  1514. free_pages((unsigned long)addr, cachep->gfporder);
  1515. }
  1516. static void kmem_rcu_free(struct rcu_head *head)
  1517. {
  1518. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1519. struct kmem_cache *cachep = slab_rcu->cachep;
  1520. kmem_freepages(cachep, slab_rcu->addr);
  1521. if (OFF_SLAB(cachep))
  1522. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1523. }
  1524. #if DEBUG
  1525. #ifdef CONFIG_DEBUG_PAGEALLOC
  1526. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1527. unsigned long caller)
  1528. {
  1529. int size = obj_size(cachep);
  1530. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1531. if (size < 5 * sizeof(unsigned long))
  1532. return;
  1533. *addr++ = 0x12345678;
  1534. *addr++ = caller;
  1535. *addr++ = smp_processor_id();
  1536. size -= 3 * sizeof(unsigned long);
  1537. {
  1538. unsigned long *sptr = &caller;
  1539. unsigned long svalue;
  1540. while (!kstack_end(sptr)) {
  1541. svalue = *sptr++;
  1542. if (kernel_text_address(svalue)) {
  1543. *addr++ = svalue;
  1544. size -= sizeof(unsigned long);
  1545. if (size <= sizeof(unsigned long))
  1546. break;
  1547. }
  1548. }
  1549. }
  1550. *addr++ = 0x87654321;
  1551. }
  1552. #endif
  1553. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1554. {
  1555. int size = obj_size(cachep);
  1556. addr = &((char *)addr)[obj_offset(cachep)];
  1557. memset(addr, val, size);
  1558. *(unsigned char *)(addr + size - 1) = POISON_END;
  1559. }
  1560. static void dump_line(char *data, int offset, int limit)
  1561. {
  1562. int i;
  1563. unsigned char error = 0;
  1564. int bad_count = 0;
  1565. printk(KERN_ERR "%03x:", offset);
  1566. for (i = 0; i < limit; i++) {
  1567. if (data[offset + i] != POISON_FREE) {
  1568. error = data[offset + i];
  1569. bad_count++;
  1570. }
  1571. printk(" %02x", (unsigned char)data[offset + i]);
  1572. }
  1573. printk("\n");
  1574. if (bad_count == 1) {
  1575. error ^= POISON_FREE;
  1576. if (!(error & (error - 1))) {
  1577. printk(KERN_ERR "Single bit error detected. Probably "
  1578. "bad RAM.\n");
  1579. #ifdef CONFIG_X86
  1580. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1581. "test tool.\n");
  1582. #else
  1583. printk(KERN_ERR "Run a memory test tool.\n");
  1584. #endif
  1585. }
  1586. }
  1587. }
  1588. #endif
  1589. #if DEBUG
  1590. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1591. {
  1592. int i, size;
  1593. char *realobj;
  1594. if (cachep->flags & SLAB_RED_ZONE) {
  1595. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1596. *dbg_redzone1(cachep, objp),
  1597. *dbg_redzone2(cachep, objp));
  1598. }
  1599. if (cachep->flags & SLAB_STORE_USER) {
  1600. printk(KERN_ERR "Last user: [<%p>]",
  1601. *dbg_userword(cachep, objp));
  1602. print_symbol("(%s)",
  1603. (unsigned long)*dbg_userword(cachep, objp));
  1604. printk("\n");
  1605. }
  1606. realobj = (char *)objp + obj_offset(cachep);
  1607. size = obj_size(cachep);
  1608. for (i = 0; i < size && lines; i += 16, lines--) {
  1609. int limit;
  1610. limit = 16;
  1611. if (i + limit > size)
  1612. limit = size - i;
  1613. dump_line(realobj, i, limit);
  1614. }
  1615. }
  1616. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1617. {
  1618. char *realobj;
  1619. int size, i;
  1620. int lines = 0;
  1621. realobj = (char *)objp + obj_offset(cachep);
  1622. size = obj_size(cachep);
  1623. for (i = 0; i < size; i++) {
  1624. char exp = POISON_FREE;
  1625. if (i == size - 1)
  1626. exp = POISON_END;
  1627. if (realobj[i] != exp) {
  1628. int limit;
  1629. /* Mismatch ! */
  1630. /* Print header */
  1631. if (lines == 0) {
  1632. printk(KERN_ERR
  1633. "Slab corruption: %s start=%p, len=%d\n",
  1634. cachep->name, realobj, size);
  1635. print_objinfo(cachep, objp, 0);
  1636. }
  1637. /* Hexdump the affected line */
  1638. i = (i / 16) * 16;
  1639. limit = 16;
  1640. if (i + limit > size)
  1641. limit = size - i;
  1642. dump_line(realobj, i, limit);
  1643. i += 16;
  1644. lines++;
  1645. /* Limit to 5 lines */
  1646. if (lines > 5)
  1647. break;
  1648. }
  1649. }
  1650. if (lines != 0) {
  1651. /* Print some data about the neighboring objects, if they
  1652. * exist:
  1653. */
  1654. struct slab *slabp = virt_to_slab(objp);
  1655. unsigned int objnr;
  1656. objnr = obj_to_index(cachep, slabp, objp);
  1657. if (objnr) {
  1658. objp = index_to_obj(cachep, slabp, objnr - 1);
  1659. realobj = (char *)objp + obj_offset(cachep);
  1660. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1661. realobj, size);
  1662. print_objinfo(cachep, objp, 2);
  1663. }
  1664. if (objnr + 1 < cachep->num) {
  1665. objp = index_to_obj(cachep, slabp, objnr + 1);
  1666. realobj = (char *)objp + obj_offset(cachep);
  1667. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1668. realobj, size);
  1669. print_objinfo(cachep, objp, 2);
  1670. }
  1671. }
  1672. }
  1673. #endif
  1674. #if DEBUG
  1675. /**
  1676. * slab_destroy_objs - destroy a slab and its objects
  1677. * @cachep: cache pointer being destroyed
  1678. * @slabp: slab pointer being destroyed
  1679. *
  1680. * Call the registered destructor for each object in a slab that is being
  1681. * destroyed.
  1682. */
  1683. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1684. {
  1685. int i;
  1686. for (i = 0; i < cachep->num; i++) {
  1687. void *objp = index_to_obj(cachep, slabp, i);
  1688. if (cachep->flags & SLAB_POISON) {
  1689. #ifdef CONFIG_DEBUG_PAGEALLOC
  1690. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1691. OFF_SLAB(cachep))
  1692. kernel_map_pages(virt_to_page(objp),
  1693. cachep->buffer_size / PAGE_SIZE, 1);
  1694. else
  1695. check_poison_obj(cachep, objp);
  1696. #else
  1697. check_poison_obj(cachep, objp);
  1698. #endif
  1699. }
  1700. if (cachep->flags & SLAB_RED_ZONE) {
  1701. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1702. slab_error(cachep, "start of a freed object "
  1703. "was overwritten");
  1704. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1705. slab_error(cachep, "end of a freed object "
  1706. "was overwritten");
  1707. }
  1708. }
  1709. }
  1710. #else
  1711. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1712. {
  1713. }
  1714. #endif
  1715. /**
  1716. * slab_destroy - destroy and release all objects in a slab
  1717. * @cachep: cache pointer being destroyed
  1718. * @slabp: slab pointer being destroyed
  1719. *
  1720. * Destroy all the objs in a slab, and release the mem back to the system.
  1721. * Before calling the slab must have been unlinked from the cache. The
  1722. * cache-lock is not held/needed.
  1723. */
  1724. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1725. {
  1726. void *addr = slabp->s_mem - slabp->colouroff;
  1727. slab_destroy_objs(cachep, slabp);
  1728. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1729. struct slab_rcu *slab_rcu;
  1730. slab_rcu = (struct slab_rcu *)slabp;
  1731. slab_rcu->cachep = cachep;
  1732. slab_rcu->addr = addr;
  1733. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1734. } else {
  1735. kmem_freepages(cachep, addr);
  1736. if (OFF_SLAB(cachep))
  1737. kmem_cache_free(cachep->slabp_cache, slabp);
  1738. }
  1739. }
  1740. /*
  1741. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1742. * size of kmem_list3.
  1743. */
  1744. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1745. {
  1746. int node;
  1747. for_each_node_state(node, N_NORMAL_MEMORY) {
  1748. cachep->nodelists[node] = &initkmem_list3[index + node];
  1749. cachep->nodelists[node]->next_reap = jiffies +
  1750. REAPTIMEOUT_LIST3 +
  1751. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1752. }
  1753. }
  1754. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1755. {
  1756. int i;
  1757. struct kmem_list3 *l3;
  1758. for_each_online_cpu(i)
  1759. kfree(cachep->array[i]);
  1760. /* NUMA: free the list3 structures */
  1761. for_each_online_node(i) {
  1762. l3 = cachep->nodelists[i];
  1763. if (l3) {
  1764. kfree(l3->shared);
  1765. free_alien_cache(l3->alien);
  1766. kfree(l3);
  1767. }
  1768. }
  1769. kmem_cache_free(&cache_cache, cachep);
  1770. }
  1771. /**
  1772. * calculate_slab_order - calculate size (page order) of slabs
  1773. * @cachep: pointer to the cache that is being created
  1774. * @size: size of objects to be created in this cache.
  1775. * @align: required alignment for the objects.
  1776. * @flags: slab allocation flags
  1777. *
  1778. * Also calculates the number of objects per slab.
  1779. *
  1780. * This could be made much more intelligent. For now, try to avoid using
  1781. * high order pages for slabs. When the gfp() functions are more friendly
  1782. * towards high-order requests, this should be changed.
  1783. */
  1784. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1785. size_t size, size_t align, unsigned long flags)
  1786. {
  1787. unsigned long offslab_limit;
  1788. size_t left_over = 0;
  1789. int gfporder;
  1790. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1791. unsigned int num;
  1792. size_t remainder;
  1793. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1794. if (!num)
  1795. continue;
  1796. if (flags & CFLGS_OFF_SLAB) {
  1797. /*
  1798. * Max number of objs-per-slab for caches which
  1799. * use off-slab slabs. Needed to avoid a possible
  1800. * looping condition in cache_grow().
  1801. */
  1802. offslab_limit = size - sizeof(struct slab);
  1803. offslab_limit /= sizeof(kmem_bufctl_t);
  1804. if (num > offslab_limit)
  1805. break;
  1806. }
  1807. /* Found something acceptable - save it away */
  1808. cachep->num = num;
  1809. cachep->gfporder = gfporder;
  1810. left_over = remainder;
  1811. /*
  1812. * A VFS-reclaimable slab tends to have most allocations
  1813. * as GFP_NOFS and we really don't want to have to be allocating
  1814. * higher-order pages when we are unable to shrink dcache.
  1815. */
  1816. if (flags & SLAB_RECLAIM_ACCOUNT)
  1817. break;
  1818. /*
  1819. * Large number of objects is good, but very large slabs are
  1820. * currently bad for the gfp()s.
  1821. */
  1822. if (gfporder >= slab_break_gfp_order)
  1823. break;
  1824. /*
  1825. * Acceptable internal fragmentation?
  1826. */
  1827. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1828. break;
  1829. }
  1830. return left_over;
  1831. }
  1832. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
  1833. {
  1834. if (g_cpucache_up == FULL)
  1835. return enable_cpucache(cachep);
  1836. if (g_cpucache_up == NONE) {
  1837. /*
  1838. * Note: the first kmem_cache_create must create the cache
  1839. * that's used by kmalloc(24), otherwise the creation of
  1840. * further caches will BUG().
  1841. */
  1842. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1843. /*
  1844. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1845. * the first cache, then we need to set up all its list3s,
  1846. * otherwise the creation of further caches will BUG().
  1847. */
  1848. set_up_list3s(cachep, SIZE_AC);
  1849. if (INDEX_AC == INDEX_L3)
  1850. g_cpucache_up = PARTIAL_L3;
  1851. else
  1852. g_cpucache_up = PARTIAL_AC;
  1853. } else {
  1854. cachep->array[smp_processor_id()] =
  1855. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1856. if (g_cpucache_up == PARTIAL_AC) {
  1857. set_up_list3s(cachep, SIZE_L3);
  1858. g_cpucache_up = PARTIAL_L3;
  1859. } else {
  1860. int node;
  1861. for_each_node_state(node, N_NORMAL_MEMORY) {
  1862. cachep->nodelists[node] =
  1863. kmalloc_node(sizeof(struct kmem_list3),
  1864. GFP_KERNEL, node);
  1865. BUG_ON(!cachep->nodelists[node]);
  1866. kmem_list3_init(cachep->nodelists[node]);
  1867. }
  1868. }
  1869. }
  1870. cachep->nodelists[numa_node_id()]->next_reap =
  1871. jiffies + REAPTIMEOUT_LIST3 +
  1872. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1873. cpu_cache_get(cachep)->avail = 0;
  1874. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1875. cpu_cache_get(cachep)->batchcount = 1;
  1876. cpu_cache_get(cachep)->touched = 0;
  1877. cachep->batchcount = 1;
  1878. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1879. return 0;
  1880. }
  1881. /**
  1882. * kmem_cache_create - Create a cache.
  1883. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1884. * @size: The size of objects to be created in this cache.
  1885. * @align: The required alignment for the objects.
  1886. * @flags: SLAB flags
  1887. * @ctor: A constructor for the objects.
  1888. *
  1889. * Returns a ptr to the cache on success, NULL on failure.
  1890. * Cannot be called within a int, but can be interrupted.
  1891. * The @ctor is run when new pages are allocated by the cache.
  1892. *
  1893. * @name must be valid until the cache is destroyed. This implies that
  1894. * the module calling this has to destroy the cache before getting unloaded.
  1895. *
  1896. * The flags are
  1897. *
  1898. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1899. * to catch references to uninitialised memory.
  1900. *
  1901. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1902. * for buffer overruns.
  1903. *
  1904. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1905. * cacheline. This can be beneficial if you're counting cycles as closely
  1906. * as davem.
  1907. */
  1908. struct kmem_cache *
  1909. kmem_cache_create (const char *name, size_t size, size_t align,
  1910. unsigned long flags,
  1911. void (*ctor)(struct kmem_cache *, void *))
  1912. {
  1913. size_t left_over, slab_size, ralign;
  1914. struct kmem_cache *cachep = NULL, *pc;
  1915. /*
  1916. * Sanity checks... these are all serious usage bugs.
  1917. */
  1918. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1919. size > KMALLOC_MAX_SIZE) {
  1920. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1921. name);
  1922. BUG();
  1923. }
  1924. /*
  1925. * We use cache_chain_mutex to ensure a consistent view of
  1926. * cpu_online_map as well. Please see cpuup_callback
  1927. */
  1928. mutex_lock(&cache_chain_mutex);
  1929. list_for_each_entry(pc, &cache_chain, next) {
  1930. char tmp;
  1931. int res;
  1932. /*
  1933. * This happens when the module gets unloaded and doesn't
  1934. * destroy its slab cache and no-one else reuses the vmalloc
  1935. * area of the module. Print a warning.
  1936. */
  1937. res = probe_kernel_address(pc->name, tmp);
  1938. if (res) {
  1939. printk(KERN_ERR
  1940. "SLAB: cache with size %d has lost its name\n",
  1941. pc->buffer_size);
  1942. continue;
  1943. }
  1944. if (!strcmp(pc->name, name)) {
  1945. printk(KERN_ERR
  1946. "kmem_cache_create: duplicate cache %s\n", name);
  1947. dump_stack();
  1948. goto oops;
  1949. }
  1950. }
  1951. #if DEBUG
  1952. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1953. #if FORCED_DEBUG
  1954. /*
  1955. * Enable redzoning and last user accounting, except for caches with
  1956. * large objects, if the increased size would increase the object size
  1957. * above the next power of two: caches with object sizes just above a
  1958. * power of two have a significant amount of internal fragmentation.
  1959. */
  1960. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1961. 2 * sizeof(unsigned long long)))
  1962. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1963. if (!(flags & SLAB_DESTROY_BY_RCU))
  1964. flags |= SLAB_POISON;
  1965. #endif
  1966. if (flags & SLAB_DESTROY_BY_RCU)
  1967. BUG_ON(flags & SLAB_POISON);
  1968. #endif
  1969. /*
  1970. * Always checks flags, a caller might be expecting debug support which
  1971. * isn't available.
  1972. */
  1973. BUG_ON(flags & ~CREATE_MASK);
  1974. /*
  1975. * Check that size is in terms of words. This is needed to avoid
  1976. * unaligned accesses for some archs when redzoning is used, and makes
  1977. * sure any on-slab bufctl's are also correctly aligned.
  1978. */
  1979. if (size & (BYTES_PER_WORD - 1)) {
  1980. size += (BYTES_PER_WORD - 1);
  1981. size &= ~(BYTES_PER_WORD - 1);
  1982. }
  1983. /* calculate the final buffer alignment: */
  1984. /* 1) arch recommendation: can be overridden for debug */
  1985. if (flags & SLAB_HWCACHE_ALIGN) {
  1986. /*
  1987. * Default alignment: as specified by the arch code. Except if
  1988. * an object is really small, then squeeze multiple objects into
  1989. * one cacheline.
  1990. */
  1991. ralign = cache_line_size();
  1992. while (size <= ralign / 2)
  1993. ralign /= 2;
  1994. } else {
  1995. ralign = BYTES_PER_WORD;
  1996. }
  1997. /*
  1998. * Redzoning and user store require word alignment or possibly larger.
  1999. * Note this will be overridden by architecture or caller mandated
  2000. * alignment if either is greater than BYTES_PER_WORD.
  2001. */
  2002. if (flags & SLAB_STORE_USER)
  2003. ralign = BYTES_PER_WORD;
  2004. if (flags & SLAB_RED_ZONE) {
  2005. ralign = REDZONE_ALIGN;
  2006. /* If redzoning, ensure that the second redzone is suitably
  2007. * aligned, by adjusting the object size accordingly. */
  2008. size += REDZONE_ALIGN - 1;
  2009. size &= ~(REDZONE_ALIGN - 1);
  2010. }
  2011. /* 2) arch mandated alignment */
  2012. if (ralign < ARCH_SLAB_MINALIGN) {
  2013. ralign = ARCH_SLAB_MINALIGN;
  2014. }
  2015. /* 3) caller mandated alignment */
  2016. if (ralign < align) {
  2017. ralign = align;
  2018. }
  2019. /* disable debug if necessary */
  2020. if (ralign > __alignof__(unsigned long long))
  2021. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2022. /*
  2023. * 4) Store it.
  2024. */
  2025. align = ralign;
  2026. /* Get cache's description obj. */
  2027. cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
  2028. if (!cachep)
  2029. goto oops;
  2030. #if DEBUG
  2031. cachep->obj_size = size;
  2032. /*
  2033. * Both debugging options require word-alignment which is calculated
  2034. * into align above.
  2035. */
  2036. if (flags & SLAB_RED_ZONE) {
  2037. /* add space for red zone words */
  2038. cachep->obj_offset += sizeof(unsigned long long);
  2039. size += 2 * sizeof(unsigned long long);
  2040. }
  2041. if (flags & SLAB_STORE_USER) {
  2042. /* user store requires one word storage behind the end of
  2043. * the real object. But if the second red zone needs to be
  2044. * aligned to 64 bits, we must allow that much space.
  2045. */
  2046. if (flags & SLAB_RED_ZONE)
  2047. size += REDZONE_ALIGN;
  2048. else
  2049. size += BYTES_PER_WORD;
  2050. }
  2051. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2052. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2053. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2054. cachep->obj_offset += PAGE_SIZE - size;
  2055. size = PAGE_SIZE;
  2056. }
  2057. #endif
  2058. #endif
  2059. /*
  2060. * Determine if the slab management is 'on' or 'off' slab.
  2061. * (bootstrapping cannot cope with offslab caches so don't do
  2062. * it too early on.)
  2063. */
  2064. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  2065. /*
  2066. * Size is large, assume best to place the slab management obj
  2067. * off-slab (should allow better packing of objs).
  2068. */
  2069. flags |= CFLGS_OFF_SLAB;
  2070. size = ALIGN(size, align);
  2071. left_over = calculate_slab_order(cachep, size, align, flags);
  2072. if (!cachep->num) {
  2073. printk(KERN_ERR
  2074. "kmem_cache_create: couldn't create cache %s.\n", name);
  2075. kmem_cache_free(&cache_cache, cachep);
  2076. cachep = NULL;
  2077. goto oops;
  2078. }
  2079. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2080. + sizeof(struct slab), align);
  2081. /*
  2082. * If the slab has been placed off-slab, and we have enough space then
  2083. * move it on-slab. This is at the expense of any extra colouring.
  2084. */
  2085. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2086. flags &= ~CFLGS_OFF_SLAB;
  2087. left_over -= slab_size;
  2088. }
  2089. if (flags & CFLGS_OFF_SLAB) {
  2090. /* really off slab. No need for manual alignment */
  2091. slab_size =
  2092. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2093. }
  2094. cachep->colour_off = cache_line_size();
  2095. /* Offset must be a multiple of the alignment. */
  2096. if (cachep->colour_off < align)
  2097. cachep->colour_off = align;
  2098. cachep->colour = left_over / cachep->colour_off;
  2099. cachep->slab_size = slab_size;
  2100. cachep->flags = flags;
  2101. cachep->gfpflags = 0;
  2102. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2103. cachep->gfpflags |= GFP_DMA;
  2104. cachep->buffer_size = size;
  2105. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2106. if (flags & CFLGS_OFF_SLAB) {
  2107. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2108. /*
  2109. * This is a possibility for one of the malloc_sizes caches.
  2110. * But since we go off slab only for object size greater than
  2111. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2112. * this should not happen at all.
  2113. * But leave a BUG_ON for some lucky dude.
  2114. */
  2115. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2116. }
  2117. cachep->ctor = ctor;
  2118. cachep->name = name;
  2119. if (setup_cpu_cache(cachep)) {
  2120. __kmem_cache_destroy(cachep);
  2121. cachep = NULL;
  2122. goto oops;
  2123. }
  2124. /* cache setup completed, link it into the list */
  2125. list_add(&cachep->next, &cache_chain);
  2126. oops:
  2127. if (!cachep && (flags & SLAB_PANIC))
  2128. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2129. name);
  2130. mutex_unlock(&cache_chain_mutex);
  2131. return cachep;
  2132. }
  2133. EXPORT_SYMBOL(kmem_cache_create);
  2134. #if DEBUG
  2135. static void check_irq_off(void)
  2136. {
  2137. BUG_ON(!irqs_disabled());
  2138. }
  2139. static void check_irq_on(void)
  2140. {
  2141. BUG_ON(irqs_disabled());
  2142. }
  2143. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2144. {
  2145. #ifdef CONFIG_SMP
  2146. check_irq_off();
  2147. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2148. #endif
  2149. }
  2150. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2151. {
  2152. #ifdef CONFIG_SMP
  2153. check_irq_off();
  2154. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2155. #endif
  2156. }
  2157. #else
  2158. #define check_irq_off() do { } while(0)
  2159. #define check_irq_on() do { } while(0)
  2160. #define check_spinlock_acquired(x) do { } while(0)
  2161. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2162. #endif
  2163. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2164. struct array_cache *ac,
  2165. int force, int node);
  2166. static void do_drain(void *arg)
  2167. {
  2168. struct kmem_cache *cachep = arg;
  2169. struct array_cache *ac;
  2170. int node = numa_node_id();
  2171. check_irq_off();
  2172. ac = cpu_cache_get(cachep);
  2173. spin_lock(&cachep->nodelists[node]->list_lock);
  2174. free_block(cachep, ac->entry, ac->avail, node);
  2175. spin_unlock(&cachep->nodelists[node]->list_lock);
  2176. ac->avail = 0;
  2177. }
  2178. static void drain_cpu_caches(struct kmem_cache *cachep)
  2179. {
  2180. struct kmem_list3 *l3;
  2181. int node;
  2182. on_each_cpu(do_drain, cachep, 1, 1);
  2183. check_irq_on();
  2184. for_each_online_node(node) {
  2185. l3 = cachep->nodelists[node];
  2186. if (l3 && l3->alien)
  2187. drain_alien_cache(cachep, l3->alien);
  2188. }
  2189. for_each_online_node(node) {
  2190. l3 = cachep->nodelists[node];
  2191. if (l3)
  2192. drain_array(cachep, l3, l3->shared, 1, node);
  2193. }
  2194. }
  2195. /*
  2196. * Remove slabs from the list of free slabs.
  2197. * Specify the number of slabs to drain in tofree.
  2198. *
  2199. * Returns the actual number of slabs released.
  2200. */
  2201. static int drain_freelist(struct kmem_cache *cache,
  2202. struct kmem_list3 *l3, int tofree)
  2203. {
  2204. struct list_head *p;
  2205. int nr_freed;
  2206. struct slab *slabp;
  2207. nr_freed = 0;
  2208. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2209. spin_lock_irq(&l3->list_lock);
  2210. p = l3->slabs_free.prev;
  2211. if (p == &l3->slabs_free) {
  2212. spin_unlock_irq(&l3->list_lock);
  2213. goto out;
  2214. }
  2215. slabp = list_entry(p, struct slab, list);
  2216. #if DEBUG
  2217. BUG_ON(slabp->inuse);
  2218. #endif
  2219. list_del(&slabp->list);
  2220. /*
  2221. * Safe to drop the lock. The slab is no longer linked
  2222. * to the cache.
  2223. */
  2224. l3->free_objects -= cache->num;
  2225. spin_unlock_irq(&l3->list_lock);
  2226. slab_destroy(cache, slabp);
  2227. nr_freed++;
  2228. }
  2229. out:
  2230. return nr_freed;
  2231. }
  2232. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2233. static int __cache_shrink(struct kmem_cache *cachep)
  2234. {
  2235. int ret = 0, i = 0;
  2236. struct kmem_list3 *l3;
  2237. drain_cpu_caches(cachep);
  2238. check_irq_on();
  2239. for_each_online_node(i) {
  2240. l3 = cachep->nodelists[i];
  2241. if (!l3)
  2242. continue;
  2243. drain_freelist(cachep, l3, l3->free_objects);
  2244. ret += !list_empty(&l3->slabs_full) ||
  2245. !list_empty(&l3->slabs_partial);
  2246. }
  2247. return (ret ? 1 : 0);
  2248. }
  2249. /**
  2250. * kmem_cache_shrink - Shrink a cache.
  2251. * @cachep: The cache to shrink.
  2252. *
  2253. * Releases as many slabs as possible for a cache.
  2254. * To help debugging, a zero exit status indicates all slabs were released.
  2255. */
  2256. int kmem_cache_shrink(struct kmem_cache *cachep)
  2257. {
  2258. int ret;
  2259. BUG_ON(!cachep || in_interrupt());
  2260. mutex_lock(&cache_chain_mutex);
  2261. ret = __cache_shrink(cachep);
  2262. mutex_unlock(&cache_chain_mutex);
  2263. return ret;
  2264. }
  2265. EXPORT_SYMBOL(kmem_cache_shrink);
  2266. /**
  2267. * kmem_cache_destroy - delete a cache
  2268. * @cachep: the cache to destroy
  2269. *
  2270. * Remove a &struct kmem_cache object from the slab cache.
  2271. *
  2272. * It is expected this function will be called by a module when it is
  2273. * unloaded. This will remove the cache completely, and avoid a duplicate
  2274. * cache being allocated each time a module is loaded and unloaded, if the
  2275. * module doesn't have persistent in-kernel storage across loads and unloads.
  2276. *
  2277. * The cache must be empty before calling this function.
  2278. *
  2279. * The caller must guarantee that noone will allocate memory from the cache
  2280. * during the kmem_cache_destroy().
  2281. */
  2282. void kmem_cache_destroy(struct kmem_cache *cachep)
  2283. {
  2284. BUG_ON(!cachep || in_interrupt());
  2285. /* Find the cache in the chain of caches. */
  2286. mutex_lock(&cache_chain_mutex);
  2287. /*
  2288. * the chain is never empty, cache_cache is never destroyed
  2289. */
  2290. list_del(&cachep->next);
  2291. if (__cache_shrink(cachep)) {
  2292. slab_error(cachep, "Can't free all objects");
  2293. list_add(&cachep->next, &cache_chain);
  2294. mutex_unlock(&cache_chain_mutex);
  2295. return;
  2296. }
  2297. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2298. synchronize_rcu();
  2299. __kmem_cache_destroy(cachep);
  2300. mutex_unlock(&cache_chain_mutex);
  2301. }
  2302. EXPORT_SYMBOL(kmem_cache_destroy);
  2303. /*
  2304. * Get the memory for a slab management obj.
  2305. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2306. * always come from malloc_sizes caches. The slab descriptor cannot
  2307. * come from the same cache which is getting created because,
  2308. * when we are searching for an appropriate cache for these
  2309. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2310. * If we are creating a malloc_sizes cache here it would not be visible to
  2311. * kmem_find_general_cachep till the initialization is complete.
  2312. * Hence we cannot have slabp_cache same as the original cache.
  2313. */
  2314. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2315. int colour_off, gfp_t local_flags,
  2316. int nodeid)
  2317. {
  2318. struct slab *slabp;
  2319. if (OFF_SLAB(cachep)) {
  2320. /* Slab management obj is off-slab. */
  2321. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2322. local_flags & ~GFP_THISNODE, nodeid);
  2323. if (!slabp)
  2324. return NULL;
  2325. } else {
  2326. slabp = objp + colour_off;
  2327. colour_off += cachep->slab_size;
  2328. }
  2329. slabp->inuse = 0;
  2330. slabp->colouroff = colour_off;
  2331. slabp->s_mem = objp + colour_off;
  2332. slabp->nodeid = nodeid;
  2333. return slabp;
  2334. }
  2335. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2336. {
  2337. return (kmem_bufctl_t *) (slabp + 1);
  2338. }
  2339. static void cache_init_objs(struct kmem_cache *cachep,
  2340. struct slab *slabp)
  2341. {
  2342. int i;
  2343. for (i = 0; i < cachep->num; i++) {
  2344. void *objp = index_to_obj(cachep, slabp, i);
  2345. #if DEBUG
  2346. /* need to poison the objs? */
  2347. if (cachep->flags & SLAB_POISON)
  2348. poison_obj(cachep, objp, POISON_FREE);
  2349. if (cachep->flags & SLAB_STORE_USER)
  2350. *dbg_userword(cachep, objp) = NULL;
  2351. if (cachep->flags & SLAB_RED_ZONE) {
  2352. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2353. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2354. }
  2355. /*
  2356. * Constructors are not allowed to allocate memory from the same
  2357. * cache which they are a constructor for. Otherwise, deadlock.
  2358. * They must also be threaded.
  2359. */
  2360. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2361. cachep->ctor(cachep, objp + obj_offset(cachep));
  2362. if (cachep->flags & SLAB_RED_ZONE) {
  2363. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2364. slab_error(cachep, "constructor overwrote the"
  2365. " end of an object");
  2366. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2367. slab_error(cachep, "constructor overwrote the"
  2368. " start of an object");
  2369. }
  2370. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2371. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2372. kernel_map_pages(virt_to_page(objp),
  2373. cachep->buffer_size / PAGE_SIZE, 0);
  2374. #else
  2375. if (cachep->ctor)
  2376. cachep->ctor(cachep, objp);
  2377. #endif
  2378. slab_bufctl(slabp)[i] = i + 1;
  2379. }
  2380. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2381. slabp->free = 0;
  2382. }
  2383. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2384. {
  2385. if (CONFIG_ZONE_DMA_FLAG) {
  2386. if (flags & GFP_DMA)
  2387. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2388. else
  2389. BUG_ON(cachep->gfpflags & GFP_DMA);
  2390. }
  2391. }
  2392. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2393. int nodeid)
  2394. {
  2395. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2396. kmem_bufctl_t next;
  2397. slabp->inuse++;
  2398. next = slab_bufctl(slabp)[slabp->free];
  2399. #if DEBUG
  2400. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2401. WARN_ON(slabp->nodeid != nodeid);
  2402. #endif
  2403. slabp->free = next;
  2404. return objp;
  2405. }
  2406. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2407. void *objp, int nodeid)
  2408. {
  2409. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2410. #if DEBUG
  2411. /* Verify that the slab belongs to the intended node */
  2412. WARN_ON(slabp->nodeid != nodeid);
  2413. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2414. printk(KERN_ERR "slab: double free detected in cache "
  2415. "'%s', objp %p\n", cachep->name, objp);
  2416. BUG();
  2417. }
  2418. #endif
  2419. slab_bufctl(slabp)[objnr] = slabp->free;
  2420. slabp->free = objnr;
  2421. slabp->inuse--;
  2422. }
  2423. /*
  2424. * Map pages beginning at addr to the given cache and slab. This is required
  2425. * for the slab allocator to be able to lookup the cache and slab of a
  2426. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2427. */
  2428. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2429. void *addr)
  2430. {
  2431. int nr_pages;
  2432. struct page *page;
  2433. page = virt_to_page(addr);
  2434. nr_pages = 1;
  2435. if (likely(!PageCompound(page)))
  2436. nr_pages <<= cache->gfporder;
  2437. do {
  2438. page_set_cache(page, cache);
  2439. page_set_slab(page, slab);
  2440. page++;
  2441. } while (--nr_pages);
  2442. }
  2443. /*
  2444. * Grow (by 1) the number of slabs within a cache. This is called by
  2445. * kmem_cache_alloc() when there are no active objs left in a cache.
  2446. */
  2447. static int cache_grow(struct kmem_cache *cachep,
  2448. gfp_t flags, int nodeid, void *objp)
  2449. {
  2450. struct slab *slabp;
  2451. size_t offset;
  2452. gfp_t local_flags;
  2453. struct kmem_list3 *l3;
  2454. /*
  2455. * Be lazy and only check for valid flags here, keeping it out of the
  2456. * critical path in kmem_cache_alloc().
  2457. */
  2458. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2459. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2460. /* Take the l3 list lock to change the colour_next on this node */
  2461. check_irq_off();
  2462. l3 = cachep->nodelists[nodeid];
  2463. spin_lock(&l3->list_lock);
  2464. /* Get colour for the slab, and cal the next value. */
  2465. offset = l3->colour_next;
  2466. l3->colour_next++;
  2467. if (l3->colour_next >= cachep->colour)
  2468. l3->colour_next = 0;
  2469. spin_unlock(&l3->list_lock);
  2470. offset *= cachep->colour_off;
  2471. if (local_flags & __GFP_WAIT)
  2472. local_irq_enable();
  2473. /*
  2474. * The test for missing atomic flag is performed here, rather than
  2475. * the more obvious place, simply to reduce the critical path length
  2476. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2477. * will eventually be caught here (where it matters).
  2478. */
  2479. kmem_flagcheck(cachep, flags);
  2480. /*
  2481. * Get mem for the objs. Attempt to allocate a physical page from
  2482. * 'nodeid'.
  2483. */
  2484. if (!objp)
  2485. objp = kmem_getpages(cachep, local_flags, nodeid);
  2486. if (!objp)
  2487. goto failed;
  2488. /* Get slab management. */
  2489. slabp = alloc_slabmgmt(cachep, objp, offset,
  2490. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2491. if (!slabp)
  2492. goto opps1;
  2493. slabp->nodeid = nodeid;
  2494. slab_map_pages(cachep, slabp, objp);
  2495. cache_init_objs(cachep, slabp);
  2496. if (local_flags & __GFP_WAIT)
  2497. local_irq_disable();
  2498. check_irq_off();
  2499. spin_lock(&l3->list_lock);
  2500. /* Make slab active. */
  2501. list_add_tail(&slabp->list, &(l3->slabs_free));
  2502. STATS_INC_GROWN(cachep);
  2503. l3->free_objects += cachep->num;
  2504. spin_unlock(&l3->list_lock);
  2505. return 1;
  2506. opps1:
  2507. kmem_freepages(cachep, objp);
  2508. failed:
  2509. if (local_flags & __GFP_WAIT)
  2510. local_irq_disable();
  2511. return 0;
  2512. }
  2513. #if DEBUG
  2514. /*
  2515. * Perform extra freeing checks:
  2516. * - detect bad pointers.
  2517. * - POISON/RED_ZONE checking
  2518. */
  2519. static void kfree_debugcheck(const void *objp)
  2520. {
  2521. if (!virt_addr_valid(objp)) {
  2522. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2523. (unsigned long)objp);
  2524. BUG();
  2525. }
  2526. }
  2527. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2528. {
  2529. unsigned long long redzone1, redzone2;
  2530. redzone1 = *dbg_redzone1(cache, obj);
  2531. redzone2 = *dbg_redzone2(cache, obj);
  2532. /*
  2533. * Redzone is ok.
  2534. */
  2535. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2536. return;
  2537. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2538. slab_error(cache, "double free detected");
  2539. else
  2540. slab_error(cache, "memory outside object was overwritten");
  2541. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2542. obj, redzone1, redzone2);
  2543. }
  2544. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2545. void *caller)
  2546. {
  2547. struct page *page;
  2548. unsigned int objnr;
  2549. struct slab *slabp;
  2550. objp -= obj_offset(cachep);
  2551. kfree_debugcheck(objp);
  2552. page = virt_to_head_page(objp);
  2553. slabp = page_get_slab(page);
  2554. if (cachep->flags & SLAB_RED_ZONE) {
  2555. verify_redzone_free(cachep, objp);
  2556. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2557. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2558. }
  2559. if (cachep->flags & SLAB_STORE_USER)
  2560. *dbg_userword(cachep, objp) = caller;
  2561. objnr = obj_to_index(cachep, slabp, objp);
  2562. BUG_ON(objnr >= cachep->num);
  2563. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2564. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2565. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2566. #endif
  2567. if (cachep->flags & SLAB_POISON) {
  2568. #ifdef CONFIG_DEBUG_PAGEALLOC
  2569. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2570. store_stackinfo(cachep, objp, (unsigned long)caller);
  2571. kernel_map_pages(virt_to_page(objp),
  2572. cachep->buffer_size / PAGE_SIZE, 0);
  2573. } else {
  2574. poison_obj(cachep, objp, POISON_FREE);
  2575. }
  2576. #else
  2577. poison_obj(cachep, objp, POISON_FREE);
  2578. #endif
  2579. }
  2580. return objp;
  2581. }
  2582. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2583. {
  2584. kmem_bufctl_t i;
  2585. int entries = 0;
  2586. /* Check slab's freelist to see if this obj is there. */
  2587. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2588. entries++;
  2589. if (entries > cachep->num || i >= cachep->num)
  2590. goto bad;
  2591. }
  2592. if (entries != cachep->num - slabp->inuse) {
  2593. bad:
  2594. printk(KERN_ERR "slab: Internal list corruption detected in "
  2595. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2596. cachep->name, cachep->num, slabp, slabp->inuse);
  2597. for (i = 0;
  2598. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2599. i++) {
  2600. if (i % 16 == 0)
  2601. printk("\n%03x:", i);
  2602. printk(" %02x", ((unsigned char *)slabp)[i]);
  2603. }
  2604. printk("\n");
  2605. BUG();
  2606. }
  2607. }
  2608. #else
  2609. #define kfree_debugcheck(x) do { } while(0)
  2610. #define cache_free_debugcheck(x,objp,z) (objp)
  2611. #define check_slabp(x,y) do { } while(0)
  2612. #endif
  2613. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2614. {
  2615. int batchcount;
  2616. struct kmem_list3 *l3;
  2617. struct array_cache *ac;
  2618. int node;
  2619. node = numa_node_id();
  2620. check_irq_off();
  2621. ac = cpu_cache_get(cachep);
  2622. retry:
  2623. batchcount = ac->batchcount;
  2624. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2625. /*
  2626. * If there was little recent activity on this cache, then
  2627. * perform only a partial refill. Otherwise we could generate
  2628. * refill bouncing.
  2629. */
  2630. batchcount = BATCHREFILL_LIMIT;
  2631. }
  2632. l3 = cachep->nodelists[node];
  2633. BUG_ON(ac->avail > 0 || !l3);
  2634. spin_lock(&l3->list_lock);
  2635. /* See if we can refill from the shared array */
  2636. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2637. goto alloc_done;
  2638. while (batchcount > 0) {
  2639. struct list_head *entry;
  2640. struct slab *slabp;
  2641. /* Get slab alloc is to come from. */
  2642. entry = l3->slabs_partial.next;
  2643. if (entry == &l3->slabs_partial) {
  2644. l3->free_touched = 1;
  2645. entry = l3->slabs_free.next;
  2646. if (entry == &l3->slabs_free)
  2647. goto must_grow;
  2648. }
  2649. slabp = list_entry(entry, struct slab, list);
  2650. check_slabp(cachep, slabp);
  2651. check_spinlock_acquired(cachep);
  2652. /*
  2653. * The slab was either on partial or free list so
  2654. * there must be at least one object available for
  2655. * allocation.
  2656. */
  2657. BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
  2658. while (slabp->inuse < cachep->num && batchcount--) {
  2659. STATS_INC_ALLOCED(cachep);
  2660. STATS_INC_ACTIVE(cachep);
  2661. STATS_SET_HIGH(cachep);
  2662. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2663. node);
  2664. }
  2665. check_slabp(cachep, slabp);
  2666. /* move slabp to correct slabp list: */
  2667. list_del(&slabp->list);
  2668. if (slabp->free == BUFCTL_END)
  2669. list_add(&slabp->list, &l3->slabs_full);
  2670. else
  2671. list_add(&slabp->list, &l3->slabs_partial);
  2672. }
  2673. must_grow:
  2674. l3->free_objects -= ac->avail;
  2675. alloc_done:
  2676. spin_unlock(&l3->list_lock);
  2677. if (unlikely(!ac->avail)) {
  2678. int x;
  2679. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2680. /* cache_grow can reenable interrupts, then ac could change. */
  2681. ac = cpu_cache_get(cachep);
  2682. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2683. return NULL;
  2684. if (!ac->avail) /* objects refilled by interrupt? */
  2685. goto retry;
  2686. }
  2687. ac->touched = 1;
  2688. return ac->entry[--ac->avail];
  2689. }
  2690. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2691. gfp_t flags)
  2692. {
  2693. might_sleep_if(flags & __GFP_WAIT);
  2694. #if DEBUG
  2695. kmem_flagcheck(cachep, flags);
  2696. #endif
  2697. }
  2698. #if DEBUG
  2699. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2700. gfp_t flags, void *objp, void *caller)
  2701. {
  2702. if (!objp)
  2703. return objp;
  2704. if (cachep->flags & SLAB_POISON) {
  2705. #ifdef CONFIG_DEBUG_PAGEALLOC
  2706. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2707. kernel_map_pages(virt_to_page(objp),
  2708. cachep->buffer_size / PAGE_SIZE, 1);
  2709. else
  2710. check_poison_obj(cachep, objp);
  2711. #else
  2712. check_poison_obj(cachep, objp);
  2713. #endif
  2714. poison_obj(cachep, objp, POISON_INUSE);
  2715. }
  2716. if (cachep->flags & SLAB_STORE_USER)
  2717. *dbg_userword(cachep, objp) = caller;
  2718. if (cachep->flags & SLAB_RED_ZONE) {
  2719. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2720. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2721. slab_error(cachep, "double free, or memory outside"
  2722. " object was overwritten");
  2723. printk(KERN_ERR
  2724. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2725. objp, *dbg_redzone1(cachep, objp),
  2726. *dbg_redzone2(cachep, objp));
  2727. }
  2728. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2729. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2730. }
  2731. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2732. {
  2733. struct slab *slabp;
  2734. unsigned objnr;
  2735. slabp = page_get_slab(virt_to_head_page(objp));
  2736. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2737. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2738. }
  2739. #endif
  2740. objp += obj_offset(cachep);
  2741. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2742. cachep->ctor(cachep, objp);
  2743. #if ARCH_SLAB_MINALIGN
  2744. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2745. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2746. objp, ARCH_SLAB_MINALIGN);
  2747. }
  2748. #endif
  2749. return objp;
  2750. }
  2751. #else
  2752. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2753. #endif
  2754. #ifdef CONFIG_FAILSLAB
  2755. static struct failslab_attr {
  2756. struct fault_attr attr;
  2757. u32 ignore_gfp_wait;
  2758. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2759. struct dentry *ignore_gfp_wait_file;
  2760. #endif
  2761. } failslab = {
  2762. .attr = FAULT_ATTR_INITIALIZER,
  2763. .ignore_gfp_wait = 1,
  2764. };
  2765. static int __init setup_failslab(char *str)
  2766. {
  2767. return setup_fault_attr(&failslab.attr, str);
  2768. }
  2769. __setup("failslab=", setup_failslab);
  2770. static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2771. {
  2772. if (cachep == &cache_cache)
  2773. return 0;
  2774. if (flags & __GFP_NOFAIL)
  2775. return 0;
  2776. if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
  2777. return 0;
  2778. return should_fail(&failslab.attr, obj_size(cachep));
  2779. }
  2780. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2781. static int __init failslab_debugfs(void)
  2782. {
  2783. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2784. struct dentry *dir;
  2785. int err;
  2786. err = init_fault_attr_dentries(&failslab.attr, "failslab");
  2787. if (err)
  2788. return err;
  2789. dir = failslab.attr.dentries.dir;
  2790. failslab.ignore_gfp_wait_file =
  2791. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2792. &failslab.ignore_gfp_wait);
  2793. if (!failslab.ignore_gfp_wait_file) {
  2794. err = -ENOMEM;
  2795. debugfs_remove(failslab.ignore_gfp_wait_file);
  2796. cleanup_fault_attr_dentries(&failslab.attr);
  2797. }
  2798. return err;
  2799. }
  2800. late_initcall(failslab_debugfs);
  2801. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2802. #else /* CONFIG_FAILSLAB */
  2803. static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2804. {
  2805. return 0;
  2806. }
  2807. #endif /* CONFIG_FAILSLAB */
  2808. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2809. {
  2810. void *objp;
  2811. struct array_cache *ac;
  2812. check_irq_off();
  2813. ac = cpu_cache_get(cachep);
  2814. if (likely(ac->avail)) {
  2815. STATS_INC_ALLOCHIT(cachep);
  2816. ac->touched = 1;
  2817. objp = ac->entry[--ac->avail];
  2818. } else {
  2819. STATS_INC_ALLOCMISS(cachep);
  2820. objp = cache_alloc_refill(cachep, flags);
  2821. }
  2822. return objp;
  2823. }
  2824. #ifdef CONFIG_NUMA
  2825. /*
  2826. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2827. *
  2828. * If we are in_interrupt, then process context, including cpusets and
  2829. * mempolicy, may not apply and should not be used for allocation policy.
  2830. */
  2831. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2832. {
  2833. int nid_alloc, nid_here;
  2834. if (in_interrupt() || (flags & __GFP_THISNODE))
  2835. return NULL;
  2836. nid_alloc = nid_here = numa_node_id();
  2837. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2838. nid_alloc = cpuset_mem_spread_node();
  2839. else if (current->mempolicy)
  2840. nid_alloc = slab_node(current->mempolicy);
  2841. if (nid_alloc != nid_here)
  2842. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2843. return NULL;
  2844. }
  2845. /*
  2846. * Fallback function if there was no memory available and no objects on a
  2847. * certain node and fall back is permitted. First we scan all the
  2848. * available nodelists for available objects. If that fails then we
  2849. * perform an allocation without specifying a node. This allows the page
  2850. * allocator to do its reclaim / fallback magic. We then insert the
  2851. * slab into the proper nodelist and then allocate from it.
  2852. */
  2853. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2854. {
  2855. struct zonelist *zonelist;
  2856. gfp_t local_flags;
  2857. struct zone **z;
  2858. void *obj = NULL;
  2859. int nid;
  2860. if (flags & __GFP_THISNODE)
  2861. return NULL;
  2862. zonelist = &NODE_DATA(slab_node(current->mempolicy))
  2863. ->node_zonelists[gfp_zone(flags)];
  2864. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2865. retry:
  2866. /*
  2867. * Look through allowed nodes for objects available
  2868. * from existing per node queues.
  2869. */
  2870. for (z = zonelist->zones; *z && !obj; z++) {
  2871. nid = zone_to_nid(*z);
  2872. if (cpuset_zone_allowed_hardwall(*z, flags) &&
  2873. cache->nodelists[nid] &&
  2874. cache->nodelists[nid]->free_objects)
  2875. obj = ____cache_alloc_node(cache,
  2876. flags | GFP_THISNODE, nid);
  2877. }
  2878. if (!obj) {
  2879. /*
  2880. * This allocation will be performed within the constraints
  2881. * of the current cpuset / memory policy requirements.
  2882. * We may trigger various forms of reclaim on the allowed
  2883. * set and go into memory reserves if necessary.
  2884. */
  2885. if (local_flags & __GFP_WAIT)
  2886. local_irq_enable();
  2887. kmem_flagcheck(cache, flags);
  2888. obj = kmem_getpages(cache, flags, -1);
  2889. if (local_flags & __GFP_WAIT)
  2890. local_irq_disable();
  2891. if (obj) {
  2892. /*
  2893. * Insert into the appropriate per node queues
  2894. */
  2895. nid = page_to_nid(virt_to_page(obj));
  2896. if (cache_grow(cache, flags, nid, obj)) {
  2897. obj = ____cache_alloc_node(cache,
  2898. flags | GFP_THISNODE, nid);
  2899. if (!obj)
  2900. /*
  2901. * Another processor may allocate the
  2902. * objects in the slab since we are
  2903. * not holding any locks.
  2904. */
  2905. goto retry;
  2906. } else {
  2907. /* cache_grow already freed obj */
  2908. obj = NULL;
  2909. }
  2910. }
  2911. }
  2912. return obj;
  2913. }
  2914. /*
  2915. * A interface to enable slab creation on nodeid
  2916. */
  2917. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2918. int nodeid)
  2919. {
  2920. struct list_head *entry;
  2921. struct slab *slabp;
  2922. struct kmem_list3 *l3;
  2923. void *obj;
  2924. int x;
  2925. l3 = cachep->nodelists[nodeid];
  2926. BUG_ON(!l3);
  2927. retry:
  2928. check_irq_off();
  2929. spin_lock(&l3->list_lock);
  2930. entry = l3->slabs_partial.next;
  2931. if (entry == &l3->slabs_partial) {
  2932. l3->free_touched = 1;
  2933. entry = l3->slabs_free.next;
  2934. if (entry == &l3->slabs_free)
  2935. goto must_grow;
  2936. }
  2937. slabp = list_entry(entry, struct slab, list);
  2938. check_spinlock_acquired_node(cachep, nodeid);
  2939. check_slabp(cachep, slabp);
  2940. STATS_INC_NODEALLOCS(cachep);
  2941. STATS_INC_ACTIVE(cachep);
  2942. STATS_SET_HIGH(cachep);
  2943. BUG_ON(slabp->inuse == cachep->num);
  2944. obj = slab_get_obj(cachep, slabp, nodeid);
  2945. check_slabp(cachep, slabp);
  2946. l3->free_objects--;
  2947. /* move slabp to correct slabp list: */
  2948. list_del(&slabp->list);
  2949. if (slabp->free == BUFCTL_END)
  2950. list_add(&slabp->list, &l3->slabs_full);
  2951. else
  2952. list_add(&slabp->list, &l3->slabs_partial);
  2953. spin_unlock(&l3->list_lock);
  2954. goto done;
  2955. must_grow:
  2956. spin_unlock(&l3->list_lock);
  2957. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2958. if (x)
  2959. goto retry;
  2960. return fallback_alloc(cachep, flags);
  2961. done:
  2962. return obj;
  2963. }
  2964. /**
  2965. * kmem_cache_alloc_node - Allocate an object on the specified node
  2966. * @cachep: The cache to allocate from.
  2967. * @flags: See kmalloc().
  2968. * @nodeid: node number of the target node.
  2969. * @caller: return address of caller, used for debug information
  2970. *
  2971. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2972. * node, which can improve the performance for cpu bound structures.
  2973. *
  2974. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2975. */
  2976. static __always_inline void *
  2977. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2978. void *caller)
  2979. {
  2980. unsigned long save_flags;
  2981. void *ptr;
  2982. if (should_failslab(cachep, flags))
  2983. return NULL;
  2984. cache_alloc_debugcheck_before(cachep, flags);
  2985. local_irq_save(save_flags);
  2986. if (unlikely(nodeid == -1))
  2987. nodeid = numa_node_id();
  2988. if (unlikely(!cachep->nodelists[nodeid])) {
  2989. /* Node not bootstrapped yet */
  2990. ptr = fallback_alloc(cachep, flags);
  2991. goto out;
  2992. }
  2993. if (nodeid == numa_node_id()) {
  2994. /*
  2995. * Use the locally cached objects if possible.
  2996. * However ____cache_alloc does not allow fallback
  2997. * to other nodes. It may fail while we still have
  2998. * objects on other nodes available.
  2999. */
  3000. ptr = ____cache_alloc(cachep, flags);
  3001. if (ptr)
  3002. goto out;
  3003. }
  3004. /* ___cache_alloc_node can fall back to other nodes */
  3005. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3006. out:
  3007. local_irq_restore(save_flags);
  3008. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3009. if (unlikely((flags & __GFP_ZERO) && ptr))
  3010. memset(ptr, 0, obj_size(cachep));
  3011. return ptr;
  3012. }
  3013. static __always_inline void *
  3014. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3015. {
  3016. void *objp;
  3017. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3018. objp = alternate_node_alloc(cache, flags);
  3019. if (objp)
  3020. goto out;
  3021. }
  3022. objp = ____cache_alloc(cache, flags);
  3023. /*
  3024. * We may just have run out of memory on the local node.
  3025. * ____cache_alloc_node() knows how to locate memory on other nodes
  3026. */
  3027. if (!objp)
  3028. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  3029. out:
  3030. return objp;
  3031. }
  3032. #else
  3033. static __always_inline void *
  3034. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3035. {
  3036. return ____cache_alloc(cachep, flags);
  3037. }
  3038. #endif /* CONFIG_NUMA */
  3039. static __always_inline void *
  3040. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3041. {
  3042. unsigned long save_flags;
  3043. void *objp;
  3044. if (should_failslab(cachep, flags))
  3045. return NULL;
  3046. cache_alloc_debugcheck_before(cachep, flags);
  3047. local_irq_save(save_flags);
  3048. objp = __do_cache_alloc(cachep, flags);
  3049. local_irq_restore(save_flags);
  3050. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3051. prefetchw(objp);
  3052. if (unlikely((flags & __GFP_ZERO) && objp))
  3053. memset(objp, 0, obj_size(cachep));
  3054. return objp;
  3055. }
  3056. /*
  3057. * Caller needs to acquire correct kmem_list's list_lock
  3058. */
  3059. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3060. int node)
  3061. {
  3062. int i;
  3063. struct kmem_list3 *l3;
  3064. for (i = 0; i < nr_objects; i++) {
  3065. void *objp = objpp[i];
  3066. struct slab *slabp;
  3067. slabp = virt_to_slab(objp);
  3068. l3 = cachep->nodelists[node];
  3069. list_del(&slabp->list);
  3070. check_spinlock_acquired_node(cachep, node);
  3071. check_slabp(cachep, slabp);
  3072. slab_put_obj(cachep, slabp, objp, node);
  3073. STATS_DEC_ACTIVE(cachep);
  3074. l3->free_objects++;
  3075. check_slabp(cachep, slabp);
  3076. /* fixup slab chains */
  3077. if (slabp->inuse == 0) {
  3078. if (l3->free_objects > l3->free_limit) {
  3079. l3->free_objects -= cachep->num;
  3080. /* No need to drop any previously held
  3081. * lock here, even if we have a off-slab slab
  3082. * descriptor it is guaranteed to come from
  3083. * a different cache, refer to comments before
  3084. * alloc_slabmgmt.
  3085. */
  3086. slab_destroy(cachep, slabp);
  3087. } else {
  3088. list_add(&slabp->list, &l3->slabs_free);
  3089. }
  3090. } else {
  3091. /* Unconditionally move a slab to the end of the
  3092. * partial list on free - maximum time for the
  3093. * other objects to be freed, too.
  3094. */
  3095. list_add_tail(&slabp->list, &l3->slabs_partial);
  3096. }
  3097. }
  3098. }
  3099. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3100. {
  3101. int batchcount;
  3102. struct kmem_list3 *l3;
  3103. int node = numa_node_id();
  3104. batchcount = ac->batchcount;
  3105. #if DEBUG
  3106. BUG_ON(!batchcount || batchcount > ac->avail);
  3107. #endif
  3108. check_irq_off();
  3109. l3 = cachep->nodelists[node];
  3110. spin_lock(&l3->list_lock);
  3111. if (l3->shared) {
  3112. struct array_cache *shared_array = l3->shared;
  3113. int max = shared_array->limit - shared_array->avail;
  3114. if (max) {
  3115. if (batchcount > max)
  3116. batchcount = max;
  3117. memcpy(&(shared_array->entry[shared_array->avail]),
  3118. ac->entry, sizeof(void *) * batchcount);
  3119. shared_array->avail += batchcount;
  3120. goto free_done;
  3121. }
  3122. }
  3123. free_block(cachep, ac->entry, batchcount, node);
  3124. free_done:
  3125. #if STATS
  3126. {
  3127. int i = 0;
  3128. struct list_head *p;
  3129. p = l3->slabs_free.next;
  3130. while (p != &(l3->slabs_free)) {
  3131. struct slab *slabp;
  3132. slabp = list_entry(p, struct slab, list);
  3133. BUG_ON(slabp->inuse);
  3134. i++;
  3135. p = p->next;
  3136. }
  3137. STATS_SET_FREEABLE(cachep, i);
  3138. }
  3139. #endif
  3140. spin_unlock(&l3->list_lock);
  3141. ac->avail -= batchcount;
  3142. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3143. }
  3144. /*
  3145. * Release an obj back to its cache. If the obj has a constructed state, it must
  3146. * be in this state _before_ it is released. Called with disabled ints.
  3147. */
  3148. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3149. {
  3150. struct array_cache *ac = cpu_cache_get(cachep);
  3151. check_irq_off();
  3152. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3153. /*
  3154. * Skip calling cache_free_alien() when the platform is not numa.
  3155. * This will avoid cache misses that happen while accessing slabp (which
  3156. * is per page memory reference) to get nodeid. Instead use a global
  3157. * variable to skip the call, which is mostly likely to be present in
  3158. * the cache.
  3159. */
  3160. if (numa_platform && cache_free_alien(cachep, objp))
  3161. return;
  3162. if (likely(ac->avail < ac->limit)) {
  3163. STATS_INC_FREEHIT(cachep);
  3164. ac->entry[ac->avail++] = objp;
  3165. return;
  3166. } else {
  3167. STATS_INC_FREEMISS(cachep);
  3168. cache_flusharray(cachep, ac);
  3169. ac->entry[ac->avail++] = objp;
  3170. }
  3171. }
  3172. /**
  3173. * kmem_cache_alloc - Allocate an object
  3174. * @cachep: The cache to allocate from.
  3175. * @flags: See kmalloc().
  3176. *
  3177. * Allocate an object from this cache. The flags are only relevant
  3178. * if the cache has no available objects.
  3179. */
  3180. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3181. {
  3182. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3183. }
  3184. EXPORT_SYMBOL(kmem_cache_alloc);
  3185. /**
  3186. * kmem_ptr_validate - check if an untrusted pointer might
  3187. * be a slab entry.
  3188. * @cachep: the cache we're checking against
  3189. * @ptr: pointer to validate
  3190. *
  3191. * This verifies that the untrusted pointer looks sane:
  3192. * it is _not_ a guarantee that the pointer is actually
  3193. * part of the slab cache in question, but it at least
  3194. * validates that the pointer can be dereferenced and
  3195. * looks half-way sane.
  3196. *
  3197. * Currently only used for dentry validation.
  3198. */
  3199. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3200. {
  3201. unsigned long addr = (unsigned long)ptr;
  3202. unsigned long min_addr = PAGE_OFFSET;
  3203. unsigned long align_mask = BYTES_PER_WORD - 1;
  3204. unsigned long size = cachep->buffer_size;
  3205. struct page *page;
  3206. if (unlikely(addr < min_addr))
  3207. goto out;
  3208. if (unlikely(addr > (unsigned long)high_memory - size))
  3209. goto out;
  3210. if (unlikely(addr & align_mask))
  3211. goto out;
  3212. if (unlikely(!kern_addr_valid(addr)))
  3213. goto out;
  3214. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3215. goto out;
  3216. page = virt_to_page(ptr);
  3217. if (unlikely(!PageSlab(page)))
  3218. goto out;
  3219. if (unlikely(page_get_cache(page) != cachep))
  3220. goto out;
  3221. return 1;
  3222. out:
  3223. return 0;
  3224. }
  3225. #ifdef CONFIG_NUMA
  3226. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3227. {
  3228. return __cache_alloc_node(cachep, flags, nodeid,
  3229. __builtin_return_address(0));
  3230. }
  3231. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3232. static __always_inline void *
  3233. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3234. {
  3235. struct kmem_cache *cachep;
  3236. cachep = kmem_find_general_cachep(size, flags);
  3237. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3238. return cachep;
  3239. return kmem_cache_alloc_node(cachep, flags, node);
  3240. }
  3241. #ifdef CONFIG_DEBUG_SLAB
  3242. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3243. {
  3244. return __do_kmalloc_node(size, flags, node,
  3245. __builtin_return_address(0));
  3246. }
  3247. EXPORT_SYMBOL(__kmalloc_node);
  3248. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3249. int node, void *caller)
  3250. {
  3251. return __do_kmalloc_node(size, flags, node, caller);
  3252. }
  3253. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3254. #else
  3255. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3256. {
  3257. return __do_kmalloc_node(size, flags, node, NULL);
  3258. }
  3259. EXPORT_SYMBOL(__kmalloc_node);
  3260. #endif /* CONFIG_DEBUG_SLAB */
  3261. #endif /* CONFIG_NUMA */
  3262. /**
  3263. * __do_kmalloc - allocate memory
  3264. * @size: how many bytes of memory are required.
  3265. * @flags: the type of memory to allocate (see kmalloc).
  3266. * @caller: function caller for debug tracking of the caller
  3267. */
  3268. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3269. void *caller)
  3270. {
  3271. struct kmem_cache *cachep;
  3272. /* If you want to save a few bytes .text space: replace
  3273. * __ with kmem_.
  3274. * Then kmalloc uses the uninlined functions instead of the inline
  3275. * functions.
  3276. */
  3277. cachep = __find_general_cachep(size, flags);
  3278. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3279. return cachep;
  3280. return __cache_alloc(cachep, flags, caller);
  3281. }
  3282. #ifdef CONFIG_DEBUG_SLAB
  3283. void *__kmalloc(size_t size, gfp_t flags)
  3284. {
  3285. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3286. }
  3287. EXPORT_SYMBOL(__kmalloc);
  3288. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  3289. {
  3290. return __do_kmalloc(size, flags, caller);
  3291. }
  3292. EXPORT_SYMBOL(__kmalloc_track_caller);
  3293. #else
  3294. void *__kmalloc(size_t size, gfp_t flags)
  3295. {
  3296. return __do_kmalloc(size, flags, NULL);
  3297. }
  3298. EXPORT_SYMBOL(__kmalloc);
  3299. #endif
  3300. /**
  3301. * kmem_cache_free - Deallocate an object
  3302. * @cachep: The cache the allocation was from.
  3303. * @objp: The previously allocated object.
  3304. *
  3305. * Free an object which was previously allocated from this
  3306. * cache.
  3307. */
  3308. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3309. {
  3310. unsigned long flags;
  3311. BUG_ON(virt_to_cache(objp) != cachep);
  3312. local_irq_save(flags);
  3313. debug_check_no_locks_freed(objp, obj_size(cachep));
  3314. __cache_free(cachep, objp);
  3315. local_irq_restore(flags);
  3316. }
  3317. EXPORT_SYMBOL(kmem_cache_free);
  3318. /**
  3319. * kfree - free previously allocated memory
  3320. * @objp: pointer returned by kmalloc.
  3321. *
  3322. * If @objp is NULL, no operation is performed.
  3323. *
  3324. * Don't free memory not originally allocated by kmalloc()
  3325. * or you will run into trouble.
  3326. */
  3327. void kfree(const void *objp)
  3328. {
  3329. struct kmem_cache *c;
  3330. unsigned long flags;
  3331. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3332. return;
  3333. local_irq_save(flags);
  3334. kfree_debugcheck(objp);
  3335. c = virt_to_cache(objp);
  3336. debug_check_no_locks_freed(objp, obj_size(c));
  3337. __cache_free(c, (void *)objp);
  3338. local_irq_restore(flags);
  3339. }
  3340. EXPORT_SYMBOL(kfree);
  3341. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3342. {
  3343. return obj_size(cachep);
  3344. }
  3345. EXPORT_SYMBOL(kmem_cache_size);
  3346. const char *kmem_cache_name(struct kmem_cache *cachep)
  3347. {
  3348. return cachep->name;
  3349. }
  3350. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3351. /*
  3352. * This initializes kmem_list3 or resizes various caches for all nodes.
  3353. */
  3354. static int alloc_kmemlist(struct kmem_cache *cachep)
  3355. {
  3356. int node;
  3357. struct kmem_list3 *l3;
  3358. struct array_cache *new_shared;
  3359. struct array_cache **new_alien = NULL;
  3360. for_each_node_state(node, N_NORMAL_MEMORY) {
  3361. if (use_alien_caches) {
  3362. new_alien = alloc_alien_cache(node, cachep->limit);
  3363. if (!new_alien)
  3364. goto fail;
  3365. }
  3366. new_shared = NULL;
  3367. if (cachep->shared) {
  3368. new_shared = alloc_arraycache(node,
  3369. cachep->shared*cachep->batchcount,
  3370. 0xbaadf00d);
  3371. if (!new_shared) {
  3372. free_alien_cache(new_alien);
  3373. goto fail;
  3374. }
  3375. }
  3376. l3 = cachep->nodelists[node];
  3377. if (l3) {
  3378. struct array_cache *shared = l3->shared;
  3379. spin_lock_irq(&l3->list_lock);
  3380. if (shared)
  3381. free_block(cachep, shared->entry,
  3382. shared->avail, node);
  3383. l3->shared = new_shared;
  3384. if (!l3->alien) {
  3385. l3->alien = new_alien;
  3386. new_alien = NULL;
  3387. }
  3388. l3->free_limit = (1 + nr_cpus_node(node)) *
  3389. cachep->batchcount + cachep->num;
  3390. spin_unlock_irq(&l3->list_lock);
  3391. kfree(shared);
  3392. free_alien_cache(new_alien);
  3393. continue;
  3394. }
  3395. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3396. if (!l3) {
  3397. free_alien_cache(new_alien);
  3398. kfree(new_shared);
  3399. goto fail;
  3400. }
  3401. kmem_list3_init(l3);
  3402. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3403. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3404. l3->shared = new_shared;
  3405. l3->alien = new_alien;
  3406. l3->free_limit = (1 + nr_cpus_node(node)) *
  3407. cachep->batchcount + cachep->num;
  3408. cachep->nodelists[node] = l3;
  3409. }
  3410. return 0;
  3411. fail:
  3412. if (!cachep->next.next) {
  3413. /* Cache is not active yet. Roll back what we did */
  3414. node--;
  3415. while (node >= 0) {
  3416. if (cachep->nodelists[node]) {
  3417. l3 = cachep->nodelists[node];
  3418. kfree(l3->shared);
  3419. free_alien_cache(l3->alien);
  3420. kfree(l3);
  3421. cachep->nodelists[node] = NULL;
  3422. }
  3423. node--;
  3424. }
  3425. }
  3426. return -ENOMEM;
  3427. }
  3428. struct ccupdate_struct {
  3429. struct kmem_cache *cachep;
  3430. struct array_cache *new[NR_CPUS];
  3431. };
  3432. static void do_ccupdate_local(void *info)
  3433. {
  3434. struct ccupdate_struct *new = info;
  3435. struct array_cache *old;
  3436. check_irq_off();
  3437. old = cpu_cache_get(new->cachep);
  3438. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3439. new->new[smp_processor_id()] = old;
  3440. }
  3441. /* Always called with the cache_chain_mutex held */
  3442. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3443. int batchcount, int shared)
  3444. {
  3445. struct ccupdate_struct *new;
  3446. int i;
  3447. new = kzalloc(sizeof(*new), GFP_KERNEL);
  3448. if (!new)
  3449. return -ENOMEM;
  3450. for_each_online_cpu(i) {
  3451. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3452. batchcount);
  3453. if (!new->new[i]) {
  3454. for (i--; i >= 0; i--)
  3455. kfree(new->new[i]);
  3456. kfree(new);
  3457. return -ENOMEM;
  3458. }
  3459. }
  3460. new->cachep = cachep;
  3461. on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
  3462. check_irq_on();
  3463. cachep->batchcount = batchcount;
  3464. cachep->limit = limit;
  3465. cachep->shared = shared;
  3466. for_each_online_cpu(i) {
  3467. struct array_cache *ccold = new->new[i];
  3468. if (!ccold)
  3469. continue;
  3470. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3471. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3472. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3473. kfree(ccold);
  3474. }
  3475. kfree(new);
  3476. return alloc_kmemlist(cachep);
  3477. }
  3478. /* Called with cache_chain_mutex held always */
  3479. static int enable_cpucache(struct kmem_cache *cachep)
  3480. {
  3481. int err;
  3482. int limit, shared;
  3483. /*
  3484. * The head array serves three purposes:
  3485. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3486. * - reduce the number of spinlock operations.
  3487. * - reduce the number of linked list operations on the slab and
  3488. * bufctl chains: array operations are cheaper.
  3489. * The numbers are guessed, we should auto-tune as described by
  3490. * Bonwick.
  3491. */
  3492. if (cachep->buffer_size > 131072)
  3493. limit = 1;
  3494. else if (cachep->buffer_size > PAGE_SIZE)
  3495. limit = 8;
  3496. else if (cachep->buffer_size > 1024)
  3497. limit = 24;
  3498. else if (cachep->buffer_size > 256)
  3499. limit = 54;
  3500. else
  3501. limit = 120;
  3502. /*
  3503. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3504. * allocation behaviour: Most allocs on one cpu, most free operations
  3505. * on another cpu. For these cases, an efficient object passing between
  3506. * cpus is necessary. This is provided by a shared array. The array
  3507. * replaces Bonwick's magazine layer.
  3508. * On uniprocessor, it's functionally equivalent (but less efficient)
  3509. * to a larger limit. Thus disabled by default.
  3510. */
  3511. shared = 0;
  3512. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3513. shared = 8;
  3514. #if DEBUG
  3515. /*
  3516. * With debugging enabled, large batchcount lead to excessively long
  3517. * periods with disabled local interrupts. Limit the batchcount
  3518. */
  3519. if (limit > 32)
  3520. limit = 32;
  3521. #endif
  3522. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3523. if (err)
  3524. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3525. cachep->name, -err);
  3526. return err;
  3527. }
  3528. /*
  3529. * Drain an array if it contains any elements taking the l3 lock only if
  3530. * necessary. Note that the l3 listlock also protects the array_cache
  3531. * if drain_array() is used on the shared array.
  3532. */
  3533. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3534. struct array_cache *ac, int force, int node)
  3535. {
  3536. int tofree;
  3537. if (!ac || !ac->avail)
  3538. return;
  3539. if (ac->touched && !force) {
  3540. ac->touched = 0;
  3541. } else {
  3542. spin_lock_irq(&l3->list_lock);
  3543. if (ac->avail) {
  3544. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3545. if (tofree > ac->avail)
  3546. tofree = (ac->avail + 1) / 2;
  3547. free_block(cachep, ac->entry, tofree, node);
  3548. ac->avail -= tofree;
  3549. memmove(ac->entry, &(ac->entry[tofree]),
  3550. sizeof(void *) * ac->avail);
  3551. }
  3552. spin_unlock_irq(&l3->list_lock);
  3553. }
  3554. }
  3555. /**
  3556. * cache_reap - Reclaim memory from caches.
  3557. * @w: work descriptor
  3558. *
  3559. * Called from workqueue/eventd every few seconds.
  3560. * Purpose:
  3561. * - clear the per-cpu caches for this CPU.
  3562. * - return freeable pages to the main free memory pool.
  3563. *
  3564. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3565. * again on the next iteration.
  3566. */
  3567. static void cache_reap(struct work_struct *w)
  3568. {
  3569. struct kmem_cache *searchp;
  3570. struct kmem_list3 *l3;
  3571. int node = numa_node_id();
  3572. struct delayed_work *work =
  3573. container_of(w, struct delayed_work, work);
  3574. if (!mutex_trylock(&cache_chain_mutex))
  3575. /* Give up. Setup the next iteration. */
  3576. goto out;
  3577. list_for_each_entry(searchp, &cache_chain, next) {
  3578. check_irq_on();
  3579. /*
  3580. * We only take the l3 lock if absolutely necessary and we
  3581. * have established with reasonable certainty that
  3582. * we can do some work if the lock was obtained.
  3583. */
  3584. l3 = searchp->nodelists[node];
  3585. reap_alien(searchp, l3);
  3586. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3587. /*
  3588. * These are racy checks but it does not matter
  3589. * if we skip one check or scan twice.
  3590. */
  3591. if (time_after(l3->next_reap, jiffies))
  3592. goto next;
  3593. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3594. drain_array(searchp, l3, l3->shared, 0, node);
  3595. if (l3->free_touched)
  3596. l3->free_touched = 0;
  3597. else {
  3598. int freed;
  3599. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3600. 5 * searchp->num - 1) / (5 * searchp->num));
  3601. STATS_ADD_REAPED(searchp, freed);
  3602. }
  3603. next:
  3604. cond_resched();
  3605. }
  3606. check_irq_on();
  3607. mutex_unlock(&cache_chain_mutex);
  3608. next_reap_node();
  3609. out:
  3610. /* Set up the next iteration */
  3611. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3612. }
  3613. #ifdef CONFIG_PROC_FS
  3614. static void print_slabinfo_header(struct seq_file *m)
  3615. {
  3616. /*
  3617. * Output format version, so at least we can change it
  3618. * without _too_ many complaints.
  3619. */
  3620. #if STATS
  3621. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3622. #else
  3623. seq_puts(m, "slabinfo - version: 2.1\n");
  3624. #endif
  3625. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3626. "<objperslab> <pagesperslab>");
  3627. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3628. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3629. #if STATS
  3630. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3631. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3632. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3633. #endif
  3634. seq_putc(m, '\n');
  3635. }
  3636. static void *s_start(struct seq_file *m, loff_t *pos)
  3637. {
  3638. loff_t n = *pos;
  3639. mutex_lock(&cache_chain_mutex);
  3640. if (!n)
  3641. print_slabinfo_header(m);
  3642. return seq_list_start(&cache_chain, *pos);
  3643. }
  3644. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3645. {
  3646. return seq_list_next(p, &cache_chain, pos);
  3647. }
  3648. static void s_stop(struct seq_file *m, void *p)
  3649. {
  3650. mutex_unlock(&cache_chain_mutex);
  3651. }
  3652. static int s_show(struct seq_file *m, void *p)
  3653. {
  3654. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3655. struct slab *slabp;
  3656. unsigned long active_objs;
  3657. unsigned long num_objs;
  3658. unsigned long active_slabs = 0;
  3659. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3660. const char *name;
  3661. char *error = NULL;
  3662. int node;
  3663. struct kmem_list3 *l3;
  3664. active_objs = 0;
  3665. num_slabs = 0;
  3666. for_each_online_node(node) {
  3667. l3 = cachep->nodelists[node];
  3668. if (!l3)
  3669. continue;
  3670. check_irq_on();
  3671. spin_lock_irq(&l3->list_lock);
  3672. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3673. if (slabp->inuse != cachep->num && !error)
  3674. error = "slabs_full accounting error";
  3675. active_objs += cachep->num;
  3676. active_slabs++;
  3677. }
  3678. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3679. if (slabp->inuse == cachep->num && !error)
  3680. error = "slabs_partial inuse accounting error";
  3681. if (!slabp->inuse && !error)
  3682. error = "slabs_partial/inuse accounting error";
  3683. active_objs += slabp->inuse;
  3684. active_slabs++;
  3685. }
  3686. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3687. if (slabp->inuse && !error)
  3688. error = "slabs_free/inuse accounting error";
  3689. num_slabs++;
  3690. }
  3691. free_objects += l3->free_objects;
  3692. if (l3->shared)
  3693. shared_avail += l3->shared->avail;
  3694. spin_unlock_irq(&l3->list_lock);
  3695. }
  3696. num_slabs += active_slabs;
  3697. num_objs = num_slabs * cachep->num;
  3698. if (num_objs - active_objs != free_objects && !error)
  3699. error = "free_objects accounting error";
  3700. name = cachep->name;
  3701. if (error)
  3702. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3703. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3704. name, active_objs, num_objs, cachep->buffer_size,
  3705. cachep->num, (1 << cachep->gfporder));
  3706. seq_printf(m, " : tunables %4u %4u %4u",
  3707. cachep->limit, cachep->batchcount, cachep->shared);
  3708. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3709. active_slabs, num_slabs, shared_avail);
  3710. #if STATS
  3711. { /* list3 stats */
  3712. unsigned long high = cachep->high_mark;
  3713. unsigned long allocs = cachep->num_allocations;
  3714. unsigned long grown = cachep->grown;
  3715. unsigned long reaped = cachep->reaped;
  3716. unsigned long errors = cachep->errors;
  3717. unsigned long max_freeable = cachep->max_freeable;
  3718. unsigned long node_allocs = cachep->node_allocs;
  3719. unsigned long node_frees = cachep->node_frees;
  3720. unsigned long overflows = cachep->node_overflow;
  3721. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3722. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3723. reaped, errors, max_freeable, node_allocs,
  3724. node_frees, overflows);
  3725. }
  3726. /* cpu stats */
  3727. {
  3728. unsigned long allochit = atomic_read(&cachep->allochit);
  3729. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3730. unsigned long freehit = atomic_read(&cachep->freehit);
  3731. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3732. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3733. allochit, allocmiss, freehit, freemiss);
  3734. }
  3735. #endif
  3736. seq_putc(m, '\n');
  3737. return 0;
  3738. }
  3739. /*
  3740. * slabinfo_op - iterator that generates /proc/slabinfo
  3741. *
  3742. * Output layout:
  3743. * cache-name
  3744. * num-active-objs
  3745. * total-objs
  3746. * object size
  3747. * num-active-slabs
  3748. * total-slabs
  3749. * num-pages-per-slab
  3750. * + further values on SMP and with statistics enabled
  3751. */
  3752. const struct seq_operations slabinfo_op = {
  3753. .start = s_start,
  3754. .next = s_next,
  3755. .stop = s_stop,
  3756. .show = s_show,
  3757. };
  3758. #define MAX_SLABINFO_WRITE 128
  3759. /**
  3760. * slabinfo_write - Tuning for the slab allocator
  3761. * @file: unused
  3762. * @buffer: user buffer
  3763. * @count: data length
  3764. * @ppos: unused
  3765. */
  3766. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3767. size_t count, loff_t *ppos)
  3768. {
  3769. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3770. int limit, batchcount, shared, res;
  3771. struct kmem_cache *cachep;
  3772. if (count > MAX_SLABINFO_WRITE)
  3773. return -EINVAL;
  3774. if (copy_from_user(&kbuf, buffer, count))
  3775. return -EFAULT;
  3776. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3777. tmp = strchr(kbuf, ' ');
  3778. if (!tmp)
  3779. return -EINVAL;
  3780. *tmp = '\0';
  3781. tmp++;
  3782. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3783. return -EINVAL;
  3784. /* Find the cache in the chain of caches. */
  3785. mutex_lock(&cache_chain_mutex);
  3786. res = -EINVAL;
  3787. list_for_each_entry(cachep, &cache_chain, next) {
  3788. if (!strcmp(cachep->name, kbuf)) {
  3789. if (limit < 1 || batchcount < 1 ||
  3790. batchcount > limit || shared < 0) {
  3791. res = 0;
  3792. } else {
  3793. res = do_tune_cpucache(cachep, limit,
  3794. batchcount, shared);
  3795. }
  3796. break;
  3797. }
  3798. }
  3799. mutex_unlock(&cache_chain_mutex);
  3800. if (res >= 0)
  3801. res = count;
  3802. return res;
  3803. }
  3804. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3805. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3806. {
  3807. mutex_lock(&cache_chain_mutex);
  3808. return seq_list_start(&cache_chain, *pos);
  3809. }
  3810. static inline int add_caller(unsigned long *n, unsigned long v)
  3811. {
  3812. unsigned long *p;
  3813. int l;
  3814. if (!v)
  3815. return 1;
  3816. l = n[1];
  3817. p = n + 2;
  3818. while (l) {
  3819. int i = l/2;
  3820. unsigned long *q = p + 2 * i;
  3821. if (*q == v) {
  3822. q[1]++;
  3823. return 1;
  3824. }
  3825. if (*q > v) {
  3826. l = i;
  3827. } else {
  3828. p = q + 2;
  3829. l -= i + 1;
  3830. }
  3831. }
  3832. if (++n[1] == n[0])
  3833. return 0;
  3834. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3835. p[0] = v;
  3836. p[1] = 1;
  3837. return 1;
  3838. }
  3839. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3840. {
  3841. void *p;
  3842. int i;
  3843. if (n[0] == n[1])
  3844. return;
  3845. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3846. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3847. continue;
  3848. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3849. return;
  3850. }
  3851. }
  3852. static void show_symbol(struct seq_file *m, unsigned long address)
  3853. {
  3854. #ifdef CONFIG_KALLSYMS
  3855. unsigned long offset, size;
  3856. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3857. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3858. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3859. if (modname[0])
  3860. seq_printf(m, " [%s]", modname);
  3861. return;
  3862. }
  3863. #endif
  3864. seq_printf(m, "%p", (void *)address);
  3865. }
  3866. static int leaks_show(struct seq_file *m, void *p)
  3867. {
  3868. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3869. struct slab *slabp;
  3870. struct kmem_list3 *l3;
  3871. const char *name;
  3872. unsigned long *n = m->private;
  3873. int node;
  3874. int i;
  3875. if (!(cachep->flags & SLAB_STORE_USER))
  3876. return 0;
  3877. if (!(cachep->flags & SLAB_RED_ZONE))
  3878. return 0;
  3879. /* OK, we can do it */
  3880. n[1] = 0;
  3881. for_each_online_node(node) {
  3882. l3 = cachep->nodelists[node];
  3883. if (!l3)
  3884. continue;
  3885. check_irq_on();
  3886. spin_lock_irq(&l3->list_lock);
  3887. list_for_each_entry(slabp, &l3->slabs_full, list)
  3888. handle_slab(n, cachep, slabp);
  3889. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3890. handle_slab(n, cachep, slabp);
  3891. spin_unlock_irq(&l3->list_lock);
  3892. }
  3893. name = cachep->name;
  3894. if (n[0] == n[1]) {
  3895. /* Increase the buffer size */
  3896. mutex_unlock(&cache_chain_mutex);
  3897. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3898. if (!m->private) {
  3899. /* Too bad, we are really out */
  3900. m->private = n;
  3901. mutex_lock(&cache_chain_mutex);
  3902. return -ENOMEM;
  3903. }
  3904. *(unsigned long *)m->private = n[0] * 2;
  3905. kfree(n);
  3906. mutex_lock(&cache_chain_mutex);
  3907. /* Now make sure this entry will be retried */
  3908. m->count = m->size;
  3909. return 0;
  3910. }
  3911. for (i = 0; i < n[1]; i++) {
  3912. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3913. show_symbol(m, n[2*i+2]);
  3914. seq_putc(m, '\n');
  3915. }
  3916. return 0;
  3917. }
  3918. const struct seq_operations slabstats_op = {
  3919. .start = leaks_start,
  3920. .next = s_next,
  3921. .stop = s_stop,
  3922. .show = leaks_show,
  3923. };
  3924. #endif
  3925. #endif
  3926. /**
  3927. * ksize - get the actual amount of memory allocated for a given object
  3928. * @objp: Pointer to the object
  3929. *
  3930. * kmalloc may internally round up allocations and return more memory
  3931. * than requested. ksize() can be used to determine the actual amount of
  3932. * memory allocated. The caller may use this additional memory, even though
  3933. * a smaller amount of memory was initially specified with the kmalloc call.
  3934. * The caller must guarantee that objp points to a valid object previously
  3935. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3936. * must not be freed during the duration of the call.
  3937. */
  3938. size_t ksize(const void *objp)
  3939. {
  3940. BUG_ON(!objp);
  3941. if (unlikely(objp == ZERO_SIZE_PTR))
  3942. return 0;
  3943. return obj_size(virt_to_cache(objp));
  3944. }