sched.c 214 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_CGROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. struct cgroup_subsys_state css;
  209. #ifdef CONFIG_FAIR_GROUP_SCHED
  210. /* schedulable entities of this group on each cpu */
  211. struct sched_entity **se;
  212. /* runqueue "owned" by this group on each cpu */
  213. struct cfs_rq **cfs_rq;
  214. unsigned long shares;
  215. #endif
  216. #ifdef CONFIG_RT_GROUP_SCHED
  217. struct sched_rt_entity **rt_se;
  218. struct rt_rq **rt_rq;
  219. struct rt_bandwidth rt_bandwidth;
  220. #endif
  221. struct rcu_head rcu;
  222. struct list_head list;
  223. struct task_group *parent;
  224. struct list_head siblings;
  225. struct list_head children;
  226. };
  227. #define root_task_group init_task_group
  228. /* task_group_lock serializes add/remove of task groups and also changes to
  229. * a task group's cpu shares.
  230. */
  231. static DEFINE_SPINLOCK(task_group_lock);
  232. #ifdef CONFIG_FAIR_GROUP_SCHED
  233. #ifdef CONFIG_SMP
  234. static int root_task_group_empty(void)
  235. {
  236. return list_empty(&root_task_group.children);
  237. }
  238. #endif
  239. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  240. /*
  241. * A weight of 0 or 1 can cause arithmetics problems.
  242. * A weight of a cfs_rq is the sum of weights of which entities
  243. * are queued on this cfs_rq, so a weight of a entity should not be
  244. * too large, so as the shares value of a task group.
  245. * (The default weight is 1024 - so there's no practical
  246. * limitation from this.)
  247. */
  248. #define MIN_SHARES 2
  249. #define MAX_SHARES (1UL << 18)
  250. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  251. #endif
  252. /* Default task group.
  253. * Every task in system belong to this group at bootup.
  254. */
  255. struct task_group init_task_group;
  256. /* return group to which a task belongs */
  257. static inline struct task_group *task_group(struct task_struct *p)
  258. {
  259. struct task_group *tg;
  260. #ifdef CONFIG_CGROUP_SCHED
  261. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  262. struct task_group, css);
  263. #else
  264. tg = &init_task_group;
  265. #endif
  266. return tg;
  267. }
  268. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  269. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  270. {
  271. /*
  272. * Strictly speaking this rcu_read_lock() is not needed since the
  273. * task_group is tied to the cgroup, which in turn can never go away
  274. * as long as there are tasks attached to it.
  275. *
  276. * However since task_group() uses task_subsys_state() which is an
  277. * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
  278. */
  279. rcu_read_lock();
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  282. p->se.parent = task_group(p)->se[cpu];
  283. #endif
  284. #ifdef CONFIG_RT_GROUP_SCHED
  285. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  286. p->rt.parent = task_group(p)->rt_se[cpu];
  287. #endif
  288. rcu_read_unlock();
  289. }
  290. #else
  291. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  292. static inline struct task_group *task_group(struct task_struct *p)
  293. {
  294. return NULL;
  295. }
  296. #endif /* CONFIG_CGROUP_SCHED */
  297. /* CFS-related fields in a runqueue */
  298. struct cfs_rq {
  299. struct load_weight load;
  300. unsigned long nr_running;
  301. u64 exec_clock;
  302. u64 min_vruntime;
  303. struct rb_root tasks_timeline;
  304. struct rb_node *rb_leftmost;
  305. struct list_head tasks;
  306. struct list_head *balance_iterator;
  307. /*
  308. * 'curr' points to currently running entity on this cfs_rq.
  309. * It is set to NULL otherwise (i.e when none are currently running).
  310. */
  311. struct sched_entity *curr, *next, *last;
  312. unsigned int nr_spread_over;
  313. #ifdef CONFIG_FAIR_GROUP_SCHED
  314. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  315. /*
  316. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  317. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  318. * (like users, containers etc.)
  319. *
  320. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  321. * list is used during load balance.
  322. */
  323. struct list_head leaf_cfs_rq_list;
  324. struct task_group *tg; /* group that "owns" this runqueue */
  325. #ifdef CONFIG_SMP
  326. /*
  327. * the part of load.weight contributed by tasks
  328. */
  329. unsigned long task_weight;
  330. /*
  331. * h_load = weight * f(tg)
  332. *
  333. * Where f(tg) is the recursive weight fraction assigned to
  334. * this group.
  335. */
  336. unsigned long h_load;
  337. /*
  338. * this cpu's part of tg->shares
  339. */
  340. unsigned long shares;
  341. /*
  342. * load.weight at the time we set shares
  343. */
  344. unsigned long rq_weight;
  345. #endif
  346. #endif
  347. };
  348. /* Real-Time classes' related field in a runqueue: */
  349. struct rt_rq {
  350. struct rt_prio_array active;
  351. unsigned long rt_nr_running;
  352. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  353. struct {
  354. int curr; /* highest queued rt task prio */
  355. #ifdef CONFIG_SMP
  356. int next; /* next highest */
  357. #endif
  358. } highest_prio;
  359. #endif
  360. #ifdef CONFIG_SMP
  361. unsigned long rt_nr_migratory;
  362. unsigned long rt_nr_total;
  363. int overloaded;
  364. struct plist_head pushable_tasks;
  365. #endif
  366. int rt_throttled;
  367. u64 rt_time;
  368. u64 rt_runtime;
  369. /* Nests inside the rq lock: */
  370. raw_spinlock_t rt_runtime_lock;
  371. #ifdef CONFIG_RT_GROUP_SCHED
  372. unsigned long rt_nr_boosted;
  373. struct rq *rq;
  374. struct list_head leaf_rt_rq_list;
  375. struct task_group *tg;
  376. #endif
  377. };
  378. #ifdef CONFIG_SMP
  379. /*
  380. * We add the notion of a root-domain which will be used to define per-domain
  381. * variables. Each exclusive cpuset essentially defines an island domain by
  382. * fully partitioning the member cpus from any other cpuset. Whenever a new
  383. * exclusive cpuset is created, we also create and attach a new root-domain
  384. * object.
  385. *
  386. */
  387. struct root_domain {
  388. atomic_t refcount;
  389. cpumask_var_t span;
  390. cpumask_var_t online;
  391. /*
  392. * The "RT overload" flag: it gets set if a CPU has more than
  393. * one runnable RT task.
  394. */
  395. cpumask_var_t rto_mask;
  396. atomic_t rto_count;
  397. #ifdef CONFIG_SMP
  398. struct cpupri cpupri;
  399. #endif
  400. };
  401. /*
  402. * By default the system creates a single root-domain with all cpus as
  403. * members (mimicking the global state we have today).
  404. */
  405. static struct root_domain def_root_domain;
  406. #endif
  407. /*
  408. * This is the main, per-CPU runqueue data structure.
  409. *
  410. * Locking rule: those places that want to lock multiple runqueues
  411. * (such as the load balancing or the thread migration code), lock
  412. * acquire operations must be ordered by ascending &runqueue.
  413. */
  414. struct rq {
  415. /* runqueue lock: */
  416. raw_spinlock_t lock;
  417. /*
  418. * nr_running and cpu_load should be in the same cacheline because
  419. * remote CPUs use both these fields when doing load calculation.
  420. */
  421. unsigned long nr_running;
  422. #define CPU_LOAD_IDX_MAX 5
  423. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  424. #ifdef CONFIG_NO_HZ
  425. u64 nohz_stamp;
  426. unsigned char in_nohz_recently;
  427. #endif
  428. unsigned int skip_clock_update;
  429. /* capture load from *all* tasks on this cpu: */
  430. struct load_weight load;
  431. unsigned long nr_load_updates;
  432. u64 nr_switches;
  433. struct cfs_rq cfs;
  434. struct rt_rq rt;
  435. #ifdef CONFIG_FAIR_GROUP_SCHED
  436. /* list of leaf cfs_rq on this cpu: */
  437. struct list_head leaf_cfs_rq_list;
  438. #endif
  439. #ifdef CONFIG_RT_GROUP_SCHED
  440. struct list_head leaf_rt_rq_list;
  441. #endif
  442. /*
  443. * This is part of a global counter where only the total sum
  444. * over all CPUs matters. A task can increase this counter on
  445. * one CPU and if it got migrated afterwards it may decrease
  446. * it on another CPU. Always updated under the runqueue lock:
  447. */
  448. unsigned long nr_uninterruptible;
  449. struct task_struct *curr, *idle;
  450. unsigned long next_balance;
  451. struct mm_struct *prev_mm;
  452. u64 clock;
  453. atomic_t nr_iowait;
  454. #ifdef CONFIG_SMP
  455. struct root_domain *rd;
  456. struct sched_domain *sd;
  457. unsigned char idle_at_tick;
  458. /* For active balancing */
  459. int post_schedule;
  460. int active_balance;
  461. int push_cpu;
  462. struct cpu_stop_work active_balance_work;
  463. /* cpu of this runqueue: */
  464. int cpu;
  465. int online;
  466. unsigned long avg_load_per_task;
  467. u64 rt_avg;
  468. u64 age_stamp;
  469. u64 idle_stamp;
  470. u64 avg_idle;
  471. #endif
  472. /* calc_load related fields */
  473. unsigned long calc_load_update;
  474. long calc_load_active;
  475. #ifdef CONFIG_SCHED_HRTICK
  476. #ifdef CONFIG_SMP
  477. int hrtick_csd_pending;
  478. struct call_single_data hrtick_csd;
  479. #endif
  480. struct hrtimer hrtick_timer;
  481. #endif
  482. #ifdef CONFIG_SCHEDSTATS
  483. /* latency stats */
  484. struct sched_info rq_sched_info;
  485. unsigned long long rq_cpu_time;
  486. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  487. /* sys_sched_yield() stats */
  488. unsigned int yld_count;
  489. /* schedule() stats */
  490. unsigned int sched_switch;
  491. unsigned int sched_count;
  492. unsigned int sched_goidle;
  493. /* try_to_wake_up() stats */
  494. unsigned int ttwu_count;
  495. unsigned int ttwu_local;
  496. /* BKL stats */
  497. unsigned int bkl_count;
  498. #endif
  499. };
  500. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  501. static inline
  502. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  503. {
  504. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  505. /*
  506. * A queue event has occurred, and we're going to schedule. In
  507. * this case, we can save a useless back to back clock update.
  508. */
  509. if (test_tsk_need_resched(p))
  510. rq->skip_clock_update = 1;
  511. }
  512. static inline int cpu_of(struct rq *rq)
  513. {
  514. #ifdef CONFIG_SMP
  515. return rq->cpu;
  516. #else
  517. return 0;
  518. #endif
  519. }
  520. #define rcu_dereference_check_sched_domain(p) \
  521. rcu_dereference_check((p), \
  522. rcu_read_lock_sched_held() || \
  523. lockdep_is_held(&sched_domains_mutex))
  524. /*
  525. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  526. * See detach_destroy_domains: synchronize_sched for details.
  527. *
  528. * The domain tree of any CPU may only be accessed from within
  529. * preempt-disabled sections.
  530. */
  531. #define for_each_domain(cpu, __sd) \
  532. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  533. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  534. #define this_rq() (&__get_cpu_var(runqueues))
  535. #define task_rq(p) cpu_rq(task_cpu(p))
  536. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  537. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  538. inline void update_rq_clock(struct rq *rq)
  539. {
  540. if (!rq->skip_clock_update)
  541. rq->clock = sched_clock_cpu(cpu_of(rq));
  542. }
  543. /*
  544. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  545. */
  546. #ifdef CONFIG_SCHED_DEBUG
  547. # define const_debug __read_mostly
  548. #else
  549. # define const_debug static const
  550. #endif
  551. /**
  552. * runqueue_is_locked
  553. * @cpu: the processor in question.
  554. *
  555. * Returns true if the current cpu runqueue is locked.
  556. * This interface allows printk to be called with the runqueue lock
  557. * held and know whether or not it is OK to wake up the klogd.
  558. */
  559. int runqueue_is_locked(int cpu)
  560. {
  561. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  562. }
  563. /*
  564. * Debugging: various feature bits
  565. */
  566. #define SCHED_FEAT(name, enabled) \
  567. __SCHED_FEAT_##name ,
  568. enum {
  569. #include "sched_features.h"
  570. };
  571. #undef SCHED_FEAT
  572. #define SCHED_FEAT(name, enabled) \
  573. (1UL << __SCHED_FEAT_##name) * enabled |
  574. const_debug unsigned int sysctl_sched_features =
  575. #include "sched_features.h"
  576. 0;
  577. #undef SCHED_FEAT
  578. #ifdef CONFIG_SCHED_DEBUG
  579. #define SCHED_FEAT(name, enabled) \
  580. #name ,
  581. static __read_mostly char *sched_feat_names[] = {
  582. #include "sched_features.h"
  583. NULL
  584. };
  585. #undef SCHED_FEAT
  586. static int sched_feat_show(struct seq_file *m, void *v)
  587. {
  588. int i;
  589. for (i = 0; sched_feat_names[i]; i++) {
  590. if (!(sysctl_sched_features & (1UL << i)))
  591. seq_puts(m, "NO_");
  592. seq_printf(m, "%s ", sched_feat_names[i]);
  593. }
  594. seq_puts(m, "\n");
  595. return 0;
  596. }
  597. static ssize_t
  598. sched_feat_write(struct file *filp, const char __user *ubuf,
  599. size_t cnt, loff_t *ppos)
  600. {
  601. char buf[64];
  602. char *cmp = buf;
  603. int neg = 0;
  604. int i;
  605. if (cnt > 63)
  606. cnt = 63;
  607. if (copy_from_user(&buf, ubuf, cnt))
  608. return -EFAULT;
  609. buf[cnt] = 0;
  610. if (strncmp(buf, "NO_", 3) == 0) {
  611. neg = 1;
  612. cmp += 3;
  613. }
  614. for (i = 0; sched_feat_names[i]; i++) {
  615. int len = strlen(sched_feat_names[i]);
  616. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  617. if (neg)
  618. sysctl_sched_features &= ~(1UL << i);
  619. else
  620. sysctl_sched_features |= (1UL << i);
  621. break;
  622. }
  623. }
  624. if (!sched_feat_names[i])
  625. return -EINVAL;
  626. *ppos += cnt;
  627. return cnt;
  628. }
  629. static int sched_feat_open(struct inode *inode, struct file *filp)
  630. {
  631. return single_open(filp, sched_feat_show, NULL);
  632. }
  633. static const struct file_operations sched_feat_fops = {
  634. .open = sched_feat_open,
  635. .write = sched_feat_write,
  636. .read = seq_read,
  637. .llseek = seq_lseek,
  638. .release = single_release,
  639. };
  640. static __init int sched_init_debug(void)
  641. {
  642. debugfs_create_file("sched_features", 0644, NULL, NULL,
  643. &sched_feat_fops);
  644. return 0;
  645. }
  646. late_initcall(sched_init_debug);
  647. #endif
  648. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  649. /*
  650. * Number of tasks to iterate in a single balance run.
  651. * Limited because this is done with IRQs disabled.
  652. */
  653. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  654. /*
  655. * ratelimit for updating the group shares.
  656. * default: 0.25ms
  657. */
  658. unsigned int sysctl_sched_shares_ratelimit = 250000;
  659. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  660. /*
  661. * Inject some fuzzyness into changing the per-cpu group shares
  662. * this avoids remote rq-locks at the expense of fairness.
  663. * default: 4
  664. */
  665. unsigned int sysctl_sched_shares_thresh = 4;
  666. /*
  667. * period over which we average the RT time consumption, measured
  668. * in ms.
  669. *
  670. * default: 1s
  671. */
  672. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  673. /*
  674. * period over which we measure -rt task cpu usage in us.
  675. * default: 1s
  676. */
  677. unsigned int sysctl_sched_rt_period = 1000000;
  678. static __read_mostly int scheduler_running;
  679. /*
  680. * part of the period that we allow rt tasks to run in us.
  681. * default: 0.95s
  682. */
  683. int sysctl_sched_rt_runtime = 950000;
  684. static inline u64 global_rt_period(void)
  685. {
  686. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  687. }
  688. static inline u64 global_rt_runtime(void)
  689. {
  690. if (sysctl_sched_rt_runtime < 0)
  691. return RUNTIME_INF;
  692. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  693. }
  694. #ifndef prepare_arch_switch
  695. # define prepare_arch_switch(next) do { } while (0)
  696. #endif
  697. #ifndef finish_arch_switch
  698. # define finish_arch_switch(prev) do { } while (0)
  699. #endif
  700. static inline int task_current(struct rq *rq, struct task_struct *p)
  701. {
  702. return rq->curr == p;
  703. }
  704. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  705. static inline int task_running(struct rq *rq, struct task_struct *p)
  706. {
  707. return task_current(rq, p);
  708. }
  709. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  710. {
  711. }
  712. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  713. {
  714. #ifdef CONFIG_DEBUG_SPINLOCK
  715. /* this is a valid case when another task releases the spinlock */
  716. rq->lock.owner = current;
  717. #endif
  718. /*
  719. * If we are tracking spinlock dependencies then we have to
  720. * fix up the runqueue lock - which gets 'carried over' from
  721. * prev into current:
  722. */
  723. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  724. raw_spin_unlock_irq(&rq->lock);
  725. }
  726. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  727. static inline int task_running(struct rq *rq, struct task_struct *p)
  728. {
  729. #ifdef CONFIG_SMP
  730. return p->oncpu;
  731. #else
  732. return task_current(rq, p);
  733. #endif
  734. }
  735. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  736. {
  737. #ifdef CONFIG_SMP
  738. /*
  739. * We can optimise this out completely for !SMP, because the
  740. * SMP rebalancing from interrupt is the only thing that cares
  741. * here.
  742. */
  743. next->oncpu = 1;
  744. #endif
  745. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  746. raw_spin_unlock_irq(&rq->lock);
  747. #else
  748. raw_spin_unlock(&rq->lock);
  749. #endif
  750. }
  751. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * After ->oncpu is cleared, the task can be moved to a different CPU.
  756. * We must ensure this doesn't happen until the switch is completely
  757. * finished.
  758. */
  759. smp_wmb();
  760. prev->oncpu = 0;
  761. #endif
  762. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  763. local_irq_enable();
  764. #endif
  765. }
  766. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  767. /*
  768. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  769. * against ttwu().
  770. */
  771. static inline int task_is_waking(struct task_struct *p)
  772. {
  773. return unlikely(p->state == TASK_WAKING);
  774. }
  775. /*
  776. * __task_rq_lock - lock the runqueue a given task resides on.
  777. * Must be called interrupts disabled.
  778. */
  779. static inline struct rq *__task_rq_lock(struct task_struct *p)
  780. __acquires(rq->lock)
  781. {
  782. struct rq *rq;
  783. for (;;) {
  784. rq = task_rq(p);
  785. raw_spin_lock(&rq->lock);
  786. if (likely(rq == task_rq(p)))
  787. return rq;
  788. raw_spin_unlock(&rq->lock);
  789. }
  790. }
  791. /*
  792. * task_rq_lock - lock the runqueue a given task resides on and disable
  793. * interrupts. Note the ordering: we can safely lookup the task_rq without
  794. * explicitly disabling preemption.
  795. */
  796. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  797. __acquires(rq->lock)
  798. {
  799. struct rq *rq;
  800. for (;;) {
  801. local_irq_save(*flags);
  802. rq = task_rq(p);
  803. raw_spin_lock(&rq->lock);
  804. if (likely(rq == task_rq(p)))
  805. return rq;
  806. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  807. }
  808. }
  809. static void __task_rq_unlock(struct rq *rq)
  810. __releases(rq->lock)
  811. {
  812. raw_spin_unlock(&rq->lock);
  813. }
  814. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  815. __releases(rq->lock)
  816. {
  817. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  818. }
  819. /*
  820. * this_rq_lock - lock this runqueue and disable interrupts.
  821. */
  822. static struct rq *this_rq_lock(void)
  823. __acquires(rq->lock)
  824. {
  825. struct rq *rq;
  826. local_irq_disable();
  827. rq = this_rq();
  828. raw_spin_lock(&rq->lock);
  829. return rq;
  830. }
  831. #ifdef CONFIG_SCHED_HRTICK
  832. /*
  833. * Use HR-timers to deliver accurate preemption points.
  834. *
  835. * Its all a bit involved since we cannot program an hrt while holding the
  836. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  837. * reschedule event.
  838. *
  839. * When we get rescheduled we reprogram the hrtick_timer outside of the
  840. * rq->lock.
  841. */
  842. /*
  843. * Use hrtick when:
  844. * - enabled by features
  845. * - hrtimer is actually high res
  846. */
  847. static inline int hrtick_enabled(struct rq *rq)
  848. {
  849. if (!sched_feat(HRTICK))
  850. return 0;
  851. if (!cpu_active(cpu_of(rq)))
  852. return 0;
  853. return hrtimer_is_hres_active(&rq->hrtick_timer);
  854. }
  855. static void hrtick_clear(struct rq *rq)
  856. {
  857. if (hrtimer_active(&rq->hrtick_timer))
  858. hrtimer_cancel(&rq->hrtick_timer);
  859. }
  860. /*
  861. * High-resolution timer tick.
  862. * Runs from hardirq context with interrupts disabled.
  863. */
  864. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  865. {
  866. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  867. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  868. raw_spin_lock(&rq->lock);
  869. update_rq_clock(rq);
  870. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  871. raw_spin_unlock(&rq->lock);
  872. return HRTIMER_NORESTART;
  873. }
  874. #ifdef CONFIG_SMP
  875. /*
  876. * called from hardirq (IPI) context
  877. */
  878. static void __hrtick_start(void *arg)
  879. {
  880. struct rq *rq = arg;
  881. raw_spin_lock(&rq->lock);
  882. hrtimer_restart(&rq->hrtick_timer);
  883. rq->hrtick_csd_pending = 0;
  884. raw_spin_unlock(&rq->lock);
  885. }
  886. /*
  887. * Called to set the hrtick timer state.
  888. *
  889. * called with rq->lock held and irqs disabled
  890. */
  891. static void hrtick_start(struct rq *rq, u64 delay)
  892. {
  893. struct hrtimer *timer = &rq->hrtick_timer;
  894. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  895. hrtimer_set_expires(timer, time);
  896. if (rq == this_rq()) {
  897. hrtimer_restart(timer);
  898. } else if (!rq->hrtick_csd_pending) {
  899. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  900. rq->hrtick_csd_pending = 1;
  901. }
  902. }
  903. static int
  904. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  905. {
  906. int cpu = (int)(long)hcpu;
  907. switch (action) {
  908. case CPU_UP_CANCELED:
  909. case CPU_UP_CANCELED_FROZEN:
  910. case CPU_DOWN_PREPARE:
  911. case CPU_DOWN_PREPARE_FROZEN:
  912. case CPU_DEAD:
  913. case CPU_DEAD_FROZEN:
  914. hrtick_clear(cpu_rq(cpu));
  915. return NOTIFY_OK;
  916. }
  917. return NOTIFY_DONE;
  918. }
  919. static __init void init_hrtick(void)
  920. {
  921. hotcpu_notifier(hotplug_hrtick, 0);
  922. }
  923. #else
  924. /*
  925. * Called to set the hrtick timer state.
  926. *
  927. * called with rq->lock held and irqs disabled
  928. */
  929. static void hrtick_start(struct rq *rq, u64 delay)
  930. {
  931. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  932. HRTIMER_MODE_REL_PINNED, 0);
  933. }
  934. static inline void init_hrtick(void)
  935. {
  936. }
  937. #endif /* CONFIG_SMP */
  938. static void init_rq_hrtick(struct rq *rq)
  939. {
  940. #ifdef CONFIG_SMP
  941. rq->hrtick_csd_pending = 0;
  942. rq->hrtick_csd.flags = 0;
  943. rq->hrtick_csd.func = __hrtick_start;
  944. rq->hrtick_csd.info = rq;
  945. #endif
  946. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  947. rq->hrtick_timer.function = hrtick;
  948. }
  949. #else /* CONFIG_SCHED_HRTICK */
  950. static inline void hrtick_clear(struct rq *rq)
  951. {
  952. }
  953. static inline void init_rq_hrtick(struct rq *rq)
  954. {
  955. }
  956. static inline void init_hrtick(void)
  957. {
  958. }
  959. #endif /* CONFIG_SCHED_HRTICK */
  960. /*
  961. * resched_task - mark a task 'to be rescheduled now'.
  962. *
  963. * On UP this means the setting of the need_resched flag, on SMP it
  964. * might also involve a cross-CPU call to trigger the scheduler on
  965. * the target CPU.
  966. */
  967. #ifdef CONFIG_SMP
  968. #ifndef tsk_is_polling
  969. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  970. #endif
  971. static void resched_task(struct task_struct *p)
  972. {
  973. int cpu;
  974. assert_raw_spin_locked(&task_rq(p)->lock);
  975. if (test_tsk_need_resched(p))
  976. return;
  977. set_tsk_need_resched(p);
  978. cpu = task_cpu(p);
  979. if (cpu == smp_processor_id())
  980. return;
  981. /* NEED_RESCHED must be visible before we test polling */
  982. smp_mb();
  983. if (!tsk_is_polling(p))
  984. smp_send_reschedule(cpu);
  985. }
  986. static void resched_cpu(int cpu)
  987. {
  988. struct rq *rq = cpu_rq(cpu);
  989. unsigned long flags;
  990. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  991. return;
  992. resched_task(cpu_curr(cpu));
  993. raw_spin_unlock_irqrestore(&rq->lock, flags);
  994. }
  995. #ifdef CONFIG_NO_HZ
  996. /*
  997. * When add_timer_on() enqueues a timer into the timer wheel of an
  998. * idle CPU then this timer might expire before the next timer event
  999. * which is scheduled to wake up that CPU. In case of a completely
  1000. * idle system the next event might even be infinite time into the
  1001. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1002. * leaves the inner idle loop so the newly added timer is taken into
  1003. * account when the CPU goes back to idle and evaluates the timer
  1004. * wheel for the next timer event.
  1005. */
  1006. void wake_up_idle_cpu(int cpu)
  1007. {
  1008. struct rq *rq = cpu_rq(cpu);
  1009. if (cpu == smp_processor_id())
  1010. return;
  1011. /*
  1012. * This is safe, as this function is called with the timer
  1013. * wheel base lock of (cpu) held. When the CPU is on the way
  1014. * to idle and has not yet set rq->curr to idle then it will
  1015. * be serialized on the timer wheel base lock and take the new
  1016. * timer into account automatically.
  1017. */
  1018. if (rq->curr != rq->idle)
  1019. return;
  1020. /*
  1021. * We can set TIF_RESCHED on the idle task of the other CPU
  1022. * lockless. The worst case is that the other CPU runs the
  1023. * idle task through an additional NOOP schedule()
  1024. */
  1025. set_tsk_need_resched(rq->idle);
  1026. /* NEED_RESCHED must be visible before we test polling */
  1027. smp_mb();
  1028. if (!tsk_is_polling(rq->idle))
  1029. smp_send_reschedule(cpu);
  1030. }
  1031. int nohz_ratelimit(int cpu)
  1032. {
  1033. struct rq *rq = cpu_rq(cpu);
  1034. u64 diff = rq->clock - rq->nohz_stamp;
  1035. rq->nohz_stamp = rq->clock;
  1036. return diff < (NSEC_PER_SEC / HZ) >> 1;
  1037. }
  1038. #endif /* CONFIG_NO_HZ */
  1039. static u64 sched_avg_period(void)
  1040. {
  1041. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1042. }
  1043. static void sched_avg_update(struct rq *rq)
  1044. {
  1045. s64 period = sched_avg_period();
  1046. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1047. rq->age_stamp += period;
  1048. rq->rt_avg /= 2;
  1049. }
  1050. }
  1051. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1052. {
  1053. rq->rt_avg += rt_delta;
  1054. sched_avg_update(rq);
  1055. }
  1056. #else /* !CONFIG_SMP */
  1057. static void resched_task(struct task_struct *p)
  1058. {
  1059. assert_raw_spin_locked(&task_rq(p)->lock);
  1060. set_tsk_need_resched(p);
  1061. }
  1062. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1063. {
  1064. }
  1065. #endif /* CONFIG_SMP */
  1066. #if BITS_PER_LONG == 32
  1067. # define WMULT_CONST (~0UL)
  1068. #else
  1069. # define WMULT_CONST (1UL << 32)
  1070. #endif
  1071. #define WMULT_SHIFT 32
  1072. /*
  1073. * Shift right and round:
  1074. */
  1075. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1076. /*
  1077. * delta *= weight / lw
  1078. */
  1079. static unsigned long
  1080. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1081. struct load_weight *lw)
  1082. {
  1083. u64 tmp;
  1084. if (!lw->inv_weight) {
  1085. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1086. lw->inv_weight = 1;
  1087. else
  1088. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1089. / (lw->weight+1);
  1090. }
  1091. tmp = (u64)delta_exec * weight;
  1092. /*
  1093. * Check whether we'd overflow the 64-bit multiplication:
  1094. */
  1095. if (unlikely(tmp > WMULT_CONST))
  1096. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1097. WMULT_SHIFT/2);
  1098. else
  1099. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1100. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1101. }
  1102. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1103. {
  1104. lw->weight += inc;
  1105. lw->inv_weight = 0;
  1106. }
  1107. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1108. {
  1109. lw->weight -= dec;
  1110. lw->inv_weight = 0;
  1111. }
  1112. /*
  1113. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1114. * of tasks with abnormal "nice" values across CPUs the contribution that
  1115. * each task makes to its run queue's load is weighted according to its
  1116. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1117. * scaled version of the new time slice allocation that they receive on time
  1118. * slice expiry etc.
  1119. */
  1120. #define WEIGHT_IDLEPRIO 3
  1121. #define WMULT_IDLEPRIO 1431655765
  1122. /*
  1123. * Nice levels are multiplicative, with a gentle 10% change for every
  1124. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1125. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1126. * that remained on nice 0.
  1127. *
  1128. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1129. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1130. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1131. * If a task goes up by ~10% and another task goes down by ~10% then
  1132. * the relative distance between them is ~25%.)
  1133. */
  1134. static const int prio_to_weight[40] = {
  1135. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1136. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1137. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1138. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1139. /* 0 */ 1024, 820, 655, 526, 423,
  1140. /* 5 */ 335, 272, 215, 172, 137,
  1141. /* 10 */ 110, 87, 70, 56, 45,
  1142. /* 15 */ 36, 29, 23, 18, 15,
  1143. };
  1144. /*
  1145. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1146. *
  1147. * In cases where the weight does not change often, we can use the
  1148. * precalculated inverse to speed up arithmetics by turning divisions
  1149. * into multiplications:
  1150. */
  1151. static const u32 prio_to_wmult[40] = {
  1152. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1153. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1154. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1155. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1156. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1157. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1158. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1159. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1160. };
  1161. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1162. enum cpuacct_stat_index {
  1163. CPUACCT_STAT_USER, /* ... user mode */
  1164. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1165. CPUACCT_STAT_NSTATS,
  1166. };
  1167. #ifdef CONFIG_CGROUP_CPUACCT
  1168. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1169. static void cpuacct_update_stats(struct task_struct *tsk,
  1170. enum cpuacct_stat_index idx, cputime_t val);
  1171. #else
  1172. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1173. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1174. enum cpuacct_stat_index idx, cputime_t val) {}
  1175. #endif
  1176. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1177. {
  1178. update_load_add(&rq->load, load);
  1179. }
  1180. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1181. {
  1182. update_load_sub(&rq->load, load);
  1183. }
  1184. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1185. typedef int (*tg_visitor)(struct task_group *, void *);
  1186. /*
  1187. * Iterate the full tree, calling @down when first entering a node and @up when
  1188. * leaving it for the final time.
  1189. */
  1190. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1191. {
  1192. struct task_group *parent, *child;
  1193. int ret;
  1194. rcu_read_lock();
  1195. parent = &root_task_group;
  1196. down:
  1197. ret = (*down)(parent, data);
  1198. if (ret)
  1199. goto out_unlock;
  1200. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1201. parent = child;
  1202. goto down;
  1203. up:
  1204. continue;
  1205. }
  1206. ret = (*up)(parent, data);
  1207. if (ret)
  1208. goto out_unlock;
  1209. child = parent;
  1210. parent = parent->parent;
  1211. if (parent)
  1212. goto up;
  1213. out_unlock:
  1214. rcu_read_unlock();
  1215. return ret;
  1216. }
  1217. static int tg_nop(struct task_group *tg, void *data)
  1218. {
  1219. return 0;
  1220. }
  1221. #endif
  1222. #ifdef CONFIG_SMP
  1223. /* Used instead of source_load when we know the type == 0 */
  1224. static unsigned long weighted_cpuload(const int cpu)
  1225. {
  1226. return cpu_rq(cpu)->load.weight;
  1227. }
  1228. /*
  1229. * Return a low guess at the load of a migration-source cpu weighted
  1230. * according to the scheduling class and "nice" value.
  1231. *
  1232. * We want to under-estimate the load of migration sources, to
  1233. * balance conservatively.
  1234. */
  1235. static unsigned long source_load(int cpu, int type)
  1236. {
  1237. struct rq *rq = cpu_rq(cpu);
  1238. unsigned long total = weighted_cpuload(cpu);
  1239. if (type == 0 || !sched_feat(LB_BIAS))
  1240. return total;
  1241. return min(rq->cpu_load[type-1], total);
  1242. }
  1243. /*
  1244. * Return a high guess at the load of a migration-target cpu weighted
  1245. * according to the scheduling class and "nice" value.
  1246. */
  1247. static unsigned long target_load(int cpu, int type)
  1248. {
  1249. struct rq *rq = cpu_rq(cpu);
  1250. unsigned long total = weighted_cpuload(cpu);
  1251. if (type == 0 || !sched_feat(LB_BIAS))
  1252. return total;
  1253. return max(rq->cpu_load[type-1], total);
  1254. }
  1255. static struct sched_group *group_of(int cpu)
  1256. {
  1257. struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
  1258. if (!sd)
  1259. return NULL;
  1260. return sd->groups;
  1261. }
  1262. static unsigned long power_of(int cpu)
  1263. {
  1264. struct sched_group *group = group_of(cpu);
  1265. if (!group)
  1266. return SCHED_LOAD_SCALE;
  1267. return group->cpu_power;
  1268. }
  1269. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1270. static unsigned long cpu_avg_load_per_task(int cpu)
  1271. {
  1272. struct rq *rq = cpu_rq(cpu);
  1273. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1274. if (nr_running)
  1275. rq->avg_load_per_task = rq->load.weight / nr_running;
  1276. else
  1277. rq->avg_load_per_task = 0;
  1278. return rq->avg_load_per_task;
  1279. }
  1280. #ifdef CONFIG_FAIR_GROUP_SCHED
  1281. static __read_mostly unsigned long __percpu *update_shares_data;
  1282. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1283. /*
  1284. * Calculate and set the cpu's group shares.
  1285. */
  1286. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1287. unsigned long sd_shares,
  1288. unsigned long sd_rq_weight,
  1289. unsigned long *usd_rq_weight)
  1290. {
  1291. unsigned long shares, rq_weight;
  1292. int boost = 0;
  1293. rq_weight = usd_rq_weight[cpu];
  1294. if (!rq_weight) {
  1295. boost = 1;
  1296. rq_weight = NICE_0_LOAD;
  1297. }
  1298. /*
  1299. * \Sum_j shares_j * rq_weight_i
  1300. * shares_i = -----------------------------
  1301. * \Sum_j rq_weight_j
  1302. */
  1303. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1304. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1305. if (abs(shares - tg->se[cpu]->load.weight) >
  1306. sysctl_sched_shares_thresh) {
  1307. struct rq *rq = cpu_rq(cpu);
  1308. unsigned long flags;
  1309. raw_spin_lock_irqsave(&rq->lock, flags);
  1310. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1311. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1312. __set_se_shares(tg->se[cpu], shares);
  1313. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1314. }
  1315. }
  1316. /*
  1317. * Re-compute the task group their per cpu shares over the given domain.
  1318. * This needs to be done in a bottom-up fashion because the rq weight of a
  1319. * parent group depends on the shares of its child groups.
  1320. */
  1321. static int tg_shares_up(struct task_group *tg, void *data)
  1322. {
  1323. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1324. unsigned long *usd_rq_weight;
  1325. struct sched_domain *sd = data;
  1326. unsigned long flags;
  1327. int i;
  1328. if (!tg->se[0])
  1329. return 0;
  1330. local_irq_save(flags);
  1331. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1332. for_each_cpu(i, sched_domain_span(sd)) {
  1333. weight = tg->cfs_rq[i]->load.weight;
  1334. usd_rq_weight[i] = weight;
  1335. rq_weight += weight;
  1336. /*
  1337. * If there are currently no tasks on the cpu pretend there
  1338. * is one of average load so that when a new task gets to
  1339. * run here it will not get delayed by group starvation.
  1340. */
  1341. if (!weight)
  1342. weight = NICE_0_LOAD;
  1343. sum_weight += weight;
  1344. shares += tg->cfs_rq[i]->shares;
  1345. }
  1346. if (!rq_weight)
  1347. rq_weight = sum_weight;
  1348. if ((!shares && rq_weight) || shares > tg->shares)
  1349. shares = tg->shares;
  1350. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1351. shares = tg->shares;
  1352. for_each_cpu(i, sched_domain_span(sd))
  1353. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1354. local_irq_restore(flags);
  1355. return 0;
  1356. }
  1357. /*
  1358. * Compute the cpu's hierarchical load factor for each task group.
  1359. * This needs to be done in a top-down fashion because the load of a child
  1360. * group is a fraction of its parents load.
  1361. */
  1362. static int tg_load_down(struct task_group *tg, void *data)
  1363. {
  1364. unsigned long load;
  1365. long cpu = (long)data;
  1366. if (!tg->parent) {
  1367. load = cpu_rq(cpu)->load.weight;
  1368. } else {
  1369. load = tg->parent->cfs_rq[cpu]->h_load;
  1370. load *= tg->cfs_rq[cpu]->shares;
  1371. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1372. }
  1373. tg->cfs_rq[cpu]->h_load = load;
  1374. return 0;
  1375. }
  1376. static void update_shares(struct sched_domain *sd)
  1377. {
  1378. s64 elapsed;
  1379. u64 now;
  1380. if (root_task_group_empty())
  1381. return;
  1382. now = cpu_clock(raw_smp_processor_id());
  1383. elapsed = now - sd->last_update;
  1384. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1385. sd->last_update = now;
  1386. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1387. }
  1388. }
  1389. static void update_h_load(long cpu)
  1390. {
  1391. if (root_task_group_empty())
  1392. return;
  1393. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1394. }
  1395. #else
  1396. static inline void update_shares(struct sched_domain *sd)
  1397. {
  1398. }
  1399. #endif
  1400. #ifdef CONFIG_PREEMPT
  1401. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1402. /*
  1403. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1404. * way at the expense of forcing extra atomic operations in all
  1405. * invocations. This assures that the double_lock is acquired using the
  1406. * same underlying policy as the spinlock_t on this architecture, which
  1407. * reduces latency compared to the unfair variant below. However, it
  1408. * also adds more overhead and therefore may reduce throughput.
  1409. */
  1410. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1411. __releases(this_rq->lock)
  1412. __acquires(busiest->lock)
  1413. __acquires(this_rq->lock)
  1414. {
  1415. raw_spin_unlock(&this_rq->lock);
  1416. double_rq_lock(this_rq, busiest);
  1417. return 1;
  1418. }
  1419. #else
  1420. /*
  1421. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1422. * latency by eliminating extra atomic operations when the locks are
  1423. * already in proper order on entry. This favors lower cpu-ids and will
  1424. * grant the double lock to lower cpus over higher ids under contention,
  1425. * regardless of entry order into the function.
  1426. */
  1427. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1428. __releases(this_rq->lock)
  1429. __acquires(busiest->lock)
  1430. __acquires(this_rq->lock)
  1431. {
  1432. int ret = 0;
  1433. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1434. if (busiest < this_rq) {
  1435. raw_spin_unlock(&this_rq->lock);
  1436. raw_spin_lock(&busiest->lock);
  1437. raw_spin_lock_nested(&this_rq->lock,
  1438. SINGLE_DEPTH_NESTING);
  1439. ret = 1;
  1440. } else
  1441. raw_spin_lock_nested(&busiest->lock,
  1442. SINGLE_DEPTH_NESTING);
  1443. }
  1444. return ret;
  1445. }
  1446. #endif /* CONFIG_PREEMPT */
  1447. /*
  1448. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1449. */
  1450. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1451. {
  1452. if (unlikely(!irqs_disabled())) {
  1453. /* printk() doesn't work good under rq->lock */
  1454. raw_spin_unlock(&this_rq->lock);
  1455. BUG_ON(1);
  1456. }
  1457. return _double_lock_balance(this_rq, busiest);
  1458. }
  1459. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1460. __releases(busiest->lock)
  1461. {
  1462. raw_spin_unlock(&busiest->lock);
  1463. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1464. }
  1465. /*
  1466. * double_rq_lock - safely lock two runqueues
  1467. *
  1468. * Note this does not disable interrupts like task_rq_lock,
  1469. * you need to do so manually before calling.
  1470. */
  1471. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1472. __acquires(rq1->lock)
  1473. __acquires(rq2->lock)
  1474. {
  1475. BUG_ON(!irqs_disabled());
  1476. if (rq1 == rq2) {
  1477. raw_spin_lock(&rq1->lock);
  1478. __acquire(rq2->lock); /* Fake it out ;) */
  1479. } else {
  1480. if (rq1 < rq2) {
  1481. raw_spin_lock(&rq1->lock);
  1482. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1483. } else {
  1484. raw_spin_lock(&rq2->lock);
  1485. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1486. }
  1487. }
  1488. }
  1489. /*
  1490. * double_rq_unlock - safely unlock two runqueues
  1491. *
  1492. * Note this does not restore interrupts like task_rq_unlock,
  1493. * you need to do so manually after calling.
  1494. */
  1495. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1496. __releases(rq1->lock)
  1497. __releases(rq2->lock)
  1498. {
  1499. raw_spin_unlock(&rq1->lock);
  1500. if (rq1 != rq2)
  1501. raw_spin_unlock(&rq2->lock);
  1502. else
  1503. __release(rq2->lock);
  1504. }
  1505. #endif
  1506. #ifdef CONFIG_FAIR_GROUP_SCHED
  1507. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1508. {
  1509. #ifdef CONFIG_SMP
  1510. cfs_rq->shares = shares;
  1511. #endif
  1512. }
  1513. #endif
  1514. static void calc_load_account_idle(struct rq *this_rq);
  1515. static void update_sysctl(void);
  1516. static int get_update_sysctl_factor(void);
  1517. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1518. {
  1519. set_task_rq(p, cpu);
  1520. #ifdef CONFIG_SMP
  1521. /*
  1522. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1523. * successfuly executed on another CPU. We must ensure that updates of
  1524. * per-task data have been completed by this moment.
  1525. */
  1526. smp_wmb();
  1527. task_thread_info(p)->cpu = cpu;
  1528. #endif
  1529. }
  1530. static const struct sched_class rt_sched_class;
  1531. #define sched_class_highest (&rt_sched_class)
  1532. #define for_each_class(class) \
  1533. for (class = sched_class_highest; class; class = class->next)
  1534. #include "sched_stats.h"
  1535. static void inc_nr_running(struct rq *rq)
  1536. {
  1537. rq->nr_running++;
  1538. }
  1539. static void dec_nr_running(struct rq *rq)
  1540. {
  1541. rq->nr_running--;
  1542. }
  1543. static void set_load_weight(struct task_struct *p)
  1544. {
  1545. if (task_has_rt_policy(p)) {
  1546. p->se.load.weight = prio_to_weight[0] * 2;
  1547. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1548. return;
  1549. }
  1550. /*
  1551. * SCHED_IDLE tasks get minimal weight:
  1552. */
  1553. if (p->policy == SCHED_IDLE) {
  1554. p->se.load.weight = WEIGHT_IDLEPRIO;
  1555. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1556. return;
  1557. }
  1558. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1559. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1560. }
  1561. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1562. {
  1563. update_rq_clock(rq);
  1564. sched_info_queued(p);
  1565. p->sched_class->enqueue_task(rq, p, flags);
  1566. p->se.on_rq = 1;
  1567. }
  1568. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1569. {
  1570. update_rq_clock(rq);
  1571. sched_info_dequeued(p);
  1572. p->sched_class->dequeue_task(rq, p, flags);
  1573. p->se.on_rq = 0;
  1574. }
  1575. /*
  1576. * activate_task - move a task to the runqueue.
  1577. */
  1578. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1579. {
  1580. if (task_contributes_to_load(p))
  1581. rq->nr_uninterruptible--;
  1582. enqueue_task(rq, p, flags);
  1583. inc_nr_running(rq);
  1584. }
  1585. /*
  1586. * deactivate_task - remove a task from the runqueue.
  1587. */
  1588. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1589. {
  1590. if (task_contributes_to_load(p))
  1591. rq->nr_uninterruptible++;
  1592. dequeue_task(rq, p, flags);
  1593. dec_nr_running(rq);
  1594. }
  1595. #include "sched_idletask.c"
  1596. #include "sched_fair.c"
  1597. #include "sched_rt.c"
  1598. #ifdef CONFIG_SCHED_DEBUG
  1599. # include "sched_debug.c"
  1600. #endif
  1601. /*
  1602. * __normal_prio - return the priority that is based on the static prio
  1603. */
  1604. static inline int __normal_prio(struct task_struct *p)
  1605. {
  1606. return p->static_prio;
  1607. }
  1608. /*
  1609. * Calculate the expected normal priority: i.e. priority
  1610. * without taking RT-inheritance into account. Might be
  1611. * boosted by interactivity modifiers. Changes upon fork,
  1612. * setprio syscalls, and whenever the interactivity
  1613. * estimator recalculates.
  1614. */
  1615. static inline int normal_prio(struct task_struct *p)
  1616. {
  1617. int prio;
  1618. if (task_has_rt_policy(p))
  1619. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1620. else
  1621. prio = __normal_prio(p);
  1622. return prio;
  1623. }
  1624. /*
  1625. * Calculate the current priority, i.e. the priority
  1626. * taken into account by the scheduler. This value might
  1627. * be boosted by RT tasks, or might be boosted by
  1628. * interactivity modifiers. Will be RT if the task got
  1629. * RT-boosted. If not then it returns p->normal_prio.
  1630. */
  1631. static int effective_prio(struct task_struct *p)
  1632. {
  1633. p->normal_prio = normal_prio(p);
  1634. /*
  1635. * If we are RT tasks or we were boosted to RT priority,
  1636. * keep the priority unchanged. Otherwise, update priority
  1637. * to the normal priority:
  1638. */
  1639. if (!rt_prio(p->prio))
  1640. return p->normal_prio;
  1641. return p->prio;
  1642. }
  1643. /**
  1644. * task_curr - is this task currently executing on a CPU?
  1645. * @p: the task in question.
  1646. */
  1647. inline int task_curr(const struct task_struct *p)
  1648. {
  1649. return cpu_curr(task_cpu(p)) == p;
  1650. }
  1651. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1652. const struct sched_class *prev_class,
  1653. int oldprio, int running)
  1654. {
  1655. if (prev_class != p->sched_class) {
  1656. if (prev_class->switched_from)
  1657. prev_class->switched_from(rq, p, running);
  1658. p->sched_class->switched_to(rq, p, running);
  1659. } else
  1660. p->sched_class->prio_changed(rq, p, oldprio, running);
  1661. }
  1662. #ifdef CONFIG_SMP
  1663. /*
  1664. * Is this task likely cache-hot:
  1665. */
  1666. static int
  1667. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1668. {
  1669. s64 delta;
  1670. if (p->sched_class != &fair_sched_class)
  1671. return 0;
  1672. /*
  1673. * Buddy candidates are cache hot:
  1674. */
  1675. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1676. (&p->se == cfs_rq_of(&p->se)->next ||
  1677. &p->se == cfs_rq_of(&p->se)->last))
  1678. return 1;
  1679. if (sysctl_sched_migration_cost == -1)
  1680. return 1;
  1681. if (sysctl_sched_migration_cost == 0)
  1682. return 0;
  1683. delta = now - p->se.exec_start;
  1684. return delta < (s64)sysctl_sched_migration_cost;
  1685. }
  1686. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1687. {
  1688. #ifdef CONFIG_SCHED_DEBUG
  1689. /*
  1690. * We should never call set_task_cpu() on a blocked task,
  1691. * ttwu() will sort out the placement.
  1692. */
  1693. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1694. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1695. #endif
  1696. trace_sched_migrate_task(p, new_cpu);
  1697. if (task_cpu(p) != new_cpu) {
  1698. p->se.nr_migrations++;
  1699. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1700. }
  1701. __set_task_cpu(p, new_cpu);
  1702. }
  1703. struct migration_arg {
  1704. struct task_struct *task;
  1705. int dest_cpu;
  1706. };
  1707. static int migration_cpu_stop(void *data);
  1708. /*
  1709. * The task's runqueue lock must be held.
  1710. * Returns true if you have to wait for migration thread.
  1711. */
  1712. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1713. {
  1714. struct rq *rq = task_rq(p);
  1715. /*
  1716. * If the task is not on a runqueue (and not running), then
  1717. * the next wake-up will properly place the task.
  1718. */
  1719. return p->se.on_rq || task_running(rq, p);
  1720. }
  1721. /*
  1722. * wait_task_inactive - wait for a thread to unschedule.
  1723. *
  1724. * If @match_state is nonzero, it's the @p->state value just checked and
  1725. * not expected to change. If it changes, i.e. @p might have woken up,
  1726. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1727. * we return a positive number (its total switch count). If a second call
  1728. * a short while later returns the same number, the caller can be sure that
  1729. * @p has remained unscheduled the whole time.
  1730. *
  1731. * The caller must ensure that the task *will* unschedule sometime soon,
  1732. * else this function might spin for a *long* time. This function can't
  1733. * be called with interrupts off, or it may introduce deadlock with
  1734. * smp_call_function() if an IPI is sent by the same process we are
  1735. * waiting to become inactive.
  1736. */
  1737. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1738. {
  1739. unsigned long flags;
  1740. int running, on_rq;
  1741. unsigned long ncsw;
  1742. struct rq *rq;
  1743. for (;;) {
  1744. /*
  1745. * We do the initial early heuristics without holding
  1746. * any task-queue locks at all. We'll only try to get
  1747. * the runqueue lock when things look like they will
  1748. * work out!
  1749. */
  1750. rq = task_rq(p);
  1751. /*
  1752. * If the task is actively running on another CPU
  1753. * still, just relax and busy-wait without holding
  1754. * any locks.
  1755. *
  1756. * NOTE! Since we don't hold any locks, it's not
  1757. * even sure that "rq" stays as the right runqueue!
  1758. * But we don't care, since "task_running()" will
  1759. * return false if the runqueue has changed and p
  1760. * is actually now running somewhere else!
  1761. */
  1762. while (task_running(rq, p)) {
  1763. if (match_state && unlikely(p->state != match_state))
  1764. return 0;
  1765. cpu_relax();
  1766. }
  1767. /*
  1768. * Ok, time to look more closely! We need the rq
  1769. * lock now, to be *sure*. If we're wrong, we'll
  1770. * just go back and repeat.
  1771. */
  1772. rq = task_rq_lock(p, &flags);
  1773. trace_sched_wait_task(p);
  1774. running = task_running(rq, p);
  1775. on_rq = p->se.on_rq;
  1776. ncsw = 0;
  1777. if (!match_state || p->state == match_state)
  1778. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1779. task_rq_unlock(rq, &flags);
  1780. /*
  1781. * If it changed from the expected state, bail out now.
  1782. */
  1783. if (unlikely(!ncsw))
  1784. break;
  1785. /*
  1786. * Was it really running after all now that we
  1787. * checked with the proper locks actually held?
  1788. *
  1789. * Oops. Go back and try again..
  1790. */
  1791. if (unlikely(running)) {
  1792. cpu_relax();
  1793. continue;
  1794. }
  1795. /*
  1796. * It's not enough that it's not actively running,
  1797. * it must be off the runqueue _entirely_, and not
  1798. * preempted!
  1799. *
  1800. * So if it was still runnable (but just not actively
  1801. * running right now), it's preempted, and we should
  1802. * yield - it could be a while.
  1803. */
  1804. if (unlikely(on_rq)) {
  1805. schedule_timeout_uninterruptible(1);
  1806. continue;
  1807. }
  1808. /*
  1809. * Ahh, all good. It wasn't running, and it wasn't
  1810. * runnable, which means that it will never become
  1811. * running in the future either. We're all done!
  1812. */
  1813. break;
  1814. }
  1815. return ncsw;
  1816. }
  1817. /***
  1818. * kick_process - kick a running thread to enter/exit the kernel
  1819. * @p: the to-be-kicked thread
  1820. *
  1821. * Cause a process which is running on another CPU to enter
  1822. * kernel-mode, without any delay. (to get signals handled.)
  1823. *
  1824. * NOTE: this function doesnt have to take the runqueue lock,
  1825. * because all it wants to ensure is that the remote task enters
  1826. * the kernel. If the IPI races and the task has been migrated
  1827. * to another CPU then no harm is done and the purpose has been
  1828. * achieved as well.
  1829. */
  1830. void kick_process(struct task_struct *p)
  1831. {
  1832. int cpu;
  1833. preempt_disable();
  1834. cpu = task_cpu(p);
  1835. if ((cpu != smp_processor_id()) && task_curr(p))
  1836. smp_send_reschedule(cpu);
  1837. preempt_enable();
  1838. }
  1839. EXPORT_SYMBOL_GPL(kick_process);
  1840. #endif /* CONFIG_SMP */
  1841. /**
  1842. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1843. * @p: the task to evaluate
  1844. * @func: the function to be called
  1845. * @info: the function call argument
  1846. *
  1847. * Calls the function @func when the task is currently running. This might
  1848. * be on the current CPU, which just calls the function directly
  1849. */
  1850. void task_oncpu_function_call(struct task_struct *p,
  1851. void (*func) (void *info), void *info)
  1852. {
  1853. int cpu;
  1854. preempt_disable();
  1855. cpu = task_cpu(p);
  1856. if (task_curr(p))
  1857. smp_call_function_single(cpu, func, info, 1);
  1858. preempt_enable();
  1859. }
  1860. #ifdef CONFIG_SMP
  1861. /*
  1862. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1863. */
  1864. static int select_fallback_rq(int cpu, struct task_struct *p)
  1865. {
  1866. int dest_cpu;
  1867. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1868. /* Look for allowed, online CPU in same node. */
  1869. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1870. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1871. return dest_cpu;
  1872. /* Any allowed, online CPU? */
  1873. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1874. if (dest_cpu < nr_cpu_ids)
  1875. return dest_cpu;
  1876. /* No more Mr. Nice Guy. */
  1877. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  1878. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1879. /*
  1880. * Don't tell them about moving exiting tasks or
  1881. * kernel threads (both mm NULL), since they never
  1882. * leave kernel.
  1883. */
  1884. if (p->mm && printk_ratelimit()) {
  1885. printk(KERN_INFO "process %d (%s) no "
  1886. "longer affine to cpu%d\n",
  1887. task_pid_nr(p), p->comm, cpu);
  1888. }
  1889. }
  1890. return dest_cpu;
  1891. }
  1892. /*
  1893. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1894. */
  1895. static inline
  1896. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1897. {
  1898. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1899. /*
  1900. * In order not to call set_task_cpu() on a blocking task we need
  1901. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1902. * cpu.
  1903. *
  1904. * Since this is common to all placement strategies, this lives here.
  1905. *
  1906. * [ this allows ->select_task() to simply return task_cpu(p) and
  1907. * not worry about this generic constraint ]
  1908. */
  1909. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1910. !cpu_online(cpu)))
  1911. cpu = select_fallback_rq(task_cpu(p), p);
  1912. return cpu;
  1913. }
  1914. static void update_avg(u64 *avg, u64 sample)
  1915. {
  1916. s64 diff = sample - *avg;
  1917. *avg += diff >> 3;
  1918. }
  1919. #endif
  1920. /***
  1921. * try_to_wake_up - wake up a thread
  1922. * @p: the to-be-woken-up thread
  1923. * @state: the mask of task states that can be woken
  1924. * @sync: do a synchronous wakeup?
  1925. *
  1926. * Put it on the run-queue if it's not already there. The "current"
  1927. * thread is always on the run-queue (except when the actual
  1928. * re-schedule is in progress), and as such you're allowed to do
  1929. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1930. * runnable without the overhead of this.
  1931. *
  1932. * returns failure only if the task is already active.
  1933. */
  1934. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1935. int wake_flags)
  1936. {
  1937. int cpu, orig_cpu, this_cpu, success = 0;
  1938. unsigned long flags;
  1939. unsigned long en_flags = ENQUEUE_WAKEUP;
  1940. struct rq *rq;
  1941. this_cpu = get_cpu();
  1942. smp_wmb();
  1943. rq = task_rq_lock(p, &flags);
  1944. if (!(p->state & state))
  1945. goto out;
  1946. if (p->se.on_rq)
  1947. goto out_running;
  1948. cpu = task_cpu(p);
  1949. orig_cpu = cpu;
  1950. #ifdef CONFIG_SMP
  1951. if (unlikely(task_running(rq, p)))
  1952. goto out_activate;
  1953. /*
  1954. * In order to handle concurrent wakeups and release the rq->lock
  1955. * we put the task in TASK_WAKING state.
  1956. *
  1957. * First fix up the nr_uninterruptible count:
  1958. */
  1959. if (task_contributes_to_load(p)) {
  1960. if (likely(cpu_online(orig_cpu)))
  1961. rq->nr_uninterruptible--;
  1962. else
  1963. this_rq()->nr_uninterruptible--;
  1964. }
  1965. p->state = TASK_WAKING;
  1966. if (p->sched_class->task_waking) {
  1967. p->sched_class->task_waking(rq, p);
  1968. en_flags |= ENQUEUE_WAKING;
  1969. }
  1970. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  1971. if (cpu != orig_cpu)
  1972. set_task_cpu(p, cpu);
  1973. __task_rq_unlock(rq);
  1974. rq = cpu_rq(cpu);
  1975. raw_spin_lock(&rq->lock);
  1976. /*
  1977. * We migrated the task without holding either rq->lock, however
  1978. * since the task is not on the task list itself, nobody else
  1979. * will try and migrate the task, hence the rq should match the
  1980. * cpu we just moved it to.
  1981. */
  1982. WARN_ON(task_cpu(p) != cpu);
  1983. WARN_ON(p->state != TASK_WAKING);
  1984. #ifdef CONFIG_SCHEDSTATS
  1985. schedstat_inc(rq, ttwu_count);
  1986. if (cpu == this_cpu)
  1987. schedstat_inc(rq, ttwu_local);
  1988. else {
  1989. struct sched_domain *sd;
  1990. for_each_domain(this_cpu, sd) {
  1991. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1992. schedstat_inc(sd, ttwu_wake_remote);
  1993. break;
  1994. }
  1995. }
  1996. }
  1997. #endif /* CONFIG_SCHEDSTATS */
  1998. out_activate:
  1999. #endif /* CONFIG_SMP */
  2000. schedstat_inc(p, se.statistics.nr_wakeups);
  2001. if (wake_flags & WF_SYNC)
  2002. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2003. if (orig_cpu != cpu)
  2004. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2005. if (cpu == this_cpu)
  2006. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2007. else
  2008. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2009. activate_task(rq, p, en_flags);
  2010. success = 1;
  2011. out_running:
  2012. trace_sched_wakeup(p, success);
  2013. check_preempt_curr(rq, p, wake_flags);
  2014. p->state = TASK_RUNNING;
  2015. #ifdef CONFIG_SMP
  2016. if (p->sched_class->task_woken)
  2017. p->sched_class->task_woken(rq, p);
  2018. if (unlikely(rq->idle_stamp)) {
  2019. u64 delta = rq->clock - rq->idle_stamp;
  2020. u64 max = 2*sysctl_sched_migration_cost;
  2021. if (delta > max)
  2022. rq->avg_idle = max;
  2023. else
  2024. update_avg(&rq->avg_idle, delta);
  2025. rq->idle_stamp = 0;
  2026. }
  2027. #endif
  2028. out:
  2029. task_rq_unlock(rq, &flags);
  2030. put_cpu();
  2031. return success;
  2032. }
  2033. /**
  2034. * wake_up_process - Wake up a specific process
  2035. * @p: The process to be woken up.
  2036. *
  2037. * Attempt to wake up the nominated process and move it to the set of runnable
  2038. * processes. Returns 1 if the process was woken up, 0 if it was already
  2039. * running.
  2040. *
  2041. * It may be assumed that this function implies a write memory barrier before
  2042. * changing the task state if and only if any tasks are woken up.
  2043. */
  2044. int wake_up_process(struct task_struct *p)
  2045. {
  2046. return try_to_wake_up(p, TASK_ALL, 0);
  2047. }
  2048. EXPORT_SYMBOL(wake_up_process);
  2049. int wake_up_state(struct task_struct *p, unsigned int state)
  2050. {
  2051. return try_to_wake_up(p, state, 0);
  2052. }
  2053. /*
  2054. * Perform scheduler related setup for a newly forked process p.
  2055. * p is forked by current.
  2056. *
  2057. * __sched_fork() is basic setup used by init_idle() too:
  2058. */
  2059. static void __sched_fork(struct task_struct *p)
  2060. {
  2061. p->se.exec_start = 0;
  2062. p->se.sum_exec_runtime = 0;
  2063. p->se.prev_sum_exec_runtime = 0;
  2064. p->se.nr_migrations = 0;
  2065. #ifdef CONFIG_SCHEDSTATS
  2066. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2067. #endif
  2068. INIT_LIST_HEAD(&p->rt.run_list);
  2069. p->se.on_rq = 0;
  2070. INIT_LIST_HEAD(&p->se.group_node);
  2071. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2072. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2073. #endif
  2074. }
  2075. /*
  2076. * fork()/clone()-time setup:
  2077. */
  2078. void sched_fork(struct task_struct *p, int clone_flags)
  2079. {
  2080. int cpu = get_cpu();
  2081. __sched_fork(p);
  2082. /*
  2083. * We mark the process as running here. This guarantees that
  2084. * nobody will actually run it, and a signal or other external
  2085. * event cannot wake it up and insert it on the runqueue either.
  2086. */
  2087. p->state = TASK_RUNNING;
  2088. /*
  2089. * Revert to default priority/policy on fork if requested.
  2090. */
  2091. if (unlikely(p->sched_reset_on_fork)) {
  2092. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2093. p->policy = SCHED_NORMAL;
  2094. p->normal_prio = p->static_prio;
  2095. }
  2096. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2097. p->static_prio = NICE_TO_PRIO(0);
  2098. p->normal_prio = p->static_prio;
  2099. set_load_weight(p);
  2100. }
  2101. /*
  2102. * We don't need the reset flag anymore after the fork. It has
  2103. * fulfilled its duty:
  2104. */
  2105. p->sched_reset_on_fork = 0;
  2106. }
  2107. /*
  2108. * Make sure we do not leak PI boosting priority to the child.
  2109. */
  2110. p->prio = current->normal_prio;
  2111. if (!rt_prio(p->prio))
  2112. p->sched_class = &fair_sched_class;
  2113. if (p->sched_class->task_fork)
  2114. p->sched_class->task_fork(p);
  2115. set_task_cpu(p, cpu);
  2116. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2117. if (likely(sched_info_on()))
  2118. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2119. #endif
  2120. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2121. p->oncpu = 0;
  2122. #endif
  2123. #ifdef CONFIG_PREEMPT
  2124. /* Want to start with kernel preemption disabled. */
  2125. task_thread_info(p)->preempt_count = 1;
  2126. #endif
  2127. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2128. put_cpu();
  2129. }
  2130. /*
  2131. * wake_up_new_task - wake up a newly created task for the first time.
  2132. *
  2133. * This function will do some initial scheduler statistics housekeeping
  2134. * that must be done for every newly created context, then puts the task
  2135. * on the runqueue and wakes it.
  2136. */
  2137. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2138. {
  2139. unsigned long flags;
  2140. struct rq *rq;
  2141. int cpu __maybe_unused = get_cpu();
  2142. #ifdef CONFIG_SMP
  2143. rq = task_rq_lock(p, &flags);
  2144. p->state = TASK_WAKING;
  2145. /*
  2146. * Fork balancing, do it here and not earlier because:
  2147. * - cpus_allowed can change in the fork path
  2148. * - any previously selected cpu might disappear through hotplug
  2149. *
  2150. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2151. * without people poking at ->cpus_allowed.
  2152. */
  2153. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2154. set_task_cpu(p, cpu);
  2155. p->state = TASK_RUNNING;
  2156. task_rq_unlock(rq, &flags);
  2157. #endif
  2158. rq = task_rq_lock(p, &flags);
  2159. activate_task(rq, p, 0);
  2160. trace_sched_wakeup_new(p, 1);
  2161. check_preempt_curr(rq, p, WF_FORK);
  2162. #ifdef CONFIG_SMP
  2163. if (p->sched_class->task_woken)
  2164. p->sched_class->task_woken(rq, p);
  2165. #endif
  2166. task_rq_unlock(rq, &flags);
  2167. put_cpu();
  2168. }
  2169. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2170. /**
  2171. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2172. * @notifier: notifier struct to register
  2173. */
  2174. void preempt_notifier_register(struct preempt_notifier *notifier)
  2175. {
  2176. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2177. }
  2178. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2179. /**
  2180. * preempt_notifier_unregister - no longer interested in preemption notifications
  2181. * @notifier: notifier struct to unregister
  2182. *
  2183. * This is safe to call from within a preemption notifier.
  2184. */
  2185. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2186. {
  2187. hlist_del(&notifier->link);
  2188. }
  2189. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2190. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2191. {
  2192. struct preempt_notifier *notifier;
  2193. struct hlist_node *node;
  2194. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2195. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2196. }
  2197. static void
  2198. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2199. struct task_struct *next)
  2200. {
  2201. struct preempt_notifier *notifier;
  2202. struct hlist_node *node;
  2203. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2204. notifier->ops->sched_out(notifier, next);
  2205. }
  2206. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2207. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2208. {
  2209. }
  2210. static void
  2211. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2212. struct task_struct *next)
  2213. {
  2214. }
  2215. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2216. /**
  2217. * prepare_task_switch - prepare to switch tasks
  2218. * @rq: the runqueue preparing to switch
  2219. * @prev: the current task that is being switched out
  2220. * @next: the task we are going to switch to.
  2221. *
  2222. * This is called with the rq lock held and interrupts off. It must
  2223. * be paired with a subsequent finish_task_switch after the context
  2224. * switch.
  2225. *
  2226. * prepare_task_switch sets up locking and calls architecture specific
  2227. * hooks.
  2228. */
  2229. static inline void
  2230. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2231. struct task_struct *next)
  2232. {
  2233. fire_sched_out_preempt_notifiers(prev, next);
  2234. prepare_lock_switch(rq, next);
  2235. prepare_arch_switch(next);
  2236. }
  2237. /**
  2238. * finish_task_switch - clean up after a task-switch
  2239. * @rq: runqueue associated with task-switch
  2240. * @prev: the thread we just switched away from.
  2241. *
  2242. * finish_task_switch must be called after the context switch, paired
  2243. * with a prepare_task_switch call before the context switch.
  2244. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2245. * and do any other architecture-specific cleanup actions.
  2246. *
  2247. * Note that we may have delayed dropping an mm in context_switch(). If
  2248. * so, we finish that here outside of the runqueue lock. (Doing it
  2249. * with the lock held can cause deadlocks; see schedule() for
  2250. * details.)
  2251. */
  2252. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2253. __releases(rq->lock)
  2254. {
  2255. struct mm_struct *mm = rq->prev_mm;
  2256. long prev_state;
  2257. rq->prev_mm = NULL;
  2258. /*
  2259. * A task struct has one reference for the use as "current".
  2260. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2261. * schedule one last time. The schedule call will never return, and
  2262. * the scheduled task must drop that reference.
  2263. * The test for TASK_DEAD must occur while the runqueue locks are
  2264. * still held, otherwise prev could be scheduled on another cpu, die
  2265. * there before we look at prev->state, and then the reference would
  2266. * be dropped twice.
  2267. * Manfred Spraul <manfred@colorfullife.com>
  2268. */
  2269. prev_state = prev->state;
  2270. finish_arch_switch(prev);
  2271. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2272. local_irq_disable();
  2273. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2274. perf_event_task_sched_in(current);
  2275. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2276. local_irq_enable();
  2277. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2278. finish_lock_switch(rq, prev);
  2279. fire_sched_in_preempt_notifiers(current);
  2280. if (mm)
  2281. mmdrop(mm);
  2282. if (unlikely(prev_state == TASK_DEAD)) {
  2283. /*
  2284. * Remove function-return probe instances associated with this
  2285. * task and put them back on the free list.
  2286. */
  2287. kprobe_flush_task(prev);
  2288. put_task_struct(prev);
  2289. }
  2290. }
  2291. #ifdef CONFIG_SMP
  2292. /* assumes rq->lock is held */
  2293. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2294. {
  2295. if (prev->sched_class->pre_schedule)
  2296. prev->sched_class->pre_schedule(rq, prev);
  2297. }
  2298. /* rq->lock is NOT held, but preemption is disabled */
  2299. static inline void post_schedule(struct rq *rq)
  2300. {
  2301. if (rq->post_schedule) {
  2302. unsigned long flags;
  2303. raw_spin_lock_irqsave(&rq->lock, flags);
  2304. if (rq->curr->sched_class->post_schedule)
  2305. rq->curr->sched_class->post_schedule(rq);
  2306. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2307. rq->post_schedule = 0;
  2308. }
  2309. }
  2310. #else
  2311. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2312. {
  2313. }
  2314. static inline void post_schedule(struct rq *rq)
  2315. {
  2316. }
  2317. #endif
  2318. /**
  2319. * schedule_tail - first thing a freshly forked thread must call.
  2320. * @prev: the thread we just switched away from.
  2321. */
  2322. asmlinkage void schedule_tail(struct task_struct *prev)
  2323. __releases(rq->lock)
  2324. {
  2325. struct rq *rq = this_rq();
  2326. finish_task_switch(rq, prev);
  2327. /*
  2328. * FIXME: do we need to worry about rq being invalidated by the
  2329. * task_switch?
  2330. */
  2331. post_schedule(rq);
  2332. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2333. /* In this case, finish_task_switch does not reenable preemption */
  2334. preempt_enable();
  2335. #endif
  2336. if (current->set_child_tid)
  2337. put_user(task_pid_vnr(current), current->set_child_tid);
  2338. }
  2339. /*
  2340. * context_switch - switch to the new MM and the new
  2341. * thread's register state.
  2342. */
  2343. static inline void
  2344. context_switch(struct rq *rq, struct task_struct *prev,
  2345. struct task_struct *next)
  2346. {
  2347. struct mm_struct *mm, *oldmm;
  2348. prepare_task_switch(rq, prev, next);
  2349. trace_sched_switch(prev, next);
  2350. mm = next->mm;
  2351. oldmm = prev->active_mm;
  2352. /*
  2353. * For paravirt, this is coupled with an exit in switch_to to
  2354. * combine the page table reload and the switch backend into
  2355. * one hypercall.
  2356. */
  2357. arch_start_context_switch(prev);
  2358. if (likely(!mm)) {
  2359. next->active_mm = oldmm;
  2360. atomic_inc(&oldmm->mm_count);
  2361. enter_lazy_tlb(oldmm, next);
  2362. } else
  2363. switch_mm(oldmm, mm, next);
  2364. if (likely(!prev->mm)) {
  2365. prev->active_mm = NULL;
  2366. rq->prev_mm = oldmm;
  2367. }
  2368. /*
  2369. * Since the runqueue lock will be released by the next
  2370. * task (which is an invalid locking op but in the case
  2371. * of the scheduler it's an obvious special-case), so we
  2372. * do an early lockdep release here:
  2373. */
  2374. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2375. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2376. #endif
  2377. /* Here we just switch the register state and the stack. */
  2378. switch_to(prev, next, prev);
  2379. barrier();
  2380. /*
  2381. * this_rq must be evaluated again because prev may have moved
  2382. * CPUs since it called schedule(), thus the 'rq' on its stack
  2383. * frame will be invalid.
  2384. */
  2385. finish_task_switch(this_rq(), prev);
  2386. }
  2387. /*
  2388. * nr_running, nr_uninterruptible and nr_context_switches:
  2389. *
  2390. * externally visible scheduler statistics: current number of runnable
  2391. * threads, current number of uninterruptible-sleeping threads, total
  2392. * number of context switches performed since bootup.
  2393. */
  2394. unsigned long nr_running(void)
  2395. {
  2396. unsigned long i, sum = 0;
  2397. for_each_online_cpu(i)
  2398. sum += cpu_rq(i)->nr_running;
  2399. return sum;
  2400. }
  2401. unsigned long nr_uninterruptible(void)
  2402. {
  2403. unsigned long i, sum = 0;
  2404. for_each_possible_cpu(i)
  2405. sum += cpu_rq(i)->nr_uninterruptible;
  2406. /*
  2407. * Since we read the counters lockless, it might be slightly
  2408. * inaccurate. Do not allow it to go below zero though:
  2409. */
  2410. if (unlikely((long)sum < 0))
  2411. sum = 0;
  2412. return sum;
  2413. }
  2414. unsigned long long nr_context_switches(void)
  2415. {
  2416. int i;
  2417. unsigned long long sum = 0;
  2418. for_each_possible_cpu(i)
  2419. sum += cpu_rq(i)->nr_switches;
  2420. return sum;
  2421. }
  2422. unsigned long nr_iowait(void)
  2423. {
  2424. unsigned long i, sum = 0;
  2425. for_each_possible_cpu(i)
  2426. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2427. return sum;
  2428. }
  2429. unsigned long nr_iowait_cpu(void)
  2430. {
  2431. struct rq *this = this_rq();
  2432. return atomic_read(&this->nr_iowait);
  2433. }
  2434. unsigned long this_cpu_load(void)
  2435. {
  2436. struct rq *this = this_rq();
  2437. return this->cpu_load[0];
  2438. }
  2439. /* Variables and functions for calc_load */
  2440. static atomic_long_t calc_load_tasks;
  2441. static unsigned long calc_load_update;
  2442. unsigned long avenrun[3];
  2443. EXPORT_SYMBOL(avenrun);
  2444. static long calc_load_fold_active(struct rq *this_rq)
  2445. {
  2446. long nr_active, delta = 0;
  2447. nr_active = this_rq->nr_running;
  2448. nr_active += (long) this_rq->nr_uninterruptible;
  2449. if (nr_active != this_rq->calc_load_active) {
  2450. delta = nr_active - this_rq->calc_load_active;
  2451. this_rq->calc_load_active = nr_active;
  2452. }
  2453. return delta;
  2454. }
  2455. #ifdef CONFIG_NO_HZ
  2456. /*
  2457. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2458. *
  2459. * When making the ILB scale, we should try to pull this in as well.
  2460. */
  2461. static atomic_long_t calc_load_tasks_idle;
  2462. static void calc_load_account_idle(struct rq *this_rq)
  2463. {
  2464. long delta;
  2465. delta = calc_load_fold_active(this_rq);
  2466. if (delta)
  2467. atomic_long_add(delta, &calc_load_tasks_idle);
  2468. }
  2469. static long calc_load_fold_idle(void)
  2470. {
  2471. long delta = 0;
  2472. /*
  2473. * Its got a race, we don't care...
  2474. */
  2475. if (atomic_long_read(&calc_load_tasks_idle))
  2476. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2477. return delta;
  2478. }
  2479. #else
  2480. static void calc_load_account_idle(struct rq *this_rq)
  2481. {
  2482. }
  2483. static inline long calc_load_fold_idle(void)
  2484. {
  2485. return 0;
  2486. }
  2487. #endif
  2488. /**
  2489. * get_avenrun - get the load average array
  2490. * @loads: pointer to dest load array
  2491. * @offset: offset to add
  2492. * @shift: shift count to shift the result left
  2493. *
  2494. * These values are estimates at best, so no need for locking.
  2495. */
  2496. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2497. {
  2498. loads[0] = (avenrun[0] + offset) << shift;
  2499. loads[1] = (avenrun[1] + offset) << shift;
  2500. loads[2] = (avenrun[2] + offset) << shift;
  2501. }
  2502. static unsigned long
  2503. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2504. {
  2505. load *= exp;
  2506. load += active * (FIXED_1 - exp);
  2507. return load >> FSHIFT;
  2508. }
  2509. /*
  2510. * calc_load - update the avenrun load estimates 10 ticks after the
  2511. * CPUs have updated calc_load_tasks.
  2512. */
  2513. void calc_global_load(void)
  2514. {
  2515. unsigned long upd = calc_load_update + 10;
  2516. long active;
  2517. if (time_before(jiffies, upd))
  2518. return;
  2519. active = atomic_long_read(&calc_load_tasks);
  2520. active = active > 0 ? active * FIXED_1 : 0;
  2521. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2522. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2523. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2524. calc_load_update += LOAD_FREQ;
  2525. }
  2526. /*
  2527. * Called from update_cpu_load() to periodically update this CPU's
  2528. * active count.
  2529. */
  2530. static void calc_load_account_active(struct rq *this_rq)
  2531. {
  2532. long delta;
  2533. if (time_before(jiffies, this_rq->calc_load_update))
  2534. return;
  2535. delta = calc_load_fold_active(this_rq);
  2536. delta += calc_load_fold_idle();
  2537. if (delta)
  2538. atomic_long_add(delta, &calc_load_tasks);
  2539. this_rq->calc_load_update += LOAD_FREQ;
  2540. }
  2541. /*
  2542. * Update rq->cpu_load[] statistics. This function is usually called every
  2543. * scheduler tick (TICK_NSEC).
  2544. */
  2545. static void update_cpu_load(struct rq *this_rq)
  2546. {
  2547. unsigned long this_load = this_rq->load.weight;
  2548. int i, scale;
  2549. this_rq->nr_load_updates++;
  2550. /* Update our load: */
  2551. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2552. unsigned long old_load, new_load;
  2553. /* scale is effectively 1 << i now, and >> i divides by scale */
  2554. old_load = this_rq->cpu_load[i];
  2555. new_load = this_load;
  2556. /*
  2557. * Round up the averaging division if load is increasing. This
  2558. * prevents us from getting stuck on 9 if the load is 10, for
  2559. * example.
  2560. */
  2561. if (new_load > old_load)
  2562. new_load += scale-1;
  2563. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2564. }
  2565. calc_load_account_active(this_rq);
  2566. }
  2567. #ifdef CONFIG_SMP
  2568. /*
  2569. * sched_exec - execve() is a valuable balancing opportunity, because at
  2570. * this point the task has the smallest effective memory and cache footprint.
  2571. */
  2572. void sched_exec(void)
  2573. {
  2574. struct task_struct *p = current;
  2575. unsigned long flags;
  2576. struct rq *rq;
  2577. int dest_cpu;
  2578. rq = task_rq_lock(p, &flags);
  2579. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2580. if (dest_cpu == smp_processor_id())
  2581. goto unlock;
  2582. /*
  2583. * select_task_rq() can race against ->cpus_allowed
  2584. */
  2585. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2586. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2587. struct migration_arg arg = { p, dest_cpu };
  2588. task_rq_unlock(rq, &flags);
  2589. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2590. return;
  2591. }
  2592. unlock:
  2593. task_rq_unlock(rq, &flags);
  2594. }
  2595. #endif
  2596. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2597. EXPORT_PER_CPU_SYMBOL(kstat);
  2598. /*
  2599. * Return any ns on the sched_clock that have not yet been accounted in
  2600. * @p in case that task is currently running.
  2601. *
  2602. * Called with task_rq_lock() held on @rq.
  2603. */
  2604. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2605. {
  2606. u64 ns = 0;
  2607. if (task_current(rq, p)) {
  2608. update_rq_clock(rq);
  2609. ns = rq->clock - p->se.exec_start;
  2610. if ((s64)ns < 0)
  2611. ns = 0;
  2612. }
  2613. return ns;
  2614. }
  2615. unsigned long long task_delta_exec(struct task_struct *p)
  2616. {
  2617. unsigned long flags;
  2618. struct rq *rq;
  2619. u64 ns = 0;
  2620. rq = task_rq_lock(p, &flags);
  2621. ns = do_task_delta_exec(p, rq);
  2622. task_rq_unlock(rq, &flags);
  2623. return ns;
  2624. }
  2625. /*
  2626. * Return accounted runtime for the task.
  2627. * In case the task is currently running, return the runtime plus current's
  2628. * pending runtime that have not been accounted yet.
  2629. */
  2630. unsigned long long task_sched_runtime(struct task_struct *p)
  2631. {
  2632. unsigned long flags;
  2633. struct rq *rq;
  2634. u64 ns = 0;
  2635. rq = task_rq_lock(p, &flags);
  2636. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2637. task_rq_unlock(rq, &flags);
  2638. return ns;
  2639. }
  2640. /*
  2641. * Return sum_exec_runtime for the thread group.
  2642. * In case the task is currently running, return the sum plus current's
  2643. * pending runtime that have not been accounted yet.
  2644. *
  2645. * Note that the thread group might have other running tasks as well,
  2646. * so the return value not includes other pending runtime that other
  2647. * running tasks might have.
  2648. */
  2649. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2650. {
  2651. struct task_cputime totals;
  2652. unsigned long flags;
  2653. struct rq *rq;
  2654. u64 ns;
  2655. rq = task_rq_lock(p, &flags);
  2656. thread_group_cputime(p, &totals);
  2657. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2658. task_rq_unlock(rq, &flags);
  2659. return ns;
  2660. }
  2661. /*
  2662. * Account user cpu time to a process.
  2663. * @p: the process that the cpu time gets accounted to
  2664. * @cputime: the cpu time spent in user space since the last update
  2665. * @cputime_scaled: cputime scaled by cpu frequency
  2666. */
  2667. void account_user_time(struct task_struct *p, cputime_t cputime,
  2668. cputime_t cputime_scaled)
  2669. {
  2670. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2671. cputime64_t tmp;
  2672. /* Add user time to process. */
  2673. p->utime = cputime_add(p->utime, cputime);
  2674. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2675. account_group_user_time(p, cputime);
  2676. /* Add user time to cpustat. */
  2677. tmp = cputime_to_cputime64(cputime);
  2678. if (TASK_NICE(p) > 0)
  2679. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2680. else
  2681. cpustat->user = cputime64_add(cpustat->user, tmp);
  2682. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2683. /* Account for user time used */
  2684. acct_update_integrals(p);
  2685. }
  2686. /*
  2687. * Account guest cpu time to a process.
  2688. * @p: the process that the cpu time gets accounted to
  2689. * @cputime: the cpu time spent in virtual machine since the last update
  2690. * @cputime_scaled: cputime scaled by cpu frequency
  2691. */
  2692. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2693. cputime_t cputime_scaled)
  2694. {
  2695. cputime64_t tmp;
  2696. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2697. tmp = cputime_to_cputime64(cputime);
  2698. /* Add guest time to process. */
  2699. p->utime = cputime_add(p->utime, cputime);
  2700. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2701. account_group_user_time(p, cputime);
  2702. p->gtime = cputime_add(p->gtime, cputime);
  2703. /* Add guest time to cpustat. */
  2704. if (TASK_NICE(p) > 0) {
  2705. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2706. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2707. } else {
  2708. cpustat->user = cputime64_add(cpustat->user, tmp);
  2709. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2710. }
  2711. }
  2712. /*
  2713. * Account system cpu time to a process.
  2714. * @p: the process that the cpu time gets accounted to
  2715. * @hardirq_offset: the offset to subtract from hardirq_count()
  2716. * @cputime: the cpu time spent in kernel space since the last update
  2717. * @cputime_scaled: cputime scaled by cpu frequency
  2718. */
  2719. void account_system_time(struct task_struct *p, int hardirq_offset,
  2720. cputime_t cputime, cputime_t cputime_scaled)
  2721. {
  2722. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2723. cputime64_t tmp;
  2724. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2725. account_guest_time(p, cputime, cputime_scaled);
  2726. return;
  2727. }
  2728. /* Add system time to process. */
  2729. p->stime = cputime_add(p->stime, cputime);
  2730. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2731. account_group_system_time(p, cputime);
  2732. /* Add system time to cpustat. */
  2733. tmp = cputime_to_cputime64(cputime);
  2734. if (hardirq_count() - hardirq_offset)
  2735. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2736. else if (softirq_count())
  2737. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2738. else
  2739. cpustat->system = cputime64_add(cpustat->system, tmp);
  2740. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2741. /* Account for system time used */
  2742. acct_update_integrals(p);
  2743. }
  2744. /*
  2745. * Account for involuntary wait time.
  2746. * @steal: the cpu time spent in involuntary wait
  2747. */
  2748. void account_steal_time(cputime_t cputime)
  2749. {
  2750. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2751. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2752. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2753. }
  2754. /*
  2755. * Account for idle time.
  2756. * @cputime: the cpu time spent in idle wait
  2757. */
  2758. void account_idle_time(cputime_t cputime)
  2759. {
  2760. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2761. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2762. struct rq *rq = this_rq();
  2763. if (atomic_read(&rq->nr_iowait) > 0)
  2764. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2765. else
  2766. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2767. }
  2768. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2769. /*
  2770. * Account a single tick of cpu time.
  2771. * @p: the process that the cpu time gets accounted to
  2772. * @user_tick: indicates if the tick is a user or a system tick
  2773. */
  2774. void account_process_tick(struct task_struct *p, int user_tick)
  2775. {
  2776. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2777. struct rq *rq = this_rq();
  2778. if (user_tick)
  2779. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2780. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2781. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2782. one_jiffy_scaled);
  2783. else
  2784. account_idle_time(cputime_one_jiffy);
  2785. }
  2786. /*
  2787. * Account multiple ticks of steal time.
  2788. * @p: the process from which the cpu time has been stolen
  2789. * @ticks: number of stolen ticks
  2790. */
  2791. void account_steal_ticks(unsigned long ticks)
  2792. {
  2793. account_steal_time(jiffies_to_cputime(ticks));
  2794. }
  2795. /*
  2796. * Account multiple ticks of idle time.
  2797. * @ticks: number of stolen ticks
  2798. */
  2799. void account_idle_ticks(unsigned long ticks)
  2800. {
  2801. account_idle_time(jiffies_to_cputime(ticks));
  2802. }
  2803. #endif
  2804. /*
  2805. * Use precise platform statistics if available:
  2806. */
  2807. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2808. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2809. {
  2810. *ut = p->utime;
  2811. *st = p->stime;
  2812. }
  2813. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2814. {
  2815. struct task_cputime cputime;
  2816. thread_group_cputime(p, &cputime);
  2817. *ut = cputime.utime;
  2818. *st = cputime.stime;
  2819. }
  2820. #else
  2821. #ifndef nsecs_to_cputime
  2822. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2823. #endif
  2824. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2825. {
  2826. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2827. /*
  2828. * Use CFS's precise accounting:
  2829. */
  2830. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2831. if (total) {
  2832. u64 temp;
  2833. temp = (u64)(rtime * utime);
  2834. do_div(temp, total);
  2835. utime = (cputime_t)temp;
  2836. } else
  2837. utime = rtime;
  2838. /*
  2839. * Compare with previous values, to keep monotonicity:
  2840. */
  2841. p->prev_utime = max(p->prev_utime, utime);
  2842. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2843. *ut = p->prev_utime;
  2844. *st = p->prev_stime;
  2845. }
  2846. /*
  2847. * Must be called with siglock held.
  2848. */
  2849. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2850. {
  2851. struct signal_struct *sig = p->signal;
  2852. struct task_cputime cputime;
  2853. cputime_t rtime, utime, total;
  2854. thread_group_cputime(p, &cputime);
  2855. total = cputime_add(cputime.utime, cputime.stime);
  2856. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2857. if (total) {
  2858. u64 temp;
  2859. temp = (u64)(rtime * cputime.utime);
  2860. do_div(temp, total);
  2861. utime = (cputime_t)temp;
  2862. } else
  2863. utime = rtime;
  2864. sig->prev_utime = max(sig->prev_utime, utime);
  2865. sig->prev_stime = max(sig->prev_stime,
  2866. cputime_sub(rtime, sig->prev_utime));
  2867. *ut = sig->prev_utime;
  2868. *st = sig->prev_stime;
  2869. }
  2870. #endif
  2871. /*
  2872. * This function gets called by the timer code, with HZ frequency.
  2873. * We call it with interrupts disabled.
  2874. *
  2875. * It also gets called by the fork code, when changing the parent's
  2876. * timeslices.
  2877. */
  2878. void scheduler_tick(void)
  2879. {
  2880. int cpu = smp_processor_id();
  2881. struct rq *rq = cpu_rq(cpu);
  2882. struct task_struct *curr = rq->curr;
  2883. sched_clock_tick();
  2884. raw_spin_lock(&rq->lock);
  2885. update_rq_clock(rq);
  2886. update_cpu_load(rq);
  2887. curr->sched_class->task_tick(rq, curr, 0);
  2888. raw_spin_unlock(&rq->lock);
  2889. perf_event_task_tick(curr);
  2890. #ifdef CONFIG_SMP
  2891. rq->idle_at_tick = idle_cpu(cpu);
  2892. trigger_load_balance(rq, cpu);
  2893. #endif
  2894. }
  2895. notrace unsigned long get_parent_ip(unsigned long addr)
  2896. {
  2897. if (in_lock_functions(addr)) {
  2898. addr = CALLER_ADDR2;
  2899. if (in_lock_functions(addr))
  2900. addr = CALLER_ADDR3;
  2901. }
  2902. return addr;
  2903. }
  2904. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2905. defined(CONFIG_PREEMPT_TRACER))
  2906. void __kprobes add_preempt_count(int val)
  2907. {
  2908. #ifdef CONFIG_DEBUG_PREEMPT
  2909. /*
  2910. * Underflow?
  2911. */
  2912. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2913. return;
  2914. #endif
  2915. preempt_count() += val;
  2916. #ifdef CONFIG_DEBUG_PREEMPT
  2917. /*
  2918. * Spinlock count overflowing soon?
  2919. */
  2920. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2921. PREEMPT_MASK - 10);
  2922. #endif
  2923. if (preempt_count() == val)
  2924. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2925. }
  2926. EXPORT_SYMBOL(add_preempt_count);
  2927. void __kprobes sub_preempt_count(int val)
  2928. {
  2929. #ifdef CONFIG_DEBUG_PREEMPT
  2930. /*
  2931. * Underflow?
  2932. */
  2933. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2934. return;
  2935. /*
  2936. * Is the spinlock portion underflowing?
  2937. */
  2938. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2939. !(preempt_count() & PREEMPT_MASK)))
  2940. return;
  2941. #endif
  2942. if (preempt_count() == val)
  2943. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2944. preempt_count() -= val;
  2945. }
  2946. EXPORT_SYMBOL(sub_preempt_count);
  2947. #endif
  2948. /*
  2949. * Print scheduling while atomic bug:
  2950. */
  2951. static noinline void __schedule_bug(struct task_struct *prev)
  2952. {
  2953. struct pt_regs *regs = get_irq_regs();
  2954. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2955. prev->comm, prev->pid, preempt_count());
  2956. debug_show_held_locks(prev);
  2957. print_modules();
  2958. if (irqs_disabled())
  2959. print_irqtrace_events(prev);
  2960. if (regs)
  2961. show_regs(regs);
  2962. else
  2963. dump_stack();
  2964. }
  2965. /*
  2966. * Various schedule()-time debugging checks and statistics:
  2967. */
  2968. static inline void schedule_debug(struct task_struct *prev)
  2969. {
  2970. /*
  2971. * Test if we are atomic. Since do_exit() needs to call into
  2972. * schedule() atomically, we ignore that path for now.
  2973. * Otherwise, whine if we are scheduling when we should not be.
  2974. */
  2975. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2976. __schedule_bug(prev);
  2977. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2978. schedstat_inc(this_rq(), sched_count);
  2979. #ifdef CONFIG_SCHEDSTATS
  2980. if (unlikely(prev->lock_depth >= 0)) {
  2981. schedstat_inc(this_rq(), bkl_count);
  2982. schedstat_inc(prev, sched_info.bkl_count);
  2983. }
  2984. #endif
  2985. }
  2986. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2987. {
  2988. if (prev->se.on_rq)
  2989. update_rq_clock(rq);
  2990. rq->skip_clock_update = 0;
  2991. prev->sched_class->put_prev_task(rq, prev);
  2992. }
  2993. /*
  2994. * Pick up the highest-prio task:
  2995. */
  2996. static inline struct task_struct *
  2997. pick_next_task(struct rq *rq)
  2998. {
  2999. const struct sched_class *class;
  3000. struct task_struct *p;
  3001. /*
  3002. * Optimization: we know that if all tasks are in
  3003. * the fair class we can call that function directly:
  3004. */
  3005. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3006. p = fair_sched_class.pick_next_task(rq);
  3007. if (likely(p))
  3008. return p;
  3009. }
  3010. class = sched_class_highest;
  3011. for ( ; ; ) {
  3012. p = class->pick_next_task(rq);
  3013. if (p)
  3014. return p;
  3015. /*
  3016. * Will never be NULL as the idle class always
  3017. * returns a non-NULL p:
  3018. */
  3019. class = class->next;
  3020. }
  3021. }
  3022. /*
  3023. * schedule() is the main scheduler function.
  3024. */
  3025. asmlinkage void __sched schedule(void)
  3026. {
  3027. struct task_struct *prev, *next;
  3028. unsigned long *switch_count;
  3029. struct rq *rq;
  3030. int cpu;
  3031. need_resched:
  3032. preempt_disable();
  3033. cpu = smp_processor_id();
  3034. rq = cpu_rq(cpu);
  3035. rcu_note_context_switch(cpu);
  3036. prev = rq->curr;
  3037. switch_count = &prev->nivcsw;
  3038. release_kernel_lock(prev);
  3039. need_resched_nonpreemptible:
  3040. schedule_debug(prev);
  3041. if (sched_feat(HRTICK))
  3042. hrtick_clear(rq);
  3043. raw_spin_lock_irq(&rq->lock);
  3044. clear_tsk_need_resched(prev);
  3045. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3046. if (unlikely(signal_pending_state(prev->state, prev)))
  3047. prev->state = TASK_RUNNING;
  3048. else
  3049. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3050. switch_count = &prev->nvcsw;
  3051. }
  3052. pre_schedule(rq, prev);
  3053. if (unlikely(!rq->nr_running))
  3054. idle_balance(cpu, rq);
  3055. put_prev_task(rq, prev);
  3056. next = pick_next_task(rq);
  3057. if (likely(prev != next)) {
  3058. sched_info_switch(prev, next);
  3059. perf_event_task_sched_out(prev, next);
  3060. rq->nr_switches++;
  3061. rq->curr = next;
  3062. ++*switch_count;
  3063. context_switch(rq, prev, next); /* unlocks the rq */
  3064. /*
  3065. * the context switch might have flipped the stack from under
  3066. * us, hence refresh the local variables.
  3067. */
  3068. cpu = smp_processor_id();
  3069. rq = cpu_rq(cpu);
  3070. } else
  3071. raw_spin_unlock_irq(&rq->lock);
  3072. post_schedule(rq);
  3073. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3074. prev = rq->curr;
  3075. switch_count = &prev->nivcsw;
  3076. goto need_resched_nonpreemptible;
  3077. }
  3078. preempt_enable_no_resched();
  3079. if (need_resched())
  3080. goto need_resched;
  3081. }
  3082. EXPORT_SYMBOL(schedule);
  3083. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3084. /*
  3085. * Look out! "owner" is an entirely speculative pointer
  3086. * access and not reliable.
  3087. */
  3088. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3089. {
  3090. unsigned int cpu;
  3091. struct rq *rq;
  3092. if (!sched_feat(OWNER_SPIN))
  3093. return 0;
  3094. #ifdef CONFIG_DEBUG_PAGEALLOC
  3095. /*
  3096. * Need to access the cpu field knowing that
  3097. * DEBUG_PAGEALLOC could have unmapped it if
  3098. * the mutex owner just released it and exited.
  3099. */
  3100. if (probe_kernel_address(&owner->cpu, cpu))
  3101. return 0;
  3102. #else
  3103. cpu = owner->cpu;
  3104. #endif
  3105. /*
  3106. * Even if the access succeeded (likely case),
  3107. * the cpu field may no longer be valid.
  3108. */
  3109. if (cpu >= nr_cpumask_bits)
  3110. return 0;
  3111. /*
  3112. * We need to validate that we can do a
  3113. * get_cpu() and that we have the percpu area.
  3114. */
  3115. if (!cpu_online(cpu))
  3116. return 0;
  3117. rq = cpu_rq(cpu);
  3118. for (;;) {
  3119. /*
  3120. * Owner changed, break to re-assess state.
  3121. */
  3122. if (lock->owner != owner)
  3123. break;
  3124. /*
  3125. * Is that owner really running on that cpu?
  3126. */
  3127. if (task_thread_info(rq->curr) != owner || need_resched())
  3128. return 0;
  3129. cpu_relax();
  3130. }
  3131. return 1;
  3132. }
  3133. #endif
  3134. #ifdef CONFIG_PREEMPT
  3135. /*
  3136. * this is the entry point to schedule() from in-kernel preemption
  3137. * off of preempt_enable. Kernel preemptions off return from interrupt
  3138. * occur there and call schedule directly.
  3139. */
  3140. asmlinkage void __sched preempt_schedule(void)
  3141. {
  3142. struct thread_info *ti = current_thread_info();
  3143. /*
  3144. * If there is a non-zero preempt_count or interrupts are disabled,
  3145. * we do not want to preempt the current task. Just return..
  3146. */
  3147. if (likely(ti->preempt_count || irqs_disabled()))
  3148. return;
  3149. do {
  3150. add_preempt_count(PREEMPT_ACTIVE);
  3151. schedule();
  3152. sub_preempt_count(PREEMPT_ACTIVE);
  3153. /*
  3154. * Check again in case we missed a preemption opportunity
  3155. * between schedule and now.
  3156. */
  3157. barrier();
  3158. } while (need_resched());
  3159. }
  3160. EXPORT_SYMBOL(preempt_schedule);
  3161. /*
  3162. * this is the entry point to schedule() from kernel preemption
  3163. * off of irq context.
  3164. * Note, that this is called and return with irqs disabled. This will
  3165. * protect us against recursive calling from irq.
  3166. */
  3167. asmlinkage void __sched preempt_schedule_irq(void)
  3168. {
  3169. struct thread_info *ti = current_thread_info();
  3170. /* Catch callers which need to be fixed */
  3171. BUG_ON(ti->preempt_count || !irqs_disabled());
  3172. do {
  3173. add_preempt_count(PREEMPT_ACTIVE);
  3174. local_irq_enable();
  3175. schedule();
  3176. local_irq_disable();
  3177. sub_preempt_count(PREEMPT_ACTIVE);
  3178. /*
  3179. * Check again in case we missed a preemption opportunity
  3180. * between schedule and now.
  3181. */
  3182. barrier();
  3183. } while (need_resched());
  3184. }
  3185. #endif /* CONFIG_PREEMPT */
  3186. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3187. void *key)
  3188. {
  3189. return try_to_wake_up(curr->private, mode, wake_flags);
  3190. }
  3191. EXPORT_SYMBOL(default_wake_function);
  3192. /*
  3193. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3194. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3195. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3196. *
  3197. * There are circumstances in which we can try to wake a task which has already
  3198. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3199. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3200. */
  3201. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3202. int nr_exclusive, int wake_flags, void *key)
  3203. {
  3204. wait_queue_t *curr, *next;
  3205. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3206. unsigned flags = curr->flags;
  3207. if (curr->func(curr, mode, wake_flags, key) &&
  3208. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3209. break;
  3210. }
  3211. }
  3212. /**
  3213. * __wake_up - wake up threads blocked on a waitqueue.
  3214. * @q: the waitqueue
  3215. * @mode: which threads
  3216. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3217. * @key: is directly passed to the wakeup function
  3218. *
  3219. * It may be assumed that this function implies a write memory barrier before
  3220. * changing the task state if and only if any tasks are woken up.
  3221. */
  3222. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3223. int nr_exclusive, void *key)
  3224. {
  3225. unsigned long flags;
  3226. spin_lock_irqsave(&q->lock, flags);
  3227. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3228. spin_unlock_irqrestore(&q->lock, flags);
  3229. }
  3230. EXPORT_SYMBOL(__wake_up);
  3231. /*
  3232. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3233. */
  3234. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3235. {
  3236. __wake_up_common(q, mode, 1, 0, NULL);
  3237. }
  3238. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3239. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3240. {
  3241. __wake_up_common(q, mode, 1, 0, key);
  3242. }
  3243. /**
  3244. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3245. * @q: the waitqueue
  3246. * @mode: which threads
  3247. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3248. * @key: opaque value to be passed to wakeup targets
  3249. *
  3250. * The sync wakeup differs that the waker knows that it will schedule
  3251. * away soon, so while the target thread will be woken up, it will not
  3252. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3253. * with each other. This can prevent needless bouncing between CPUs.
  3254. *
  3255. * On UP it can prevent extra preemption.
  3256. *
  3257. * It may be assumed that this function implies a write memory barrier before
  3258. * changing the task state if and only if any tasks are woken up.
  3259. */
  3260. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3261. int nr_exclusive, void *key)
  3262. {
  3263. unsigned long flags;
  3264. int wake_flags = WF_SYNC;
  3265. if (unlikely(!q))
  3266. return;
  3267. if (unlikely(!nr_exclusive))
  3268. wake_flags = 0;
  3269. spin_lock_irqsave(&q->lock, flags);
  3270. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3271. spin_unlock_irqrestore(&q->lock, flags);
  3272. }
  3273. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3274. /*
  3275. * __wake_up_sync - see __wake_up_sync_key()
  3276. */
  3277. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3278. {
  3279. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3280. }
  3281. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3282. /**
  3283. * complete: - signals a single thread waiting on this completion
  3284. * @x: holds the state of this particular completion
  3285. *
  3286. * This will wake up a single thread waiting on this completion. Threads will be
  3287. * awakened in the same order in which they were queued.
  3288. *
  3289. * See also complete_all(), wait_for_completion() and related routines.
  3290. *
  3291. * It may be assumed that this function implies a write memory barrier before
  3292. * changing the task state if and only if any tasks are woken up.
  3293. */
  3294. void complete(struct completion *x)
  3295. {
  3296. unsigned long flags;
  3297. spin_lock_irqsave(&x->wait.lock, flags);
  3298. x->done++;
  3299. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3300. spin_unlock_irqrestore(&x->wait.lock, flags);
  3301. }
  3302. EXPORT_SYMBOL(complete);
  3303. /**
  3304. * complete_all: - signals all threads waiting on this completion
  3305. * @x: holds the state of this particular completion
  3306. *
  3307. * This will wake up all threads waiting on this particular completion event.
  3308. *
  3309. * It may be assumed that this function implies a write memory barrier before
  3310. * changing the task state if and only if any tasks are woken up.
  3311. */
  3312. void complete_all(struct completion *x)
  3313. {
  3314. unsigned long flags;
  3315. spin_lock_irqsave(&x->wait.lock, flags);
  3316. x->done += UINT_MAX/2;
  3317. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3318. spin_unlock_irqrestore(&x->wait.lock, flags);
  3319. }
  3320. EXPORT_SYMBOL(complete_all);
  3321. static inline long __sched
  3322. do_wait_for_common(struct completion *x, long timeout, int state)
  3323. {
  3324. if (!x->done) {
  3325. DECLARE_WAITQUEUE(wait, current);
  3326. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3327. do {
  3328. if (signal_pending_state(state, current)) {
  3329. timeout = -ERESTARTSYS;
  3330. break;
  3331. }
  3332. __set_current_state(state);
  3333. spin_unlock_irq(&x->wait.lock);
  3334. timeout = schedule_timeout(timeout);
  3335. spin_lock_irq(&x->wait.lock);
  3336. } while (!x->done && timeout);
  3337. __remove_wait_queue(&x->wait, &wait);
  3338. if (!x->done)
  3339. return timeout;
  3340. }
  3341. x->done--;
  3342. return timeout ?: 1;
  3343. }
  3344. static long __sched
  3345. wait_for_common(struct completion *x, long timeout, int state)
  3346. {
  3347. might_sleep();
  3348. spin_lock_irq(&x->wait.lock);
  3349. timeout = do_wait_for_common(x, timeout, state);
  3350. spin_unlock_irq(&x->wait.lock);
  3351. return timeout;
  3352. }
  3353. /**
  3354. * wait_for_completion: - waits for completion of a task
  3355. * @x: holds the state of this particular completion
  3356. *
  3357. * This waits to be signaled for completion of a specific task. It is NOT
  3358. * interruptible and there is no timeout.
  3359. *
  3360. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3361. * and interrupt capability. Also see complete().
  3362. */
  3363. void __sched wait_for_completion(struct completion *x)
  3364. {
  3365. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3366. }
  3367. EXPORT_SYMBOL(wait_for_completion);
  3368. /**
  3369. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3370. * @x: holds the state of this particular completion
  3371. * @timeout: timeout value in jiffies
  3372. *
  3373. * This waits for either a completion of a specific task to be signaled or for a
  3374. * specified timeout to expire. The timeout is in jiffies. It is not
  3375. * interruptible.
  3376. */
  3377. unsigned long __sched
  3378. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3379. {
  3380. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3381. }
  3382. EXPORT_SYMBOL(wait_for_completion_timeout);
  3383. /**
  3384. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3385. * @x: holds the state of this particular completion
  3386. *
  3387. * This waits for completion of a specific task to be signaled. It is
  3388. * interruptible.
  3389. */
  3390. int __sched wait_for_completion_interruptible(struct completion *x)
  3391. {
  3392. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3393. if (t == -ERESTARTSYS)
  3394. return t;
  3395. return 0;
  3396. }
  3397. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3398. /**
  3399. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3400. * @x: holds the state of this particular completion
  3401. * @timeout: timeout value in jiffies
  3402. *
  3403. * This waits for either a completion of a specific task to be signaled or for a
  3404. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3405. */
  3406. unsigned long __sched
  3407. wait_for_completion_interruptible_timeout(struct completion *x,
  3408. unsigned long timeout)
  3409. {
  3410. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3411. }
  3412. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3413. /**
  3414. * wait_for_completion_killable: - waits for completion of a task (killable)
  3415. * @x: holds the state of this particular completion
  3416. *
  3417. * This waits to be signaled for completion of a specific task. It can be
  3418. * interrupted by a kill signal.
  3419. */
  3420. int __sched wait_for_completion_killable(struct completion *x)
  3421. {
  3422. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3423. if (t == -ERESTARTSYS)
  3424. return t;
  3425. return 0;
  3426. }
  3427. EXPORT_SYMBOL(wait_for_completion_killable);
  3428. /**
  3429. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3430. * @x: holds the state of this particular completion
  3431. * @timeout: timeout value in jiffies
  3432. *
  3433. * This waits for either a completion of a specific task to be
  3434. * signaled or for a specified timeout to expire. It can be
  3435. * interrupted by a kill signal. The timeout is in jiffies.
  3436. */
  3437. unsigned long __sched
  3438. wait_for_completion_killable_timeout(struct completion *x,
  3439. unsigned long timeout)
  3440. {
  3441. return wait_for_common(x, timeout, TASK_KILLABLE);
  3442. }
  3443. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3444. /**
  3445. * try_wait_for_completion - try to decrement a completion without blocking
  3446. * @x: completion structure
  3447. *
  3448. * Returns: 0 if a decrement cannot be done without blocking
  3449. * 1 if a decrement succeeded.
  3450. *
  3451. * If a completion is being used as a counting completion,
  3452. * attempt to decrement the counter without blocking. This
  3453. * enables us to avoid waiting if the resource the completion
  3454. * is protecting is not available.
  3455. */
  3456. bool try_wait_for_completion(struct completion *x)
  3457. {
  3458. unsigned long flags;
  3459. int ret = 1;
  3460. spin_lock_irqsave(&x->wait.lock, flags);
  3461. if (!x->done)
  3462. ret = 0;
  3463. else
  3464. x->done--;
  3465. spin_unlock_irqrestore(&x->wait.lock, flags);
  3466. return ret;
  3467. }
  3468. EXPORT_SYMBOL(try_wait_for_completion);
  3469. /**
  3470. * completion_done - Test to see if a completion has any waiters
  3471. * @x: completion structure
  3472. *
  3473. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3474. * 1 if there are no waiters.
  3475. *
  3476. */
  3477. bool completion_done(struct completion *x)
  3478. {
  3479. unsigned long flags;
  3480. int ret = 1;
  3481. spin_lock_irqsave(&x->wait.lock, flags);
  3482. if (!x->done)
  3483. ret = 0;
  3484. spin_unlock_irqrestore(&x->wait.lock, flags);
  3485. return ret;
  3486. }
  3487. EXPORT_SYMBOL(completion_done);
  3488. static long __sched
  3489. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3490. {
  3491. unsigned long flags;
  3492. wait_queue_t wait;
  3493. init_waitqueue_entry(&wait, current);
  3494. __set_current_state(state);
  3495. spin_lock_irqsave(&q->lock, flags);
  3496. __add_wait_queue(q, &wait);
  3497. spin_unlock(&q->lock);
  3498. timeout = schedule_timeout(timeout);
  3499. spin_lock_irq(&q->lock);
  3500. __remove_wait_queue(q, &wait);
  3501. spin_unlock_irqrestore(&q->lock, flags);
  3502. return timeout;
  3503. }
  3504. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3505. {
  3506. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3507. }
  3508. EXPORT_SYMBOL(interruptible_sleep_on);
  3509. long __sched
  3510. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3511. {
  3512. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3513. }
  3514. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3515. void __sched sleep_on(wait_queue_head_t *q)
  3516. {
  3517. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3518. }
  3519. EXPORT_SYMBOL(sleep_on);
  3520. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3521. {
  3522. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3523. }
  3524. EXPORT_SYMBOL(sleep_on_timeout);
  3525. #ifdef CONFIG_RT_MUTEXES
  3526. /*
  3527. * rt_mutex_setprio - set the current priority of a task
  3528. * @p: task
  3529. * @prio: prio value (kernel-internal form)
  3530. *
  3531. * This function changes the 'effective' priority of a task. It does
  3532. * not touch ->normal_prio like __setscheduler().
  3533. *
  3534. * Used by the rt_mutex code to implement priority inheritance logic.
  3535. */
  3536. void rt_mutex_setprio(struct task_struct *p, int prio)
  3537. {
  3538. unsigned long flags;
  3539. int oldprio, on_rq, running;
  3540. struct rq *rq;
  3541. const struct sched_class *prev_class;
  3542. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3543. rq = task_rq_lock(p, &flags);
  3544. oldprio = p->prio;
  3545. prev_class = p->sched_class;
  3546. on_rq = p->se.on_rq;
  3547. running = task_current(rq, p);
  3548. if (on_rq)
  3549. dequeue_task(rq, p, 0);
  3550. if (running)
  3551. p->sched_class->put_prev_task(rq, p);
  3552. if (rt_prio(prio))
  3553. p->sched_class = &rt_sched_class;
  3554. else
  3555. p->sched_class = &fair_sched_class;
  3556. p->prio = prio;
  3557. if (running)
  3558. p->sched_class->set_curr_task(rq);
  3559. if (on_rq) {
  3560. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3561. check_class_changed(rq, p, prev_class, oldprio, running);
  3562. }
  3563. task_rq_unlock(rq, &flags);
  3564. }
  3565. #endif
  3566. void set_user_nice(struct task_struct *p, long nice)
  3567. {
  3568. int old_prio, delta, on_rq;
  3569. unsigned long flags;
  3570. struct rq *rq;
  3571. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3572. return;
  3573. /*
  3574. * We have to be careful, if called from sys_setpriority(),
  3575. * the task might be in the middle of scheduling on another CPU.
  3576. */
  3577. rq = task_rq_lock(p, &flags);
  3578. /*
  3579. * The RT priorities are set via sched_setscheduler(), but we still
  3580. * allow the 'normal' nice value to be set - but as expected
  3581. * it wont have any effect on scheduling until the task is
  3582. * SCHED_FIFO/SCHED_RR:
  3583. */
  3584. if (task_has_rt_policy(p)) {
  3585. p->static_prio = NICE_TO_PRIO(nice);
  3586. goto out_unlock;
  3587. }
  3588. on_rq = p->se.on_rq;
  3589. if (on_rq)
  3590. dequeue_task(rq, p, 0);
  3591. p->static_prio = NICE_TO_PRIO(nice);
  3592. set_load_weight(p);
  3593. old_prio = p->prio;
  3594. p->prio = effective_prio(p);
  3595. delta = p->prio - old_prio;
  3596. if (on_rq) {
  3597. enqueue_task(rq, p, 0);
  3598. /*
  3599. * If the task increased its priority or is running and
  3600. * lowered its priority, then reschedule its CPU:
  3601. */
  3602. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3603. resched_task(rq->curr);
  3604. }
  3605. out_unlock:
  3606. task_rq_unlock(rq, &flags);
  3607. }
  3608. EXPORT_SYMBOL(set_user_nice);
  3609. /*
  3610. * can_nice - check if a task can reduce its nice value
  3611. * @p: task
  3612. * @nice: nice value
  3613. */
  3614. int can_nice(const struct task_struct *p, const int nice)
  3615. {
  3616. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3617. int nice_rlim = 20 - nice;
  3618. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3619. capable(CAP_SYS_NICE));
  3620. }
  3621. #ifdef __ARCH_WANT_SYS_NICE
  3622. /*
  3623. * sys_nice - change the priority of the current process.
  3624. * @increment: priority increment
  3625. *
  3626. * sys_setpriority is a more generic, but much slower function that
  3627. * does similar things.
  3628. */
  3629. SYSCALL_DEFINE1(nice, int, increment)
  3630. {
  3631. long nice, retval;
  3632. /*
  3633. * Setpriority might change our priority at the same moment.
  3634. * We don't have to worry. Conceptually one call occurs first
  3635. * and we have a single winner.
  3636. */
  3637. if (increment < -40)
  3638. increment = -40;
  3639. if (increment > 40)
  3640. increment = 40;
  3641. nice = TASK_NICE(current) + increment;
  3642. if (nice < -20)
  3643. nice = -20;
  3644. if (nice > 19)
  3645. nice = 19;
  3646. if (increment < 0 && !can_nice(current, nice))
  3647. return -EPERM;
  3648. retval = security_task_setnice(current, nice);
  3649. if (retval)
  3650. return retval;
  3651. set_user_nice(current, nice);
  3652. return 0;
  3653. }
  3654. #endif
  3655. /**
  3656. * task_prio - return the priority value of a given task.
  3657. * @p: the task in question.
  3658. *
  3659. * This is the priority value as seen by users in /proc.
  3660. * RT tasks are offset by -200. Normal tasks are centered
  3661. * around 0, value goes from -16 to +15.
  3662. */
  3663. int task_prio(const struct task_struct *p)
  3664. {
  3665. return p->prio - MAX_RT_PRIO;
  3666. }
  3667. /**
  3668. * task_nice - return the nice value of a given task.
  3669. * @p: the task in question.
  3670. */
  3671. int task_nice(const struct task_struct *p)
  3672. {
  3673. return TASK_NICE(p);
  3674. }
  3675. EXPORT_SYMBOL(task_nice);
  3676. /**
  3677. * idle_cpu - is a given cpu idle currently?
  3678. * @cpu: the processor in question.
  3679. */
  3680. int idle_cpu(int cpu)
  3681. {
  3682. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3683. }
  3684. /**
  3685. * idle_task - return the idle task for a given cpu.
  3686. * @cpu: the processor in question.
  3687. */
  3688. struct task_struct *idle_task(int cpu)
  3689. {
  3690. return cpu_rq(cpu)->idle;
  3691. }
  3692. /**
  3693. * find_process_by_pid - find a process with a matching PID value.
  3694. * @pid: the pid in question.
  3695. */
  3696. static struct task_struct *find_process_by_pid(pid_t pid)
  3697. {
  3698. return pid ? find_task_by_vpid(pid) : current;
  3699. }
  3700. /* Actually do priority change: must hold rq lock. */
  3701. static void
  3702. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3703. {
  3704. BUG_ON(p->se.on_rq);
  3705. p->policy = policy;
  3706. p->rt_priority = prio;
  3707. p->normal_prio = normal_prio(p);
  3708. /* we are holding p->pi_lock already */
  3709. p->prio = rt_mutex_getprio(p);
  3710. if (rt_prio(p->prio))
  3711. p->sched_class = &rt_sched_class;
  3712. else
  3713. p->sched_class = &fair_sched_class;
  3714. set_load_weight(p);
  3715. }
  3716. /*
  3717. * check the target process has a UID that matches the current process's
  3718. */
  3719. static bool check_same_owner(struct task_struct *p)
  3720. {
  3721. const struct cred *cred = current_cred(), *pcred;
  3722. bool match;
  3723. rcu_read_lock();
  3724. pcred = __task_cred(p);
  3725. match = (cred->euid == pcred->euid ||
  3726. cred->euid == pcred->uid);
  3727. rcu_read_unlock();
  3728. return match;
  3729. }
  3730. static int __sched_setscheduler(struct task_struct *p, int policy,
  3731. struct sched_param *param, bool user)
  3732. {
  3733. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3734. unsigned long flags;
  3735. const struct sched_class *prev_class;
  3736. struct rq *rq;
  3737. int reset_on_fork;
  3738. /* may grab non-irq protected spin_locks */
  3739. BUG_ON(in_interrupt());
  3740. recheck:
  3741. /* double check policy once rq lock held */
  3742. if (policy < 0) {
  3743. reset_on_fork = p->sched_reset_on_fork;
  3744. policy = oldpolicy = p->policy;
  3745. } else {
  3746. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3747. policy &= ~SCHED_RESET_ON_FORK;
  3748. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3749. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3750. policy != SCHED_IDLE)
  3751. return -EINVAL;
  3752. }
  3753. /*
  3754. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3755. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3756. * SCHED_BATCH and SCHED_IDLE is 0.
  3757. */
  3758. if (param->sched_priority < 0 ||
  3759. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3760. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3761. return -EINVAL;
  3762. if (rt_policy(policy) != (param->sched_priority != 0))
  3763. return -EINVAL;
  3764. /*
  3765. * Allow unprivileged RT tasks to decrease priority:
  3766. */
  3767. if (user && !capable(CAP_SYS_NICE)) {
  3768. if (rt_policy(policy)) {
  3769. unsigned long rlim_rtprio;
  3770. if (!lock_task_sighand(p, &flags))
  3771. return -ESRCH;
  3772. rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
  3773. unlock_task_sighand(p, &flags);
  3774. /* can't set/change the rt policy */
  3775. if (policy != p->policy && !rlim_rtprio)
  3776. return -EPERM;
  3777. /* can't increase priority */
  3778. if (param->sched_priority > p->rt_priority &&
  3779. param->sched_priority > rlim_rtprio)
  3780. return -EPERM;
  3781. }
  3782. /*
  3783. * Like positive nice levels, dont allow tasks to
  3784. * move out of SCHED_IDLE either:
  3785. */
  3786. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3787. return -EPERM;
  3788. /* can't change other user's priorities */
  3789. if (!check_same_owner(p))
  3790. return -EPERM;
  3791. /* Normal users shall not reset the sched_reset_on_fork flag */
  3792. if (p->sched_reset_on_fork && !reset_on_fork)
  3793. return -EPERM;
  3794. }
  3795. if (user) {
  3796. #ifdef CONFIG_RT_GROUP_SCHED
  3797. /*
  3798. * Do not allow realtime tasks into groups that have no runtime
  3799. * assigned.
  3800. */
  3801. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3802. task_group(p)->rt_bandwidth.rt_runtime == 0)
  3803. return -EPERM;
  3804. #endif
  3805. retval = security_task_setscheduler(p, policy, param);
  3806. if (retval)
  3807. return retval;
  3808. }
  3809. /*
  3810. * make sure no PI-waiters arrive (or leave) while we are
  3811. * changing the priority of the task:
  3812. */
  3813. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3814. /*
  3815. * To be able to change p->policy safely, the apropriate
  3816. * runqueue lock must be held.
  3817. */
  3818. rq = __task_rq_lock(p);
  3819. /* recheck policy now with rq lock held */
  3820. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3821. policy = oldpolicy = -1;
  3822. __task_rq_unlock(rq);
  3823. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3824. goto recheck;
  3825. }
  3826. on_rq = p->se.on_rq;
  3827. running = task_current(rq, p);
  3828. if (on_rq)
  3829. deactivate_task(rq, p, 0);
  3830. if (running)
  3831. p->sched_class->put_prev_task(rq, p);
  3832. p->sched_reset_on_fork = reset_on_fork;
  3833. oldprio = p->prio;
  3834. prev_class = p->sched_class;
  3835. __setscheduler(rq, p, policy, param->sched_priority);
  3836. if (running)
  3837. p->sched_class->set_curr_task(rq);
  3838. if (on_rq) {
  3839. activate_task(rq, p, 0);
  3840. check_class_changed(rq, p, prev_class, oldprio, running);
  3841. }
  3842. __task_rq_unlock(rq);
  3843. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3844. rt_mutex_adjust_pi(p);
  3845. return 0;
  3846. }
  3847. /**
  3848. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3849. * @p: the task in question.
  3850. * @policy: new policy.
  3851. * @param: structure containing the new RT priority.
  3852. *
  3853. * NOTE that the task may be already dead.
  3854. */
  3855. int sched_setscheduler(struct task_struct *p, int policy,
  3856. struct sched_param *param)
  3857. {
  3858. return __sched_setscheduler(p, policy, param, true);
  3859. }
  3860. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3861. /**
  3862. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3863. * @p: the task in question.
  3864. * @policy: new policy.
  3865. * @param: structure containing the new RT priority.
  3866. *
  3867. * Just like sched_setscheduler, only don't bother checking if the
  3868. * current context has permission. For example, this is needed in
  3869. * stop_machine(): we create temporary high priority worker threads,
  3870. * but our caller might not have that capability.
  3871. */
  3872. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3873. struct sched_param *param)
  3874. {
  3875. return __sched_setscheduler(p, policy, param, false);
  3876. }
  3877. static int
  3878. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3879. {
  3880. struct sched_param lparam;
  3881. struct task_struct *p;
  3882. int retval;
  3883. if (!param || pid < 0)
  3884. return -EINVAL;
  3885. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3886. return -EFAULT;
  3887. rcu_read_lock();
  3888. retval = -ESRCH;
  3889. p = find_process_by_pid(pid);
  3890. if (p != NULL)
  3891. retval = sched_setscheduler(p, policy, &lparam);
  3892. rcu_read_unlock();
  3893. return retval;
  3894. }
  3895. /**
  3896. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3897. * @pid: the pid in question.
  3898. * @policy: new policy.
  3899. * @param: structure containing the new RT priority.
  3900. */
  3901. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3902. struct sched_param __user *, param)
  3903. {
  3904. /* negative values for policy are not valid */
  3905. if (policy < 0)
  3906. return -EINVAL;
  3907. return do_sched_setscheduler(pid, policy, param);
  3908. }
  3909. /**
  3910. * sys_sched_setparam - set/change the RT priority of a thread
  3911. * @pid: the pid in question.
  3912. * @param: structure containing the new RT priority.
  3913. */
  3914. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3915. {
  3916. return do_sched_setscheduler(pid, -1, param);
  3917. }
  3918. /**
  3919. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3920. * @pid: the pid in question.
  3921. */
  3922. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3923. {
  3924. struct task_struct *p;
  3925. int retval;
  3926. if (pid < 0)
  3927. return -EINVAL;
  3928. retval = -ESRCH;
  3929. rcu_read_lock();
  3930. p = find_process_by_pid(pid);
  3931. if (p) {
  3932. retval = security_task_getscheduler(p);
  3933. if (!retval)
  3934. retval = p->policy
  3935. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3936. }
  3937. rcu_read_unlock();
  3938. return retval;
  3939. }
  3940. /**
  3941. * sys_sched_getparam - get the RT priority of a thread
  3942. * @pid: the pid in question.
  3943. * @param: structure containing the RT priority.
  3944. */
  3945. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3946. {
  3947. struct sched_param lp;
  3948. struct task_struct *p;
  3949. int retval;
  3950. if (!param || pid < 0)
  3951. return -EINVAL;
  3952. rcu_read_lock();
  3953. p = find_process_by_pid(pid);
  3954. retval = -ESRCH;
  3955. if (!p)
  3956. goto out_unlock;
  3957. retval = security_task_getscheduler(p);
  3958. if (retval)
  3959. goto out_unlock;
  3960. lp.sched_priority = p->rt_priority;
  3961. rcu_read_unlock();
  3962. /*
  3963. * This one might sleep, we cannot do it with a spinlock held ...
  3964. */
  3965. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3966. return retval;
  3967. out_unlock:
  3968. rcu_read_unlock();
  3969. return retval;
  3970. }
  3971. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3972. {
  3973. cpumask_var_t cpus_allowed, new_mask;
  3974. struct task_struct *p;
  3975. int retval;
  3976. get_online_cpus();
  3977. rcu_read_lock();
  3978. p = find_process_by_pid(pid);
  3979. if (!p) {
  3980. rcu_read_unlock();
  3981. put_online_cpus();
  3982. return -ESRCH;
  3983. }
  3984. /* Prevent p going away */
  3985. get_task_struct(p);
  3986. rcu_read_unlock();
  3987. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3988. retval = -ENOMEM;
  3989. goto out_put_task;
  3990. }
  3991. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3992. retval = -ENOMEM;
  3993. goto out_free_cpus_allowed;
  3994. }
  3995. retval = -EPERM;
  3996. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  3997. goto out_unlock;
  3998. retval = security_task_setscheduler(p, 0, NULL);
  3999. if (retval)
  4000. goto out_unlock;
  4001. cpuset_cpus_allowed(p, cpus_allowed);
  4002. cpumask_and(new_mask, in_mask, cpus_allowed);
  4003. again:
  4004. retval = set_cpus_allowed_ptr(p, new_mask);
  4005. if (!retval) {
  4006. cpuset_cpus_allowed(p, cpus_allowed);
  4007. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4008. /*
  4009. * We must have raced with a concurrent cpuset
  4010. * update. Just reset the cpus_allowed to the
  4011. * cpuset's cpus_allowed
  4012. */
  4013. cpumask_copy(new_mask, cpus_allowed);
  4014. goto again;
  4015. }
  4016. }
  4017. out_unlock:
  4018. free_cpumask_var(new_mask);
  4019. out_free_cpus_allowed:
  4020. free_cpumask_var(cpus_allowed);
  4021. out_put_task:
  4022. put_task_struct(p);
  4023. put_online_cpus();
  4024. return retval;
  4025. }
  4026. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4027. struct cpumask *new_mask)
  4028. {
  4029. if (len < cpumask_size())
  4030. cpumask_clear(new_mask);
  4031. else if (len > cpumask_size())
  4032. len = cpumask_size();
  4033. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4034. }
  4035. /**
  4036. * sys_sched_setaffinity - set the cpu affinity of a process
  4037. * @pid: pid of the process
  4038. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4039. * @user_mask_ptr: user-space pointer to the new cpu mask
  4040. */
  4041. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4042. unsigned long __user *, user_mask_ptr)
  4043. {
  4044. cpumask_var_t new_mask;
  4045. int retval;
  4046. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4047. return -ENOMEM;
  4048. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4049. if (retval == 0)
  4050. retval = sched_setaffinity(pid, new_mask);
  4051. free_cpumask_var(new_mask);
  4052. return retval;
  4053. }
  4054. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4055. {
  4056. struct task_struct *p;
  4057. unsigned long flags;
  4058. struct rq *rq;
  4059. int retval;
  4060. get_online_cpus();
  4061. rcu_read_lock();
  4062. retval = -ESRCH;
  4063. p = find_process_by_pid(pid);
  4064. if (!p)
  4065. goto out_unlock;
  4066. retval = security_task_getscheduler(p);
  4067. if (retval)
  4068. goto out_unlock;
  4069. rq = task_rq_lock(p, &flags);
  4070. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4071. task_rq_unlock(rq, &flags);
  4072. out_unlock:
  4073. rcu_read_unlock();
  4074. put_online_cpus();
  4075. return retval;
  4076. }
  4077. /**
  4078. * sys_sched_getaffinity - get the cpu affinity of a process
  4079. * @pid: pid of the process
  4080. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4081. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4082. */
  4083. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4084. unsigned long __user *, user_mask_ptr)
  4085. {
  4086. int ret;
  4087. cpumask_var_t mask;
  4088. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4089. return -EINVAL;
  4090. if (len & (sizeof(unsigned long)-1))
  4091. return -EINVAL;
  4092. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4093. return -ENOMEM;
  4094. ret = sched_getaffinity(pid, mask);
  4095. if (ret == 0) {
  4096. size_t retlen = min_t(size_t, len, cpumask_size());
  4097. if (copy_to_user(user_mask_ptr, mask, retlen))
  4098. ret = -EFAULT;
  4099. else
  4100. ret = retlen;
  4101. }
  4102. free_cpumask_var(mask);
  4103. return ret;
  4104. }
  4105. /**
  4106. * sys_sched_yield - yield the current processor to other threads.
  4107. *
  4108. * This function yields the current CPU to other tasks. If there are no
  4109. * other threads running on this CPU then this function will return.
  4110. */
  4111. SYSCALL_DEFINE0(sched_yield)
  4112. {
  4113. struct rq *rq = this_rq_lock();
  4114. schedstat_inc(rq, yld_count);
  4115. current->sched_class->yield_task(rq);
  4116. /*
  4117. * Since we are going to call schedule() anyway, there's
  4118. * no need to preempt or enable interrupts:
  4119. */
  4120. __release(rq->lock);
  4121. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4122. do_raw_spin_unlock(&rq->lock);
  4123. preempt_enable_no_resched();
  4124. schedule();
  4125. return 0;
  4126. }
  4127. static inline int should_resched(void)
  4128. {
  4129. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4130. }
  4131. static void __cond_resched(void)
  4132. {
  4133. add_preempt_count(PREEMPT_ACTIVE);
  4134. schedule();
  4135. sub_preempt_count(PREEMPT_ACTIVE);
  4136. }
  4137. int __sched _cond_resched(void)
  4138. {
  4139. if (should_resched()) {
  4140. __cond_resched();
  4141. return 1;
  4142. }
  4143. return 0;
  4144. }
  4145. EXPORT_SYMBOL(_cond_resched);
  4146. /*
  4147. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4148. * call schedule, and on return reacquire the lock.
  4149. *
  4150. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4151. * operations here to prevent schedule() from being called twice (once via
  4152. * spin_unlock(), once by hand).
  4153. */
  4154. int __cond_resched_lock(spinlock_t *lock)
  4155. {
  4156. int resched = should_resched();
  4157. int ret = 0;
  4158. lockdep_assert_held(lock);
  4159. if (spin_needbreak(lock) || resched) {
  4160. spin_unlock(lock);
  4161. if (resched)
  4162. __cond_resched();
  4163. else
  4164. cpu_relax();
  4165. ret = 1;
  4166. spin_lock(lock);
  4167. }
  4168. return ret;
  4169. }
  4170. EXPORT_SYMBOL(__cond_resched_lock);
  4171. int __sched __cond_resched_softirq(void)
  4172. {
  4173. BUG_ON(!in_softirq());
  4174. if (should_resched()) {
  4175. local_bh_enable();
  4176. __cond_resched();
  4177. local_bh_disable();
  4178. return 1;
  4179. }
  4180. return 0;
  4181. }
  4182. EXPORT_SYMBOL(__cond_resched_softirq);
  4183. /**
  4184. * yield - yield the current processor to other threads.
  4185. *
  4186. * This is a shortcut for kernel-space yielding - it marks the
  4187. * thread runnable and calls sys_sched_yield().
  4188. */
  4189. void __sched yield(void)
  4190. {
  4191. set_current_state(TASK_RUNNING);
  4192. sys_sched_yield();
  4193. }
  4194. EXPORT_SYMBOL(yield);
  4195. /*
  4196. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4197. * that process accounting knows that this is a task in IO wait state.
  4198. */
  4199. void __sched io_schedule(void)
  4200. {
  4201. struct rq *rq = raw_rq();
  4202. delayacct_blkio_start();
  4203. atomic_inc(&rq->nr_iowait);
  4204. current->in_iowait = 1;
  4205. schedule();
  4206. current->in_iowait = 0;
  4207. atomic_dec(&rq->nr_iowait);
  4208. delayacct_blkio_end();
  4209. }
  4210. EXPORT_SYMBOL(io_schedule);
  4211. long __sched io_schedule_timeout(long timeout)
  4212. {
  4213. struct rq *rq = raw_rq();
  4214. long ret;
  4215. delayacct_blkio_start();
  4216. atomic_inc(&rq->nr_iowait);
  4217. current->in_iowait = 1;
  4218. ret = schedule_timeout(timeout);
  4219. current->in_iowait = 0;
  4220. atomic_dec(&rq->nr_iowait);
  4221. delayacct_blkio_end();
  4222. return ret;
  4223. }
  4224. /**
  4225. * sys_sched_get_priority_max - return maximum RT priority.
  4226. * @policy: scheduling class.
  4227. *
  4228. * this syscall returns the maximum rt_priority that can be used
  4229. * by a given scheduling class.
  4230. */
  4231. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4232. {
  4233. int ret = -EINVAL;
  4234. switch (policy) {
  4235. case SCHED_FIFO:
  4236. case SCHED_RR:
  4237. ret = MAX_USER_RT_PRIO-1;
  4238. break;
  4239. case SCHED_NORMAL:
  4240. case SCHED_BATCH:
  4241. case SCHED_IDLE:
  4242. ret = 0;
  4243. break;
  4244. }
  4245. return ret;
  4246. }
  4247. /**
  4248. * sys_sched_get_priority_min - return minimum RT priority.
  4249. * @policy: scheduling class.
  4250. *
  4251. * this syscall returns the minimum rt_priority that can be used
  4252. * by a given scheduling class.
  4253. */
  4254. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4255. {
  4256. int ret = -EINVAL;
  4257. switch (policy) {
  4258. case SCHED_FIFO:
  4259. case SCHED_RR:
  4260. ret = 1;
  4261. break;
  4262. case SCHED_NORMAL:
  4263. case SCHED_BATCH:
  4264. case SCHED_IDLE:
  4265. ret = 0;
  4266. }
  4267. return ret;
  4268. }
  4269. /**
  4270. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4271. * @pid: pid of the process.
  4272. * @interval: userspace pointer to the timeslice value.
  4273. *
  4274. * this syscall writes the default timeslice value of a given process
  4275. * into the user-space timespec buffer. A value of '0' means infinity.
  4276. */
  4277. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4278. struct timespec __user *, interval)
  4279. {
  4280. struct task_struct *p;
  4281. unsigned int time_slice;
  4282. unsigned long flags;
  4283. struct rq *rq;
  4284. int retval;
  4285. struct timespec t;
  4286. if (pid < 0)
  4287. return -EINVAL;
  4288. retval = -ESRCH;
  4289. rcu_read_lock();
  4290. p = find_process_by_pid(pid);
  4291. if (!p)
  4292. goto out_unlock;
  4293. retval = security_task_getscheduler(p);
  4294. if (retval)
  4295. goto out_unlock;
  4296. rq = task_rq_lock(p, &flags);
  4297. time_slice = p->sched_class->get_rr_interval(rq, p);
  4298. task_rq_unlock(rq, &flags);
  4299. rcu_read_unlock();
  4300. jiffies_to_timespec(time_slice, &t);
  4301. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4302. return retval;
  4303. out_unlock:
  4304. rcu_read_unlock();
  4305. return retval;
  4306. }
  4307. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4308. void sched_show_task(struct task_struct *p)
  4309. {
  4310. unsigned long free = 0;
  4311. unsigned state;
  4312. state = p->state ? __ffs(p->state) + 1 : 0;
  4313. printk(KERN_INFO "%-13.13s %c", p->comm,
  4314. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4315. #if BITS_PER_LONG == 32
  4316. if (state == TASK_RUNNING)
  4317. printk(KERN_CONT " running ");
  4318. else
  4319. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4320. #else
  4321. if (state == TASK_RUNNING)
  4322. printk(KERN_CONT " running task ");
  4323. else
  4324. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4325. #endif
  4326. #ifdef CONFIG_DEBUG_STACK_USAGE
  4327. free = stack_not_used(p);
  4328. #endif
  4329. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4330. task_pid_nr(p), task_pid_nr(p->real_parent),
  4331. (unsigned long)task_thread_info(p)->flags);
  4332. show_stack(p, NULL);
  4333. }
  4334. void show_state_filter(unsigned long state_filter)
  4335. {
  4336. struct task_struct *g, *p;
  4337. #if BITS_PER_LONG == 32
  4338. printk(KERN_INFO
  4339. " task PC stack pid father\n");
  4340. #else
  4341. printk(KERN_INFO
  4342. " task PC stack pid father\n");
  4343. #endif
  4344. read_lock(&tasklist_lock);
  4345. do_each_thread(g, p) {
  4346. /*
  4347. * reset the NMI-timeout, listing all files on a slow
  4348. * console might take alot of time:
  4349. */
  4350. touch_nmi_watchdog();
  4351. if (!state_filter || (p->state & state_filter))
  4352. sched_show_task(p);
  4353. } while_each_thread(g, p);
  4354. touch_all_softlockup_watchdogs();
  4355. #ifdef CONFIG_SCHED_DEBUG
  4356. sysrq_sched_debug_show();
  4357. #endif
  4358. read_unlock(&tasklist_lock);
  4359. /*
  4360. * Only show locks if all tasks are dumped:
  4361. */
  4362. if (!state_filter)
  4363. debug_show_all_locks();
  4364. }
  4365. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4366. {
  4367. idle->sched_class = &idle_sched_class;
  4368. }
  4369. /**
  4370. * init_idle - set up an idle thread for a given CPU
  4371. * @idle: task in question
  4372. * @cpu: cpu the idle task belongs to
  4373. *
  4374. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4375. * flag, to make booting more robust.
  4376. */
  4377. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4378. {
  4379. struct rq *rq = cpu_rq(cpu);
  4380. unsigned long flags;
  4381. raw_spin_lock_irqsave(&rq->lock, flags);
  4382. __sched_fork(idle);
  4383. idle->state = TASK_RUNNING;
  4384. idle->se.exec_start = sched_clock();
  4385. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4386. __set_task_cpu(idle, cpu);
  4387. rq->curr = rq->idle = idle;
  4388. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4389. idle->oncpu = 1;
  4390. #endif
  4391. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4392. /* Set the preempt count _outside_ the spinlocks! */
  4393. #if defined(CONFIG_PREEMPT)
  4394. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4395. #else
  4396. task_thread_info(idle)->preempt_count = 0;
  4397. #endif
  4398. /*
  4399. * The idle tasks have their own, simple scheduling class:
  4400. */
  4401. idle->sched_class = &idle_sched_class;
  4402. ftrace_graph_init_task(idle);
  4403. }
  4404. /*
  4405. * In a system that switches off the HZ timer nohz_cpu_mask
  4406. * indicates which cpus entered this state. This is used
  4407. * in the rcu update to wait only for active cpus. For system
  4408. * which do not switch off the HZ timer nohz_cpu_mask should
  4409. * always be CPU_BITS_NONE.
  4410. */
  4411. cpumask_var_t nohz_cpu_mask;
  4412. /*
  4413. * Increase the granularity value when there are more CPUs,
  4414. * because with more CPUs the 'effective latency' as visible
  4415. * to users decreases. But the relationship is not linear,
  4416. * so pick a second-best guess by going with the log2 of the
  4417. * number of CPUs.
  4418. *
  4419. * This idea comes from the SD scheduler of Con Kolivas:
  4420. */
  4421. static int get_update_sysctl_factor(void)
  4422. {
  4423. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4424. unsigned int factor;
  4425. switch (sysctl_sched_tunable_scaling) {
  4426. case SCHED_TUNABLESCALING_NONE:
  4427. factor = 1;
  4428. break;
  4429. case SCHED_TUNABLESCALING_LINEAR:
  4430. factor = cpus;
  4431. break;
  4432. case SCHED_TUNABLESCALING_LOG:
  4433. default:
  4434. factor = 1 + ilog2(cpus);
  4435. break;
  4436. }
  4437. return factor;
  4438. }
  4439. static void update_sysctl(void)
  4440. {
  4441. unsigned int factor = get_update_sysctl_factor();
  4442. #define SET_SYSCTL(name) \
  4443. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4444. SET_SYSCTL(sched_min_granularity);
  4445. SET_SYSCTL(sched_latency);
  4446. SET_SYSCTL(sched_wakeup_granularity);
  4447. SET_SYSCTL(sched_shares_ratelimit);
  4448. #undef SET_SYSCTL
  4449. }
  4450. static inline void sched_init_granularity(void)
  4451. {
  4452. update_sysctl();
  4453. }
  4454. #ifdef CONFIG_SMP
  4455. /*
  4456. * This is how migration works:
  4457. *
  4458. * 1) we invoke migration_cpu_stop() on the target CPU using
  4459. * stop_one_cpu().
  4460. * 2) stopper starts to run (implicitly forcing the migrated thread
  4461. * off the CPU)
  4462. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4463. * 4) if it's in the wrong runqueue then the migration thread removes
  4464. * it and puts it into the right queue.
  4465. * 5) stopper completes and stop_one_cpu() returns and the migration
  4466. * is done.
  4467. */
  4468. /*
  4469. * Change a given task's CPU affinity. Migrate the thread to a
  4470. * proper CPU and schedule it away if the CPU it's executing on
  4471. * is removed from the allowed bitmask.
  4472. *
  4473. * NOTE: the caller must have a valid reference to the task, the
  4474. * task must not exit() & deallocate itself prematurely. The
  4475. * call is not atomic; no spinlocks may be held.
  4476. */
  4477. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4478. {
  4479. unsigned long flags;
  4480. struct rq *rq;
  4481. unsigned int dest_cpu;
  4482. int ret = 0;
  4483. /*
  4484. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4485. * drop the rq->lock and still rely on ->cpus_allowed.
  4486. */
  4487. again:
  4488. while (task_is_waking(p))
  4489. cpu_relax();
  4490. rq = task_rq_lock(p, &flags);
  4491. if (task_is_waking(p)) {
  4492. task_rq_unlock(rq, &flags);
  4493. goto again;
  4494. }
  4495. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4496. ret = -EINVAL;
  4497. goto out;
  4498. }
  4499. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4500. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4501. ret = -EINVAL;
  4502. goto out;
  4503. }
  4504. if (p->sched_class->set_cpus_allowed)
  4505. p->sched_class->set_cpus_allowed(p, new_mask);
  4506. else {
  4507. cpumask_copy(&p->cpus_allowed, new_mask);
  4508. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4509. }
  4510. /* Can the task run on the task's current CPU? If so, we're done */
  4511. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4512. goto out;
  4513. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4514. if (migrate_task(p, dest_cpu)) {
  4515. struct migration_arg arg = { p, dest_cpu };
  4516. /* Need help from migration thread: drop lock and wait. */
  4517. task_rq_unlock(rq, &flags);
  4518. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4519. tlb_migrate_finish(p->mm);
  4520. return 0;
  4521. }
  4522. out:
  4523. task_rq_unlock(rq, &flags);
  4524. return ret;
  4525. }
  4526. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4527. /*
  4528. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4529. * this because either it can't run here any more (set_cpus_allowed()
  4530. * away from this CPU, or CPU going down), or because we're
  4531. * attempting to rebalance this task on exec (sched_exec).
  4532. *
  4533. * So we race with normal scheduler movements, but that's OK, as long
  4534. * as the task is no longer on this CPU.
  4535. *
  4536. * Returns non-zero if task was successfully migrated.
  4537. */
  4538. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4539. {
  4540. struct rq *rq_dest, *rq_src;
  4541. int ret = 0;
  4542. if (unlikely(!cpu_active(dest_cpu)))
  4543. return ret;
  4544. rq_src = cpu_rq(src_cpu);
  4545. rq_dest = cpu_rq(dest_cpu);
  4546. double_rq_lock(rq_src, rq_dest);
  4547. /* Already moved. */
  4548. if (task_cpu(p) != src_cpu)
  4549. goto done;
  4550. /* Affinity changed (again). */
  4551. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4552. goto fail;
  4553. /*
  4554. * If we're not on a rq, the next wake-up will ensure we're
  4555. * placed properly.
  4556. */
  4557. if (p->se.on_rq) {
  4558. deactivate_task(rq_src, p, 0);
  4559. set_task_cpu(p, dest_cpu);
  4560. activate_task(rq_dest, p, 0);
  4561. check_preempt_curr(rq_dest, p, 0);
  4562. }
  4563. done:
  4564. ret = 1;
  4565. fail:
  4566. double_rq_unlock(rq_src, rq_dest);
  4567. return ret;
  4568. }
  4569. /*
  4570. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4571. * and performs thread migration by bumping thread off CPU then
  4572. * 'pushing' onto another runqueue.
  4573. */
  4574. static int migration_cpu_stop(void *data)
  4575. {
  4576. struct migration_arg *arg = data;
  4577. /*
  4578. * The original target cpu might have gone down and we might
  4579. * be on another cpu but it doesn't matter.
  4580. */
  4581. local_irq_disable();
  4582. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4583. local_irq_enable();
  4584. return 0;
  4585. }
  4586. #ifdef CONFIG_HOTPLUG_CPU
  4587. /*
  4588. * Figure out where task on dead CPU should go, use force if necessary.
  4589. */
  4590. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4591. {
  4592. struct rq *rq = cpu_rq(dead_cpu);
  4593. int needs_cpu, uninitialized_var(dest_cpu);
  4594. unsigned long flags;
  4595. local_irq_save(flags);
  4596. raw_spin_lock(&rq->lock);
  4597. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4598. if (needs_cpu)
  4599. dest_cpu = select_fallback_rq(dead_cpu, p);
  4600. raw_spin_unlock(&rq->lock);
  4601. /*
  4602. * It can only fail if we race with set_cpus_allowed(),
  4603. * in the racer should migrate the task anyway.
  4604. */
  4605. if (needs_cpu)
  4606. __migrate_task(p, dead_cpu, dest_cpu);
  4607. local_irq_restore(flags);
  4608. }
  4609. /*
  4610. * While a dead CPU has no uninterruptible tasks queued at this point,
  4611. * it might still have a nonzero ->nr_uninterruptible counter, because
  4612. * for performance reasons the counter is not stricly tracking tasks to
  4613. * their home CPUs. So we just add the counter to another CPU's counter,
  4614. * to keep the global sum constant after CPU-down:
  4615. */
  4616. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4617. {
  4618. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4619. unsigned long flags;
  4620. local_irq_save(flags);
  4621. double_rq_lock(rq_src, rq_dest);
  4622. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4623. rq_src->nr_uninterruptible = 0;
  4624. double_rq_unlock(rq_src, rq_dest);
  4625. local_irq_restore(flags);
  4626. }
  4627. /* Run through task list and migrate tasks from the dead cpu. */
  4628. static void migrate_live_tasks(int src_cpu)
  4629. {
  4630. struct task_struct *p, *t;
  4631. read_lock(&tasklist_lock);
  4632. do_each_thread(t, p) {
  4633. if (p == current)
  4634. continue;
  4635. if (task_cpu(p) == src_cpu)
  4636. move_task_off_dead_cpu(src_cpu, p);
  4637. } while_each_thread(t, p);
  4638. read_unlock(&tasklist_lock);
  4639. }
  4640. /*
  4641. * Schedules idle task to be the next runnable task on current CPU.
  4642. * It does so by boosting its priority to highest possible.
  4643. * Used by CPU offline code.
  4644. */
  4645. void sched_idle_next(void)
  4646. {
  4647. int this_cpu = smp_processor_id();
  4648. struct rq *rq = cpu_rq(this_cpu);
  4649. struct task_struct *p = rq->idle;
  4650. unsigned long flags;
  4651. /* cpu has to be offline */
  4652. BUG_ON(cpu_online(this_cpu));
  4653. /*
  4654. * Strictly not necessary since rest of the CPUs are stopped by now
  4655. * and interrupts disabled on the current cpu.
  4656. */
  4657. raw_spin_lock_irqsave(&rq->lock, flags);
  4658. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4659. activate_task(rq, p, 0);
  4660. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4661. }
  4662. /*
  4663. * Ensures that the idle task is using init_mm right before its cpu goes
  4664. * offline.
  4665. */
  4666. void idle_task_exit(void)
  4667. {
  4668. struct mm_struct *mm = current->active_mm;
  4669. BUG_ON(cpu_online(smp_processor_id()));
  4670. if (mm != &init_mm)
  4671. switch_mm(mm, &init_mm, current);
  4672. mmdrop(mm);
  4673. }
  4674. /* called under rq->lock with disabled interrupts */
  4675. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4676. {
  4677. struct rq *rq = cpu_rq(dead_cpu);
  4678. /* Must be exiting, otherwise would be on tasklist. */
  4679. BUG_ON(!p->exit_state);
  4680. /* Cannot have done final schedule yet: would have vanished. */
  4681. BUG_ON(p->state == TASK_DEAD);
  4682. get_task_struct(p);
  4683. /*
  4684. * Drop lock around migration; if someone else moves it,
  4685. * that's OK. No task can be added to this CPU, so iteration is
  4686. * fine.
  4687. */
  4688. raw_spin_unlock_irq(&rq->lock);
  4689. move_task_off_dead_cpu(dead_cpu, p);
  4690. raw_spin_lock_irq(&rq->lock);
  4691. put_task_struct(p);
  4692. }
  4693. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4694. static void migrate_dead_tasks(unsigned int dead_cpu)
  4695. {
  4696. struct rq *rq = cpu_rq(dead_cpu);
  4697. struct task_struct *next;
  4698. for ( ; ; ) {
  4699. if (!rq->nr_running)
  4700. break;
  4701. next = pick_next_task(rq);
  4702. if (!next)
  4703. break;
  4704. next->sched_class->put_prev_task(rq, next);
  4705. migrate_dead(dead_cpu, next);
  4706. }
  4707. }
  4708. /*
  4709. * remove the tasks which were accounted by rq from calc_load_tasks.
  4710. */
  4711. static void calc_global_load_remove(struct rq *rq)
  4712. {
  4713. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4714. rq->calc_load_active = 0;
  4715. }
  4716. #endif /* CONFIG_HOTPLUG_CPU */
  4717. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4718. static struct ctl_table sd_ctl_dir[] = {
  4719. {
  4720. .procname = "sched_domain",
  4721. .mode = 0555,
  4722. },
  4723. {}
  4724. };
  4725. static struct ctl_table sd_ctl_root[] = {
  4726. {
  4727. .procname = "kernel",
  4728. .mode = 0555,
  4729. .child = sd_ctl_dir,
  4730. },
  4731. {}
  4732. };
  4733. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4734. {
  4735. struct ctl_table *entry =
  4736. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4737. return entry;
  4738. }
  4739. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4740. {
  4741. struct ctl_table *entry;
  4742. /*
  4743. * In the intermediate directories, both the child directory and
  4744. * procname are dynamically allocated and could fail but the mode
  4745. * will always be set. In the lowest directory the names are
  4746. * static strings and all have proc handlers.
  4747. */
  4748. for (entry = *tablep; entry->mode; entry++) {
  4749. if (entry->child)
  4750. sd_free_ctl_entry(&entry->child);
  4751. if (entry->proc_handler == NULL)
  4752. kfree(entry->procname);
  4753. }
  4754. kfree(*tablep);
  4755. *tablep = NULL;
  4756. }
  4757. static void
  4758. set_table_entry(struct ctl_table *entry,
  4759. const char *procname, void *data, int maxlen,
  4760. mode_t mode, proc_handler *proc_handler)
  4761. {
  4762. entry->procname = procname;
  4763. entry->data = data;
  4764. entry->maxlen = maxlen;
  4765. entry->mode = mode;
  4766. entry->proc_handler = proc_handler;
  4767. }
  4768. static struct ctl_table *
  4769. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4770. {
  4771. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4772. if (table == NULL)
  4773. return NULL;
  4774. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4775. sizeof(long), 0644, proc_doulongvec_minmax);
  4776. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4777. sizeof(long), 0644, proc_doulongvec_minmax);
  4778. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4779. sizeof(int), 0644, proc_dointvec_minmax);
  4780. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4781. sizeof(int), 0644, proc_dointvec_minmax);
  4782. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4783. sizeof(int), 0644, proc_dointvec_minmax);
  4784. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4785. sizeof(int), 0644, proc_dointvec_minmax);
  4786. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4787. sizeof(int), 0644, proc_dointvec_minmax);
  4788. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4789. sizeof(int), 0644, proc_dointvec_minmax);
  4790. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4791. sizeof(int), 0644, proc_dointvec_minmax);
  4792. set_table_entry(&table[9], "cache_nice_tries",
  4793. &sd->cache_nice_tries,
  4794. sizeof(int), 0644, proc_dointvec_minmax);
  4795. set_table_entry(&table[10], "flags", &sd->flags,
  4796. sizeof(int), 0644, proc_dointvec_minmax);
  4797. set_table_entry(&table[11], "name", sd->name,
  4798. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4799. /* &table[12] is terminator */
  4800. return table;
  4801. }
  4802. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4803. {
  4804. struct ctl_table *entry, *table;
  4805. struct sched_domain *sd;
  4806. int domain_num = 0, i;
  4807. char buf[32];
  4808. for_each_domain(cpu, sd)
  4809. domain_num++;
  4810. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4811. if (table == NULL)
  4812. return NULL;
  4813. i = 0;
  4814. for_each_domain(cpu, sd) {
  4815. snprintf(buf, 32, "domain%d", i);
  4816. entry->procname = kstrdup(buf, GFP_KERNEL);
  4817. entry->mode = 0555;
  4818. entry->child = sd_alloc_ctl_domain_table(sd);
  4819. entry++;
  4820. i++;
  4821. }
  4822. return table;
  4823. }
  4824. static struct ctl_table_header *sd_sysctl_header;
  4825. static void register_sched_domain_sysctl(void)
  4826. {
  4827. int i, cpu_num = num_possible_cpus();
  4828. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4829. char buf[32];
  4830. WARN_ON(sd_ctl_dir[0].child);
  4831. sd_ctl_dir[0].child = entry;
  4832. if (entry == NULL)
  4833. return;
  4834. for_each_possible_cpu(i) {
  4835. snprintf(buf, 32, "cpu%d", i);
  4836. entry->procname = kstrdup(buf, GFP_KERNEL);
  4837. entry->mode = 0555;
  4838. entry->child = sd_alloc_ctl_cpu_table(i);
  4839. entry++;
  4840. }
  4841. WARN_ON(sd_sysctl_header);
  4842. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4843. }
  4844. /* may be called multiple times per register */
  4845. static void unregister_sched_domain_sysctl(void)
  4846. {
  4847. if (sd_sysctl_header)
  4848. unregister_sysctl_table(sd_sysctl_header);
  4849. sd_sysctl_header = NULL;
  4850. if (sd_ctl_dir[0].child)
  4851. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4852. }
  4853. #else
  4854. static void register_sched_domain_sysctl(void)
  4855. {
  4856. }
  4857. static void unregister_sched_domain_sysctl(void)
  4858. {
  4859. }
  4860. #endif
  4861. static void set_rq_online(struct rq *rq)
  4862. {
  4863. if (!rq->online) {
  4864. const struct sched_class *class;
  4865. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4866. rq->online = 1;
  4867. for_each_class(class) {
  4868. if (class->rq_online)
  4869. class->rq_online(rq);
  4870. }
  4871. }
  4872. }
  4873. static void set_rq_offline(struct rq *rq)
  4874. {
  4875. if (rq->online) {
  4876. const struct sched_class *class;
  4877. for_each_class(class) {
  4878. if (class->rq_offline)
  4879. class->rq_offline(rq);
  4880. }
  4881. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4882. rq->online = 0;
  4883. }
  4884. }
  4885. /*
  4886. * migration_call - callback that gets triggered when a CPU is added.
  4887. * Here we can start up the necessary migration thread for the new CPU.
  4888. */
  4889. static int __cpuinit
  4890. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4891. {
  4892. int cpu = (long)hcpu;
  4893. unsigned long flags;
  4894. struct rq *rq = cpu_rq(cpu);
  4895. switch (action) {
  4896. case CPU_UP_PREPARE:
  4897. case CPU_UP_PREPARE_FROZEN:
  4898. rq->calc_load_update = calc_load_update;
  4899. break;
  4900. case CPU_ONLINE:
  4901. case CPU_ONLINE_FROZEN:
  4902. /* Update our root-domain */
  4903. raw_spin_lock_irqsave(&rq->lock, flags);
  4904. if (rq->rd) {
  4905. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4906. set_rq_online(rq);
  4907. }
  4908. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4909. break;
  4910. #ifdef CONFIG_HOTPLUG_CPU
  4911. case CPU_DEAD:
  4912. case CPU_DEAD_FROZEN:
  4913. migrate_live_tasks(cpu);
  4914. /* Idle task back to normal (off runqueue, low prio) */
  4915. raw_spin_lock_irq(&rq->lock);
  4916. deactivate_task(rq, rq->idle, 0);
  4917. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4918. rq->idle->sched_class = &idle_sched_class;
  4919. migrate_dead_tasks(cpu);
  4920. raw_spin_unlock_irq(&rq->lock);
  4921. migrate_nr_uninterruptible(rq);
  4922. BUG_ON(rq->nr_running != 0);
  4923. calc_global_load_remove(rq);
  4924. break;
  4925. case CPU_DYING:
  4926. case CPU_DYING_FROZEN:
  4927. /* Update our root-domain */
  4928. raw_spin_lock_irqsave(&rq->lock, flags);
  4929. if (rq->rd) {
  4930. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4931. set_rq_offline(rq);
  4932. }
  4933. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4934. break;
  4935. #endif
  4936. }
  4937. return NOTIFY_OK;
  4938. }
  4939. /*
  4940. * Register at high priority so that task migration (migrate_all_tasks)
  4941. * happens before everything else. This has to be lower priority than
  4942. * the notifier in the perf_event subsystem, though.
  4943. */
  4944. static struct notifier_block __cpuinitdata migration_notifier = {
  4945. .notifier_call = migration_call,
  4946. .priority = 10
  4947. };
  4948. static int __init migration_init(void)
  4949. {
  4950. void *cpu = (void *)(long)smp_processor_id();
  4951. int err;
  4952. /* Start one for the boot CPU: */
  4953. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4954. BUG_ON(err == NOTIFY_BAD);
  4955. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4956. register_cpu_notifier(&migration_notifier);
  4957. return 0;
  4958. }
  4959. early_initcall(migration_init);
  4960. #endif
  4961. #ifdef CONFIG_SMP
  4962. #ifdef CONFIG_SCHED_DEBUG
  4963. static __read_mostly int sched_domain_debug_enabled;
  4964. static int __init sched_domain_debug_setup(char *str)
  4965. {
  4966. sched_domain_debug_enabled = 1;
  4967. return 0;
  4968. }
  4969. early_param("sched_debug", sched_domain_debug_setup);
  4970. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4971. struct cpumask *groupmask)
  4972. {
  4973. struct sched_group *group = sd->groups;
  4974. char str[256];
  4975. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4976. cpumask_clear(groupmask);
  4977. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4978. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4979. printk("does not load-balance\n");
  4980. if (sd->parent)
  4981. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4982. " has parent");
  4983. return -1;
  4984. }
  4985. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4986. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4987. printk(KERN_ERR "ERROR: domain->span does not contain "
  4988. "CPU%d\n", cpu);
  4989. }
  4990. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4991. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4992. " CPU%d\n", cpu);
  4993. }
  4994. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4995. do {
  4996. if (!group) {
  4997. printk("\n");
  4998. printk(KERN_ERR "ERROR: group is NULL\n");
  4999. break;
  5000. }
  5001. if (!group->cpu_power) {
  5002. printk(KERN_CONT "\n");
  5003. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5004. "set\n");
  5005. break;
  5006. }
  5007. if (!cpumask_weight(sched_group_cpus(group))) {
  5008. printk(KERN_CONT "\n");
  5009. printk(KERN_ERR "ERROR: empty group\n");
  5010. break;
  5011. }
  5012. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5013. printk(KERN_CONT "\n");
  5014. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5015. break;
  5016. }
  5017. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5018. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5019. printk(KERN_CONT " %s", str);
  5020. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5021. printk(KERN_CONT " (cpu_power = %d)",
  5022. group->cpu_power);
  5023. }
  5024. group = group->next;
  5025. } while (group != sd->groups);
  5026. printk(KERN_CONT "\n");
  5027. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5028. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5029. if (sd->parent &&
  5030. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5031. printk(KERN_ERR "ERROR: parent span is not a superset "
  5032. "of domain->span\n");
  5033. return 0;
  5034. }
  5035. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5036. {
  5037. cpumask_var_t groupmask;
  5038. int level = 0;
  5039. if (!sched_domain_debug_enabled)
  5040. return;
  5041. if (!sd) {
  5042. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5043. return;
  5044. }
  5045. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5046. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5047. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5048. return;
  5049. }
  5050. for (;;) {
  5051. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5052. break;
  5053. level++;
  5054. sd = sd->parent;
  5055. if (!sd)
  5056. break;
  5057. }
  5058. free_cpumask_var(groupmask);
  5059. }
  5060. #else /* !CONFIG_SCHED_DEBUG */
  5061. # define sched_domain_debug(sd, cpu) do { } while (0)
  5062. #endif /* CONFIG_SCHED_DEBUG */
  5063. static int sd_degenerate(struct sched_domain *sd)
  5064. {
  5065. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5066. return 1;
  5067. /* Following flags need at least 2 groups */
  5068. if (sd->flags & (SD_LOAD_BALANCE |
  5069. SD_BALANCE_NEWIDLE |
  5070. SD_BALANCE_FORK |
  5071. SD_BALANCE_EXEC |
  5072. SD_SHARE_CPUPOWER |
  5073. SD_SHARE_PKG_RESOURCES)) {
  5074. if (sd->groups != sd->groups->next)
  5075. return 0;
  5076. }
  5077. /* Following flags don't use groups */
  5078. if (sd->flags & (SD_WAKE_AFFINE))
  5079. return 0;
  5080. return 1;
  5081. }
  5082. static int
  5083. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5084. {
  5085. unsigned long cflags = sd->flags, pflags = parent->flags;
  5086. if (sd_degenerate(parent))
  5087. return 1;
  5088. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5089. return 0;
  5090. /* Flags needing groups don't count if only 1 group in parent */
  5091. if (parent->groups == parent->groups->next) {
  5092. pflags &= ~(SD_LOAD_BALANCE |
  5093. SD_BALANCE_NEWIDLE |
  5094. SD_BALANCE_FORK |
  5095. SD_BALANCE_EXEC |
  5096. SD_SHARE_CPUPOWER |
  5097. SD_SHARE_PKG_RESOURCES);
  5098. if (nr_node_ids == 1)
  5099. pflags &= ~SD_SERIALIZE;
  5100. }
  5101. if (~cflags & pflags)
  5102. return 0;
  5103. return 1;
  5104. }
  5105. static void free_rootdomain(struct root_domain *rd)
  5106. {
  5107. synchronize_sched();
  5108. cpupri_cleanup(&rd->cpupri);
  5109. free_cpumask_var(rd->rto_mask);
  5110. free_cpumask_var(rd->online);
  5111. free_cpumask_var(rd->span);
  5112. kfree(rd);
  5113. }
  5114. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5115. {
  5116. struct root_domain *old_rd = NULL;
  5117. unsigned long flags;
  5118. raw_spin_lock_irqsave(&rq->lock, flags);
  5119. if (rq->rd) {
  5120. old_rd = rq->rd;
  5121. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5122. set_rq_offline(rq);
  5123. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5124. /*
  5125. * If we dont want to free the old_rt yet then
  5126. * set old_rd to NULL to skip the freeing later
  5127. * in this function:
  5128. */
  5129. if (!atomic_dec_and_test(&old_rd->refcount))
  5130. old_rd = NULL;
  5131. }
  5132. atomic_inc(&rd->refcount);
  5133. rq->rd = rd;
  5134. cpumask_set_cpu(rq->cpu, rd->span);
  5135. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5136. set_rq_online(rq);
  5137. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5138. if (old_rd)
  5139. free_rootdomain(old_rd);
  5140. }
  5141. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5142. {
  5143. gfp_t gfp = GFP_KERNEL;
  5144. memset(rd, 0, sizeof(*rd));
  5145. if (bootmem)
  5146. gfp = GFP_NOWAIT;
  5147. if (!alloc_cpumask_var(&rd->span, gfp))
  5148. goto out;
  5149. if (!alloc_cpumask_var(&rd->online, gfp))
  5150. goto free_span;
  5151. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  5152. goto free_online;
  5153. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  5154. goto free_rto_mask;
  5155. return 0;
  5156. free_rto_mask:
  5157. free_cpumask_var(rd->rto_mask);
  5158. free_online:
  5159. free_cpumask_var(rd->online);
  5160. free_span:
  5161. free_cpumask_var(rd->span);
  5162. out:
  5163. return -ENOMEM;
  5164. }
  5165. static void init_defrootdomain(void)
  5166. {
  5167. init_rootdomain(&def_root_domain, true);
  5168. atomic_set(&def_root_domain.refcount, 1);
  5169. }
  5170. static struct root_domain *alloc_rootdomain(void)
  5171. {
  5172. struct root_domain *rd;
  5173. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5174. if (!rd)
  5175. return NULL;
  5176. if (init_rootdomain(rd, false) != 0) {
  5177. kfree(rd);
  5178. return NULL;
  5179. }
  5180. return rd;
  5181. }
  5182. /*
  5183. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5184. * hold the hotplug lock.
  5185. */
  5186. static void
  5187. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5188. {
  5189. struct rq *rq = cpu_rq(cpu);
  5190. struct sched_domain *tmp;
  5191. for (tmp = sd; tmp; tmp = tmp->parent)
  5192. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5193. /* Remove the sched domains which do not contribute to scheduling. */
  5194. for (tmp = sd; tmp; ) {
  5195. struct sched_domain *parent = tmp->parent;
  5196. if (!parent)
  5197. break;
  5198. if (sd_parent_degenerate(tmp, parent)) {
  5199. tmp->parent = parent->parent;
  5200. if (parent->parent)
  5201. parent->parent->child = tmp;
  5202. } else
  5203. tmp = tmp->parent;
  5204. }
  5205. if (sd && sd_degenerate(sd)) {
  5206. sd = sd->parent;
  5207. if (sd)
  5208. sd->child = NULL;
  5209. }
  5210. sched_domain_debug(sd, cpu);
  5211. rq_attach_root(rq, rd);
  5212. rcu_assign_pointer(rq->sd, sd);
  5213. }
  5214. /* cpus with isolated domains */
  5215. static cpumask_var_t cpu_isolated_map;
  5216. /* Setup the mask of cpus configured for isolated domains */
  5217. static int __init isolated_cpu_setup(char *str)
  5218. {
  5219. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5220. cpulist_parse(str, cpu_isolated_map);
  5221. return 1;
  5222. }
  5223. __setup("isolcpus=", isolated_cpu_setup);
  5224. /*
  5225. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5226. * to a function which identifies what group(along with sched group) a CPU
  5227. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5228. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5229. *
  5230. * init_sched_build_groups will build a circular linked list of the groups
  5231. * covered by the given span, and will set each group's ->cpumask correctly,
  5232. * and ->cpu_power to 0.
  5233. */
  5234. static void
  5235. init_sched_build_groups(const struct cpumask *span,
  5236. const struct cpumask *cpu_map,
  5237. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5238. struct sched_group **sg,
  5239. struct cpumask *tmpmask),
  5240. struct cpumask *covered, struct cpumask *tmpmask)
  5241. {
  5242. struct sched_group *first = NULL, *last = NULL;
  5243. int i;
  5244. cpumask_clear(covered);
  5245. for_each_cpu(i, span) {
  5246. struct sched_group *sg;
  5247. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5248. int j;
  5249. if (cpumask_test_cpu(i, covered))
  5250. continue;
  5251. cpumask_clear(sched_group_cpus(sg));
  5252. sg->cpu_power = 0;
  5253. for_each_cpu(j, span) {
  5254. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5255. continue;
  5256. cpumask_set_cpu(j, covered);
  5257. cpumask_set_cpu(j, sched_group_cpus(sg));
  5258. }
  5259. if (!first)
  5260. first = sg;
  5261. if (last)
  5262. last->next = sg;
  5263. last = sg;
  5264. }
  5265. last->next = first;
  5266. }
  5267. #define SD_NODES_PER_DOMAIN 16
  5268. #ifdef CONFIG_NUMA
  5269. /**
  5270. * find_next_best_node - find the next node to include in a sched_domain
  5271. * @node: node whose sched_domain we're building
  5272. * @used_nodes: nodes already in the sched_domain
  5273. *
  5274. * Find the next node to include in a given scheduling domain. Simply
  5275. * finds the closest node not already in the @used_nodes map.
  5276. *
  5277. * Should use nodemask_t.
  5278. */
  5279. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5280. {
  5281. int i, n, val, min_val, best_node = 0;
  5282. min_val = INT_MAX;
  5283. for (i = 0; i < nr_node_ids; i++) {
  5284. /* Start at @node */
  5285. n = (node + i) % nr_node_ids;
  5286. if (!nr_cpus_node(n))
  5287. continue;
  5288. /* Skip already used nodes */
  5289. if (node_isset(n, *used_nodes))
  5290. continue;
  5291. /* Simple min distance search */
  5292. val = node_distance(node, n);
  5293. if (val < min_val) {
  5294. min_val = val;
  5295. best_node = n;
  5296. }
  5297. }
  5298. node_set(best_node, *used_nodes);
  5299. return best_node;
  5300. }
  5301. /**
  5302. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5303. * @node: node whose cpumask we're constructing
  5304. * @span: resulting cpumask
  5305. *
  5306. * Given a node, construct a good cpumask for its sched_domain to span. It
  5307. * should be one that prevents unnecessary balancing, but also spreads tasks
  5308. * out optimally.
  5309. */
  5310. static void sched_domain_node_span(int node, struct cpumask *span)
  5311. {
  5312. nodemask_t used_nodes;
  5313. int i;
  5314. cpumask_clear(span);
  5315. nodes_clear(used_nodes);
  5316. cpumask_or(span, span, cpumask_of_node(node));
  5317. node_set(node, used_nodes);
  5318. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5319. int next_node = find_next_best_node(node, &used_nodes);
  5320. cpumask_or(span, span, cpumask_of_node(next_node));
  5321. }
  5322. }
  5323. #endif /* CONFIG_NUMA */
  5324. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5325. /*
  5326. * The cpus mask in sched_group and sched_domain hangs off the end.
  5327. *
  5328. * ( See the the comments in include/linux/sched.h:struct sched_group
  5329. * and struct sched_domain. )
  5330. */
  5331. struct static_sched_group {
  5332. struct sched_group sg;
  5333. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5334. };
  5335. struct static_sched_domain {
  5336. struct sched_domain sd;
  5337. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5338. };
  5339. struct s_data {
  5340. #ifdef CONFIG_NUMA
  5341. int sd_allnodes;
  5342. cpumask_var_t domainspan;
  5343. cpumask_var_t covered;
  5344. cpumask_var_t notcovered;
  5345. #endif
  5346. cpumask_var_t nodemask;
  5347. cpumask_var_t this_sibling_map;
  5348. cpumask_var_t this_core_map;
  5349. cpumask_var_t send_covered;
  5350. cpumask_var_t tmpmask;
  5351. struct sched_group **sched_group_nodes;
  5352. struct root_domain *rd;
  5353. };
  5354. enum s_alloc {
  5355. sa_sched_groups = 0,
  5356. sa_rootdomain,
  5357. sa_tmpmask,
  5358. sa_send_covered,
  5359. sa_this_core_map,
  5360. sa_this_sibling_map,
  5361. sa_nodemask,
  5362. sa_sched_group_nodes,
  5363. #ifdef CONFIG_NUMA
  5364. sa_notcovered,
  5365. sa_covered,
  5366. sa_domainspan,
  5367. #endif
  5368. sa_none,
  5369. };
  5370. /*
  5371. * SMT sched-domains:
  5372. */
  5373. #ifdef CONFIG_SCHED_SMT
  5374. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5375. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5376. static int
  5377. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5378. struct sched_group **sg, struct cpumask *unused)
  5379. {
  5380. if (sg)
  5381. *sg = &per_cpu(sched_groups, cpu).sg;
  5382. return cpu;
  5383. }
  5384. #endif /* CONFIG_SCHED_SMT */
  5385. /*
  5386. * multi-core sched-domains:
  5387. */
  5388. #ifdef CONFIG_SCHED_MC
  5389. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5390. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5391. #endif /* CONFIG_SCHED_MC */
  5392. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5393. static int
  5394. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5395. struct sched_group **sg, struct cpumask *mask)
  5396. {
  5397. int group;
  5398. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5399. group = cpumask_first(mask);
  5400. if (sg)
  5401. *sg = &per_cpu(sched_group_core, group).sg;
  5402. return group;
  5403. }
  5404. #elif defined(CONFIG_SCHED_MC)
  5405. static int
  5406. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5407. struct sched_group **sg, struct cpumask *unused)
  5408. {
  5409. if (sg)
  5410. *sg = &per_cpu(sched_group_core, cpu).sg;
  5411. return cpu;
  5412. }
  5413. #endif
  5414. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5415. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5416. static int
  5417. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5418. struct sched_group **sg, struct cpumask *mask)
  5419. {
  5420. int group;
  5421. #ifdef CONFIG_SCHED_MC
  5422. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5423. group = cpumask_first(mask);
  5424. #elif defined(CONFIG_SCHED_SMT)
  5425. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5426. group = cpumask_first(mask);
  5427. #else
  5428. group = cpu;
  5429. #endif
  5430. if (sg)
  5431. *sg = &per_cpu(sched_group_phys, group).sg;
  5432. return group;
  5433. }
  5434. #ifdef CONFIG_NUMA
  5435. /*
  5436. * The init_sched_build_groups can't handle what we want to do with node
  5437. * groups, so roll our own. Now each node has its own list of groups which
  5438. * gets dynamically allocated.
  5439. */
  5440. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5441. static struct sched_group ***sched_group_nodes_bycpu;
  5442. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5443. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5444. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5445. struct sched_group **sg,
  5446. struct cpumask *nodemask)
  5447. {
  5448. int group;
  5449. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5450. group = cpumask_first(nodemask);
  5451. if (sg)
  5452. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5453. return group;
  5454. }
  5455. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5456. {
  5457. struct sched_group *sg = group_head;
  5458. int j;
  5459. if (!sg)
  5460. return;
  5461. do {
  5462. for_each_cpu(j, sched_group_cpus(sg)) {
  5463. struct sched_domain *sd;
  5464. sd = &per_cpu(phys_domains, j).sd;
  5465. if (j != group_first_cpu(sd->groups)) {
  5466. /*
  5467. * Only add "power" once for each
  5468. * physical package.
  5469. */
  5470. continue;
  5471. }
  5472. sg->cpu_power += sd->groups->cpu_power;
  5473. }
  5474. sg = sg->next;
  5475. } while (sg != group_head);
  5476. }
  5477. static int build_numa_sched_groups(struct s_data *d,
  5478. const struct cpumask *cpu_map, int num)
  5479. {
  5480. struct sched_domain *sd;
  5481. struct sched_group *sg, *prev;
  5482. int n, j;
  5483. cpumask_clear(d->covered);
  5484. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5485. if (cpumask_empty(d->nodemask)) {
  5486. d->sched_group_nodes[num] = NULL;
  5487. goto out;
  5488. }
  5489. sched_domain_node_span(num, d->domainspan);
  5490. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5491. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5492. GFP_KERNEL, num);
  5493. if (!sg) {
  5494. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5495. num);
  5496. return -ENOMEM;
  5497. }
  5498. d->sched_group_nodes[num] = sg;
  5499. for_each_cpu(j, d->nodemask) {
  5500. sd = &per_cpu(node_domains, j).sd;
  5501. sd->groups = sg;
  5502. }
  5503. sg->cpu_power = 0;
  5504. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5505. sg->next = sg;
  5506. cpumask_or(d->covered, d->covered, d->nodemask);
  5507. prev = sg;
  5508. for (j = 0; j < nr_node_ids; j++) {
  5509. n = (num + j) % nr_node_ids;
  5510. cpumask_complement(d->notcovered, d->covered);
  5511. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5512. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5513. if (cpumask_empty(d->tmpmask))
  5514. break;
  5515. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5516. if (cpumask_empty(d->tmpmask))
  5517. continue;
  5518. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5519. GFP_KERNEL, num);
  5520. if (!sg) {
  5521. printk(KERN_WARNING
  5522. "Can not alloc domain group for node %d\n", j);
  5523. return -ENOMEM;
  5524. }
  5525. sg->cpu_power = 0;
  5526. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5527. sg->next = prev->next;
  5528. cpumask_or(d->covered, d->covered, d->tmpmask);
  5529. prev->next = sg;
  5530. prev = sg;
  5531. }
  5532. out:
  5533. return 0;
  5534. }
  5535. #endif /* CONFIG_NUMA */
  5536. #ifdef CONFIG_NUMA
  5537. /* Free memory allocated for various sched_group structures */
  5538. static void free_sched_groups(const struct cpumask *cpu_map,
  5539. struct cpumask *nodemask)
  5540. {
  5541. int cpu, i;
  5542. for_each_cpu(cpu, cpu_map) {
  5543. struct sched_group **sched_group_nodes
  5544. = sched_group_nodes_bycpu[cpu];
  5545. if (!sched_group_nodes)
  5546. continue;
  5547. for (i = 0; i < nr_node_ids; i++) {
  5548. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5549. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5550. if (cpumask_empty(nodemask))
  5551. continue;
  5552. if (sg == NULL)
  5553. continue;
  5554. sg = sg->next;
  5555. next_sg:
  5556. oldsg = sg;
  5557. sg = sg->next;
  5558. kfree(oldsg);
  5559. if (oldsg != sched_group_nodes[i])
  5560. goto next_sg;
  5561. }
  5562. kfree(sched_group_nodes);
  5563. sched_group_nodes_bycpu[cpu] = NULL;
  5564. }
  5565. }
  5566. #else /* !CONFIG_NUMA */
  5567. static void free_sched_groups(const struct cpumask *cpu_map,
  5568. struct cpumask *nodemask)
  5569. {
  5570. }
  5571. #endif /* CONFIG_NUMA */
  5572. /*
  5573. * Initialize sched groups cpu_power.
  5574. *
  5575. * cpu_power indicates the capacity of sched group, which is used while
  5576. * distributing the load between different sched groups in a sched domain.
  5577. * Typically cpu_power for all the groups in a sched domain will be same unless
  5578. * there are asymmetries in the topology. If there are asymmetries, group
  5579. * having more cpu_power will pickup more load compared to the group having
  5580. * less cpu_power.
  5581. */
  5582. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5583. {
  5584. struct sched_domain *child;
  5585. struct sched_group *group;
  5586. long power;
  5587. int weight;
  5588. WARN_ON(!sd || !sd->groups);
  5589. if (cpu != group_first_cpu(sd->groups))
  5590. return;
  5591. child = sd->child;
  5592. sd->groups->cpu_power = 0;
  5593. if (!child) {
  5594. power = SCHED_LOAD_SCALE;
  5595. weight = cpumask_weight(sched_domain_span(sd));
  5596. /*
  5597. * SMT siblings share the power of a single core.
  5598. * Usually multiple threads get a better yield out of
  5599. * that one core than a single thread would have,
  5600. * reflect that in sd->smt_gain.
  5601. */
  5602. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5603. power *= sd->smt_gain;
  5604. power /= weight;
  5605. power >>= SCHED_LOAD_SHIFT;
  5606. }
  5607. sd->groups->cpu_power += power;
  5608. return;
  5609. }
  5610. /*
  5611. * Add cpu_power of each child group to this groups cpu_power.
  5612. */
  5613. group = child->groups;
  5614. do {
  5615. sd->groups->cpu_power += group->cpu_power;
  5616. group = group->next;
  5617. } while (group != child->groups);
  5618. }
  5619. /*
  5620. * Initializers for schedule domains
  5621. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5622. */
  5623. #ifdef CONFIG_SCHED_DEBUG
  5624. # define SD_INIT_NAME(sd, type) sd->name = #type
  5625. #else
  5626. # define SD_INIT_NAME(sd, type) do { } while (0)
  5627. #endif
  5628. #define SD_INIT(sd, type) sd_init_##type(sd)
  5629. #define SD_INIT_FUNC(type) \
  5630. static noinline void sd_init_##type(struct sched_domain *sd) \
  5631. { \
  5632. memset(sd, 0, sizeof(*sd)); \
  5633. *sd = SD_##type##_INIT; \
  5634. sd->level = SD_LV_##type; \
  5635. SD_INIT_NAME(sd, type); \
  5636. }
  5637. SD_INIT_FUNC(CPU)
  5638. #ifdef CONFIG_NUMA
  5639. SD_INIT_FUNC(ALLNODES)
  5640. SD_INIT_FUNC(NODE)
  5641. #endif
  5642. #ifdef CONFIG_SCHED_SMT
  5643. SD_INIT_FUNC(SIBLING)
  5644. #endif
  5645. #ifdef CONFIG_SCHED_MC
  5646. SD_INIT_FUNC(MC)
  5647. #endif
  5648. static int default_relax_domain_level = -1;
  5649. static int __init setup_relax_domain_level(char *str)
  5650. {
  5651. unsigned long val;
  5652. val = simple_strtoul(str, NULL, 0);
  5653. if (val < SD_LV_MAX)
  5654. default_relax_domain_level = val;
  5655. return 1;
  5656. }
  5657. __setup("relax_domain_level=", setup_relax_domain_level);
  5658. static void set_domain_attribute(struct sched_domain *sd,
  5659. struct sched_domain_attr *attr)
  5660. {
  5661. int request;
  5662. if (!attr || attr->relax_domain_level < 0) {
  5663. if (default_relax_domain_level < 0)
  5664. return;
  5665. else
  5666. request = default_relax_domain_level;
  5667. } else
  5668. request = attr->relax_domain_level;
  5669. if (request < sd->level) {
  5670. /* turn off idle balance on this domain */
  5671. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5672. } else {
  5673. /* turn on idle balance on this domain */
  5674. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5675. }
  5676. }
  5677. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5678. const struct cpumask *cpu_map)
  5679. {
  5680. switch (what) {
  5681. case sa_sched_groups:
  5682. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5683. d->sched_group_nodes = NULL;
  5684. case sa_rootdomain:
  5685. free_rootdomain(d->rd); /* fall through */
  5686. case sa_tmpmask:
  5687. free_cpumask_var(d->tmpmask); /* fall through */
  5688. case sa_send_covered:
  5689. free_cpumask_var(d->send_covered); /* fall through */
  5690. case sa_this_core_map:
  5691. free_cpumask_var(d->this_core_map); /* fall through */
  5692. case sa_this_sibling_map:
  5693. free_cpumask_var(d->this_sibling_map); /* fall through */
  5694. case sa_nodemask:
  5695. free_cpumask_var(d->nodemask); /* fall through */
  5696. case sa_sched_group_nodes:
  5697. #ifdef CONFIG_NUMA
  5698. kfree(d->sched_group_nodes); /* fall through */
  5699. case sa_notcovered:
  5700. free_cpumask_var(d->notcovered); /* fall through */
  5701. case sa_covered:
  5702. free_cpumask_var(d->covered); /* fall through */
  5703. case sa_domainspan:
  5704. free_cpumask_var(d->domainspan); /* fall through */
  5705. #endif
  5706. case sa_none:
  5707. break;
  5708. }
  5709. }
  5710. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5711. const struct cpumask *cpu_map)
  5712. {
  5713. #ifdef CONFIG_NUMA
  5714. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5715. return sa_none;
  5716. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5717. return sa_domainspan;
  5718. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5719. return sa_covered;
  5720. /* Allocate the per-node list of sched groups */
  5721. d->sched_group_nodes = kcalloc(nr_node_ids,
  5722. sizeof(struct sched_group *), GFP_KERNEL);
  5723. if (!d->sched_group_nodes) {
  5724. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5725. return sa_notcovered;
  5726. }
  5727. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5728. #endif
  5729. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5730. return sa_sched_group_nodes;
  5731. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5732. return sa_nodemask;
  5733. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5734. return sa_this_sibling_map;
  5735. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5736. return sa_this_core_map;
  5737. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5738. return sa_send_covered;
  5739. d->rd = alloc_rootdomain();
  5740. if (!d->rd) {
  5741. printk(KERN_WARNING "Cannot alloc root domain\n");
  5742. return sa_tmpmask;
  5743. }
  5744. return sa_rootdomain;
  5745. }
  5746. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5747. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5748. {
  5749. struct sched_domain *sd = NULL;
  5750. #ifdef CONFIG_NUMA
  5751. struct sched_domain *parent;
  5752. d->sd_allnodes = 0;
  5753. if (cpumask_weight(cpu_map) >
  5754. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5755. sd = &per_cpu(allnodes_domains, i).sd;
  5756. SD_INIT(sd, ALLNODES);
  5757. set_domain_attribute(sd, attr);
  5758. cpumask_copy(sched_domain_span(sd), cpu_map);
  5759. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5760. d->sd_allnodes = 1;
  5761. }
  5762. parent = sd;
  5763. sd = &per_cpu(node_domains, i).sd;
  5764. SD_INIT(sd, NODE);
  5765. set_domain_attribute(sd, attr);
  5766. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5767. sd->parent = parent;
  5768. if (parent)
  5769. parent->child = sd;
  5770. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5771. #endif
  5772. return sd;
  5773. }
  5774. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5775. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5776. struct sched_domain *parent, int i)
  5777. {
  5778. struct sched_domain *sd;
  5779. sd = &per_cpu(phys_domains, i).sd;
  5780. SD_INIT(sd, CPU);
  5781. set_domain_attribute(sd, attr);
  5782. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5783. sd->parent = parent;
  5784. if (parent)
  5785. parent->child = sd;
  5786. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5787. return sd;
  5788. }
  5789. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5790. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5791. struct sched_domain *parent, int i)
  5792. {
  5793. struct sched_domain *sd = parent;
  5794. #ifdef CONFIG_SCHED_MC
  5795. sd = &per_cpu(core_domains, i).sd;
  5796. SD_INIT(sd, MC);
  5797. set_domain_attribute(sd, attr);
  5798. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5799. sd->parent = parent;
  5800. parent->child = sd;
  5801. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5802. #endif
  5803. return sd;
  5804. }
  5805. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5806. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5807. struct sched_domain *parent, int i)
  5808. {
  5809. struct sched_domain *sd = parent;
  5810. #ifdef CONFIG_SCHED_SMT
  5811. sd = &per_cpu(cpu_domains, i).sd;
  5812. SD_INIT(sd, SIBLING);
  5813. set_domain_attribute(sd, attr);
  5814. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5815. sd->parent = parent;
  5816. parent->child = sd;
  5817. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5818. #endif
  5819. return sd;
  5820. }
  5821. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5822. const struct cpumask *cpu_map, int cpu)
  5823. {
  5824. switch (l) {
  5825. #ifdef CONFIG_SCHED_SMT
  5826. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  5827. cpumask_and(d->this_sibling_map, cpu_map,
  5828. topology_thread_cpumask(cpu));
  5829. if (cpu == cpumask_first(d->this_sibling_map))
  5830. init_sched_build_groups(d->this_sibling_map, cpu_map,
  5831. &cpu_to_cpu_group,
  5832. d->send_covered, d->tmpmask);
  5833. break;
  5834. #endif
  5835. #ifdef CONFIG_SCHED_MC
  5836. case SD_LV_MC: /* set up multi-core groups */
  5837. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  5838. if (cpu == cpumask_first(d->this_core_map))
  5839. init_sched_build_groups(d->this_core_map, cpu_map,
  5840. &cpu_to_core_group,
  5841. d->send_covered, d->tmpmask);
  5842. break;
  5843. #endif
  5844. case SD_LV_CPU: /* set up physical groups */
  5845. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  5846. if (!cpumask_empty(d->nodemask))
  5847. init_sched_build_groups(d->nodemask, cpu_map,
  5848. &cpu_to_phys_group,
  5849. d->send_covered, d->tmpmask);
  5850. break;
  5851. #ifdef CONFIG_NUMA
  5852. case SD_LV_ALLNODES:
  5853. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  5854. d->send_covered, d->tmpmask);
  5855. break;
  5856. #endif
  5857. default:
  5858. break;
  5859. }
  5860. }
  5861. /*
  5862. * Build sched domains for a given set of cpus and attach the sched domains
  5863. * to the individual cpus
  5864. */
  5865. static int __build_sched_domains(const struct cpumask *cpu_map,
  5866. struct sched_domain_attr *attr)
  5867. {
  5868. enum s_alloc alloc_state = sa_none;
  5869. struct s_data d;
  5870. struct sched_domain *sd;
  5871. int i;
  5872. #ifdef CONFIG_NUMA
  5873. d.sd_allnodes = 0;
  5874. #endif
  5875. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5876. if (alloc_state != sa_rootdomain)
  5877. goto error;
  5878. alloc_state = sa_sched_groups;
  5879. /*
  5880. * Set up domains for cpus specified by the cpu_map.
  5881. */
  5882. for_each_cpu(i, cpu_map) {
  5883. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  5884. cpu_map);
  5885. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  5886. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  5887. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  5888. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  5889. }
  5890. for_each_cpu(i, cpu_map) {
  5891. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  5892. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  5893. }
  5894. /* Set up physical groups */
  5895. for (i = 0; i < nr_node_ids; i++)
  5896. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  5897. #ifdef CONFIG_NUMA
  5898. /* Set up node groups */
  5899. if (d.sd_allnodes)
  5900. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  5901. for (i = 0; i < nr_node_ids; i++)
  5902. if (build_numa_sched_groups(&d, cpu_map, i))
  5903. goto error;
  5904. #endif
  5905. /* Calculate CPU power for physical packages and nodes */
  5906. #ifdef CONFIG_SCHED_SMT
  5907. for_each_cpu(i, cpu_map) {
  5908. sd = &per_cpu(cpu_domains, i).sd;
  5909. init_sched_groups_power(i, sd);
  5910. }
  5911. #endif
  5912. #ifdef CONFIG_SCHED_MC
  5913. for_each_cpu(i, cpu_map) {
  5914. sd = &per_cpu(core_domains, i).sd;
  5915. init_sched_groups_power(i, sd);
  5916. }
  5917. #endif
  5918. for_each_cpu(i, cpu_map) {
  5919. sd = &per_cpu(phys_domains, i).sd;
  5920. init_sched_groups_power(i, sd);
  5921. }
  5922. #ifdef CONFIG_NUMA
  5923. for (i = 0; i < nr_node_ids; i++)
  5924. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  5925. if (d.sd_allnodes) {
  5926. struct sched_group *sg;
  5927. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  5928. d.tmpmask);
  5929. init_numa_sched_groups_power(sg);
  5930. }
  5931. #endif
  5932. /* Attach the domains */
  5933. for_each_cpu(i, cpu_map) {
  5934. #ifdef CONFIG_SCHED_SMT
  5935. sd = &per_cpu(cpu_domains, i).sd;
  5936. #elif defined(CONFIG_SCHED_MC)
  5937. sd = &per_cpu(core_domains, i).sd;
  5938. #else
  5939. sd = &per_cpu(phys_domains, i).sd;
  5940. #endif
  5941. cpu_attach_domain(sd, d.rd, i);
  5942. }
  5943. d.sched_group_nodes = NULL; /* don't free this we still need it */
  5944. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  5945. return 0;
  5946. error:
  5947. __free_domain_allocs(&d, alloc_state, cpu_map);
  5948. return -ENOMEM;
  5949. }
  5950. static int build_sched_domains(const struct cpumask *cpu_map)
  5951. {
  5952. return __build_sched_domains(cpu_map, NULL);
  5953. }
  5954. static cpumask_var_t *doms_cur; /* current sched domains */
  5955. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5956. static struct sched_domain_attr *dattr_cur;
  5957. /* attribues of custom domains in 'doms_cur' */
  5958. /*
  5959. * Special case: If a kmalloc of a doms_cur partition (array of
  5960. * cpumask) fails, then fallback to a single sched domain,
  5961. * as determined by the single cpumask fallback_doms.
  5962. */
  5963. static cpumask_var_t fallback_doms;
  5964. /*
  5965. * arch_update_cpu_topology lets virtualized architectures update the
  5966. * cpu core maps. It is supposed to return 1 if the topology changed
  5967. * or 0 if it stayed the same.
  5968. */
  5969. int __attribute__((weak)) arch_update_cpu_topology(void)
  5970. {
  5971. return 0;
  5972. }
  5973. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5974. {
  5975. int i;
  5976. cpumask_var_t *doms;
  5977. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5978. if (!doms)
  5979. return NULL;
  5980. for (i = 0; i < ndoms; i++) {
  5981. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5982. free_sched_domains(doms, i);
  5983. return NULL;
  5984. }
  5985. }
  5986. return doms;
  5987. }
  5988. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5989. {
  5990. unsigned int i;
  5991. for (i = 0; i < ndoms; i++)
  5992. free_cpumask_var(doms[i]);
  5993. kfree(doms);
  5994. }
  5995. /*
  5996. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5997. * For now this just excludes isolated cpus, but could be used to
  5998. * exclude other special cases in the future.
  5999. */
  6000. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6001. {
  6002. int err;
  6003. arch_update_cpu_topology();
  6004. ndoms_cur = 1;
  6005. doms_cur = alloc_sched_domains(ndoms_cur);
  6006. if (!doms_cur)
  6007. doms_cur = &fallback_doms;
  6008. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6009. dattr_cur = NULL;
  6010. err = build_sched_domains(doms_cur[0]);
  6011. register_sched_domain_sysctl();
  6012. return err;
  6013. }
  6014. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6015. struct cpumask *tmpmask)
  6016. {
  6017. free_sched_groups(cpu_map, tmpmask);
  6018. }
  6019. /*
  6020. * Detach sched domains from a group of cpus specified in cpu_map
  6021. * These cpus will now be attached to the NULL domain
  6022. */
  6023. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6024. {
  6025. /* Save because hotplug lock held. */
  6026. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6027. int i;
  6028. for_each_cpu(i, cpu_map)
  6029. cpu_attach_domain(NULL, &def_root_domain, i);
  6030. synchronize_sched();
  6031. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6032. }
  6033. /* handle null as "default" */
  6034. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6035. struct sched_domain_attr *new, int idx_new)
  6036. {
  6037. struct sched_domain_attr tmp;
  6038. /* fast path */
  6039. if (!new && !cur)
  6040. return 1;
  6041. tmp = SD_ATTR_INIT;
  6042. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6043. new ? (new + idx_new) : &tmp,
  6044. sizeof(struct sched_domain_attr));
  6045. }
  6046. /*
  6047. * Partition sched domains as specified by the 'ndoms_new'
  6048. * cpumasks in the array doms_new[] of cpumasks. This compares
  6049. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6050. * It destroys each deleted domain and builds each new domain.
  6051. *
  6052. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6053. * The masks don't intersect (don't overlap.) We should setup one
  6054. * sched domain for each mask. CPUs not in any of the cpumasks will
  6055. * not be load balanced. If the same cpumask appears both in the
  6056. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6057. * it as it is.
  6058. *
  6059. * The passed in 'doms_new' should be allocated using
  6060. * alloc_sched_domains. This routine takes ownership of it and will
  6061. * free_sched_domains it when done with it. If the caller failed the
  6062. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6063. * and partition_sched_domains() will fallback to the single partition
  6064. * 'fallback_doms', it also forces the domains to be rebuilt.
  6065. *
  6066. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6067. * ndoms_new == 0 is a special case for destroying existing domains,
  6068. * and it will not create the default domain.
  6069. *
  6070. * Call with hotplug lock held
  6071. */
  6072. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6073. struct sched_domain_attr *dattr_new)
  6074. {
  6075. int i, j, n;
  6076. int new_topology;
  6077. mutex_lock(&sched_domains_mutex);
  6078. /* always unregister in case we don't destroy any domains */
  6079. unregister_sched_domain_sysctl();
  6080. /* Let architecture update cpu core mappings. */
  6081. new_topology = arch_update_cpu_topology();
  6082. n = doms_new ? ndoms_new : 0;
  6083. /* Destroy deleted domains */
  6084. for (i = 0; i < ndoms_cur; i++) {
  6085. for (j = 0; j < n && !new_topology; j++) {
  6086. if (cpumask_equal(doms_cur[i], doms_new[j])
  6087. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6088. goto match1;
  6089. }
  6090. /* no match - a current sched domain not in new doms_new[] */
  6091. detach_destroy_domains(doms_cur[i]);
  6092. match1:
  6093. ;
  6094. }
  6095. if (doms_new == NULL) {
  6096. ndoms_cur = 0;
  6097. doms_new = &fallback_doms;
  6098. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6099. WARN_ON_ONCE(dattr_new);
  6100. }
  6101. /* Build new domains */
  6102. for (i = 0; i < ndoms_new; i++) {
  6103. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6104. if (cpumask_equal(doms_new[i], doms_cur[j])
  6105. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6106. goto match2;
  6107. }
  6108. /* no match - add a new doms_new */
  6109. __build_sched_domains(doms_new[i],
  6110. dattr_new ? dattr_new + i : NULL);
  6111. match2:
  6112. ;
  6113. }
  6114. /* Remember the new sched domains */
  6115. if (doms_cur != &fallback_doms)
  6116. free_sched_domains(doms_cur, ndoms_cur);
  6117. kfree(dattr_cur); /* kfree(NULL) is safe */
  6118. doms_cur = doms_new;
  6119. dattr_cur = dattr_new;
  6120. ndoms_cur = ndoms_new;
  6121. register_sched_domain_sysctl();
  6122. mutex_unlock(&sched_domains_mutex);
  6123. }
  6124. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6125. static void arch_reinit_sched_domains(void)
  6126. {
  6127. get_online_cpus();
  6128. /* Destroy domains first to force the rebuild */
  6129. partition_sched_domains(0, NULL, NULL);
  6130. rebuild_sched_domains();
  6131. put_online_cpus();
  6132. }
  6133. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6134. {
  6135. unsigned int level = 0;
  6136. if (sscanf(buf, "%u", &level) != 1)
  6137. return -EINVAL;
  6138. /*
  6139. * level is always be positive so don't check for
  6140. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6141. * What happens on 0 or 1 byte write,
  6142. * need to check for count as well?
  6143. */
  6144. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6145. return -EINVAL;
  6146. if (smt)
  6147. sched_smt_power_savings = level;
  6148. else
  6149. sched_mc_power_savings = level;
  6150. arch_reinit_sched_domains();
  6151. return count;
  6152. }
  6153. #ifdef CONFIG_SCHED_MC
  6154. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6155. struct sysdev_class_attribute *attr,
  6156. char *page)
  6157. {
  6158. return sprintf(page, "%u\n", sched_mc_power_savings);
  6159. }
  6160. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6161. struct sysdev_class_attribute *attr,
  6162. const char *buf, size_t count)
  6163. {
  6164. return sched_power_savings_store(buf, count, 0);
  6165. }
  6166. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6167. sched_mc_power_savings_show,
  6168. sched_mc_power_savings_store);
  6169. #endif
  6170. #ifdef CONFIG_SCHED_SMT
  6171. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6172. struct sysdev_class_attribute *attr,
  6173. char *page)
  6174. {
  6175. return sprintf(page, "%u\n", sched_smt_power_savings);
  6176. }
  6177. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6178. struct sysdev_class_attribute *attr,
  6179. const char *buf, size_t count)
  6180. {
  6181. return sched_power_savings_store(buf, count, 1);
  6182. }
  6183. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6184. sched_smt_power_savings_show,
  6185. sched_smt_power_savings_store);
  6186. #endif
  6187. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6188. {
  6189. int err = 0;
  6190. #ifdef CONFIG_SCHED_SMT
  6191. if (smt_capable())
  6192. err = sysfs_create_file(&cls->kset.kobj,
  6193. &attr_sched_smt_power_savings.attr);
  6194. #endif
  6195. #ifdef CONFIG_SCHED_MC
  6196. if (!err && mc_capable())
  6197. err = sysfs_create_file(&cls->kset.kobj,
  6198. &attr_sched_mc_power_savings.attr);
  6199. #endif
  6200. return err;
  6201. }
  6202. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6203. #ifndef CONFIG_CPUSETS
  6204. /*
  6205. * Add online and remove offline CPUs from the scheduler domains.
  6206. * When cpusets are enabled they take over this function.
  6207. */
  6208. static int update_sched_domains(struct notifier_block *nfb,
  6209. unsigned long action, void *hcpu)
  6210. {
  6211. switch (action) {
  6212. case CPU_ONLINE:
  6213. case CPU_ONLINE_FROZEN:
  6214. case CPU_DOWN_PREPARE:
  6215. case CPU_DOWN_PREPARE_FROZEN:
  6216. case CPU_DOWN_FAILED:
  6217. case CPU_DOWN_FAILED_FROZEN:
  6218. partition_sched_domains(1, NULL, NULL);
  6219. return NOTIFY_OK;
  6220. default:
  6221. return NOTIFY_DONE;
  6222. }
  6223. }
  6224. #endif
  6225. static int update_runtime(struct notifier_block *nfb,
  6226. unsigned long action, void *hcpu)
  6227. {
  6228. int cpu = (int)(long)hcpu;
  6229. switch (action) {
  6230. case CPU_DOWN_PREPARE:
  6231. case CPU_DOWN_PREPARE_FROZEN:
  6232. disable_runtime(cpu_rq(cpu));
  6233. return NOTIFY_OK;
  6234. case CPU_DOWN_FAILED:
  6235. case CPU_DOWN_FAILED_FROZEN:
  6236. case CPU_ONLINE:
  6237. case CPU_ONLINE_FROZEN:
  6238. enable_runtime(cpu_rq(cpu));
  6239. return NOTIFY_OK;
  6240. default:
  6241. return NOTIFY_DONE;
  6242. }
  6243. }
  6244. void __init sched_init_smp(void)
  6245. {
  6246. cpumask_var_t non_isolated_cpus;
  6247. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6248. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6249. #if defined(CONFIG_NUMA)
  6250. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6251. GFP_KERNEL);
  6252. BUG_ON(sched_group_nodes_bycpu == NULL);
  6253. #endif
  6254. get_online_cpus();
  6255. mutex_lock(&sched_domains_mutex);
  6256. arch_init_sched_domains(cpu_active_mask);
  6257. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6258. if (cpumask_empty(non_isolated_cpus))
  6259. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6260. mutex_unlock(&sched_domains_mutex);
  6261. put_online_cpus();
  6262. #ifndef CONFIG_CPUSETS
  6263. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6264. hotcpu_notifier(update_sched_domains, 0);
  6265. #endif
  6266. /* RT runtime code needs to handle some hotplug events */
  6267. hotcpu_notifier(update_runtime, 0);
  6268. init_hrtick();
  6269. /* Move init over to a non-isolated CPU */
  6270. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6271. BUG();
  6272. sched_init_granularity();
  6273. free_cpumask_var(non_isolated_cpus);
  6274. init_sched_rt_class();
  6275. }
  6276. #else
  6277. void __init sched_init_smp(void)
  6278. {
  6279. sched_init_granularity();
  6280. }
  6281. #endif /* CONFIG_SMP */
  6282. const_debug unsigned int sysctl_timer_migration = 1;
  6283. int in_sched_functions(unsigned long addr)
  6284. {
  6285. return in_lock_functions(addr) ||
  6286. (addr >= (unsigned long)__sched_text_start
  6287. && addr < (unsigned long)__sched_text_end);
  6288. }
  6289. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6290. {
  6291. cfs_rq->tasks_timeline = RB_ROOT;
  6292. INIT_LIST_HEAD(&cfs_rq->tasks);
  6293. #ifdef CONFIG_FAIR_GROUP_SCHED
  6294. cfs_rq->rq = rq;
  6295. #endif
  6296. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6297. }
  6298. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6299. {
  6300. struct rt_prio_array *array;
  6301. int i;
  6302. array = &rt_rq->active;
  6303. for (i = 0; i < MAX_RT_PRIO; i++) {
  6304. INIT_LIST_HEAD(array->queue + i);
  6305. __clear_bit(i, array->bitmap);
  6306. }
  6307. /* delimiter for bitsearch: */
  6308. __set_bit(MAX_RT_PRIO, array->bitmap);
  6309. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6310. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6311. #ifdef CONFIG_SMP
  6312. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6313. #endif
  6314. #endif
  6315. #ifdef CONFIG_SMP
  6316. rt_rq->rt_nr_migratory = 0;
  6317. rt_rq->overloaded = 0;
  6318. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6319. #endif
  6320. rt_rq->rt_time = 0;
  6321. rt_rq->rt_throttled = 0;
  6322. rt_rq->rt_runtime = 0;
  6323. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6324. #ifdef CONFIG_RT_GROUP_SCHED
  6325. rt_rq->rt_nr_boosted = 0;
  6326. rt_rq->rq = rq;
  6327. #endif
  6328. }
  6329. #ifdef CONFIG_FAIR_GROUP_SCHED
  6330. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6331. struct sched_entity *se, int cpu, int add,
  6332. struct sched_entity *parent)
  6333. {
  6334. struct rq *rq = cpu_rq(cpu);
  6335. tg->cfs_rq[cpu] = cfs_rq;
  6336. init_cfs_rq(cfs_rq, rq);
  6337. cfs_rq->tg = tg;
  6338. if (add)
  6339. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6340. tg->se[cpu] = se;
  6341. /* se could be NULL for init_task_group */
  6342. if (!se)
  6343. return;
  6344. if (!parent)
  6345. se->cfs_rq = &rq->cfs;
  6346. else
  6347. se->cfs_rq = parent->my_q;
  6348. se->my_q = cfs_rq;
  6349. se->load.weight = tg->shares;
  6350. se->load.inv_weight = 0;
  6351. se->parent = parent;
  6352. }
  6353. #endif
  6354. #ifdef CONFIG_RT_GROUP_SCHED
  6355. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6356. struct sched_rt_entity *rt_se, int cpu, int add,
  6357. struct sched_rt_entity *parent)
  6358. {
  6359. struct rq *rq = cpu_rq(cpu);
  6360. tg->rt_rq[cpu] = rt_rq;
  6361. init_rt_rq(rt_rq, rq);
  6362. rt_rq->tg = tg;
  6363. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6364. if (add)
  6365. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6366. tg->rt_se[cpu] = rt_se;
  6367. if (!rt_se)
  6368. return;
  6369. if (!parent)
  6370. rt_se->rt_rq = &rq->rt;
  6371. else
  6372. rt_se->rt_rq = parent->my_q;
  6373. rt_se->my_q = rt_rq;
  6374. rt_se->parent = parent;
  6375. INIT_LIST_HEAD(&rt_se->run_list);
  6376. }
  6377. #endif
  6378. void __init sched_init(void)
  6379. {
  6380. int i, j;
  6381. unsigned long alloc_size = 0, ptr;
  6382. #ifdef CONFIG_FAIR_GROUP_SCHED
  6383. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6384. #endif
  6385. #ifdef CONFIG_RT_GROUP_SCHED
  6386. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6387. #endif
  6388. #ifdef CONFIG_CPUMASK_OFFSTACK
  6389. alloc_size += num_possible_cpus() * cpumask_size();
  6390. #endif
  6391. if (alloc_size) {
  6392. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6393. #ifdef CONFIG_FAIR_GROUP_SCHED
  6394. init_task_group.se = (struct sched_entity **)ptr;
  6395. ptr += nr_cpu_ids * sizeof(void **);
  6396. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6397. ptr += nr_cpu_ids * sizeof(void **);
  6398. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6399. #ifdef CONFIG_RT_GROUP_SCHED
  6400. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6401. ptr += nr_cpu_ids * sizeof(void **);
  6402. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6403. ptr += nr_cpu_ids * sizeof(void **);
  6404. #endif /* CONFIG_RT_GROUP_SCHED */
  6405. #ifdef CONFIG_CPUMASK_OFFSTACK
  6406. for_each_possible_cpu(i) {
  6407. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6408. ptr += cpumask_size();
  6409. }
  6410. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6411. }
  6412. #ifdef CONFIG_SMP
  6413. init_defrootdomain();
  6414. #endif
  6415. init_rt_bandwidth(&def_rt_bandwidth,
  6416. global_rt_period(), global_rt_runtime());
  6417. #ifdef CONFIG_RT_GROUP_SCHED
  6418. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6419. global_rt_period(), global_rt_runtime());
  6420. #endif /* CONFIG_RT_GROUP_SCHED */
  6421. #ifdef CONFIG_CGROUP_SCHED
  6422. list_add(&init_task_group.list, &task_groups);
  6423. INIT_LIST_HEAD(&init_task_group.children);
  6424. #endif /* CONFIG_CGROUP_SCHED */
  6425. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6426. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6427. __alignof__(unsigned long));
  6428. #endif
  6429. for_each_possible_cpu(i) {
  6430. struct rq *rq;
  6431. rq = cpu_rq(i);
  6432. raw_spin_lock_init(&rq->lock);
  6433. rq->nr_running = 0;
  6434. rq->calc_load_active = 0;
  6435. rq->calc_load_update = jiffies + LOAD_FREQ;
  6436. init_cfs_rq(&rq->cfs, rq);
  6437. init_rt_rq(&rq->rt, rq);
  6438. #ifdef CONFIG_FAIR_GROUP_SCHED
  6439. init_task_group.shares = init_task_group_load;
  6440. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6441. #ifdef CONFIG_CGROUP_SCHED
  6442. /*
  6443. * How much cpu bandwidth does init_task_group get?
  6444. *
  6445. * In case of task-groups formed thr' the cgroup filesystem, it
  6446. * gets 100% of the cpu resources in the system. This overall
  6447. * system cpu resource is divided among the tasks of
  6448. * init_task_group and its child task-groups in a fair manner,
  6449. * based on each entity's (task or task-group's) weight
  6450. * (se->load.weight).
  6451. *
  6452. * In other words, if init_task_group has 10 tasks of weight
  6453. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6454. * then A0's share of the cpu resource is:
  6455. *
  6456. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6457. *
  6458. * We achieve this by letting init_task_group's tasks sit
  6459. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6460. */
  6461. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6462. #endif
  6463. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6464. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6465. #ifdef CONFIG_RT_GROUP_SCHED
  6466. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6467. #ifdef CONFIG_CGROUP_SCHED
  6468. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6469. #endif
  6470. #endif
  6471. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6472. rq->cpu_load[j] = 0;
  6473. #ifdef CONFIG_SMP
  6474. rq->sd = NULL;
  6475. rq->rd = NULL;
  6476. rq->post_schedule = 0;
  6477. rq->active_balance = 0;
  6478. rq->next_balance = jiffies;
  6479. rq->push_cpu = 0;
  6480. rq->cpu = i;
  6481. rq->online = 0;
  6482. rq->idle_stamp = 0;
  6483. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6484. rq_attach_root(rq, &def_root_domain);
  6485. #endif
  6486. init_rq_hrtick(rq);
  6487. atomic_set(&rq->nr_iowait, 0);
  6488. }
  6489. set_load_weight(&init_task);
  6490. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6491. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6492. #endif
  6493. #ifdef CONFIG_SMP
  6494. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6495. #endif
  6496. #ifdef CONFIG_RT_MUTEXES
  6497. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6498. #endif
  6499. /*
  6500. * The boot idle thread does lazy MMU switching as well:
  6501. */
  6502. atomic_inc(&init_mm.mm_count);
  6503. enter_lazy_tlb(&init_mm, current);
  6504. /*
  6505. * Make us the idle thread. Technically, schedule() should not be
  6506. * called from this thread, however somewhere below it might be,
  6507. * but because we are the idle thread, we just pick up running again
  6508. * when this runqueue becomes "idle".
  6509. */
  6510. init_idle(current, smp_processor_id());
  6511. calc_load_update = jiffies + LOAD_FREQ;
  6512. /*
  6513. * During early bootup we pretend to be a normal task:
  6514. */
  6515. current->sched_class = &fair_sched_class;
  6516. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6517. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6518. #ifdef CONFIG_SMP
  6519. #ifdef CONFIG_NO_HZ
  6520. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  6521. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  6522. #endif
  6523. /* May be allocated at isolcpus cmdline parse time */
  6524. if (cpu_isolated_map == NULL)
  6525. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6526. #endif /* SMP */
  6527. perf_event_init();
  6528. scheduler_running = 1;
  6529. }
  6530. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6531. static inline int preempt_count_equals(int preempt_offset)
  6532. {
  6533. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6534. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6535. }
  6536. void __might_sleep(const char *file, int line, int preempt_offset)
  6537. {
  6538. #ifdef in_atomic
  6539. static unsigned long prev_jiffy; /* ratelimiting */
  6540. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6541. system_state != SYSTEM_RUNNING || oops_in_progress)
  6542. return;
  6543. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6544. return;
  6545. prev_jiffy = jiffies;
  6546. printk(KERN_ERR
  6547. "BUG: sleeping function called from invalid context at %s:%d\n",
  6548. file, line);
  6549. printk(KERN_ERR
  6550. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6551. in_atomic(), irqs_disabled(),
  6552. current->pid, current->comm);
  6553. debug_show_held_locks(current);
  6554. if (irqs_disabled())
  6555. print_irqtrace_events(current);
  6556. dump_stack();
  6557. #endif
  6558. }
  6559. EXPORT_SYMBOL(__might_sleep);
  6560. #endif
  6561. #ifdef CONFIG_MAGIC_SYSRQ
  6562. static void normalize_task(struct rq *rq, struct task_struct *p)
  6563. {
  6564. int on_rq;
  6565. on_rq = p->se.on_rq;
  6566. if (on_rq)
  6567. deactivate_task(rq, p, 0);
  6568. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6569. if (on_rq) {
  6570. activate_task(rq, p, 0);
  6571. resched_task(rq->curr);
  6572. }
  6573. }
  6574. void normalize_rt_tasks(void)
  6575. {
  6576. struct task_struct *g, *p;
  6577. unsigned long flags;
  6578. struct rq *rq;
  6579. read_lock_irqsave(&tasklist_lock, flags);
  6580. do_each_thread(g, p) {
  6581. /*
  6582. * Only normalize user tasks:
  6583. */
  6584. if (!p->mm)
  6585. continue;
  6586. p->se.exec_start = 0;
  6587. #ifdef CONFIG_SCHEDSTATS
  6588. p->se.statistics.wait_start = 0;
  6589. p->se.statistics.sleep_start = 0;
  6590. p->se.statistics.block_start = 0;
  6591. #endif
  6592. if (!rt_task(p)) {
  6593. /*
  6594. * Renice negative nice level userspace
  6595. * tasks back to 0:
  6596. */
  6597. if (TASK_NICE(p) < 0 && p->mm)
  6598. set_user_nice(p, 0);
  6599. continue;
  6600. }
  6601. raw_spin_lock(&p->pi_lock);
  6602. rq = __task_rq_lock(p);
  6603. normalize_task(rq, p);
  6604. __task_rq_unlock(rq);
  6605. raw_spin_unlock(&p->pi_lock);
  6606. } while_each_thread(g, p);
  6607. read_unlock_irqrestore(&tasklist_lock, flags);
  6608. }
  6609. #endif /* CONFIG_MAGIC_SYSRQ */
  6610. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6611. /*
  6612. * These functions are only useful for the IA64 MCA handling, or kdb.
  6613. *
  6614. * They can only be called when the whole system has been
  6615. * stopped - every CPU needs to be quiescent, and no scheduling
  6616. * activity can take place. Using them for anything else would
  6617. * be a serious bug, and as a result, they aren't even visible
  6618. * under any other configuration.
  6619. */
  6620. /**
  6621. * curr_task - return the current task for a given cpu.
  6622. * @cpu: the processor in question.
  6623. *
  6624. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6625. */
  6626. struct task_struct *curr_task(int cpu)
  6627. {
  6628. return cpu_curr(cpu);
  6629. }
  6630. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6631. #ifdef CONFIG_IA64
  6632. /**
  6633. * set_curr_task - set the current task for a given cpu.
  6634. * @cpu: the processor in question.
  6635. * @p: the task pointer to set.
  6636. *
  6637. * Description: This function must only be used when non-maskable interrupts
  6638. * are serviced on a separate stack. It allows the architecture to switch the
  6639. * notion of the current task on a cpu in a non-blocking manner. This function
  6640. * must be called with all CPU's synchronized, and interrupts disabled, the
  6641. * and caller must save the original value of the current task (see
  6642. * curr_task() above) and restore that value before reenabling interrupts and
  6643. * re-starting the system.
  6644. *
  6645. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6646. */
  6647. void set_curr_task(int cpu, struct task_struct *p)
  6648. {
  6649. cpu_curr(cpu) = p;
  6650. }
  6651. #endif
  6652. #ifdef CONFIG_FAIR_GROUP_SCHED
  6653. static void free_fair_sched_group(struct task_group *tg)
  6654. {
  6655. int i;
  6656. for_each_possible_cpu(i) {
  6657. if (tg->cfs_rq)
  6658. kfree(tg->cfs_rq[i]);
  6659. if (tg->se)
  6660. kfree(tg->se[i]);
  6661. }
  6662. kfree(tg->cfs_rq);
  6663. kfree(tg->se);
  6664. }
  6665. static
  6666. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6667. {
  6668. struct cfs_rq *cfs_rq;
  6669. struct sched_entity *se;
  6670. struct rq *rq;
  6671. int i;
  6672. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6673. if (!tg->cfs_rq)
  6674. goto err;
  6675. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6676. if (!tg->se)
  6677. goto err;
  6678. tg->shares = NICE_0_LOAD;
  6679. for_each_possible_cpu(i) {
  6680. rq = cpu_rq(i);
  6681. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6682. GFP_KERNEL, cpu_to_node(i));
  6683. if (!cfs_rq)
  6684. goto err;
  6685. se = kzalloc_node(sizeof(struct sched_entity),
  6686. GFP_KERNEL, cpu_to_node(i));
  6687. if (!se)
  6688. goto err_free_rq;
  6689. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6690. }
  6691. return 1;
  6692. err_free_rq:
  6693. kfree(cfs_rq);
  6694. err:
  6695. return 0;
  6696. }
  6697. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6698. {
  6699. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6700. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6701. }
  6702. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6703. {
  6704. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6705. }
  6706. #else /* !CONFG_FAIR_GROUP_SCHED */
  6707. static inline void free_fair_sched_group(struct task_group *tg)
  6708. {
  6709. }
  6710. static inline
  6711. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6712. {
  6713. return 1;
  6714. }
  6715. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6716. {
  6717. }
  6718. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6719. {
  6720. }
  6721. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6722. #ifdef CONFIG_RT_GROUP_SCHED
  6723. static void free_rt_sched_group(struct task_group *tg)
  6724. {
  6725. int i;
  6726. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6727. for_each_possible_cpu(i) {
  6728. if (tg->rt_rq)
  6729. kfree(tg->rt_rq[i]);
  6730. if (tg->rt_se)
  6731. kfree(tg->rt_se[i]);
  6732. }
  6733. kfree(tg->rt_rq);
  6734. kfree(tg->rt_se);
  6735. }
  6736. static
  6737. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6738. {
  6739. struct rt_rq *rt_rq;
  6740. struct sched_rt_entity *rt_se;
  6741. struct rq *rq;
  6742. int i;
  6743. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6744. if (!tg->rt_rq)
  6745. goto err;
  6746. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6747. if (!tg->rt_se)
  6748. goto err;
  6749. init_rt_bandwidth(&tg->rt_bandwidth,
  6750. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6751. for_each_possible_cpu(i) {
  6752. rq = cpu_rq(i);
  6753. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6754. GFP_KERNEL, cpu_to_node(i));
  6755. if (!rt_rq)
  6756. goto err;
  6757. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6758. GFP_KERNEL, cpu_to_node(i));
  6759. if (!rt_se)
  6760. goto err_free_rq;
  6761. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6762. }
  6763. return 1;
  6764. err_free_rq:
  6765. kfree(rt_rq);
  6766. err:
  6767. return 0;
  6768. }
  6769. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6770. {
  6771. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6772. &cpu_rq(cpu)->leaf_rt_rq_list);
  6773. }
  6774. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6775. {
  6776. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6777. }
  6778. #else /* !CONFIG_RT_GROUP_SCHED */
  6779. static inline void free_rt_sched_group(struct task_group *tg)
  6780. {
  6781. }
  6782. static inline
  6783. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6784. {
  6785. return 1;
  6786. }
  6787. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6788. {
  6789. }
  6790. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6791. {
  6792. }
  6793. #endif /* CONFIG_RT_GROUP_SCHED */
  6794. #ifdef CONFIG_CGROUP_SCHED
  6795. static void free_sched_group(struct task_group *tg)
  6796. {
  6797. free_fair_sched_group(tg);
  6798. free_rt_sched_group(tg);
  6799. kfree(tg);
  6800. }
  6801. /* allocate runqueue etc for a new task group */
  6802. struct task_group *sched_create_group(struct task_group *parent)
  6803. {
  6804. struct task_group *tg;
  6805. unsigned long flags;
  6806. int i;
  6807. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6808. if (!tg)
  6809. return ERR_PTR(-ENOMEM);
  6810. if (!alloc_fair_sched_group(tg, parent))
  6811. goto err;
  6812. if (!alloc_rt_sched_group(tg, parent))
  6813. goto err;
  6814. spin_lock_irqsave(&task_group_lock, flags);
  6815. for_each_possible_cpu(i) {
  6816. register_fair_sched_group(tg, i);
  6817. register_rt_sched_group(tg, i);
  6818. }
  6819. list_add_rcu(&tg->list, &task_groups);
  6820. WARN_ON(!parent); /* root should already exist */
  6821. tg->parent = parent;
  6822. INIT_LIST_HEAD(&tg->children);
  6823. list_add_rcu(&tg->siblings, &parent->children);
  6824. spin_unlock_irqrestore(&task_group_lock, flags);
  6825. return tg;
  6826. err:
  6827. free_sched_group(tg);
  6828. return ERR_PTR(-ENOMEM);
  6829. }
  6830. /* rcu callback to free various structures associated with a task group */
  6831. static void free_sched_group_rcu(struct rcu_head *rhp)
  6832. {
  6833. /* now it should be safe to free those cfs_rqs */
  6834. free_sched_group(container_of(rhp, struct task_group, rcu));
  6835. }
  6836. /* Destroy runqueue etc associated with a task group */
  6837. void sched_destroy_group(struct task_group *tg)
  6838. {
  6839. unsigned long flags;
  6840. int i;
  6841. spin_lock_irqsave(&task_group_lock, flags);
  6842. for_each_possible_cpu(i) {
  6843. unregister_fair_sched_group(tg, i);
  6844. unregister_rt_sched_group(tg, i);
  6845. }
  6846. list_del_rcu(&tg->list);
  6847. list_del_rcu(&tg->siblings);
  6848. spin_unlock_irqrestore(&task_group_lock, flags);
  6849. /* wait for possible concurrent references to cfs_rqs complete */
  6850. call_rcu(&tg->rcu, free_sched_group_rcu);
  6851. }
  6852. /* change task's runqueue when it moves between groups.
  6853. * The caller of this function should have put the task in its new group
  6854. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6855. * reflect its new group.
  6856. */
  6857. void sched_move_task(struct task_struct *tsk)
  6858. {
  6859. int on_rq, running;
  6860. unsigned long flags;
  6861. struct rq *rq;
  6862. rq = task_rq_lock(tsk, &flags);
  6863. running = task_current(rq, tsk);
  6864. on_rq = tsk->se.on_rq;
  6865. if (on_rq)
  6866. dequeue_task(rq, tsk, 0);
  6867. if (unlikely(running))
  6868. tsk->sched_class->put_prev_task(rq, tsk);
  6869. set_task_rq(tsk, task_cpu(tsk));
  6870. #ifdef CONFIG_FAIR_GROUP_SCHED
  6871. if (tsk->sched_class->moved_group)
  6872. tsk->sched_class->moved_group(tsk, on_rq);
  6873. #endif
  6874. if (unlikely(running))
  6875. tsk->sched_class->set_curr_task(rq);
  6876. if (on_rq)
  6877. enqueue_task(rq, tsk, 0);
  6878. task_rq_unlock(rq, &flags);
  6879. }
  6880. #endif /* CONFIG_CGROUP_SCHED */
  6881. #ifdef CONFIG_FAIR_GROUP_SCHED
  6882. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  6883. {
  6884. struct cfs_rq *cfs_rq = se->cfs_rq;
  6885. int on_rq;
  6886. on_rq = se->on_rq;
  6887. if (on_rq)
  6888. dequeue_entity(cfs_rq, se, 0);
  6889. se->load.weight = shares;
  6890. se->load.inv_weight = 0;
  6891. if (on_rq)
  6892. enqueue_entity(cfs_rq, se, 0);
  6893. }
  6894. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6895. {
  6896. struct cfs_rq *cfs_rq = se->cfs_rq;
  6897. struct rq *rq = cfs_rq->rq;
  6898. unsigned long flags;
  6899. raw_spin_lock_irqsave(&rq->lock, flags);
  6900. __set_se_shares(se, shares);
  6901. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6902. }
  6903. static DEFINE_MUTEX(shares_mutex);
  6904. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6905. {
  6906. int i;
  6907. unsigned long flags;
  6908. /*
  6909. * We can't change the weight of the root cgroup.
  6910. */
  6911. if (!tg->se[0])
  6912. return -EINVAL;
  6913. if (shares < MIN_SHARES)
  6914. shares = MIN_SHARES;
  6915. else if (shares > MAX_SHARES)
  6916. shares = MAX_SHARES;
  6917. mutex_lock(&shares_mutex);
  6918. if (tg->shares == shares)
  6919. goto done;
  6920. spin_lock_irqsave(&task_group_lock, flags);
  6921. for_each_possible_cpu(i)
  6922. unregister_fair_sched_group(tg, i);
  6923. list_del_rcu(&tg->siblings);
  6924. spin_unlock_irqrestore(&task_group_lock, flags);
  6925. /* wait for any ongoing reference to this group to finish */
  6926. synchronize_sched();
  6927. /*
  6928. * Now we are free to modify the group's share on each cpu
  6929. * w/o tripping rebalance_share or load_balance_fair.
  6930. */
  6931. tg->shares = shares;
  6932. for_each_possible_cpu(i) {
  6933. /*
  6934. * force a rebalance
  6935. */
  6936. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  6937. set_se_shares(tg->se[i], shares);
  6938. }
  6939. /*
  6940. * Enable load balance activity on this group, by inserting it back on
  6941. * each cpu's rq->leaf_cfs_rq_list.
  6942. */
  6943. spin_lock_irqsave(&task_group_lock, flags);
  6944. for_each_possible_cpu(i)
  6945. register_fair_sched_group(tg, i);
  6946. list_add_rcu(&tg->siblings, &tg->parent->children);
  6947. spin_unlock_irqrestore(&task_group_lock, flags);
  6948. done:
  6949. mutex_unlock(&shares_mutex);
  6950. return 0;
  6951. }
  6952. unsigned long sched_group_shares(struct task_group *tg)
  6953. {
  6954. return tg->shares;
  6955. }
  6956. #endif
  6957. #ifdef CONFIG_RT_GROUP_SCHED
  6958. /*
  6959. * Ensure that the real time constraints are schedulable.
  6960. */
  6961. static DEFINE_MUTEX(rt_constraints_mutex);
  6962. static unsigned long to_ratio(u64 period, u64 runtime)
  6963. {
  6964. if (runtime == RUNTIME_INF)
  6965. return 1ULL << 20;
  6966. return div64_u64(runtime << 20, period);
  6967. }
  6968. /* Must be called with tasklist_lock held */
  6969. static inline int tg_has_rt_tasks(struct task_group *tg)
  6970. {
  6971. struct task_struct *g, *p;
  6972. do_each_thread(g, p) {
  6973. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6974. return 1;
  6975. } while_each_thread(g, p);
  6976. return 0;
  6977. }
  6978. struct rt_schedulable_data {
  6979. struct task_group *tg;
  6980. u64 rt_period;
  6981. u64 rt_runtime;
  6982. };
  6983. static int tg_schedulable(struct task_group *tg, void *data)
  6984. {
  6985. struct rt_schedulable_data *d = data;
  6986. struct task_group *child;
  6987. unsigned long total, sum = 0;
  6988. u64 period, runtime;
  6989. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6990. runtime = tg->rt_bandwidth.rt_runtime;
  6991. if (tg == d->tg) {
  6992. period = d->rt_period;
  6993. runtime = d->rt_runtime;
  6994. }
  6995. /*
  6996. * Cannot have more runtime than the period.
  6997. */
  6998. if (runtime > period && runtime != RUNTIME_INF)
  6999. return -EINVAL;
  7000. /*
  7001. * Ensure we don't starve existing RT tasks.
  7002. */
  7003. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7004. return -EBUSY;
  7005. total = to_ratio(period, runtime);
  7006. /*
  7007. * Nobody can have more than the global setting allows.
  7008. */
  7009. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7010. return -EINVAL;
  7011. /*
  7012. * The sum of our children's runtime should not exceed our own.
  7013. */
  7014. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7015. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7016. runtime = child->rt_bandwidth.rt_runtime;
  7017. if (child == d->tg) {
  7018. period = d->rt_period;
  7019. runtime = d->rt_runtime;
  7020. }
  7021. sum += to_ratio(period, runtime);
  7022. }
  7023. if (sum > total)
  7024. return -EINVAL;
  7025. return 0;
  7026. }
  7027. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7028. {
  7029. struct rt_schedulable_data data = {
  7030. .tg = tg,
  7031. .rt_period = period,
  7032. .rt_runtime = runtime,
  7033. };
  7034. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7035. }
  7036. static int tg_set_bandwidth(struct task_group *tg,
  7037. u64 rt_period, u64 rt_runtime)
  7038. {
  7039. int i, err = 0;
  7040. mutex_lock(&rt_constraints_mutex);
  7041. read_lock(&tasklist_lock);
  7042. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7043. if (err)
  7044. goto unlock;
  7045. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7046. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7047. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7048. for_each_possible_cpu(i) {
  7049. struct rt_rq *rt_rq = tg->rt_rq[i];
  7050. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7051. rt_rq->rt_runtime = rt_runtime;
  7052. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7053. }
  7054. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7055. unlock:
  7056. read_unlock(&tasklist_lock);
  7057. mutex_unlock(&rt_constraints_mutex);
  7058. return err;
  7059. }
  7060. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7061. {
  7062. u64 rt_runtime, rt_period;
  7063. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7064. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7065. if (rt_runtime_us < 0)
  7066. rt_runtime = RUNTIME_INF;
  7067. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7068. }
  7069. long sched_group_rt_runtime(struct task_group *tg)
  7070. {
  7071. u64 rt_runtime_us;
  7072. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7073. return -1;
  7074. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7075. do_div(rt_runtime_us, NSEC_PER_USEC);
  7076. return rt_runtime_us;
  7077. }
  7078. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7079. {
  7080. u64 rt_runtime, rt_period;
  7081. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7082. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7083. if (rt_period == 0)
  7084. return -EINVAL;
  7085. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7086. }
  7087. long sched_group_rt_period(struct task_group *tg)
  7088. {
  7089. u64 rt_period_us;
  7090. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7091. do_div(rt_period_us, NSEC_PER_USEC);
  7092. return rt_period_us;
  7093. }
  7094. static int sched_rt_global_constraints(void)
  7095. {
  7096. u64 runtime, period;
  7097. int ret = 0;
  7098. if (sysctl_sched_rt_period <= 0)
  7099. return -EINVAL;
  7100. runtime = global_rt_runtime();
  7101. period = global_rt_period();
  7102. /*
  7103. * Sanity check on the sysctl variables.
  7104. */
  7105. if (runtime > period && runtime != RUNTIME_INF)
  7106. return -EINVAL;
  7107. mutex_lock(&rt_constraints_mutex);
  7108. read_lock(&tasklist_lock);
  7109. ret = __rt_schedulable(NULL, 0, 0);
  7110. read_unlock(&tasklist_lock);
  7111. mutex_unlock(&rt_constraints_mutex);
  7112. return ret;
  7113. }
  7114. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7115. {
  7116. /* Don't accept realtime tasks when there is no way for them to run */
  7117. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7118. return 0;
  7119. return 1;
  7120. }
  7121. #else /* !CONFIG_RT_GROUP_SCHED */
  7122. static int sched_rt_global_constraints(void)
  7123. {
  7124. unsigned long flags;
  7125. int i;
  7126. if (sysctl_sched_rt_period <= 0)
  7127. return -EINVAL;
  7128. /*
  7129. * There's always some RT tasks in the root group
  7130. * -- migration, kstopmachine etc..
  7131. */
  7132. if (sysctl_sched_rt_runtime == 0)
  7133. return -EBUSY;
  7134. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7135. for_each_possible_cpu(i) {
  7136. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7137. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7138. rt_rq->rt_runtime = global_rt_runtime();
  7139. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7140. }
  7141. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7142. return 0;
  7143. }
  7144. #endif /* CONFIG_RT_GROUP_SCHED */
  7145. int sched_rt_handler(struct ctl_table *table, int write,
  7146. void __user *buffer, size_t *lenp,
  7147. loff_t *ppos)
  7148. {
  7149. int ret;
  7150. int old_period, old_runtime;
  7151. static DEFINE_MUTEX(mutex);
  7152. mutex_lock(&mutex);
  7153. old_period = sysctl_sched_rt_period;
  7154. old_runtime = sysctl_sched_rt_runtime;
  7155. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7156. if (!ret && write) {
  7157. ret = sched_rt_global_constraints();
  7158. if (ret) {
  7159. sysctl_sched_rt_period = old_period;
  7160. sysctl_sched_rt_runtime = old_runtime;
  7161. } else {
  7162. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7163. def_rt_bandwidth.rt_period =
  7164. ns_to_ktime(global_rt_period());
  7165. }
  7166. }
  7167. mutex_unlock(&mutex);
  7168. return ret;
  7169. }
  7170. #ifdef CONFIG_CGROUP_SCHED
  7171. /* return corresponding task_group object of a cgroup */
  7172. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7173. {
  7174. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7175. struct task_group, css);
  7176. }
  7177. static struct cgroup_subsys_state *
  7178. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7179. {
  7180. struct task_group *tg, *parent;
  7181. if (!cgrp->parent) {
  7182. /* This is early initialization for the top cgroup */
  7183. return &init_task_group.css;
  7184. }
  7185. parent = cgroup_tg(cgrp->parent);
  7186. tg = sched_create_group(parent);
  7187. if (IS_ERR(tg))
  7188. return ERR_PTR(-ENOMEM);
  7189. return &tg->css;
  7190. }
  7191. static void
  7192. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7193. {
  7194. struct task_group *tg = cgroup_tg(cgrp);
  7195. sched_destroy_group(tg);
  7196. }
  7197. static int
  7198. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7199. {
  7200. #ifdef CONFIG_RT_GROUP_SCHED
  7201. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7202. return -EINVAL;
  7203. #else
  7204. /* We don't support RT-tasks being in separate groups */
  7205. if (tsk->sched_class != &fair_sched_class)
  7206. return -EINVAL;
  7207. #endif
  7208. return 0;
  7209. }
  7210. static int
  7211. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7212. struct task_struct *tsk, bool threadgroup)
  7213. {
  7214. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7215. if (retval)
  7216. return retval;
  7217. if (threadgroup) {
  7218. struct task_struct *c;
  7219. rcu_read_lock();
  7220. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7221. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7222. if (retval) {
  7223. rcu_read_unlock();
  7224. return retval;
  7225. }
  7226. }
  7227. rcu_read_unlock();
  7228. }
  7229. return 0;
  7230. }
  7231. static void
  7232. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7233. struct cgroup *old_cont, struct task_struct *tsk,
  7234. bool threadgroup)
  7235. {
  7236. sched_move_task(tsk);
  7237. if (threadgroup) {
  7238. struct task_struct *c;
  7239. rcu_read_lock();
  7240. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7241. sched_move_task(c);
  7242. }
  7243. rcu_read_unlock();
  7244. }
  7245. }
  7246. #ifdef CONFIG_FAIR_GROUP_SCHED
  7247. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7248. u64 shareval)
  7249. {
  7250. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7251. }
  7252. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7253. {
  7254. struct task_group *tg = cgroup_tg(cgrp);
  7255. return (u64) tg->shares;
  7256. }
  7257. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7258. #ifdef CONFIG_RT_GROUP_SCHED
  7259. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7260. s64 val)
  7261. {
  7262. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7263. }
  7264. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7265. {
  7266. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7267. }
  7268. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7269. u64 rt_period_us)
  7270. {
  7271. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7272. }
  7273. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7274. {
  7275. return sched_group_rt_period(cgroup_tg(cgrp));
  7276. }
  7277. #endif /* CONFIG_RT_GROUP_SCHED */
  7278. static struct cftype cpu_files[] = {
  7279. #ifdef CONFIG_FAIR_GROUP_SCHED
  7280. {
  7281. .name = "shares",
  7282. .read_u64 = cpu_shares_read_u64,
  7283. .write_u64 = cpu_shares_write_u64,
  7284. },
  7285. #endif
  7286. #ifdef CONFIG_RT_GROUP_SCHED
  7287. {
  7288. .name = "rt_runtime_us",
  7289. .read_s64 = cpu_rt_runtime_read,
  7290. .write_s64 = cpu_rt_runtime_write,
  7291. },
  7292. {
  7293. .name = "rt_period_us",
  7294. .read_u64 = cpu_rt_period_read_uint,
  7295. .write_u64 = cpu_rt_period_write_uint,
  7296. },
  7297. #endif
  7298. };
  7299. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7300. {
  7301. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7302. }
  7303. struct cgroup_subsys cpu_cgroup_subsys = {
  7304. .name = "cpu",
  7305. .create = cpu_cgroup_create,
  7306. .destroy = cpu_cgroup_destroy,
  7307. .can_attach = cpu_cgroup_can_attach,
  7308. .attach = cpu_cgroup_attach,
  7309. .populate = cpu_cgroup_populate,
  7310. .subsys_id = cpu_cgroup_subsys_id,
  7311. .early_init = 1,
  7312. };
  7313. #endif /* CONFIG_CGROUP_SCHED */
  7314. #ifdef CONFIG_CGROUP_CPUACCT
  7315. /*
  7316. * CPU accounting code for task groups.
  7317. *
  7318. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7319. * (balbir@in.ibm.com).
  7320. */
  7321. /* track cpu usage of a group of tasks and its child groups */
  7322. struct cpuacct {
  7323. struct cgroup_subsys_state css;
  7324. /* cpuusage holds pointer to a u64-type object on every cpu */
  7325. u64 __percpu *cpuusage;
  7326. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7327. struct cpuacct *parent;
  7328. };
  7329. struct cgroup_subsys cpuacct_subsys;
  7330. /* return cpu accounting group corresponding to this container */
  7331. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7332. {
  7333. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7334. struct cpuacct, css);
  7335. }
  7336. /* return cpu accounting group to which this task belongs */
  7337. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7338. {
  7339. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7340. struct cpuacct, css);
  7341. }
  7342. /* create a new cpu accounting group */
  7343. static struct cgroup_subsys_state *cpuacct_create(
  7344. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7345. {
  7346. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7347. int i;
  7348. if (!ca)
  7349. goto out;
  7350. ca->cpuusage = alloc_percpu(u64);
  7351. if (!ca->cpuusage)
  7352. goto out_free_ca;
  7353. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7354. if (percpu_counter_init(&ca->cpustat[i], 0))
  7355. goto out_free_counters;
  7356. if (cgrp->parent)
  7357. ca->parent = cgroup_ca(cgrp->parent);
  7358. return &ca->css;
  7359. out_free_counters:
  7360. while (--i >= 0)
  7361. percpu_counter_destroy(&ca->cpustat[i]);
  7362. free_percpu(ca->cpuusage);
  7363. out_free_ca:
  7364. kfree(ca);
  7365. out:
  7366. return ERR_PTR(-ENOMEM);
  7367. }
  7368. /* destroy an existing cpu accounting group */
  7369. static void
  7370. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7371. {
  7372. struct cpuacct *ca = cgroup_ca(cgrp);
  7373. int i;
  7374. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7375. percpu_counter_destroy(&ca->cpustat[i]);
  7376. free_percpu(ca->cpuusage);
  7377. kfree(ca);
  7378. }
  7379. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7380. {
  7381. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7382. u64 data;
  7383. #ifndef CONFIG_64BIT
  7384. /*
  7385. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7386. */
  7387. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7388. data = *cpuusage;
  7389. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7390. #else
  7391. data = *cpuusage;
  7392. #endif
  7393. return data;
  7394. }
  7395. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7396. {
  7397. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7398. #ifndef CONFIG_64BIT
  7399. /*
  7400. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7401. */
  7402. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7403. *cpuusage = val;
  7404. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7405. #else
  7406. *cpuusage = val;
  7407. #endif
  7408. }
  7409. /* return total cpu usage (in nanoseconds) of a group */
  7410. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7411. {
  7412. struct cpuacct *ca = cgroup_ca(cgrp);
  7413. u64 totalcpuusage = 0;
  7414. int i;
  7415. for_each_present_cpu(i)
  7416. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7417. return totalcpuusage;
  7418. }
  7419. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7420. u64 reset)
  7421. {
  7422. struct cpuacct *ca = cgroup_ca(cgrp);
  7423. int err = 0;
  7424. int i;
  7425. if (reset) {
  7426. err = -EINVAL;
  7427. goto out;
  7428. }
  7429. for_each_present_cpu(i)
  7430. cpuacct_cpuusage_write(ca, i, 0);
  7431. out:
  7432. return err;
  7433. }
  7434. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7435. struct seq_file *m)
  7436. {
  7437. struct cpuacct *ca = cgroup_ca(cgroup);
  7438. u64 percpu;
  7439. int i;
  7440. for_each_present_cpu(i) {
  7441. percpu = cpuacct_cpuusage_read(ca, i);
  7442. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7443. }
  7444. seq_printf(m, "\n");
  7445. return 0;
  7446. }
  7447. static const char *cpuacct_stat_desc[] = {
  7448. [CPUACCT_STAT_USER] = "user",
  7449. [CPUACCT_STAT_SYSTEM] = "system",
  7450. };
  7451. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7452. struct cgroup_map_cb *cb)
  7453. {
  7454. struct cpuacct *ca = cgroup_ca(cgrp);
  7455. int i;
  7456. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7457. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7458. val = cputime64_to_clock_t(val);
  7459. cb->fill(cb, cpuacct_stat_desc[i], val);
  7460. }
  7461. return 0;
  7462. }
  7463. static struct cftype files[] = {
  7464. {
  7465. .name = "usage",
  7466. .read_u64 = cpuusage_read,
  7467. .write_u64 = cpuusage_write,
  7468. },
  7469. {
  7470. .name = "usage_percpu",
  7471. .read_seq_string = cpuacct_percpu_seq_read,
  7472. },
  7473. {
  7474. .name = "stat",
  7475. .read_map = cpuacct_stats_show,
  7476. },
  7477. };
  7478. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7479. {
  7480. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7481. }
  7482. /*
  7483. * charge this task's execution time to its accounting group.
  7484. *
  7485. * called with rq->lock held.
  7486. */
  7487. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7488. {
  7489. struct cpuacct *ca;
  7490. int cpu;
  7491. if (unlikely(!cpuacct_subsys.active))
  7492. return;
  7493. cpu = task_cpu(tsk);
  7494. rcu_read_lock();
  7495. ca = task_ca(tsk);
  7496. for (; ca; ca = ca->parent) {
  7497. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7498. *cpuusage += cputime;
  7499. }
  7500. rcu_read_unlock();
  7501. }
  7502. /*
  7503. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7504. * in cputime_t units. As a result, cpuacct_update_stats calls
  7505. * percpu_counter_add with values large enough to always overflow the
  7506. * per cpu batch limit causing bad SMP scalability.
  7507. *
  7508. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7509. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7510. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7511. */
  7512. #ifdef CONFIG_SMP
  7513. #define CPUACCT_BATCH \
  7514. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7515. #else
  7516. #define CPUACCT_BATCH 0
  7517. #endif
  7518. /*
  7519. * Charge the system/user time to the task's accounting group.
  7520. */
  7521. static void cpuacct_update_stats(struct task_struct *tsk,
  7522. enum cpuacct_stat_index idx, cputime_t val)
  7523. {
  7524. struct cpuacct *ca;
  7525. int batch = CPUACCT_BATCH;
  7526. if (unlikely(!cpuacct_subsys.active))
  7527. return;
  7528. rcu_read_lock();
  7529. ca = task_ca(tsk);
  7530. do {
  7531. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7532. ca = ca->parent;
  7533. } while (ca);
  7534. rcu_read_unlock();
  7535. }
  7536. struct cgroup_subsys cpuacct_subsys = {
  7537. .name = "cpuacct",
  7538. .create = cpuacct_create,
  7539. .destroy = cpuacct_destroy,
  7540. .populate = cpuacct_populate,
  7541. .subsys_id = cpuacct_subsys_id,
  7542. };
  7543. #endif /* CONFIG_CGROUP_CPUACCT */
  7544. #ifndef CONFIG_SMP
  7545. void synchronize_sched_expedited(void)
  7546. {
  7547. barrier();
  7548. }
  7549. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7550. #else /* #ifndef CONFIG_SMP */
  7551. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7552. static int synchronize_sched_expedited_cpu_stop(void *data)
  7553. {
  7554. /*
  7555. * There must be a full memory barrier on each affected CPU
  7556. * between the time that try_stop_cpus() is called and the
  7557. * time that it returns.
  7558. *
  7559. * In the current initial implementation of cpu_stop, the
  7560. * above condition is already met when the control reaches
  7561. * this point and the following smp_mb() is not strictly
  7562. * necessary. Do smp_mb() anyway for documentation and
  7563. * robustness against future implementation changes.
  7564. */
  7565. smp_mb(); /* See above comment block. */
  7566. return 0;
  7567. }
  7568. /*
  7569. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7570. * approach to force grace period to end quickly. This consumes
  7571. * significant time on all CPUs, and is thus not recommended for
  7572. * any sort of common-case code.
  7573. *
  7574. * Note that it is illegal to call this function while holding any
  7575. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7576. * observe this restriction will result in deadlock.
  7577. */
  7578. void synchronize_sched_expedited(void)
  7579. {
  7580. int snap, trycount = 0;
  7581. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7582. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7583. get_online_cpus();
  7584. while (try_stop_cpus(cpu_online_mask,
  7585. synchronize_sched_expedited_cpu_stop,
  7586. NULL) == -EAGAIN) {
  7587. put_online_cpus();
  7588. if (trycount++ < 10)
  7589. udelay(trycount * num_online_cpus());
  7590. else {
  7591. synchronize_sched();
  7592. return;
  7593. }
  7594. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7595. smp_mb(); /* ensure test happens before caller kfree */
  7596. return;
  7597. }
  7598. get_online_cpus();
  7599. }
  7600. atomic_inc(&synchronize_sched_expedited_count);
  7601. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7602. put_online_cpus();
  7603. }
  7604. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7605. #endif /* #else #ifndef CONFIG_SMP */