wep.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349
  1. /*
  2. * Software WEP encryption implementation
  3. * Copyright 2002, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2003, Instant802 Networks, Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/netdevice.h>
  11. #include <linux/types.h>
  12. #include <linux/random.h>
  13. #include <linux/compiler.h>
  14. #include <linux/crc32.h>
  15. #include <linux/crypto.h>
  16. #include <linux/err.h>
  17. #include <linux/mm.h>
  18. #include <linux/scatterlist.h>
  19. #include <linux/slab.h>
  20. #include <asm/unaligned.h>
  21. #include <net/mac80211.h>
  22. #include "ieee80211_i.h"
  23. #include "wep.h"
  24. int ieee80211_wep_init(struct ieee80211_local *local)
  25. {
  26. /* start WEP IV from a random value */
  27. get_random_bytes(&local->wep_iv, WEP_IV_LEN);
  28. local->wep_tx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0,
  29. CRYPTO_ALG_ASYNC);
  30. if (IS_ERR(local->wep_tx_tfm))
  31. return PTR_ERR(local->wep_tx_tfm);
  32. local->wep_rx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0,
  33. CRYPTO_ALG_ASYNC);
  34. if (IS_ERR(local->wep_rx_tfm)) {
  35. crypto_free_blkcipher(local->wep_tx_tfm);
  36. return PTR_ERR(local->wep_rx_tfm);
  37. }
  38. return 0;
  39. }
  40. void ieee80211_wep_free(struct ieee80211_local *local)
  41. {
  42. if (!IS_ERR(local->wep_tx_tfm))
  43. crypto_free_blkcipher(local->wep_tx_tfm);
  44. if (!IS_ERR(local->wep_rx_tfm))
  45. crypto_free_blkcipher(local->wep_rx_tfm);
  46. }
  47. static inline bool ieee80211_wep_weak_iv(u32 iv, int keylen)
  48. {
  49. /*
  50. * Fluhrer, Mantin, and Shamir have reported weaknesses in the
  51. * key scheduling algorithm of RC4. At least IVs (KeyByte + 3,
  52. * 0xff, N) can be used to speedup attacks, so avoid using them.
  53. */
  54. if ((iv & 0xff00) == 0xff00) {
  55. u8 B = (iv >> 16) & 0xff;
  56. if (B >= 3 && B < 3 + keylen)
  57. return true;
  58. }
  59. return false;
  60. }
  61. static void ieee80211_wep_get_iv(struct ieee80211_local *local,
  62. int keylen, int keyidx, u8 *iv)
  63. {
  64. local->wep_iv++;
  65. if (ieee80211_wep_weak_iv(local->wep_iv, keylen))
  66. local->wep_iv += 0x0100;
  67. if (!iv)
  68. return;
  69. *iv++ = (local->wep_iv >> 16) & 0xff;
  70. *iv++ = (local->wep_iv >> 8) & 0xff;
  71. *iv++ = local->wep_iv & 0xff;
  72. *iv++ = keyidx << 6;
  73. }
  74. static u8 *ieee80211_wep_add_iv(struct ieee80211_local *local,
  75. struct sk_buff *skb,
  76. int keylen, int keyidx)
  77. {
  78. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  79. unsigned int hdrlen;
  80. u8 *newhdr;
  81. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  82. if (WARN_ON(skb_tailroom(skb) < WEP_ICV_LEN ||
  83. skb_headroom(skb) < WEP_IV_LEN))
  84. return NULL;
  85. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  86. newhdr = skb_push(skb, WEP_IV_LEN);
  87. memmove(newhdr, newhdr + WEP_IV_LEN, hdrlen);
  88. ieee80211_wep_get_iv(local, keylen, keyidx, newhdr + hdrlen);
  89. return newhdr + hdrlen;
  90. }
  91. static void ieee80211_wep_remove_iv(struct ieee80211_local *local,
  92. struct sk_buff *skb,
  93. struct ieee80211_key *key)
  94. {
  95. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  96. unsigned int hdrlen;
  97. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  98. memmove(skb->data + WEP_IV_LEN, skb->data, hdrlen);
  99. skb_pull(skb, WEP_IV_LEN);
  100. }
  101. /* Perform WEP encryption using given key. data buffer must have tailroom
  102. * for 4-byte ICV. data_len must not include this ICV. Note: this function
  103. * does _not_ add IV. data = RC4(data | CRC32(data)) */
  104. int ieee80211_wep_encrypt_data(struct crypto_blkcipher *tfm, u8 *rc4key,
  105. size_t klen, u8 *data, size_t data_len)
  106. {
  107. struct blkcipher_desc desc = { .tfm = tfm };
  108. struct scatterlist sg;
  109. __le32 icv;
  110. if (IS_ERR(tfm))
  111. return -1;
  112. icv = cpu_to_le32(~crc32_le(~0, data, data_len));
  113. put_unaligned(icv, (__le32 *)(data + data_len));
  114. crypto_blkcipher_setkey(tfm, rc4key, klen);
  115. sg_init_one(&sg, data, data_len + WEP_ICV_LEN);
  116. crypto_blkcipher_encrypt(&desc, &sg, &sg, sg.length);
  117. return 0;
  118. }
  119. /* Perform WEP encryption on given skb. 4 bytes of extra space (IV) in the
  120. * beginning of the buffer 4 bytes of extra space (ICV) in the end of the
  121. * buffer will be added. Both IV and ICV will be transmitted, so the
  122. * payload length increases with 8 bytes.
  123. *
  124. * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
  125. */
  126. int ieee80211_wep_encrypt(struct ieee80211_local *local,
  127. struct sk_buff *skb,
  128. const u8 *key, int keylen, int keyidx)
  129. {
  130. u8 *iv;
  131. size_t len;
  132. u8 rc4key[3 + WLAN_KEY_LEN_WEP104];
  133. iv = ieee80211_wep_add_iv(local, skb, keylen, keyidx);
  134. if (!iv)
  135. return -1;
  136. len = skb->len - (iv + WEP_IV_LEN - skb->data);
  137. /* Prepend 24-bit IV to RC4 key */
  138. memcpy(rc4key, iv, 3);
  139. /* Copy rest of the WEP key (the secret part) */
  140. memcpy(rc4key + 3, key, keylen);
  141. /* Add room for ICV */
  142. skb_put(skb, WEP_ICV_LEN);
  143. return ieee80211_wep_encrypt_data(local->wep_tx_tfm, rc4key, keylen + 3,
  144. iv + WEP_IV_LEN, len);
  145. }
  146. /* Perform WEP decryption using given key. data buffer includes encrypted
  147. * payload, including 4-byte ICV, but _not_ IV. data_len must not include ICV.
  148. * Return 0 on success and -1 on ICV mismatch. */
  149. int ieee80211_wep_decrypt_data(struct crypto_blkcipher *tfm, u8 *rc4key,
  150. size_t klen, u8 *data, size_t data_len)
  151. {
  152. struct blkcipher_desc desc = { .tfm = tfm };
  153. struct scatterlist sg;
  154. __le32 crc;
  155. if (IS_ERR(tfm))
  156. return -1;
  157. crypto_blkcipher_setkey(tfm, rc4key, klen);
  158. sg_init_one(&sg, data, data_len + WEP_ICV_LEN);
  159. crypto_blkcipher_decrypt(&desc, &sg, &sg, sg.length);
  160. crc = cpu_to_le32(~crc32_le(~0, data, data_len));
  161. if (memcmp(&crc, data + data_len, WEP_ICV_LEN) != 0)
  162. /* ICV mismatch */
  163. return -1;
  164. return 0;
  165. }
  166. /* Perform WEP decryption on given skb. Buffer includes whole WEP part of
  167. * the frame: IV (4 bytes), encrypted payload (including SNAP header),
  168. * ICV (4 bytes). skb->len includes both IV and ICV.
  169. *
  170. * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
  171. * failure. If frame is OK, IV and ICV will be removed, i.e., decrypted payload
  172. * is moved to the beginning of the skb and skb length will be reduced.
  173. */
  174. static int ieee80211_wep_decrypt(struct ieee80211_local *local,
  175. struct sk_buff *skb,
  176. struct ieee80211_key *key)
  177. {
  178. u32 klen;
  179. u8 *rc4key;
  180. u8 keyidx;
  181. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  182. unsigned int hdrlen;
  183. size_t len;
  184. int ret = 0;
  185. if (!ieee80211_has_protected(hdr->frame_control))
  186. return -1;
  187. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  188. if (skb->len < hdrlen + WEP_IV_LEN + WEP_ICV_LEN)
  189. return -1;
  190. len = skb->len - hdrlen - WEP_IV_LEN - WEP_ICV_LEN;
  191. keyidx = skb->data[hdrlen + 3] >> 6;
  192. if (!key || keyidx != key->conf.keyidx || key->conf.alg != ALG_WEP)
  193. return -1;
  194. klen = 3 + key->conf.keylen;
  195. rc4key = kmalloc(klen, GFP_ATOMIC);
  196. if (!rc4key)
  197. return -1;
  198. /* Prepend 24-bit IV to RC4 key */
  199. memcpy(rc4key, skb->data + hdrlen, 3);
  200. /* Copy rest of the WEP key (the secret part) */
  201. memcpy(rc4key + 3, key->conf.key, key->conf.keylen);
  202. if (ieee80211_wep_decrypt_data(local->wep_rx_tfm, rc4key, klen,
  203. skb->data + hdrlen + WEP_IV_LEN,
  204. len))
  205. ret = -1;
  206. kfree(rc4key);
  207. /* Trim ICV */
  208. skb_trim(skb, skb->len - WEP_ICV_LEN);
  209. /* Remove IV */
  210. memmove(skb->data + WEP_IV_LEN, skb->data, hdrlen);
  211. skb_pull(skb, WEP_IV_LEN);
  212. return ret;
  213. }
  214. bool ieee80211_wep_is_weak_iv(struct sk_buff *skb, struct ieee80211_key *key)
  215. {
  216. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  217. unsigned int hdrlen;
  218. u8 *ivpos;
  219. u32 iv;
  220. if (!ieee80211_has_protected(hdr->frame_control))
  221. return false;
  222. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  223. ivpos = skb->data + hdrlen;
  224. iv = (ivpos[0] << 16) | (ivpos[1] << 8) | ivpos[2];
  225. return ieee80211_wep_weak_iv(iv, key->conf.keylen);
  226. }
  227. ieee80211_rx_result
  228. ieee80211_crypto_wep_decrypt(struct ieee80211_rx_data *rx)
  229. {
  230. struct sk_buff *skb = rx->skb;
  231. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  232. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  233. if (!ieee80211_is_data(hdr->frame_control) &&
  234. !ieee80211_is_auth(hdr->frame_control))
  235. return RX_CONTINUE;
  236. if (!(status->flag & RX_FLAG_DECRYPTED)) {
  237. if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key))
  238. return RX_DROP_UNUSABLE;
  239. } else if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
  240. ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
  241. /* remove ICV */
  242. skb_trim(rx->skb, rx->skb->len - WEP_ICV_LEN);
  243. }
  244. return RX_CONTINUE;
  245. }
  246. static int wep_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb)
  247. {
  248. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  249. if (!info->control.hw_key) {
  250. if (ieee80211_wep_encrypt(tx->local, skb, tx->key->conf.key,
  251. tx->key->conf.keylen,
  252. tx->key->conf.keyidx))
  253. return -1;
  254. } else if (info->control.hw_key->flags &
  255. IEEE80211_KEY_FLAG_GENERATE_IV) {
  256. if (!ieee80211_wep_add_iv(tx->local, skb,
  257. tx->key->conf.keylen,
  258. tx->key->conf.keyidx))
  259. return -1;
  260. }
  261. return 0;
  262. }
  263. ieee80211_tx_result
  264. ieee80211_crypto_wep_encrypt(struct ieee80211_tx_data *tx)
  265. {
  266. struct sk_buff *skb;
  267. ieee80211_tx_set_protected(tx);
  268. skb = tx->skb;
  269. do {
  270. if (wep_encrypt_skb(tx, skb) < 0) {
  271. I802_DEBUG_INC(tx->local->tx_handlers_drop_wep);
  272. return TX_DROP;
  273. }
  274. } while ((skb = skb->next));
  275. return TX_CONTINUE;
  276. }