tehuti.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519
  1. /*
  2. * Tehuti Networks(R) Network Driver
  3. * ethtool interface implementation
  4. * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. /*
  12. * RX HW/SW interaction overview
  13. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  14. * There are 2 types of RX communication channels betwean driver and NIC.
  15. * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  16. * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  17. * info about buffer's location, size and ID. An ID field is used to identify a
  18. * buffer when it's returned with data via RXD Fifo (see below)
  19. * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  20. * filled by HW and is readen by SW. Each descriptor holds status and ID.
  21. * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  22. * via dma moves it into host memory, builds new RXD descriptor with same ID,
  23. * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  24. *
  25. * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  26. * One holds 1.5K packets and another - 26K packets. Depending on incoming
  27. * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  28. * filled with data, HW builds new RXD descriptor for it and push it into single
  29. * RXD Fifo.
  30. *
  31. * RX SW Data Structures
  32. * ~~~~~~~~~~~~~~~~~~~~~
  33. * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  34. * For RX case, ownership lasts from allocating new empty skb for RXF until
  35. * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  36. * skb db. Implemented as array with bitmask.
  37. * fifo - keeps info about fifo's size and location, relevant HW registers,
  38. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  39. * Implemented as simple struct.
  40. *
  41. * RX SW Execution Flow
  42. * ~~~~~~~~~~~~~~~~~~~~
  43. * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  44. * relevant registers. At the end of init phase, driver enables interrupts.
  45. * NIC sees that there is no RXF buffers and raises
  46. * RD_INTR interrupt, isr fills skbs and Rx begins.
  47. * Driver has two receive operation modes:
  48. * NAPI - interrupt-driven mixed with polling
  49. * interrupt-driven only
  50. *
  51. * Interrupt-driven only flow is following. When buffer is ready, HW raises
  52. * interrupt and isr is called. isr collects all available packets
  53. * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  54. * Rx buffer allocation note
  55. * ~~~~~~~~~~~~~~~~~~~~~~~~~
  56. * Driver cares to feed such amount of RxF descriptors that respective amount of
  57. * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  58. * overflow check in Bordeaux for RxD fifo free/used size.
  59. * FIXME: this is NOT fully implemented, more work should be done
  60. *
  61. */
  62. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  63. #include "tehuti.h"
  64. static DEFINE_PCI_DEVICE_TABLE(bdx_pci_tbl) = {
  65. {0x1FC9, 0x3009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  66. {0x1FC9, 0x3010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  67. {0x1FC9, 0x3014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  68. {0}
  69. };
  70. MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  71. /* Definitions needed by ISR or NAPI functions */
  72. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  73. static void bdx_tx_cleanup(struct bdx_priv *priv);
  74. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  75. /* Definitions needed by FW loading */
  76. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  77. /* Definitions needed by hw_start */
  78. static int bdx_tx_init(struct bdx_priv *priv);
  79. static int bdx_rx_init(struct bdx_priv *priv);
  80. /* Definitions needed by bdx_close */
  81. static void bdx_rx_free(struct bdx_priv *priv);
  82. static void bdx_tx_free(struct bdx_priv *priv);
  83. /* Definitions needed by bdx_probe */
  84. static void bdx_ethtool_ops(struct net_device *netdev);
  85. /*************************************************************************
  86. * Print Info *
  87. *************************************************************************/
  88. static void print_hw_id(struct pci_dev *pdev)
  89. {
  90. struct pci_nic *nic = pci_get_drvdata(pdev);
  91. u16 pci_link_status = 0;
  92. u16 pci_ctrl = 0;
  93. pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
  94. pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
  95. pr_info("%s%s\n", BDX_NIC_NAME,
  96. nic->port_num == 1 ? "" : ", 2-Port");
  97. pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
  98. readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
  99. readl(nic->regs + FPGA_SEED),
  100. GET_LINK_STATUS_LANES(pci_link_status),
  101. GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
  102. }
  103. static void print_fw_id(struct pci_nic *nic)
  104. {
  105. pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
  106. }
  107. static void print_eth_id(struct net_device *ndev)
  108. {
  109. netdev_info(ndev, "%s, Port %c\n",
  110. BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
  111. }
  112. /*************************************************************************
  113. * Code *
  114. *************************************************************************/
  115. #define bdx_enable_interrupts(priv) \
  116. do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
  117. #define bdx_disable_interrupts(priv) \
  118. do { WRITE_REG(priv, regIMR, 0); } while (0)
  119. /* bdx_fifo_init
  120. * create TX/RX descriptor fifo for host-NIC communication.
  121. * 1K extra space is allocated at the end of the fifo to simplify
  122. * processing of descriptors that wraps around fifo's end
  123. * @priv - NIC private structure
  124. * @f - fifo to initialize
  125. * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
  126. * @reg_XXX - offsets of registers relative to base address
  127. *
  128. * Returns 0 on success, negative value on failure
  129. *
  130. */
  131. static int
  132. bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
  133. u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
  134. {
  135. u16 memsz = FIFO_SIZE * (1 << fsz_type);
  136. memset(f, 0, sizeof(struct fifo));
  137. /* pci_alloc_consistent gives us 4k-aligned memory */
  138. f->va = pci_alloc_consistent(priv->pdev,
  139. memsz + FIFO_EXTRA_SPACE, &f->da);
  140. if (!f->va) {
  141. pr_err("pci_alloc_consistent failed\n");
  142. RET(-ENOMEM);
  143. }
  144. f->reg_CFG0 = reg_CFG0;
  145. f->reg_CFG1 = reg_CFG1;
  146. f->reg_RPTR = reg_RPTR;
  147. f->reg_WPTR = reg_WPTR;
  148. f->rptr = 0;
  149. f->wptr = 0;
  150. f->memsz = memsz;
  151. f->size_mask = memsz - 1;
  152. WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
  153. WRITE_REG(priv, reg_CFG1, H32_64(f->da));
  154. RET(0);
  155. }
  156. /* bdx_fifo_free - free all resources used by fifo
  157. * @priv - NIC private structure
  158. * @f - fifo to release
  159. */
  160. static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
  161. {
  162. ENTER;
  163. if (f->va) {
  164. pci_free_consistent(priv->pdev,
  165. f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
  166. f->va = NULL;
  167. }
  168. RET();
  169. }
  170. /*
  171. * bdx_link_changed - notifies OS about hw link state.
  172. * @bdx_priv - hw adapter structure
  173. */
  174. static void bdx_link_changed(struct bdx_priv *priv)
  175. {
  176. u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
  177. if (!link) {
  178. if (netif_carrier_ok(priv->ndev)) {
  179. netif_stop_queue(priv->ndev);
  180. netif_carrier_off(priv->ndev);
  181. netdev_err(priv->ndev, "Link Down\n");
  182. }
  183. } else {
  184. if (!netif_carrier_ok(priv->ndev)) {
  185. netif_wake_queue(priv->ndev);
  186. netif_carrier_on(priv->ndev);
  187. netdev_err(priv->ndev, "Link Up\n");
  188. }
  189. }
  190. }
  191. static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
  192. {
  193. if (isr & IR_RX_FREE_0) {
  194. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  195. DBG("RX_FREE_0\n");
  196. }
  197. if (isr & IR_LNKCHG0)
  198. bdx_link_changed(priv);
  199. if (isr & IR_PCIE_LINK)
  200. netdev_err(priv->ndev, "PCI-E Link Fault\n");
  201. if (isr & IR_PCIE_TOUT)
  202. netdev_err(priv->ndev, "PCI-E Time Out\n");
  203. }
  204. /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
  205. * @irq - interrupt number
  206. * @ndev - network device
  207. * @regs - CPU registers
  208. *
  209. * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
  210. *
  211. * It reads ISR register to know interrupt reasons, and proceed them one by one.
  212. * Reasons of interest are:
  213. * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
  214. * RX_FREE - number of free Rx buffers in RXF fifo gets low
  215. * TX_FREE - packet was transmited and RXF fifo holds its descriptor
  216. */
  217. static irqreturn_t bdx_isr_napi(int irq, void *dev)
  218. {
  219. struct net_device *ndev = dev;
  220. struct bdx_priv *priv = netdev_priv(ndev);
  221. u32 isr;
  222. ENTER;
  223. isr = (READ_REG(priv, regISR) & IR_RUN);
  224. if (unlikely(!isr)) {
  225. bdx_enable_interrupts(priv);
  226. return IRQ_NONE; /* Not our interrupt */
  227. }
  228. if (isr & IR_EXTRA)
  229. bdx_isr_extra(priv, isr);
  230. if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
  231. if (likely(napi_schedule_prep(&priv->napi))) {
  232. __napi_schedule(&priv->napi);
  233. RET(IRQ_HANDLED);
  234. } else {
  235. /* NOTE: we get here if intr has slipped into window
  236. * between these lines in bdx_poll:
  237. * bdx_enable_interrupts(priv);
  238. * return 0;
  239. * currently intrs are disabled (since we read ISR),
  240. * and we have failed to register next poll.
  241. * so we read the regs to trigger chip
  242. * and allow further interupts. */
  243. READ_REG(priv, regTXF_WPTR_0);
  244. READ_REG(priv, regRXD_WPTR_0);
  245. }
  246. }
  247. bdx_enable_interrupts(priv);
  248. RET(IRQ_HANDLED);
  249. }
  250. static int bdx_poll(struct napi_struct *napi, int budget)
  251. {
  252. struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
  253. int work_done;
  254. ENTER;
  255. bdx_tx_cleanup(priv);
  256. work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
  257. if ((work_done < budget) ||
  258. (priv->napi_stop++ >= 30)) {
  259. DBG("rx poll is done. backing to isr-driven\n");
  260. /* from time to time we exit to let NAPI layer release
  261. * device lock and allow waiting tasks (eg rmmod) to advance) */
  262. priv->napi_stop = 0;
  263. napi_complete(napi);
  264. bdx_enable_interrupts(priv);
  265. }
  266. return work_done;
  267. }
  268. /* bdx_fw_load - loads firmware to NIC
  269. * @priv - NIC private structure
  270. * Firmware is loaded via TXD fifo, so it must be initialized first.
  271. * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
  272. * can have few of them). So all drivers use semaphore register to choose one
  273. * that will actually load FW to NIC.
  274. */
  275. static int bdx_fw_load(struct bdx_priv *priv)
  276. {
  277. const struct firmware *fw = NULL;
  278. int master, i;
  279. int rc;
  280. ENTER;
  281. master = READ_REG(priv, regINIT_SEMAPHORE);
  282. if (!READ_REG(priv, regINIT_STATUS) && master) {
  283. rc = request_firmware(&fw, "tehuti/firmware.bin", &priv->pdev->dev);
  284. if (rc)
  285. goto out;
  286. bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
  287. mdelay(100);
  288. }
  289. for (i = 0; i < 200; i++) {
  290. if (READ_REG(priv, regINIT_STATUS)) {
  291. rc = 0;
  292. goto out;
  293. }
  294. mdelay(2);
  295. }
  296. rc = -EIO;
  297. out:
  298. if (master)
  299. WRITE_REG(priv, regINIT_SEMAPHORE, 1);
  300. if (fw)
  301. release_firmware(fw);
  302. if (rc) {
  303. netdev_err(priv->ndev, "firmware loading failed\n");
  304. if (rc == -EIO)
  305. DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
  306. READ_REG(priv, regVPC),
  307. READ_REG(priv, regVIC),
  308. READ_REG(priv, regINIT_STATUS), i);
  309. RET(rc);
  310. } else {
  311. DBG("%s: firmware loading success\n", priv->ndev->name);
  312. RET(0);
  313. }
  314. }
  315. static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
  316. {
  317. u32 val;
  318. ENTER;
  319. DBG("mac0=%x mac1=%x mac2=%x\n",
  320. READ_REG(priv, regUNC_MAC0_A),
  321. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  322. val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
  323. WRITE_REG(priv, regUNC_MAC2_A, val);
  324. val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
  325. WRITE_REG(priv, regUNC_MAC1_A, val);
  326. val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
  327. WRITE_REG(priv, regUNC_MAC0_A, val);
  328. DBG("mac0=%x mac1=%x mac2=%x\n",
  329. READ_REG(priv, regUNC_MAC0_A),
  330. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  331. RET();
  332. }
  333. /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
  334. * @priv - NIC private structure
  335. */
  336. static int bdx_hw_start(struct bdx_priv *priv)
  337. {
  338. int rc = -EIO;
  339. struct net_device *ndev = priv->ndev;
  340. ENTER;
  341. bdx_link_changed(priv);
  342. /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
  343. WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
  344. WRITE_REG(priv, regPAUSE_QUANT, 0x96);
  345. WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
  346. WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
  347. WRITE_REG(priv, regRX_FULLNESS, 0);
  348. WRITE_REG(priv, regTX_FULLNESS, 0);
  349. WRITE_REG(priv, regCTRLST,
  350. regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
  351. WRITE_REG(priv, regVGLB, 0);
  352. WRITE_REG(priv, regMAX_FRAME_A,
  353. priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
  354. DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
  355. WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
  356. WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
  357. DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
  358. WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
  359. /* Enable timer interrupt once in 2 secs. */
  360. /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
  361. bdx_restore_mac(priv->ndev, priv);
  362. WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
  363. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
  364. #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
  365. rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
  366. ndev->name, ndev);
  367. if (rc)
  368. goto err_irq;
  369. bdx_enable_interrupts(priv);
  370. RET(0);
  371. err_irq:
  372. RET(rc);
  373. }
  374. static void bdx_hw_stop(struct bdx_priv *priv)
  375. {
  376. ENTER;
  377. bdx_disable_interrupts(priv);
  378. free_irq(priv->pdev->irq, priv->ndev);
  379. netif_carrier_off(priv->ndev);
  380. netif_stop_queue(priv->ndev);
  381. RET();
  382. }
  383. static int bdx_hw_reset_direct(void __iomem *regs)
  384. {
  385. u32 val, i;
  386. ENTER;
  387. /* reset sequences: read, write 1, read, write 0 */
  388. val = readl(regs + regCLKPLL);
  389. writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
  390. udelay(50);
  391. val = readl(regs + regCLKPLL);
  392. writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
  393. /* check that the PLLs are locked and reset ended */
  394. for (i = 0; i < 70; i++, mdelay(10))
  395. if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  396. /* do any PCI-E read transaction */
  397. readl(regs + regRXD_CFG0_0);
  398. return 0;
  399. }
  400. pr_err("HW reset failed\n");
  401. return 1; /* failure */
  402. }
  403. static int bdx_hw_reset(struct bdx_priv *priv)
  404. {
  405. u32 val, i;
  406. ENTER;
  407. if (priv->port == 0) {
  408. /* reset sequences: read, write 1, read, write 0 */
  409. val = READ_REG(priv, regCLKPLL);
  410. WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
  411. udelay(50);
  412. val = READ_REG(priv, regCLKPLL);
  413. WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
  414. }
  415. /* check that the PLLs are locked and reset ended */
  416. for (i = 0; i < 70; i++, mdelay(10))
  417. if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  418. /* do any PCI-E read transaction */
  419. READ_REG(priv, regRXD_CFG0_0);
  420. return 0;
  421. }
  422. pr_err("HW reset failed\n");
  423. return 1; /* failure */
  424. }
  425. static int bdx_sw_reset(struct bdx_priv *priv)
  426. {
  427. int i;
  428. ENTER;
  429. /* 1. load MAC (obsolete) */
  430. /* 2. disable Rx (and Tx) */
  431. WRITE_REG(priv, regGMAC_RXF_A, 0);
  432. mdelay(100);
  433. /* 3. disable port */
  434. WRITE_REG(priv, regDIS_PORT, 1);
  435. /* 4. disable queue */
  436. WRITE_REG(priv, regDIS_QU, 1);
  437. /* 5. wait until hw is disabled */
  438. for (i = 0; i < 50; i++) {
  439. if (READ_REG(priv, regRST_PORT) & 1)
  440. break;
  441. mdelay(10);
  442. }
  443. if (i == 50)
  444. netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
  445. /* 6. disable intrs */
  446. WRITE_REG(priv, regRDINTCM0, 0);
  447. WRITE_REG(priv, regTDINTCM0, 0);
  448. WRITE_REG(priv, regIMR, 0);
  449. READ_REG(priv, regISR);
  450. /* 7. reset queue */
  451. WRITE_REG(priv, regRST_QU, 1);
  452. /* 8. reset port */
  453. WRITE_REG(priv, regRST_PORT, 1);
  454. /* 9. zero all read and write pointers */
  455. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  456. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  457. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  458. WRITE_REG(priv, i, 0);
  459. /* 10. unseet port disable */
  460. WRITE_REG(priv, regDIS_PORT, 0);
  461. /* 11. unset queue disable */
  462. WRITE_REG(priv, regDIS_QU, 0);
  463. /* 12. unset queue reset */
  464. WRITE_REG(priv, regRST_QU, 0);
  465. /* 13. unset port reset */
  466. WRITE_REG(priv, regRST_PORT, 0);
  467. /* 14. enable Rx */
  468. /* skiped. will be done later */
  469. /* 15. save MAC (obsolete) */
  470. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  471. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  472. RET(0);
  473. }
  474. /* bdx_reset - performs right type of reset depending on hw type */
  475. static int bdx_reset(struct bdx_priv *priv)
  476. {
  477. ENTER;
  478. RET((priv->pdev->device == 0x3009)
  479. ? bdx_hw_reset(priv)
  480. : bdx_sw_reset(priv));
  481. }
  482. /**
  483. * bdx_close - Disables a network interface
  484. * @netdev: network interface device structure
  485. *
  486. * Returns 0, this is not allowed to fail
  487. *
  488. * The close entry point is called when an interface is de-activated
  489. * by the OS. The hardware is still under the drivers control, but
  490. * needs to be disabled. A global MAC reset is issued to stop the
  491. * hardware, and all transmit and receive resources are freed.
  492. **/
  493. static int bdx_close(struct net_device *ndev)
  494. {
  495. struct bdx_priv *priv = NULL;
  496. ENTER;
  497. priv = netdev_priv(ndev);
  498. napi_disable(&priv->napi);
  499. bdx_reset(priv);
  500. bdx_hw_stop(priv);
  501. bdx_rx_free(priv);
  502. bdx_tx_free(priv);
  503. RET(0);
  504. }
  505. /**
  506. * bdx_open - Called when a network interface is made active
  507. * @netdev: network interface device structure
  508. *
  509. * Returns 0 on success, negative value on failure
  510. *
  511. * The open entry point is called when a network interface is made
  512. * active by the system (IFF_UP). At this point all resources needed
  513. * for transmit and receive operations are allocated, the interrupt
  514. * handler is registered with the OS, the watchdog timer is started,
  515. * and the stack is notified that the interface is ready.
  516. **/
  517. static int bdx_open(struct net_device *ndev)
  518. {
  519. struct bdx_priv *priv;
  520. int rc;
  521. ENTER;
  522. priv = netdev_priv(ndev);
  523. bdx_reset(priv);
  524. if (netif_running(ndev))
  525. netif_stop_queue(priv->ndev);
  526. if ((rc = bdx_tx_init(priv)) ||
  527. (rc = bdx_rx_init(priv)) ||
  528. (rc = bdx_fw_load(priv)))
  529. goto err;
  530. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  531. rc = bdx_hw_start(priv);
  532. if (rc)
  533. goto err;
  534. napi_enable(&priv->napi);
  535. print_fw_id(priv->nic);
  536. RET(0);
  537. err:
  538. bdx_close(ndev);
  539. RET(rc);
  540. }
  541. static int bdx_range_check(struct bdx_priv *priv, u32 offset)
  542. {
  543. return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
  544. -EINVAL : 0;
  545. }
  546. static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
  547. {
  548. struct bdx_priv *priv = netdev_priv(ndev);
  549. u32 data[3];
  550. int error;
  551. ENTER;
  552. DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
  553. if (cmd != SIOCDEVPRIVATE) {
  554. error = copy_from_user(data, ifr->ifr_data, sizeof(data));
  555. if (error) {
  556. pr_err("cant copy from user\n");
  557. RET(-EFAULT);
  558. }
  559. DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
  560. }
  561. if (!capable(CAP_SYS_RAWIO))
  562. return -EPERM;
  563. switch (data[0]) {
  564. case BDX_OP_READ:
  565. error = bdx_range_check(priv, data[1]);
  566. if (error < 0)
  567. return error;
  568. data[2] = READ_REG(priv, data[1]);
  569. DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
  570. data[2]);
  571. error = copy_to_user(ifr->ifr_data, data, sizeof(data));
  572. if (error)
  573. RET(-EFAULT);
  574. break;
  575. case BDX_OP_WRITE:
  576. error = bdx_range_check(priv, data[1]);
  577. if (error < 0)
  578. return error;
  579. WRITE_REG(priv, data[1], data[2]);
  580. DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
  581. break;
  582. default:
  583. RET(-EOPNOTSUPP);
  584. }
  585. return 0;
  586. }
  587. static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
  588. {
  589. ENTER;
  590. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
  591. RET(bdx_ioctl_priv(ndev, ifr, cmd));
  592. else
  593. RET(-EOPNOTSUPP);
  594. }
  595. /*
  596. * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
  597. * by passing VLAN filter table to hardware
  598. * @ndev network device
  599. * @vid VLAN vid
  600. * @op add or kill operation
  601. */
  602. static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
  603. {
  604. struct bdx_priv *priv = netdev_priv(ndev);
  605. u32 reg, bit, val;
  606. ENTER;
  607. DBG2("vid=%d value=%d\n", (int)vid, enable);
  608. if (unlikely(vid >= 4096)) {
  609. pr_err("invalid VID: %u (> 4096)\n", vid);
  610. RET();
  611. }
  612. reg = regVLAN_0 + (vid / 32) * 4;
  613. bit = 1 << vid % 32;
  614. val = READ_REG(priv, reg);
  615. DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
  616. if (enable)
  617. val |= bit;
  618. else
  619. val &= ~bit;
  620. DBG2("new val %x\n", val);
  621. WRITE_REG(priv, reg, val);
  622. RET();
  623. }
  624. /*
  625. * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
  626. * @ndev network device
  627. * @vid VLAN vid to add
  628. */
  629. static void bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
  630. {
  631. __bdx_vlan_rx_vid(ndev, vid, 1);
  632. }
  633. /*
  634. * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
  635. * @ndev network device
  636. * @vid VLAN vid to kill
  637. */
  638. static void bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
  639. {
  640. __bdx_vlan_rx_vid(ndev, vid, 0);
  641. }
  642. /*
  643. * bdx_vlan_rx_register - kernel hook for adding VLAN group
  644. * @ndev network device
  645. * @grp VLAN group
  646. */
  647. static void
  648. bdx_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  649. {
  650. struct bdx_priv *priv = netdev_priv(ndev);
  651. ENTER;
  652. DBG("device='%s', group='%p'\n", ndev->name, grp);
  653. priv->vlgrp = grp;
  654. RET();
  655. }
  656. /**
  657. * bdx_change_mtu - Change the Maximum Transfer Unit
  658. * @netdev: network interface device structure
  659. * @new_mtu: new value for maximum frame size
  660. *
  661. * Returns 0 on success, negative on failure
  662. */
  663. static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
  664. {
  665. ENTER;
  666. if (new_mtu == ndev->mtu)
  667. RET(0);
  668. /* enforce minimum frame size */
  669. if (new_mtu < ETH_ZLEN) {
  670. netdev_err(ndev, "mtu %d is less then minimal %d\n",
  671. new_mtu, ETH_ZLEN);
  672. RET(-EINVAL);
  673. }
  674. ndev->mtu = new_mtu;
  675. if (netif_running(ndev)) {
  676. bdx_close(ndev);
  677. bdx_open(ndev);
  678. }
  679. RET(0);
  680. }
  681. static void bdx_setmulti(struct net_device *ndev)
  682. {
  683. struct bdx_priv *priv = netdev_priv(ndev);
  684. u32 rxf_val =
  685. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
  686. int i;
  687. ENTER;
  688. /* IMF - imperfect (hash) rx multicat filter */
  689. /* PMF - perfect rx multicat filter */
  690. /* FIXME: RXE(OFF) */
  691. if (ndev->flags & IFF_PROMISC) {
  692. rxf_val |= GMAC_RX_FILTER_PRM;
  693. } else if (ndev->flags & IFF_ALLMULTI) {
  694. /* set IMF to accept all multicast frmaes */
  695. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  696. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
  697. } else if (!netdev_mc_empty(ndev)) {
  698. u8 hash;
  699. struct netdev_hw_addr *ha;
  700. u32 reg, val;
  701. /* set IMF to deny all multicast frames */
  702. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  703. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
  704. /* set PMF to deny all multicast frames */
  705. for (i = 0; i < MAC_MCST_NUM; i++) {
  706. WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
  707. WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
  708. }
  709. /* use PMF to accept first MAC_MCST_NUM (15) addresses */
  710. /* TBD: sort addreses and write them in ascending order
  711. * into RX_MAC_MCST regs. we skip this phase now and accept ALL
  712. * multicast frames throu IMF */
  713. /* accept the rest of addresses throu IMF */
  714. netdev_for_each_mc_addr(ha, ndev) {
  715. hash = 0;
  716. for (i = 0; i < ETH_ALEN; i++)
  717. hash ^= ha->addr[i];
  718. reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
  719. val = READ_REG(priv, reg);
  720. val |= (1 << (hash % 32));
  721. WRITE_REG(priv, reg, val);
  722. }
  723. } else {
  724. DBG("only own mac %d\n", netdev_mc_count(ndev));
  725. rxf_val |= GMAC_RX_FILTER_AB;
  726. }
  727. WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
  728. /* enable RX */
  729. /* FIXME: RXE(ON) */
  730. RET();
  731. }
  732. static int bdx_set_mac(struct net_device *ndev, void *p)
  733. {
  734. struct bdx_priv *priv = netdev_priv(ndev);
  735. struct sockaddr *addr = p;
  736. ENTER;
  737. /*
  738. if (netif_running(dev))
  739. return -EBUSY
  740. */
  741. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  742. bdx_restore_mac(ndev, priv);
  743. RET(0);
  744. }
  745. static int bdx_read_mac(struct bdx_priv *priv)
  746. {
  747. u16 macAddress[3], i;
  748. ENTER;
  749. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  750. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  751. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  752. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  753. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  754. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  755. for (i = 0; i < 3; i++) {
  756. priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
  757. priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
  758. }
  759. RET(0);
  760. }
  761. static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
  762. {
  763. u64 val;
  764. val = READ_REG(priv, reg);
  765. val |= ((u64) READ_REG(priv, reg + 8)) << 32;
  766. return val;
  767. }
  768. /*Do the statistics-update work*/
  769. static void bdx_update_stats(struct bdx_priv *priv)
  770. {
  771. struct bdx_stats *stats = &priv->hw_stats;
  772. u64 *stats_vector = (u64 *) stats;
  773. int i;
  774. int addr;
  775. /*Fill HW structure */
  776. addr = 0x7200;
  777. /*First 12 statistics - 0x7200 - 0x72B0 */
  778. for (i = 0; i < 12; i++) {
  779. stats_vector[i] = bdx_read_l2stat(priv, addr);
  780. addr += 0x10;
  781. }
  782. BDX_ASSERT(addr != 0x72C0);
  783. /* 0x72C0-0x72E0 RSRV */
  784. addr = 0x72F0;
  785. for (; i < 16; i++) {
  786. stats_vector[i] = bdx_read_l2stat(priv, addr);
  787. addr += 0x10;
  788. }
  789. BDX_ASSERT(addr != 0x7330);
  790. /* 0x7330-0x7360 RSRV */
  791. addr = 0x7370;
  792. for (; i < 19; i++) {
  793. stats_vector[i] = bdx_read_l2stat(priv, addr);
  794. addr += 0x10;
  795. }
  796. BDX_ASSERT(addr != 0x73A0);
  797. /* 0x73A0-0x73B0 RSRV */
  798. addr = 0x73C0;
  799. for (; i < 23; i++) {
  800. stats_vector[i] = bdx_read_l2stat(priv, addr);
  801. addr += 0x10;
  802. }
  803. BDX_ASSERT(addr != 0x7400);
  804. BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
  805. }
  806. static struct net_device_stats *bdx_get_stats(struct net_device *ndev)
  807. {
  808. struct bdx_priv *priv = netdev_priv(ndev);
  809. struct net_device_stats *net_stat = &priv->net_stats;
  810. return net_stat;
  811. }
  812. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  813. u16 rxd_vlan);
  814. static void print_rxfd(struct rxf_desc *rxfd);
  815. /*************************************************************************
  816. * Rx DB *
  817. *************************************************************************/
  818. static void bdx_rxdb_destroy(struct rxdb *db)
  819. {
  820. vfree(db);
  821. }
  822. static struct rxdb *bdx_rxdb_create(int nelem)
  823. {
  824. struct rxdb *db;
  825. int i;
  826. db = vmalloc(sizeof(struct rxdb)
  827. + (nelem * sizeof(int))
  828. + (nelem * sizeof(struct rx_map)));
  829. if (likely(db != NULL)) {
  830. db->stack = (int *)(db + 1);
  831. db->elems = (void *)(db->stack + nelem);
  832. db->nelem = nelem;
  833. db->top = nelem;
  834. for (i = 0; i < nelem; i++)
  835. db->stack[i] = nelem - i - 1; /* to make first allocs
  836. close to db struct*/
  837. }
  838. return db;
  839. }
  840. static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
  841. {
  842. BDX_ASSERT(db->top <= 0);
  843. return db->stack[--(db->top)];
  844. }
  845. static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
  846. {
  847. BDX_ASSERT((n < 0) || (n >= db->nelem));
  848. return db->elems + n;
  849. }
  850. static inline int bdx_rxdb_available(struct rxdb *db)
  851. {
  852. return db->top;
  853. }
  854. static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
  855. {
  856. BDX_ASSERT((n >= db->nelem) || (n < 0));
  857. db->stack[(db->top)++] = n;
  858. }
  859. /*************************************************************************
  860. * Rx Init *
  861. *************************************************************************/
  862. /* bdx_rx_init - initialize RX all related HW and SW resources
  863. * @priv - NIC private structure
  864. *
  865. * Returns 0 on success, negative value on failure
  866. *
  867. * It creates rxf and rxd fifos, update relevant HW registers, preallocate
  868. * skb for rx. It assumes that Rx is desabled in HW
  869. * funcs are grouped for better cache usage
  870. *
  871. * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
  872. * filled and packets will be dropped by nic without getting into host or
  873. * cousing interrupt. Anyway, in that condition, host has no chance to proccess
  874. * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
  875. */
  876. /* TBD: ensure proper packet size */
  877. static int bdx_rx_init(struct bdx_priv *priv)
  878. {
  879. ENTER;
  880. if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
  881. regRXD_CFG0_0, regRXD_CFG1_0,
  882. regRXD_RPTR_0, regRXD_WPTR_0))
  883. goto err_mem;
  884. if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
  885. regRXF_CFG0_0, regRXF_CFG1_0,
  886. regRXF_RPTR_0, regRXF_WPTR_0))
  887. goto err_mem;
  888. priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
  889. sizeof(struct rxf_desc));
  890. if (!priv->rxdb)
  891. goto err_mem;
  892. priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
  893. return 0;
  894. err_mem:
  895. netdev_err(priv->ndev, "Rx init failed\n");
  896. return -ENOMEM;
  897. }
  898. /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
  899. * @priv - NIC private structure
  900. * @f - RXF fifo
  901. */
  902. static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  903. {
  904. struct rx_map *dm;
  905. struct rxdb *db = priv->rxdb;
  906. u16 i;
  907. ENTER;
  908. DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
  909. db->nelem - bdx_rxdb_available(db));
  910. while (bdx_rxdb_available(db) > 0) {
  911. i = bdx_rxdb_alloc_elem(db);
  912. dm = bdx_rxdb_addr_elem(db, i);
  913. dm->dma = 0;
  914. }
  915. for (i = 0; i < db->nelem; i++) {
  916. dm = bdx_rxdb_addr_elem(db, i);
  917. if (dm->dma) {
  918. pci_unmap_single(priv->pdev,
  919. dm->dma, f->m.pktsz,
  920. PCI_DMA_FROMDEVICE);
  921. dev_kfree_skb(dm->skb);
  922. }
  923. }
  924. }
  925. /* bdx_rx_free - release all Rx resources
  926. * @priv - NIC private structure
  927. * It assumes that Rx is desabled in HW
  928. */
  929. static void bdx_rx_free(struct bdx_priv *priv)
  930. {
  931. ENTER;
  932. if (priv->rxdb) {
  933. bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
  934. bdx_rxdb_destroy(priv->rxdb);
  935. priv->rxdb = NULL;
  936. }
  937. bdx_fifo_free(priv, &priv->rxf_fifo0.m);
  938. bdx_fifo_free(priv, &priv->rxd_fifo0.m);
  939. RET();
  940. }
  941. /*************************************************************************
  942. * Rx Engine *
  943. *************************************************************************/
  944. /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
  945. * @priv - nic's private structure
  946. * @f - RXF fifo that needs skbs
  947. * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
  948. * skb's virtual and physical addresses are stored in skb db.
  949. * To calculate free space, func uses cached values of RPTR and WPTR
  950. * When needed, it also updates RPTR and WPTR.
  951. */
  952. /* TBD: do not update WPTR if no desc were written */
  953. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  954. {
  955. struct sk_buff *skb;
  956. struct rxf_desc *rxfd;
  957. struct rx_map *dm;
  958. int dno, delta, idx;
  959. struct rxdb *db = priv->rxdb;
  960. ENTER;
  961. dno = bdx_rxdb_available(db) - 1;
  962. while (dno > 0) {
  963. skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN);
  964. if (!skb) {
  965. pr_err("NO MEM: dev_alloc_skb failed\n");
  966. break;
  967. }
  968. skb->dev = priv->ndev;
  969. skb_reserve(skb, NET_IP_ALIGN);
  970. idx = bdx_rxdb_alloc_elem(db);
  971. dm = bdx_rxdb_addr_elem(db, idx);
  972. dm->dma = pci_map_single(priv->pdev,
  973. skb->data, f->m.pktsz,
  974. PCI_DMA_FROMDEVICE);
  975. dm->skb = skb;
  976. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  977. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  978. rxfd->va_lo = idx;
  979. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  980. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  981. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  982. print_rxfd(rxfd);
  983. f->m.wptr += sizeof(struct rxf_desc);
  984. delta = f->m.wptr - f->m.memsz;
  985. if (unlikely(delta >= 0)) {
  986. f->m.wptr = delta;
  987. if (delta > 0) {
  988. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  989. DBG("wrapped descriptor\n");
  990. }
  991. }
  992. dno--;
  993. }
  994. /*TBD: to do - delayed rxf wptr like in txd */
  995. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  996. RET();
  997. }
  998. static inline void
  999. NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
  1000. struct sk_buff *skb)
  1001. {
  1002. ENTER;
  1003. DBG("rxdd->flags.bits.vtag=%d vlgrp=%p\n", GET_RXD_VTAG(rxd_val1),
  1004. priv->vlgrp);
  1005. if (priv->vlgrp && GET_RXD_VTAG(rxd_val1)) {
  1006. DBG("%s: vlan rcv vlan '%x' vtag '%x', device name '%s'\n",
  1007. priv->ndev->name,
  1008. GET_RXD_VLAN_ID(rxd_vlan),
  1009. GET_RXD_VTAG(rxd_val1),
  1010. vlan_group_get_device(priv->vlgrp,
  1011. GET_RXD_VLAN_ID(rxd_vlan))->name);
  1012. /* NAPI variant of receive functions */
  1013. vlan_hwaccel_receive_skb(skb, priv->vlgrp,
  1014. GET_RXD_VLAN_TCI(rxd_vlan));
  1015. } else {
  1016. netif_receive_skb(skb);
  1017. }
  1018. }
  1019. static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
  1020. {
  1021. struct rxf_desc *rxfd;
  1022. struct rx_map *dm;
  1023. struct rxf_fifo *f;
  1024. struct rxdb *db;
  1025. struct sk_buff *skb;
  1026. int delta;
  1027. ENTER;
  1028. DBG("priv=%p rxdd=%p\n", priv, rxdd);
  1029. f = &priv->rxf_fifo0;
  1030. db = priv->rxdb;
  1031. DBG("db=%p f=%p\n", db, f);
  1032. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1033. DBG("dm=%p\n", dm);
  1034. skb = dm->skb;
  1035. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  1036. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  1037. rxfd->va_lo = rxdd->va_lo;
  1038. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  1039. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  1040. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  1041. print_rxfd(rxfd);
  1042. f->m.wptr += sizeof(struct rxf_desc);
  1043. delta = f->m.wptr - f->m.memsz;
  1044. if (unlikely(delta >= 0)) {
  1045. f->m.wptr = delta;
  1046. if (delta > 0) {
  1047. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  1048. DBG("wrapped descriptor\n");
  1049. }
  1050. }
  1051. RET();
  1052. }
  1053. /* bdx_rx_receive - recieves full packets from RXD fifo and pass them to OS
  1054. * NOTE: a special treatment is given to non-continous descriptors
  1055. * that start near the end, wraps around and continue at the beginning. a second
  1056. * part is copied right after the first, and then descriptor is interpreted as
  1057. * normal. fifo has an extra space to allow such operations
  1058. * @priv - nic's private structure
  1059. * @f - RXF fifo that needs skbs
  1060. */
  1061. /* TBD: replace memcpy func call by explicite inline asm */
  1062. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
  1063. {
  1064. struct sk_buff *skb, *skb2;
  1065. struct rxd_desc *rxdd;
  1066. struct rx_map *dm;
  1067. struct rxf_fifo *rxf_fifo;
  1068. int tmp_len, size;
  1069. int done = 0;
  1070. int max_done = BDX_MAX_RX_DONE;
  1071. struct rxdb *db = NULL;
  1072. /* Unmarshalled descriptor - copy of descriptor in host order */
  1073. u32 rxd_val1;
  1074. u16 len;
  1075. u16 rxd_vlan;
  1076. ENTER;
  1077. max_done = budget;
  1078. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
  1079. size = f->m.wptr - f->m.rptr;
  1080. if (size < 0)
  1081. size = f->m.memsz + size; /* size is negative :-) */
  1082. while (size > 0) {
  1083. rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
  1084. rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
  1085. len = CPU_CHIP_SWAP16(rxdd->len);
  1086. rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
  1087. print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
  1088. tmp_len = GET_RXD_BC(rxd_val1) << 3;
  1089. BDX_ASSERT(tmp_len <= 0);
  1090. size -= tmp_len;
  1091. if (size < 0) /* test for partially arrived descriptor */
  1092. break;
  1093. f->m.rptr += tmp_len;
  1094. tmp_len = f->m.rptr - f->m.memsz;
  1095. if (unlikely(tmp_len >= 0)) {
  1096. f->m.rptr = tmp_len;
  1097. if (tmp_len > 0) {
  1098. DBG("wrapped desc rptr=%d tmp_len=%d\n",
  1099. f->m.rptr, tmp_len);
  1100. memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
  1101. }
  1102. }
  1103. if (unlikely(GET_RXD_ERR(rxd_val1))) {
  1104. DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
  1105. priv->net_stats.rx_errors++;
  1106. bdx_recycle_skb(priv, rxdd);
  1107. continue;
  1108. }
  1109. rxf_fifo = &priv->rxf_fifo0;
  1110. db = priv->rxdb;
  1111. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1112. skb = dm->skb;
  1113. if (len < BDX_COPYBREAK &&
  1114. (skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
  1115. skb_reserve(skb2, NET_IP_ALIGN);
  1116. /*skb_put(skb2, len); */
  1117. pci_dma_sync_single_for_cpu(priv->pdev,
  1118. dm->dma, rxf_fifo->m.pktsz,
  1119. PCI_DMA_FROMDEVICE);
  1120. memcpy(skb2->data, skb->data, len);
  1121. bdx_recycle_skb(priv, rxdd);
  1122. skb = skb2;
  1123. } else {
  1124. pci_unmap_single(priv->pdev,
  1125. dm->dma, rxf_fifo->m.pktsz,
  1126. PCI_DMA_FROMDEVICE);
  1127. bdx_rxdb_free_elem(db, rxdd->va_lo);
  1128. }
  1129. priv->net_stats.rx_bytes += len;
  1130. skb_put(skb, len);
  1131. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1132. skb->protocol = eth_type_trans(skb, priv->ndev);
  1133. /* Non-IP packets aren't checksum-offloaded */
  1134. if (GET_RXD_PKT_ID(rxd_val1) == 0)
  1135. skb->ip_summed = CHECKSUM_NONE;
  1136. NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
  1137. if (++done >= max_done)
  1138. break;
  1139. }
  1140. priv->net_stats.rx_packets += done;
  1141. /* FIXME: do smth to minimize pci accesses */
  1142. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1143. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  1144. RET(done);
  1145. }
  1146. /*************************************************************************
  1147. * Debug / Temprorary Code *
  1148. *************************************************************************/
  1149. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  1150. u16 rxd_vlan)
  1151. {
  1152. DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
  1153. GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
  1154. GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
  1155. GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
  1156. GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
  1157. GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
  1158. rxdd->va_hi);
  1159. }
  1160. static void print_rxfd(struct rxf_desc *rxfd)
  1161. {
  1162. DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
  1163. "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
  1164. rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
  1165. }
  1166. /*
  1167. * TX HW/SW interaction overview
  1168. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1169. * There are 2 types of TX communication channels betwean driver and NIC.
  1170. * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
  1171. * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
  1172. *
  1173. * Currently NIC supports TSO, checksuming and gather DMA
  1174. * UFO and IP fragmentation is on the way
  1175. *
  1176. * RX SW Data Structures
  1177. * ~~~~~~~~~~~~~~~~~~~~~
  1178. * txdb - used to keep track of all skbs owned by SW and their dma addresses.
  1179. * For TX case, ownership lasts from geting packet via hard_xmit and until HW
  1180. * acknowledges sent by TXF descriptors.
  1181. * Implemented as cyclic buffer.
  1182. * fifo - keeps info about fifo's size and location, relevant HW registers,
  1183. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  1184. * Implemented as simple struct.
  1185. *
  1186. * TX SW Execution Flow
  1187. * ~~~~~~~~~~~~~~~~~~~~
  1188. * OS calls driver's hard_xmit method with packet to sent.
  1189. * Driver creates DMA mappings, builds TXD descriptors and kicks HW
  1190. * by updating TXD WPTR.
  1191. * When packet is sent, HW write us TXF descriptor and SW frees original skb.
  1192. * To prevent TXD fifo overflow without reading HW registers every time,
  1193. * SW deploys "tx level" technique.
  1194. * Upon strart up, tx level is initialized to TXD fifo length.
  1195. * For every sent packet, SW gets its TXD descriptor sizei
  1196. * (from precalculated array) and substructs it from tx level.
  1197. * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
  1198. * original TXD descriptor from txdb and adds it to tx level.
  1199. * When Tx level drops under some predefined treshhold, the driver
  1200. * stops the TX queue. When TX level rises above that level,
  1201. * the tx queue is enabled again.
  1202. *
  1203. * This technique avoids eccessive reading of RPTR and WPTR registers.
  1204. * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
  1205. */
  1206. /*************************************************************************
  1207. * Tx DB *
  1208. *************************************************************************/
  1209. static inline int bdx_tx_db_size(struct txdb *db)
  1210. {
  1211. int taken = db->wptr - db->rptr;
  1212. if (taken < 0)
  1213. taken = db->size + 1 + taken; /* (size + 1) equals memsz */
  1214. return db->size - taken;
  1215. }
  1216. /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
  1217. * @d - tx data base
  1218. * @ptr - read or write pointer
  1219. */
  1220. static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
  1221. {
  1222. BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
  1223. BDX_ASSERT(*pptr != db->rptr && /* expect either read */
  1224. *pptr != db->wptr); /* or write pointer */
  1225. BDX_ASSERT(*pptr < db->start || /* pointer has to be */
  1226. *pptr >= db->end); /* in range */
  1227. ++*pptr;
  1228. if (unlikely(*pptr == db->end))
  1229. *pptr = db->start;
  1230. }
  1231. /* bdx_tx_db_inc_rptr - increment read pointer
  1232. * @d - tx data base
  1233. */
  1234. static inline void bdx_tx_db_inc_rptr(struct txdb *db)
  1235. {
  1236. BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
  1237. __bdx_tx_db_ptr_next(db, &db->rptr);
  1238. }
  1239. /* bdx_tx_db_inc_rptr - increment write pointer
  1240. * @d - tx data base
  1241. */
  1242. static inline void bdx_tx_db_inc_wptr(struct txdb *db)
  1243. {
  1244. __bdx_tx_db_ptr_next(db, &db->wptr);
  1245. BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
  1246. a result of write */
  1247. }
  1248. /* bdx_tx_db_init - creates and initializes tx db
  1249. * @d - tx data base
  1250. * @sz_type - size of tx fifo
  1251. * Returns 0 on success, error code otherwise
  1252. */
  1253. static int bdx_tx_db_init(struct txdb *d, int sz_type)
  1254. {
  1255. int memsz = FIFO_SIZE * (1 << (sz_type + 1));
  1256. d->start = vmalloc(memsz);
  1257. if (!d->start)
  1258. return -ENOMEM;
  1259. /*
  1260. * In order to differentiate between db is empty and db is full
  1261. * states at least one element should always be empty in order to
  1262. * avoid rptr == wptr which means db is empty
  1263. */
  1264. d->size = memsz / sizeof(struct tx_map) - 1;
  1265. d->end = d->start + d->size + 1; /* just after last element */
  1266. /* all dbs are created equally empty */
  1267. d->rptr = d->start;
  1268. d->wptr = d->start;
  1269. return 0;
  1270. }
  1271. /* bdx_tx_db_close - closes tx db and frees all memory
  1272. * @d - tx data base
  1273. */
  1274. static void bdx_tx_db_close(struct txdb *d)
  1275. {
  1276. BDX_ASSERT(d == NULL);
  1277. vfree(d->start);
  1278. d->start = NULL;
  1279. }
  1280. /*************************************************************************
  1281. * Tx Engine *
  1282. *************************************************************************/
  1283. /* sizes of tx desc (including padding if needed) as function
  1284. * of skb's frag number */
  1285. static struct {
  1286. u16 bytes;
  1287. u16 qwords; /* qword = 64 bit */
  1288. } txd_sizes[MAX_SKB_FRAGS + 1];
  1289. /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
  1290. * @priv - NIC private structure
  1291. * @skb - socket buffer to map
  1292. *
  1293. * It makes dma mappings for skb's data blocks and writes them to PBL of
  1294. * new tx descriptor. It also stores them in the tx db, so they could be
  1295. * unmaped after data was sent. It is reponsibility of a caller to make
  1296. * sure that there is enough space in the tx db. Last element holds pointer
  1297. * to skb itself and marked with zero length
  1298. */
  1299. static inline void
  1300. bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
  1301. struct txd_desc *txdd)
  1302. {
  1303. struct txdb *db = &priv->txdb;
  1304. struct pbl *pbl = &txdd->pbl[0];
  1305. int nr_frags = skb_shinfo(skb)->nr_frags;
  1306. int i;
  1307. db->wptr->len = skb_headlen(skb);
  1308. db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
  1309. db->wptr->len, PCI_DMA_TODEVICE);
  1310. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1311. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1312. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1313. DBG("=== pbl len: 0x%x ================\n", pbl->len);
  1314. DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
  1315. DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
  1316. bdx_tx_db_inc_wptr(db);
  1317. for (i = 0; i < nr_frags; i++) {
  1318. struct skb_frag_struct *frag;
  1319. frag = &skb_shinfo(skb)->frags[i];
  1320. db->wptr->len = frag->size;
  1321. db->wptr->addr.dma =
  1322. pci_map_page(priv->pdev, frag->page, frag->page_offset,
  1323. frag->size, PCI_DMA_TODEVICE);
  1324. pbl++;
  1325. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1326. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1327. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1328. bdx_tx_db_inc_wptr(db);
  1329. }
  1330. /* add skb clean up info. */
  1331. db->wptr->len = -txd_sizes[nr_frags].bytes;
  1332. db->wptr->addr.skb = skb;
  1333. bdx_tx_db_inc_wptr(db);
  1334. }
  1335. /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
  1336. * number of frags is used as index to fetch correct descriptors size,
  1337. * instead of calculating it each time */
  1338. static void __init init_txd_sizes(void)
  1339. {
  1340. int i, lwords;
  1341. /* 7 - is number of lwords in txd with one phys buffer
  1342. * 3 - is number of lwords used for every additional phys buffer */
  1343. for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
  1344. lwords = 7 + (i * 3);
  1345. if (lwords & 1)
  1346. lwords++; /* pad it with 1 lword */
  1347. txd_sizes[i].qwords = lwords >> 1;
  1348. txd_sizes[i].bytes = lwords << 2;
  1349. }
  1350. }
  1351. /* bdx_tx_init - initialize all Tx related stuff.
  1352. * Namely, TXD and TXF fifos, database etc */
  1353. static int bdx_tx_init(struct bdx_priv *priv)
  1354. {
  1355. if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
  1356. regTXD_CFG0_0,
  1357. regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
  1358. goto err_mem;
  1359. if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
  1360. regTXF_CFG0_0,
  1361. regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
  1362. goto err_mem;
  1363. /* The TX db has to keep mappings for all packets sent (on TxD)
  1364. * and not yet reclaimed (on TxF) */
  1365. if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
  1366. goto err_mem;
  1367. priv->tx_level = BDX_MAX_TX_LEVEL;
  1368. #ifdef BDX_DELAY_WPTR
  1369. priv->tx_update_mark = priv->tx_level - 1024;
  1370. #endif
  1371. return 0;
  1372. err_mem:
  1373. netdev_err(priv->ndev, "Tx init failed\n");
  1374. return -ENOMEM;
  1375. }
  1376. /*
  1377. * bdx_tx_space - calculates avalable space in TX fifo
  1378. * @priv - NIC private structure
  1379. * Returns avaliable space in TX fifo in bytes
  1380. */
  1381. static inline int bdx_tx_space(struct bdx_priv *priv)
  1382. {
  1383. struct txd_fifo *f = &priv->txd_fifo0;
  1384. int fsize;
  1385. f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
  1386. fsize = f->m.rptr - f->m.wptr;
  1387. if (fsize <= 0)
  1388. fsize = f->m.memsz + fsize;
  1389. return fsize;
  1390. }
  1391. /* bdx_tx_transmit - send packet to NIC
  1392. * @skb - packet to send
  1393. * ndev - network device assigned to NIC
  1394. * Return codes:
  1395. * o NETDEV_TX_OK everything ok.
  1396. * o NETDEV_TX_BUSY Cannot transmit packet, try later
  1397. * Usually a bug, means queue start/stop flow control is broken in
  1398. * the driver. Note: the driver must NOT put the skb in its DMA ring.
  1399. * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
  1400. */
  1401. static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
  1402. struct net_device *ndev)
  1403. {
  1404. struct bdx_priv *priv = netdev_priv(ndev);
  1405. struct txd_fifo *f = &priv->txd_fifo0;
  1406. int txd_checksum = 7; /* full checksum */
  1407. int txd_lgsnd = 0;
  1408. int txd_vlan_id = 0;
  1409. int txd_vtag = 0;
  1410. int txd_mss = 0;
  1411. int nr_frags = skb_shinfo(skb)->nr_frags;
  1412. struct txd_desc *txdd;
  1413. int len;
  1414. unsigned long flags;
  1415. ENTER;
  1416. local_irq_save(flags);
  1417. if (!spin_trylock(&priv->tx_lock)) {
  1418. local_irq_restore(flags);
  1419. DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
  1420. BDX_DRV_NAME, ndev->name);
  1421. return NETDEV_TX_LOCKED;
  1422. }
  1423. /* build tx descriptor */
  1424. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
  1425. txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
  1426. if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
  1427. txd_checksum = 0;
  1428. if (skb_shinfo(skb)->gso_size) {
  1429. txd_mss = skb_shinfo(skb)->gso_size;
  1430. txd_lgsnd = 1;
  1431. DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
  1432. txd_mss);
  1433. }
  1434. if (vlan_tx_tag_present(skb)) {
  1435. /*Cut VLAN ID to 12 bits */
  1436. txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
  1437. txd_vtag = 1;
  1438. }
  1439. txdd->length = CPU_CHIP_SWAP16(skb->len);
  1440. txdd->mss = CPU_CHIP_SWAP16(txd_mss);
  1441. txdd->txd_val1 =
  1442. CPU_CHIP_SWAP32(TXD_W1_VAL
  1443. (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
  1444. txd_lgsnd, txd_vlan_id));
  1445. DBG("=== TxD desc =====================\n");
  1446. DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
  1447. DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
  1448. bdx_tx_map_skb(priv, skb, txdd);
  1449. /* increment TXD write pointer. In case of
  1450. fifo wrapping copy reminder of the descriptor
  1451. to the beginning */
  1452. f->m.wptr += txd_sizes[nr_frags].bytes;
  1453. len = f->m.wptr - f->m.memsz;
  1454. if (unlikely(len >= 0)) {
  1455. f->m.wptr = len;
  1456. if (len > 0) {
  1457. BDX_ASSERT(len > f->m.memsz);
  1458. memcpy(f->m.va, f->m.va + f->m.memsz, len);
  1459. }
  1460. }
  1461. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
  1462. priv->tx_level -= txd_sizes[nr_frags].bytes;
  1463. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1464. #ifdef BDX_DELAY_WPTR
  1465. if (priv->tx_level > priv->tx_update_mark) {
  1466. /* Force memory writes to complete before letting h/w
  1467. know there are new descriptors to fetch.
  1468. (might be needed on platforms like IA64)
  1469. wmb(); */
  1470. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1471. } else {
  1472. if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
  1473. priv->tx_noupd = 0;
  1474. WRITE_REG(priv, f->m.reg_WPTR,
  1475. f->m.wptr & TXF_WPTR_WR_PTR);
  1476. }
  1477. }
  1478. #else
  1479. /* Force memory writes to complete before letting h/w
  1480. know there are new descriptors to fetch.
  1481. (might be needed on platforms like IA64)
  1482. wmb(); */
  1483. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1484. #endif
  1485. #ifdef BDX_LLTX
  1486. ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
  1487. #endif
  1488. priv->net_stats.tx_packets++;
  1489. priv->net_stats.tx_bytes += skb->len;
  1490. if (priv->tx_level < BDX_MIN_TX_LEVEL) {
  1491. DBG("%s: %s: TX Q STOP level %d\n",
  1492. BDX_DRV_NAME, ndev->name, priv->tx_level);
  1493. netif_stop_queue(ndev);
  1494. }
  1495. spin_unlock_irqrestore(&priv->tx_lock, flags);
  1496. return NETDEV_TX_OK;
  1497. }
  1498. /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
  1499. * @priv - bdx adapter
  1500. * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
  1501. * that those packets were sent
  1502. */
  1503. static void bdx_tx_cleanup(struct bdx_priv *priv)
  1504. {
  1505. struct txf_fifo *f = &priv->txf_fifo0;
  1506. struct txdb *db = &priv->txdb;
  1507. int tx_level = 0;
  1508. ENTER;
  1509. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
  1510. BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
  1511. while (f->m.wptr != f->m.rptr) {
  1512. f->m.rptr += BDX_TXF_DESC_SZ;
  1513. f->m.rptr &= f->m.size_mask;
  1514. /* unmap all the fragments */
  1515. /* first has to come tx_maps containing dma */
  1516. BDX_ASSERT(db->rptr->len == 0);
  1517. do {
  1518. BDX_ASSERT(db->rptr->addr.dma == 0);
  1519. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1520. db->rptr->len, PCI_DMA_TODEVICE);
  1521. bdx_tx_db_inc_rptr(db);
  1522. } while (db->rptr->len > 0);
  1523. tx_level -= db->rptr->len; /* '-' koz len is negative */
  1524. /* now should come skb pointer - free it */
  1525. dev_kfree_skb_irq(db->rptr->addr.skb);
  1526. bdx_tx_db_inc_rptr(db);
  1527. }
  1528. /* let h/w know which TXF descriptors were cleaned */
  1529. BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
  1530. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1531. /* We reclaimed resources, so in case the Q is stopped by xmit callback,
  1532. * we resume the transmition and use tx_lock to synchronize with xmit.*/
  1533. spin_lock(&priv->tx_lock);
  1534. priv->tx_level += tx_level;
  1535. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1536. #ifdef BDX_DELAY_WPTR
  1537. if (priv->tx_noupd) {
  1538. priv->tx_noupd = 0;
  1539. WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
  1540. priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
  1541. }
  1542. #endif
  1543. if (unlikely(netif_queue_stopped(priv->ndev) &&
  1544. netif_carrier_ok(priv->ndev) &&
  1545. (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
  1546. DBG("%s: %s: TX Q WAKE level %d\n",
  1547. BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
  1548. netif_wake_queue(priv->ndev);
  1549. }
  1550. spin_unlock(&priv->tx_lock);
  1551. }
  1552. /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
  1553. * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
  1554. */
  1555. static void bdx_tx_free_skbs(struct bdx_priv *priv)
  1556. {
  1557. struct txdb *db = &priv->txdb;
  1558. ENTER;
  1559. while (db->rptr != db->wptr) {
  1560. if (likely(db->rptr->len))
  1561. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1562. db->rptr->len, PCI_DMA_TODEVICE);
  1563. else
  1564. dev_kfree_skb(db->rptr->addr.skb);
  1565. bdx_tx_db_inc_rptr(db);
  1566. }
  1567. RET();
  1568. }
  1569. /* bdx_tx_free - frees all Tx resources */
  1570. static void bdx_tx_free(struct bdx_priv *priv)
  1571. {
  1572. ENTER;
  1573. bdx_tx_free_skbs(priv);
  1574. bdx_fifo_free(priv, &priv->txd_fifo0.m);
  1575. bdx_fifo_free(priv, &priv->txf_fifo0.m);
  1576. bdx_tx_db_close(&priv->txdb);
  1577. }
  1578. /* bdx_tx_push_desc - push descriptor to TxD fifo
  1579. * @priv - NIC private structure
  1580. * @data - desc's data
  1581. * @size - desc's size
  1582. *
  1583. * Pushes desc to TxD fifo and overlaps it if needed.
  1584. * NOTE: this func does not check for available space. this is responsibility
  1585. * of the caller. Neither does it check that data size is smaller than
  1586. * fifo size.
  1587. */
  1588. static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
  1589. {
  1590. struct txd_fifo *f = &priv->txd_fifo0;
  1591. int i = f->m.memsz - f->m.wptr;
  1592. if (size == 0)
  1593. return;
  1594. if (i > size) {
  1595. memcpy(f->m.va + f->m.wptr, data, size);
  1596. f->m.wptr += size;
  1597. } else {
  1598. memcpy(f->m.va + f->m.wptr, data, i);
  1599. f->m.wptr = size - i;
  1600. memcpy(f->m.va, data + i, f->m.wptr);
  1601. }
  1602. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1603. }
  1604. /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
  1605. * @priv - NIC private structure
  1606. * @data - desc's data
  1607. * @size - desc's size
  1608. *
  1609. * NOTE: this func does check for available space and, if necessary, waits for
  1610. * NIC to read existing data before writing new one.
  1611. */
  1612. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
  1613. {
  1614. int timer = 0;
  1615. ENTER;
  1616. while (size > 0) {
  1617. /* we substruct 8 because when fifo is full rptr == wptr
  1618. which also means that fifo is empty, we can understand
  1619. the difference, but could hw do the same ??? :) */
  1620. int avail = bdx_tx_space(priv) - 8;
  1621. if (avail <= 0) {
  1622. if (timer++ > 300) { /* prevent endless loop */
  1623. DBG("timeout while writing desc to TxD fifo\n");
  1624. break;
  1625. }
  1626. udelay(50); /* give hw a chance to clean fifo */
  1627. continue;
  1628. }
  1629. avail = min(avail, size);
  1630. DBG("about to push %d bytes starting %p size %d\n", avail,
  1631. data, size);
  1632. bdx_tx_push_desc(priv, data, avail);
  1633. size -= avail;
  1634. data += avail;
  1635. }
  1636. RET();
  1637. }
  1638. static const struct net_device_ops bdx_netdev_ops = {
  1639. .ndo_open = bdx_open,
  1640. .ndo_stop = bdx_close,
  1641. .ndo_start_xmit = bdx_tx_transmit,
  1642. .ndo_validate_addr = eth_validate_addr,
  1643. .ndo_do_ioctl = bdx_ioctl,
  1644. .ndo_set_multicast_list = bdx_setmulti,
  1645. .ndo_get_stats = bdx_get_stats,
  1646. .ndo_change_mtu = bdx_change_mtu,
  1647. .ndo_set_mac_address = bdx_set_mac,
  1648. .ndo_vlan_rx_register = bdx_vlan_rx_register,
  1649. .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
  1650. .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
  1651. };
  1652. /**
  1653. * bdx_probe - Device Initialization Routine
  1654. * @pdev: PCI device information struct
  1655. * @ent: entry in bdx_pci_tbl
  1656. *
  1657. * Returns 0 on success, negative on failure
  1658. *
  1659. * bdx_probe initializes an adapter identified by a pci_dev structure.
  1660. * The OS initialization, configuring of the adapter private structure,
  1661. * and a hardware reset occur.
  1662. *
  1663. * functions and their order used as explained in
  1664. * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
  1665. *
  1666. */
  1667. /* TBD: netif_msg should be checked and implemented. I disable it for now */
  1668. static int __devinit
  1669. bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1670. {
  1671. struct net_device *ndev;
  1672. struct bdx_priv *priv;
  1673. int err, pci_using_dac, port;
  1674. unsigned long pciaddr;
  1675. u32 regionSize;
  1676. struct pci_nic *nic;
  1677. ENTER;
  1678. nic = vmalloc(sizeof(*nic));
  1679. if (!nic)
  1680. RET(-ENOMEM);
  1681. /************** pci *****************/
  1682. err = pci_enable_device(pdev);
  1683. if (err) /* it triggers interrupt, dunno why. */
  1684. goto err_pci; /* it's not a problem though */
  1685. if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
  1686. !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
  1687. pci_using_dac = 1;
  1688. } else {
  1689. if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
  1690. (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  1691. pr_err("No usable DMA configuration, aborting\n");
  1692. goto err_dma;
  1693. }
  1694. pci_using_dac = 0;
  1695. }
  1696. err = pci_request_regions(pdev, BDX_DRV_NAME);
  1697. if (err)
  1698. goto err_dma;
  1699. pci_set_master(pdev);
  1700. pciaddr = pci_resource_start(pdev, 0);
  1701. if (!pciaddr) {
  1702. err = -EIO;
  1703. pr_err("no MMIO resource\n");
  1704. goto err_out_res;
  1705. }
  1706. regionSize = pci_resource_len(pdev, 0);
  1707. if (regionSize < BDX_REGS_SIZE) {
  1708. err = -EIO;
  1709. pr_err("MMIO resource (%x) too small\n", regionSize);
  1710. goto err_out_res;
  1711. }
  1712. nic->regs = ioremap(pciaddr, regionSize);
  1713. if (!nic->regs) {
  1714. err = -EIO;
  1715. pr_err("ioremap failed\n");
  1716. goto err_out_res;
  1717. }
  1718. if (pdev->irq < 2) {
  1719. err = -EIO;
  1720. pr_err("invalid irq (%d)\n", pdev->irq);
  1721. goto err_out_iomap;
  1722. }
  1723. pci_set_drvdata(pdev, nic);
  1724. if (pdev->device == 0x3014)
  1725. nic->port_num = 2;
  1726. else
  1727. nic->port_num = 1;
  1728. print_hw_id(pdev);
  1729. bdx_hw_reset_direct(nic->regs);
  1730. nic->irq_type = IRQ_INTX;
  1731. #ifdef BDX_MSI
  1732. if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
  1733. err = pci_enable_msi(pdev);
  1734. if (err)
  1735. pr_err("Can't eneble msi. error is %d\n", err);
  1736. else
  1737. nic->irq_type = IRQ_MSI;
  1738. } else
  1739. DBG("HW does not support MSI\n");
  1740. #endif
  1741. /************** netdev **************/
  1742. for (port = 0; port < nic->port_num; port++) {
  1743. ndev = alloc_etherdev(sizeof(struct bdx_priv));
  1744. if (!ndev) {
  1745. err = -ENOMEM;
  1746. pr_err("alloc_etherdev failed\n");
  1747. goto err_out_iomap;
  1748. }
  1749. ndev->netdev_ops = &bdx_netdev_ops;
  1750. ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
  1751. bdx_ethtool_ops(ndev); /* ethtool interface */
  1752. /* these fields are used for info purposes only
  1753. * so we can have them same for all ports of the board */
  1754. ndev->if_port = port;
  1755. ndev->base_addr = pciaddr;
  1756. ndev->mem_start = pciaddr;
  1757. ndev->mem_end = pciaddr + regionSize;
  1758. ndev->irq = pdev->irq;
  1759. ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
  1760. | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
  1761. NETIF_F_HW_VLAN_FILTER
  1762. /*| NETIF_F_FRAGLIST */
  1763. ;
  1764. if (pci_using_dac)
  1765. ndev->features |= NETIF_F_HIGHDMA;
  1766. /************** priv ****************/
  1767. priv = nic->priv[port] = netdev_priv(ndev);
  1768. priv->pBdxRegs = nic->regs + port * 0x8000;
  1769. priv->port = port;
  1770. priv->pdev = pdev;
  1771. priv->ndev = ndev;
  1772. priv->nic = nic;
  1773. priv->msg_enable = BDX_DEF_MSG_ENABLE;
  1774. netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
  1775. if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
  1776. DBG("HW statistics not supported\n");
  1777. priv->stats_flag = 0;
  1778. } else {
  1779. priv->stats_flag = 1;
  1780. }
  1781. /* Initialize fifo sizes. */
  1782. priv->txd_size = 2;
  1783. priv->txf_size = 2;
  1784. priv->rxd_size = 2;
  1785. priv->rxf_size = 3;
  1786. /* Initialize the initial coalescing registers. */
  1787. priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
  1788. priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
  1789. /* ndev->xmit_lock spinlock is not used.
  1790. * Private priv->tx_lock is used for synchronization
  1791. * between transmit and TX irq cleanup. In addition
  1792. * set multicast list callback has to use priv->tx_lock.
  1793. */
  1794. #ifdef BDX_LLTX
  1795. ndev->features |= NETIF_F_LLTX;
  1796. #endif
  1797. spin_lock_init(&priv->tx_lock);
  1798. /*bdx_hw_reset(priv); */
  1799. if (bdx_read_mac(priv)) {
  1800. pr_err("load MAC address failed\n");
  1801. goto err_out_iomap;
  1802. }
  1803. SET_NETDEV_DEV(ndev, &pdev->dev);
  1804. err = register_netdev(ndev);
  1805. if (err) {
  1806. pr_err("register_netdev failed\n");
  1807. goto err_out_free;
  1808. }
  1809. netif_carrier_off(ndev);
  1810. netif_stop_queue(ndev);
  1811. print_eth_id(ndev);
  1812. }
  1813. RET(0);
  1814. err_out_free:
  1815. free_netdev(ndev);
  1816. err_out_iomap:
  1817. iounmap(nic->regs);
  1818. err_out_res:
  1819. pci_release_regions(pdev);
  1820. err_dma:
  1821. pci_disable_device(pdev);
  1822. err_pci:
  1823. vfree(nic);
  1824. RET(err);
  1825. }
  1826. /****************** Ethtool interface *********************/
  1827. /* get strings for statistics counters */
  1828. static const char
  1829. bdx_stat_names[][ETH_GSTRING_LEN] = {
  1830. "InUCast", /* 0x7200 */
  1831. "InMCast", /* 0x7210 */
  1832. "InBCast", /* 0x7220 */
  1833. "InPkts", /* 0x7230 */
  1834. "InErrors", /* 0x7240 */
  1835. "InDropped", /* 0x7250 */
  1836. "FrameTooLong", /* 0x7260 */
  1837. "FrameSequenceErrors", /* 0x7270 */
  1838. "InVLAN", /* 0x7280 */
  1839. "InDroppedDFE", /* 0x7290 */
  1840. "InDroppedIntFull", /* 0x72A0 */
  1841. "InFrameAlignErrors", /* 0x72B0 */
  1842. /* 0x72C0-0x72E0 RSRV */
  1843. "OutUCast", /* 0x72F0 */
  1844. "OutMCast", /* 0x7300 */
  1845. "OutBCast", /* 0x7310 */
  1846. "OutPkts", /* 0x7320 */
  1847. /* 0x7330-0x7360 RSRV */
  1848. "OutVLAN", /* 0x7370 */
  1849. "InUCastOctects", /* 0x7380 */
  1850. "OutUCastOctects", /* 0x7390 */
  1851. /* 0x73A0-0x73B0 RSRV */
  1852. "InBCastOctects", /* 0x73C0 */
  1853. "OutBCastOctects", /* 0x73D0 */
  1854. "InOctects", /* 0x73E0 */
  1855. "OutOctects", /* 0x73F0 */
  1856. };
  1857. /*
  1858. * bdx_get_settings - get device-specific settings
  1859. * @netdev
  1860. * @ecmd
  1861. */
  1862. static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  1863. {
  1864. u32 rdintcm;
  1865. u32 tdintcm;
  1866. struct bdx_priv *priv = netdev_priv(netdev);
  1867. rdintcm = priv->rdintcm;
  1868. tdintcm = priv->tdintcm;
  1869. ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  1870. ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
  1871. ecmd->speed = SPEED_10000;
  1872. ecmd->duplex = DUPLEX_FULL;
  1873. ecmd->port = PORT_FIBRE;
  1874. ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
  1875. ecmd->autoneg = AUTONEG_DISABLE;
  1876. /* PCK_TH measures in multiples of FIFO bytes
  1877. We translate to packets */
  1878. ecmd->maxtxpkt =
  1879. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1880. ecmd->maxrxpkt =
  1881. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1882. return 0;
  1883. }
  1884. /*
  1885. * bdx_get_drvinfo - report driver information
  1886. * @netdev
  1887. * @drvinfo
  1888. */
  1889. static void
  1890. bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
  1891. {
  1892. struct bdx_priv *priv = netdev_priv(netdev);
  1893. strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
  1894. strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
  1895. strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  1896. strlcat(drvinfo->bus_info, pci_name(priv->pdev),
  1897. sizeof(drvinfo->bus_info));
  1898. drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
  1899. drvinfo->testinfo_len = 0;
  1900. drvinfo->regdump_len = 0;
  1901. drvinfo->eedump_len = 0;
  1902. }
  1903. /*
  1904. * bdx_get_rx_csum - report whether receive checksums are turned on or off
  1905. * @netdev
  1906. */
  1907. static u32 bdx_get_rx_csum(struct net_device *netdev)
  1908. {
  1909. return 1; /* always on */
  1910. }
  1911. /*
  1912. * bdx_get_tx_csum - report whether transmit checksums are turned on or off
  1913. * @netdev
  1914. */
  1915. static u32 bdx_get_tx_csum(struct net_device *netdev)
  1916. {
  1917. return (netdev->features & NETIF_F_IP_CSUM) != 0;
  1918. }
  1919. /*
  1920. * bdx_get_coalesce - get interrupt coalescing parameters
  1921. * @netdev
  1922. * @ecoal
  1923. */
  1924. static int
  1925. bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1926. {
  1927. u32 rdintcm;
  1928. u32 tdintcm;
  1929. struct bdx_priv *priv = netdev_priv(netdev);
  1930. rdintcm = priv->rdintcm;
  1931. tdintcm = priv->tdintcm;
  1932. /* PCK_TH measures in multiples of FIFO bytes
  1933. We translate to packets */
  1934. ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
  1935. ecoal->rx_max_coalesced_frames =
  1936. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1937. ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
  1938. ecoal->tx_max_coalesced_frames =
  1939. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1940. /* adaptive parameters ignored */
  1941. return 0;
  1942. }
  1943. /*
  1944. * bdx_set_coalesce - set interrupt coalescing parameters
  1945. * @netdev
  1946. * @ecoal
  1947. */
  1948. static int
  1949. bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1950. {
  1951. u32 rdintcm;
  1952. u32 tdintcm;
  1953. struct bdx_priv *priv = netdev_priv(netdev);
  1954. int rx_coal;
  1955. int tx_coal;
  1956. int rx_max_coal;
  1957. int tx_max_coal;
  1958. /* Check for valid input */
  1959. rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
  1960. tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
  1961. rx_max_coal = ecoal->rx_max_coalesced_frames;
  1962. tx_max_coal = ecoal->tx_max_coalesced_frames;
  1963. /* Translate from packets to multiples of FIFO bytes */
  1964. rx_max_coal =
  1965. (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
  1966. / PCK_TH_MULT);
  1967. tx_max_coal =
  1968. (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
  1969. / PCK_TH_MULT);
  1970. if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
  1971. (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
  1972. return -EINVAL;
  1973. rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
  1974. GET_RXF_TH(priv->rdintcm), rx_max_coal);
  1975. tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
  1976. tx_max_coal);
  1977. priv->rdintcm = rdintcm;
  1978. priv->tdintcm = tdintcm;
  1979. WRITE_REG(priv, regRDINTCM0, rdintcm);
  1980. WRITE_REG(priv, regTDINTCM0, tdintcm);
  1981. return 0;
  1982. }
  1983. /* Convert RX fifo size to number of pending packets */
  1984. static inline int bdx_rx_fifo_size_to_packets(int rx_size)
  1985. {
  1986. return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
  1987. }
  1988. /* Convert TX fifo size to number of pending packets */
  1989. static inline int bdx_tx_fifo_size_to_packets(int tx_size)
  1990. {
  1991. return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
  1992. }
  1993. /*
  1994. * bdx_get_ringparam - report ring sizes
  1995. * @netdev
  1996. * @ring
  1997. */
  1998. static void
  1999. bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  2000. {
  2001. struct bdx_priv *priv = netdev_priv(netdev);
  2002. /*max_pending - the maximum-sized FIFO we allow */
  2003. ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
  2004. ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
  2005. ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
  2006. ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
  2007. }
  2008. /*
  2009. * bdx_set_ringparam - set ring sizes
  2010. * @netdev
  2011. * @ring
  2012. */
  2013. static int
  2014. bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  2015. {
  2016. struct bdx_priv *priv = netdev_priv(netdev);
  2017. int rx_size = 0;
  2018. int tx_size = 0;
  2019. for (; rx_size < 4; rx_size++) {
  2020. if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
  2021. break;
  2022. }
  2023. if (rx_size == 4)
  2024. rx_size = 3;
  2025. for (; tx_size < 4; tx_size++) {
  2026. if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
  2027. break;
  2028. }
  2029. if (tx_size == 4)
  2030. tx_size = 3;
  2031. /*Is there anything to do? */
  2032. if ((rx_size == priv->rxf_size) &&
  2033. (tx_size == priv->txd_size))
  2034. return 0;
  2035. priv->rxf_size = rx_size;
  2036. if (rx_size > 1)
  2037. priv->rxd_size = rx_size - 1;
  2038. else
  2039. priv->rxd_size = rx_size;
  2040. priv->txf_size = priv->txd_size = tx_size;
  2041. if (netif_running(netdev)) {
  2042. bdx_close(netdev);
  2043. bdx_open(netdev);
  2044. }
  2045. return 0;
  2046. }
  2047. /*
  2048. * bdx_get_strings - return a set of strings that describe the requested objects
  2049. * @netdev
  2050. * @data
  2051. */
  2052. static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2053. {
  2054. switch (stringset) {
  2055. case ETH_SS_STATS:
  2056. memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
  2057. break;
  2058. }
  2059. }
  2060. /*
  2061. * bdx_get_sset_count - return number of statistics or tests
  2062. * @netdev
  2063. */
  2064. static int bdx_get_sset_count(struct net_device *netdev, int stringset)
  2065. {
  2066. struct bdx_priv *priv = netdev_priv(netdev);
  2067. switch (stringset) {
  2068. case ETH_SS_STATS:
  2069. BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
  2070. != sizeof(struct bdx_stats) / sizeof(u64));
  2071. return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0;
  2072. }
  2073. return -EINVAL;
  2074. }
  2075. /*
  2076. * bdx_get_ethtool_stats - return device's hardware L2 statistics
  2077. * @netdev
  2078. * @stats
  2079. * @data
  2080. */
  2081. static void bdx_get_ethtool_stats(struct net_device *netdev,
  2082. struct ethtool_stats *stats, u64 *data)
  2083. {
  2084. struct bdx_priv *priv = netdev_priv(netdev);
  2085. if (priv->stats_flag) {
  2086. /* Update stats from HW */
  2087. bdx_update_stats(priv);
  2088. /* Copy data to user buffer */
  2089. memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
  2090. }
  2091. }
  2092. /*
  2093. * bdx_ethtool_ops - ethtool interface implementation
  2094. * @netdev
  2095. */
  2096. static void bdx_ethtool_ops(struct net_device *netdev)
  2097. {
  2098. static const struct ethtool_ops bdx_ethtool_ops = {
  2099. .get_settings = bdx_get_settings,
  2100. .get_drvinfo = bdx_get_drvinfo,
  2101. .get_link = ethtool_op_get_link,
  2102. .get_coalesce = bdx_get_coalesce,
  2103. .set_coalesce = bdx_set_coalesce,
  2104. .get_ringparam = bdx_get_ringparam,
  2105. .set_ringparam = bdx_set_ringparam,
  2106. .get_rx_csum = bdx_get_rx_csum,
  2107. .get_tx_csum = bdx_get_tx_csum,
  2108. .get_sg = ethtool_op_get_sg,
  2109. .get_tso = ethtool_op_get_tso,
  2110. .get_strings = bdx_get_strings,
  2111. .get_sset_count = bdx_get_sset_count,
  2112. .get_ethtool_stats = bdx_get_ethtool_stats,
  2113. };
  2114. SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
  2115. }
  2116. /**
  2117. * bdx_remove - Device Removal Routine
  2118. * @pdev: PCI device information struct
  2119. *
  2120. * bdx_remove is called by the PCI subsystem to alert the driver
  2121. * that it should release a PCI device. The could be caused by a
  2122. * Hot-Plug event, or because the driver is going to be removed from
  2123. * memory.
  2124. **/
  2125. static void __devexit bdx_remove(struct pci_dev *pdev)
  2126. {
  2127. struct pci_nic *nic = pci_get_drvdata(pdev);
  2128. struct net_device *ndev;
  2129. int port;
  2130. for (port = 0; port < nic->port_num; port++) {
  2131. ndev = nic->priv[port]->ndev;
  2132. unregister_netdev(ndev);
  2133. free_netdev(ndev);
  2134. }
  2135. /*bdx_hw_reset_direct(nic->regs); */
  2136. #ifdef BDX_MSI
  2137. if (nic->irq_type == IRQ_MSI)
  2138. pci_disable_msi(pdev);
  2139. #endif
  2140. iounmap(nic->regs);
  2141. pci_release_regions(pdev);
  2142. pci_disable_device(pdev);
  2143. pci_set_drvdata(pdev, NULL);
  2144. vfree(nic);
  2145. RET();
  2146. }
  2147. static struct pci_driver bdx_pci_driver = {
  2148. .name = BDX_DRV_NAME,
  2149. .id_table = bdx_pci_tbl,
  2150. .probe = bdx_probe,
  2151. .remove = __devexit_p(bdx_remove),
  2152. };
  2153. /*
  2154. * print_driver_id - print parameters of the driver build
  2155. */
  2156. static void __init print_driver_id(void)
  2157. {
  2158. pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
  2159. pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
  2160. }
  2161. static int __init bdx_module_init(void)
  2162. {
  2163. ENTER;
  2164. init_txd_sizes();
  2165. print_driver_id();
  2166. RET(pci_register_driver(&bdx_pci_driver));
  2167. }
  2168. module_init(bdx_module_init);
  2169. static void __exit bdx_module_exit(void)
  2170. {
  2171. ENTER;
  2172. pci_unregister_driver(&bdx_pci_driver);
  2173. RET();
  2174. }
  2175. module_exit(bdx_module_exit);
  2176. MODULE_LICENSE("GPL");
  2177. MODULE_AUTHOR(DRIVER_AUTHOR);
  2178. MODULE_DESCRIPTION(BDX_DRV_DESC);
  2179. MODULE_FIRMWARE("tehuti/firmware.bin");