page_alloc.c 123 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/compiler.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/oom.h>
  30. #include <linux/notifier.h>
  31. #include <linux/topology.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cpuset.h>
  35. #include <linux/memory_hotplug.h>
  36. #include <linux/nodemask.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/mempolicy.h>
  39. #include <linux/stop_machine.h>
  40. #include <linux/sort.h>
  41. #include <linux/pfn.h>
  42. #include <linux/backing-dev.h>
  43. #include <linux/fault-inject.h>
  44. #include <linux/page-isolation.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/div64.h>
  47. #include "internal.h"
  48. /*
  49. * Array of node states.
  50. */
  51. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  52. [N_POSSIBLE] = NODE_MASK_ALL,
  53. [N_ONLINE] = { { [0] = 1UL } },
  54. #ifndef CONFIG_NUMA
  55. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  56. #ifdef CONFIG_HIGHMEM
  57. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  58. #endif
  59. [N_CPU] = { { [0] = 1UL } },
  60. #endif /* NUMA */
  61. };
  62. EXPORT_SYMBOL(node_states);
  63. unsigned long totalram_pages __read_mostly;
  64. unsigned long totalreserve_pages __read_mostly;
  65. long nr_swap_pages;
  66. int percpu_pagelist_fraction;
  67. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  68. int pageblock_order __read_mostly;
  69. #endif
  70. static void __free_pages_ok(struct page *page, unsigned int order);
  71. /*
  72. * results with 256, 32 in the lowmem_reserve sysctl:
  73. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  74. * 1G machine -> (16M dma, 784M normal, 224M high)
  75. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  76. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  77. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  78. *
  79. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  80. * don't need any ZONE_NORMAL reservation
  81. */
  82. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  83. #ifdef CONFIG_ZONE_DMA
  84. 256,
  85. #endif
  86. #ifdef CONFIG_ZONE_DMA32
  87. 256,
  88. #endif
  89. #ifdef CONFIG_HIGHMEM
  90. 32,
  91. #endif
  92. 32,
  93. };
  94. EXPORT_SYMBOL(totalram_pages);
  95. static char * const zone_names[MAX_NR_ZONES] = {
  96. #ifdef CONFIG_ZONE_DMA
  97. "DMA",
  98. #endif
  99. #ifdef CONFIG_ZONE_DMA32
  100. "DMA32",
  101. #endif
  102. "Normal",
  103. #ifdef CONFIG_HIGHMEM
  104. "HighMem",
  105. #endif
  106. "Movable",
  107. };
  108. int min_free_kbytes = 1024;
  109. unsigned long __meminitdata nr_kernel_pages;
  110. unsigned long __meminitdata nr_all_pages;
  111. static unsigned long __meminitdata dma_reserve;
  112. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  113. /*
  114. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  115. * ranges of memory (RAM) that may be registered with add_active_range().
  116. * Ranges passed to add_active_range() will be merged if possible
  117. * so the number of times add_active_range() can be called is
  118. * related to the number of nodes and the number of holes
  119. */
  120. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  121. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  122. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  123. #else
  124. #if MAX_NUMNODES >= 32
  125. /* If there can be many nodes, allow up to 50 holes per node */
  126. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  127. #else
  128. /* By default, allow up to 256 distinct regions */
  129. #define MAX_ACTIVE_REGIONS 256
  130. #endif
  131. #endif
  132. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  133. static int __meminitdata nr_nodemap_entries;
  134. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  135. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  136. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  137. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  138. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  139. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  140. unsigned long __initdata required_kernelcore;
  141. static unsigned long __initdata required_movablecore;
  142. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  143. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  144. int movable_zone;
  145. EXPORT_SYMBOL(movable_zone);
  146. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  147. #if MAX_NUMNODES > 1
  148. int nr_node_ids __read_mostly = MAX_NUMNODES;
  149. EXPORT_SYMBOL(nr_node_ids);
  150. #endif
  151. int page_group_by_mobility_disabled __read_mostly;
  152. static void set_pageblock_migratetype(struct page *page, int migratetype)
  153. {
  154. set_pageblock_flags_group(page, (unsigned long)migratetype,
  155. PB_migrate, PB_migrate_end);
  156. }
  157. #ifdef CONFIG_DEBUG_VM
  158. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  159. {
  160. int ret = 0;
  161. unsigned seq;
  162. unsigned long pfn = page_to_pfn(page);
  163. do {
  164. seq = zone_span_seqbegin(zone);
  165. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  166. ret = 1;
  167. else if (pfn < zone->zone_start_pfn)
  168. ret = 1;
  169. } while (zone_span_seqretry(zone, seq));
  170. return ret;
  171. }
  172. static int page_is_consistent(struct zone *zone, struct page *page)
  173. {
  174. if (!pfn_valid_within(page_to_pfn(page)))
  175. return 0;
  176. if (zone != page_zone(page))
  177. return 0;
  178. return 1;
  179. }
  180. /*
  181. * Temporary debugging check for pages not lying within a given zone.
  182. */
  183. static int bad_range(struct zone *zone, struct page *page)
  184. {
  185. if (page_outside_zone_boundaries(zone, page))
  186. return 1;
  187. if (!page_is_consistent(zone, page))
  188. return 1;
  189. return 0;
  190. }
  191. #else
  192. static inline int bad_range(struct zone *zone, struct page *page)
  193. {
  194. return 0;
  195. }
  196. #endif
  197. static void bad_page(struct page *page)
  198. {
  199. printk(KERN_EMERG "Bad page state in process '%s'\n"
  200. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  201. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  202. KERN_EMERG "Backtrace:\n",
  203. current->comm, page, (int)(2*sizeof(unsigned long)),
  204. (unsigned long)page->flags, page->mapping,
  205. page_mapcount(page), page_count(page));
  206. dump_stack();
  207. page->flags &= ~(1 << PG_lru |
  208. 1 << PG_private |
  209. 1 << PG_locked |
  210. 1 << PG_active |
  211. 1 << PG_dirty |
  212. 1 << PG_reclaim |
  213. 1 << PG_slab |
  214. 1 << PG_swapcache |
  215. 1 << PG_writeback |
  216. 1 << PG_buddy );
  217. set_page_count(page, 0);
  218. reset_page_mapcount(page);
  219. page->mapping = NULL;
  220. add_taint(TAINT_BAD_PAGE);
  221. }
  222. /*
  223. * Higher-order pages are called "compound pages". They are structured thusly:
  224. *
  225. * The first PAGE_SIZE page is called the "head page".
  226. *
  227. * The remaining PAGE_SIZE pages are called "tail pages".
  228. *
  229. * All pages have PG_compound set. All pages have their ->private pointing at
  230. * the head page (even the head page has this).
  231. *
  232. * The first tail page's ->lru.next holds the address of the compound page's
  233. * put_page() function. Its ->lru.prev holds the order of allocation.
  234. * This usage means that zero-order pages may not be compound.
  235. */
  236. static void free_compound_page(struct page *page)
  237. {
  238. __free_pages_ok(page, compound_order(page));
  239. }
  240. static void prep_compound_page(struct page *page, unsigned long order)
  241. {
  242. int i;
  243. int nr_pages = 1 << order;
  244. set_compound_page_dtor(page, free_compound_page);
  245. set_compound_order(page, order);
  246. __SetPageHead(page);
  247. for (i = 1; i < nr_pages; i++) {
  248. struct page *p = page + i;
  249. __SetPageTail(p);
  250. p->first_page = page;
  251. }
  252. }
  253. static void destroy_compound_page(struct page *page, unsigned long order)
  254. {
  255. int i;
  256. int nr_pages = 1 << order;
  257. if (unlikely(compound_order(page) != order))
  258. bad_page(page);
  259. if (unlikely(!PageHead(page)))
  260. bad_page(page);
  261. __ClearPageHead(page);
  262. for (i = 1; i < nr_pages; i++) {
  263. struct page *p = page + i;
  264. if (unlikely(!PageTail(p) |
  265. (p->first_page != page)))
  266. bad_page(page);
  267. __ClearPageTail(p);
  268. }
  269. }
  270. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  271. {
  272. int i;
  273. VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  274. /*
  275. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  276. * and __GFP_HIGHMEM from hard or soft interrupt context.
  277. */
  278. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  279. for (i = 0; i < (1 << order); i++)
  280. clear_highpage(page + i);
  281. }
  282. static inline void set_page_order(struct page *page, int order)
  283. {
  284. set_page_private(page, order);
  285. __SetPageBuddy(page);
  286. }
  287. static inline void rmv_page_order(struct page *page)
  288. {
  289. __ClearPageBuddy(page);
  290. set_page_private(page, 0);
  291. }
  292. /*
  293. * Locate the struct page for both the matching buddy in our
  294. * pair (buddy1) and the combined O(n+1) page they form (page).
  295. *
  296. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  297. * the following equation:
  298. * B2 = B1 ^ (1 << O)
  299. * For example, if the starting buddy (buddy2) is #8 its order
  300. * 1 buddy is #10:
  301. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  302. *
  303. * 2) Any buddy B will have an order O+1 parent P which
  304. * satisfies the following equation:
  305. * P = B & ~(1 << O)
  306. *
  307. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  308. */
  309. static inline struct page *
  310. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  311. {
  312. unsigned long buddy_idx = page_idx ^ (1 << order);
  313. return page + (buddy_idx - page_idx);
  314. }
  315. static inline unsigned long
  316. __find_combined_index(unsigned long page_idx, unsigned int order)
  317. {
  318. return (page_idx & ~(1 << order));
  319. }
  320. /*
  321. * This function checks whether a page is free && is the buddy
  322. * we can do coalesce a page and its buddy if
  323. * (a) the buddy is not in a hole &&
  324. * (b) the buddy is in the buddy system &&
  325. * (c) a page and its buddy have the same order &&
  326. * (d) a page and its buddy are in the same zone.
  327. *
  328. * For recording whether a page is in the buddy system, we use PG_buddy.
  329. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  330. *
  331. * For recording page's order, we use page_private(page).
  332. */
  333. static inline int page_is_buddy(struct page *page, struct page *buddy,
  334. int order)
  335. {
  336. if (!pfn_valid_within(page_to_pfn(buddy)))
  337. return 0;
  338. if (page_zone_id(page) != page_zone_id(buddy))
  339. return 0;
  340. if (PageBuddy(buddy) && page_order(buddy) == order) {
  341. BUG_ON(page_count(buddy) != 0);
  342. return 1;
  343. }
  344. return 0;
  345. }
  346. /*
  347. * Freeing function for a buddy system allocator.
  348. *
  349. * The concept of a buddy system is to maintain direct-mapped table
  350. * (containing bit values) for memory blocks of various "orders".
  351. * The bottom level table contains the map for the smallest allocatable
  352. * units of memory (here, pages), and each level above it describes
  353. * pairs of units from the levels below, hence, "buddies".
  354. * At a high level, all that happens here is marking the table entry
  355. * at the bottom level available, and propagating the changes upward
  356. * as necessary, plus some accounting needed to play nicely with other
  357. * parts of the VM system.
  358. * At each level, we keep a list of pages, which are heads of continuous
  359. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  360. * order is recorded in page_private(page) field.
  361. * So when we are allocating or freeing one, we can derive the state of the
  362. * other. That is, if we allocate a small block, and both were
  363. * free, the remainder of the region must be split into blocks.
  364. * If a block is freed, and its buddy is also free, then this
  365. * triggers coalescing into a block of larger size.
  366. *
  367. * -- wli
  368. */
  369. static inline void __free_one_page(struct page *page,
  370. struct zone *zone, unsigned int order)
  371. {
  372. unsigned long page_idx;
  373. int order_size = 1 << order;
  374. int migratetype = get_pageblock_migratetype(page);
  375. if (unlikely(PageCompound(page)))
  376. destroy_compound_page(page, order);
  377. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  378. VM_BUG_ON(page_idx & (order_size - 1));
  379. VM_BUG_ON(bad_range(zone, page));
  380. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  381. while (order < MAX_ORDER-1) {
  382. unsigned long combined_idx;
  383. struct page *buddy;
  384. buddy = __page_find_buddy(page, page_idx, order);
  385. if (!page_is_buddy(page, buddy, order))
  386. break; /* Move the buddy up one level. */
  387. list_del(&buddy->lru);
  388. zone->free_area[order].nr_free--;
  389. rmv_page_order(buddy);
  390. combined_idx = __find_combined_index(page_idx, order);
  391. page = page + (combined_idx - page_idx);
  392. page_idx = combined_idx;
  393. order++;
  394. }
  395. set_page_order(page, order);
  396. list_add(&page->lru,
  397. &zone->free_area[order].free_list[migratetype]);
  398. zone->free_area[order].nr_free++;
  399. }
  400. static inline int free_pages_check(struct page *page)
  401. {
  402. if (unlikely(page_mapcount(page) |
  403. (page->mapping != NULL) |
  404. (page_count(page) != 0) |
  405. (page->flags & (
  406. 1 << PG_lru |
  407. 1 << PG_private |
  408. 1 << PG_locked |
  409. 1 << PG_active |
  410. 1 << PG_slab |
  411. 1 << PG_swapcache |
  412. 1 << PG_writeback |
  413. 1 << PG_reserved |
  414. 1 << PG_buddy ))))
  415. bad_page(page);
  416. if (PageDirty(page))
  417. __ClearPageDirty(page);
  418. /*
  419. * For now, we report if PG_reserved was found set, but do not
  420. * clear it, and do not free the page. But we shall soon need
  421. * to do more, for when the ZERO_PAGE count wraps negative.
  422. */
  423. return PageReserved(page);
  424. }
  425. /*
  426. * Frees a list of pages.
  427. * Assumes all pages on list are in same zone, and of same order.
  428. * count is the number of pages to free.
  429. *
  430. * If the zone was previously in an "all pages pinned" state then look to
  431. * see if this freeing clears that state.
  432. *
  433. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  434. * pinned" detection logic.
  435. */
  436. static void free_pages_bulk(struct zone *zone, int count,
  437. struct list_head *list, int order)
  438. {
  439. spin_lock(&zone->lock);
  440. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  441. zone->pages_scanned = 0;
  442. while (count--) {
  443. struct page *page;
  444. VM_BUG_ON(list_empty(list));
  445. page = list_entry(list->prev, struct page, lru);
  446. /* have to delete it as __free_one_page list manipulates */
  447. list_del(&page->lru);
  448. __free_one_page(page, zone, order);
  449. }
  450. spin_unlock(&zone->lock);
  451. }
  452. static void free_one_page(struct zone *zone, struct page *page, int order)
  453. {
  454. spin_lock(&zone->lock);
  455. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  456. zone->pages_scanned = 0;
  457. __free_one_page(page, zone, order);
  458. spin_unlock(&zone->lock);
  459. }
  460. static void __free_pages_ok(struct page *page, unsigned int order)
  461. {
  462. unsigned long flags;
  463. int i;
  464. int reserved = 0;
  465. for (i = 0 ; i < (1 << order) ; ++i)
  466. reserved += free_pages_check(page + i);
  467. if (reserved)
  468. return;
  469. if (!PageHighMem(page))
  470. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  471. arch_free_page(page, order);
  472. kernel_map_pages(page, 1 << order, 0);
  473. local_irq_save(flags);
  474. __count_vm_events(PGFREE, 1 << order);
  475. free_one_page(page_zone(page), page, order);
  476. local_irq_restore(flags);
  477. }
  478. /*
  479. * permit the bootmem allocator to evade page validation on high-order frees
  480. */
  481. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  482. {
  483. if (order == 0) {
  484. __ClearPageReserved(page);
  485. set_page_count(page, 0);
  486. set_page_refcounted(page);
  487. __free_page(page);
  488. } else {
  489. int loop;
  490. prefetchw(page);
  491. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  492. struct page *p = &page[loop];
  493. if (loop + 1 < BITS_PER_LONG)
  494. prefetchw(p + 1);
  495. __ClearPageReserved(p);
  496. set_page_count(p, 0);
  497. }
  498. set_page_refcounted(page);
  499. __free_pages(page, order);
  500. }
  501. }
  502. /*
  503. * The order of subdivision here is critical for the IO subsystem.
  504. * Please do not alter this order without good reasons and regression
  505. * testing. Specifically, as large blocks of memory are subdivided,
  506. * the order in which smaller blocks are delivered depends on the order
  507. * they're subdivided in this function. This is the primary factor
  508. * influencing the order in which pages are delivered to the IO
  509. * subsystem according to empirical testing, and this is also justified
  510. * by considering the behavior of a buddy system containing a single
  511. * large block of memory acted on by a series of small allocations.
  512. * This behavior is a critical factor in sglist merging's success.
  513. *
  514. * -- wli
  515. */
  516. static inline void expand(struct zone *zone, struct page *page,
  517. int low, int high, struct free_area *area,
  518. int migratetype)
  519. {
  520. unsigned long size = 1 << high;
  521. while (high > low) {
  522. area--;
  523. high--;
  524. size >>= 1;
  525. VM_BUG_ON(bad_range(zone, &page[size]));
  526. list_add(&page[size].lru, &area->free_list[migratetype]);
  527. area->nr_free++;
  528. set_page_order(&page[size], high);
  529. }
  530. }
  531. /*
  532. * This page is about to be returned from the page allocator
  533. */
  534. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  535. {
  536. if (unlikely(page_mapcount(page) |
  537. (page->mapping != NULL) |
  538. (page_count(page) != 0) |
  539. (page->flags & (
  540. 1 << PG_lru |
  541. 1 << PG_private |
  542. 1 << PG_locked |
  543. 1 << PG_active |
  544. 1 << PG_dirty |
  545. 1 << PG_slab |
  546. 1 << PG_swapcache |
  547. 1 << PG_writeback |
  548. 1 << PG_reserved |
  549. 1 << PG_buddy ))))
  550. bad_page(page);
  551. /*
  552. * For now, we report if PG_reserved was found set, but do not
  553. * clear it, and do not allocate the page: as a safety net.
  554. */
  555. if (PageReserved(page))
  556. return 1;
  557. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
  558. 1 << PG_referenced | 1 << PG_arch_1 |
  559. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  560. set_page_private(page, 0);
  561. set_page_refcounted(page);
  562. arch_alloc_page(page, order);
  563. kernel_map_pages(page, 1 << order, 1);
  564. if (gfp_flags & __GFP_ZERO)
  565. prep_zero_page(page, order, gfp_flags);
  566. if (order && (gfp_flags & __GFP_COMP))
  567. prep_compound_page(page, order);
  568. return 0;
  569. }
  570. /*
  571. * Go through the free lists for the given migratetype and remove
  572. * the smallest available page from the freelists
  573. */
  574. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  575. int migratetype)
  576. {
  577. unsigned int current_order;
  578. struct free_area * area;
  579. struct page *page;
  580. /* Find a page of the appropriate size in the preferred list */
  581. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  582. area = &(zone->free_area[current_order]);
  583. if (list_empty(&area->free_list[migratetype]))
  584. continue;
  585. page = list_entry(area->free_list[migratetype].next,
  586. struct page, lru);
  587. list_del(&page->lru);
  588. rmv_page_order(page);
  589. area->nr_free--;
  590. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  591. expand(zone, page, order, current_order, area, migratetype);
  592. return page;
  593. }
  594. return NULL;
  595. }
  596. /*
  597. * This array describes the order lists are fallen back to when
  598. * the free lists for the desirable migrate type are depleted
  599. */
  600. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  601. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  602. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  603. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  604. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  605. };
  606. /*
  607. * Move the free pages in a range to the free lists of the requested type.
  608. * Note that start_page and end_pages are not aligned on a pageblock
  609. * boundary. If alignment is required, use move_freepages_block()
  610. */
  611. int move_freepages(struct zone *zone,
  612. struct page *start_page, struct page *end_page,
  613. int migratetype)
  614. {
  615. struct page *page;
  616. unsigned long order;
  617. int pages_moved = 0;
  618. #ifndef CONFIG_HOLES_IN_ZONE
  619. /*
  620. * page_zone is not safe to call in this context when
  621. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  622. * anyway as we check zone boundaries in move_freepages_block().
  623. * Remove at a later date when no bug reports exist related to
  624. * grouping pages by mobility
  625. */
  626. BUG_ON(page_zone(start_page) != page_zone(end_page));
  627. #endif
  628. for (page = start_page; page <= end_page;) {
  629. if (!pfn_valid_within(page_to_pfn(page))) {
  630. page++;
  631. continue;
  632. }
  633. if (!PageBuddy(page)) {
  634. page++;
  635. continue;
  636. }
  637. order = page_order(page);
  638. list_del(&page->lru);
  639. list_add(&page->lru,
  640. &zone->free_area[order].free_list[migratetype]);
  641. page += 1 << order;
  642. pages_moved += 1 << order;
  643. }
  644. return pages_moved;
  645. }
  646. int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
  647. {
  648. unsigned long start_pfn, end_pfn;
  649. struct page *start_page, *end_page;
  650. start_pfn = page_to_pfn(page);
  651. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  652. start_page = pfn_to_page(start_pfn);
  653. end_page = start_page + pageblock_nr_pages - 1;
  654. end_pfn = start_pfn + pageblock_nr_pages - 1;
  655. /* Do not cross zone boundaries */
  656. if (start_pfn < zone->zone_start_pfn)
  657. start_page = page;
  658. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  659. return 0;
  660. return move_freepages(zone, start_page, end_page, migratetype);
  661. }
  662. /* Remove an element from the buddy allocator from the fallback list */
  663. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  664. int start_migratetype)
  665. {
  666. struct free_area * area;
  667. int current_order;
  668. struct page *page;
  669. int migratetype, i;
  670. /* Find the largest possible block of pages in the other list */
  671. for (current_order = MAX_ORDER-1; current_order >= order;
  672. --current_order) {
  673. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  674. migratetype = fallbacks[start_migratetype][i];
  675. /* MIGRATE_RESERVE handled later if necessary */
  676. if (migratetype == MIGRATE_RESERVE)
  677. continue;
  678. area = &(zone->free_area[current_order]);
  679. if (list_empty(&area->free_list[migratetype]))
  680. continue;
  681. page = list_entry(area->free_list[migratetype].next,
  682. struct page, lru);
  683. area->nr_free--;
  684. /*
  685. * If breaking a large block of pages, move all free
  686. * pages to the preferred allocation list. If falling
  687. * back for a reclaimable kernel allocation, be more
  688. * agressive about taking ownership of free pages
  689. */
  690. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  691. start_migratetype == MIGRATE_RECLAIMABLE) {
  692. unsigned long pages;
  693. pages = move_freepages_block(zone, page,
  694. start_migratetype);
  695. /* Claim the whole block if over half of it is free */
  696. if (pages >= (1 << (pageblock_order-1)))
  697. set_pageblock_migratetype(page,
  698. start_migratetype);
  699. migratetype = start_migratetype;
  700. }
  701. /* Remove the page from the freelists */
  702. list_del(&page->lru);
  703. rmv_page_order(page);
  704. __mod_zone_page_state(zone, NR_FREE_PAGES,
  705. -(1UL << order));
  706. if (current_order == pageblock_order)
  707. set_pageblock_migratetype(page,
  708. start_migratetype);
  709. expand(zone, page, order, current_order, area, migratetype);
  710. return page;
  711. }
  712. }
  713. /* Use MIGRATE_RESERVE rather than fail an allocation */
  714. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  715. }
  716. /*
  717. * Do the hard work of removing an element from the buddy allocator.
  718. * Call me with the zone->lock already held.
  719. */
  720. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  721. int migratetype)
  722. {
  723. struct page *page;
  724. page = __rmqueue_smallest(zone, order, migratetype);
  725. if (unlikely(!page))
  726. page = __rmqueue_fallback(zone, order, migratetype);
  727. return page;
  728. }
  729. /*
  730. * Obtain a specified number of elements from the buddy allocator, all under
  731. * a single hold of the lock, for efficiency. Add them to the supplied list.
  732. * Returns the number of new pages which were placed at *list.
  733. */
  734. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  735. unsigned long count, struct list_head *list,
  736. int migratetype)
  737. {
  738. int i;
  739. spin_lock(&zone->lock);
  740. for (i = 0; i < count; ++i) {
  741. struct page *page = __rmqueue(zone, order, migratetype);
  742. if (unlikely(page == NULL))
  743. break;
  744. list_add(&page->lru, list);
  745. set_page_private(page, migratetype);
  746. }
  747. spin_unlock(&zone->lock);
  748. return i;
  749. }
  750. #ifdef CONFIG_NUMA
  751. /*
  752. * Called from the vmstat counter updater to drain pagesets of this
  753. * currently executing processor on remote nodes after they have
  754. * expired.
  755. *
  756. * Note that this function must be called with the thread pinned to
  757. * a single processor.
  758. */
  759. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  760. {
  761. unsigned long flags;
  762. int to_drain;
  763. local_irq_save(flags);
  764. if (pcp->count >= pcp->batch)
  765. to_drain = pcp->batch;
  766. else
  767. to_drain = pcp->count;
  768. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  769. pcp->count -= to_drain;
  770. local_irq_restore(flags);
  771. }
  772. #endif
  773. static void __drain_pages(unsigned int cpu)
  774. {
  775. unsigned long flags;
  776. struct zone *zone;
  777. int i;
  778. for_each_zone(zone) {
  779. struct per_cpu_pageset *pset;
  780. if (!populated_zone(zone))
  781. continue;
  782. pset = zone_pcp(zone, cpu);
  783. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  784. struct per_cpu_pages *pcp;
  785. pcp = &pset->pcp[i];
  786. local_irq_save(flags);
  787. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  788. pcp->count = 0;
  789. local_irq_restore(flags);
  790. }
  791. }
  792. }
  793. #ifdef CONFIG_HIBERNATION
  794. void mark_free_pages(struct zone *zone)
  795. {
  796. unsigned long pfn, max_zone_pfn;
  797. unsigned long flags;
  798. int order, t;
  799. struct list_head *curr;
  800. if (!zone->spanned_pages)
  801. return;
  802. spin_lock_irqsave(&zone->lock, flags);
  803. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  804. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  805. if (pfn_valid(pfn)) {
  806. struct page *page = pfn_to_page(pfn);
  807. if (!swsusp_page_is_forbidden(page))
  808. swsusp_unset_page_free(page);
  809. }
  810. for_each_migratetype_order(order, t) {
  811. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  812. unsigned long i;
  813. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  814. for (i = 0; i < (1UL << order); i++)
  815. swsusp_set_page_free(pfn_to_page(pfn + i));
  816. }
  817. }
  818. spin_unlock_irqrestore(&zone->lock, flags);
  819. }
  820. #endif /* CONFIG_PM */
  821. /*
  822. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  823. */
  824. void drain_local_pages(void)
  825. {
  826. unsigned long flags;
  827. local_irq_save(flags);
  828. __drain_pages(smp_processor_id());
  829. local_irq_restore(flags);
  830. }
  831. void smp_drain_local_pages(void *arg)
  832. {
  833. drain_local_pages();
  834. }
  835. /*
  836. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  837. */
  838. void drain_all_local_pages(void)
  839. {
  840. unsigned long flags;
  841. local_irq_save(flags);
  842. __drain_pages(smp_processor_id());
  843. local_irq_restore(flags);
  844. smp_call_function(smp_drain_local_pages, NULL, 0, 1);
  845. }
  846. /*
  847. * Free a 0-order page
  848. */
  849. static void fastcall free_hot_cold_page(struct page *page, int cold)
  850. {
  851. struct zone *zone = page_zone(page);
  852. struct per_cpu_pages *pcp;
  853. unsigned long flags;
  854. if (PageAnon(page))
  855. page->mapping = NULL;
  856. if (free_pages_check(page))
  857. return;
  858. if (!PageHighMem(page))
  859. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  860. arch_free_page(page, 0);
  861. kernel_map_pages(page, 1, 0);
  862. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  863. local_irq_save(flags);
  864. __count_vm_event(PGFREE);
  865. list_add(&page->lru, &pcp->list);
  866. set_page_private(page, get_pageblock_migratetype(page));
  867. pcp->count++;
  868. if (pcp->count >= pcp->high) {
  869. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  870. pcp->count -= pcp->batch;
  871. }
  872. local_irq_restore(flags);
  873. put_cpu();
  874. }
  875. void fastcall free_hot_page(struct page *page)
  876. {
  877. free_hot_cold_page(page, 0);
  878. }
  879. void fastcall free_cold_page(struct page *page)
  880. {
  881. free_hot_cold_page(page, 1);
  882. }
  883. /*
  884. * split_page takes a non-compound higher-order page, and splits it into
  885. * n (1<<order) sub-pages: page[0..n]
  886. * Each sub-page must be freed individually.
  887. *
  888. * Note: this is probably too low level an operation for use in drivers.
  889. * Please consult with lkml before using this in your driver.
  890. */
  891. void split_page(struct page *page, unsigned int order)
  892. {
  893. int i;
  894. VM_BUG_ON(PageCompound(page));
  895. VM_BUG_ON(!page_count(page));
  896. for (i = 1; i < (1 << order); i++)
  897. set_page_refcounted(page + i);
  898. }
  899. /*
  900. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  901. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  902. * or two.
  903. */
  904. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  905. struct zone *zone, int order, gfp_t gfp_flags)
  906. {
  907. unsigned long flags;
  908. struct page *page;
  909. int cold = !!(gfp_flags & __GFP_COLD);
  910. int cpu;
  911. int migratetype = allocflags_to_migratetype(gfp_flags);
  912. again:
  913. cpu = get_cpu();
  914. if (likely(order == 0)) {
  915. struct per_cpu_pages *pcp;
  916. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  917. local_irq_save(flags);
  918. if (!pcp->count) {
  919. pcp->count = rmqueue_bulk(zone, 0,
  920. pcp->batch, &pcp->list, migratetype);
  921. if (unlikely(!pcp->count))
  922. goto failed;
  923. }
  924. /* Find a page of the appropriate migrate type */
  925. list_for_each_entry(page, &pcp->list, lru)
  926. if (page_private(page) == migratetype)
  927. break;
  928. /* Allocate more to the pcp list if necessary */
  929. if (unlikely(&page->lru == &pcp->list)) {
  930. pcp->count += rmqueue_bulk(zone, 0,
  931. pcp->batch, &pcp->list, migratetype);
  932. page = list_entry(pcp->list.next, struct page, lru);
  933. }
  934. list_del(&page->lru);
  935. pcp->count--;
  936. } else {
  937. spin_lock_irqsave(&zone->lock, flags);
  938. page = __rmqueue(zone, order, migratetype);
  939. spin_unlock(&zone->lock);
  940. if (!page)
  941. goto failed;
  942. }
  943. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  944. zone_statistics(zonelist, zone);
  945. local_irq_restore(flags);
  946. put_cpu();
  947. VM_BUG_ON(bad_range(zone, page));
  948. if (prep_new_page(page, order, gfp_flags))
  949. goto again;
  950. return page;
  951. failed:
  952. local_irq_restore(flags);
  953. put_cpu();
  954. return NULL;
  955. }
  956. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  957. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  958. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  959. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  960. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  961. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  962. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  963. #ifdef CONFIG_FAIL_PAGE_ALLOC
  964. static struct fail_page_alloc_attr {
  965. struct fault_attr attr;
  966. u32 ignore_gfp_highmem;
  967. u32 ignore_gfp_wait;
  968. u32 min_order;
  969. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  970. struct dentry *ignore_gfp_highmem_file;
  971. struct dentry *ignore_gfp_wait_file;
  972. struct dentry *min_order_file;
  973. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  974. } fail_page_alloc = {
  975. .attr = FAULT_ATTR_INITIALIZER,
  976. .ignore_gfp_wait = 1,
  977. .ignore_gfp_highmem = 1,
  978. .min_order = 1,
  979. };
  980. static int __init setup_fail_page_alloc(char *str)
  981. {
  982. return setup_fault_attr(&fail_page_alloc.attr, str);
  983. }
  984. __setup("fail_page_alloc=", setup_fail_page_alloc);
  985. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  986. {
  987. if (order < fail_page_alloc.min_order)
  988. return 0;
  989. if (gfp_mask & __GFP_NOFAIL)
  990. return 0;
  991. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  992. return 0;
  993. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  994. return 0;
  995. return should_fail(&fail_page_alloc.attr, 1 << order);
  996. }
  997. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  998. static int __init fail_page_alloc_debugfs(void)
  999. {
  1000. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1001. struct dentry *dir;
  1002. int err;
  1003. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1004. "fail_page_alloc");
  1005. if (err)
  1006. return err;
  1007. dir = fail_page_alloc.attr.dentries.dir;
  1008. fail_page_alloc.ignore_gfp_wait_file =
  1009. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1010. &fail_page_alloc.ignore_gfp_wait);
  1011. fail_page_alloc.ignore_gfp_highmem_file =
  1012. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1013. &fail_page_alloc.ignore_gfp_highmem);
  1014. fail_page_alloc.min_order_file =
  1015. debugfs_create_u32("min-order", mode, dir,
  1016. &fail_page_alloc.min_order);
  1017. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1018. !fail_page_alloc.ignore_gfp_highmem_file ||
  1019. !fail_page_alloc.min_order_file) {
  1020. err = -ENOMEM;
  1021. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1022. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1023. debugfs_remove(fail_page_alloc.min_order_file);
  1024. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1025. }
  1026. return err;
  1027. }
  1028. late_initcall(fail_page_alloc_debugfs);
  1029. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1030. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1031. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1032. {
  1033. return 0;
  1034. }
  1035. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1036. /*
  1037. * Return 1 if free pages are above 'mark'. This takes into account the order
  1038. * of the allocation.
  1039. */
  1040. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1041. int classzone_idx, int alloc_flags)
  1042. {
  1043. /* free_pages my go negative - that's OK */
  1044. long min = mark;
  1045. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1046. int o;
  1047. if (alloc_flags & ALLOC_HIGH)
  1048. min -= min / 2;
  1049. if (alloc_flags & ALLOC_HARDER)
  1050. min -= min / 4;
  1051. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1052. return 0;
  1053. for (o = 0; o < order; o++) {
  1054. /* At the next order, this order's pages become unavailable */
  1055. free_pages -= z->free_area[o].nr_free << o;
  1056. /* Require fewer higher order pages to be free */
  1057. min >>= 1;
  1058. if (free_pages <= min)
  1059. return 0;
  1060. }
  1061. return 1;
  1062. }
  1063. #ifdef CONFIG_NUMA
  1064. /*
  1065. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1066. * skip over zones that are not allowed by the cpuset, or that have
  1067. * been recently (in last second) found to be nearly full. See further
  1068. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1069. * that have to skip over a lot of full or unallowed zones.
  1070. *
  1071. * If the zonelist cache is present in the passed in zonelist, then
  1072. * returns a pointer to the allowed node mask (either the current
  1073. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1074. *
  1075. * If the zonelist cache is not available for this zonelist, does
  1076. * nothing and returns NULL.
  1077. *
  1078. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1079. * a second since last zap'd) then we zap it out (clear its bits.)
  1080. *
  1081. * We hold off even calling zlc_setup, until after we've checked the
  1082. * first zone in the zonelist, on the theory that most allocations will
  1083. * be satisfied from that first zone, so best to examine that zone as
  1084. * quickly as we can.
  1085. */
  1086. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1087. {
  1088. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1089. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1090. zlc = zonelist->zlcache_ptr;
  1091. if (!zlc)
  1092. return NULL;
  1093. if (jiffies - zlc->last_full_zap > 1 * HZ) {
  1094. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1095. zlc->last_full_zap = jiffies;
  1096. }
  1097. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1098. &cpuset_current_mems_allowed :
  1099. &node_states[N_HIGH_MEMORY];
  1100. return allowednodes;
  1101. }
  1102. /*
  1103. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1104. * if it is worth looking at further for free memory:
  1105. * 1) Check that the zone isn't thought to be full (doesn't have its
  1106. * bit set in the zonelist_cache fullzones BITMAP).
  1107. * 2) Check that the zones node (obtained from the zonelist_cache
  1108. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1109. * Return true (non-zero) if zone is worth looking at further, or
  1110. * else return false (zero) if it is not.
  1111. *
  1112. * This check -ignores- the distinction between various watermarks,
  1113. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1114. * found to be full for any variation of these watermarks, it will
  1115. * be considered full for up to one second by all requests, unless
  1116. * we are so low on memory on all allowed nodes that we are forced
  1117. * into the second scan of the zonelist.
  1118. *
  1119. * In the second scan we ignore this zonelist cache and exactly
  1120. * apply the watermarks to all zones, even it is slower to do so.
  1121. * We are low on memory in the second scan, and should leave no stone
  1122. * unturned looking for a free page.
  1123. */
  1124. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1125. nodemask_t *allowednodes)
  1126. {
  1127. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1128. int i; /* index of *z in zonelist zones */
  1129. int n; /* node that zone *z is on */
  1130. zlc = zonelist->zlcache_ptr;
  1131. if (!zlc)
  1132. return 1;
  1133. i = z - zonelist->zones;
  1134. n = zlc->z_to_n[i];
  1135. /* This zone is worth trying if it is allowed but not full */
  1136. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1137. }
  1138. /*
  1139. * Given 'z' scanning a zonelist, set the corresponding bit in
  1140. * zlc->fullzones, so that subsequent attempts to allocate a page
  1141. * from that zone don't waste time re-examining it.
  1142. */
  1143. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1144. {
  1145. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1146. int i; /* index of *z in zonelist zones */
  1147. zlc = zonelist->zlcache_ptr;
  1148. if (!zlc)
  1149. return;
  1150. i = z - zonelist->zones;
  1151. set_bit(i, zlc->fullzones);
  1152. }
  1153. #else /* CONFIG_NUMA */
  1154. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1155. {
  1156. return NULL;
  1157. }
  1158. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1159. nodemask_t *allowednodes)
  1160. {
  1161. return 1;
  1162. }
  1163. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1164. {
  1165. }
  1166. #endif /* CONFIG_NUMA */
  1167. /*
  1168. * get_page_from_freelist goes through the zonelist trying to allocate
  1169. * a page.
  1170. */
  1171. static struct page *
  1172. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  1173. struct zonelist *zonelist, int alloc_flags)
  1174. {
  1175. struct zone **z;
  1176. struct page *page = NULL;
  1177. int classzone_idx = zone_idx(zonelist->zones[0]);
  1178. struct zone *zone;
  1179. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1180. int zlc_active = 0; /* set if using zonelist_cache */
  1181. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1182. enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
  1183. zonelist_scan:
  1184. /*
  1185. * Scan zonelist, looking for a zone with enough free.
  1186. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1187. */
  1188. z = zonelist->zones;
  1189. do {
  1190. /*
  1191. * In NUMA, this could be a policy zonelist which contains
  1192. * zones that may not be allowed by the current gfp_mask.
  1193. * Check the zone is allowed by the current flags
  1194. */
  1195. if (unlikely(alloc_should_filter_zonelist(zonelist))) {
  1196. if (highest_zoneidx == -1)
  1197. highest_zoneidx = gfp_zone(gfp_mask);
  1198. if (zone_idx(*z) > highest_zoneidx)
  1199. continue;
  1200. }
  1201. if (NUMA_BUILD && zlc_active &&
  1202. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1203. continue;
  1204. zone = *z;
  1205. if ((alloc_flags & ALLOC_CPUSET) &&
  1206. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1207. goto try_next_zone;
  1208. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1209. unsigned long mark;
  1210. if (alloc_flags & ALLOC_WMARK_MIN)
  1211. mark = zone->pages_min;
  1212. else if (alloc_flags & ALLOC_WMARK_LOW)
  1213. mark = zone->pages_low;
  1214. else
  1215. mark = zone->pages_high;
  1216. if (!zone_watermark_ok(zone, order, mark,
  1217. classzone_idx, alloc_flags)) {
  1218. if (!zone_reclaim_mode ||
  1219. !zone_reclaim(zone, gfp_mask, order))
  1220. goto this_zone_full;
  1221. }
  1222. }
  1223. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  1224. if (page)
  1225. break;
  1226. this_zone_full:
  1227. if (NUMA_BUILD)
  1228. zlc_mark_zone_full(zonelist, z);
  1229. try_next_zone:
  1230. if (NUMA_BUILD && !did_zlc_setup) {
  1231. /* we do zlc_setup after the first zone is tried */
  1232. allowednodes = zlc_setup(zonelist, alloc_flags);
  1233. zlc_active = 1;
  1234. did_zlc_setup = 1;
  1235. }
  1236. } while (*(++z) != NULL);
  1237. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1238. /* Disable zlc cache for second zonelist scan */
  1239. zlc_active = 0;
  1240. goto zonelist_scan;
  1241. }
  1242. return page;
  1243. }
  1244. /*
  1245. * This is the 'heart' of the zoned buddy allocator.
  1246. */
  1247. struct page * fastcall
  1248. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1249. struct zonelist *zonelist)
  1250. {
  1251. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1252. struct zone **z;
  1253. struct page *page;
  1254. struct reclaim_state reclaim_state;
  1255. struct task_struct *p = current;
  1256. int do_retry;
  1257. int alloc_flags;
  1258. int did_some_progress;
  1259. might_sleep_if(wait);
  1260. if (should_fail_alloc_page(gfp_mask, order))
  1261. return NULL;
  1262. restart:
  1263. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1264. if (unlikely(*z == NULL)) {
  1265. /*
  1266. * Happens if we have an empty zonelist as a result of
  1267. * GFP_THISNODE being used on a memoryless node
  1268. */
  1269. return NULL;
  1270. }
  1271. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1272. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1273. if (page)
  1274. goto got_pg;
  1275. /*
  1276. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1277. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1278. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1279. * using a larger set of nodes after it has established that the
  1280. * allowed per node queues are empty and that nodes are
  1281. * over allocated.
  1282. */
  1283. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1284. goto nopage;
  1285. for (z = zonelist->zones; *z; z++)
  1286. wakeup_kswapd(*z, order);
  1287. /*
  1288. * OK, we're below the kswapd watermark and have kicked background
  1289. * reclaim. Now things get more complex, so set up alloc_flags according
  1290. * to how we want to proceed.
  1291. *
  1292. * The caller may dip into page reserves a bit more if the caller
  1293. * cannot run direct reclaim, or if the caller has realtime scheduling
  1294. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1295. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1296. */
  1297. alloc_flags = ALLOC_WMARK_MIN;
  1298. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1299. alloc_flags |= ALLOC_HARDER;
  1300. if (gfp_mask & __GFP_HIGH)
  1301. alloc_flags |= ALLOC_HIGH;
  1302. if (wait)
  1303. alloc_flags |= ALLOC_CPUSET;
  1304. /*
  1305. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1306. * coming from realtime tasks go deeper into reserves.
  1307. *
  1308. * This is the last chance, in general, before the goto nopage.
  1309. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1310. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1311. */
  1312. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1313. if (page)
  1314. goto got_pg;
  1315. /* This allocation should allow future memory freeing. */
  1316. rebalance:
  1317. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1318. && !in_interrupt()) {
  1319. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1320. nofail_alloc:
  1321. /* go through the zonelist yet again, ignoring mins */
  1322. page = get_page_from_freelist(gfp_mask, order,
  1323. zonelist, ALLOC_NO_WATERMARKS);
  1324. if (page)
  1325. goto got_pg;
  1326. if (gfp_mask & __GFP_NOFAIL) {
  1327. congestion_wait(WRITE, HZ/50);
  1328. goto nofail_alloc;
  1329. }
  1330. }
  1331. goto nopage;
  1332. }
  1333. /* Atomic allocations - we can't balance anything */
  1334. if (!wait)
  1335. goto nopage;
  1336. cond_resched();
  1337. /* We now go into synchronous reclaim */
  1338. cpuset_memory_pressure_bump();
  1339. p->flags |= PF_MEMALLOC;
  1340. reclaim_state.reclaimed_slab = 0;
  1341. p->reclaim_state = &reclaim_state;
  1342. did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
  1343. p->reclaim_state = NULL;
  1344. p->flags &= ~PF_MEMALLOC;
  1345. cond_resched();
  1346. if (order != 0)
  1347. drain_all_local_pages();
  1348. if (likely(did_some_progress)) {
  1349. page = get_page_from_freelist(gfp_mask, order,
  1350. zonelist, alloc_flags);
  1351. if (page)
  1352. goto got_pg;
  1353. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1354. if (!try_set_zone_oom(zonelist)) {
  1355. schedule_timeout_uninterruptible(1);
  1356. goto restart;
  1357. }
  1358. /*
  1359. * Go through the zonelist yet one more time, keep
  1360. * very high watermark here, this is only to catch
  1361. * a parallel oom killing, we must fail if we're still
  1362. * under heavy pressure.
  1363. */
  1364. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1365. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1366. if (page) {
  1367. clear_zonelist_oom(zonelist);
  1368. goto got_pg;
  1369. }
  1370. /* The OOM killer will not help higher order allocs so fail */
  1371. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1372. clear_zonelist_oom(zonelist);
  1373. goto nopage;
  1374. }
  1375. out_of_memory(zonelist, gfp_mask, order);
  1376. clear_zonelist_oom(zonelist);
  1377. goto restart;
  1378. }
  1379. /*
  1380. * Don't let big-order allocations loop unless the caller explicitly
  1381. * requests that. Wait for some write requests to complete then retry.
  1382. *
  1383. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1384. * <= 3, but that may not be true in other implementations.
  1385. */
  1386. do_retry = 0;
  1387. if (!(gfp_mask & __GFP_NORETRY)) {
  1388. if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
  1389. (gfp_mask & __GFP_REPEAT))
  1390. do_retry = 1;
  1391. if (gfp_mask & __GFP_NOFAIL)
  1392. do_retry = 1;
  1393. }
  1394. if (do_retry) {
  1395. congestion_wait(WRITE, HZ/50);
  1396. goto rebalance;
  1397. }
  1398. nopage:
  1399. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1400. printk(KERN_WARNING "%s: page allocation failure."
  1401. " order:%d, mode:0x%x\n",
  1402. p->comm, order, gfp_mask);
  1403. dump_stack();
  1404. show_mem();
  1405. }
  1406. got_pg:
  1407. return page;
  1408. }
  1409. EXPORT_SYMBOL(__alloc_pages);
  1410. /*
  1411. * Common helper functions.
  1412. */
  1413. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1414. {
  1415. struct page * page;
  1416. page = alloc_pages(gfp_mask, order);
  1417. if (!page)
  1418. return 0;
  1419. return (unsigned long) page_address(page);
  1420. }
  1421. EXPORT_SYMBOL(__get_free_pages);
  1422. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  1423. {
  1424. struct page * page;
  1425. /*
  1426. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1427. * a highmem page
  1428. */
  1429. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1430. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1431. if (page)
  1432. return (unsigned long) page_address(page);
  1433. return 0;
  1434. }
  1435. EXPORT_SYMBOL(get_zeroed_page);
  1436. void __pagevec_free(struct pagevec *pvec)
  1437. {
  1438. int i = pagevec_count(pvec);
  1439. while (--i >= 0)
  1440. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1441. }
  1442. fastcall void __free_pages(struct page *page, unsigned int order)
  1443. {
  1444. if (put_page_testzero(page)) {
  1445. if (order == 0)
  1446. free_hot_page(page);
  1447. else
  1448. __free_pages_ok(page, order);
  1449. }
  1450. }
  1451. EXPORT_SYMBOL(__free_pages);
  1452. fastcall void free_pages(unsigned long addr, unsigned int order)
  1453. {
  1454. if (addr != 0) {
  1455. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1456. __free_pages(virt_to_page((void *)addr), order);
  1457. }
  1458. }
  1459. EXPORT_SYMBOL(free_pages);
  1460. static unsigned int nr_free_zone_pages(int offset)
  1461. {
  1462. /* Just pick one node, since fallback list is circular */
  1463. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1464. unsigned int sum = 0;
  1465. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1466. struct zone **zonep = zonelist->zones;
  1467. struct zone *zone;
  1468. for (zone = *zonep++; zone; zone = *zonep++) {
  1469. unsigned long size = zone->present_pages;
  1470. unsigned long high = zone->pages_high;
  1471. if (size > high)
  1472. sum += size - high;
  1473. }
  1474. return sum;
  1475. }
  1476. /*
  1477. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1478. */
  1479. unsigned int nr_free_buffer_pages(void)
  1480. {
  1481. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1482. }
  1483. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1484. /*
  1485. * Amount of free RAM allocatable within all zones
  1486. */
  1487. unsigned int nr_free_pagecache_pages(void)
  1488. {
  1489. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1490. }
  1491. static inline void show_node(struct zone *zone)
  1492. {
  1493. if (NUMA_BUILD)
  1494. printk("Node %d ", zone_to_nid(zone));
  1495. }
  1496. void si_meminfo(struct sysinfo *val)
  1497. {
  1498. val->totalram = totalram_pages;
  1499. val->sharedram = 0;
  1500. val->freeram = global_page_state(NR_FREE_PAGES);
  1501. val->bufferram = nr_blockdev_pages();
  1502. val->totalhigh = totalhigh_pages;
  1503. val->freehigh = nr_free_highpages();
  1504. val->mem_unit = PAGE_SIZE;
  1505. }
  1506. EXPORT_SYMBOL(si_meminfo);
  1507. #ifdef CONFIG_NUMA
  1508. void si_meminfo_node(struct sysinfo *val, int nid)
  1509. {
  1510. pg_data_t *pgdat = NODE_DATA(nid);
  1511. val->totalram = pgdat->node_present_pages;
  1512. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1513. #ifdef CONFIG_HIGHMEM
  1514. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1515. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1516. NR_FREE_PAGES);
  1517. #else
  1518. val->totalhigh = 0;
  1519. val->freehigh = 0;
  1520. #endif
  1521. val->mem_unit = PAGE_SIZE;
  1522. }
  1523. #endif
  1524. #define K(x) ((x) << (PAGE_SHIFT-10))
  1525. /*
  1526. * Show free area list (used inside shift_scroll-lock stuff)
  1527. * We also calculate the percentage fragmentation. We do this by counting the
  1528. * memory on each free list with the exception of the first item on the list.
  1529. */
  1530. void show_free_areas(void)
  1531. {
  1532. int cpu;
  1533. struct zone *zone;
  1534. for_each_zone(zone) {
  1535. if (!populated_zone(zone))
  1536. continue;
  1537. show_node(zone);
  1538. printk("%s per-cpu:\n", zone->name);
  1539. for_each_online_cpu(cpu) {
  1540. struct per_cpu_pageset *pageset;
  1541. pageset = zone_pcp(zone, cpu);
  1542. printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
  1543. "Cold: hi:%5d, btch:%4d usd:%4d\n",
  1544. cpu, pageset->pcp[0].high,
  1545. pageset->pcp[0].batch, pageset->pcp[0].count,
  1546. pageset->pcp[1].high, pageset->pcp[1].batch,
  1547. pageset->pcp[1].count);
  1548. }
  1549. }
  1550. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1551. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1552. global_page_state(NR_ACTIVE),
  1553. global_page_state(NR_INACTIVE),
  1554. global_page_state(NR_FILE_DIRTY),
  1555. global_page_state(NR_WRITEBACK),
  1556. global_page_state(NR_UNSTABLE_NFS),
  1557. global_page_state(NR_FREE_PAGES),
  1558. global_page_state(NR_SLAB_RECLAIMABLE) +
  1559. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1560. global_page_state(NR_FILE_MAPPED),
  1561. global_page_state(NR_PAGETABLE),
  1562. global_page_state(NR_BOUNCE));
  1563. for_each_zone(zone) {
  1564. int i;
  1565. if (!populated_zone(zone))
  1566. continue;
  1567. show_node(zone);
  1568. printk("%s"
  1569. " free:%lukB"
  1570. " min:%lukB"
  1571. " low:%lukB"
  1572. " high:%lukB"
  1573. " active:%lukB"
  1574. " inactive:%lukB"
  1575. " present:%lukB"
  1576. " pages_scanned:%lu"
  1577. " all_unreclaimable? %s"
  1578. "\n",
  1579. zone->name,
  1580. K(zone_page_state(zone, NR_FREE_PAGES)),
  1581. K(zone->pages_min),
  1582. K(zone->pages_low),
  1583. K(zone->pages_high),
  1584. K(zone_page_state(zone, NR_ACTIVE)),
  1585. K(zone_page_state(zone, NR_INACTIVE)),
  1586. K(zone->present_pages),
  1587. zone->pages_scanned,
  1588. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1589. );
  1590. printk("lowmem_reserve[]:");
  1591. for (i = 0; i < MAX_NR_ZONES; i++)
  1592. printk(" %lu", zone->lowmem_reserve[i]);
  1593. printk("\n");
  1594. }
  1595. for_each_zone(zone) {
  1596. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1597. if (!populated_zone(zone))
  1598. continue;
  1599. show_node(zone);
  1600. printk("%s: ", zone->name);
  1601. spin_lock_irqsave(&zone->lock, flags);
  1602. for (order = 0; order < MAX_ORDER; order++) {
  1603. nr[order] = zone->free_area[order].nr_free;
  1604. total += nr[order] << order;
  1605. }
  1606. spin_unlock_irqrestore(&zone->lock, flags);
  1607. for (order = 0; order < MAX_ORDER; order++)
  1608. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1609. printk("= %lukB\n", K(total));
  1610. }
  1611. show_swap_cache_info();
  1612. }
  1613. /*
  1614. * Builds allocation fallback zone lists.
  1615. *
  1616. * Add all populated zones of a node to the zonelist.
  1617. */
  1618. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1619. int nr_zones, enum zone_type zone_type)
  1620. {
  1621. struct zone *zone;
  1622. BUG_ON(zone_type >= MAX_NR_ZONES);
  1623. zone_type++;
  1624. do {
  1625. zone_type--;
  1626. zone = pgdat->node_zones + zone_type;
  1627. if (populated_zone(zone)) {
  1628. zonelist->zones[nr_zones++] = zone;
  1629. check_highest_zone(zone_type);
  1630. }
  1631. } while (zone_type);
  1632. return nr_zones;
  1633. }
  1634. /*
  1635. * zonelist_order:
  1636. * 0 = automatic detection of better ordering.
  1637. * 1 = order by ([node] distance, -zonetype)
  1638. * 2 = order by (-zonetype, [node] distance)
  1639. *
  1640. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1641. * the same zonelist. So only NUMA can configure this param.
  1642. */
  1643. #define ZONELIST_ORDER_DEFAULT 0
  1644. #define ZONELIST_ORDER_NODE 1
  1645. #define ZONELIST_ORDER_ZONE 2
  1646. /* zonelist order in the kernel.
  1647. * set_zonelist_order() will set this to NODE or ZONE.
  1648. */
  1649. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1650. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1651. #ifdef CONFIG_NUMA
  1652. /* The value user specified ....changed by config */
  1653. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1654. /* string for sysctl */
  1655. #define NUMA_ZONELIST_ORDER_LEN 16
  1656. char numa_zonelist_order[16] = "default";
  1657. /*
  1658. * interface for configure zonelist ordering.
  1659. * command line option "numa_zonelist_order"
  1660. * = "[dD]efault - default, automatic configuration.
  1661. * = "[nN]ode - order by node locality, then by zone within node
  1662. * = "[zZ]one - order by zone, then by locality within zone
  1663. */
  1664. static int __parse_numa_zonelist_order(char *s)
  1665. {
  1666. if (*s == 'd' || *s == 'D') {
  1667. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1668. } else if (*s == 'n' || *s == 'N') {
  1669. user_zonelist_order = ZONELIST_ORDER_NODE;
  1670. } else if (*s == 'z' || *s == 'Z') {
  1671. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1672. } else {
  1673. printk(KERN_WARNING
  1674. "Ignoring invalid numa_zonelist_order value: "
  1675. "%s\n", s);
  1676. return -EINVAL;
  1677. }
  1678. return 0;
  1679. }
  1680. static __init int setup_numa_zonelist_order(char *s)
  1681. {
  1682. if (s)
  1683. return __parse_numa_zonelist_order(s);
  1684. return 0;
  1685. }
  1686. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1687. /*
  1688. * sysctl handler for numa_zonelist_order
  1689. */
  1690. int numa_zonelist_order_handler(ctl_table *table, int write,
  1691. struct file *file, void __user *buffer, size_t *length,
  1692. loff_t *ppos)
  1693. {
  1694. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1695. int ret;
  1696. if (write)
  1697. strncpy(saved_string, (char*)table->data,
  1698. NUMA_ZONELIST_ORDER_LEN);
  1699. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1700. if (ret)
  1701. return ret;
  1702. if (write) {
  1703. int oldval = user_zonelist_order;
  1704. if (__parse_numa_zonelist_order((char*)table->data)) {
  1705. /*
  1706. * bogus value. restore saved string
  1707. */
  1708. strncpy((char*)table->data, saved_string,
  1709. NUMA_ZONELIST_ORDER_LEN);
  1710. user_zonelist_order = oldval;
  1711. } else if (oldval != user_zonelist_order)
  1712. build_all_zonelists();
  1713. }
  1714. return 0;
  1715. }
  1716. #define MAX_NODE_LOAD (num_online_nodes())
  1717. static int node_load[MAX_NUMNODES];
  1718. /**
  1719. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1720. * @node: node whose fallback list we're appending
  1721. * @used_node_mask: nodemask_t of already used nodes
  1722. *
  1723. * We use a number of factors to determine which is the next node that should
  1724. * appear on a given node's fallback list. The node should not have appeared
  1725. * already in @node's fallback list, and it should be the next closest node
  1726. * according to the distance array (which contains arbitrary distance values
  1727. * from each node to each node in the system), and should also prefer nodes
  1728. * with no CPUs, since presumably they'll have very little allocation pressure
  1729. * on them otherwise.
  1730. * It returns -1 if no node is found.
  1731. */
  1732. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1733. {
  1734. int n, val;
  1735. int min_val = INT_MAX;
  1736. int best_node = -1;
  1737. /* Use the local node if we haven't already */
  1738. if (!node_isset(node, *used_node_mask)) {
  1739. node_set(node, *used_node_mask);
  1740. return node;
  1741. }
  1742. for_each_node_state(n, N_HIGH_MEMORY) {
  1743. cpumask_t tmp;
  1744. /* Don't want a node to appear more than once */
  1745. if (node_isset(n, *used_node_mask))
  1746. continue;
  1747. /* Use the distance array to find the distance */
  1748. val = node_distance(node, n);
  1749. /* Penalize nodes under us ("prefer the next node") */
  1750. val += (n < node);
  1751. /* Give preference to headless and unused nodes */
  1752. tmp = node_to_cpumask(n);
  1753. if (!cpus_empty(tmp))
  1754. val += PENALTY_FOR_NODE_WITH_CPUS;
  1755. /* Slight preference for less loaded node */
  1756. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1757. val += node_load[n];
  1758. if (val < min_val) {
  1759. min_val = val;
  1760. best_node = n;
  1761. }
  1762. }
  1763. if (best_node >= 0)
  1764. node_set(best_node, *used_node_mask);
  1765. return best_node;
  1766. }
  1767. /*
  1768. * Build zonelists ordered by node and zones within node.
  1769. * This results in maximum locality--normal zone overflows into local
  1770. * DMA zone, if any--but risks exhausting DMA zone.
  1771. */
  1772. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1773. {
  1774. enum zone_type i;
  1775. int j;
  1776. struct zonelist *zonelist;
  1777. for (i = 0; i < MAX_NR_ZONES; i++) {
  1778. zonelist = pgdat->node_zonelists + i;
  1779. for (j = 0; zonelist->zones[j] != NULL; j++)
  1780. ;
  1781. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1782. zonelist->zones[j] = NULL;
  1783. }
  1784. }
  1785. /*
  1786. * Build gfp_thisnode zonelists
  1787. */
  1788. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1789. {
  1790. enum zone_type i;
  1791. int j;
  1792. struct zonelist *zonelist;
  1793. for (i = 0; i < MAX_NR_ZONES; i++) {
  1794. zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
  1795. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1796. zonelist->zones[j] = NULL;
  1797. }
  1798. }
  1799. /*
  1800. * Build zonelists ordered by zone and nodes within zones.
  1801. * This results in conserving DMA zone[s] until all Normal memory is
  1802. * exhausted, but results in overflowing to remote node while memory
  1803. * may still exist in local DMA zone.
  1804. */
  1805. static int node_order[MAX_NUMNODES];
  1806. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1807. {
  1808. enum zone_type i;
  1809. int pos, j, node;
  1810. int zone_type; /* needs to be signed */
  1811. struct zone *z;
  1812. struct zonelist *zonelist;
  1813. for (i = 0; i < MAX_NR_ZONES; i++) {
  1814. zonelist = pgdat->node_zonelists + i;
  1815. pos = 0;
  1816. for (zone_type = i; zone_type >= 0; zone_type--) {
  1817. for (j = 0; j < nr_nodes; j++) {
  1818. node = node_order[j];
  1819. z = &NODE_DATA(node)->node_zones[zone_type];
  1820. if (populated_zone(z)) {
  1821. zonelist->zones[pos++] = z;
  1822. check_highest_zone(zone_type);
  1823. }
  1824. }
  1825. }
  1826. zonelist->zones[pos] = NULL;
  1827. }
  1828. }
  1829. static int default_zonelist_order(void)
  1830. {
  1831. int nid, zone_type;
  1832. unsigned long low_kmem_size,total_size;
  1833. struct zone *z;
  1834. int average_size;
  1835. /*
  1836. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1837. * If they are really small and used heavily, the system can fall
  1838. * into OOM very easily.
  1839. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1840. */
  1841. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1842. low_kmem_size = 0;
  1843. total_size = 0;
  1844. for_each_online_node(nid) {
  1845. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1846. z = &NODE_DATA(nid)->node_zones[zone_type];
  1847. if (populated_zone(z)) {
  1848. if (zone_type < ZONE_NORMAL)
  1849. low_kmem_size += z->present_pages;
  1850. total_size += z->present_pages;
  1851. }
  1852. }
  1853. }
  1854. if (!low_kmem_size || /* there are no DMA area. */
  1855. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1856. return ZONELIST_ORDER_NODE;
  1857. /*
  1858. * look into each node's config.
  1859. * If there is a node whose DMA/DMA32 memory is very big area on
  1860. * local memory, NODE_ORDER may be suitable.
  1861. */
  1862. average_size = total_size /
  1863. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1864. for_each_online_node(nid) {
  1865. low_kmem_size = 0;
  1866. total_size = 0;
  1867. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1868. z = &NODE_DATA(nid)->node_zones[zone_type];
  1869. if (populated_zone(z)) {
  1870. if (zone_type < ZONE_NORMAL)
  1871. low_kmem_size += z->present_pages;
  1872. total_size += z->present_pages;
  1873. }
  1874. }
  1875. if (low_kmem_size &&
  1876. total_size > average_size && /* ignore small node */
  1877. low_kmem_size > total_size * 70/100)
  1878. return ZONELIST_ORDER_NODE;
  1879. }
  1880. return ZONELIST_ORDER_ZONE;
  1881. }
  1882. static void set_zonelist_order(void)
  1883. {
  1884. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1885. current_zonelist_order = default_zonelist_order();
  1886. else
  1887. current_zonelist_order = user_zonelist_order;
  1888. }
  1889. static void build_zonelists(pg_data_t *pgdat)
  1890. {
  1891. int j, node, load;
  1892. enum zone_type i;
  1893. nodemask_t used_mask;
  1894. int local_node, prev_node;
  1895. struct zonelist *zonelist;
  1896. int order = current_zonelist_order;
  1897. /* initialize zonelists */
  1898. for (i = 0; i < MAX_ZONELISTS; i++) {
  1899. zonelist = pgdat->node_zonelists + i;
  1900. zonelist->zones[0] = NULL;
  1901. }
  1902. /* NUMA-aware ordering of nodes */
  1903. local_node = pgdat->node_id;
  1904. load = num_online_nodes();
  1905. prev_node = local_node;
  1906. nodes_clear(used_mask);
  1907. memset(node_load, 0, sizeof(node_load));
  1908. memset(node_order, 0, sizeof(node_order));
  1909. j = 0;
  1910. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1911. int distance = node_distance(local_node, node);
  1912. /*
  1913. * If another node is sufficiently far away then it is better
  1914. * to reclaim pages in a zone before going off node.
  1915. */
  1916. if (distance > RECLAIM_DISTANCE)
  1917. zone_reclaim_mode = 1;
  1918. /*
  1919. * We don't want to pressure a particular node.
  1920. * So adding penalty to the first node in same
  1921. * distance group to make it round-robin.
  1922. */
  1923. if (distance != node_distance(local_node, prev_node))
  1924. node_load[node] = load;
  1925. prev_node = node;
  1926. load--;
  1927. if (order == ZONELIST_ORDER_NODE)
  1928. build_zonelists_in_node_order(pgdat, node);
  1929. else
  1930. node_order[j++] = node; /* remember order */
  1931. }
  1932. if (order == ZONELIST_ORDER_ZONE) {
  1933. /* calculate node order -- i.e., DMA last! */
  1934. build_zonelists_in_zone_order(pgdat, j);
  1935. }
  1936. build_thisnode_zonelists(pgdat);
  1937. }
  1938. /* Construct the zonelist performance cache - see further mmzone.h */
  1939. static void build_zonelist_cache(pg_data_t *pgdat)
  1940. {
  1941. int i;
  1942. for (i = 0; i < MAX_NR_ZONES; i++) {
  1943. struct zonelist *zonelist;
  1944. struct zonelist_cache *zlc;
  1945. struct zone **z;
  1946. zonelist = pgdat->node_zonelists + i;
  1947. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1948. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1949. for (z = zonelist->zones; *z; z++)
  1950. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1951. }
  1952. }
  1953. #else /* CONFIG_NUMA */
  1954. static void set_zonelist_order(void)
  1955. {
  1956. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1957. }
  1958. static void build_zonelists(pg_data_t *pgdat)
  1959. {
  1960. int node, local_node;
  1961. enum zone_type i,j;
  1962. local_node = pgdat->node_id;
  1963. for (i = 0; i < MAX_NR_ZONES; i++) {
  1964. struct zonelist *zonelist;
  1965. zonelist = pgdat->node_zonelists + i;
  1966. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1967. /*
  1968. * Now we build the zonelist so that it contains the zones
  1969. * of all the other nodes.
  1970. * We don't want to pressure a particular node, so when
  1971. * building the zones for node N, we make sure that the
  1972. * zones coming right after the local ones are those from
  1973. * node N+1 (modulo N)
  1974. */
  1975. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1976. if (!node_online(node))
  1977. continue;
  1978. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1979. }
  1980. for (node = 0; node < local_node; node++) {
  1981. if (!node_online(node))
  1982. continue;
  1983. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1984. }
  1985. zonelist->zones[j] = NULL;
  1986. }
  1987. }
  1988. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  1989. static void build_zonelist_cache(pg_data_t *pgdat)
  1990. {
  1991. int i;
  1992. for (i = 0; i < MAX_NR_ZONES; i++)
  1993. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  1994. }
  1995. #endif /* CONFIG_NUMA */
  1996. /* return values int ....just for stop_machine_run() */
  1997. static int __build_all_zonelists(void *dummy)
  1998. {
  1999. int nid;
  2000. for_each_online_node(nid) {
  2001. pg_data_t *pgdat = NODE_DATA(nid);
  2002. build_zonelists(pgdat);
  2003. build_zonelist_cache(pgdat);
  2004. }
  2005. return 0;
  2006. }
  2007. void build_all_zonelists(void)
  2008. {
  2009. set_zonelist_order();
  2010. if (system_state == SYSTEM_BOOTING) {
  2011. __build_all_zonelists(NULL);
  2012. cpuset_init_current_mems_allowed();
  2013. } else {
  2014. /* we have to stop all cpus to guarantee there is no user
  2015. of zonelist */
  2016. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  2017. /* cpuset refresh routine should be here */
  2018. }
  2019. vm_total_pages = nr_free_pagecache_pages();
  2020. /*
  2021. * Disable grouping by mobility if the number of pages in the
  2022. * system is too low to allow the mechanism to work. It would be
  2023. * more accurate, but expensive to check per-zone. This check is
  2024. * made on memory-hotadd so a system can start with mobility
  2025. * disabled and enable it later
  2026. */
  2027. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2028. page_group_by_mobility_disabled = 1;
  2029. else
  2030. page_group_by_mobility_disabled = 0;
  2031. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2032. "Total pages: %ld\n",
  2033. num_online_nodes(),
  2034. zonelist_order_name[current_zonelist_order],
  2035. page_group_by_mobility_disabled ? "off" : "on",
  2036. vm_total_pages);
  2037. #ifdef CONFIG_NUMA
  2038. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2039. #endif
  2040. }
  2041. /*
  2042. * Helper functions to size the waitqueue hash table.
  2043. * Essentially these want to choose hash table sizes sufficiently
  2044. * large so that collisions trying to wait on pages are rare.
  2045. * But in fact, the number of active page waitqueues on typical
  2046. * systems is ridiculously low, less than 200. So this is even
  2047. * conservative, even though it seems large.
  2048. *
  2049. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2050. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2051. */
  2052. #define PAGES_PER_WAITQUEUE 256
  2053. #ifndef CONFIG_MEMORY_HOTPLUG
  2054. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2055. {
  2056. unsigned long size = 1;
  2057. pages /= PAGES_PER_WAITQUEUE;
  2058. while (size < pages)
  2059. size <<= 1;
  2060. /*
  2061. * Once we have dozens or even hundreds of threads sleeping
  2062. * on IO we've got bigger problems than wait queue collision.
  2063. * Limit the size of the wait table to a reasonable size.
  2064. */
  2065. size = min(size, 4096UL);
  2066. return max(size, 4UL);
  2067. }
  2068. #else
  2069. /*
  2070. * A zone's size might be changed by hot-add, so it is not possible to determine
  2071. * a suitable size for its wait_table. So we use the maximum size now.
  2072. *
  2073. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2074. *
  2075. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2076. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2077. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2078. *
  2079. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2080. * or more by the traditional way. (See above). It equals:
  2081. *
  2082. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2083. * ia64(16K page size) : = ( 8G + 4M)byte.
  2084. * powerpc (64K page size) : = (32G +16M)byte.
  2085. */
  2086. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2087. {
  2088. return 4096UL;
  2089. }
  2090. #endif
  2091. /*
  2092. * This is an integer logarithm so that shifts can be used later
  2093. * to extract the more random high bits from the multiplicative
  2094. * hash function before the remainder is taken.
  2095. */
  2096. static inline unsigned long wait_table_bits(unsigned long size)
  2097. {
  2098. return ffz(~size);
  2099. }
  2100. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2101. /*
  2102. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2103. * of blocks reserved is based on zone->pages_min. The memory within the
  2104. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2105. * higher will lead to a bigger reserve which will get freed as contiguous
  2106. * blocks as reclaim kicks in
  2107. */
  2108. static void setup_zone_migrate_reserve(struct zone *zone)
  2109. {
  2110. unsigned long start_pfn, pfn, end_pfn;
  2111. struct page *page;
  2112. unsigned long reserve, block_migratetype;
  2113. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2114. start_pfn = zone->zone_start_pfn;
  2115. end_pfn = start_pfn + zone->spanned_pages;
  2116. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2117. pageblock_order;
  2118. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2119. if (!pfn_valid(pfn))
  2120. continue;
  2121. page = pfn_to_page(pfn);
  2122. /* Blocks with reserved pages will never free, skip them. */
  2123. if (PageReserved(page))
  2124. continue;
  2125. block_migratetype = get_pageblock_migratetype(page);
  2126. /* If this block is reserved, account for it */
  2127. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2128. reserve--;
  2129. continue;
  2130. }
  2131. /* Suitable for reserving if this block is movable */
  2132. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2133. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2134. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2135. reserve--;
  2136. continue;
  2137. }
  2138. /*
  2139. * If the reserve is met and this is a previous reserved block,
  2140. * take it back
  2141. */
  2142. if (block_migratetype == MIGRATE_RESERVE) {
  2143. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2144. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2145. }
  2146. }
  2147. }
  2148. /*
  2149. * Initially all pages are reserved - free ones are freed
  2150. * up by free_all_bootmem() once the early boot process is
  2151. * done. Non-atomic initialization, single-pass.
  2152. */
  2153. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2154. unsigned long start_pfn, enum memmap_context context)
  2155. {
  2156. struct page *page;
  2157. unsigned long end_pfn = start_pfn + size;
  2158. unsigned long pfn;
  2159. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2160. /*
  2161. * There can be holes in boot-time mem_map[]s
  2162. * handed to this function. They do not
  2163. * exist on hotplugged memory.
  2164. */
  2165. if (context == MEMMAP_EARLY) {
  2166. if (!early_pfn_valid(pfn))
  2167. continue;
  2168. if (!early_pfn_in_nid(pfn, nid))
  2169. continue;
  2170. }
  2171. page = pfn_to_page(pfn);
  2172. set_page_links(page, zone, nid, pfn);
  2173. init_page_count(page);
  2174. reset_page_mapcount(page);
  2175. SetPageReserved(page);
  2176. /*
  2177. * Mark the block movable so that blocks are reserved for
  2178. * movable at startup. This will force kernel allocations
  2179. * to reserve their blocks rather than leaking throughout
  2180. * the address space during boot when many long-lived
  2181. * kernel allocations are made. Later some blocks near
  2182. * the start are marked MIGRATE_RESERVE by
  2183. * setup_zone_migrate_reserve()
  2184. */
  2185. if ((pfn & (pageblock_nr_pages-1)))
  2186. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2187. INIT_LIST_HEAD(&page->lru);
  2188. #ifdef WANT_PAGE_VIRTUAL
  2189. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2190. if (!is_highmem_idx(zone))
  2191. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2192. #endif
  2193. }
  2194. }
  2195. static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
  2196. struct zone *zone, unsigned long size)
  2197. {
  2198. int order, t;
  2199. for_each_migratetype_order(order, t) {
  2200. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2201. zone->free_area[order].nr_free = 0;
  2202. }
  2203. }
  2204. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2205. #define memmap_init(size, nid, zone, start_pfn) \
  2206. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2207. #endif
  2208. static int __devinit zone_batchsize(struct zone *zone)
  2209. {
  2210. int batch;
  2211. /*
  2212. * The per-cpu-pages pools are set to around 1000th of the
  2213. * size of the zone. But no more than 1/2 of a meg.
  2214. *
  2215. * OK, so we don't know how big the cache is. So guess.
  2216. */
  2217. batch = zone->present_pages / 1024;
  2218. if (batch * PAGE_SIZE > 512 * 1024)
  2219. batch = (512 * 1024) / PAGE_SIZE;
  2220. batch /= 4; /* We effectively *= 4 below */
  2221. if (batch < 1)
  2222. batch = 1;
  2223. /*
  2224. * Clamp the batch to a 2^n - 1 value. Having a power
  2225. * of 2 value was found to be more likely to have
  2226. * suboptimal cache aliasing properties in some cases.
  2227. *
  2228. * For example if 2 tasks are alternately allocating
  2229. * batches of pages, one task can end up with a lot
  2230. * of pages of one half of the possible page colors
  2231. * and the other with pages of the other colors.
  2232. */
  2233. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2234. return batch;
  2235. }
  2236. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2237. {
  2238. struct per_cpu_pages *pcp;
  2239. memset(p, 0, sizeof(*p));
  2240. pcp = &p->pcp[0]; /* hot */
  2241. pcp->count = 0;
  2242. pcp->high = 6 * batch;
  2243. pcp->batch = max(1UL, 1 * batch);
  2244. INIT_LIST_HEAD(&pcp->list);
  2245. pcp = &p->pcp[1]; /* cold*/
  2246. pcp->count = 0;
  2247. pcp->high = 2 * batch;
  2248. pcp->batch = max(1UL, batch/2);
  2249. INIT_LIST_HEAD(&pcp->list);
  2250. }
  2251. /*
  2252. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2253. * to the value high for the pageset p.
  2254. */
  2255. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2256. unsigned long high)
  2257. {
  2258. struct per_cpu_pages *pcp;
  2259. pcp = &p->pcp[0]; /* hot list */
  2260. pcp->high = high;
  2261. pcp->batch = max(1UL, high/4);
  2262. if ((high/4) > (PAGE_SHIFT * 8))
  2263. pcp->batch = PAGE_SHIFT * 8;
  2264. }
  2265. #ifdef CONFIG_NUMA
  2266. /*
  2267. * Boot pageset table. One per cpu which is going to be used for all
  2268. * zones and all nodes. The parameters will be set in such a way
  2269. * that an item put on a list will immediately be handed over to
  2270. * the buddy list. This is safe since pageset manipulation is done
  2271. * with interrupts disabled.
  2272. *
  2273. * Some NUMA counter updates may also be caught by the boot pagesets.
  2274. *
  2275. * The boot_pagesets must be kept even after bootup is complete for
  2276. * unused processors and/or zones. They do play a role for bootstrapping
  2277. * hotplugged processors.
  2278. *
  2279. * zoneinfo_show() and maybe other functions do
  2280. * not check if the processor is online before following the pageset pointer.
  2281. * Other parts of the kernel may not check if the zone is available.
  2282. */
  2283. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2284. /*
  2285. * Dynamically allocate memory for the
  2286. * per cpu pageset array in struct zone.
  2287. */
  2288. static int __cpuinit process_zones(int cpu)
  2289. {
  2290. struct zone *zone, *dzone;
  2291. int node = cpu_to_node(cpu);
  2292. node_set_state(node, N_CPU); /* this node has a cpu */
  2293. for_each_zone(zone) {
  2294. if (!populated_zone(zone))
  2295. continue;
  2296. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2297. GFP_KERNEL, node);
  2298. if (!zone_pcp(zone, cpu))
  2299. goto bad;
  2300. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2301. if (percpu_pagelist_fraction)
  2302. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2303. (zone->present_pages / percpu_pagelist_fraction));
  2304. }
  2305. return 0;
  2306. bad:
  2307. for_each_zone(dzone) {
  2308. if (!populated_zone(dzone))
  2309. continue;
  2310. if (dzone == zone)
  2311. break;
  2312. kfree(zone_pcp(dzone, cpu));
  2313. zone_pcp(dzone, cpu) = NULL;
  2314. }
  2315. return -ENOMEM;
  2316. }
  2317. static inline void free_zone_pagesets(int cpu)
  2318. {
  2319. struct zone *zone;
  2320. for_each_zone(zone) {
  2321. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2322. /* Free per_cpu_pageset if it is slab allocated */
  2323. if (pset != &boot_pageset[cpu])
  2324. kfree(pset);
  2325. zone_pcp(zone, cpu) = NULL;
  2326. }
  2327. }
  2328. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2329. unsigned long action,
  2330. void *hcpu)
  2331. {
  2332. int cpu = (long)hcpu;
  2333. int ret = NOTIFY_OK;
  2334. switch (action) {
  2335. case CPU_UP_PREPARE:
  2336. case CPU_UP_PREPARE_FROZEN:
  2337. if (process_zones(cpu))
  2338. ret = NOTIFY_BAD;
  2339. break;
  2340. case CPU_UP_CANCELED:
  2341. case CPU_UP_CANCELED_FROZEN:
  2342. case CPU_DEAD:
  2343. case CPU_DEAD_FROZEN:
  2344. free_zone_pagesets(cpu);
  2345. break;
  2346. default:
  2347. break;
  2348. }
  2349. return ret;
  2350. }
  2351. static struct notifier_block __cpuinitdata pageset_notifier =
  2352. { &pageset_cpuup_callback, NULL, 0 };
  2353. void __init setup_per_cpu_pageset(void)
  2354. {
  2355. int err;
  2356. /* Initialize per_cpu_pageset for cpu 0.
  2357. * A cpuup callback will do this for every cpu
  2358. * as it comes online
  2359. */
  2360. err = process_zones(smp_processor_id());
  2361. BUG_ON(err);
  2362. register_cpu_notifier(&pageset_notifier);
  2363. }
  2364. #endif
  2365. static noinline __init_refok
  2366. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2367. {
  2368. int i;
  2369. struct pglist_data *pgdat = zone->zone_pgdat;
  2370. size_t alloc_size;
  2371. /*
  2372. * The per-page waitqueue mechanism uses hashed waitqueues
  2373. * per zone.
  2374. */
  2375. zone->wait_table_hash_nr_entries =
  2376. wait_table_hash_nr_entries(zone_size_pages);
  2377. zone->wait_table_bits =
  2378. wait_table_bits(zone->wait_table_hash_nr_entries);
  2379. alloc_size = zone->wait_table_hash_nr_entries
  2380. * sizeof(wait_queue_head_t);
  2381. if (system_state == SYSTEM_BOOTING) {
  2382. zone->wait_table = (wait_queue_head_t *)
  2383. alloc_bootmem_node(pgdat, alloc_size);
  2384. } else {
  2385. /*
  2386. * This case means that a zone whose size was 0 gets new memory
  2387. * via memory hot-add.
  2388. * But it may be the case that a new node was hot-added. In
  2389. * this case vmalloc() will not be able to use this new node's
  2390. * memory - this wait_table must be initialized to use this new
  2391. * node itself as well.
  2392. * To use this new node's memory, further consideration will be
  2393. * necessary.
  2394. */
  2395. zone->wait_table = vmalloc(alloc_size);
  2396. }
  2397. if (!zone->wait_table)
  2398. return -ENOMEM;
  2399. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2400. init_waitqueue_head(zone->wait_table + i);
  2401. return 0;
  2402. }
  2403. static __meminit void zone_pcp_init(struct zone *zone)
  2404. {
  2405. int cpu;
  2406. unsigned long batch = zone_batchsize(zone);
  2407. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2408. #ifdef CONFIG_NUMA
  2409. /* Early boot. Slab allocator not functional yet */
  2410. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2411. setup_pageset(&boot_pageset[cpu],0);
  2412. #else
  2413. setup_pageset(zone_pcp(zone,cpu), batch);
  2414. #endif
  2415. }
  2416. if (zone->present_pages)
  2417. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2418. zone->name, zone->present_pages, batch);
  2419. }
  2420. __meminit int init_currently_empty_zone(struct zone *zone,
  2421. unsigned long zone_start_pfn,
  2422. unsigned long size,
  2423. enum memmap_context context)
  2424. {
  2425. struct pglist_data *pgdat = zone->zone_pgdat;
  2426. int ret;
  2427. ret = zone_wait_table_init(zone, size);
  2428. if (ret)
  2429. return ret;
  2430. pgdat->nr_zones = zone_idx(zone) + 1;
  2431. zone->zone_start_pfn = zone_start_pfn;
  2432. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  2433. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  2434. return 0;
  2435. }
  2436. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2437. /*
  2438. * Basic iterator support. Return the first range of PFNs for a node
  2439. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2440. */
  2441. static int __meminit first_active_region_index_in_nid(int nid)
  2442. {
  2443. int i;
  2444. for (i = 0; i < nr_nodemap_entries; i++)
  2445. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2446. return i;
  2447. return -1;
  2448. }
  2449. /*
  2450. * Basic iterator support. Return the next active range of PFNs for a node
  2451. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2452. */
  2453. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2454. {
  2455. for (index = index + 1; index < nr_nodemap_entries; index++)
  2456. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2457. return index;
  2458. return -1;
  2459. }
  2460. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2461. /*
  2462. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2463. * Architectures may implement their own version but if add_active_range()
  2464. * was used and there are no special requirements, this is a convenient
  2465. * alternative
  2466. */
  2467. int __meminit early_pfn_to_nid(unsigned long pfn)
  2468. {
  2469. int i;
  2470. for (i = 0; i < nr_nodemap_entries; i++) {
  2471. unsigned long start_pfn = early_node_map[i].start_pfn;
  2472. unsigned long end_pfn = early_node_map[i].end_pfn;
  2473. if (start_pfn <= pfn && pfn < end_pfn)
  2474. return early_node_map[i].nid;
  2475. }
  2476. return 0;
  2477. }
  2478. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2479. /* Basic iterator support to walk early_node_map[] */
  2480. #define for_each_active_range_index_in_nid(i, nid) \
  2481. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2482. i = next_active_region_index_in_nid(i, nid))
  2483. /**
  2484. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2485. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2486. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2487. *
  2488. * If an architecture guarantees that all ranges registered with
  2489. * add_active_ranges() contain no holes and may be freed, this
  2490. * this function may be used instead of calling free_bootmem() manually.
  2491. */
  2492. void __init free_bootmem_with_active_regions(int nid,
  2493. unsigned long max_low_pfn)
  2494. {
  2495. int i;
  2496. for_each_active_range_index_in_nid(i, nid) {
  2497. unsigned long size_pages = 0;
  2498. unsigned long end_pfn = early_node_map[i].end_pfn;
  2499. if (early_node_map[i].start_pfn >= max_low_pfn)
  2500. continue;
  2501. if (end_pfn > max_low_pfn)
  2502. end_pfn = max_low_pfn;
  2503. size_pages = end_pfn - early_node_map[i].start_pfn;
  2504. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2505. PFN_PHYS(early_node_map[i].start_pfn),
  2506. size_pages << PAGE_SHIFT);
  2507. }
  2508. }
  2509. /**
  2510. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2511. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2512. *
  2513. * If an architecture guarantees that all ranges registered with
  2514. * add_active_ranges() contain no holes and may be freed, this
  2515. * function may be used instead of calling memory_present() manually.
  2516. */
  2517. void __init sparse_memory_present_with_active_regions(int nid)
  2518. {
  2519. int i;
  2520. for_each_active_range_index_in_nid(i, nid)
  2521. memory_present(early_node_map[i].nid,
  2522. early_node_map[i].start_pfn,
  2523. early_node_map[i].end_pfn);
  2524. }
  2525. /**
  2526. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2527. * @nid: The nid of the node to push the boundary for
  2528. * @start_pfn: The start pfn of the node
  2529. * @end_pfn: The end pfn of the node
  2530. *
  2531. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2532. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2533. * be hotplugged even though no physical memory exists. This function allows
  2534. * an arch to push out the node boundaries so mem_map is allocated that can
  2535. * be used later.
  2536. */
  2537. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2538. void __init push_node_boundaries(unsigned int nid,
  2539. unsigned long start_pfn, unsigned long end_pfn)
  2540. {
  2541. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2542. nid, start_pfn, end_pfn);
  2543. /* Initialise the boundary for this node if necessary */
  2544. if (node_boundary_end_pfn[nid] == 0)
  2545. node_boundary_start_pfn[nid] = -1UL;
  2546. /* Update the boundaries */
  2547. if (node_boundary_start_pfn[nid] > start_pfn)
  2548. node_boundary_start_pfn[nid] = start_pfn;
  2549. if (node_boundary_end_pfn[nid] < end_pfn)
  2550. node_boundary_end_pfn[nid] = end_pfn;
  2551. }
  2552. /* If necessary, push the node boundary out for reserve hotadd */
  2553. static void __meminit account_node_boundary(unsigned int nid,
  2554. unsigned long *start_pfn, unsigned long *end_pfn)
  2555. {
  2556. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2557. nid, *start_pfn, *end_pfn);
  2558. /* Return if boundary information has not been provided */
  2559. if (node_boundary_end_pfn[nid] == 0)
  2560. return;
  2561. /* Check the boundaries and update if necessary */
  2562. if (node_boundary_start_pfn[nid] < *start_pfn)
  2563. *start_pfn = node_boundary_start_pfn[nid];
  2564. if (node_boundary_end_pfn[nid] > *end_pfn)
  2565. *end_pfn = node_boundary_end_pfn[nid];
  2566. }
  2567. #else
  2568. void __init push_node_boundaries(unsigned int nid,
  2569. unsigned long start_pfn, unsigned long end_pfn) {}
  2570. static void __meminit account_node_boundary(unsigned int nid,
  2571. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2572. #endif
  2573. /**
  2574. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2575. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2576. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2577. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2578. *
  2579. * It returns the start and end page frame of a node based on information
  2580. * provided by an arch calling add_active_range(). If called for a node
  2581. * with no available memory, a warning is printed and the start and end
  2582. * PFNs will be 0.
  2583. */
  2584. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2585. unsigned long *start_pfn, unsigned long *end_pfn)
  2586. {
  2587. int i;
  2588. *start_pfn = -1UL;
  2589. *end_pfn = 0;
  2590. for_each_active_range_index_in_nid(i, nid) {
  2591. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2592. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2593. }
  2594. if (*start_pfn == -1UL)
  2595. *start_pfn = 0;
  2596. /* Push the node boundaries out if requested */
  2597. account_node_boundary(nid, start_pfn, end_pfn);
  2598. }
  2599. /*
  2600. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2601. * assumption is made that zones within a node are ordered in monotonic
  2602. * increasing memory addresses so that the "highest" populated zone is used
  2603. */
  2604. void __init find_usable_zone_for_movable(void)
  2605. {
  2606. int zone_index;
  2607. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2608. if (zone_index == ZONE_MOVABLE)
  2609. continue;
  2610. if (arch_zone_highest_possible_pfn[zone_index] >
  2611. arch_zone_lowest_possible_pfn[zone_index])
  2612. break;
  2613. }
  2614. VM_BUG_ON(zone_index == -1);
  2615. movable_zone = zone_index;
  2616. }
  2617. /*
  2618. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2619. * because it is sized independant of architecture. Unlike the other zones,
  2620. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2621. * in each node depending on the size of each node and how evenly kernelcore
  2622. * is distributed. This helper function adjusts the zone ranges
  2623. * provided by the architecture for a given node by using the end of the
  2624. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2625. * zones within a node are in order of monotonic increases memory addresses
  2626. */
  2627. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2628. unsigned long zone_type,
  2629. unsigned long node_start_pfn,
  2630. unsigned long node_end_pfn,
  2631. unsigned long *zone_start_pfn,
  2632. unsigned long *zone_end_pfn)
  2633. {
  2634. /* Only adjust if ZONE_MOVABLE is on this node */
  2635. if (zone_movable_pfn[nid]) {
  2636. /* Size ZONE_MOVABLE */
  2637. if (zone_type == ZONE_MOVABLE) {
  2638. *zone_start_pfn = zone_movable_pfn[nid];
  2639. *zone_end_pfn = min(node_end_pfn,
  2640. arch_zone_highest_possible_pfn[movable_zone]);
  2641. /* Adjust for ZONE_MOVABLE starting within this range */
  2642. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2643. *zone_end_pfn > zone_movable_pfn[nid]) {
  2644. *zone_end_pfn = zone_movable_pfn[nid];
  2645. /* Check if this whole range is within ZONE_MOVABLE */
  2646. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2647. *zone_start_pfn = *zone_end_pfn;
  2648. }
  2649. }
  2650. /*
  2651. * Return the number of pages a zone spans in a node, including holes
  2652. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2653. */
  2654. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2655. unsigned long zone_type,
  2656. unsigned long *ignored)
  2657. {
  2658. unsigned long node_start_pfn, node_end_pfn;
  2659. unsigned long zone_start_pfn, zone_end_pfn;
  2660. /* Get the start and end of the node and zone */
  2661. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2662. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2663. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2664. adjust_zone_range_for_zone_movable(nid, zone_type,
  2665. node_start_pfn, node_end_pfn,
  2666. &zone_start_pfn, &zone_end_pfn);
  2667. /* Check that this node has pages within the zone's required range */
  2668. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2669. return 0;
  2670. /* Move the zone boundaries inside the node if necessary */
  2671. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2672. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2673. /* Return the spanned pages */
  2674. return zone_end_pfn - zone_start_pfn;
  2675. }
  2676. /*
  2677. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2678. * then all holes in the requested range will be accounted for.
  2679. */
  2680. unsigned long __meminit __absent_pages_in_range(int nid,
  2681. unsigned long range_start_pfn,
  2682. unsigned long range_end_pfn)
  2683. {
  2684. int i = 0;
  2685. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2686. unsigned long start_pfn;
  2687. /* Find the end_pfn of the first active range of pfns in the node */
  2688. i = first_active_region_index_in_nid(nid);
  2689. if (i == -1)
  2690. return 0;
  2691. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2692. /* Account for ranges before physical memory on this node */
  2693. if (early_node_map[i].start_pfn > range_start_pfn)
  2694. hole_pages = prev_end_pfn - range_start_pfn;
  2695. /* Find all holes for the zone within the node */
  2696. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2697. /* No need to continue if prev_end_pfn is outside the zone */
  2698. if (prev_end_pfn >= range_end_pfn)
  2699. break;
  2700. /* Make sure the end of the zone is not within the hole */
  2701. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2702. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2703. /* Update the hole size cound and move on */
  2704. if (start_pfn > range_start_pfn) {
  2705. BUG_ON(prev_end_pfn > start_pfn);
  2706. hole_pages += start_pfn - prev_end_pfn;
  2707. }
  2708. prev_end_pfn = early_node_map[i].end_pfn;
  2709. }
  2710. /* Account for ranges past physical memory on this node */
  2711. if (range_end_pfn > prev_end_pfn)
  2712. hole_pages += range_end_pfn -
  2713. max(range_start_pfn, prev_end_pfn);
  2714. return hole_pages;
  2715. }
  2716. /**
  2717. * absent_pages_in_range - Return number of page frames in holes within a range
  2718. * @start_pfn: The start PFN to start searching for holes
  2719. * @end_pfn: The end PFN to stop searching for holes
  2720. *
  2721. * It returns the number of pages frames in memory holes within a range.
  2722. */
  2723. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2724. unsigned long end_pfn)
  2725. {
  2726. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2727. }
  2728. /* Return the number of page frames in holes in a zone on a node */
  2729. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2730. unsigned long zone_type,
  2731. unsigned long *ignored)
  2732. {
  2733. unsigned long node_start_pfn, node_end_pfn;
  2734. unsigned long zone_start_pfn, zone_end_pfn;
  2735. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2736. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2737. node_start_pfn);
  2738. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2739. node_end_pfn);
  2740. adjust_zone_range_for_zone_movable(nid, zone_type,
  2741. node_start_pfn, node_end_pfn,
  2742. &zone_start_pfn, &zone_end_pfn);
  2743. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2744. }
  2745. #else
  2746. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2747. unsigned long zone_type,
  2748. unsigned long *zones_size)
  2749. {
  2750. return zones_size[zone_type];
  2751. }
  2752. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2753. unsigned long zone_type,
  2754. unsigned long *zholes_size)
  2755. {
  2756. if (!zholes_size)
  2757. return 0;
  2758. return zholes_size[zone_type];
  2759. }
  2760. #endif
  2761. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2762. unsigned long *zones_size, unsigned long *zholes_size)
  2763. {
  2764. unsigned long realtotalpages, totalpages = 0;
  2765. enum zone_type i;
  2766. for (i = 0; i < MAX_NR_ZONES; i++)
  2767. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2768. zones_size);
  2769. pgdat->node_spanned_pages = totalpages;
  2770. realtotalpages = totalpages;
  2771. for (i = 0; i < MAX_NR_ZONES; i++)
  2772. realtotalpages -=
  2773. zone_absent_pages_in_node(pgdat->node_id, i,
  2774. zholes_size);
  2775. pgdat->node_present_pages = realtotalpages;
  2776. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2777. realtotalpages);
  2778. }
  2779. #ifndef CONFIG_SPARSEMEM
  2780. /*
  2781. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2782. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2783. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2784. * round what is now in bits to nearest long in bits, then return it in
  2785. * bytes.
  2786. */
  2787. static unsigned long __init usemap_size(unsigned long zonesize)
  2788. {
  2789. unsigned long usemapsize;
  2790. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2791. usemapsize = usemapsize >> pageblock_order;
  2792. usemapsize *= NR_PAGEBLOCK_BITS;
  2793. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2794. return usemapsize / 8;
  2795. }
  2796. static void __init setup_usemap(struct pglist_data *pgdat,
  2797. struct zone *zone, unsigned long zonesize)
  2798. {
  2799. unsigned long usemapsize = usemap_size(zonesize);
  2800. zone->pageblock_flags = NULL;
  2801. if (usemapsize) {
  2802. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2803. memset(zone->pageblock_flags, 0, usemapsize);
  2804. }
  2805. }
  2806. #else
  2807. static void inline setup_usemap(struct pglist_data *pgdat,
  2808. struct zone *zone, unsigned long zonesize) {}
  2809. #endif /* CONFIG_SPARSEMEM */
  2810. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2811. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2812. static inline void __init set_pageblock_order(unsigned int order)
  2813. {
  2814. /* Check that pageblock_nr_pages has not already been setup */
  2815. if (pageblock_order)
  2816. return;
  2817. /*
  2818. * Assume the largest contiguous order of interest is a huge page.
  2819. * This value may be variable depending on boot parameters on IA64
  2820. */
  2821. pageblock_order = order;
  2822. }
  2823. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2824. /* Defined this way to avoid accidently referencing HUGETLB_PAGE_ORDER */
  2825. #define set_pageblock_order(x) do {} while (0)
  2826. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2827. /*
  2828. * Set up the zone data structures:
  2829. * - mark all pages reserved
  2830. * - mark all memory queues empty
  2831. * - clear the memory bitmaps
  2832. */
  2833. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  2834. unsigned long *zones_size, unsigned long *zholes_size)
  2835. {
  2836. enum zone_type j;
  2837. int nid = pgdat->node_id;
  2838. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2839. int ret;
  2840. pgdat_resize_init(pgdat);
  2841. pgdat->nr_zones = 0;
  2842. init_waitqueue_head(&pgdat->kswapd_wait);
  2843. pgdat->kswapd_max_order = 0;
  2844. for (j = 0; j < MAX_NR_ZONES; j++) {
  2845. struct zone *zone = pgdat->node_zones + j;
  2846. unsigned long size, realsize, memmap_pages;
  2847. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2848. realsize = size - zone_absent_pages_in_node(nid, j,
  2849. zholes_size);
  2850. /*
  2851. * Adjust realsize so that it accounts for how much memory
  2852. * is used by this zone for memmap. This affects the watermark
  2853. * and per-cpu initialisations
  2854. */
  2855. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2856. if (realsize >= memmap_pages) {
  2857. realsize -= memmap_pages;
  2858. printk(KERN_DEBUG
  2859. " %s zone: %lu pages used for memmap\n",
  2860. zone_names[j], memmap_pages);
  2861. } else
  2862. printk(KERN_WARNING
  2863. " %s zone: %lu pages exceeds realsize %lu\n",
  2864. zone_names[j], memmap_pages, realsize);
  2865. /* Account for reserved pages */
  2866. if (j == 0 && realsize > dma_reserve) {
  2867. realsize -= dma_reserve;
  2868. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2869. zone_names[0], dma_reserve);
  2870. }
  2871. if (!is_highmem_idx(j))
  2872. nr_kernel_pages += realsize;
  2873. nr_all_pages += realsize;
  2874. zone->spanned_pages = size;
  2875. zone->present_pages = realsize;
  2876. #ifdef CONFIG_NUMA
  2877. zone->node = nid;
  2878. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2879. / 100;
  2880. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2881. #endif
  2882. zone->name = zone_names[j];
  2883. spin_lock_init(&zone->lock);
  2884. spin_lock_init(&zone->lru_lock);
  2885. zone_seqlock_init(zone);
  2886. zone->zone_pgdat = pgdat;
  2887. zone->prev_priority = DEF_PRIORITY;
  2888. zone_pcp_init(zone);
  2889. INIT_LIST_HEAD(&zone->active_list);
  2890. INIT_LIST_HEAD(&zone->inactive_list);
  2891. zone->nr_scan_active = 0;
  2892. zone->nr_scan_inactive = 0;
  2893. zap_zone_vm_stats(zone);
  2894. zone->flags = 0;
  2895. if (!size)
  2896. continue;
  2897. set_pageblock_order(HUGETLB_PAGE_ORDER);
  2898. setup_usemap(pgdat, zone, size);
  2899. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2900. size, MEMMAP_EARLY);
  2901. BUG_ON(ret);
  2902. zone_start_pfn += size;
  2903. }
  2904. }
  2905. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2906. {
  2907. /* Skip empty nodes */
  2908. if (!pgdat->node_spanned_pages)
  2909. return;
  2910. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2911. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2912. if (!pgdat->node_mem_map) {
  2913. unsigned long size, start, end;
  2914. struct page *map;
  2915. /*
  2916. * The zone's endpoints aren't required to be MAX_ORDER
  2917. * aligned but the node_mem_map endpoints must be in order
  2918. * for the buddy allocator to function correctly.
  2919. */
  2920. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2921. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2922. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2923. size = (end - start) * sizeof(struct page);
  2924. map = alloc_remap(pgdat->node_id, size);
  2925. if (!map)
  2926. map = alloc_bootmem_node(pgdat, size);
  2927. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2928. }
  2929. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2930. /*
  2931. * With no DISCONTIG, the global mem_map is just set as node 0's
  2932. */
  2933. if (pgdat == NODE_DATA(0)) {
  2934. mem_map = NODE_DATA(0)->node_mem_map;
  2935. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2936. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2937. mem_map -= pgdat->node_start_pfn;
  2938. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2939. }
  2940. #endif
  2941. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2942. }
  2943. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  2944. unsigned long *zones_size, unsigned long node_start_pfn,
  2945. unsigned long *zholes_size)
  2946. {
  2947. pgdat->node_id = nid;
  2948. pgdat->node_start_pfn = node_start_pfn;
  2949. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2950. alloc_node_mem_map(pgdat);
  2951. free_area_init_core(pgdat, zones_size, zholes_size);
  2952. }
  2953. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2954. #if MAX_NUMNODES > 1
  2955. /*
  2956. * Figure out the number of possible node ids.
  2957. */
  2958. static void __init setup_nr_node_ids(void)
  2959. {
  2960. unsigned int node;
  2961. unsigned int highest = 0;
  2962. for_each_node_mask(node, node_possible_map)
  2963. highest = node;
  2964. nr_node_ids = highest + 1;
  2965. }
  2966. #else
  2967. static inline void setup_nr_node_ids(void)
  2968. {
  2969. }
  2970. #endif
  2971. /**
  2972. * add_active_range - Register a range of PFNs backed by physical memory
  2973. * @nid: The node ID the range resides on
  2974. * @start_pfn: The start PFN of the available physical memory
  2975. * @end_pfn: The end PFN of the available physical memory
  2976. *
  2977. * These ranges are stored in an early_node_map[] and later used by
  2978. * free_area_init_nodes() to calculate zone sizes and holes. If the
  2979. * range spans a memory hole, it is up to the architecture to ensure
  2980. * the memory is not freed by the bootmem allocator. If possible
  2981. * the range being registered will be merged with existing ranges.
  2982. */
  2983. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  2984. unsigned long end_pfn)
  2985. {
  2986. int i;
  2987. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  2988. "%d entries of %d used\n",
  2989. nid, start_pfn, end_pfn,
  2990. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  2991. /* Merge with existing active regions if possible */
  2992. for (i = 0; i < nr_nodemap_entries; i++) {
  2993. if (early_node_map[i].nid != nid)
  2994. continue;
  2995. /* Skip if an existing region covers this new one */
  2996. if (start_pfn >= early_node_map[i].start_pfn &&
  2997. end_pfn <= early_node_map[i].end_pfn)
  2998. return;
  2999. /* Merge forward if suitable */
  3000. if (start_pfn <= early_node_map[i].end_pfn &&
  3001. end_pfn > early_node_map[i].end_pfn) {
  3002. early_node_map[i].end_pfn = end_pfn;
  3003. return;
  3004. }
  3005. /* Merge backward if suitable */
  3006. if (start_pfn < early_node_map[i].end_pfn &&
  3007. end_pfn >= early_node_map[i].start_pfn) {
  3008. early_node_map[i].start_pfn = start_pfn;
  3009. return;
  3010. }
  3011. }
  3012. /* Check that early_node_map is large enough */
  3013. if (i >= MAX_ACTIVE_REGIONS) {
  3014. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3015. MAX_ACTIVE_REGIONS);
  3016. return;
  3017. }
  3018. early_node_map[i].nid = nid;
  3019. early_node_map[i].start_pfn = start_pfn;
  3020. early_node_map[i].end_pfn = end_pfn;
  3021. nr_nodemap_entries = i + 1;
  3022. }
  3023. /**
  3024. * shrink_active_range - Shrink an existing registered range of PFNs
  3025. * @nid: The node id the range is on that should be shrunk
  3026. * @old_end_pfn: The old end PFN of the range
  3027. * @new_end_pfn: The new PFN of the range
  3028. *
  3029. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3030. * The map is kept at the end physical page range that has already been
  3031. * registered with add_active_range(). This function allows an arch to shrink
  3032. * an existing registered range.
  3033. */
  3034. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  3035. unsigned long new_end_pfn)
  3036. {
  3037. int i;
  3038. /* Find the old active region end and shrink */
  3039. for_each_active_range_index_in_nid(i, nid)
  3040. if (early_node_map[i].end_pfn == old_end_pfn) {
  3041. early_node_map[i].end_pfn = new_end_pfn;
  3042. break;
  3043. }
  3044. }
  3045. /**
  3046. * remove_all_active_ranges - Remove all currently registered regions
  3047. *
  3048. * During discovery, it may be found that a table like SRAT is invalid
  3049. * and an alternative discovery method must be used. This function removes
  3050. * all currently registered regions.
  3051. */
  3052. void __init remove_all_active_ranges(void)
  3053. {
  3054. memset(early_node_map, 0, sizeof(early_node_map));
  3055. nr_nodemap_entries = 0;
  3056. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3057. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3058. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3059. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3060. }
  3061. /* Compare two active node_active_regions */
  3062. static int __init cmp_node_active_region(const void *a, const void *b)
  3063. {
  3064. struct node_active_region *arange = (struct node_active_region *)a;
  3065. struct node_active_region *brange = (struct node_active_region *)b;
  3066. /* Done this way to avoid overflows */
  3067. if (arange->start_pfn > brange->start_pfn)
  3068. return 1;
  3069. if (arange->start_pfn < brange->start_pfn)
  3070. return -1;
  3071. return 0;
  3072. }
  3073. /* sort the node_map by start_pfn */
  3074. static void __init sort_node_map(void)
  3075. {
  3076. sort(early_node_map, (size_t)nr_nodemap_entries,
  3077. sizeof(struct node_active_region),
  3078. cmp_node_active_region, NULL);
  3079. }
  3080. /* Find the lowest pfn for a node */
  3081. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  3082. {
  3083. int i;
  3084. unsigned long min_pfn = ULONG_MAX;
  3085. /* Assuming a sorted map, the first range found has the starting pfn */
  3086. for_each_active_range_index_in_nid(i, nid)
  3087. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3088. if (min_pfn == ULONG_MAX) {
  3089. printk(KERN_WARNING
  3090. "Could not find start_pfn for node %lu\n", nid);
  3091. return 0;
  3092. }
  3093. return min_pfn;
  3094. }
  3095. /**
  3096. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3097. *
  3098. * It returns the minimum PFN based on information provided via
  3099. * add_active_range().
  3100. */
  3101. unsigned long __init find_min_pfn_with_active_regions(void)
  3102. {
  3103. return find_min_pfn_for_node(MAX_NUMNODES);
  3104. }
  3105. /**
  3106. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  3107. *
  3108. * It returns the maximum PFN based on information provided via
  3109. * add_active_range().
  3110. */
  3111. unsigned long __init find_max_pfn_with_active_regions(void)
  3112. {
  3113. int i;
  3114. unsigned long max_pfn = 0;
  3115. for (i = 0; i < nr_nodemap_entries; i++)
  3116. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  3117. return max_pfn;
  3118. }
  3119. /*
  3120. * early_calculate_totalpages()
  3121. * Sum pages in active regions for movable zone.
  3122. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3123. */
  3124. static unsigned long __init early_calculate_totalpages(void)
  3125. {
  3126. int i;
  3127. unsigned long totalpages = 0;
  3128. for (i = 0; i < nr_nodemap_entries; i++) {
  3129. unsigned long pages = early_node_map[i].end_pfn -
  3130. early_node_map[i].start_pfn;
  3131. totalpages += pages;
  3132. if (pages)
  3133. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3134. }
  3135. return totalpages;
  3136. }
  3137. /*
  3138. * Find the PFN the Movable zone begins in each node. Kernel memory
  3139. * is spread evenly between nodes as long as the nodes have enough
  3140. * memory. When they don't, some nodes will have more kernelcore than
  3141. * others
  3142. */
  3143. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3144. {
  3145. int i, nid;
  3146. unsigned long usable_startpfn;
  3147. unsigned long kernelcore_node, kernelcore_remaining;
  3148. unsigned long totalpages = early_calculate_totalpages();
  3149. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3150. /*
  3151. * If movablecore was specified, calculate what size of
  3152. * kernelcore that corresponds so that memory usable for
  3153. * any allocation type is evenly spread. If both kernelcore
  3154. * and movablecore are specified, then the value of kernelcore
  3155. * will be used for required_kernelcore if it's greater than
  3156. * what movablecore would have allowed.
  3157. */
  3158. if (required_movablecore) {
  3159. unsigned long corepages;
  3160. /*
  3161. * Round-up so that ZONE_MOVABLE is at least as large as what
  3162. * was requested by the user
  3163. */
  3164. required_movablecore =
  3165. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3166. corepages = totalpages - required_movablecore;
  3167. required_kernelcore = max(required_kernelcore, corepages);
  3168. }
  3169. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3170. if (!required_kernelcore)
  3171. return;
  3172. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3173. find_usable_zone_for_movable();
  3174. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3175. restart:
  3176. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3177. kernelcore_node = required_kernelcore / usable_nodes;
  3178. for_each_node_state(nid, N_HIGH_MEMORY) {
  3179. /*
  3180. * Recalculate kernelcore_node if the division per node
  3181. * now exceeds what is necessary to satisfy the requested
  3182. * amount of memory for the kernel
  3183. */
  3184. if (required_kernelcore < kernelcore_node)
  3185. kernelcore_node = required_kernelcore / usable_nodes;
  3186. /*
  3187. * As the map is walked, we track how much memory is usable
  3188. * by the kernel using kernelcore_remaining. When it is
  3189. * 0, the rest of the node is usable by ZONE_MOVABLE
  3190. */
  3191. kernelcore_remaining = kernelcore_node;
  3192. /* Go through each range of PFNs within this node */
  3193. for_each_active_range_index_in_nid(i, nid) {
  3194. unsigned long start_pfn, end_pfn;
  3195. unsigned long size_pages;
  3196. start_pfn = max(early_node_map[i].start_pfn,
  3197. zone_movable_pfn[nid]);
  3198. end_pfn = early_node_map[i].end_pfn;
  3199. if (start_pfn >= end_pfn)
  3200. continue;
  3201. /* Account for what is only usable for kernelcore */
  3202. if (start_pfn < usable_startpfn) {
  3203. unsigned long kernel_pages;
  3204. kernel_pages = min(end_pfn, usable_startpfn)
  3205. - start_pfn;
  3206. kernelcore_remaining -= min(kernel_pages,
  3207. kernelcore_remaining);
  3208. required_kernelcore -= min(kernel_pages,
  3209. required_kernelcore);
  3210. /* Continue if range is now fully accounted */
  3211. if (end_pfn <= usable_startpfn) {
  3212. /*
  3213. * Push zone_movable_pfn to the end so
  3214. * that if we have to rebalance
  3215. * kernelcore across nodes, we will
  3216. * not double account here
  3217. */
  3218. zone_movable_pfn[nid] = end_pfn;
  3219. continue;
  3220. }
  3221. start_pfn = usable_startpfn;
  3222. }
  3223. /*
  3224. * The usable PFN range for ZONE_MOVABLE is from
  3225. * start_pfn->end_pfn. Calculate size_pages as the
  3226. * number of pages used as kernelcore
  3227. */
  3228. size_pages = end_pfn - start_pfn;
  3229. if (size_pages > kernelcore_remaining)
  3230. size_pages = kernelcore_remaining;
  3231. zone_movable_pfn[nid] = start_pfn + size_pages;
  3232. /*
  3233. * Some kernelcore has been met, update counts and
  3234. * break if the kernelcore for this node has been
  3235. * satisified
  3236. */
  3237. required_kernelcore -= min(required_kernelcore,
  3238. size_pages);
  3239. kernelcore_remaining -= size_pages;
  3240. if (!kernelcore_remaining)
  3241. break;
  3242. }
  3243. }
  3244. /*
  3245. * If there is still required_kernelcore, we do another pass with one
  3246. * less node in the count. This will push zone_movable_pfn[nid] further
  3247. * along on the nodes that still have memory until kernelcore is
  3248. * satisified
  3249. */
  3250. usable_nodes--;
  3251. if (usable_nodes && required_kernelcore > usable_nodes)
  3252. goto restart;
  3253. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3254. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3255. zone_movable_pfn[nid] =
  3256. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3257. }
  3258. /* Any regular memory on that node ? */
  3259. static void check_for_regular_memory(pg_data_t *pgdat)
  3260. {
  3261. #ifdef CONFIG_HIGHMEM
  3262. enum zone_type zone_type;
  3263. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3264. struct zone *zone = &pgdat->node_zones[zone_type];
  3265. if (zone->present_pages)
  3266. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3267. }
  3268. #endif
  3269. }
  3270. /**
  3271. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3272. * @max_zone_pfn: an array of max PFNs for each zone
  3273. *
  3274. * This will call free_area_init_node() for each active node in the system.
  3275. * Using the page ranges provided by add_active_range(), the size of each
  3276. * zone in each node and their holes is calculated. If the maximum PFN
  3277. * between two adjacent zones match, it is assumed that the zone is empty.
  3278. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3279. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3280. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3281. * at arch_max_dma_pfn.
  3282. */
  3283. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3284. {
  3285. unsigned long nid;
  3286. enum zone_type i;
  3287. /* Sort early_node_map as initialisation assumes it is sorted */
  3288. sort_node_map();
  3289. /* Record where the zone boundaries are */
  3290. memset(arch_zone_lowest_possible_pfn, 0,
  3291. sizeof(arch_zone_lowest_possible_pfn));
  3292. memset(arch_zone_highest_possible_pfn, 0,
  3293. sizeof(arch_zone_highest_possible_pfn));
  3294. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3295. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3296. for (i = 1; i < MAX_NR_ZONES; i++) {
  3297. if (i == ZONE_MOVABLE)
  3298. continue;
  3299. arch_zone_lowest_possible_pfn[i] =
  3300. arch_zone_highest_possible_pfn[i-1];
  3301. arch_zone_highest_possible_pfn[i] =
  3302. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3303. }
  3304. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3305. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3306. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3307. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3308. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3309. /* Print out the zone ranges */
  3310. printk("Zone PFN ranges:\n");
  3311. for (i = 0; i < MAX_NR_ZONES; i++) {
  3312. if (i == ZONE_MOVABLE)
  3313. continue;
  3314. printk(" %-8s %8lu -> %8lu\n",
  3315. zone_names[i],
  3316. arch_zone_lowest_possible_pfn[i],
  3317. arch_zone_highest_possible_pfn[i]);
  3318. }
  3319. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3320. printk("Movable zone start PFN for each node\n");
  3321. for (i = 0; i < MAX_NUMNODES; i++) {
  3322. if (zone_movable_pfn[i])
  3323. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3324. }
  3325. /* Print out the early_node_map[] */
  3326. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3327. for (i = 0; i < nr_nodemap_entries; i++)
  3328. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  3329. early_node_map[i].start_pfn,
  3330. early_node_map[i].end_pfn);
  3331. /* Initialise every node */
  3332. setup_nr_node_ids();
  3333. for_each_online_node(nid) {
  3334. pg_data_t *pgdat = NODE_DATA(nid);
  3335. free_area_init_node(nid, pgdat, NULL,
  3336. find_min_pfn_for_node(nid), NULL);
  3337. /* Any memory on that node */
  3338. if (pgdat->node_present_pages)
  3339. node_set_state(nid, N_HIGH_MEMORY);
  3340. check_for_regular_memory(pgdat);
  3341. }
  3342. }
  3343. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3344. {
  3345. unsigned long long coremem;
  3346. if (!p)
  3347. return -EINVAL;
  3348. coremem = memparse(p, &p);
  3349. *core = coremem >> PAGE_SHIFT;
  3350. /* Paranoid check that UL is enough for the coremem value */
  3351. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3352. return 0;
  3353. }
  3354. /*
  3355. * kernelcore=size sets the amount of memory for use for allocations that
  3356. * cannot be reclaimed or migrated.
  3357. */
  3358. static int __init cmdline_parse_kernelcore(char *p)
  3359. {
  3360. return cmdline_parse_core(p, &required_kernelcore);
  3361. }
  3362. /*
  3363. * movablecore=size sets the amount of memory for use for allocations that
  3364. * can be reclaimed or migrated.
  3365. */
  3366. static int __init cmdline_parse_movablecore(char *p)
  3367. {
  3368. return cmdline_parse_core(p, &required_movablecore);
  3369. }
  3370. early_param("kernelcore", cmdline_parse_kernelcore);
  3371. early_param("movablecore", cmdline_parse_movablecore);
  3372. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3373. /**
  3374. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3375. * @new_dma_reserve: The number of pages to mark reserved
  3376. *
  3377. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3378. * In the DMA zone, a significant percentage may be consumed by kernel image
  3379. * and other unfreeable allocations which can skew the watermarks badly. This
  3380. * function may optionally be used to account for unfreeable pages in the
  3381. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3382. * smaller per-cpu batchsize.
  3383. */
  3384. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3385. {
  3386. dma_reserve = new_dma_reserve;
  3387. }
  3388. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3389. static bootmem_data_t contig_bootmem_data;
  3390. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3391. EXPORT_SYMBOL(contig_page_data);
  3392. #endif
  3393. void __init free_area_init(unsigned long *zones_size)
  3394. {
  3395. free_area_init_node(0, NODE_DATA(0), zones_size,
  3396. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3397. }
  3398. static int page_alloc_cpu_notify(struct notifier_block *self,
  3399. unsigned long action, void *hcpu)
  3400. {
  3401. int cpu = (unsigned long)hcpu;
  3402. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3403. local_irq_disable();
  3404. __drain_pages(cpu);
  3405. vm_events_fold_cpu(cpu);
  3406. local_irq_enable();
  3407. refresh_cpu_vm_stats(cpu);
  3408. }
  3409. return NOTIFY_OK;
  3410. }
  3411. void __init page_alloc_init(void)
  3412. {
  3413. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3414. }
  3415. /*
  3416. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3417. * or min_free_kbytes changes.
  3418. */
  3419. static void calculate_totalreserve_pages(void)
  3420. {
  3421. struct pglist_data *pgdat;
  3422. unsigned long reserve_pages = 0;
  3423. enum zone_type i, j;
  3424. for_each_online_pgdat(pgdat) {
  3425. for (i = 0; i < MAX_NR_ZONES; i++) {
  3426. struct zone *zone = pgdat->node_zones + i;
  3427. unsigned long max = 0;
  3428. /* Find valid and maximum lowmem_reserve in the zone */
  3429. for (j = i; j < MAX_NR_ZONES; j++) {
  3430. if (zone->lowmem_reserve[j] > max)
  3431. max = zone->lowmem_reserve[j];
  3432. }
  3433. /* we treat pages_high as reserved pages. */
  3434. max += zone->pages_high;
  3435. if (max > zone->present_pages)
  3436. max = zone->present_pages;
  3437. reserve_pages += max;
  3438. }
  3439. }
  3440. totalreserve_pages = reserve_pages;
  3441. }
  3442. /*
  3443. * setup_per_zone_lowmem_reserve - called whenever
  3444. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3445. * has a correct pages reserved value, so an adequate number of
  3446. * pages are left in the zone after a successful __alloc_pages().
  3447. */
  3448. static void setup_per_zone_lowmem_reserve(void)
  3449. {
  3450. struct pglist_data *pgdat;
  3451. enum zone_type j, idx;
  3452. for_each_online_pgdat(pgdat) {
  3453. for (j = 0; j < MAX_NR_ZONES; j++) {
  3454. struct zone *zone = pgdat->node_zones + j;
  3455. unsigned long present_pages = zone->present_pages;
  3456. zone->lowmem_reserve[j] = 0;
  3457. idx = j;
  3458. while (idx) {
  3459. struct zone *lower_zone;
  3460. idx--;
  3461. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3462. sysctl_lowmem_reserve_ratio[idx] = 1;
  3463. lower_zone = pgdat->node_zones + idx;
  3464. lower_zone->lowmem_reserve[j] = present_pages /
  3465. sysctl_lowmem_reserve_ratio[idx];
  3466. present_pages += lower_zone->present_pages;
  3467. }
  3468. }
  3469. }
  3470. /* update totalreserve_pages */
  3471. calculate_totalreserve_pages();
  3472. }
  3473. /**
  3474. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3475. *
  3476. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3477. * with respect to min_free_kbytes.
  3478. */
  3479. void setup_per_zone_pages_min(void)
  3480. {
  3481. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3482. unsigned long lowmem_pages = 0;
  3483. struct zone *zone;
  3484. unsigned long flags;
  3485. /* Calculate total number of !ZONE_HIGHMEM pages */
  3486. for_each_zone(zone) {
  3487. if (!is_highmem(zone))
  3488. lowmem_pages += zone->present_pages;
  3489. }
  3490. for_each_zone(zone) {
  3491. u64 tmp;
  3492. spin_lock_irqsave(&zone->lru_lock, flags);
  3493. tmp = (u64)pages_min * zone->present_pages;
  3494. do_div(tmp, lowmem_pages);
  3495. if (is_highmem(zone)) {
  3496. /*
  3497. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3498. * need highmem pages, so cap pages_min to a small
  3499. * value here.
  3500. *
  3501. * The (pages_high-pages_low) and (pages_low-pages_min)
  3502. * deltas controls asynch page reclaim, and so should
  3503. * not be capped for highmem.
  3504. */
  3505. int min_pages;
  3506. min_pages = zone->present_pages / 1024;
  3507. if (min_pages < SWAP_CLUSTER_MAX)
  3508. min_pages = SWAP_CLUSTER_MAX;
  3509. if (min_pages > 128)
  3510. min_pages = 128;
  3511. zone->pages_min = min_pages;
  3512. } else {
  3513. /*
  3514. * If it's a lowmem zone, reserve a number of pages
  3515. * proportionate to the zone's size.
  3516. */
  3517. zone->pages_min = tmp;
  3518. }
  3519. zone->pages_low = zone->pages_min + (tmp >> 2);
  3520. zone->pages_high = zone->pages_min + (tmp >> 1);
  3521. setup_zone_migrate_reserve(zone);
  3522. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3523. }
  3524. /* update totalreserve_pages */
  3525. calculate_totalreserve_pages();
  3526. }
  3527. /*
  3528. * Initialise min_free_kbytes.
  3529. *
  3530. * For small machines we want it small (128k min). For large machines
  3531. * we want it large (64MB max). But it is not linear, because network
  3532. * bandwidth does not increase linearly with machine size. We use
  3533. *
  3534. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3535. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3536. *
  3537. * which yields
  3538. *
  3539. * 16MB: 512k
  3540. * 32MB: 724k
  3541. * 64MB: 1024k
  3542. * 128MB: 1448k
  3543. * 256MB: 2048k
  3544. * 512MB: 2896k
  3545. * 1024MB: 4096k
  3546. * 2048MB: 5792k
  3547. * 4096MB: 8192k
  3548. * 8192MB: 11584k
  3549. * 16384MB: 16384k
  3550. */
  3551. static int __init init_per_zone_pages_min(void)
  3552. {
  3553. unsigned long lowmem_kbytes;
  3554. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3555. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3556. if (min_free_kbytes < 128)
  3557. min_free_kbytes = 128;
  3558. if (min_free_kbytes > 65536)
  3559. min_free_kbytes = 65536;
  3560. setup_per_zone_pages_min();
  3561. setup_per_zone_lowmem_reserve();
  3562. return 0;
  3563. }
  3564. module_init(init_per_zone_pages_min)
  3565. /*
  3566. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3567. * that we can call two helper functions whenever min_free_kbytes
  3568. * changes.
  3569. */
  3570. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3571. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3572. {
  3573. proc_dointvec(table, write, file, buffer, length, ppos);
  3574. if (write)
  3575. setup_per_zone_pages_min();
  3576. return 0;
  3577. }
  3578. #ifdef CONFIG_NUMA
  3579. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3580. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3581. {
  3582. struct zone *zone;
  3583. int rc;
  3584. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3585. if (rc)
  3586. return rc;
  3587. for_each_zone(zone)
  3588. zone->min_unmapped_pages = (zone->present_pages *
  3589. sysctl_min_unmapped_ratio) / 100;
  3590. return 0;
  3591. }
  3592. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3593. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3594. {
  3595. struct zone *zone;
  3596. int rc;
  3597. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3598. if (rc)
  3599. return rc;
  3600. for_each_zone(zone)
  3601. zone->min_slab_pages = (zone->present_pages *
  3602. sysctl_min_slab_ratio) / 100;
  3603. return 0;
  3604. }
  3605. #endif
  3606. /*
  3607. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3608. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3609. * whenever sysctl_lowmem_reserve_ratio changes.
  3610. *
  3611. * The reserve ratio obviously has absolutely no relation with the
  3612. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3613. * if in function of the boot time zone sizes.
  3614. */
  3615. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3616. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3617. {
  3618. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3619. setup_per_zone_lowmem_reserve();
  3620. return 0;
  3621. }
  3622. /*
  3623. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3624. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3625. * can have before it gets flushed back to buddy allocator.
  3626. */
  3627. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3628. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3629. {
  3630. struct zone *zone;
  3631. unsigned int cpu;
  3632. int ret;
  3633. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3634. if (!write || (ret == -EINVAL))
  3635. return ret;
  3636. for_each_zone(zone) {
  3637. for_each_online_cpu(cpu) {
  3638. unsigned long high;
  3639. high = zone->present_pages / percpu_pagelist_fraction;
  3640. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3641. }
  3642. }
  3643. return 0;
  3644. }
  3645. int hashdist = HASHDIST_DEFAULT;
  3646. #ifdef CONFIG_NUMA
  3647. static int __init set_hashdist(char *str)
  3648. {
  3649. if (!str)
  3650. return 0;
  3651. hashdist = simple_strtoul(str, &str, 0);
  3652. return 1;
  3653. }
  3654. __setup("hashdist=", set_hashdist);
  3655. #endif
  3656. /*
  3657. * allocate a large system hash table from bootmem
  3658. * - it is assumed that the hash table must contain an exact power-of-2
  3659. * quantity of entries
  3660. * - limit is the number of hash buckets, not the total allocation size
  3661. */
  3662. void *__init alloc_large_system_hash(const char *tablename,
  3663. unsigned long bucketsize,
  3664. unsigned long numentries,
  3665. int scale,
  3666. int flags,
  3667. unsigned int *_hash_shift,
  3668. unsigned int *_hash_mask,
  3669. unsigned long limit)
  3670. {
  3671. unsigned long long max = limit;
  3672. unsigned long log2qty, size;
  3673. void *table = NULL;
  3674. /* allow the kernel cmdline to have a say */
  3675. if (!numentries) {
  3676. /* round applicable memory size up to nearest megabyte */
  3677. numentries = nr_kernel_pages;
  3678. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3679. numentries >>= 20 - PAGE_SHIFT;
  3680. numentries <<= 20 - PAGE_SHIFT;
  3681. /* limit to 1 bucket per 2^scale bytes of low memory */
  3682. if (scale > PAGE_SHIFT)
  3683. numentries >>= (scale - PAGE_SHIFT);
  3684. else
  3685. numentries <<= (PAGE_SHIFT - scale);
  3686. /* Make sure we've got at least a 0-order allocation.. */
  3687. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3688. numentries = PAGE_SIZE / bucketsize;
  3689. }
  3690. numentries = roundup_pow_of_two(numentries);
  3691. /* limit allocation size to 1/16 total memory by default */
  3692. if (max == 0) {
  3693. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3694. do_div(max, bucketsize);
  3695. }
  3696. if (numentries > max)
  3697. numentries = max;
  3698. log2qty = ilog2(numentries);
  3699. do {
  3700. size = bucketsize << log2qty;
  3701. if (flags & HASH_EARLY)
  3702. table = alloc_bootmem(size);
  3703. else if (hashdist)
  3704. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3705. else {
  3706. unsigned long order;
  3707. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  3708. ;
  3709. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3710. /*
  3711. * If bucketsize is not a power-of-two, we may free
  3712. * some pages at the end of hash table.
  3713. */
  3714. if (table) {
  3715. unsigned long alloc_end = (unsigned long)table +
  3716. (PAGE_SIZE << order);
  3717. unsigned long used = (unsigned long)table +
  3718. PAGE_ALIGN(size);
  3719. split_page(virt_to_page(table), order);
  3720. while (used < alloc_end) {
  3721. free_page(used);
  3722. used += PAGE_SIZE;
  3723. }
  3724. }
  3725. }
  3726. } while (!table && size > PAGE_SIZE && --log2qty);
  3727. if (!table)
  3728. panic("Failed to allocate %s hash table\n", tablename);
  3729. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3730. tablename,
  3731. (1U << log2qty),
  3732. ilog2(size) - PAGE_SHIFT,
  3733. size);
  3734. if (_hash_shift)
  3735. *_hash_shift = log2qty;
  3736. if (_hash_mask)
  3737. *_hash_mask = (1 << log2qty) - 1;
  3738. return table;
  3739. }
  3740. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3741. struct page *pfn_to_page(unsigned long pfn)
  3742. {
  3743. return __pfn_to_page(pfn);
  3744. }
  3745. unsigned long page_to_pfn(struct page *page)
  3746. {
  3747. return __page_to_pfn(page);
  3748. }
  3749. EXPORT_SYMBOL(pfn_to_page);
  3750. EXPORT_SYMBOL(page_to_pfn);
  3751. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3752. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3753. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3754. unsigned long pfn)
  3755. {
  3756. #ifdef CONFIG_SPARSEMEM
  3757. return __pfn_to_section(pfn)->pageblock_flags;
  3758. #else
  3759. return zone->pageblock_flags;
  3760. #endif /* CONFIG_SPARSEMEM */
  3761. }
  3762. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3763. {
  3764. #ifdef CONFIG_SPARSEMEM
  3765. pfn &= (PAGES_PER_SECTION-1);
  3766. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3767. #else
  3768. pfn = pfn - zone->zone_start_pfn;
  3769. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3770. #endif /* CONFIG_SPARSEMEM */
  3771. }
  3772. /**
  3773. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3774. * @page: The page within the block of interest
  3775. * @start_bitidx: The first bit of interest to retrieve
  3776. * @end_bitidx: The last bit of interest
  3777. * returns pageblock_bits flags
  3778. */
  3779. unsigned long get_pageblock_flags_group(struct page *page,
  3780. int start_bitidx, int end_bitidx)
  3781. {
  3782. struct zone *zone;
  3783. unsigned long *bitmap;
  3784. unsigned long pfn, bitidx;
  3785. unsigned long flags = 0;
  3786. unsigned long value = 1;
  3787. zone = page_zone(page);
  3788. pfn = page_to_pfn(page);
  3789. bitmap = get_pageblock_bitmap(zone, pfn);
  3790. bitidx = pfn_to_bitidx(zone, pfn);
  3791. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3792. if (test_bit(bitidx + start_bitidx, bitmap))
  3793. flags |= value;
  3794. return flags;
  3795. }
  3796. /**
  3797. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3798. * @page: The page within the block of interest
  3799. * @start_bitidx: The first bit of interest
  3800. * @end_bitidx: The last bit of interest
  3801. * @flags: The flags to set
  3802. */
  3803. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3804. int start_bitidx, int end_bitidx)
  3805. {
  3806. struct zone *zone;
  3807. unsigned long *bitmap;
  3808. unsigned long pfn, bitidx;
  3809. unsigned long value = 1;
  3810. zone = page_zone(page);
  3811. pfn = page_to_pfn(page);
  3812. bitmap = get_pageblock_bitmap(zone, pfn);
  3813. bitidx = pfn_to_bitidx(zone, pfn);
  3814. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3815. if (flags & value)
  3816. __set_bit(bitidx + start_bitidx, bitmap);
  3817. else
  3818. __clear_bit(bitidx + start_bitidx, bitmap);
  3819. }
  3820. /*
  3821. * This is designed as sub function...plz see page_isolation.c also.
  3822. * set/clear page block's type to be ISOLATE.
  3823. * page allocater never alloc memory from ISOLATE block.
  3824. */
  3825. int set_migratetype_isolate(struct page *page)
  3826. {
  3827. struct zone *zone;
  3828. unsigned long flags;
  3829. int ret = -EBUSY;
  3830. zone = page_zone(page);
  3831. spin_lock_irqsave(&zone->lock, flags);
  3832. /*
  3833. * In future, more migrate types will be able to be isolation target.
  3834. */
  3835. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3836. goto out;
  3837. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3838. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3839. ret = 0;
  3840. out:
  3841. spin_unlock_irqrestore(&zone->lock, flags);
  3842. if (!ret)
  3843. drain_all_local_pages();
  3844. return ret;
  3845. }
  3846. void unset_migratetype_isolate(struct page *page)
  3847. {
  3848. struct zone *zone;
  3849. unsigned long flags;
  3850. zone = page_zone(page);
  3851. spin_lock_irqsave(&zone->lock, flags);
  3852. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  3853. goto out;
  3854. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3855. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3856. out:
  3857. spin_unlock_irqrestore(&zone->lock, flags);
  3858. }
  3859. #ifdef CONFIG_MEMORY_HOTREMOVE
  3860. /*
  3861. * All pages in the range must be isolated before calling this.
  3862. */
  3863. void
  3864. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  3865. {
  3866. struct page *page;
  3867. struct zone *zone;
  3868. int order, i;
  3869. unsigned long pfn;
  3870. unsigned long flags;
  3871. /* find the first valid pfn */
  3872. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  3873. if (pfn_valid(pfn))
  3874. break;
  3875. if (pfn == end_pfn)
  3876. return;
  3877. zone = page_zone(pfn_to_page(pfn));
  3878. spin_lock_irqsave(&zone->lock, flags);
  3879. pfn = start_pfn;
  3880. while (pfn < end_pfn) {
  3881. if (!pfn_valid(pfn)) {
  3882. pfn++;
  3883. continue;
  3884. }
  3885. page = pfn_to_page(pfn);
  3886. BUG_ON(page_count(page));
  3887. BUG_ON(!PageBuddy(page));
  3888. order = page_order(page);
  3889. #ifdef CONFIG_DEBUG_VM
  3890. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  3891. pfn, 1 << order, end_pfn);
  3892. #endif
  3893. list_del(&page->lru);
  3894. rmv_page_order(page);
  3895. zone->free_area[order].nr_free--;
  3896. __mod_zone_page_state(zone, NR_FREE_PAGES,
  3897. - (1UL << order));
  3898. for (i = 0; i < (1 << order); i++)
  3899. SetPageReserved((page+i));
  3900. pfn += (1 << order);
  3901. }
  3902. spin_unlock_irqrestore(&zone->lock, flags);
  3903. }
  3904. #endif