cgroup.c 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841
  1. /*
  2. * Generic process-grouping system.
  3. *
  4. * Based originally on the cpuset system, extracted by Paul Menage
  5. * Copyright (C) 2006 Google, Inc
  6. *
  7. * Notifications support
  8. * Copyright (C) 2009 Nokia Corporation
  9. * Author: Kirill A. Shutemov
  10. *
  11. * Copyright notices from the original cpuset code:
  12. * --------------------------------------------------
  13. * Copyright (C) 2003 BULL SA.
  14. * Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15. *
  16. * Portions derived from Patrick Mochel's sysfs code.
  17. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  18. *
  19. * 2003-10-10 Written by Simon Derr.
  20. * 2003-10-22 Updates by Stephen Hemminger.
  21. * 2004 May-July Rework by Paul Jackson.
  22. * ---------------------------------------------------
  23. *
  24. * This file is subject to the terms and conditions of the GNU General Public
  25. * License. See the file COPYING in the main directory of the Linux
  26. * distribution for more details.
  27. */
  28. #include <linux/cgroup.h>
  29. #include <linux/ctype.h>
  30. #include <linux/errno.h>
  31. #include <linux/fs.h>
  32. #include <linux/kernel.h>
  33. #include <linux/list.h>
  34. #include <linux/mm.h>
  35. #include <linux/mutex.h>
  36. #include <linux/mount.h>
  37. #include <linux/pagemap.h>
  38. #include <linux/proc_fs.h>
  39. #include <linux/rcupdate.h>
  40. #include <linux/sched.h>
  41. #include <linux/backing-dev.h>
  42. #include <linux/seq_file.h>
  43. #include <linux/slab.h>
  44. #include <linux/magic.h>
  45. #include <linux/spinlock.h>
  46. #include <linux/string.h>
  47. #include <linux/sort.h>
  48. #include <linux/kmod.h>
  49. #include <linux/module.h>
  50. #include <linux/delayacct.h>
  51. #include <linux/cgroupstats.h>
  52. #include <linux/hash.h>
  53. #include <linux/namei.h>
  54. #include <linux/smp_lock.h>
  55. #include <linux/pid_namespace.h>
  56. #include <linux/idr.h>
  57. #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  58. #include <linux/eventfd.h>
  59. #include <linux/poll.h>
  60. #include <asm/atomic.h>
  61. static DEFINE_MUTEX(cgroup_mutex);
  62. /*
  63. * Generate an array of cgroup subsystem pointers. At boot time, this is
  64. * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
  65. * registered after that. The mutable section of this array is protected by
  66. * cgroup_mutex.
  67. */
  68. #define SUBSYS(_x) &_x ## _subsys,
  69. static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
  70. #include <linux/cgroup_subsys.h>
  71. };
  72. #define MAX_CGROUP_ROOT_NAMELEN 64
  73. /*
  74. * A cgroupfs_root represents the root of a cgroup hierarchy,
  75. * and may be associated with a superblock to form an active
  76. * hierarchy
  77. */
  78. struct cgroupfs_root {
  79. struct super_block *sb;
  80. /*
  81. * The bitmask of subsystems intended to be attached to this
  82. * hierarchy
  83. */
  84. unsigned long subsys_bits;
  85. /* Unique id for this hierarchy. */
  86. int hierarchy_id;
  87. /* The bitmask of subsystems currently attached to this hierarchy */
  88. unsigned long actual_subsys_bits;
  89. /* A list running through the attached subsystems */
  90. struct list_head subsys_list;
  91. /* The root cgroup for this hierarchy */
  92. struct cgroup top_cgroup;
  93. /* Tracks how many cgroups are currently defined in hierarchy.*/
  94. int number_of_cgroups;
  95. /* A list running through the active hierarchies */
  96. struct list_head root_list;
  97. /* Hierarchy-specific flags */
  98. unsigned long flags;
  99. /* The path to use for release notifications. */
  100. char release_agent_path[PATH_MAX];
  101. /* The name for this hierarchy - may be empty */
  102. char name[MAX_CGROUP_ROOT_NAMELEN];
  103. };
  104. /*
  105. * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
  106. * subsystems that are otherwise unattached - it never has more than a
  107. * single cgroup, and all tasks are part of that cgroup.
  108. */
  109. static struct cgroupfs_root rootnode;
  110. /*
  111. * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
  112. * cgroup_subsys->use_id != 0.
  113. */
  114. #define CSS_ID_MAX (65535)
  115. struct css_id {
  116. /*
  117. * The css to which this ID points. This pointer is set to valid value
  118. * after cgroup is populated. If cgroup is removed, this will be NULL.
  119. * This pointer is expected to be RCU-safe because destroy()
  120. * is called after synchronize_rcu(). But for safe use, css_is_removed()
  121. * css_tryget() should be used for avoiding race.
  122. */
  123. struct cgroup_subsys_state *css;
  124. /*
  125. * ID of this css.
  126. */
  127. unsigned short id;
  128. /*
  129. * Depth in hierarchy which this ID belongs to.
  130. */
  131. unsigned short depth;
  132. /*
  133. * ID is freed by RCU. (and lookup routine is RCU safe.)
  134. */
  135. struct rcu_head rcu_head;
  136. /*
  137. * Hierarchy of CSS ID belongs to.
  138. */
  139. unsigned short stack[0]; /* Array of Length (depth+1) */
  140. };
  141. /*
  142. * cgroup_event represents events which userspace want to recieve.
  143. */
  144. struct cgroup_event {
  145. /*
  146. * Cgroup which the event belongs to.
  147. */
  148. struct cgroup *cgrp;
  149. /*
  150. * Control file which the event associated.
  151. */
  152. struct cftype *cft;
  153. /*
  154. * eventfd to signal userspace about the event.
  155. */
  156. struct eventfd_ctx *eventfd;
  157. /*
  158. * Each of these stored in a list by the cgroup.
  159. */
  160. struct list_head list;
  161. /*
  162. * All fields below needed to unregister event when
  163. * userspace closes eventfd.
  164. */
  165. poll_table pt;
  166. wait_queue_head_t *wqh;
  167. wait_queue_t wait;
  168. struct work_struct remove;
  169. };
  170. /* The list of hierarchy roots */
  171. static LIST_HEAD(roots);
  172. static int root_count;
  173. static DEFINE_IDA(hierarchy_ida);
  174. static int next_hierarchy_id;
  175. static DEFINE_SPINLOCK(hierarchy_id_lock);
  176. /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
  177. #define dummytop (&rootnode.top_cgroup)
  178. /* This flag indicates whether tasks in the fork and exit paths should
  179. * check for fork/exit handlers to call. This avoids us having to do
  180. * extra work in the fork/exit path if none of the subsystems need to
  181. * be called.
  182. */
  183. static int need_forkexit_callback __read_mostly;
  184. #ifdef CONFIG_PROVE_LOCKING
  185. int cgroup_lock_is_held(void)
  186. {
  187. return lockdep_is_held(&cgroup_mutex);
  188. }
  189. #else /* #ifdef CONFIG_PROVE_LOCKING */
  190. int cgroup_lock_is_held(void)
  191. {
  192. return mutex_is_locked(&cgroup_mutex);
  193. }
  194. #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
  195. EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
  196. /* convenient tests for these bits */
  197. inline int cgroup_is_removed(const struct cgroup *cgrp)
  198. {
  199. return test_bit(CGRP_REMOVED, &cgrp->flags);
  200. }
  201. /* bits in struct cgroupfs_root flags field */
  202. enum {
  203. ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
  204. };
  205. static int cgroup_is_releasable(const struct cgroup *cgrp)
  206. {
  207. const int bits =
  208. (1 << CGRP_RELEASABLE) |
  209. (1 << CGRP_NOTIFY_ON_RELEASE);
  210. return (cgrp->flags & bits) == bits;
  211. }
  212. static int notify_on_release(const struct cgroup *cgrp)
  213. {
  214. return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  215. }
  216. /*
  217. * for_each_subsys() allows you to iterate on each subsystem attached to
  218. * an active hierarchy
  219. */
  220. #define for_each_subsys(_root, _ss) \
  221. list_for_each_entry(_ss, &_root->subsys_list, sibling)
  222. /* for_each_active_root() allows you to iterate across the active hierarchies */
  223. #define for_each_active_root(_root) \
  224. list_for_each_entry(_root, &roots, root_list)
  225. /* the list of cgroups eligible for automatic release. Protected by
  226. * release_list_lock */
  227. static LIST_HEAD(release_list);
  228. static DEFINE_SPINLOCK(release_list_lock);
  229. static void cgroup_release_agent(struct work_struct *work);
  230. static DECLARE_WORK(release_agent_work, cgroup_release_agent);
  231. static void check_for_release(struct cgroup *cgrp);
  232. /* Link structure for associating css_set objects with cgroups */
  233. struct cg_cgroup_link {
  234. /*
  235. * List running through cg_cgroup_links associated with a
  236. * cgroup, anchored on cgroup->css_sets
  237. */
  238. struct list_head cgrp_link_list;
  239. struct cgroup *cgrp;
  240. /*
  241. * List running through cg_cgroup_links pointing at a
  242. * single css_set object, anchored on css_set->cg_links
  243. */
  244. struct list_head cg_link_list;
  245. struct css_set *cg;
  246. };
  247. /* The default css_set - used by init and its children prior to any
  248. * hierarchies being mounted. It contains a pointer to the root state
  249. * for each subsystem. Also used to anchor the list of css_sets. Not
  250. * reference-counted, to improve performance when child cgroups
  251. * haven't been created.
  252. */
  253. static struct css_set init_css_set;
  254. static struct cg_cgroup_link init_css_set_link;
  255. static int cgroup_init_idr(struct cgroup_subsys *ss,
  256. struct cgroup_subsys_state *css);
  257. /* css_set_lock protects the list of css_set objects, and the
  258. * chain of tasks off each css_set. Nests outside task->alloc_lock
  259. * due to cgroup_iter_start() */
  260. static DEFINE_RWLOCK(css_set_lock);
  261. static int css_set_count;
  262. /*
  263. * hash table for cgroup groups. This improves the performance to find
  264. * an existing css_set. This hash doesn't (currently) take into
  265. * account cgroups in empty hierarchies.
  266. */
  267. #define CSS_SET_HASH_BITS 7
  268. #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
  269. static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
  270. static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
  271. {
  272. int i;
  273. int index;
  274. unsigned long tmp = 0UL;
  275. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
  276. tmp += (unsigned long)css[i];
  277. tmp = (tmp >> 16) ^ tmp;
  278. index = hash_long(tmp, CSS_SET_HASH_BITS);
  279. return &css_set_table[index];
  280. }
  281. static void free_css_set_rcu(struct rcu_head *obj)
  282. {
  283. struct css_set *cg = container_of(obj, struct css_set, rcu_head);
  284. kfree(cg);
  285. }
  286. /* We don't maintain the lists running through each css_set to its
  287. * task until after the first call to cgroup_iter_start(). This
  288. * reduces the fork()/exit() overhead for people who have cgroups
  289. * compiled into their kernel but not actually in use */
  290. static int use_task_css_set_links __read_mostly;
  291. static void __put_css_set(struct css_set *cg, int taskexit)
  292. {
  293. struct cg_cgroup_link *link;
  294. struct cg_cgroup_link *saved_link;
  295. /*
  296. * Ensure that the refcount doesn't hit zero while any readers
  297. * can see it. Similar to atomic_dec_and_lock(), but for an
  298. * rwlock
  299. */
  300. if (atomic_add_unless(&cg->refcount, -1, 1))
  301. return;
  302. write_lock(&css_set_lock);
  303. if (!atomic_dec_and_test(&cg->refcount)) {
  304. write_unlock(&css_set_lock);
  305. return;
  306. }
  307. /* This css_set is dead. unlink it and release cgroup refcounts */
  308. hlist_del(&cg->hlist);
  309. css_set_count--;
  310. list_for_each_entry_safe(link, saved_link, &cg->cg_links,
  311. cg_link_list) {
  312. struct cgroup *cgrp = link->cgrp;
  313. list_del(&link->cg_link_list);
  314. list_del(&link->cgrp_link_list);
  315. if (atomic_dec_and_test(&cgrp->count) &&
  316. notify_on_release(cgrp)) {
  317. if (taskexit)
  318. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  319. check_for_release(cgrp);
  320. }
  321. kfree(link);
  322. }
  323. write_unlock(&css_set_lock);
  324. call_rcu(&cg->rcu_head, free_css_set_rcu);
  325. }
  326. /*
  327. * refcounted get/put for css_set objects
  328. */
  329. static inline void get_css_set(struct css_set *cg)
  330. {
  331. atomic_inc(&cg->refcount);
  332. }
  333. static inline void put_css_set(struct css_set *cg)
  334. {
  335. __put_css_set(cg, 0);
  336. }
  337. static inline void put_css_set_taskexit(struct css_set *cg)
  338. {
  339. __put_css_set(cg, 1);
  340. }
  341. /*
  342. * compare_css_sets - helper function for find_existing_css_set().
  343. * @cg: candidate css_set being tested
  344. * @old_cg: existing css_set for a task
  345. * @new_cgrp: cgroup that's being entered by the task
  346. * @template: desired set of css pointers in css_set (pre-calculated)
  347. *
  348. * Returns true if "cg" matches "old_cg" except for the hierarchy
  349. * which "new_cgrp" belongs to, for which it should match "new_cgrp".
  350. */
  351. static bool compare_css_sets(struct css_set *cg,
  352. struct css_set *old_cg,
  353. struct cgroup *new_cgrp,
  354. struct cgroup_subsys_state *template[])
  355. {
  356. struct list_head *l1, *l2;
  357. if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
  358. /* Not all subsystems matched */
  359. return false;
  360. }
  361. /*
  362. * Compare cgroup pointers in order to distinguish between
  363. * different cgroups in heirarchies with no subsystems. We
  364. * could get by with just this check alone (and skip the
  365. * memcmp above) but on most setups the memcmp check will
  366. * avoid the need for this more expensive check on almost all
  367. * candidates.
  368. */
  369. l1 = &cg->cg_links;
  370. l2 = &old_cg->cg_links;
  371. while (1) {
  372. struct cg_cgroup_link *cgl1, *cgl2;
  373. struct cgroup *cg1, *cg2;
  374. l1 = l1->next;
  375. l2 = l2->next;
  376. /* See if we reached the end - both lists are equal length. */
  377. if (l1 == &cg->cg_links) {
  378. BUG_ON(l2 != &old_cg->cg_links);
  379. break;
  380. } else {
  381. BUG_ON(l2 == &old_cg->cg_links);
  382. }
  383. /* Locate the cgroups associated with these links. */
  384. cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
  385. cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
  386. cg1 = cgl1->cgrp;
  387. cg2 = cgl2->cgrp;
  388. /* Hierarchies should be linked in the same order. */
  389. BUG_ON(cg1->root != cg2->root);
  390. /*
  391. * If this hierarchy is the hierarchy of the cgroup
  392. * that's changing, then we need to check that this
  393. * css_set points to the new cgroup; if it's any other
  394. * hierarchy, then this css_set should point to the
  395. * same cgroup as the old css_set.
  396. */
  397. if (cg1->root == new_cgrp->root) {
  398. if (cg1 != new_cgrp)
  399. return false;
  400. } else {
  401. if (cg1 != cg2)
  402. return false;
  403. }
  404. }
  405. return true;
  406. }
  407. /*
  408. * find_existing_css_set() is a helper for
  409. * find_css_set(), and checks to see whether an existing
  410. * css_set is suitable.
  411. *
  412. * oldcg: the cgroup group that we're using before the cgroup
  413. * transition
  414. *
  415. * cgrp: the cgroup that we're moving into
  416. *
  417. * template: location in which to build the desired set of subsystem
  418. * state objects for the new cgroup group
  419. */
  420. static struct css_set *find_existing_css_set(
  421. struct css_set *oldcg,
  422. struct cgroup *cgrp,
  423. struct cgroup_subsys_state *template[])
  424. {
  425. int i;
  426. struct cgroupfs_root *root = cgrp->root;
  427. struct hlist_head *hhead;
  428. struct hlist_node *node;
  429. struct css_set *cg;
  430. /*
  431. * Build the set of subsystem state objects that we want to see in the
  432. * new css_set. while subsystems can change globally, the entries here
  433. * won't change, so no need for locking.
  434. */
  435. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  436. if (root->subsys_bits & (1UL << i)) {
  437. /* Subsystem is in this hierarchy. So we want
  438. * the subsystem state from the new
  439. * cgroup */
  440. template[i] = cgrp->subsys[i];
  441. } else {
  442. /* Subsystem is not in this hierarchy, so we
  443. * don't want to change the subsystem state */
  444. template[i] = oldcg->subsys[i];
  445. }
  446. }
  447. hhead = css_set_hash(template);
  448. hlist_for_each_entry(cg, node, hhead, hlist) {
  449. if (!compare_css_sets(cg, oldcg, cgrp, template))
  450. continue;
  451. /* This css_set matches what we need */
  452. return cg;
  453. }
  454. /* No existing cgroup group matched */
  455. return NULL;
  456. }
  457. static void free_cg_links(struct list_head *tmp)
  458. {
  459. struct cg_cgroup_link *link;
  460. struct cg_cgroup_link *saved_link;
  461. list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
  462. list_del(&link->cgrp_link_list);
  463. kfree(link);
  464. }
  465. }
  466. /*
  467. * allocate_cg_links() allocates "count" cg_cgroup_link structures
  468. * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
  469. * success or a negative error
  470. */
  471. static int allocate_cg_links(int count, struct list_head *tmp)
  472. {
  473. struct cg_cgroup_link *link;
  474. int i;
  475. INIT_LIST_HEAD(tmp);
  476. for (i = 0; i < count; i++) {
  477. link = kmalloc(sizeof(*link), GFP_KERNEL);
  478. if (!link) {
  479. free_cg_links(tmp);
  480. return -ENOMEM;
  481. }
  482. list_add(&link->cgrp_link_list, tmp);
  483. }
  484. return 0;
  485. }
  486. /**
  487. * link_css_set - a helper function to link a css_set to a cgroup
  488. * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
  489. * @cg: the css_set to be linked
  490. * @cgrp: the destination cgroup
  491. */
  492. static void link_css_set(struct list_head *tmp_cg_links,
  493. struct css_set *cg, struct cgroup *cgrp)
  494. {
  495. struct cg_cgroup_link *link;
  496. BUG_ON(list_empty(tmp_cg_links));
  497. link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
  498. cgrp_link_list);
  499. link->cg = cg;
  500. link->cgrp = cgrp;
  501. atomic_inc(&cgrp->count);
  502. list_move(&link->cgrp_link_list, &cgrp->css_sets);
  503. /*
  504. * Always add links to the tail of the list so that the list
  505. * is sorted by order of hierarchy creation
  506. */
  507. list_add_tail(&link->cg_link_list, &cg->cg_links);
  508. }
  509. /*
  510. * find_css_set() takes an existing cgroup group and a
  511. * cgroup object, and returns a css_set object that's
  512. * equivalent to the old group, but with the given cgroup
  513. * substituted into the appropriate hierarchy. Must be called with
  514. * cgroup_mutex held
  515. */
  516. static struct css_set *find_css_set(
  517. struct css_set *oldcg, struct cgroup *cgrp)
  518. {
  519. struct css_set *res;
  520. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
  521. struct list_head tmp_cg_links;
  522. struct hlist_head *hhead;
  523. struct cg_cgroup_link *link;
  524. /* First see if we already have a cgroup group that matches
  525. * the desired set */
  526. read_lock(&css_set_lock);
  527. res = find_existing_css_set(oldcg, cgrp, template);
  528. if (res)
  529. get_css_set(res);
  530. read_unlock(&css_set_lock);
  531. if (res)
  532. return res;
  533. res = kmalloc(sizeof(*res), GFP_KERNEL);
  534. if (!res)
  535. return NULL;
  536. /* Allocate all the cg_cgroup_link objects that we'll need */
  537. if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
  538. kfree(res);
  539. return NULL;
  540. }
  541. atomic_set(&res->refcount, 1);
  542. INIT_LIST_HEAD(&res->cg_links);
  543. INIT_LIST_HEAD(&res->tasks);
  544. INIT_HLIST_NODE(&res->hlist);
  545. /* Copy the set of subsystem state objects generated in
  546. * find_existing_css_set() */
  547. memcpy(res->subsys, template, sizeof(res->subsys));
  548. write_lock(&css_set_lock);
  549. /* Add reference counts and links from the new css_set. */
  550. list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
  551. struct cgroup *c = link->cgrp;
  552. if (c->root == cgrp->root)
  553. c = cgrp;
  554. link_css_set(&tmp_cg_links, res, c);
  555. }
  556. BUG_ON(!list_empty(&tmp_cg_links));
  557. css_set_count++;
  558. /* Add this cgroup group to the hash table */
  559. hhead = css_set_hash(res->subsys);
  560. hlist_add_head(&res->hlist, hhead);
  561. write_unlock(&css_set_lock);
  562. return res;
  563. }
  564. /*
  565. * Return the cgroup for "task" from the given hierarchy. Must be
  566. * called with cgroup_mutex held.
  567. */
  568. static struct cgroup *task_cgroup_from_root(struct task_struct *task,
  569. struct cgroupfs_root *root)
  570. {
  571. struct css_set *css;
  572. struct cgroup *res = NULL;
  573. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  574. read_lock(&css_set_lock);
  575. /*
  576. * No need to lock the task - since we hold cgroup_mutex the
  577. * task can't change groups, so the only thing that can happen
  578. * is that it exits and its css is set back to init_css_set.
  579. */
  580. css = task->cgroups;
  581. if (css == &init_css_set) {
  582. res = &root->top_cgroup;
  583. } else {
  584. struct cg_cgroup_link *link;
  585. list_for_each_entry(link, &css->cg_links, cg_link_list) {
  586. struct cgroup *c = link->cgrp;
  587. if (c->root == root) {
  588. res = c;
  589. break;
  590. }
  591. }
  592. }
  593. read_unlock(&css_set_lock);
  594. BUG_ON(!res);
  595. return res;
  596. }
  597. /*
  598. * There is one global cgroup mutex. We also require taking
  599. * task_lock() when dereferencing a task's cgroup subsys pointers.
  600. * See "The task_lock() exception", at the end of this comment.
  601. *
  602. * A task must hold cgroup_mutex to modify cgroups.
  603. *
  604. * Any task can increment and decrement the count field without lock.
  605. * So in general, code holding cgroup_mutex can't rely on the count
  606. * field not changing. However, if the count goes to zero, then only
  607. * cgroup_attach_task() can increment it again. Because a count of zero
  608. * means that no tasks are currently attached, therefore there is no
  609. * way a task attached to that cgroup can fork (the other way to
  610. * increment the count). So code holding cgroup_mutex can safely
  611. * assume that if the count is zero, it will stay zero. Similarly, if
  612. * a task holds cgroup_mutex on a cgroup with zero count, it
  613. * knows that the cgroup won't be removed, as cgroup_rmdir()
  614. * needs that mutex.
  615. *
  616. * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
  617. * (usually) take cgroup_mutex. These are the two most performance
  618. * critical pieces of code here. The exception occurs on cgroup_exit(),
  619. * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
  620. * is taken, and if the cgroup count is zero, a usermode call made
  621. * to the release agent with the name of the cgroup (path relative to
  622. * the root of cgroup file system) as the argument.
  623. *
  624. * A cgroup can only be deleted if both its 'count' of using tasks
  625. * is zero, and its list of 'children' cgroups is empty. Since all
  626. * tasks in the system use _some_ cgroup, and since there is always at
  627. * least one task in the system (init, pid == 1), therefore, top_cgroup
  628. * always has either children cgroups and/or using tasks. So we don't
  629. * need a special hack to ensure that top_cgroup cannot be deleted.
  630. *
  631. * The task_lock() exception
  632. *
  633. * The need for this exception arises from the action of
  634. * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
  635. * another. It does so using cgroup_mutex, however there are
  636. * several performance critical places that need to reference
  637. * task->cgroup without the expense of grabbing a system global
  638. * mutex. Therefore except as noted below, when dereferencing or, as
  639. * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
  640. * task_lock(), which acts on a spinlock (task->alloc_lock) already in
  641. * the task_struct routinely used for such matters.
  642. *
  643. * P.S. One more locking exception. RCU is used to guard the
  644. * update of a tasks cgroup pointer by cgroup_attach_task()
  645. */
  646. /**
  647. * cgroup_lock - lock out any changes to cgroup structures
  648. *
  649. */
  650. void cgroup_lock(void)
  651. {
  652. mutex_lock(&cgroup_mutex);
  653. }
  654. EXPORT_SYMBOL_GPL(cgroup_lock);
  655. /**
  656. * cgroup_unlock - release lock on cgroup changes
  657. *
  658. * Undo the lock taken in a previous cgroup_lock() call.
  659. */
  660. void cgroup_unlock(void)
  661. {
  662. mutex_unlock(&cgroup_mutex);
  663. }
  664. EXPORT_SYMBOL_GPL(cgroup_unlock);
  665. /*
  666. * A couple of forward declarations required, due to cyclic reference loop:
  667. * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
  668. * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
  669. * -> cgroup_mkdir.
  670. */
  671. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
  672. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
  673. static int cgroup_populate_dir(struct cgroup *cgrp);
  674. static const struct inode_operations cgroup_dir_inode_operations;
  675. static const struct file_operations proc_cgroupstats_operations;
  676. static struct backing_dev_info cgroup_backing_dev_info = {
  677. .name = "cgroup",
  678. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  679. };
  680. static int alloc_css_id(struct cgroup_subsys *ss,
  681. struct cgroup *parent, struct cgroup *child);
  682. static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
  683. {
  684. struct inode *inode = new_inode(sb);
  685. if (inode) {
  686. inode->i_mode = mode;
  687. inode->i_uid = current_fsuid();
  688. inode->i_gid = current_fsgid();
  689. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  690. inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
  691. }
  692. return inode;
  693. }
  694. /*
  695. * Call subsys's pre_destroy handler.
  696. * This is called before css refcnt check.
  697. */
  698. static int cgroup_call_pre_destroy(struct cgroup *cgrp)
  699. {
  700. struct cgroup_subsys *ss;
  701. int ret = 0;
  702. for_each_subsys(cgrp->root, ss)
  703. if (ss->pre_destroy) {
  704. ret = ss->pre_destroy(ss, cgrp);
  705. if (ret)
  706. break;
  707. }
  708. return ret;
  709. }
  710. static void free_cgroup_rcu(struct rcu_head *obj)
  711. {
  712. struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
  713. kfree(cgrp);
  714. }
  715. static void cgroup_diput(struct dentry *dentry, struct inode *inode)
  716. {
  717. /* is dentry a directory ? if so, kfree() associated cgroup */
  718. if (S_ISDIR(inode->i_mode)) {
  719. struct cgroup *cgrp = dentry->d_fsdata;
  720. struct cgroup_subsys *ss;
  721. BUG_ON(!(cgroup_is_removed(cgrp)));
  722. /* It's possible for external users to be holding css
  723. * reference counts on a cgroup; css_put() needs to
  724. * be able to access the cgroup after decrementing
  725. * the reference count in order to know if it needs to
  726. * queue the cgroup to be handled by the release
  727. * agent */
  728. synchronize_rcu();
  729. mutex_lock(&cgroup_mutex);
  730. /*
  731. * Release the subsystem state objects.
  732. */
  733. for_each_subsys(cgrp->root, ss)
  734. ss->destroy(ss, cgrp);
  735. cgrp->root->number_of_cgroups--;
  736. mutex_unlock(&cgroup_mutex);
  737. /*
  738. * Drop the active superblock reference that we took when we
  739. * created the cgroup
  740. */
  741. deactivate_super(cgrp->root->sb);
  742. /*
  743. * if we're getting rid of the cgroup, refcount should ensure
  744. * that there are no pidlists left.
  745. */
  746. BUG_ON(!list_empty(&cgrp->pidlists));
  747. call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
  748. }
  749. iput(inode);
  750. }
  751. static void remove_dir(struct dentry *d)
  752. {
  753. struct dentry *parent = dget(d->d_parent);
  754. d_delete(d);
  755. simple_rmdir(parent->d_inode, d);
  756. dput(parent);
  757. }
  758. static void cgroup_clear_directory(struct dentry *dentry)
  759. {
  760. struct list_head *node;
  761. BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
  762. spin_lock(&dcache_lock);
  763. node = dentry->d_subdirs.next;
  764. while (node != &dentry->d_subdirs) {
  765. struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
  766. list_del_init(node);
  767. if (d->d_inode) {
  768. /* This should never be called on a cgroup
  769. * directory with child cgroups */
  770. BUG_ON(d->d_inode->i_mode & S_IFDIR);
  771. d = dget_locked(d);
  772. spin_unlock(&dcache_lock);
  773. d_delete(d);
  774. simple_unlink(dentry->d_inode, d);
  775. dput(d);
  776. spin_lock(&dcache_lock);
  777. }
  778. node = dentry->d_subdirs.next;
  779. }
  780. spin_unlock(&dcache_lock);
  781. }
  782. /*
  783. * NOTE : the dentry must have been dget()'ed
  784. */
  785. static void cgroup_d_remove_dir(struct dentry *dentry)
  786. {
  787. cgroup_clear_directory(dentry);
  788. spin_lock(&dcache_lock);
  789. list_del_init(&dentry->d_u.d_child);
  790. spin_unlock(&dcache_lock);
  791. remove_dir(dentry);
  792. }
  793. /*
  794. * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
  795. * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
  796. * reference to css->refcnt. In general, this refcnt is expected to goes down
  797. * to zero, soon.
  798. *
  799. * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
  800. */
  801. DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
  802. static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
  803. {
  804. if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
  805. wake_up_all(&cgroup_rmdir_waitq);
  806. }
  807. void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
  808. {
  809. css_get(css);
  810. }
  811. void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
  812. {
  813. cgroup_wakeup_rmdir_waiter(css->cgroup);
  814. css_put(css);
  815. }
  816. /*
  817. * Call with cgroup_mutex held. Drops reference counts on modules, including
  818. * any duplicate ones that parse_cgroupfs_options took. If this function
  819. * returns an error, no reference counts are touched.
  820. */
  821. static int rebind_subsystems(struct cgroupfs_root *root,
  822. unsigned long final_bits)
  823. {
  824. unsigned long added_bits, removed_bits;
  825. struct cgroup *cgrp = &root->top_cgroup;
  826. int i;
  827. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  828. removed_bits = root->actual_subsys_bits & ~final_bits;
  829. added_bits = final_bits & ~root->actual_subsys_bits;
  830. /* Check that any added subsystems are currently free */
  831. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  832. unsigned long bit = 1UL << i;
  833. struct cgroup_subsys *ss = subsys[i];
  834. if (!(bit & added_bits))
  835. continue;
  836. /*
  837. * Nobody should tell us to do a subsys that doesn't exist:
  838. * parse_cgroupfs_options should catch that case and refcounts
  839. * ensure that subsystems won't disappear once selected.
  840. */
  841. BUG_ON(ss == NULL);
  842. if (ss->root != &rootnode) {
  843. /* Subsystem isn't free */
  844. return -EBUSY;
  845. }
  846. }
  847. /* Currently we don't handle adding/removing subsystems when
  848. * any child cgroups exist. This is theoretically supportable
  849. * but involves complex error handling, so it's being left until
  850. * later */
  851. if (root->number_of_cgroups > 1)
  852. return -EBUSY;
  853. /* Process each subsystem */
  854. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  855. struct cgroup_subsys *ss = subsys[i];
  856. unsigned long bit = 1UL << i;
  857. if (bit & added_bits) {
  858. /* We're binding this subsystem to this hierarchy */
  859. BUG_ON(ss == NULL);
  860. BUG_ON(cgrp->subsys[i]);
  861. BUG_ON(!dummytop->subsys[i]);
  862. BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
  863. mutex_lock(&ss->hierarchy_mutex);
  864. cgrp->subsys[i] = dummytop->subsys[i];
  865. cgrp->subsys[i]->cgroup = cgrp;
  866. list_move(&ss->sibling, &root->subsys_list);
  867. ss->root = root;
  868. if (ss->bind)
  869. ss->bind(ss, cgrp);
  870. mutex_unlock(&ss->hierarchy_mutex);
  871. /* refcount was already taken, and we're keeping it */
  872. } else if (bit & removed_bits) {
  873. /* We're removing this subsystem */
  874. BUG_ON(ss == NULL);
  875. BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
  876. BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
  877. mutex_lock(&ss->hierarchy_mutex);
  878. if (ss->bind)
  879. ss->bind(ss, dummytop);
  880. dummytop->subsys[i]->cgroup = dummytop;
  881. cgrp->subsys[i] = NULL;
  882. subsys[i]->root = &rootnode;
  883. list_move(&ss->sibling, &rootnode.subsys_list);
  884. mutex_unlock(&ss->hierarchy_mutex);
  885. /* subsystem is now free - drop reference on module */
  886. module_put(ss->module);
  887. } else if (bit & final_bits) {
  888. /* Subsystem state should already exist */
  889. BUG_ON(ss == NULL);
  890. BUG_ON(!cgrp->subsys[i]);
  891. /*
  892. * a refcount was taken, but we already had one, so
  893. * drop the extra reference.
  894. */
  895. module_put(ss->module);
  896. #ifdef CONFIG_MODULE_UNLOAD
  897. BUG_ON(ss->module && !module_refcount(ss->module));
  898. #endif
  899. } else {
  900. /* Subsystem state shouldn't exist */
  901. BUG_ON(cgrp->subsys[i]);
  902. }
  903. }
  904. root->subsys_bits = root->actual_subsys_bits = final_bits;
  905. synchronize_rcu();
  906. return 0;
  907. }
  908. static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
  909. {
  910. struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
  911. struct cgroup_subsys *ss;
  912. mutex_lock(&cgroup_mutex);
  913. for_each_subsys(root, ss)
  914. seq_printf(seq, ",%s", ss->name);
  915. if (test_bit(ROOT_NOPREFIX, &root->flags))
  916. seq_puts(seq, ",noprefix");
  917. if (strlen(root->release_agent_path))
  918. seq_printf(seq, ",release_agent=%s", root->release_agent_path);
  919. if (strlen(root->name))
  920. seq_printf(seq, ",name=%s", root->name);
  921. mutex_unlock(&cgroup_mutex);
  922. return 0;
  923. }
  924. struct cgroup_sb_opts {
  925. unsigned long subsys_bits;
  926. unsigned long flags;
  927. char *release_agent;
  928. char *name;
  929. /* User explicitly requested empty subsystem */
  930. bool none;
  931. struct cgroupfs_root *new_root;
  932. };
  933. /*
  934. * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
  935. * with cgroup_mutex held to protect the subsys[] array. This function takes
  936. * refcounts on subsystems to be used, unless it returns error, in which case
  937. * no refcounts are taken.
  938. */
  939. static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
  940. {
  941. char *token, *o = data ?: "all";
  942. unsigned long mask = (unsigned long)-1;
  943. int i;
  944. bool module_pin_failed = false;
  945. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  946. #ifdef CONFIG_CPUSETS
  947. mask = ~(1UL << cpuset_subsys_id);
  948. #endif
  949. memset(opts, 0, sizeof(*opts));
  950. while ((token = strsep(&o, ",")) != NULL) {
  951. if (!*token)
  952. return -EINVAL;
  953. if (!strcmp(token, "all")) {
  954. /* Add all non-disabled subsystems */
  955. opts->subsys_bits = 0;
  956. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  957. struct cgroup_subsys *ss = subsys[i];
  958. if (ss == NULL)
  959. continue;
  960. if (!ss->disabled)
  961. opts->subsys_bits |= 1ul << i;
  962. }
  963. } else if (!strcmp(token, "none")) {
  964. /* Explicitly have no subsystems */
  965. opts->none = true;
  966. } else if (!strcmp(token, "noprefix")) {
  967. set_bit(ROOT_NOPREFIX, &opts->flags);
  968. } else if (!strncmp(token, "release_agent=", 14)) {
  969. /* Specifying two release agents is forbidden */
  970. if (opts->release_agent)
  971. return -EINVAL;
  972. opts->release_agent =
  973. kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
  974. if (!opts->release_agent)
  975. return -ENOMEM;
  976. } else if (!strncmp(token, "name=", 5)) {
  977. const char *name = token + 5;
  978. /* Can't specify an empty name */
  979. if (!strlen(name))
  980. return -EINVAL;
  981. /* Must match [\w.-]+ */
  982. for (i = 0; i < strlen(name); i++) {
  983. char c = name[i];
  984. if (isalnum(c))
  985. continue;
  986. if ((c == '.') || (c == '-') || (c == '_'))
  987. continue;
  988. return -EINVAL;
  989. }
  990. /* Specifying two names is forbidden */
  991. if (opts->name)
  992. return -EINVAL;
  993. opts->name = kstrndup(name,
  994. MAX_CGROUP_ROOT_NAMELEN,
  995. GFP_KERNEL);
  996. if (!opts->name)
  997. return -ENOMEM;
  998. } else {
  999. struct cgroup_subsys *ss;
  1000. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  1001. ss = subsys[i];
  1002. if (ss == NULL)
  1003. continue;
  1004. if (!strcmp(token, ss->name)) {
  1005. if (!ss->disabled)
  1006. set_bit(i, &opts->subsys_bits);
  1007. break;
  1008. }
  1009. }
  1010. if (i == CGROUP_SUBSYS_COUNT)
  1011. return -ENOENT;
  1012. }
  1013. }
  1014. /* Consistency checks */
  1015. /*
  1016. * Option noprefix was introduced just for backward compatibility
  1017. * with the old cpuset, so we allow noprefix only if mounting just
  1018. * the cpuset subsystem.
  1019. */
  1020. if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
  1021. (opts->subsys_bits & mask))
  1022. return -EINVAL;
  1023. /* Can't specify "none" and some subsystems */
  1024. if (opts->subsys_bits && opts->none)
  1025. return -EINVAL;
  1026. /*
  1027. * We either have to specify by name or by subsystems. (So all
  1028. * empty hierarchies must have a name).
  1029. */
  1030. if (!opts->subsys_bits && !opts->name)
  1031. return -EINVAL;
  1032. /*
  1033. * Grab references on all the modules we'll need, so the subsystems
  1034. * don't dance around before rebind_subsystems attaches them. This may
  1035. * take duplicate reference counts on a subsystem that's already used,
  1036. * but rebind_subsystems handles this case.
  1037. */
  1038. for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
  1039. unsigned long bit = 1UL << i;
  1040. if (!(bit & opts->subsys_bits))
  1041. continue;
  1042. if (!try_module_get(subsys[i]->module)) {
  1043. module_pin_failed = true;
  1044. break;
  1045. }
  1046. }
  1047. if (module_pin_failed) {
  1048. /*
  1049. * oops, one of the modules was going away. this means that we
  1050. * raced with a module_delete call, and to the user this is
  1051. * essentially a "subsystem doesn't exist" case.
  1052. */
  1053. for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
  1054. /* drop refcounts only on the ones we took */
  1055. unsigned long bit = 1UL << i;
  1056. if (!(bit & opts->subsys_bits))
  1057. continue;
  1058. module_put(subsys[i]->module);
  1059. }
  1060. return -ENOENT;
  1061. }
  1062. return 0;
  1063. }
  1064. static void drop_parsed_module_refcounts(unsigned long subsys_bits)
  1065. {
  1066. int i;
  1067. for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
  1068. unsigned long bit = 1UL << i;
  1069. if (!(bit & subsys_bits))
  1070. continue;
  1071. module_put(subsys[i]->module);
  1072. }
  1073. }
  1074. static int cgroup_remount(struct super_block *sb, int *flags, char *data)
  1075. {
  1076. int ret = 0;
  1077. struct cgroupfs_root *root = sb->s_fs_info;
  1078. struct cgroup *cgrp = &root->top_cgroup;
  1079. struct cgroup_sb_opts opts;
  1080. lock_kernel();
  1081. mutex_lock(&cgrp->dentry->d_inode->i_mutex);
  1082. mutex_lock(&cgroup_mutex);
  1083. /* See what subsystems are wanted */
  1084. ret = parse_cgroupfs_options(data, &opts);
  1085. if (ret)
  1086. goto out_unlock;
  1087. /* Don't allow flags or name to change at remount */
  1088. if (opts.flags != root->flags ||
  1089. (opts.name && strcmp(opts.name, root->name))) {
  1090. ret = -EINVAL;
  1091. drop_parsed_module_refcounts(opts.subsys_bits);
  1092. goto out_unlock;
  1093. }
  1094. ret = rebind_subsystems(root, opts.subsys_bits);
  1095. if (ret) {
  1096. drop_parsed_module_refcounts(opts.subsys_bits);
  1097. goto out_unlock;
  1098. }
  1099. /* (re)populate subsystem files */
  1100. cgroup_populate_dir(cgrp);
  1101. if (opts.release_agent)
  1102. strcpy(root->release_agent_path, opts.release_agent);
  1103. out_unlock:
  1104. kfree(opts.release_agent);
  1105. kfree(opts.name);
  1106. mutex_unlock(&cgroup_mutex);
  1107. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  1108. unlock_kernel();
  1109. return ret;
  1110. }
  1111. static const struct super_operations cgroup_ops = {
  1112. .statfs = simple_statfs,
  1113. .drop_inode = generic_delete_inode,
  1114. .show_options = cgroup_show_options,
  1115. .remount_fs = cgroup_remount,
  1116. };
  1117. static void init_cgroup_housekeeping(struct cgroup *cgrp)
  1118. {
  1119. INIT_LIST_HEAD(&cgrp->sibling);
  1120. INIT_LIST_HEAD(&cgrp->children);
  1121. INIT_LIST_HEAD(&cgrp->css_sets);
  1122. INIT_LIST_HEAD(&cgrp->release_list);
  1123. INIT_LIST_HEAD(&cgrp->pidlists);
  1124. mutex_init(&cgrp->pidlist_mutex);
  1125. INIT_LIST_HEAD(&cgrp->event_list);
  1126. spin_lock_init(&cgrp->event_list_lock);
  1127. }
  1128. static void init_cgroup_root(struct cgroupfs_root *root)
  1129. {
  1130. struct cgroup *cgrp = &root->top_cgroup;
  1131. INIT_LIST_HEAD(&root->subsys_list);
  1132. INIT_LIST_HEAD(&root->root_list);
  1133. root->number_of_cgroups = 1;
  1134. cgrp->root = root;
  1135. cgrp->top_cgroup = cgrp;
  1136. init_cgroup_housekeeping(cgrp);
  1137. }
  1138. static bool init_root_id(struct cgroupfs_root *root)
  1139. {
  1140. int ret = 0;
  1141. do {
  1142. if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
  1143. return false;
  1144. spin_lock(&hierarchy_id_lock);
  1145. /* Try to allocate the next unused ID */
  1146. ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
  1147. &root->hierarchy_id);
  1148. if (ret == -ENOSPC)
  1149. /* Try again starting from 0 */
  1150. ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
  1151. if (!ret) {
  1152. next_hierarchy_id = root->hierarchy_id + 1;
  1153. } else if (ret != -EAGAIN) {
  1154. /* Can only get here if the 31-bit IDR is full ... */
  1155. BUG_ON(ret);
  1156. }
  1157. spin_unlock(&hierarchy_id_lock);
  1158. } while (ret);
  1159. return true;
  1160. }
  1161. static int cgroup_test_super(struct super_block *sb, void *data)
  1162. {
  1163. struct cgroup_sb_opts *opts = data;
  1164. struct cgroupfs_root *root = sb->s_fs_info;
  1165. /* If we asked for a name then it must match */
  1166. if (opts->name && strcmp(opts->name, root->name))
  1167. return 0;
  1168. /*
  1169. * If we asked for subsystems (or explicitly for no
  1170. * subsystems) then they must match
  1171. */
  1172. if ((opts->subsys_bits || opts->none)
  1173. && (opts->subsys_bits != root->subsys_bits))
  1174. return 0;
  1175. return 1;
  1176. }
  1177. static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
  1178. {
  1179. struct cgroupfs_root *root;
  1180. if (!opts->subsys_bits && !opts->none)
  1181. return NULL;
  1182. root = kzalloc(sizeof(*root), GFP_KERNEL);
  1183. if (!root)
  1184. return ERR_PTR(-ENOMEM);
  1185. if (!init_root_id(root)) {
  1186. kfree(root);
  1187. return ERR_PTR(-ENOMEM);
  1188. }
  1189. init_cgroup_root(root);
  1190. root->subsys_bits = opts->subsys_bits;
  1191. root->flags = opts->flags;
  1192. if (opts->release_agent)
  1193. strcpy(root->release_agent_path, opts->release_agent);
  1194. if (opts->name)
  1195. strcpy(root->name, opts->name);
  1196. return root;
  1197. }
  1198. static void cgroup_drop_root(struct cgroupfs_root *root)
  1199. {
  1200. if (!root)
  1201. return;
  1202. BUG_ON(!root->hierarchy_id);
  1203. spin_lock(&hierarchy_id_lock);
  1204. ida_remove(&hierarchy_ida, root->hierarchy_id);
  1205. spin_unlock(&hierarchy_id_lock);
  1206. kfree(root);
  1207. }
  1208. static int cgroup_set_super(struct super_block *sb, void *data)
  1209. {
  1210. int ret;
  1211. struct cgroup_sb_opts *opts = data;
  1212. /* If we don't have a new root, we can't set up a new sb */
  1213. if (!opts->new_root)
  1214. return -EINVAL;
  1215. BUG_ON(!opts->subsys_bits && !opts->none);
  1216. ret = set_anon_super(sb, NULL);
  1217. if (ret)
  1218. return ret;
  1219. sb->s_fs_info = opts->new_root;
  1220. opts->new_root->sb = sb;
  1221. sb->s_blocksize = PAGE_CACHE_SIZE;
  1222. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  1223. sb->s_magic = CGROUP_SUPER_MAGIC;
  1224. sb->s_op = &cgroup_ops;
  1225. return 0;
  1226. }
  1227. static int cgroup_get_rootdir(struct super_block *sb)
  1228. {
  1229. struct inode *inode =
  1230. cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
  1231. struct dentry *dentry;
  1232. if (!inode)
  1233. return -ENOMEM;
  1234. inode->i_fop = &simple_dir_operations;
  1235. inode->i_op = &cgroup_dir_inode_operations;
  1236. /* directories start off with i_nlink == 2 (for "." entry) */
  1237. inc_nlink(inode);
  1238. dentry = d_alloc_root(inode);
  1239. if (!dentry) {
  1240. iput(inode);
  1241. return -ENOMEM;
  1242. }
  1243. sb->s_root = dentry;
  1244. return 0;
  1245. }
  1246. static int cgroup_get_sb(struct file_system_type *fs_type,
  1247. int flags, const char *unused_dev_name,
  1248. void *data, struct vfsmount *mnt)
  1249. {
  1250. struct cgroup_sb_opts opts;
  1251. struct cgroupfs_root *root;
  1252. int ret = 0;
  1253. struct super_block *sb;
  1254. struct cgroupfs_root *new_root;
  1255. /* First find the desired set of subsystems */
  1256. mutex_lock(&cgroup_mutex);
  1257. ret = parse_cgroupfs_options(data, &opts);
  1258. mutex_unlock(&cgroup_mutex);
  1259. if (ret)
  1260. goto out_err;
  1261. /*
  1262. * Allocate a new cgroup root. We may not need it if we're
  1263. * reusing an existing hierarchy.
  1264. */
  1265. new_root = cgroup_root_from_opts(&opts);
  1266. if (IS_ERR(new_root)) {
  1267. ret = PTR_ERR(new_root);
  1268. goto drop_modules;
  1269. }
  1270. opts.new_root = new_root;
  1271. /* Locate an existing or new sb for this hierarchy */
  1272. sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
  1273. if (IS_ERR(sb)) {
  1274. ret = PTR_ERR(sb);
  1275. cgroup_drop_root(opts.new_root);
  1276. goto drop_modules;
  1277. }
  1278. root = sb->s_fs_info;
  1279. BUG_ON(!root);
  1280. if (root == opts.new_root) {
  1281. /* We used the new root structure, so this is a new hierarchy */
  1282. struct list_head tmp_cg_links;
  1283. struct cgroup *root_cgrp = &root->top_cgroup;
  1284. struct inode *inode;
  1285. struct cgroupfs_root *existing_root;
  1286. int i;
  1287. BUG_ON(sb->s_root != NULL);
  1288. ret = cgroup_get_rootdir(sb);
  1289. if (ret)
  1290. goto drop_new_super;
  1291. inode = sb->s_root->d_inode;
  1292. mutex_lock(&inode->i_mutex);
  1293. mutex_lock(&cgroup_mutex);
  1294. if (strlen(root->name)) {
  1295. /* Check for name clashes with existing mounts */
  1296. for_each_active_root(existing_root) {
  1297. if (!strcmp(existing_root->name, root->name)) {
  1298. ret = -EBUSY;
  1299. mutex_unlock(&cgroup_mutex);
  1300. mutex_unlock(&inode->i_mutex);
  1301. goto drop_new_super;
  1302. }
  1303. }
  1304. }
  1305. /*
  1306. * We're accessing css_set_count without locking
  1307. * css_set_lock here, but that's OK - it can only be
  1308. * increased by someone holding cgroup_lock, and
  1309. * that's us. The worst that can happen is that we
  1310. * have some link structures left over
  1311. */
  1312. ret = allocate_cg_links(css_set_count, &tmp_cg_links);
  1313. if (ret) {
  1314. mutex_unlock(&cgroup_mutex);
  1315. mutex_unlock(&inode->i_mutex);
  1316. goto drop_new_super;
  1317. }
  1318. ret = rebind_subsystems(root, root->subsys_bits);
  1319. if (ret == -EBUSY) {
  1320. mutex_unlock(&cgroup_mutex);
  1321. mutex_unlock(&inode->i_mutex);
  1322. free_cg_links(&tmp_cg_links);
  1323. goto drop_new_super;
  1324. }
  1325. /*
  1326. * There must be no failure case after here, since rebinding
  1327. * takes care of subsystems' refcounts, which are explicitly
  1328. * dropped in the failure exit path.
  1329. */
  1330. /* EBUSY should be the only error here */
  1331. BUG_ON(ret);
  1332. list_add(&root->root_list, &roots);
  1333. root_count++;
  1334. sb->s_root->d_fsdata = root_cgrp;
  1335. root->top_cgroup.dentry = sb->s_root;
  1336. /* Link the top cgroup in this hierarchy into all
  1337. * the css_set objects */
  1338. write_lock(&css_set_lock);
  1339. for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
  1340. struct hlist_head *hhead = &css_set_table[i];
  1341. struct hlist_node *node;
  1342. struct css_set *cg;
  1343. hlist_for_each_entry(cg, node, hhead, hlist)
  1344. link_css_set(&tmp_cg_links, cg, root_cgrp);
  1345. }
  1346. write_unlock(&css_set_lock);
  1347. free_cg_links(&tmp_cg_links);
  1348. BUG_ON(!list_empty(&root_cgrp->sibling));
  1349. BUG_ON(!list_empty(&root_cgrp->children));
  1350. BUG_ON(root->number_of_cgroups != 1);
  1351. cgroup_populate_dir(root_cgrp);
  1352. mutex_unlock(&cgroup_mutex);
  1353. mutex_unlock(&inode->i_mutex);
  1354. } else {
  1355. /*
  1356. * We re-used an existing hierarchy - the new root (if
  1357. * any) is not needed
  1358. */
  1359. cgroup_drop_root(opts.new_root);
  1360. /* no subsys rebinding, so refcounts don't change */
  1361. drop_parsed_module_refcounts(opts.subsys_bits);
  1362. }
  1363. simple_set_mnt(mnt, sb);
  1364. kfree(opts.release_agent);
  1365. kfree(opts.name);
  1366. return 0;
  1367. drop_new_super:
  1368. deactivate_locked_super(sb);
  1369. drop_modules:
  1370. drop_parsed_module_refcounts(opts.subsys_bits);
  1371. out_err:
  1372. kfree(opts.release_agent);
  1373. kfree(opts.name);
  1374. return ret;
  1375. }
  1376. static void cgroup_kill_sb(struct super_block *sb) {
  1377. struct cgroupfs_root *root = sb->s_fs_info;
  1378. struct cgroup *cgrp = &root->top_cgroup;
  1379. int ret;
  1380. struct cg_cgroup_link *link;
  1381. struct cg_cgroup_link *saved_link;
  1382. BUG_ON(!root);
  1383. BUG_ON(root->number_of_cgroups != 1);
  1384. BUG_ON(!list_empty(&cgrp->children));
  1385. BUG_ON(!list_empty(&cgrp->sibling));
  1386. mutex_lock(&cgroup_mutex);
  1387. /* Rebind all subsystems back to the default hierarchy */
  1388. ret = rebind_subsystems(root, 0);
  1389. /* Shouldn't be able to fail ... */
  1390. BUG_ON(ret);
  1391. /*
  1392. * Release all the links from css_sets to this hierarchy's
  1393. * root cgroup
  1394. */
  1395. write_lock(&css_set_lock);
  1396. list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
  1397. cgrp_link_list) {
  1398. list_del(&link->cg_link_list);
  1399. list_del(&link->cgrp_link_list);
  1400. kfree(link);
  1401. }
  1402. write_unlock(&css_set_lock);
  1403. if (!list_empty(&root->root_list)) {
  1404. list_del(&root->root_list);
  1405. root_count--;
  1406. }
  1407. mutex_unlock(&cgroup_mutex);
  1408. kill_litter_super(sb);
  1409. cgroup_drop_root(root);
  1410. }
  1411. static struct file_system_type cgroup_fs_type = {
  1412. .name = "cgroup",
  1413. .get_sb = cgroup_get_sb,
  1414. .kill_sb = cgroup_kill_sb,
  1415. };
  1416. static inline struct cgroup *__d_cgrp(struct dentry *dentry)
  1417. {
  1418. return dentry->d_fsdata;
  1419. }
  1420. static inline struct cftype *__d_cft(struct dentry *dentry)
  1421. {
  1422. return dentry->d_fsdata;
  1423. }
  1424. /**
  1425. * cgroup_path - generate the path of a cgroup
  1426. * @cgrp: the cgroup in question
  1427. * @buf: the buffer to write the path into
  1428. * @buflen: the length of the buffer
  1429. *
  1430. * Called with cgroup_mutex held or else with an RCU-protected cgroup
  1431. * reference. Writes path of cgroup into buf. Returns 0 on success,
  1432. * -errno on error.
  1433. */
  1434. int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
  1435. {
  1436. char *start;
  1437. struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
  1438. rcu_read_lock_held() ||
  1439. cgroup_lock_is_held());
  1440. if (!dentry || cgrp == dummytop) {
  1441. /*
  1442. * Inactive subsystems have no dentry for their root
  1443. * cgroup
  1444. */
  1445. strcpy(buf, "/");
  1446. return 0;
  1447. }
  1448. start = buf + buflen;
  1449. *--start = '\0';
  1450. for (;;) {
  1451. int len = dentry->d_name.len;
  1452. if ((start -= len) < buf)
  1453. return -ENAMETOOLONG;
  1454. memcpy(start, dentry->d_name.name, len);
  1455. cgrp = cgrp->parent;
  1456. if (!cgrp)
  1457. break;
  1458. dentry = rcu_dereference_check(cgrp->dentry,
  1459. rcu_read_lock_held() ||
  1460. cgroup_lock_is_held());
  1461. if (!cgrp->parent)
  1462. continue;
  1463. if (--start < buf)
  1464. return -ENAMETOOLONG;
  1465. *start = '/';
  1466. }
  1467. memmove(buf, start, buf + buflen - start);
  1468. return 0;
  1469. }
  1470. EXPORT_SYMBOL_GPL(cgroup_path);
  1471. /**
  1472. * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
  1473. * @cgrp: the cgroup the task is attaching to
  1474. * @tsk: the task to be attached
  1475. *
  1476. * Call holding cgroup_mutex. May take task_lock of
  1477. * the task 'tsk' during call.
  1478. */
  1479. int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  1480. {
  1481. int retval = 0;
  1482. struct cgroup_subsys *ss, *failed_ss = NULL;
  1483. struct cgroup *oldcgrp;
  1484. struct css_set *cg;
  1485. struct css_set *newcg;
  1486. struct cgroupfs_root *root = cgrp->root;
  1487. /* Nothing to do if the task is already in that cgroup */
  1488. oldcgrp = task_cgroup_from_root(tsk, root);
  1489. if (cgrp == oldcgrp)
  1490. return 0;
  1491. for_each_subsys(root, ss) {
  1492. if (ss->can_attach) {
  1493. retval = ss->can_attach(ss, cgrp, tsk, false);
  1494. if (retval) {
  1495. /*
  1496. * Remember on which subsystem the can_attach()
  1497. * failed, so that we only call cancel_attach()
  1498. * against the subsystems whose can_attach()
  1499. * succeeded. (See below)
  1500. */
  1501. failed_ss = ss;
  1502. goto out;
  1503. }
  1504. }
  1505. }
  1506. task_lock(tsk);
  1507. cg = tsk->cgroups;
  1508. get_css_set(cg);
  1509. task_unlock(tsk);
  1510. /*
  1511. * Locate or allocate a new css_set for this task,
  1512. * based on its final set of cgroups
  1513. */
  1514. newcg = find_css_set(cg, cgrp);
  1515. put_css_set(cg);
  1516. if (!newcg) {
  1517. retval = -ENOMEM;
  1518. goto out;
  1519. }
  1520. task_lock(tsk);
  1521. if (tsk->flags & PF_EXITING) {
  1522. task_unlock(tsk);
  1523. put_css_set(newcg);
  1524. retval = -ESRCH;
  1525. goto out;
  1526. }
  1527. rcu_assign_pointer(tsk->cgroups, newcg);
  1528. task_unlock(tsk);
  1529. /* Update the css_set linked lists if we're using them */
  1530. write_lock(&css_set_lock);
  1531. if (!list_empty(&tsk->cg_list)) {
  1532. list_del(&tsk->cg_list);
  1533. list_add(&tsk->cg_list, &newcg->tasks);
  1534. }
  1535. write_unlock(&css_set_lock);
  1536. for_each_subsys(root, ss) {
  1537. if (ss->attach)
  1538. ss->attach(ss, cgrp, oldcgrp, tsk, false);
  1539. }
  1540. set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
  1541. synchronize_rcu();
  1542. put_css_set(cg);
  1543. /*
  1544. * wake up rmdir() waiter. the rmdir should fail since the cgroup
  1545. * is no longer empty.
  1546. */
  1547. cgroup_wakeup_rmdir_waiter(cgrp);
  1548. out:
  1549. if (retval) {
  1550. for_each_subsys(root, ss) {
  1551. if (ss == failed_ss)
  1552. /*
  1553. * This subsystem was the one that failed the
  1554. * can_attach() check earlier, so we don't need
  1555. * to call cancel_attach() against it or any
  1556. * remaining subsystems.
  1557. */
  1558. break;
  1559. if (ss->cancel_attach)
  1560. ss->cancel_attach(ss, cgrp, tsk, false);
  1561. }
  1562. }
  1563. return retval;
  1564. }
  1565. /*
  1566. * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
  1567. * held. May take task_lock of task
  1568. */
  1569. static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
  1570. {
  1571. struct task_struct *tsk;
  1572. const struct cred *cred = current_cred(), *tcred;
  1573. int ret;
  1574. if (pid) {
  1575. rcu_read_lock();
  1576. tsk = find_task_by_vpid(pid);
  1577. if (!tsk || tsk->flags & PF_EXITING) {
  1578. rcu_read_unlock();
  1579. return -ESRCH;
  1580. }
  1581. tcred = __task_cred(tsk);
  1582. if (cred->euid &&
  1583. cred->euid != tcred->uid &&
  1584. cred->euid != tcred->suid) {
  1585. rcu_read_unlock();
  1586. return -EACCES;
  1587. }
  1588. get_task_struct(tsk);
  1589. rcu_read_unlock();
  1590. } else {
  1591. tsk = current;
  1592. get_task_struct(tsk);
  1593. }
  1594. ret = cgroup_attach_task(cgrp, tsk);
  1595. put_task_struct(tsk);
  1596. return ret;
  1597. }
  1598. static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
  1599. {
  1600. int ret;
  1601. if (!cgroup_lock_live_group(cgrp))
  1602. return -ENODEV;
  1603. ret = attach_task_by_pid(cgrp, pid);
  1604. cgroup_unlock();
  1605. return ret;
  1606. }
  1607. /**
  1608. * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
  1609. * @cgrp: the cgroup to be checked for liveness
  1610. *
  1611. * On success, returns true; the lock should be later released with
  1612. * cgroup_unlock(). On failure returns false with no lock held.
  1613. */
  1614. bool cgroup_lock_live_group(struct cgroup *cgrp)
  1615. {
  1616. mutex_lock(&cgroup_mutex);
  1617. if (cgroup_is_removed(cgrp)) {
  1618. mutex_unlock(&cgroup_mutex);
  1619. return false;
  1620. }
  1621. return true;
  1622. }
  1623. EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
  1624. static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
  1625. const char *buffer)
  1626. {
  1627. BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
  1628. if (!cgroup_lock_live_group(cgrp))
  1629. return -ENODEV;
  1630. strcpy(cgrp->root->release_agent_path, buffer);
  1631. cgroup_unlock();
  1632. return 0;
  1633. }
  1634. static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
  1635. struct seq_file *seq)
  1636. {
  1637. if (!cgroup_lock_live_group(cgrp))
  1638. return -ENODEV;
  1639. seq_puts(seq, cgrp->root->release_agent_path);
  1640. seq_putc(seq, '\n');
  1641. cgroup_unlock();
  1642. return 0;
  1643. }
  1644. /* A buffer size big enough for numbers or short strings */
  1645. #define CGROUP_LOCAL_BUFFER_SIZE 64
  1646. static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
  1647. struct file *file,
  1648. const char __user *userbuf,
  1649. size_t nbytes, loff_t *unused_ppos)
  1650. {
  1651. char buffer[CGROUP_LOCAL_BUFFER_SIZE];
  1652. int retval = 0;
  1653. char *end;
  1654. if (!nbytes)
  1655. return -EINVAL;
  1656. if (nbytes >= sizeof(buffer))
  1657. return -E2BIG;
  1658. if (copy_from_user(buffer, userbuf, nbytes))
  1659. return -EFAULT;
  1660. buffer[nbytes] = 0; /* nul-terminate */
  1661. if (cft->write_u64) {
  1662. u64 val = simple_strtoull(strstrip(buffer), &end, 0);
  1663. if (*end)
  1664. return -EINVAL;
  1665. retval = cft->write_u64(cgrp, cft, val);
  1666. } else {
  1667. s64 val = simple_strtoll(strstrip(buffer), &end, 0);
  1668. if (*end)
  1669. return -EINVAL;
  1670. retval = cft->write_s64(cgrp, cft, val);
  1671. }
  1672. if (!retval)
  1673. retval = nbytes;
  1674. return retval;
  1675. }
  1676. static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
  1677. struct file *file,
  1678. const char __user *userbuf,
  1679. size_t nbytes, loff_t *unused_ppos)
  1680. {
  1681. char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
  1682. int retval = 0;
  1683. size_t max_bytes = cft->max_write_len;
  1684. char *buffer = local_buffer;
  1685. if (!max_bytes)
  1686. max_bytes = sizeof(local_buffer) - 1;
  1687. if (nbytes >= max_bytes)
  1688. return -E2BIG;
  1689. /* Allocate a dynamic buffer if we need one */
  1690. if (nbytes >= sizeof(local_buffer)) {
  1691. buffer = kmalloc(nbytes + 1, GFP_KERNEL);
  1692. if (buffer == NULL)
  1693. return -ENOMEM;
  1694. }
  1695. if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
  1696. retval = -EFAULT;
  1697. goto out;
  1698. }
  1699. buffer[nbytes] = 0; /* nul-terminate */
  1700. retval = cft->write_string(cgrp, cft, strstrip(buffer));
  1701. if (!retval)
  1702. retval = nbytes;
  1703. out:
  1704. if (buffer != local_buffer)
  1705. kfree(buffer);
  1706. return retval;
  1707. }
  1708. static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
  1709. size_t nbytes, loff_t *ppos)
  1710. {
  1711. struct cftype *cft = __d_cft(file->f_dentry);
  1712. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  1713. if (cgroup_is_removed(cgrp))
  1714. return -ENODEV;
  1715. if (cft->write)
  1716. return cft->write(cgrp, cft, file, buf, nbytes, ppos);
  1717. if (cft->write_u64 || cft->write_s64)
  1718. return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
  1719. if (cft->write_string)
  1720. return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
  1721. if (cft->trigger) {
  1722. int ret = cft->trigger(cgrp, (unsigned int)cft->private);
  1723. return ret ? ret : nbytes;
  1724. }
  1725. return -EINVAL;
  1726. }
  1727. static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
  1728. struct file *file,
  1729. char __user *buf, size_t nbytes,
  1730. loff_t *ppos)
  1731. {
  1732. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  1733. u64 val = cft->read_u64(cgrp, cft);
  1734. int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
  1735. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  1736. }
  1737. static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
  1738. struct file *file,
  1739. char __user *buf, size_t nbytes,
  1740. loff_t *ppos)
  1741. {
  1742. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  1743. s64 val = cft->read_s64(cgrp, cft);
  1744. int len = sprintf(tmp, "%lld\n", (long long) val);
  1745. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  1746. }
  1747. static ssize_t cgroup_file_read(struct file *file, char __user *buf,
  1748. size_t nbytes, loff_t *ppos)
  1749. {
  1750. struct cftype *cft = __d_cft(file->f_dentry);
  1751. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  1752. if (cgroup_is_removed(cgrp))
  1753. return -ENODEV;
  1754. if (cft->read)
  1755. return cft->read(cgrp, cft, file, buf, nbytes, ppos);
  1756. if (cft->read_u64)
  1757. return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
  1758. if (cft->read_s64)
  1759. return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
  1760. return -EINVAL;
  1761. }
  1762. /*
  1763. * seqfile ops/methods for returning structured data. Currently just
  1764. * supports string->u64 maps, but can be extended in future.
  1765. */
  1766. struct cgroup_seqfile_state {
  1767. struct cftype *cft;
  1768. struct cgroup *cgroup;
  1769. };
  1770. static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
  1771. {
  1772. struct seq_file *sf = cb->state;
  1773. return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
  1774. }
  1775. static int cgroup_seqfile_show(struct seq_file *m, void *arg)
  1776. {
  1777. struct cgroup_seqfile_state *state = m->private;
  1778. struct cftype *cft = state->cft;
  1779. if (cft->read_map) {
  1780. struct cgroup_map_cb cb = {
  1781. .fill = cgroup_map_add,
  1782. .state = m,
  1783. };
  1784. return cft->read_map(state->cgroup, cft, &cb);
  1785. }
  1786. return cft->read_seq_string(state->cgroup, cft, m);
  1787. }
  1788. static int cgroup_seqfile_release(struct inode *inode, struct file *file)
  1789. {
  1790. struct seq_file *seq = file->private_data;
  1791. kfree(seq->private);
  1792. return single_release(inode, file);
  1793. }
  1794. static const struct file_operations cgroup_seqfile_operations = {
  1795. .read = seq_read,
  1796. .write = cgroup_file_write,
  1797. .llseek = seq_lseek,
  1798. .release = cgroup_seqfile_release,
  1799. };
  1800. static int cgroup_file_open(struct inode *inode, struct file *file)
  1801. {
  1802. int err;
  1803. struct cftype *cft;
  1804. err = generic_file_open(inode, file);
  1805. if (err)
  1806. return err;
  1807. cft = __d_cft(file->f_dentry);
  1808. if (cft->read_map || cft->read_seq_string) {
  1809. struct cgroup_seqfile_state *state =
  1810. kzalloc(sizeof(*state), GFP_USER);
  1811. if (!state)
  1812. return -ENOMEM;
  1813. state->cft = cft;
  1814. state->cgroup = __d_cgrp(file->f_dentry->d_parent);
  1815. file->f_op = &cgroup_seqfile_operations;
  1816. err = single_open(file, cgroup_seqfile_show, state);
  1817. if (err < 0)
  1818. kfree(state);
  1819. } else if (cft->open)
  1820. err = cft->open(inode, file);
  1821. else
  1822. err = 0;
  1823. return err;
  1824. }
  1825. static int cgroup_file_release(struct inode *inode, struct file *file)
  1826. {
  1827. struct cftype *cft = __d_cft(file->f_dentry);
  1828. if (cft->release)
  1829. return cft->release(inode, file);
  1830. return 0;
  1831. }
  1832. /*
  1833. * cgroup_rename - Only allow simple rename of directories in place.
  1834. */
  1835. static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
  1836. struct inode *new_dir, struct dentry *new_dentry)
  1837. {
  1838. if (!S_ISDIR(old_dentry->d_inode->i_mode))
  1839. return -ENOTDIR;
  1840. if (new_dentry->d_inode)
  1841. return -EEXIST;
  1842. if (old_dir != new_dir)
  1843. return -EIO;
  1844. return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
  1845. }
  1846. static const struct file_operations cgroup_file_operations = {
  1847. .read = cgroup_file_read,
  1848. .write = cgroup_file_write,
  1849. .llseek = generic_file_llseek,
  1850. .open = cgroup_file_open,
  1851. .release = cgroup_file_release,
  1852. };
  1853. static const struct inode_operations cgroup_dir_inode_operations = {
  1854. .lookup = simple_lookup,
  1855. .mkdir = cgroup_mkdir,
  1856. .rmdir = cgroup_rmdir,
  1857. .rename = cgroup_rename,
  1858. };
  1859. /*
  1860. * Check if a file is a control file
  1861. */
  1862. static inline struct cftype *__file_cft(struct file *file)
  1863. {
  1864. if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
  1865. return ERR_PTR(-EINVAL);
  1866. return __d_cft(file->f_dentry);
  1867. }
  1868. static int cgroup_create_file(struct dentry *dentry, mode_t mode,
  1869. struct super_block *sb)
  1870. {
  1871. static const struct dentry_operations cgroup_dops = {
  1872. .d_iput = cgroup_diput,
  1873. };
  1874. struct inode *inode;
  1875. if (!dentry)
  1876. return -ENOENT;
  1877. if (dentry->d_inode)
  1878. return -EEXIST;
  1879. inode = cgroup_new_inode(mode, sb);
  1880. if (!inode)
  1881. return -ENOMEM;
  1882. if (S_ISDIR(mode)) {
  1883. inode->i_op = &cgroup_dir_inode_operations;
  1884. inode->i_fop = &simple_dir_operations;
  1885. /* start off with i_nlink == 2 (for "." entry) */
  1886. inc_nlink(inode);
  1887. /* start with the directory inode held, so that we can
  1888. * populate it without racing with another mkdir */
  1889. mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
  1890. } else if (S_ISREG(mode)) {
  1891. inode->i_size = 0;
  1892. inode->i_fop = &cgroup_file_operations;
  1893. }
  1894. dentry->d_op = &cgroup_dops;
  1895. d_instantiate(dentry, inode);
  1896. dget(dentry); /* Extra count - pin the dentry in core */
  1897. return 0;
  1898. }
  1899. /*
  1900. * cgroup_create_dir - create a directory for an object.
  1901. * @cgrp: the cgroup we create the directory for. It must have a valid
  1902. * ->parent field. And we are going to fill its ->dentry field.
  1903. * @dentry: dentry of the new cgroup
  1904. * @mode: mode to set on new directory.
  1905. */
  1906. static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
  1907. mode_t mode)
  1908. {
  1909. struct dentry *parent;
  1910. int error = 0;
  1911. parent = cgrp->parent->dentry;
  1912. error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
  1913. if (!error) {
  1914. dentry->d_fsdata = cgrp;
  1915. inc_nlink(parent->d_inode);
  1916. rcu_assign_pointer(cgrp->dentry, dentry);
  1917. dget(dentry);
  1918. }
  1919. dput(dentry);
  1920. return error;
  1921. }
  1922. /**
  1923. * cgroup_file_mode - deduce file mode of a control file
  1924. * @cft: the control file in question
  1925. *
  1926. * returns cft->mode if ->mode is not 0
  1927. * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
  1928. * returns S_IRUGO if it has only a read handler
  1929. * returns S_IWUSR if it has only a write hander
  1930. */
  1931. static mode_t cgroup_file_mode(const struct cftype *cft)
  1932. {
  1933. mode_t mode = 0;
  1934. if (cft->mode)
  1935. return cft->mode;
  1936. if (cft->read || cft->read_u64 || cft->read_s64 ||
  1937. cft->read_map || cft->read_seq_string)
  1938. mode |= S_IRUGO;
  1939. if (cft->write || cft->write_u64 || cft->write_s64 ||
  1940. cft->write_string || cft->trigger)
  1941. mode |= S_IWUSR;
  1942. return mode;
  1943. }
  1944. int cgroup_add_file(struct cgroup *cgrp,
  1945. struct cgroup_subsys *subsys,
  1946. const struct cftype *cft)
  1947. {
  1948. struct dentry *dir = cgrp->dentry;
  1949. struct dentry *dentry;
  1950. int error;
  1951. mode_t mode;
  1952. char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
  1953. if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
  1954. strcpy(name, subsys->name);
  1955. strcat(name, ".");
  1956. }
  1957. strcat(name, cft->name);
  1958. BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
  1959. dentry = lookup_one_len(name, dir, strlen(name));
  1960. if (!IS_ERR(dentry)) {
  1961. mode = cgroup_file_mode(cft);
  1962. error = cgroup_create_file(dentry, mode | S_IFREG,
  1963. cgrp->root->sb);
  1964. if (!error)
  1965. dentry->d_fsdata = (void *)cft;
  1966. dput(dentry);
  1967. } else
  1968. error = PTR_ERR(dentry);
  1969. return error;
  1970. }
  1971. EXPORT_SYMBOL_GPL(cgroup_add_file);
  1972. int cgroup_add_files(struct cgroup *cgrp,
  1973. struct cgroup_subsys *subsys,
  1974. const struct cftype cft[],
  1975. int count)
  1976. {
  1977. int i, err;
  1978. for (i = 0; i < count; i++) {
  1979. err = cgroup_add_file(cgrp, subsys, &cft[i]);
  1980. if (err)
  1981. return err;
  1982. }
  1983. return 0;
  1984. }
  1985. EXPORT_SYMBOL_GPL(cgroup_add_files);
  1986. /**
  1987. * cgroup_task_count - count the number of tasks in a cgroup.
  1988. * @cgrp: the cgroup in question
  1989. *
  1990. * Return the number of tasks in the cgroup.
  1991. */
  1992. int cgroup_task_count(const struct cgroup *cgrp)
  1993. {
  1994. int count = 0;
  1995. struct cg_cgroup_link *link;
  1996. read_lock(&css_set_lock);
  1997. list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
  1998. count += atomic_read(&link->cg->refcount);
  1999. }
  2000. read_unlock(&css_set_lock);
  2001. return count;
  2002. }
  2003. /*
  2004. * Advance a list_head iterator. The iterator should be positioned at
  2005. * the start of a css_set
  2006. */
  2007. static void cgroup_advance_iter(struct cgroup *cgrp,
  2008. struct cgroup_iter *it)
  2009. {
  2010. struct list_head *l = it->cg_link;
  2011. struct cg_cgroup_link *link;
  2012. struct css_set *cg;
  2013. /* Advance to the next non-empty css_set */
  2014. do {
  2015. l = l->next;
  2016. if (l == &cgrp->css_sets) {
  2017. it->cg_link = NULL;
  2018. return;
  2019. }
  2020. link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
  2021. cg = link->cg;
  2022. } while (list_empty(&cg->tasks));
  2023. it->cg_link = l;
  2024. it->task = cg->tasks.next;
  2025. }
  2026. /*
  2027. * To reduce the fork() overhead for systems that are not actually
  2028. * using their cgroups capability, we don't maintain the lists running
  2029. * through each css_set to its tasks until we see the list actually
  2030. * used - in other words after the first call to cgroup_iter_start().
  2031. *
  2032. * The tasklist_lock is not held here, as do_each_thread() and
  2033. * while_each_thread() are protected by RCU.
  2034. */
  2035. static void cgroup_enable_task_cg_lists(void)
  2036. {
  2037. struct task_struct *p, *g;
  2038. write_lock(&css_set_lock);
  2039. use_task_css_set_links = 1;
  2040. do_each_thread(g, p) {
  2041. task_lock(p);
  2042. /*
  2043. * We should check if the process is exiting, otherwise
  2044. * it will race with cgroup_exit() in that the list
  2045. * entry won't be deleted though the process has exited.
  2046. */
  2047. if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
  2048. list_add(&p->cg_list, &p->cgroups->tasks);
  2049. task_unlock(p);
  2050. } while_each_thread(g, p);
  2051. write_unlock(&css_set_lock);
  2052. }
  2053. void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
  2054. {
  2055. /*
  2056. * The first time anyone tries to iterate across a cgroup,
  2057. * we need to enable the list linking each css_set to its
  2058. * tasks, and fix up all existing tasks.
  2059. */
  2060. if (!use_task_css_set_links)
  2061. cgroup_enable_task_cg_lists();
  2062. read_lock(&css_set_lock);
  2063. it->cg_link = &cgrp->css_sets;
  2064. cgroup_advance_iter(cgrp, it);
  2065. }
  2066. struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
  2067. struct cgroup_iter *it)
  2068. {
  2069. struct task_struct *res;
  2070. struct list_head *l = it->task;
  2071. struct cg_cgroup_link *link;
  2072. /* If the iterator cg is NULL, we have no tasks */
  2073. if (!it->cg_link)
  2074. return NULL;
  2075. res = list_entry(l, struct task_struct, cg_list);
  2076. /* Advance iterator to find next entry */
  2077. l = l->next;
  2078. link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
  2079. if (l == &link->cg->tasks) {
  2080. /* We reached the end of this task list - move on to
  2081. * the next cg_cgroup_link */
  2082. cgroup_advance_iter(cgrp, it);
  2083. } else {
  2084. it->task = l;
  2085. }
  2086. return res;
  2087. }
  2088. void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
  2089. {
  2090. read_unlock(&css_set_lock);
  2091. }
  2092. static inline int started_after_time(struct task_struct *t1,
  2093. struct timespec *time,
  2094. struct task_struct *t2)
  2095. {
  2096. int start_diff = timespec_compare(&t1->start_time, time);
  2097. if (start_diff > 0) {
  2098. return 1;
  2099. } else if (start_diff < 0) {
  2100. return 0;
  2101. } else {
  2102. /*
  2103. * Arbitrarily, if two processes started at the same
  2104. * time, we'll say that the lower pointer value
  2105. * started first. Note that t2 may have exited by now
  2106. * so this may not be a valid pointer any longer, but
  2107. * that's fine - it still serves to distinguish
  2108. * between two tasks started (effectively) simultaneously.
  2109. */
  2110. return t1 > t2;
  2111. }
  2112. }
  2113. /*
  2114. * This function is a callback from heap_insert() and is used to order
  2115. * the heap.
  2116. * In this case we order the heap in descending task start time.
  2117. */
  2118. static inline int started_after(void *p1, void *p2)
  2119. {
  2120. struct task_struct *t1 = p1;
  2121. struct task_struct *t2 = p2;
  2122. return started_after_time(t1, &t2->start_time, t2);
  2123. }
  2124. /**
  2125. * cgroup_scan_tasks - iterate though all the tasks in a cgroup
  2126. * @scan: struct cgroup_scanner containing arguments for the scan
  2127. *
  2128. * Arguments include pointers to callback functions test_task() and
  2129. * process_task().
  2130. * Iterate through all the tasks in a cgroup, calling test_task() for each,
  2131. * and if it returns true, call process_task() for it also.
  2132. * The test_task pointer may be NULL, meaning always true (select all tasks).
  2133. * Effectively duplicates cgroup_iter_{start,next,end}()
  2134. * but does not lock css_set_lock for the call to process_task().
  2135. * The struct cgroup_scanner may be embedded in any structure of the caller's
  2136. * creation.
  2137. * It is guaranteed that process_task() will act on every task that
  2138. * is a member of the cgroup for the duration of this call. This
  2139. * function may or may not call process_task() for tasks that exit
  2140. * or move to a different cgroup during the call, or are forked or
  2141. * move into the cgroup during the call.
  2142. *
  2143. * Note that test_task() may be called with locks held, and may in some
  2144. * situations be called multiple times for the same task, so it should
  2145. * be cheap.
  2146. * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
  2147. * pre-allocated and will be used for heap operations (and its "gt" member will
  2148. * be overwritten), else a temporary heap will be used (allocation of which
  2149. * may cause this function to fail).
  2150. */
  2151. int cgroup_scan_tasks(struct cgroup_scanner *scan)
  2152. {
  2153. int retval, i;
  2154. struct cgroup_iter it;
  2155. struct task_struct *p, *dropped;
  2156. /* Never dereference latest_task, since it's not refcounted */
  2157. struct task_struct *latest_task = NULL;
  2158. struct ptr_heap tmp_heap;
  2159. struct ptr_heap *heap;
  2160. struct timespec latest_time = { 0, 0 };
  2161. if (scan->heap) {
  2162. /* The caller supplied our heap and pre-allocated its memory */
  2163. heap = scan->heap;
  2164. heap->gt = &started_after;
  2165. } else {
  2166. /* We need to allocate our own heap memory */
  2167. heap = &tmp_heap;
  2168. retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
  2169. if (retval)
  2170. /* cannot allocate the heap */
  2171. return retval;
  2172. }
  2173. again:
  2174. /*
  2175. * Scan tasks in the cgroup, using the scanner's "test_task" callback
  2176. * to determine which are of interest, and using the scanner's
  2177. * "process_task" callback to process any of them that need an update.
  2178. * Since we don't want to hold any locks during the task updates,
  2179. * gather tasks to be processed in a heap structure.
  2180. * The heap is sorted by descending task start time.
  2181. * If the statically-sized heap fills up, we overflow tasks that
  2182. * started later, and in future iterations only consider tasks that
  2183. * started after the latest task in the previous pass. This
  2184. * guarantees forward progress and that we don't miss any tasks.
  2185. */
  2186. heap->size = 0;
  2187. cgroup_iter_start(scan->cg, &it);
  2188. while ((p = cgroup_iter_next(scan->cg, &it))) {
  2189. /*
  2190. * Only affect tasks that qualify per the caller's callback,
  2191. * if he provided one
  2192. */
  2193. if (scan->test_task && !scan->test_task(p, scan))
  2194. continue;
  2195. /*
  2196. * Only process tasks that started after the last task
  2197. * we processed
  2198. */
  2199. if (!started_after_time(p, &latest_time, latest_task))
  2200. continue;
  2201. dropped = heap_insert(heap, p);
  2202. if (dropped == NULL) {
  2203. /*
  2204. * The new task was inserted; the heap wasn't
  2205. * previously full
  2206. */
  2207. get_task_struct(p);
  2208. } else if (dropped != p) {
  2209. /*
  2210. * The new task was inserted, and pushed out a
  2211. * different task
  2212. */
  2213. get_task_struct(p);
  2214. put_task_struct(dropped);
  2215. }
  2216. /*
  2217. * Else the new task was newer than anything already in
  2218. * the heap and wasn't inserted
  2219. */
  2220. }
  2221. cgroup_iter_end(scan->cg, &it);
  2222. if (heap->size) {
  2223. for (i = 0; i < heap->size; i++) {
  2224. struct task_struct *q = heap->ptrs[i];
  2225. if (i == 0) {
  2226. latest_time = q->start_time;
  2227. latest_task = q;
  2228. }
  2229. /* Process the task per the caller's callback */
  2230. scan->process_task(q, scan);
  2231. put_task_struct(q);
  2232. }
  2233. /*
  2234. * If we had to process any tasks at all, scan again
  2235. * in case some of them were in the middle of forking
  2236. * children that didn't get processed.
  2237. * Not the most efficient way to do it, but it avoids
  2238. * having to take callback_mutex in the fork path
  2239. */
  2240. goto again;
  2241. }
  2242. if (heap == &tmp_heap)
  2243. heap_free(&tmp_heap);
  2244. return 0;
  2245. }
  2246. /*
  2247. * Stuff for reading the 'tasks'/'procs' files.
  2248. *
  2249. * Reading this file can return large amounts of data if a cgroup has
  2250. * *lots* of attached tasks. So it may need several calls to read(),
  2251. * but we cannot guarantee that the information we produce is correct
  2252. * unless we produce it entirely atomically.
  2253. *
  2254. */
  2255. /*
  2256. * The following two functions "fix" the issue where there are more pids
  2257. * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
  2258. * TODO: replace with a kernel-wide solution to this problem
  2259. */
  2260. #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
  2261. static void *pidlist_allocate(int count)
  2262. {
  2263. if (PIDLIST_TOO_LARGE(count))
  2264. return vmalloc(count * sizeof(pid_t));
  2265. else
  2266. return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
  2267. }
  2268. static void pidlist_free(void *p)
  2269. {
  2270. if (is_vmalloc_addr(p))
  2271. vfree(p);
  2272. else
  2273. kfree(p);
  2274. }
  2275. static void *pidlist_resize(void *p, int newcount)
  2276. {
  2277. void *newlist;
  2278. /* note: if new alloc fails, old p will still be valid either way */
  2279. if (is_vmalloc_addr(p)) {
  2280. newlist = vmalloc(newcount * sizeof(pid_t));
  2281. if (!newlist)
  2282. return NULL;
  2283. memcpy(newlist, p, newcount * sizeof(pid_t));
  2284. vfree(p);
  2285. } else {
  2286. newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
  2287. }
  2288. return newlist;
  2289. }
  2290. /*
  2291. * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
  2292. * If the new stripped list is sufficiently smaller and there's enough memory
  2293. * to allocate a new buffer, will let go of the unneeded memory. Returns the
  2294. * number of unique elements.
  2295. */
  2296. /* is the size difference enough that we should re-allocate the array? */
  2297. #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
  2298. static int pidlist_uniq(pid_t **p, int length)
  2299. {
  2300. int src, dest = 1;
  2301. pid_t *list = *p;
  2302. pid_t *newlist;
  2303. /*
  2304. * we presume the 0th element is unique, so i starts at 1. trivial
  2305. * edge cases first; no work needs to be done for either
  2306. */
  2307. if (length == 0 || length == 1)
  2308. return length;
  2309. /* src and dest walk down the list; dest counts unique elements */
  2310. for (src = 1; src < length; src++) {
  2311. /* find next unique element */
  2312. while (list[src] == list[src-1]) {
  2313. src++;
  2314. if (src == length)
  2315. goto after;
  2316. }
  2317. /* dest always points to where the next unique element goes */
  2318. list[dest] = list[src];
  2319. dest++;
  2320. }
  2321. after:
  2322. /*
  2323. * if the length difference is large enough, we want to allocate a
  2324. * smaller buffer to save memory. if this fails due to out of memory,
  2325. * we'll just stay with what we've got.
  2326. */
  2327. if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
  2328. newlist = pidlist_resize(list, dest);
  2329. if (newlist)
  2330. *p = newlist;
  2331. }
  2332. return dest;
  2333. }
  2334. static int cmppid(const void *a, const void *b)
  2335. {
  2336. return *(pid_t *)a - *(pid_t *)b;
  2337. }
  2338. /*
  2339. * find the appropriate pidlist for our purpose (given procs vs tasks)
  2340. * returns with the lock on that pidlist already held, and takes care
  2341. * of the use count, or returns NULL with no locks held if we're out of
  2342. * memory.
  2343. */
  2344. static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
  2345. enum cgroup_filetype type)
  2346. {
  2347. struct cgroup_pidlist *l;
  2348. /* don't need task_nsproxy() if we're looking at ourself */
  2349. struct pid_namespace *ns = current->nsproxy->pid_ns;
  2350. /*
  2351. * We can't drop the pidlist_mutex before taking the l->mutex in case
  2352. * the last ref-holder is trying to remove l from the list at the same
  2353. * time. Holding the pidlist_mutex precludes somebody taking whichever
  2354. * list we find out from under us - compare release_pid_array().
  2355. */
  2356. mutex_lock(&cgrp->pidlist_mutex);
  2357. list_for_each_entry(l, &cgrp->pidlists, links) {
  2358. if (l->key.type == type && l->key.ns == ns) {
  2359. /* make sure l doesn't vanish out from under us */
  2360. down_write(&l->mutex);
  2361. mutex_unlock(&cgrp->pidlist_mutex);
  2362. return l;
  2363. }
  2364. }
  2365. /* entry not found; create a new one */
  2366. l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
  2367. if (!l) {
  2368. mutex_unlock(&cgrp->pidlist_mutex);
  2369. return l;
  2370. }
  2371. init_rwsem(&l->mutex);
  2372. down_write(&l->mutex);
  2373. l->key.type = type;
  2374. l->key.ns = get_pid_ns(ns);
  2375. l->use_count = 0; /* don't increment here */
  2376. l->list = NULL;
  2377. l->owner = cgrp;
  2378. list_add(&l->links, &cgrp->pidlists);
  2379. mutex_unlock(&cgrp->pidlist_mutex);
  2380. return l;
  2381. }
  2382. /*
  2383. * Load a cgroup's pidarray with either procs' tgids or tasks' pids
  2384. */
  2385. static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
  2386. struct cgroup_pidlist **lp)
  2387. {
  2388. pid_t *array;
  2389. int length;
  2390. int pid, n = 0; /* used for populating the array */
  2391. struct cgroup_iter it;
  2392. struct task_struct *tsk;
  2393. struct cgroup_pidlist *l;
  2394. /*
  2395. * If cgroup gets more users after we read count, we won't have
  2396. * enough space - tough. This race is indistinguishable to the
  2397. * caller from the case that the additional cgroup users didn't
  2398. * show up until sometime later on.
  2399. */
  2400. length = cgroup_task_count(cgrp);
  2401. array = pidlist_allocate(length);
  2402. if (!array)
  2403. return -ENOMEM;
  2404. /* now, populate the array */
  2405. cgroup_iter_start(cgrp, &it);
  2406. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  2407. if (unlikely(n == length))
  2408. break;
  2409. /* get tgid or pid for procs or tasks file respectively */
  2410. if (type == CGROUP_FILE_PROCS)
  2411. pid = task_tgid_vnr(tsk);
  2412. else
  2413. pid = task_pid_vnr(tsk);
  2414. if (pid > 0) /* make sure to only use valid results */
  2415. array[n++] = pid;
  2416. }
  2417. cgroup_iter_end(cgrp, &it);
  2418. length = n;
  2419. /* now sort & (if procs) strip out duplicates */
  2420. sort(array, length, sizeof(pid_t), cmppid, NULL);
  2421. if (type == CGROUP_FILE_PROCS)
  2422. length = pidlist_uniq(&array, length);
  2423. l = cgroup_pidlist_find(cgrp, type);
  2424. if (!l) {
  2425. pidlist_free(array);
  2426. return -ENOMEM;
  2427. }
  2428. /* store array, freeing old if necessary - lock already held */
  2429. pidlist_free(l->list);
  2430. l->list = array;
  2431. l->length = length;
  2432. l->use_count++;
  2433. up_write(&l->mutex);
  2434. *lp = l;
  2435. return 0;
  2436. }
  2437. /**
  2438. * cgroupstats_build - build and fill cgroupstats
  2439. * @stats: cgroupstats to fill information into
  2440. * @dentry: A dentry entry belonging to the cgroup for which stats have
  2441. * been requested.
  2442. *
  2443. * Build and fill cgroupstats so that taskstats can export it to user
  2444. * space.
  2445. */
  2446. int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
  2447. {
  2448. int ret = -EINVAL;
  2449. struct cgroup *cgrp;
  2450. struct cgroup_iter it;
  2451. struct task_struct *tsk;
  2452. /*
  2453. * Validate dentry by checking the superblock operations,
  2454. * and make sure it's a directory.
  2455. */
  2456. if (dentry->d_sb->s_op != &cgroup_ops ||
  2457. !S_ISDIR(dentry->d_inode->i_mode))
  2458. goto err;
  2459. ret = 0;
  2460. cgrp = dentry->d_fsdata;
  2461. cgroup_iter_start(cgrp, &it);
  2462. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  2463. switch (tsk->state) {
  2464. case TASK_RUNNING:
  2465. stats->nr_running++;
  2466. break;
  2467. case TASK_INTERRUPTIBLE:
  2468. stats->nr_sleeping++;
  2469. break;
  2470. case TASK_UNINTERRUPTIBLE:
  2471. stats->nr_uninterruptible++;
  2472. break;
  2473. case TASK_STOPPED:
  2474. stats->nr_stopped++;
  2475. break;
  2476. default:
  2477. if (delayacct_is_task_waiting_on_io(tsk))
  2478. stats->nr_io_wait++;
  2479. break;
  2480. }
  2481. }
  2482. cgroup_iter_end(cgrp, &it);
  2483. err:
  2484. return ret;
  2485. }
  2486. /*
  2487. * seq_file methods for the tasks/procs files. The seq_file position is the
  2488. * next pid to display; the seq_file iterator is a pointer to the pid
  2489. * in the cgroup->l->list array.
  2490. */
  2491. static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
  2492. {
  2493. /*
  2494. * Initially we receive a position value that corresponds to
  2495. * one more than the last pid shown (or 0 on the first call or
  2496. * after a seek to the start). Use a binary-search to find the
  2497. * next pid to display, if any
  2498. */
  2499. struct cgroup_pidlist *l = s->private;
  2500. int index = 0, pid = *pos;
  2501. int *iter;
  2502. down_read(&l->mutex);
  2503. if (pid) {
  2504. int end = l->length;
  2505. while (index < end) {
  2506. int mid = (index + end) / 2;
  2507. if (l->list[mid] == pid) {
  2508. index = mid;
  2509. break;
  2510. } else if (l->list[mid] <= pid)
  2511. index = mid + 1;
  2512. else
  2513. end = mid;
  2514. }
  2515. }
  2516. /* If we're off the end of the array, we're done */
  2517. if (index >= l->length)
  2518. return NULL;
  2519. /* Update the abstract position to be the actual pid that we found */
  2520. iter = l->list + index;
  2521. *pos = *iter;
  2522. return iter;
  2523. }
  2524. static void cgroup_pidlist_stop(struct seq_file *s, void *v)
  2525. {
  2526. struct cgroup_pidlist *l = s->private;
  2527. up_read(&l->mutex);
  2528. }
  2529. static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
  2530. {
  2531. struct cgroup_pidlist *l = s->private;
  2532. pid_t *p = v;
  2533. pid_t *end = l->list + l->length;
  2534. /*
  2535. * Advance to the next pid in the array. If this goes off the
  2536. * end, we're done
  2537. */
  2538. p++;
  2539. if (p >= end) {
  2540. return NULL;
  2541. } else {
  2542. *pos = *p;
  2543. return p;
  2544. }
  2545. }
  2546. static int cgroup_pidlist_show(struct seq_file *s, void *v)
  2547. {
  2548. return seq_printf(s, "%d\n", *(int *)v);
  2549. }
  2550. /*
  2551. * seq_operations functions for iterating on pidlists through seq_file -
  2552. * independent of whether it's tasks or procs
  2553. */
  2554. static const struct seq_operations cgroup_pidlist_seq_operations = {
  2555. .start = cgroup_pidlist_start,
  2556. .stop = cgroup_pidlist_stop,
  2557. .next = cgroup_pidlist_next,
  2558. .show = cgroup_pidlist_show,
  2559. };
  2560. static void cgroup_release_pid_array(struct cgroup_pidlist *l)
  2561. {
  2562. /*
  2563. * the case where we're the last user of this particular pidlist will
  2564. * have us remove it from the cgroup's list, which entails taking the
  2565. * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
  2566. * pidlist_mutex, we have to take pidlist_mutex first.
  2567. */
  2568. mutex_lock(&l->owner->pidlist_mutex);
  2569. down_write(&l->mutex);
  2570. BUG_ON(!l->use_count);
  2571. if (!--l->use_count) {
  2572. /* we're the last user if refcount is 0; remove and free */
  2573. list_del(&l->links);
  2574. mutex_unlock(&l->owner->pidlist_mutex);
  2575. pidlist_free(l->list);
  2576. put_pid_ns(l->key.ns);
  2577. up_write(&l->mutex);
  2578. kfree(l);
  2579. return;
  2580. }
  2581. mutex_unlock(&l->owner->pidlist_mutex);
  2582. up_write(&l->mutex);
  2583. }
  2584. static int cgroup_pidlist_release(struct inode *inode, struct file *file)
  2585. {
  2586. struct cgroup_pidlist *l;
  2587. if (!(file->f_mode & FMODE_READ))
  2588. return 0;
  2589. /*
  2590. * the seq_file will only be initialized if the file was opened for
  2591. * reading; hence we check if it's not null only in that case.
  2592. */
  2593. l = ((struct seq_file *)file->private_data)->private;
  2594. cgroup_release_pid_array(l);
  2595. return seq_release(inode, file);
  2596. }
  2597. static const struct file_operations cgroup_pidlist_operations = {
  2598. .read = seq_read,
  2599. .llseek = seq_lseek,
  2600. .write = cgroup_file_write,
  2601. .release = cgroup_pidlist_release,
  2602. };
  2603. /*
  2604. * The following functions handle opens on a file that displays a pidlist
  2605. * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
  2606. * in the cgroup.
  2607. */
  2608. /* helper function for the two below it */
  2609. static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
  2610. {
  2611. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  2612. struct cgroup_pidlist *l;
  2613. int retval;
  2614. /* Nothing to do for write-only files */
  2615. if (!(file->f_mode & FMODE_READ))
  2616. return 0;
  2617. /* have the array populated */
  2618. retval = pidlist_array_load(cgrp, type, &l);
  2619. if (retval)
  2620. return retval;
  2621. /* configure file information */
  2622. file->f_op = &cgroup_pidlist_operations;
  2623. retval = seq_open(file, &cgroup_pidlist_seq_operations);
  2624. if (retval) {
  2625. cgroup_release_pid_array(l);
  2626. return retval;
  2627. }
  2628. ((struct seq_file *)file->private_data)->private = l;
  2629. return 0;
  2630. }
  2631. static int cgroup_tasks_open(struct inode *unused, struct file *file)
  2632. {
  2633. return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
  2634. }
  2635. static int cgroup_procs_open(struct inode *unused, struct file *file)
  2636. {
  2637. return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
  2638. }
  2639. static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
  2640. struct cftype *cft)
  2641. {
  2642. return notify_on_release(cgrp);
  2643. }
  2644. static int cgroup_write_notify_on_release(struct cgroup *cgrp,
  2645. struct cftype *cft,
  2646. u64 val)
  2647. {
  2648. clear_bit(CGRP_RELEASABLE, &cgrp->flags);
  2649. if (val)
  2650. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  2651. else
  2652. clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  2653. return 0;
  2654. }
  2655. /*
  2656. * Unregister event and free resources.
  2657. *
  2658. * Gets called from workqueue.
  2659. */
  2660. static void cgroup_event_remove(struct work_struct *work)
  2661. {
  2662. struct cgroup_event *event = container_of(work, struct cgroup_event,
  2663. remove);
  2664. struct cgroup *cgrp = event->cgrp;
  2665. event->cft->unregister_event(cgrp, event->cft, event->eventfd);
  2666. eventfd_ctx_put(event->eventfd);
  2667. kfree(event);
  2668. dput(cgrp->dentry);
  2669. }
  2670. /*
  2671. * Gets called on POLLHUP on eventfd when user closes it.
  2672. *
  2673. * Called with wqh->lock held and interrupts disabled.
  2674. */
  2675. static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
  2676. int sync, void *key)
  2677. {
  2678. struct cgroup_event *event = container_of(wait,
  2679. struct cgroup_event, wait);
  2680. struct cgroup *cgrp = event->cgrp;
  2681. unsigned long flags = (unsigned long)key;
  2682. if (flags & POLLHUP) {
  2683. __remove_wait_queue(event->wqh, &event->wait);
  2684. spin_lock(&cgrp->event_list_lock);
  2685. list_del(&event->list);
  2686. spin_unlock(&cgrp->event_list_lock);
  2687. /*
  2688. * We are in atomic context, but cgroup_event_remove() may
  2689. * sleep, so we have to call it in workqueue.
  2690. */
  2691. schedule_work(&event->remove);
  2692. }
  2693. return 0;
  2694. }
  2695. static void cgroup_event_ptable_queue_proc(struct file *file,
  2696. wait_queue_head_t *wqh, poll_table *pt)
  2697. {
  2698. struct cgroup_event *event = container_of(pt,
  2699. struct cgroup_event, pt);
  2700. event->wqh = wqh;
  2701. add_wait_queue(wqh, &event->wait);
  2702. }
  2703. /*
  2704. * Parse input and register new cgroup event handler.
  2705. *
  2706. * Input must be in format '<event_fd> <control_fd> <args>'.
  2707. * Interpretation of args is defined by control file implementation.
  2708. */
  2709. static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
  2710. const char *buffer)
  2711. {
  2712. struct cgroup_event *event = NULL;
  2713. unsigned int efd, cfd;
  2714. struct file *efile = NULL;
  2715. struct file *cfile = NULL;
  2716. char *endp;
  2717. int ret;
  2718. efd = simple_strtoul(buffer, &endp, 10);
  2719. if (*endp != ' ')
  2720. return -EINVAL;
  2721. buffer = endp + 1;
  2722. cfd = simple_strtoul(buffer, &endp, 10);
  2723. if ((*endp != ' ') && (*endp != '\0'))
  2724. return -EINVAL;
  2725. buffer = endp + 1;
  2726. event = kzalloc(sizeof(*event), GFP_KERNEL);
  2727. if (!event)
  2728. return -ENOMEM;
  2729. event->cgrp = cgrp;
  2730. INIT_LIST_HEAD(&event->list);
  2731. init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
  2732. init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
  2733. INIT_WORK(&event->remove, cgroup_event_remove);
  2734. efile = eventfd_fget(efd);
  2735. if (IS_ERR(efile)) {
  2736. ret = PTR_ERR(efile);
  2737. goto fail;
  2738. }
  2739. event->eventfd = eventfd_ctx_fileget(efile);
  2740. if (IS_ERR(event->eventfd)) {
  2741. ret = PTR_ERR(event->eventfd);
  2742. goto fail;
  2743. }
  2744. cfile = fget(cfd);
  2745. if (!cfile) {
  2746. ret = -EBADF;
  2747. goto fail;
  2748. }
  2749. /* the process need read permission on control file */
  2750. ret = file_permission(cfile, MAY_READ);
  2751. if (ret < 0)
  2752. goto fail;
  2753. event->cft = __file_cft(cfile);
  2754. if (IS_ERR(event->cft)) {
  2755. ret = PTR_ERR(event->cft);
  2756. goto fail;
  2757. }
  2758. if (!event->cft->register_event || !event->cft->unregister_event) {
  2759. ret = -EINVAL;
  2760. goto fail;
  2761. }
  2762. ret = event->cft->register_event(cgrp, event->cft,
  2763. event->eventfd, buffer);
  2764. if (ret)
  2765. goto fail;
  2766. if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
  2767. event->cft->unregister_event(cgrp, event->cft, event->eventfd);
  2768. ret = 0;
  2769. goto fail;
  2770. }
  2771. /*
  2772. * Events should be removed after rmdir of cgroup directory, but before
  2773. * destroying subsystem state objects. Let's take reference to cgroup
  2774. * directory dentry to do that.
  2775. */
  2776. dget(cgrp->dentry);
  2777. spin_lock(&cgrp->event_list_lock);
  2778. list_add(&event->list, &cgrp->event_list);
  2779. spin_unlock(&cgrp->event_list_lock);
  2780. fput(cfile);
  2781. fput(efile);
  2782. return 0;
  2783. fail:
  2784. if (cfile)
  2785. fput(cfile);
  2786. if (event && event->eventfd && !IS_ERR(event->eventfd))
  2787. eventfd_ctx_put(event->eventfd);
  2788. if (!IS_ERR_OR_NULL(efile))
  2789. fput(efile);
  2790. kfree(event);
  2791. return ret;
  2792. }
  2793. /*
  2794. * for the common functions, 'private' gives the type of file
  2795. */
  2796. /* for hysterical raisins, we can't put this on the older files */
  2797. #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
  2798. static struct cftype files[] = {
  2799. {
  2800. .name = "tasks",
  2801. .open = cgroup_tasks_open,
  2802. .write_u64 = cgroup_tasks_write,
  2803. .release = cgroup_pidlist_release,
  2804. .mode = S_IRUGO | S_IWUSR,
  2805. },
  2806. {
  2807. .name = CGROUP_FILE_GENERIC_PREFIX "procs",
  2808. .open = cgroup_procs_open,
  2809. /* .write_u64 = cgroup_procs_write, TODO */
  2810. .release = cgroup_pidlist_release,
  2811. .mode = S_IRUGO,
  2812. },
  2813. {
  2814. .name = "notify_on_release",
  2815. .read_u64 = cgroup_read_notify_on_release,
  2816. .write_u64 = cgroup_write_notify_on_release,
  2817. },
  2818. {
  2819. .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
  2820. .write_string = cgroup_write_event_control,
  2821. .mode = S_IWUGO,
  2822. },
  2823. };
  2824. static struct cftype cft_release_agent = {
  2825. .name = "release_agent",
  2826. .read_seq_string = cgroup_release_agent_show,
  2827. .write_string = cgroup_release_agent_write,
  2828. .max_write_len = PATH_MAX,
  2829. };
  2830. static int cgroup_populate_dir(struct cgroup *cgrp)
  2831. {
  2832. int err;
  2833. struct cgroup_subsys *ss;
  2834. /* First clear out any existing files */
  2835. cgroup_clear_directory(cgrp->dentry);
  2836. err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
  2837. if (err < 0)
  2838. return err;
  2839. if (cgrp == cgrp->top_cgroup) {
  2840. if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
  2841. return err;
  2842. }
  2843. for_each_subsys(cgrp->root, ss) {
  2844. if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
  2845. return err;
  2846. }
  2847. /* This cgroup is ready now */
  2848. for_each_subsys(cgrp->root, ss) {
  2849. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  2850. /*
  2851. * Update id->css pointer and make this css visible from
  2852. * CSS ID functions. This pointer will be dereferened
  2853. * from RCU-read-side without locks.
  2854. */
  2855. if (css->id)
  2856. rcu_assign_pointer(css->id->css, css);
  2857. }
  2858. return 0;
  2859. }
  2860. static void init_cgroup_css(struct cgroup_subsys_state *css,
  2861. struct cgroup_subsys *ss,
  2862. struct cgroup *cgrp)
  2863. {
  2864. css->cgroup = cgrp;
  2865. atomic_set(&css->refcnt, 1);
  2866. css->flags = 0;
  2867. css->id = NULL;
  2868. if (cgrp == dummytop)
  2869. set_bit(CSS_ROOT, &css->flags);
  2870. BUG_ON(cgrp->subsys[ss->subsys_id]);
  2871. cgrp->subsys[ss->subsys_id] = css;
  2872. }
  2873. static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
  2874. {
  2875. /* We need to take each hierarchy_mutex in a consistent order */
  2876. int i;
  2877. /*
  2878. * No worry about a race with rebind_subsystems that might mess up the
  2879. * locking order, since both parties are under cgroup_mutex.
  2880. */
  2881. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2882. struct cgroup_subsys *ss = subsys[i];
  2883. if (ss == NULL)
  2884. continue;
  2885. if (ss->root == root)
  2886. mutex_lock(&ss->hierarchy_mutex);
  2887. }
  2888. }
  2889. static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
  2890. {
  2891. int i;
  2892. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2893. struct cgroup_subsys *ss = subsys[i];
  2894. if (ss == NULL)
  2895. continue;
  2896. if (ss->root == root)
  2897. mutex_unlock(&ss->hierarchy_mutex);
  2898. }
  2899. }
  2900. /*
  2901. * cgroup_create - create a cgroup
  2902. * @parent: cgroup that will be parent of the new cgroup
  2903. * @dentry: dentry of the new cgroup
  2904. * @mode: mode to set on new inode
  2905. *
  2906. * Must be called with the mutex on the parent inode held
  2907. */
  2908. static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
  2909. mode_t mode)
  2910. {
  2911. struct cgroup *cgrp;
  2912. struct cgroupfs_root *root = parent->root;
  2913. int err = 0;
  2914. struct cgroup_subsys *ss;
  2915. struct super_block *sb = root->sb;
  2916. cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
  2917. if (!cgrp)
  2918. return -ENOMEM;
  2919. /* Grab a reference on the superblock so the hierarchy doesn't
  2920. * get deleted on unmount if there are child cgroups. This
  2921. * can be done outside cgroup_mutex, since the sb can't
  2922. * disappear while someone has an open control file on the
  2923. * fs */
  2924. atomic_inc(&sb->s_active);
  2925. mutex_lock(&cgroup_mutex);
  2926. init_cgroup_housekeeping(cgrp);
  2927. cgrp->parent = parent;
  2928. cgrp->root = parent->root;
  2929. cgrp->top_cgroup = parent->top_cgroup;
  2930. if (notify_on_release(parent))
  2931. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  2932. for_each_subsys(root, ss) {
  2933. struct cgroup_subsys_state *css = ss->create(ss, cgrp);
  2934. if (IS_ERR(css)) {
  2935. err = PTR_ERR(css);
  2936. goto err_destroy;
  2937. }
  2938. init_cgroup_css(css, ss, cgrp);
  2939. if (ss->use_id) {
  2940. err = alloc_css_id(ss, parent, cgrp);
  2941. if (err)
  2942. goto err_destroy;
  2943. }
  2944. /* At error, ->destroy() callback has to free assigned ID. */
  2945. }
  2946. cgroup_lock_hierarchy(root);
  2947. list_add(&cgrp->sibling, &cgrp->parent->children);
  2948. cgroup_unlock_hierarchy(root);
  2949. root->number_of_cgroups++;
  2950. err = cgroup_create_dir(cgrp, dentry, mode);
  2951. if (err < 0)
  2952. goto err_remove;
  2953. /* The cgroup directory was pre-locked for us */
  2954. BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
  2955. err = cgroup_populate_dir(cgrp);
  2956. /* If err < 0, we have a half-filled directory - oh well ;) */
  2957. mutex_unlock(&cgroup_mutex);
  2958. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  2959. return 0;
  2960. err_remove:
  2961. cgroup_lock_hierarchy(root);
  2962. list_del(&cgrp->sibling);
  2963. cgroup_unlock_hierarchy(root);
  2964. root->number_of_cgroups--;
  2965. err_destroy:
  2966. for_each_subsys(root, ss) {
  2967. if (cgrp->subsys[ss->subsys_id])
  2968. ss->destroy(ss, cgrp);
  2969. }
  2970. mutex_unlock(&cgroup_mutex);
  2971. /* Release the reference count that we took on the superblock */
  2972. deactivate_super(sb);
  2973. kfree(cgrp);
  2974. return err;
  2975. }
  2976. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  2977. {
  2978. struct cgroup *c_parent = dentry->d_parent->d_fsdata;
  2979. /* the vfs holds inode->i_mutex already */
  2980. return cgroup_create(c_parent, dentry, mode | S_IFDIR);
  2981. }
  2982. static int cgroup_has_css_refs(struct cgroup *cgrp)
  2983. {
  2984. /* Check the reference count on each subsystem. Since we
  2985. * already established that there are no tasks in the
  2986. * cgroup, if the css refcount is also 1, then there should
  2987. * be no outstanding references, so the subsystem is safe to
  2988. * destroy. We scan across all subsystems rather than using
  2989. * the per-hierarchy linked list of mounted subsystems since
  2990. * we can be called via check_for_release() with no
  2991. * synchronization other than RCU, and the subsystem linked
  2992. * list isn't RCU-safe */
  2993. int i;
  2994. /*
  2995. * We won't need to lock the subsys array, because the subsystems
  2996. * we're concerned about aren't going anywhere since our cgroup root
  2997. * has a reference on them.
  2998. */
  2999. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  3000. struct cgroup_subsys *ss = subsys[i];
  3001. struct cgroup_subsys_state *css;
  3002. /* Skip subsystems not present or not in this hierarchy */
  3003. if (ss == NULL || ss->root != cgrp->root)
  3004. continue;
  3005. css = cgrp->subsys[ss->subsys_id];
  3006. /* When called from check_for_release() it's possible
  3007. * that by this point the cgroup has been removed
  3008. * and the css deleted. But a false-positive doesn't
  3009. * matter, since it can only happen if the cgroup
  3010. * has been deleted and hence no longer needs the
  3011. * release agent to be called anyway. */
  3012. if (css && (atomic_read(&css->refcnt) > 1))
  3013. return 1;
  3014. }
  3015. return 0;
  3016. }
  3017. /*
  3018. * Atomically mark all (or else none) of the cgroup's CSS objects as
  3019. * CSS_REMOVED. Return true on success, or false if the cgroup has
  3020. * busy subsystems. Call with cgroup_mutex held
  3021. */
  3022. static int cgroup_clear_css_refs(struct cgroup *cgrp)
  3023. {
  3024. struct cgroup_subsys *ss;
  3025. unsigned long flags;
  3026. bool failed = false;
  3027. local_irq_save(flags);
  3028. for_each_subsys(cgrp->root, ss) {
  3029. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3030. int refcnt;
  3031. while (1) {
  3032. /* We can only remove a CSS with a refcnt==1 */
  3033. refcnt = atomic_read(&css->refcnt);
  3034. if (refcnt > 1) {
  3035. failed = true;
  3036. goto done;
  3037. }
  3038. BUG_ON(!refcnt);
  3039. /*
  3040. * Drop the refcnt to 0 while we check other
  3041. * subsystems. This will cause any racing
  3042. * css_tryget() to spin until we set the
  3043. * CSS_REMOVED bits or abort
  3044. */
  3045. if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
  3046. break;
  3047. cpu_relax();
  3048. }
  3049. }
  3050. done:
  3051. for_each_subsys(cgrp->root, ss) {
  3052. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3053. if (failed) {
  3054. /*
  3055. * Restore old refcnt if we previously managed
  3056. * to clear it from 1 to 0
  3057. */
  3058. if (!atomic_read(&css->refcnt))
  3059. atomic_set(&css->refcnt, 1);
  3060. } else {
  3061. /* Commit the fact that the CSS is removed */
  3062. set_bit(CSS_REMOVED, &css->flags);
  3063. }
  3064. }
  3065. local_irq_restore(flags);
  3066. return !failed;
  3067. }
  3068. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
  3069. {
  3070. struct cgroup *cgrp = dentry->d_fsdata;
  3071. struct dentry *d;
  3072. struct cgroup *parent;
  3073. DEFINE_WAIT(wait);
  3074. struct cgroup_event *event, *tmp;
  3075. int ret;
  3076. /* the vfs holds both inode->i_mutex already */
  3077. again:
  3078. mutex_lock(&cgroup_mutex);
  3079. if (atomic_read(&cgrp->count) != 0) {
  3080. mutex_unlock(&cgroup_mutex);
  3081. return -EBUSY;
  3082. }
  3083. if (!list_empty(&cgrp->children)) {
  3084. mutex_unlock(&cgroup_mutex);
  3085. return -EBUSY;
  3086. }
  3087. mutex_unlock(&cgroup_mutex);
  3088. /*
  3089. * In general, subsystem has no css->refcnt after pre_destroy(). But
  3090. * in racy cases, subsystem may have to get css->refcnt after
  3091. * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
  3092. * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
  3093. * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
  3094. * and subsystem's reference count handling. Please see css_get/put
  3095. * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
  3096. */
  3097. set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3098. /*
  3099. * Call pre_destroy handlers of subsys. Notify subsystems
  3100. * that rmdir() request comes.
  3101. */
  3102. ret = cgroup_call_pre_destroy(cgrp);
  3103. if (ret) {
  3104. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3105. return ret;
  3106. }
  3107. mutex_lock(&cgroup_mutex);
  3108. parent = cgrp->parent;
  3109. if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
  3110. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3111. mutex_unlock(&cgroup_mutex);
  3112. return -EBUSY;
  3113. }
  3114. prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
  3115. if (!cgroup_clear_css_refs(cgrp)) {
  3116. mutex_unlock(&cgroup_mutex);
  3117. /*
  3118. * Because someone may call cgroup_wakeup_rmdir_waiter() before
  3119. * prepare_to_wait(), we need to check this flag.
  3120. */
  3121. if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
  3122. schedule();
  3123. finish_wait(&cgroup_rmdir_waitq, &wait);
  3124. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3125. if (signal_pending(current))
  3126. return -EINTR;
  3127. goto again;
  3128. }
  3129. /* NO css_tryget() can success after here. */
  3130. finish_wait(&cgroup_rmdir_waitq, &wait);
  3131. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3132. spin_lock(&release_list_lock);
  3133. set_bit(CGRP_REMOVED, &cgrp->flags);
  3134. if (!list_empty(&cgrp->release_list))
  3135. list_del(&cgrp->release_list);
  3136. spin_unlock(&release_list_lock);
  3137. cgroup_lock_hierarchy(cgrp->root);
  3138. /* delete this cgroup from parent->children */
  3139. list_del(&cgrp->sibling);
  3140. cgroup_unlock_hierarchy(cgrp->root);
  3141. spin_lock(&cgrp->dentry->d_lock);
  3142. d = dget(cgrp->dentry);
  3143. spin_unlock(&d->d_lock);
  3144. cgroup_d_remove_dir(d);
  3145. dput(d);
  3146. set_bit(CGRP_RELEASABLE, &parent->flags);
  3147. check_for_release(parent);
  3148. /*
  3149. * Unregister events and notify userspace.
  3150. * Notify userspace about cgroup removing only after rmdir of cgroup
  3151. * directory to avoid race between userspace and kernelspace
  3152. */
  3153. spin_lock(&cgrp->event_list_lock);
  3154. list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
  3155. list_del(&event->list);
  3156. remove_wait_queue(event->wqh, &event->wait);
  3157. eventfd_signal(event->eventfd, 1);
  3158. schedule_work(&event->remove);
  3159. }
  3160. spin_unlock(&cgrp->event_list_lock);
  3161. mutex_unlock(&cgroup_mutex);
  3162. return 0;
  3163. }
  3164. static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
  3165. {
  3166. struct cgroup_subsys_state *css;
  3167. printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
  3168. /* Create the top cgroup state for this subsystem */
  3169. list_add(&ss->sibling, &rootnode.subsys_list);
  3170. ss->root = &rootnode;
  3171. css = ss->create(ss, dummytop);
  3172. /* We don't handle early failures gracefully */
  3173. BUG_ON(IS_ERR(css));
  3174. init_cgroup_css(css, ss, dummytop);
  3175. /* Update the init_css_set to contain a subsys
  3176. * pointer to this state - since the subsystem is
  3177. * newly registered, all tasks and hence the
  3178. * init_css_set is in the subsystem's top cgroup. */
  3179. init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
  3180. need_forkexit_callback |= ss->fork || ss->exit;
  3181. /* At system boot, before all subsystems have been
  3182. * registered, no tasks have been forked, so we don't
  3183. * need to invoke fork callbacks here. */
  3184. BUG_ON(!list_empty(&init_task.tasks));
  3185. mutex_init(&ss->hierarchy_mutex);
  3186. lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
  3187. ss->active = 1;
  3188. /* this function shouldn't be used with modular subsystems, since they
  3189. * need to register a subsys_id, among other things */
  3190. BUG_ON(ss->module);
  3191. }
  3192. /**
  3193. * cgroup_load_subsys: load and register a modular subsystem at runtime
  3194. * @ss: the subsystem to load
  3195. *
  3196. * This function should be called in a modular subsystem's initcall. If the
  3197. * subsystem is built as a module, it will be assigned a new subsys_id and set
  3198. * up for use. If the subsystem is built-in anyway, work is delegated to the
  3199. * simpler cgroup_init_subsys.
  3200. */
  3201. int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
  3202. {
  3203. int i;
  3204. struct cgroup_subsys_state *css;
  3205. /* check name and function validity */
  3206. if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
  3207. ss->create == NULL || ss->destroy == NULL)
  3208. return -EINVAL;
  3209. /*
  3210. * we don't support callbacks in modular subsystems. this check is
  3211. * before the ss->module check for consistency; a subsystem that could
  3212. * be a module should still have no callbacks even if the user isn't
  3213. * compiling it as one.
  3214. */
  3215. if (ss->fork || ss->exit)
  3216. return -EINVAL;
  3217. /*
  3218. * an optionally modular subsystem is built-in: we want to do nothing,
  3219. * since cgroup_init_subsys will have already taken care of it.
  3220. */
  3221. if (ss->module == NULL) {
  3222. /* a few sanity checks */
  3223. BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
  3224. BUG_ON(subsys[ss->subsys_id] != ss);
  3225. return 0;
  3226. }
  3227. /*
  3228. * need to register a subsys id before anything else - for example,
  3229. * init_cgroup_css needs it.
  3230. */
  3231. mutex_lock(&cgroup_mutex);
  3232. /* find the first empty slot in the array */
  3233. for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
  3234. if (subsys[i] == NULL)
  3235. break;
  3236. }
  3237. if (i == CGROUP_SUBSYS_COUNT) {
  3238. /* maximum number of subsystems already registered! */
  3239. mutex_unlock(&cgroup_mutex);
  3240. return -EBUSY;
  3241. }
  3242. /* assign ourselves the subsys_id */
  3243. ss->subsys_id = i;
  3244. subsys[i] = ss;
  3245. /*
  3246. * no ss->create seems to need anything important in the ss struct, so
  3247. * this can happen first (i.e. before the rootnode attachment).
  3248. */
  3249. css = ss->create(ss, dummytop);
  3250. if (IS_ERR(css)) {
  3251. /* failure case - need to deassign the subsys[] slot. */
  3252. subsys[i] = NULL;
  3253. mutex_unlock(&cgroup_mutex);
  3254. return PTR_ERR(css);
  3255. }
  3256. list_add(&ss->sibling, &rootnode.subsys_list);
  3257. ss->root = &rootnode;
  3258. /* our new subsystem will be attached to the dummy hierarchy. */
  3259. init_cgroup_css(css, ss, dummytop);
  3260. /* init_idr must be after init_cgroup_css because it sets css->id. */
  3261. if (ss->use_id) {
  3262. int ret = cgroup_init_idr(ss, css);
  3263. if (ret) {
  3264. dummytop->subsys[ss->subsys_id] = NULL;
  3265. ss->destroy(ss, dummytop);
  3266. subsys[i] = NULL;
  3267. mutex_unlock(&cgroup_mutex);
  3268. return ret;
  3269. }
  3270. }
  3271. /*
  3272. * Now we need to entangle the css into the existing css_sets. unlike
  3273. * in cgroup_init_subsys, there are now multiple css_sets, so each one
  3274. * will need a new pointer to it; done by iterating the css_set_table.
  3275. * furthermore, modifying the existing css_sets will corrupt the hash
  3276. * table state, so each changed css_set will need its hash recomputed.
  3277. * this is all done under the css_set_lock.
  3278. */
  3279. write_lock(&css_set_lock);
  3280. for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
  3281. struct css_set *cg;
  3282. struct hlist_node *node, *tmp;
  3283. struct hlist_head *bucket = &css_set_table[i], *new_bucket;
  3284. hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
  3285. /* skip entries that we already rehashed */
  3286. if (cg->subsys[ss->subsys_id])
  3287. continue;
  3288. /* remove existing entry */
  3289. hlist_del(&cg->hlist);
  3290. /* set new value */
  3291. cg->subsys[ss->subsys_id] = css;
  3292. /* recompute hash and restore entry */
  3293. new_bucket = css_set_hash(cg->subsys);
  3294. hlist_add_head(&cg->hlist, new_bucket);
  3295. }
  3296. }
  3297. write_unlock(&css_set_lock);
  3298. mutex_init(&ss->hierarchy_mutex);
  3299. lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
  3300. ss->active = 1;
  3301. /* success! */
  3302. mutex_unlock(&cgroup_mutex);
  3303. return 0;
  3304. }
  3305. EXPORT_SYMBOL_GPL(cgroup_load_subsys);
  3306. /**
  3307. * cgroup_unload_subsys: unload a modular subsystem
  3308. * @ss: the subsystem to unload
  3309. *
  3310. * This function should be called in a modular subsystem's exitcall. When this
  3311. * function is invoked, the refcount on the subsystem's module will be 0, so
  3312. * the subsystem will not be attached to any hierarchy.
  3313. */
  3314. void cgroup_unload_subsys(struct cgroup_subsys *ss)
  3315. {
  3316. struct cg_cgroup_link *link;
  3317. struct hlist_head *hhead;
  3318. BUG_ON(ss->module == NULL);
  3319. /*
  3320. * we shouldn't be called if the subsystem is in use, and the use of
  3321. * try_module_get in parse_cgroupfs_options should ensure that it
  3322. * doesn't start being used while we're killing it off.
  3323. */
  3324. BUG_ON(ss->root != &rootnode);
  3325. mutex_lock(&cgroup_mutex);
  3326. /* deassign the subsys_id */
  3327. BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
  3328. subsys[ss->subsys_id] = NULL;
  3329. /* remove subsystem from rootnode's list of subsystems */
  3330. list_del(&ss->sibling);
  3331. /*
  3332. * disentangle the css from all css_sets attached to the dummytop. as
  3333. * in loading, we need to pay our respects to the hashtable gods.
  3334. */
  3335. write_lock(&css_set_lock);
  3336. list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
  3337. struct css_set *cg = link->cg;
  3338. hlist_del(&cg->hlist);
  3339. BUG_ON(!cg->subsys[ss->subsys_id]);
  3340. cg->subsys[ss->subsys_id] = NULL;
  3341. hhead = css_set_hash(cg->subsys);
  3342. hlist_add_head(&cg->hlist, hhead);
  3343. }
  3344. write_unlock(&css_set_lock);
  3345. /*
  3346. * remove subsystem's css from the dummytop and free it - need to free
  3347. * before marking as null because ss->destroy needs the cgrp->subsys
  3348. * pointer to find their state. note that this also takes care of
  3349. * freeing the css_id.
  3350. */
  3351. ss->destroy(ss, dummytop);
  3352. dummytop->subsys[ss->subsys_id] = NULL;
  3353. mutex_unlock(&cgroup_mutex);
  3354. }
  3355. EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
  3356. /**
  3357. * cgroup_init_early - cgroup initialization at system boot
  3358. *
  3359. * Initialize cgroups at system boot, and initialize any
  3360. * subsystems that request early init.
  3361. */
  3362. int __init cgroup_init_early(void)
  3363. {
  3364. int i;
  3365. atomic_set(&init_css_set.refcount, 1);
  3366. INIT_LIST_HEAD(&init_css_set.cg_links);
  3367. INIT_LIST_HEAD(&init_css_set.tasks);
  3368. INIT_HLIST_NODE(&init_css_set.hlist);
  3369. css_set_count = 1;
  3370. init_cgroup_root(&rootnode);
  3371. root_count = 1;
  3372. init_task.cgroups = &init_css_set;
  3373. init_css_set_link.cg = &init_css_set;
  3374. init_css_set_link.cgrp = dummytop;
  3375. list_add(&init_css_set_link.cgrp_link_list,
  3376. &rootnode.top_cgroup.css_sets);
  3377. list_add(&init_css_set_link.cg_link_list,
  3378. &init_css_set.cg_links);
  3379. for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
  3380. INIT_HLIST_HEAD(&css_set_table[i]);
  3381. /* at bootup time, we don't worry about modular subsystems */
  3382. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3383. struct cgroup_subsys *ss = subsys[i];
  3384. BUG_ON(!ss->name);
  3385. BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
  3386. BUG_ON(!ss->create);
  3387. BUG_ON(!ss->destroy);
  3388. if (ss->subsys_id != i) {
  3389. printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
  3390. ss->name, ss->subsys_id);
  3391. BUG();
  3392. }
  3393. if (ss->early_init)
  3394. cgroup_init_subsys(ss);
  3395. }
  3396. return 0;
  3397. }
  3398. /**
  3399. * cgroup_init - cgroup initialization
  3400. *
  3401. * Register cgroup filesystem and /proc file, and initialize
  3402. * any subsystems that didn't request early init.
  3403. */
  3404. int __init cgroup_init(void)
  3405. {
  3406. int err;
  3407. int i;
  3408. struct hlist_head *hhead;
  3409. err = bdi_init(&cgroup_backing_dev_info);
  3410. if (err)
  3411. return err;
  3412. /* at bootup time, we don't worry about modular subsystems */
  3413. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3414. struct cgroup_subsys *ss = subsys[i];
  3415. if (!ss->early_init)
  3416. cgroup_init_subsys(ss);
  3417. if (ss->use_id)
  3418. cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
  3419. }
  3420. /* Add init_css_set to the hash table */
  3421. hhead = css_set_hash(init_css_set.subsys);
  3422. hlist_add_head(&init_css_set.hlist, hhead);
  3423. BUG_ON(!init_root_id(&rootnode));
  3424. err = register_filesystem(&cgroup_fs_type);
  3425. if (err < 0)
  3426. goto out;
  3427. proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
  3428. out:
  3429. if (err)
  3430. bdi_destroy(&cgroup_backing_dev_info);
  3431. return err;
  3432. }
  3433. /*
  3434. * proc_cgroup_show()
  3435. * - Print task's cgroup paths into seq_file, one line for each hierarchy
  3436. * - Used for /proc/<pid>/cgroup.
  3437. * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
  3438. * doesn't really matter if tsk->cgroup changes after we read it,
  3439. * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
  3440. * anyway. No need to check that tsk->cgroup != NULL, thanks to
  3441. * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
  3442. * cgroup to top_cgroup.
  3443. */
  3444. /* TODO: Use a proper seq_file iterator */
  3445. static int proc_cgroup_show(struct seq_file *m, void *v)
  3446. {
  3447. struct pid *pid;
  3448. struct task_struct *tsk;
  3449. char *buf;
  3450. int retval;
  3451. struct cgroupfs_root *root;
  3452. retval = -ENOMEM;
  3453. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3454. if (!buf)
  3455. goto out;
  3456. retval = -ESRCH;
  3457. pid = m->private;
  3458. tsk = get_pid_task(pid, PIDTYPE_PID);
  3459. if (!tsk)
  3460. goto out_free;
  3461. retval = 0;
  3462. mutex_lock(&cgroup_mutex);
  3463. for_each_active_root(root) {
  3464. struct cgroup_subsys *ss;
  3465. struct cgroup *cgrp;
  3466. int count = 0;
  3467. seq_printf(m, "%d:", root->hierarchy_id);
  3468. for_each_subsys(root, ss)
  3469. seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
  3470. if (strlen(root->name))
  3471. seq_printf(m, "%sname=%s", count ? "," : "",
  3472. root->name);
  3473. seq_putc(m, ':');
  3474. cgrp = task_cgroup_from_root(tsk, root);
  3475. retval = cgroup_path(cgrp, buf, PAGE_SIZE);
  3476. if (retval < 0)
  3477. goto out_unlock;
  3478. seq_puts(m, buf);
  3479. seq_putc(m, '\n');
  3480. }
  3481. out_unlock:
  3482. mutex_unlock(&cgroup_mutex);
  3483. put_task_struct(tsk);
  3484. out_free:
  3485. kfree(buf);
  3486. out:
  3487. return retval;
  3488. }
  3489. static int cgroup_open(struct inode *inode, struct file *file)
  3490. {
  3491. struct pid *pid = PROC_I(inode)->pid;
  3492. return single_open(file, proc_cgroup_show, pid);
  3493. }
  3494. const struct file_operations proc_cgroup_operations = {
  3495. .open = cgroup_open,
  3496. .read = seq_read,
  3497. .llseek = seq_lseek,
  3498. .release = single_release,
  3499. };
  3500. /* Display information about each subsystem and each hierarchy */
  3501. static int proc_cgroupstats_show(struct seq_file *m, void *v)
  3502. {
  3503. int i;
  3504. seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
  3505. /*
  3506. * ideally we don't want subsystems moving around while we do this.
  3507. * cgroup_mutex is also necessary to guarantee an atomic snapshot of
  3508. * subsys/hierarchy state.
  3509. */
  3510. mutex_lock(&cgroup_mutex);
  3511. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  3512. struct cgroup_subsys *ss = subsys[i];
  3513. if (ss == NULL)
  3514. continue;
  3515. seq_printf(m, "%s\t%d\t%d\t%d\n",
  3516. ss->name, ss->root->hierarchy_id,
  3517. ss->root->number_of_cgroups, !ss->disabled);
  3518. }
  3519. mutex_unlock(&cgroup_mutex);
  3520. return 0;
  3521. }
  3522. static int cgroupstats_open(struct inode *inode, struct file *file)
  3523. {
  3524. return single_open(file, proc_cgroupstats_show, NULL);
  3525. }
  3526. static const struct file_operations proc_cgroupstats_operations = {
  3527. .open = cgroupstats_open,
  3528. .read = seq_read,
  3529. .llseek = seq_lseek,
  3530. .release = single_release,
  3531. };
  3532. /**
  3533. * cgroup_fork - attach newly forked task to its parents cgroup.
  3534. * @child: pointer to task_struct of forking parent process.
  3535. *
  3536. * Description: A task inherits its parent's cgroup at fork().
  3537. *
  3538. * A pointer to the shared css_set was automatically copied in
  3539. * fork.c by dup_task_struct(). However, we ignore that copy, since
  3540. * it was not made under the protection of RCU or cgroup_mutex, so
  3541. * might no longer be a valid cgroup pointer. cgroup_attach_task() might
  3542. * have already changed current->cgroups, allowing the previously
  3543. * referenced cgroup group to be removed and freed.
  3544. *
  3545. * At the point that cgroup_fork() is called, 'current' is the parent
  3546. * task, and the passed argument 'child' points to the child task.
  3547. */
  3548. void cgroup_fork(struct task_struct *child)
  3549. {
  3550. task_lock(current);
  3551. child->cgroups = current->cgroups;
  3552. get_css_set(child->cgroups);
  3553. task_unlock(current);
  3554. INIT_LIST_HEAD(&child->cg_list);
  3555. }
  3556. /**
  3557. * cgroup_fork_callbacks - run fork callbacks
  3558. * @child: the new task
  3559. *
  3560. * Called on a new task very soon before adding it to the
  3561. * tasklist. No need to take any locks since no-one can
  3562. * be operating on this task.
  3563. */
  3564. void cgroup_fork_callbacks(struct task_struct *child)
  3565. {
  3566. if (need_forkexit_callback) {
  3567. int i;
  3568. /*
  3569. * forkexit callbacks are only supported for builtin
  3570. * subsystems, and the builtin section of the subsys array is
  3571. * immutable, so we don't need to lock the subsys array here.
  3572. */
  3573. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3574. struct cgroup_subsys *ss = subsys[i];
  3575. if (ss->fork)
  3576. ss->fork(ss, child);
  3577. }
  3578. }
  3579. }
  3580. /**
  3581. * cgroup_post_fork - called on a new task after adding it to the task list
  3582. * @child: the task in question
  3583. *
  3584. * Adds the task to the list running through its css_set if necessary.
  3585. * Has to be after the task is visible on the task list in case we race
  3586. * with the first call to cgroup_iter_start() - to guarantee that the
  3587. * new task ends up on its list.
  3588. */
  3589. void cgroup_post_fork(struct task_struct *child)
  3590. {
  3591. if (use_task_css_set_links) {
  3592. write_lock(&css_set_lock);
  3593. task_lock(child);
  3594. if (list_empty(&child->cg_list))
  3595. list_add(&child->cg_list, &child->cgroups->tasks);
  3596. task_unlock(child);
  3597. write_unlock(&css_set_lock);
  3598. }
  3599. }
  3600. /**
  3601. * cgroup_exit - detach cgroup from exiting task
  3602. * @tsk: pointer to task_struct of exiting process
  3603. * @run_callback: run exit callbacks?
  3604. *
  3605. * Description: Detach cgroup from @tsk and release it.
  3606. *
  3607. * Note that cgroups marked notify_on_release force every task in
  3608. * them to take the global cgroup_mutex mutex when exiting.
  3609. * This could impact scaling on very large systems. Be reluctant to
  3610. * use notify_on_release cgroups where very high task exit scaling
  3611. * is required on large systems.
  3612. *
  3613. * the_top_cgroup_hack:
  3614. *
  3615. * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
  3616. *
  3617. * We call cgroup_exit() while the task is still competent to
  3618. * handle notify_on_release(), then leave the task attached to the
  3619. * root cgroup in each hierarchy for the remainder of its exit.
  3620. *
  3621. * To do this properly, we would increment the reference count on
  3622. * top_cgroup, and near the very end of the kernel/exit.c do_exit()
  3623. * code we would add a second cgroup function call, to drop that
  3624. * reference. This would just create an unnecessary hot spot on
  3625. * the top_cgroup reference count, to no avail.
  3626. *
  3627. * Normally, holding a reference to a cgroup without bumping its
  3628. * count is unsafe. The cgroup could go away, or someone could
  3629. * attach us to a different cgroup, decrementing the count on
  3630. * the first cgroup that we never incremented. But in this case,
  3631. * top_cgroup isn't going away, and either task has PF_EXITING set,
  3632. * which wards off any cgroup_attach_task() attempts, or task is a failed
  3633. * fork, never visible to cgroup_attach_task.
  3634. */
  3635. void cgroup_exit(struct task_struct *tsk, int run_callbacks)
  3636. {
  3637. int i;
  3638. struct css_set *cg;
  3639. if (run_callbacks && need_forkexit_callback) {
  3640. /*
  3641. * modular subsystems can't use callbacks, so no need to lock
  3642. * the subsys array
  3643. */
  3644. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3645. struct cgroup_subsys *ss = subsys[i];
  3646. if (ss->exit)
  3647. ss->exit(ss, tsk);
  3648. }
  3649. }
  3650. /*
  3651. * Unlink from the css_set task list if necessary.
  3652. * Optimistically check cg_list before taking
  3653. * css_set_lock
  3654. */
  3655. if (!list_empty(&tsk->cg_list)) {
  3656. write_lock(&css_set_lock);
  3657. if (!list_empty(&tsk->cg_list))
  3658. list_del(&tsk->cg_list);
  3659. write_unlock(&css_set_lock);
  3660. }
  3661. /* Reassign the task to the init_css_set. */
  3662. task_lock(tsk);
  3663. cg = tsk->cgroups;
  3664. tsk->cgroups = &init_css_set;
  3665. task_unlock(tsk);
  3666. if (cg)
  3667. put_css_set_taskexit(cg);
  3668. }
  3669. /**
  3670. * cgroup_clone - clone the cgroup the given subsystem is attached to
  3671. * @tsk: the task to be moved
  3672. * @subsys: the given subsystem
  3673. * @nodename: the name for the new cgroup
  3674. *
  3675. * Duplicate the current cgroup in the hierarchy that the given
  3676. * subsystem is attached to, and move this task into the new
  3677. * child.
  3678. */
  3679. int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
  3680. char *nodename)
  3681. {
  3682. struct dentry *dentry;
  3683. int ret = 0;
  3684. struct cgroup *parent, *child;
  3685. struct inode *inode;
  3686. struct css_set *cg;
  3687. struct cgroupfs_root *root;
  3688. struct cgroup_subsys *ss;
  3689. /* We shouldn't be called by an unregistered subsystem */
  3690. BUG_ON(!subsys->active);
  3691. /* First figure out what hierarchy and cgroup we're dealing
  3692. * with, and pin them so we can drop cgroup_mutex */
  3693. mutex_lock(&cgroup_mutex);
  3694. again:
  3695. root = subsys->root;
  3696. if (root == &rootnode) {
  3697. mutex_unlock(&cgroup_mutex);
  3698. return 0;
  3699. }
  3700. /* Pin the hierarchy */
  3701. if (!atomic_inc_not_zero(&root->sb->s_active)) {
  3702. /* We race with the final deactivate_super() */
  3703. mutex_unlock(&cgroup_mutex);
  3704. return 0;
  3705. }
  3706. /* Keep the cgroup alive */
  3707. task_lock(tsk);
  3708. parent = task_cgroup(tsk, subsys->subsys_id);
  3709. cg = tsk->cgroups;
  3710. get_css_set(cg);
  3711. task_unlock(tsk);
  3712. mutex_unlock(&cgroup_mutex);
  3713. /* Now do the VFS work to create a cgroup */
  3714. inode = parent->dentry->d_inode;
  3715. /* Hold the parent directory mutex across this operation to
  3716. * stop anyone else deleting the new cgroup */
  3717. mutex_lock(&inode->i_mutex);
  3718. dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
  3719. if (IS_ERR(dentry)) {
  3720. printk(KERN_INFO
  3721. "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
  3722. PTR_ERR(dentry));
  3723. ret = PTR_ERR(dentry);
  3724. goto out_release;
  3725. }
  3726. /* Create the cgroup directory, which also creates the cgroup */
  3727. ret = vfs_mkdir(inode, dentry, 0755);
  3728. child = __d_cgrp(dentry);
  3729. dput(dentry);
  3730. if (ret) {
  3731. printk(KERN_INFO
  3732. "Failed to create cgroup %s: %d\n", nodename,
  3733. ret);
  3734. goto out_release;
  3735. }
  3736. /* The cgroup now exists. Retake cgroup_mutex and check
  3737. * that we're still in the same state that we thought we
  3738. * were. */
  3739. mutex_lock(&cgroup_mutex);
  3740. if ((root != subsys->root) ||
  3741. (parent != task_cgroup(tsk, subsys->subsys_id))) {
  3742. /* Aargh, we raced ... */
  3743. mutex_unlock(&inode->i_mutex);
  3744. put_css_set(cg);
  3745. deactivate_super(root->sb);
  3746. /* The cgroup is still accessible in the VFS, but
  3747. * we're not going to try to rmdir() it at this
  3748. * point. */
  3749. printk(KERN_INFO
  3750. "Race in cgroup_clone() - leaking cgroup %s\n",
  3751. nodename);
  3752. goto again;
  3753. }
  3754. /* do any required auto-setup */
  3755. for_each_subsys(root, ss) {
  3756. if (ss->post_clone)
  3757. ss->post_clone(ss, child);
  3758. }
  3759. /* All seems fine. Finish by moving the task into the new cgroup */
  3760. ret = cgroup_attach_task(child, tsk);
  3761. mutex_unlock(&cgroup_mutex);
  3762. out_release:
  3763. mutex_unlock(&inode->i_mutex);
  3764. mutex_lock(&cgroup_mutex);
  3765. put_css_set(cg);
  3766. mutex_unlock(&cgroup_mutex);
  3767. deactivate_super(root->sb);
  3768. return ret;
  3769. }
  3770. /**
  3771. * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
  3772. * @cgrp: the cgroup in question
  3773. * @task: the task in question
  3774. *
  3775. * See if @cgrp is a descendant of @task's cgroup in the appropriate
  3776. * hierarchy.
  3777. *
  3778. * If we are sending in dummytop, then presumably we are creating
  3779. * the top cgroup in the subsystem.
  3780. *
  3781. * Called only by the ns (nsproxy) cgroup.
  3782. */
  3783. int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
  3784. {
  3785. int ret;
  3786. struct cgroup *target;
  3787. if (cgrp == dummytop)
  3788. return 1;
  3789. target = task_cgroup_from_root(task, cgrp->root);
  3790. while (cgrp != target && cgrp!= cgrp->top_cgroup)
  3791. cgrp = cgrp->parent;
  3792. ret = (cgrp == target);
  3793. return ret;
  3794. }
  3795. static void check_for_release(struct cgroup *cgrp)
  3796. {
  3797. /* All of these checks rely on RCU to keep the cgroup
  3798. * structure alive */
  3799. if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
  3800. && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
  3801. /* Control Group is currently removeable. If it's not
  3802. * already queued for a userspace notification, queue
  3803. * it now */
  3804. int need_schedule_work = 0;
  3805. spin_lock(&release_list_lock);
  3806. if (!cgroup_is_removed(cgrp) &&
  3807. list_empty(&cgrp->release_list)) {
  3808. list_add(&cgrp->release_list, &release_list);
  3809. need_schedule_work = 1;
  3810. }
  3811. spin_unlock(&release_list_lock);
  3812. if (need_schedule_work)
  3813. schedule_work(&release_agent_work);
  3814. }
  3815. }
  3816. /* Caller must verify that the css is not for root cgroup */
  3817. void __css_put(struct cgroup_subsys_state *css, int count)
  3818. {
  3819. struct cgroup *cgrp = css->cgroup;
  3820. int val;
  3821. rcu_read_lock();
  3822. val = atomic_sub_return(count, &css->refcnt);
  3823. if (val == 1) {
  3824. if (notify_on_release(cgrp)) {
  3825. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  3826. check_for_release(cgrp);
  3827. }
  3828. cgroup_wakeup_rmdir_waiter(cgrp);
  3829. }
  3830. rcu_read_unlock();
  3831. WARN_ON_ONCE(val < 1);
  3832. }
  3833. EXPORT_SYMBOL_GPL(__css_put);
  3834. /*
  3835. * Notify userspace when a cgroup is released, by running the
  3836. * configured release agent with the name of the cgroup (path
  3837. * relative to the root of cgroup file system) as the argument.
  3838. *
  3839. * Most likely, this user command will try to rmdir this cgroup.
  3840. *
  3841. * This races with the possibility that some other task will be
  3842. * attached to this cgroup before it is removed, or that some other
  3843. * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
  3844. * The presumed 'rmdir' will fail quietly if this cgroup is no longer
  3845. * unused, and this cgroup will be reprieved from its death sentence,
  3846. * to continue to serve a useful existence. Next time it's released,
  3847. * we will get notified again, if it still has 'notify_on_release' set.
  3848. *
  3849. * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
  3850. * means only wait until the task is successfully execve()'d. The
  3851. * separate release agent task is forked by call_usermodehelper(),
  3852. * then control in this thread returns here, without waiting for the
  3853. * release agent task. We don't bother to wait because the caller of
  3854. * this routine has no use for the exit status of the release agent
  3855. * task, so no sense holding our caller up for that.
  3856. */
  3857. static void cgroup_release_agent(struct work_struct *work)
  3858. {
  3859. BUG_ON(work != &release_agent_work);
  3860. mutex_lock(&cgroup_mutex);
  3861. spin_lock(&release_list_lock);
  3862. while (!list_empty(&release_list)) {
  3863. char *argv[3], *envp[3];
  3864. int i;
  3865. char *pathbuf = NULL, *agentbuf = NULL;
  3866. struct cgroup *cgrp = list_entry(release_list.next,
  3867. struct cgroup,
  3868. release_list);
  3869. list_del_init(&cgrp->release_list);
  3870. spin_unlock(&release_list_lock);
  3871. pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3872. if (!pathbuf)
  3873. goto continue_free;
  3874. if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
  3875. goto continue_free;
  3876. agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
  3877. if (!agentbuf)
  3878. goto continue_free;
  3879. i = 0;
  3880. argv[i++] = agentbuf;
  3881. argv[i++] = pathbuf;
  3882. argv[i] = NULL;
  3883. i = 0;
  3884. /* minimal command environment */
  3885. envp[i++] = "HOME=/";
  3886. envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
  3887. envp[i] = NULL;
  3888. /* Drop the lock while we invoke the usermode helper,
  3889. * since the exec could involve hitting disk and hence
  3890. * be a slow process */
  3891. mutex_unlock(&cgroup_mutex);
  3892. call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
  3893. mutex_lock(&cgroup_mutex);
  3894. continue_free:
  3895. kfree(pathbuf);
  3896. kfree(agentbuf);
  3897. spin_lock(&release_list_lock);
  3898. }
  3899. spin_unlock(&release_list_lock);
  3900. mutex_unlock(&cgroup_mutex);
  3901. }
  3902. static int __init cgroup_disable(char *str)
  3903. {
  3904. int i;
  3905. char *token;
  3906. while ((token = strsep(&str, ",")) != NULL) {
  3907. if (!*token)
  3908. continue;
  3909. /*
  3910. * cgroup_disable, being at boot time, can't know about module
  3911. * subsystems, so we don't worry about them.
  3912. */
  3913. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3914. struct cgroup_subsys *ss = subsys[i];
  3915. if (!strcmp(token, ss->name)) {
  3916. ss->disabled = 1;
  3917. printk(KERN_INFO "Disabling %s control group"
  3918. " subsystem\n", ss->name);
  3919. break;
  3920. }
  3921. }
  3922. }
  3923. return 1;
  3924. }
  3925. __setup("cgroup_disable=", cgroup_disable);
  3926. /*
  3927. * Functons for CSS ID.
  3928. */
  3929. /*
  3930. *To get ID other than 0, this should be called when !cgroup_is_removed().
  3931. */
  3932. unsigned short css_id(struct cgroup_subsys_state *css)
  3933. {
  3934. struct css_id *cssid;
  3935. /*
  3936. * This css_id() can return correct value when somone has refcnt
  3937. * on this or this is under rcu_read_lock(). Once css->id is allocated,
  3938. * it's unchanged until freed.
  3939. */
  3940. cssid = rcu_dereference_check(css->id,
  3941. rcu_read_lock_held() || atomic_read(&css->refcnt));
  3942. if (cssid)
  3943. return cssid->id;
  3944. return 0;
  3945. }
  3946. EXPORT_SYMBOL_GPL(css_id);
  3947. unsigned short css_depth(struct cgroup_subsys_state *css)
  3948. {
  3949. struct css_id *cssid;
  3950. cssid = rcu_dereference_check(css->id,
  3951. rcu_read_lock_held() || atomic_read(&css->refcnt));
  3952. if (cssid)
  3953. return cssid->depth;
  3954. return 0;
  3955. }
  3956. EXPORT_SYMBOL_GPL(css_depth);
  3957. /**
  3958. * css_is_ancestor - test "root" css is an ancestor of "child"
  3959. * @child: the css to be tested.
  3960. * @root: the css supporsed to be an ancestor of the child.
  3961. *
  3962. * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
  3963. * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
  3964. * But, considering usual usage, the csses should be valid objects after test.
  3965. * Assuming that the caller will do some action to the child if this returns
  3966. * returns true, the caller must take "child";s reference count.
  3967. * If "child" is valid object and this returns true, "root" is valid, too.
  3968. */
  3969. bool css_is_ancestor(struct cgroup_subsys_state *child,
  3970. const struct cgroup_subsys_state *root)
  3971. {
  3972. struct css_id *child_id;
  3973. struct css_id *root_id;
  3974. bool ret = true;
  3975. rcu_read_lock();
  3976. child_id = rcu_dereference(child->id);
  3977. root_id = rcu_dereference(root->id);
  3978. if (!child_id
  3979. || !root_id
  3980. || (child_id->depth < root_id->depth)
  3981. || (child_id->stack[root_id->depth] != root_id->id))
  3982. ret = false;
  3983. rcu_read_unlock();
  3984. return ret;
  3985. }
  3986. static void __free_css_id_cb(struct rcu_head *head)
  3987. {
  3988. struct css_id *id;
  3989. id = container_of(head, struct css_id, rcu_head);
  3990. kfree(id);
  3991. }
  3992. void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
  3993. {
  3994. struct css_id *id = css->id;
  3995. /* When this is called before css_id initialization, id can be NULL */
  3996. if (!id)
  3997. return;
  3998. BUG_ON(!ss->use_id);
  3999. rcu_assign_pointer(id->css, NULL);
  4000. rcu_assign_pointer(css->id, NULL);
  4001. spin_lock(&ss->id_lock);
  4002. idr_remove(&ss->idr, id->id);
  4003. spin_unlock(&ss->id_lock);
  4004. call_rcu(&id->rcu_head, __free_css_id_cb);
  4005. }
  4006. EXPORT_SYMBOL_GPL(free_css_id);
  4007. /*
  4008. * This is called by init or create(). Then, calls to this function are
  4009. * always serialized (By cgroup_mutex() at create()).
  4010. */
  4011. static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
  4012. {
  4013. struct css_id *newid;
  4014. int myid, error, size;
  4015. BUG_ON(!ss->use_id);
  4016. size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
  4017. newid = kzalloc(size, GFP_KERNEL);
  4018. if (!newid)
  4019. return ERR_PTR(-ENOMEM);
  4020. /* get id */
  4021. if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
  4022. error = -ENOMEM;
  4023. goto err_out;
  4024. }
  4025. spin_lock(&ss->id_lock);
  4026. /* Don't use 0. allocates an ID of 1-65535 */
  4027. error = idr_get_new_above(&ss->idr, newid, 1, &myid);
  4028. spin_unlock(&ss->id_lock);
  4029. /* Returns error when there are no free spaces for new ID.*/
  4030. if (error) {
  4031. error = -ENOSPC;
  4032. goto err_out;
  4033. }
  4034. if (myid > CSS_ID_MAX)
  4035. goto remove_idr;
  4036. newid->id = myid;
  4037. newid->depth = depth;
  4038. return newid;
  4039. remove_idr:
  4040. error = -ENOSPC;
  4041. spin_lock(&ss->id_lock);
  4042. idr_remove(&ss->idr, myid);
  4043. spin_unlock(&ss->id_lock);
  4044. err_out:
  4045. kfree(newid);
  4046. return ERR_PTR(error);
  4047. }
  4048. static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
  4049. struct cgroup_subsys_state *rootcss)
  4050. {
  4051. struct css_id *newid;
  4052. spin_lock_init(&ss->id_lock);
  4053. idr_init(&ss->idr);
  4054. newid = get_new_cssid(ss, 0);
  4055. if (IS_ERR(newid))
  4056. return PTR_ERR(newid);
  4057. newid->stack[0] = newid->id;
  4058. newid->css = rootcss;
  4059. rootcss->id = newid;
  4060. return 0;
  4061. }
  4062. static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
  4063. struct cgroup *child)
  4064. {
  4065. int subsys_id, i, depth = 0;
  4066. struct cgroup_subsys_state *parent_css, *child_css;
  4067. struct css_id *child_id, *parent_id;
  4068. subsys_id = ss->subsys_id;
  4069. parent_css = parent->subsys[subsys_id];
  4070. child_css = child->subsys[subsys_id];
  4071. parent_id = parent_css->id;
  4072. depth = parent_id->depth;
  4073. child_id = get_new_cssid(ss, depth);
  4074. if (IS_ERR(child_id))
  4075. return PTR_ERR(child_id);
  4076. for (i = 0; i < depth; i++)
  4077. child_id->stack[i] = parent_id->stack[i];
  4078. child_id->stack[depth] = child_id->id;
  4079. /*
  4080. * child_id->css pointer will be set after this cgroup is available
  4081. * see cgroup_populate_dir()
  4082. */
  4083. rcu_assign_pointer(child_css->id, child_id);
  4084. return 0;
  4085. }
  4086. /**
  4087. * css_lookup - lookup css by id
  4088. * @ss: cgroup subsys to be looked into.
  4089. * @id: the id
  4090. *
  4091. * Returns pointer to cgroup_subsys_state if there is valid one with id.
  4092. * NULL if not. Should be called under rcu_read_lock()
  4093. */
  4094. struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
  4095. {
  4096. struct css_id *cssid = NULL;
  4097. BUG_ON(!ss->use_id);
  4098. cssid = idr_find(&ss->idr, id);
  4099. if (unlikely(!cssid))
  4100. return NULL;
  4101. return rcu_dereference(cssid->css);
  4102. }
  4103. EXPORT_SYMBOL_GPL(css_lookup);
  4104. /**
  4105. * css_get_next - lookup next cgroup under specified hierarchy.
  4106. * @ss: pointer to subsystem
  4107. * @id: current position of iteration.
  4108. * @root: pointer to css. search tree under this.
  4109. * @foundid: position of found object.
  4110. *
  4111. * Search next css under the specified hierarchy of rootid. Calling under
  4112. * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
  4113. */
  4114. struct cgroup_subsys_state *
  4115. css_get_next(struct cgroup_subsys *ss, int id,
  4116. struct cgroup_subsys_state *root, int *foundid)
  4117. {
  4118. struct cgroup_subsys_state *ret = NULL;
  4119. struct css_id *tmp;
  4120. int tmpid;
  4121. int rootid = css_id(root);
  4122. int depth = css_depth(root);
  4123. if (!rootid)
  4124. return NULL;
  4125. BUG_ON(!ss->use_id);
  4126. /* fill start point for scan */
  4127. tmpid = id;
  4128. while (1) {
  4129. /*
  4130. * scan next entry from bitmap(tree), tmpid is updated after
  4131. * idr_get_next().
  4132. */
  4133. spin_lock(&ss->id_lock);
  4134. tmp = idr_get_next(&ss->idr, &tmpid);
  4135. spin_unlock(&ss->id_lock);
  4136. if (!tmp)
  4137. break;
  4138. if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
  4139. ret = rcu_dereference(tmp->css);
  4140. if (ret) {
  4141. *foundid = tmpid;
  4142. break;
  4143. }
  4144. }
  4145. /* continue to scan from next id */
  4146. tmpid = tmpid + 1;
  4147. }
  4148. return ret;
  4149. }
  4150. #ifdef CONFIG_CGROUP_DEBUG
  4151. static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
  4152. struct cgroup *cont)
  4153. {
  4154. struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
  4155. if (!css)
  4156. return ERR_PTR(-ENOMEM);
  4157. return css;
  4158. }
  4159. static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  4160. {
  4161. kfree(cont->subsys[debug_subsys_id]);
  4162. }
  4163. static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
  4164. {
  4165. return atomic_read(&cont->count);
  4166. }
  4167. static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
  4168. {
  4169. return cgroup_task_count(cont);
  4170. }
  4171. static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
  4172. {
  4173. return (u64)(unsigned long)current->cgroups;
  4174. }
  4175. static u64 current_css_set_refcount_read(struct cgroup *cont,
  4176. struct cftype *cft)
  4177. {
  4178. u64 count;
  4179. rcu_read_lock();
  4180. count = atomic_read(&current->cgroups->refcount);
  4181. rcu_read_unlock();
  4182. return count;
  4183. }
  4184. static int current_css_set_cg_links_read(struct cgroup *cont,
  4185. struct cftype *cft,
  4186. struct seq_file *seq)
  4187. {
  4188. struct cg_cgroup_link *link;
  4189. struct css_set *cg;
  4190. read_lock(&css_set_lock);
  4191. rcu_read_lock();
  4192. cg = rcu_dereference(current->cgroups);
  4193. list_for_each_entry(link, &cg->cg_links, cg_link_list) {
  4194. struct cgroup *c = link->cgrp;
  4195. const char *name;
  4196. if (c->dentry)
  4197. name = c->dentry->d_name.name;
  4198. else
  4199. name = "?";
  4200. seq_printf(seq, "Root %d group %s\n",
  4201. c->root->hierarchy_id, name);
  4202. }
  4203. rcu_read_unlock();
  4204. read_unlock(&css_set_lock);
  4205. return 0;
  4206. }
  4207. #define MAX_TASKS_SHOWN_PER_CSS 25
  4208. static int cgroup_css_links_read(struct cgroup *cont,
  4209. struct cftype *cft,
  4210. struct seq_file *seq)
  4211. {
  4212. struct cg_cgroup_link *link;
  4213. read_lock(&css_set_lock);
  4214. list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
  4215. struct css_set *cg = link->cg;
  4216. struct task_struct *task;
  4217. int count = 0;
  4218. seq_printf(seq, "css_set %p\n", cg);
  4219. list_for_each_entry(task, &cg->tasks, cg_list) {
  4220. if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
  4221. seq_puts(seq, " ...\n");
  4222. break;
  4223. } else {
  4224. seq_printf(seq, " task %d\n",
  4225. task_pid_vnr(task));
  4226. }
  4227. }
  4228. }
  4229. read_unlock(&css_set_lock);
  4230. return 0;
  4231. }
  4232. static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
  4233. {
  4234. return test_bit(CGRP_RELEASABLE, &cgrp->flags);
  4235. }
  4236. static struct cftype debug_files[] = {
  4237. {
  4238. .name = "cgroup_refcount",
  4239. .read_u64 = cgroup_refcount_read,
  4240. },
  4241. {
  4242. .name = "taskcount",
  4243. .read_u64 = debug_taskcount_read,
  4244. },
  4245. {
  4246. .name = "current_css_set",
  4247. .read_u64 = current_css_set_read,
  4248. },
  4249. {
  4250. .name = "current_css_set_refcount",
  4251. .read_u64 = current_css_set_refcount_read,
  4252. },
  4253. {
  4254. .name = "current_css_set_cg_links",
  4255. .read_seq_string = current_css_set_cg_links_read,
  4256. },
  4257. {
  4258. .name = "cgroup_css_links",
  4259. .read_seq_string = cgroup_css_links_read,
  4260. },
  4261. {
  4262. .name = "releasable",
  4263. .read_u64 = releasable_read,
  4264. },
  4265. };
  4266. static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  4267. {
  4268. return cgroup_add_files(cont, ss, debug_files,
  4269. ARRAY_SIZE(debug_files));
  4270. }
  4271. struct cgroup_subsys debug_subsys = {
  4272. .name = "debug",
  4273. .create = debug_create,
  4274. .destroy = debug_destroy,
  4275. .populate = debug_populate,
  4276. .subsys_id = debug_subsys_id,
  4277. };
  4278. #endif /* CONFIG_CGROUP_DEBUG */