flow.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. /* flow.c: Generic flow cache.
  2. *
  3. * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru)
  4. * Copyright (C) 2003 David S. Miller (davem@redhat.com)
  5. */
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/list.h>
  9. #include <linux/jhash.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/mm.h>
  12. #include <linux/random.h>
  13. #include <linux/init.h>
  14. #include <linux/slab.h>
  15. #include <linux/smp.h>
  16. #include <linux/completion.h>
  17. #include <linux/percpu.h>
  18. #include <linux/bitops.h>
  19. #include <linux/notifier.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpumask.h>
  22. #include <linux/mutex.h>
  23. #include <net/flow.h>
  24. #include <asm/atomic.h>
  25. #include <linux/security.h>
  26. struct flow_cache_entry {
  27. union {
  28. struct hlist_node hlist;
  29. struct list_head gc_list;
  30. } u;
  31. u16 family;
  32. u8 dir;
  33. u32 genid;
  34. struct flowi key;
  35. struct flow_cache_object *object;
  36. };
  37. struct flow_cache_percpu {
  38. struct hlist_head *hash_table;
  39. int hash_count;
  40. u32 hash_rnd;
  41. int hash_rnd_recalc;
  42. struct tasklet_struct flush_tasklet;
  43. };
  44. struct flow_flush_info {
  45. struct flow_cache *cache;
  46. atomic_t cpuleft;
  47. struct completion completion;
  48. };
  49. struct flow_cache {
  50. u32 hash_shift;
  51. unsigned long order;
  52. struct flow_cache_percpu *percpu;
  53. struct notifier_block hotcpu_notifier;
  54. int low_watermark;
  55. int high_watermark;
  56. struct timer_list rnd_timer;
  57. };
  58. atomic_t flow_cache_genid = ATOMIC_INIT(0);
  59. EXPORT_SYMBOL(flow_cache_genid);
  60. static struct flow_cache flow_cache_global;
  61. static struct kmem_cache *flow_cachep;
  62. static DEFINE_SPINLOCK(flow_cache_gc_lock);
  63. static LIST_HEAD(flow_cache_gc_list);
  64. #define flow_cache_hash_size(cache) (1 << (cache)->hash_shift)
  65. #define FLOW_HASH_RND_PERIOD (10 * 60 * HZ)
  66. static void flow_cache_new_hashrnd(unsigned long arg)
  67. {
  68. struct flow_cache *fc = (void *) arg;
  69. int i;
  70. for_each_possible_cpu(i)
  71. per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1;
  72. fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
  73. add_timer(&fc->rnd_timer);
  74. }
  75. static int flow_entry_valid(struct flow_cache_entry *fle)
  76. {
  77. if (atomic_read(&flow_cache_genid) != fle->genid)
  78. return 0;
  79. if (fle->object && !fle->object->ops->check(fle->object))
  80. return 0;
  81. return 1;
  82. }
  83. static void flow_entry_kill(struct flow_cache_entry *fle)
  84. {
  85. if (fle->object)
  86. fle->object->ops->delete(fle->object);
  87. kmem_cache_free(flow_cachep, fle);
  88. }
  89. static void flow_cache_gc_task(struct work_struct *work)
  90. {
  91. struct list_head gc_list;
  92. struct flow_cache_entry *fce, *n;
  93. INIT_LIST_HEAD(&gc_list);
  94. spin_lock_bh(&flow_cache_gc_lock);
  95. list_splice_tail_init(&flow_cache_gc_list, &gc_list);
  96. spin_unlock_bh(&flow_cache_gc_lock);
  97. list_for_each_entry_safe(fce, n, &gc_list, u.gc_list)
  98. flow_entry_kill(fce);
  99. }
  100. static DECLARE_WORK(flow_cache_gc_work, flow_cache_gc_task);
  101. static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp,
  102. int deleted, struct list_head *gc_list)
  103. {
  104. if (deleted) {
  105. fcp->hash_count -= deleted;
  106. spin_lock_bh(&flow_cache_gc_lock);
  107. list_splice_tail(gc_list, &flow_cache_gc_list);
  108. spin_unlock_bh(&flow_cache_gc_lock);
  109. schedule_work(&flow_cache_gc_work);
  110. }
  111. }
  112. static void __flow_cache_shrink(struct flow_cache *fc,
  113. struct flow_cache_percpu *fcp,
  114. int shrink_to)
  115. {
  116. struct flow_cache_entry *fle;
  117. struct hlist_node *entry, *tmp;
  118. LIST_HEAD(gc_list);
  119. int i, deleted = 0;
  120. for (i = 0; i < flow_cache_hash_size(fc); i++) {
  121. int saved = 0;
  122. hlist_for_each_entry_safe(fle, entry, tmp,
  123. &fcp->hash_table[i], u.hlist) {
  124. if (saved < shrink_to &&
  125. flow_entry_valid(fle)) {
  126. saved++;
  127. } else {
  128. deleted++;
  129. hlist_del(&fle->u.hlist);
  130. list_add_tail(&fle->u.gc_list, &gc_list);
  131. }
  132. }
  133. }
  134. flow_cache_queue_garbage(fcp, deleted, &gc_list);
  135. }
  136. static void flow_cache_shrink(struct flow_cache *fc,
  137. struct flow_cache_percpu *fcp)
  138. {
  139. int shrink_to = fc->low_watermark / flow_cache_hash_size(fc);
  140. __flow_cache_shrink(fc, fcp, shrink_to);
  141. }
  142. static void flow_new_hash_rnd(struct flow_cache *fc,
  143. struct flow_cache_percpu *fcp)
  144. {
  145. get_random_bytes(&fcp->hash_rnd, sizeof(u32));
  146. fcp->hash_rnd_recalc = 0;
  147. __flow_cache_shrink(fc, fcp, 0);
  148. }
  149. static u32 flow_hash_code(struct flow_cache *fc,
  150. struct flow_cache_percpu *fcp,
  151. struct flowi *key)
  152. {
  153. u32 *k = (u32 *) key;
  154. return (jhash2(k, (sizeof(*key) / sizeof(u32)), fcp->hash_rnd)
  155. & (flow_cache_hash_size(fc) - 1));
  156. }
  157. #if (BITS_PER_LONG == 64)
  158. typedef u64 flow_compare_t;
  159. #else
  160. typedef u32 flow_compare_t;
  161. #endif
  162. /* I hear what you're saying, use memcmp. But memcmp cannot make
  163. * important assumptions that we can here, such as alignment and
  164. * constant size.
  165. */
  166. static int flow_key_compare(struct flowi *key1, struct flowi *key2)
  167. {
  168. flow_compare_t *k1, *k1_lim, *k2;
  169. const int n_elem = sizeof(struct flowi) / sizeof(flow_compare_t);
  170. BUILD_BUG_ON(sizeof(struct flowi) % sizeof(flow_compare_t));
  171. k1 = (flow_compare_t *) key1;
  172. k1_lim = k1 + n_elem;
  173. k2 = (flow_compare_t *) key2;
  174. do {
  175. if (*k1++ != *k2++)
  176. return 1;
  177. } while (k1 < k1_lim);
  178. return 0;
  179. }
  180. struct flow_cache_object *
  181. flow_cache_lookup(struct net *net, struct flowi *key, u16 family, u8 dir,
  182. flow_resolve_t resolver, void *ctx)
  183. {
  184. struct flow_cache *fc = &flow_cache_global;
  185. struct flow_cache_percpu *fcp;
  186. struct flow_cache_entry *fle, *tfle;
  187. struct hlist_node *entry;
  188. struct flow_cache_object *flo;
  189. unsigned int hash;
  190. local_bh_disable();
  191. fcp = this_cpu_ptr(fc->percpu);
  192. fle = NULL;
  193. flo = NULL;
  194. /* Packet really early in init? Making flow_cache_init a
  195. * pre-smp initcall would solve this. --RR */
  196. if (!fcp->hash_table)
  197. goto nocache;
  198. if (fcp->hash_rnd_recalc)
  199. flow_new_hash_rnd(fc, fcp);
  200. hash = flow_hash_code(fc, fcp, key);
  201. hlist_for_each_entry(tfle, entry, &fcp->hash_table[hash], u.hlist) {
  202. if (tfle->family == family &&
  203. tfle->dir == dir &&
  204. flow_key_compare(key, &tfle->key) == 0) {
  205. fle = tfle;
  206. break;
  207. }
  208. }
  209. if (unlikely(!fle)) {
  210. if (fcp->hash_count > fc->high_watermark)
  211. flow_cache_shrink(fc, fcp);
  212. fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC);
  213. if (fle) {
  214. fle->family = family;
  215. fle->dir = dir;
  216. memcpy(&fle->key, key, sizeof(*key));
  217. fle->object = NULL;
  218. hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]);
  219. fcp->hash_count++;
  220. }
  221. } else if (likely(fle->genid == atomic_read(&flow_cache_genid))) {
  222. flo = fle->object;
  223. if (!flo)
  224. goto ret_object;
  225. flo = flo->ops->get(flo);
  226. if (flo)
  227. goto ret_object;
  228. } else if (fle->object) {
  229. flo = fle->object;
  230. flo->ops->delete(flo);
  231. fle->object = NULL;
  232. }
  233. nocache:
  234. flo = NULL;
  235. if (fle) {
  236. flo = fle->object;
  237. fle->object = NULL;
  238. }
  239. flo = resolver(net, key, family, dir, flo, ctx);
  240. if (fle) {
  241. fle->genid = atomic_read(&flow_cache_genid);
  242. if (!IS_ERR(flo))
  243. fle->object = flo;
  244. else
  245. fle->genid--;
  246. } else {
  247. if (flo && !IS_ERR(flo))
  248. flo->ops->delete(flo);
  249. }
  250. ret_object:
  251. local_bh_enable();
  252. return flo;
  253. }
  254. EXPORT_SYMBOL(flow_cache_lookup);
  255. static void flow_cache_flush_tasklet(unsigned long data)
  256. {
  257. struct flow_flush_info *info = (void *)data;
  258. struct flow_cache *fc = info->cache;
  259. struct flow_cache_percpu *fcp;
  260. struct flow_cache_entry *fle;
  261. struct hlist_node *entry, *tmp;
  262. LIST_HEAD(gc_list);
  263. int i, deleted = 0;
  264. fcp = this_cpu_ptr(fc->percpu);
  265. for (i = 0; i < flow_cache_hash_size(fc); i++) {
  266. hlist_for_each_entry_safe(fle, entry, tmp,
  267. &fcp->hash_table[i], u.hlist) {
  268. if (flow_entry_valid(fle))
  269. continue;
  270. deleted++;
  271. hlist_del(&fle->u.hlist);
  272. list_add_tail(&fle->u.gc_list, &gc_list);
  273. }
  274. }
  275. flow_cache_queue_garbage(fcp, deleted, &gc_list);
  276. if (atomic_dec_and_test(&info->cpuleft))
  277. complete(&info->completion);
  278. }
  279. static void flow_cache_flush_per_cpu(void *data)
  280. {
  281. struct flow_flush_info *info = data;
  282. int cpu;
  283. struct tasklet_struct *tasklet;
  284. cpu = smp_processor_id();
  285. tasklet = &per_cpu_ptr(info->cache->percpu, cpu)->flush_tasklet;
  286. tasklet->data = (unsigned long)info;
  287. tasklet_schedule(tasklet);
  288. }
  289. void flow_cache_flush(void)
  290. {
  291. struct flow_flush_info info;
  292. static DEFINE_MUTEX(flow_flush_sem);
  293. /* Don't want cpus going down or up during this. */
  294. get_online_cpus();
  295. mutex_lock(&flow_flush_sem);
  296. info.cache = &flow_cache_global;
  297. atomic_set(&info.cpuleft, num_online_cpus());
  298. init_completion(&info.completion);
  299. local_bh_disable();
  300. smp_call_function(flow_cache_flush_per_cpu, &info, 0);
  301. flow_cache_flush_tasklet((unsigned long)&info);
  302. local_bh_enable();
  303. wait_for_completion(&info.completion);
  304. mutex_unlock(&flow_flush_sem);
  305. put_online_cpus();
  306. }
  307. static void __init flow_cache_cpu_prepare(struct flow_cache *fc,
  308. struct flow_cache_percpu *fcp)
  309. {
  310. fcp->hash_table = (struct hlist_head *)
  311. __get_free_pages(GFP_KERNEL|__GFP_ZERO, fc->order);
  312. if (!fcp->hash_table)
  313. panic("NET: failed to allocate flow cache order %lu\n", fc->order);
  314. fcp->hash_rnd_recalc = 1;
  315. fcp->hash_count = 0;
  316. tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0);
  317. }
  318. static int flow_cache_cpu(struct notifier_block *nfb,
  319. unsigned long action,
  320. void *hcpu)
  321. {
  322. struct flow_cache *fc = container_of(nfb, struct flow_cache, hotcpu_notifier);
  323. int cpu = (unsigned long) hcpu;
  324. struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
  325. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
  326. __flow_cache_shrink(fc, fcp, 0);
  327. return NOTIFY_OK;
  328. }
  329. static int flow_cache_init(struct flow_cache *fc)
  330. {
  331. unsigned long order;
  332. int i;
  333. fc->hash_shift = 10;
  334. fc->low_watermark = 2 * flow_cache_hash_size(fc);
  335. fc->high_watermark = 4 * flow_cache_hash_size(fc);
  336. for (order = 0;
  337. (PAGE_SIZE << order) <
  338. (sizeof(struct hlist_head)*flow_cache_hash_size(fc));
  339. order++)
  340. /* NOTHING */;
  341. fc->order = order;
  342. fc->percpu = alloc_percpu(struct flow_cache_percpu);
  343. setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd,
  344. (unsigned long) fc);
  345. fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
  346. add_timer(&fc->rnd_timer);
  347. for_each_possible_cpu(i)
  348. flow_cache_cpu_prepare(fc, per_cpu_ptr(fc->percpu, i));
  349. fc->hotcpu_notifier = (struct notifier_block){
  350. .notifier_call = flow_cache_cpu,
  351. };
  352. register_hotcpu_notifier(&fc->hotcpu_notifier);
  353. return 0;
  354. }
  355. static int __init flow_cache_init_global(void)
  356. {
  357. flow_cachep = kmem_cache_create("flow_cache",
  358. sizeof(struct flow_cache_entry),
  359. 0, SLAB_PANIC, NULL);
  360. return flow_cache_init(&flow_cache_global);
  361. }
  362. module_init(flow_cache_init_global);