sungem.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244
  1. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  2. * sungem.c: Sun GEM ethernet driver.
  3. *
  4. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
  5. *
  6. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  7. * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
  8. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  9. *
  10. * NAPI and NETPOLL support
  11. * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12. *
  13. * TODO:
  14. * - Now that the driver was significantly simplified, I need to rework
  15. * the locking. I'm sure we don't need _2_ spinlocks, and we probably
  16. * can avoid taking most of them for so long period of time (and schedule
  17. * instead). The main issues at this point are caused by the netdev layer
  18. * though:
  19. *
  20. * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
  21. * help by net/core/dev.c, thus they can't schedule. That means they can't
  22. * call napi_disable() neither, thus force gem_poll() to keep a spinlock
  23. * where it could have been dropped. change_mtu especially would love also to
  24. * be able to msleep instead of horrid locked delays when resetting the HW,
  25. * but that read_lock() makes it impossible, unless I defer it's action to
  26. * the reset task, which means it'll be asynchronous (won't take effect until
  27. * the system schedules a bit).
  28. *
  29. * Also, it would probably be possible to also remove most of the long-life
  30. * locking in open/resume code path (gem_reinit_chip) by beeing more careful
  31. * about when we can start taking interrupts or get xmit() called...
  32. */
  33. #include <linux/module.h>
  34. #include <linux/kernel.h>
  35. #include <linux/types.h>
  36. #include <linux/fcntl.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/ioport.h>
  39. #include <linux/in.h>
  40. #include <linux/sched.h>
  41. #include <linux/string.h>
  42. #include <linux/delay.h>
  43. #include <linux/init.h>
  44. #include <linux/errno.h>
  45. #include <linux/pci.h>
  46. #include <linux/dma-mapping.h>
  47. #include <linux/netdevice.h>
  48. #include <linux/etherdevice.h>
  49. #include <linux/skbuff.h>
  50. #include <linux/mii.h>
  51. #include <linux/ethtool.h>
  52. #include <linux/crc32.h>
  53. #include <linux/random.h>
  54. #include <linux/workqueue.h>
  55. #include <linux/if_vlan.h>
  56. #include <linux/bitops.h>
  57. #include <linux/mutex.h>
  58. #include <linux/mm.h>
  59. #include <linux/gfp.h>
  60. #include <asm/system.h>
  61. #include <asm/io.h>
  62. #include <asm/byteorder.h>
  63. #include <asm/uaccess.h>
  64. #include <asm/irq.h>
  65. #ifdef CONFIG_SPARC
  66. #include <asm/idprom.h>
  67. #include <asm/prom.h>
  68. #endif
  69. #ifdef CONFIG_PPC_PMAC
  70. #include <asm/pci-bridge.h>
  71. #include <asm/prom.h>
  72. #include <asm/machdep.h>
  73. #include <asm/pmac_feature.h>
  74. #endif
  75. #include "sungem_phy.h"
  76. #include "sungem.h"
  77. /* Stripping FCS is causing problems, disabled for now */
  78. #undef STRIP_FCS
  79. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  80. NETIF_MSG_PROBE | \
  81. NETIF_MSG_LINK)
  82. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  83. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  84. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  85. SUPPORTED_Pause | SUPPORTED_Autoneg)
  86. #define DRV_NAME "sungem"
  87. #define DRV_VERSION "0.98"
  88. #define DRV_RELDATE "8/24/03"
  89. #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
  90. static char version[] __devinitdata =
  91. DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  92. MODULE_AUTHOR(DRV_AUTHOR);
  93. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  94. MODULE_LICENSE("GPL");
  95. #define GEM_MODULE_NAME "gem"
  96. #define PFX GEM_MODULE_NAME ": "
  97. static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
  98. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  99. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  100. /* These models only differ from the original GEM in
  101. * that their tx/rx fifos are of a different size and
  102. * they only support 10/100 speeds. -DaveM
  103. *
  104. * Apple's GMAC does support gigabit on machines with
  105. * the BCM54xx PHYs. -BenH
  106. */
  107. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  108. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  109. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  110. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  111. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  112. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  113. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  114. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  115. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  117. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  119. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
  120. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  121. {0, }
  122. };
  123. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  124. static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
  125. {
  126. u32 cmd;
  127. int limit = 10000;
  128. cmd = (1 << 30);
  129. cmd |= (2 << 28);
  130. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  131. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  132. cmd |= (MIF_FRAME_TAMSB);
  133. writel(cmd, gp->regs + MIF_FRAME);
  134. while (--limit) {
  135. cmd = readl(gp->regs + MIF_FRAME);
  136. if (cmd & MIF_FRAME_TALSB)
  137. break;
  138. udelay(10);
  139. }
  140. if (!limit)
  141. cmd = 0xffff;
  142. return cmd & MIF_FRAME_DATA;
  143. }
  144. static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
  145. {
  146. struct gem *gp = netdev_priv(dev);
  147. return __phy_read(gp, mii_id, reg);
  148. }
  149. static inline u16 phy_read(struct gem *gp, int reg)
  150. {
  151. return __phy_read(gp, gp->mii_phy_addr, reg);
  152. }
  153. static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  154. {
  155. u32 cmd;
  156. int limit = 10000;
  157. cmd = (1 << 30);
  158. cmd |= (1 << 28);
  159. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  160. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  161. cmd |= (MIF_FRAME_TAMSB);
  162. cmd |= (val & MIF_FRAME_DATA);
  163. writel(cmd, gp->regs + MIF_FRAME);
  164. while (limit--) {
  165. cmd = readl(gp->regs + MIF_FRAME);
  166. if (cmd & MIF_FRAME_TALSB)
  167. break;
  168. udelay(10);
  169. }
  170. }
  171. static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
  172. {
  173. struct gem *gp = netdev_priv(dev);
  174. __phy_write(gp, mii_id, reg, val & 0xffff);
  175. }
  176. static inline void phy_write(struct gem *gp, int reg, u16 val)
  177. {
  178. __phy_write(gp, gp->mii_phy_addr, reg, val);
  179. }
  180. static inline void gem_enable_ints(struct gem *gp)
  181. {
  182. /* Enable all interrupts but TXDONE */
  183. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  184. }
  185. static inline void gem_disable_ints(struct gem *gp)
  186. {
  187. /* Disable all interrupts, including TXDONE */
  188. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  189. }
  190. static void gem_get_cell(struct gem *gp)
  191. {
  192. BUG_ON(gp->cell_enabled < 0);
  193. gp->cell_enabled++;
  194. #ifdef CONFIG_PPC_PMAC
  195. if (gp->cell_enabled == 1) {
  196. mb();
  197. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  198. udelay(10);
  199. }
  200. #endif /* CONFIG_PPC_PMAC */
  201. }
  202. /* Turn off the chip's clock */
  203. static void gem_put_cell(struct gem *gp)
  204. {
  205. BUG_ON(gp->cell_enabled <= 0);
  206. gp->cell_enabled--;
  207. #ifdef CONFIG_PPC_PMAC
  208. if (gp->cell_enabled == 0) {
  209. mb();
  210. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  211. udelay(10);
  212. }
  213. #endif /* CONFIG_PPC_PMAC */
  214. }
  215. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  216. {
  217. if (netif_msg_intr(gp))
  218. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  219. }
  220. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  221. {
  222. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  223. u32 pcs_miistat;
  224. if (netif_msg_intr(gp))
  225. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  226. gp->dev->name, pcs_istat);
  227. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  228. printk(KERN_ERR "%s: PCS irq but no link status change???\n",
  229. dev->name);
  230. return 0;
  231. }
  232. /* The link status bit latches on zero, so you must
  233. * read it twice in such a case to see a transition
  234. * to the link being up.
  235. */
  236. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  237. if (!(pcs_miistat & PCS_MIISTAT_LS))
  238. pcs_miistat |=
  239. (readl(gp->regs + PCS_MIISTAT) &
  240. PCS_MIISTAT_LS);
  241. if (pcs_miistat & PCS_MIISTAT_ANC) {
  242. /* The remote-fault indication is only valid
  243. * when autoneg has completed.
  244. */
  245. if (pcs_miistat & PCS_MIISTAT_RF)
  246. printk(KERN_INFO "%s: PCS AutoNEG complete, "
  247. "RemoteFault\n", dev->name);
  248. else
  249. printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
  250. dev->name);
  251. }
  252. if (pcs_miistat & PCS_MIISTAT_LS) {
  253. printk(KERN_INFO "%s: PCS link is now up.\n",
  254. dev->name);
  255. netif_carrier_on(gp->dev);
  256. } else {
  257. printk(KERN_INFO "%s: PCS link is now down.\n",
  258. dev->name);
  259. netif_carrier_off(gp->dev);
  260. /* If this happens and the link timer is not running,
  261. * reset so we re-negotiate.
  262. */
  263. if (!timer_pending(&gp->link_timer))
  264. return 1;
  265. }
  266. return 0;
  267. }
  268. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  269. {
  270. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  271. if (netif_msg_intr(gp))
  272. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  273. gp->dev->name, txmac_stat);
  274. /* Defer timer expiration is quite normal,
  275. * don't even log the event.
  276. */
  277. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  278. !(txmac_stat & ~MAC_TXSTAT_DTE))
  279. return 0;
  280. if (txmac_stat & MAC_TXSTAT_URUN) {
  281. printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
  282. dev->name);
  283. gp->net_stats.tx_fifo_errors++;
  284. }
  285. if (txmac_stat & MAC_TXSTAT_MPE) {
  286. printk(KERN_ERR "%s: TX MAC max packet size error.\n",
  287. dev->name);
  288. gp->net_stats.tx_errors++;
  289. }
  290. /* The rest are all cases of one of the 16-bit TX
  291. * counters expiring.
  292. */
  293. if (txmac_stat & MAC_TXSTAT_NCE)
  294. gp->net_stats.collisions += 0x10000;
  295. if (txmac_stat & MAC_TXSTAT_ECE) {
  296. gp->net_stats.tx_aborted_errors += 0x10000;
  297. gp->net_stats.collisions += 0x10000;
  298. }
  299. if (txmac_stat & MAC_TXSTAT_LCE) {
  300. gp->net_stats.tx_aborted_errors += 0x10000;
  301. gp->net_stats.collisions += 0x10000;
  302. }
  303. /* We do not keep track of MAC_TXSTAT_FCE and
  304. * MAC_TXSTAT_PCE events.
  305. */
  306. return 0;
  307. }
  308. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  309. * so we do the following.
  310. *
  311. * If any part of the reset goes wrong, we return 1 and that causes the
  312. * whole chip to be reset.
  313. */
  314. static int gem_rxmac_reset(struct gem *gp)
  315. {
  316. struct net_device *dev = gp->dev;
  317. int limit, i;
  318. u64 desc_dma;
  319. u32 val;
  320. /* First, reset & disable MAC RX. */
  321. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  322. for (limit = 0; limit < 5000; limit++) {
  323. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  324. break;
  325. udelay(10);
  326. }
  327. if (limit == 5000) {
  328. printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
  329. "chip.\n", dev->name);
  330. return 1;
  331. }
  332. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  333. gp->regs + MAC_RXCFG);
  334. for (limit = 0; limit < 5000; limit++) {
  335. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  336. break;
  337. udelay(10);
  338. }
  339. if (limit == 5000) {
  340. printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
  341. "chip.\n", dev->name);
  342. return 1;
  343. }
  344. /* Second, disable RX DMA. */
  345. writel(0, gp->regs + RXDMA_CFG);
  346. for (limit = 0; limit < 5000; limit++) {
  347. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  348. break;
  349. udelay(10);
  350. }
  351. if (limit == 5000) {
  352. printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
  353. "chip.\n", dev->name);
  354. return 1;
  355. }
  356. udelay(5000);
  357. /* Execute RX reset command. */
  358. writel(gp->swrst_base | GREG_SWRST_RXRST,
  359. gp->regs + GREG_SWRST);
  360. for (limit = 0; limit < 5000; limit++) {
  361. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  362. break;
  363. udelay(10);
  364. }
  365. if (limit == 5000) {
  366. printk(KERN_ERR "%s: RX reset command will not execute, resetting "
  367. "whole chip.\n", dev->name);
  368. return 1;
  369. }
  370. /* Refresh the RX ring. */
  371. for (i = 0; i < RX_RING_SIZE; i++) {
  372. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  373. if (gp->rx_skbs[i] == NULL) {
  374. printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
  375. "whole chip.\n", dev->name);
  376. return 1;
  377. }
  378. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  379. }
  380. gp->rx_new = gp->rx_old = 0;
  381. /* Now we must reprogram the rest of RX unit. */
  382. desc_dma = (u64) gp->gblock_dvma;
  383. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  384. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  385. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  386. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  387. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  388. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  389. writel(val, gp->regs + RXDMA_CFG);
  390. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  391. writel(((5 & RXDMA_BLANK_IPKTS) |
  392. ((8 << 12) & RXDMA_BLANK_ITIME)),
  393. gp->regs + RXDMA_BLANK);
  394. else
  395. writel(((5 & RXDMA_BLANK_IPKTS) |
  396. ((4 << 12) & RXDMA_BLANK_ITIME)),
  397. gp->regs + RXDMA_BLANK);
  398. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  399. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  400. writel(val, gp->regs + RXDMA_PTHRESH);
  401. val = readl(gp->regs + RXDMA_CFG);
  402. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  403. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  404. val = readl(gp->regs + MAC_RXCFG);
  405. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  406. return 0;
  407. }
  408. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  409. {
  410. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  411. int ret = 0;
  412. if (netif_msg_intr(gp))
  413. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  414. gp->dev->name, rxmac_stat);
  415. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  416. u32 smac = readl(gp->regs + MAC_SMACHINE);
  417. printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
  418. dev->name, smac);
  419. gp->net_stats.rx_over_errors++;
  420. gp->net_stats.rx_fifo_errors++;
  421. ret = gem_rxmac_reset(gp);
  422. }
  423. if (rxmac_stat & MAC_RXSTAT_ACE)
  424. gp->net_stats.rx_frame_errors += 0x10000;
  425. if (rxmac_stat & MAC_RXSTAT_CCE)
  426. gp->net_stats.rx_crc_errors += 0x10000;
  427. if (rxmac_stat & MAC_RXSTAT_LCE)
  428. gp->net_stats.rx_length_errors += 0x10000;
  429. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  430. * events.
  431. */
  432. return ret;
  433. }
  434. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  435. {
  436. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  437. if (netif_msg_intr(gp))
  438. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  439. gp->dev->name, mac_cstat);
  440. /* This interrupt is just for pause frame and pause
  441. * tracking. It is useful for diagnostics and debug
  442. * but probably by default we will mask these events.
  443. */
  444. if (mac_cstat & MAC_CSTAT_PS)
  445. gp->pause_entered++;
  446. if (mac_cstat & MAC_CSTAT_PRCV)
  447. gp->pause_last_time_recvd = (mac_cstat >> 16);
  448. return 0;
  449. }
  450. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  451. {
  452. u32 mif_status = readl(gp->regs + MIF_STATUS);
  453. u32 reg_val, changed_bits;
  454. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  455. changed_bits = (mif_status & MIF_STATUS_STAT);
  456. gem_handle_mif_event(gp, reg_val, changed_bits);
  457. return 0;
  458. }
  459. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  460. {
  461. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  462. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  463. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  464. printk(KERN_ERR "%s: PCI error [%04x] ",
  465. dev->name, pci_estat);
  466. if (pci_estat & GREG_PCIESTAT_BADACK)
  467. printk("<No ACK64# during ABS64 cycle> ");
  468. if (pci_estat & GREG_PCIESTAT_DTRTO)
  469. printk("<Delayed transaction timeout> ");
  470. if (pci_estat & GREG_PCIESTAT_OTHER)
  471. printk("<other>");
  472. printk("\n");
  473. } else {
  474. pci_estat |= GREG_PCIESTAT_OTHER;
  475. printk(KERN_ERR "%s: PCI error\n", dev->name);
  476. }
  477. if (pci_estat & GREG_PCIESTAT_OTHER) {
  478. u16 pci_cfg_stat;
  479. /* Interrogate PCI config space for the
  480. * true cause.
  481. */
  482. pci_read_config_word(gp->pdev, PCI_STATUS,
  483. &pci_cfg_stat);
  484. printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
  485. dev->name, pci_cfg_stat);
  486. if (pci_cfg_stat & PCI_STATUS_PARITY)
  487. printk(KERN_ERR "%s: PCI parity error detected.\n",
  488. dev->name);
  489. if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
  490. printk(KERN_ERR "%s: PCI target abort.\n",
  491. dev->name);
  492. if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
  493. printk(KERN_ERR "%s: PCI master acks target abort.\n",
  494. dev->name);
  495. if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
  496. printk(KERN_ERR "%s: PCI master abort.\n",
  497. dev->name);
  498. if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
  499. printk(KERN_ERR "%s: PCI system error SERR#.\n",
  500. dev->name);
  501. if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
  502. printk(KERN_ERR "%s: PCI parity error.\n",
  503. dev->name);
  504. /* Write the error bits back to clear them. */
  505. pci_cfg_stat &= (PCI_STATUS_PARITY |
  506. PCI_STATUS_SIG_TARGET_ABORT |
  507. PCI_STATUS_REC_TARGET_ABORT |
  508. PCI_STATUS_REC_MASTER_ABORT |
  509. PCI_STATUS_SIG_SYSTEM_ERROR |
  510. PCI_STATUS_DETECTED_PARITY);
  511. pci_write_config_word(gp->pdev,
  512. PCI_STATUS, pci_cfg_stat);
  513. }
  514. /* For all PCI errors, we should reset the chip. */
  515. return 1;
  516. }
  517. /* All non-normal interrupt conditions get serviced here.
  518. * Returns non-zero if we should just exit the interrupt
  519. * handler right now (ie. if we reset the card which invalidates
  520. * all of the other original irq status bits).
  521. */
  522. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  523. {
  524. if (gem_status & GREG_STAT_RXNOBUF) {
  525. /* Frame arrived, no free RX buffers available. */
  526. if (netif_msg_rx_err(gp))
  527. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  528. gp->dev->name);
  529. gp->net_stats.rx_dropped++;
  530. }
  531. if (gem_status & GREG_STAT_RXTAGERR) {
  532. /* corrupt RX tag framing */
  533. if (netif_msg_rx_err(gp))
  534. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  535. gp->dev->name);
  536. gp->net_stats.rx_errors++;
  537. goto do_reset;
  538. }
  539. if (gem_status & GREG_STAT_PCS) {
  540. if (gem_pcs_interrupt(dev, gp, gem_status))
  541. goto do_reset;
  542. }
  543. if (gem_status & GREG_STAT_TXMAC) {
  544. if (gem_txmac_interrupt(dev, gp, gem_status))
  545. goto do_reset;
  546. }
  547. if (gem_status & GREG_STAT_RXMAC) {
  548. if (gem_rxmac_interrupt(dev, gp, gem_status))
  549. goto do_reset;
  550. }
  551. if (gem_status & GREG_STAT_MAC) {
  552. if (gem_mac_interrupt(dev, gp, gem_status))
  553. goto do_reset;
  554. }
  555. if (gem_status & GREG_STAT_MIF) {
  556. if (gem_mif_interrupt(dev, gp, gem_status))
  557. goto do_reset;
  558. }
  559. if (gem_status & GREG_STAT_PCIERR) {
  560. if (gem_pci_interrupt(dev, gp, gem_status))
  561. goto do_reset;
  562. }
  563. return 0;
  564. do_reset:
  565. gp->reset_task_pending = 1;
  566. schedule_work(&gp->reset_task);
  567. return 1;
  568. }
  569. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  570. {
  571. int entry, limit;
  572. if (netif_msg_intr(gp))
  573. printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
  574. gp->dev->name, gem_status);
  575. entry = gp->tx_old;
  576. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  577. while (entry != limit) {
  578. struct sk_buff *skb;
  579. struct gem_txd *txd;
  580. dma_addr_t dma_addr;
  581. u32 dma_len;
  582. int frag;
  583. if (netif_msg_tx_done(gp))
  584. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  585. gp->dev->name, entry);
  586. skb = gp->tx_skbs[entry];
  587. if (skb_shinfo(skb)->nr_frags) {
  588. int last = entry + skb_shinfo(skb)->nr_frags;
  589. int walk = entry;
  590. int incomplete = 0;
  591. last &= (TX_RING_SIZE - 1);
  592. for (;;) {
  593. walk = NEXT_TX(walk);
  594. if (walk == limit)
  595. incomplete = 1;
  596. if (walk == last)
  597. break;
  598. }
  599. if (incomplete)
  600. break;
  601. }
  602. gp->tx_skbs[entry] = NULL;
  603. gp->net_stats.tx_bytes += skb->len;
  604. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  605. txd = &gp->init_block->txd[entry];
  606. dma_addr = le64_to_cpu(txd->buffer);
  607. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  608. pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
  609. entry = NEXT_TX(entry);
  610. }
  611. gp->net_stats.tx_packets++;
  612. dev_kfree_skb_irq(skb);
  613. }
  614. gp->tx_old = entry;
  615. if (netif_queue_stopped(dev) &&
  616. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  617. netif_wake_queue(dev);
  618. }
  619. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  620. {
  621. int cluster_start, curr, count, kick;
  622. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  623. count = 0;
  624. kick = -1;
  625. wmb();
  626. while (curr != limit) {
  627. curr = NEXT_RX(curr);
  628. if (++count == 4) {
  629. struct gem_rxd *rxd =
  630. &gp->init_block->rxd[cluster_start];
  631. for (;;) {
  632. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  633. rxd++;
  634. cluster_start = NEXT_RX(cluster_start);
  635. if (cluster_start == curr)
  636. break;
  637. }
  638. kick = curr;
  639. count = 0;
  640. }
  641. }
  642. if (kick >= 0) {
  643. mb();
  644. writel(kick, gp->regs + RXDMA_KICK);
  645. }
  646. }
  647. static int gem_rx(struct gem *gp, int work_to_do)
  648. {
  649. int entry, drops, work_done = 0;
  650. u32 done;
  651. __sum16 csum;
  652. if (netif_msg_rx_status(gp))
  653. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  654. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  655. entry = gp->rx_new;
  656. drops = 0;
  657. done = readl(gp->regs + RXDMA_DONE);
  658. for (;;) {
  659. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  660. struct sk_buff *skb;
  661. u64 status = le64_to_cpu(rxd->status_word);
  662. dma_addr_t dma_addr;
  663. int len;
  664. if ((status & RXDCTRL_OWN) != 0)
  665. break;
  666. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  667. break;
  668. /* When writing back RX descriptor, GEM writes status
  669. * then buffer address, possibly in separate transactions.
  670. * If we don't wait for the chip to write both, we could
  671. * post a new buffer to this descriptor then have GEM spam
  672. * on the buffer address. We sync on the RX completion
  673. * register to prevent this from happening.
  674. */
  675. if (entry == done) {
  676. done = readl(gp->regs + RXDMA_DONE);
  677. if (entry == done)
  678. break;
  679. }
  680. /* We can now account for the work we're about to do */
  681. work_done++;
  682. skb = gp->rx_skbs[entry];
  683. len = (status & RXDCTRL_BUFSZ) >> 16;
  684. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  685. gp->net_stats.rx_errors++;
  686. if (len < ETH_ZLEN)
  687. gp->net_stats.rx_length_errors++;
  688. if (len & RXDCTRL_BAD)
  689. gp->net_stats.rx_crc_errors++;
  690. /* We'll just return it to GEM. */
  691. drop_it:
  692. gp->net_stats.rx_dropped++;
  693. goto next;
  694. }
  695. dma_addr = le64_to_cpu(rxd->buffer);
  696. if (len > RX_COPY_THRESHOLD) {
  697. struct sk_buff *new_skb;
  698. new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  699. if (new_skb == NULL) {
  700. drops++;
  701. goto drop_it;
  702. }
  703. pci_unmap_page(gp->pdev, dma_addr,
  704. RX_BUF_ALLOC_SIZE(gp),
  705. PCI_DMA_FROMDEVICE);
  706. gp->rx_skbs[entry] = new_skb;
  707. new_skb->dev = gp->dev;
  708. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  709. rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
  710. virt_to_page(new_skb->data),
  711. offset_in_page(new_skb->data),
  712. RX_BUF_ALLOC_SIZE(gp),
  713. PCI_DMA_FROMDEVICE));
  714. skb_reserve(new_skb, RX_OFFSET);
  715. /* Trim the original skb for the netif. */
  716. skb_trim(skb, len);
  717. } else {
  718. struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
  719. if (copy_skb == NULL) {
  720. drops++;
  721. goto drop_it;
  722. }
  723. skb_reserve(copy_skb, 2);
  724. skb_put(copy_skb, len);
  725. pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  726. skb_copy_from_linear_data(skb, copy_skb->data, len);
  727. pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  728. /* We'll reuse the original ring buffer. */
  729. skb = copy_skb;
  730. }
  731. csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  732. skb->csum = csum_unfold(csum);
  733. skb->ip_summed = CHECKSUM_COMPLETE;
  734. skb->protocol = eth_type_trans(skb, gp->dev);
  735. netif_receive_skb(skb);
  736. gp->net_stats.rx_packets++;
  737. gp->net_stats.rx_bytes += len;
  738. next:
  739. entry = NEXT_RX(entry);
  740. }
  741. gem_post_rxds(gp, entry);
  742. gp->rx_new = entry;
  743. if (drops)
  744. printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
  745. gp->dev->name);
  746. return work_done;
  747. }
  748. static int gem_poll(struct napi_struct *napi, int budget)
  749. {
  750. struct gem *gp = container_of(napi, struct gem, napi);
  751. struct net_device *dev = gp->dev;
  752. unsigned long flags;
  753. int work_done;
  754. /*
  755. * NAPI locking nightmare: See comment at head of driver
  756. */
  757. spin_lock_irqsave(&gp->lock, flags);
  758. work_done = 0;
  759. do {
  760. /* Handle anomalies */
  761. if (gp->status & GREG_STAT_ABNORMAL) {
  762. if (gem_abnormal_irq(dev, gp, gp->status))
  763. break;
  764. }
  765. /* Run TX completion thread */
  766. spin_lock(&gp->tx_lock);
  767. gem_tx(dev, gp, gp->status);
  768. spin_unlock(&gp->tx_lock);
  769. spin_unlock_irqrestore(&gp->lock, flags);
  770. /* Run RX thread. We don't use any locking here,
  771. * code willing to do bad things - like cleaning the
  772. * rx ring - must call napi_disable(), which
  773. * schedule_timeout()'s if polling is already disabled.
  774. */
  775. work_done += gem_rx(gp, budget - work_done);
  776. if (work_done >= budget)
  777. return work_done;
  778. spin_lock_irqsave(&gp->lock, flags);
  779. gp->status = readl(gp->regs + GREG_STAT);
  780. } while (gp->status & GREG_STAT_NAPI);
  781. __napi_complete(napi);
  782. gem_enable_ints(gp);
  783. spin_unlock_irqrestore(&gp->lock, flags);
  784. return work_done;
  785. }
  786. static irqreturn_t gem_interrupt(int irq, void *dev_id)
  787. {
  788. struct net_device *dev = dev_id;
  789. struct gem *gp = netdev_priv(dev);
  790. unsigned long flags;
  791. /* Swallow interrupts when shutting the chip down, though
  792. * that shouldn't happen, we should have done free_irq() at
  793. * this point...
  794. */
  795. if (!gp->running)
  796. return IRQ_HANDLED;
  797. spin_lock_irqsave(&gp->lock, flags);
  798. if (napi_schedule_prep(&gp->napi)) {
  799. u32 gem_status = readl(gp->regs + GREG_STAT);
  800. if (gem_status == 0) {
  801. napi_enable(&gp->napi);
  802. spin_unlock_irqrestore(&gp->lock, flags);
  803. return IRQ_NONE;
  804. }
  805. gp->status = gem_status;
  806. gem_disable_ints(gp);
  807. __napi_schedule(&gp->napi);
  808. }
  809. spin_unlock_irqrestore(&gp->lock, flags);
  810. /* If polling was disabled at the time we received that
  811. * interrupt, we may return IRQ_HANDLED here while we
  812. * should return IRQ_NONE. No big deal...
  813. */
  814. return IRQ_HANDLED;
  815. }
  816. #ifdef CONFIG_NET_POLL_CONTROLLER
  817. static void gem_poll_controller(struct net_device *dev)
  818. {
  819. /* gem_interrupt is safe to reentrance so no need
  820. * to disable_irq here.
  821. */
  822. gem_interrupt(dev->irq, dev);
  823. }
  824. #endif
  825. static void gem_tx_timeout(struct net_device *dev)
  826. {
  827. struct gem *gp = netdev_priv(dev);
  828. printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
  829. if (!gp->running) {
  830. printk("%s: hrm.. hw not running !\n", dev->name);
  831. return;
  832. }
  833. printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
  834. dev->name,
  835. readl(gp->regs + TXDMA_CFG),
  836. readl(gp->regs + MAC_TXSTAT),
  837. readl(gp->regs + MAC_TXCFG));
  838. printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
  839. dev->name,
  840. readl(gp->regs + RXDMA_CFG),
  841. readl(gp->regs + MAC_RXSTAT),
  842. readl(gp->regs + MAC_RXCFG));
  843. spin_lock_irq(&gp->lock);
  844. spin_lock(&gp->tx_lock);
  845. gp->reset_task_pending = 1;
  846. schedule_work(&gp->reset_task);
  847. spin_unlock(&gp->tx_lock);
  848. spin_unlock_irq(&gp->lock);
  849. }
  850. static __inline__ int gem_intme(int entry)
  851. {
  852. /* Algorithm: IRQ every 1/2 of descriptors. */
  853. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  854. return 1;
  855. return 0;
  856. }
  857. static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
  858. struct net_device *dev)
  859. {
  860. struct gem *gp = netdev_priv(dev);
  861. int entry;
  862. u64 ctrl;
  863. unsigned long flags;
  864. ctrl = 0;
  865. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  866. const u64 csum_start_off = skb_transport_offset(skb);
  867. const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
  868. ctrl = (TXDCTRL_CENAB |
  869. (csum_start_off << 15) |
  870. (csum_stuff_off << 21));
  871. }
  872. if (!spin_trylock_irqsave(&gp->tx_lock, flags)) {
  873. /* Tell upper layer to requeue */
  874. return NETDEV_TX_LOCKED;
  875. }
  876. /* We raced with gem_do_stop() */
  877. if (!gp->running) {
  878. spin_unlock_irqrestore(&gp->tx_lock, flags);
  879. return NETDEV_TX_BUSY;
  880. }
  881. /* This is a hard error, log it. */
  882. if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  883. netif_stop_queue(dev);
  884. spin_unlock_irqrestore(&gp->tx_lock, flags);
  885. printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
  886. dev->name);
  887. return NETDEV_TX_BUSY;
  888. }
  889. entry = gp->tx_new;
  890. gp->tx_skbs[entry] = skb;
  891. if (skb_shinfo(skb)->nr_frags == 0) {
  892. struct gem_txd *txd = &gp->init_block->txd[entry];
  893. dma_addr_t mapping;
  894. u32 len;
  895. len = skb->len;
  896. mapping = pci_map_page(gp->pdev,
  897. virt_to_page(skb->data),
  898. offset_in_page(skb->data),
  899. len, PCI_DMA_TODEVICE);
  900. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  901. if (gem_intme(entry))
  902. ctrl |= TXDCTRL_INTME;
  903. txd->buffer = cpu_to_le64(mapping);
  904. wmb();
  905. txd->control_word = cpu_to_le64(ctrl);
  906. entry = NEXT_TX(entry);
  907. } else {
  908. struct gem_txd *txd;
  909. u32 first_len;
  910. u64 intme;
  911. dma_addr_t first_mapping;
  912. int frag, first_entry = entry;
  913. intme = 0;
  914. if (gem_intme(entry))
  915. intme |= TXDCTRL_INTME;
  916. /* We must give this initial chunk to the device last.
  917. * Otherwise we could race with the device.
  918. */
  919. first_len = skb_headlen(skb);
  920. first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
  921. offset_in_page(skb->data),
  922. first_len, PCI_DMA_TODEVICE);
  923. entry = NEXT_TX(entry);
  924. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  925. skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  926. u32 len;
  927. dma_addr_t mapping;
  928. u64 this_ctrl;
  929. len = this_frag->size;
  930. mapping = pci_map_page(gp->pdev,
  931. this_frag->page,
  932. this_frag->page_offset,
  933. len, PCI_DMA_TODEVICE);
  934. this_ctrl = ctrl;
  935. if (frag == skb_shinfo(skb)->nr_frags - 1)
  936. this_ctrl |= TXDCTRL_EOF;
  937. txd = &gp->init_block->txd[entry];
  938. txd->buffer = cpu_to_le64(mapping);
  939. wmb();
  940. txd->control_word = cpu_to_le64(this_ctrl | len);
  941. if (gem_intme(entry))
  942. intme |= TXDCTRL_INTME;
  943. entry = NEXT_TX(entry);
  944. }
  945. txd = &gp->init_block->txd[first_entry];
  946. txd->buffer = cpu_to_le64(first_mapping);
  947. wmb();
  948. txd->control_word =
  949. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  950. }
  951. gp->tx_new = entry;
  952. if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
  953. netif_stop_queue(dev);
  954. if (netif_msg_tx_queued(gp))
  955. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  956. dev->name, entry, skb->len);
  957. mb();
  958. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  959. spin_unlock_irqrestore(&gp->tx_lock, flags);
  960. dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
  961. return NETDEV_TX_OK;
  962. }
  963. static void gem_pcs_reset(struct gem *gp)
  964. {
  965. int limit;
  966. u32 val;
  967. /* Reset PCS unit. */
  968. val = readl(gp->regs + PCS_MIICTRL);
  969. val |= PCS_MIICTRL_RST;
  970. writel(val, gp->regs + PCS_MIICTRL);
  971. limit = 32;
  972. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  973. udelay(100);
  974. if (limit-- <= 0)
  975. break;
  976. }
  977. if (limit < 0)
  978. printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
  979. gp->dev->name);
  980. }
  981. static void gem_pcs_reinit_adv(struct gem *gp)
  982. {
  983. u32 val;
  984. /* Make sure PCS is disabled while changing advertisement
  985. * configuration.
  986. */
  987. val = readl(gp->regs + PCS_CFG);
  988. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  989. writel(val, gp->regs + PCS_CFG);
  990. /* Advertise all capabilities except assymetric
  991. * pause.
  992. */
  993. val = readl(gp->regs + PCS_MIIADV);
  994. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  995. PCS_MIIADV_SP | PCS_MIIADV_AP);
  996. writel(val, gp->regs + PCS_MIIADV);
  997. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  998. * and re-enable PCS.
  999. */
  1000. val = readl(gp->regs + PCS_MIICTRL);
  1001. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  1002. val &= ~PCS_MIICTRL_WB;
  1003. writel(val, gp->regs + PCS_MIICTRL);
  1004. val = readl(gp->regs + PCS_CFG);
  1005. val |= PCS_CFG_ENABLE;
  1006. writel(val, gp->regs + PCS_CFG);
  1007. /* Make sure serialink loopback is off. The meaning
  1008. * of this bit is logically inverted based upon whether
  1009. * you are in Serialink or SERDES mode.
  1010. */
  1011. val = readl(gp->regs + PCS_SCTRL);
  1012. if (gp->phy_type == phy_serialink)
  1013. val &= ~PCS_SCTRL_LOOP;
  1014. else
  1015. val |= PCS_SCTRL_LOOP;
  1016. writel(val, gp->regs + PCS_SCTRL);
  1017. }
  1018. #define STOP_TRIES 32
  1019. /* Must be invoked under gp->lock and gp->tx_lock. */
  1020. static void gem_reset(struct gem *gp)
  1021. {
  1022. int limit;
  1023. u32 val;
  1024. /* Make sure we won't get any more interrupts */
  1025. writel(0xffffffff, gp->regs + GREG_IMASK);
  1026. /* Reset the chip */
  1027. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  1028. gp->regs + GREG_SWRST);
  1029. limit = STOP_TRIES;
  1030. do {
  1031. udelay(20);
  1032. val = readl(gp->regs + GREG_SWRST);
  1033. if (limit-- <= 0)
  1034. break;
  1035. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  1036. if (limit < 0)
  1037. printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
  1038. if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
  1039. gem_pcs_reinit_adv(gp);
  1040. }
  1041. /* Must be invoked under gp->lock and gp->tx_lock. */
  1042. static void gem_start_dma(struct gem *gp)
  1043. {
  1044. u32 val;
  1045. /* We are ready to rock, turn everything on. */
  1046. val = readl(gp->regs + TXDMA_CFG);
  1047. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1048. val = readl(gp->regs + RXDMA_CFG);
  1049. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1050. val = readl(gp->regs + MAC_TXCFG);
  1051. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1052. val = readl(gp->regs + MAC_RXCFG);
  1053. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1054. (void) readl(gp->regs + MAC_RXCFG);
  1055. udelay(100);
  1056. gem_enable_ints(gp);
  1057. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1058. }
  1059. /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
  1060. * actually stopped before about 4ms tho ...
  1061. */
  1062. static void gem_stop_dma(struct gem *gp)
  1063. {
  1064. u32 val;
  1065. /* We are done rocking, turn everything off. */
  1066. val = readl(gp->regs + TXDMA_CFG);
  1067. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1068. val = readl(gp->regs + RXDMA_CFG);
  1069. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1070. val = readl(gp->regs + MAC_TXCFG);
  1071. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1072. val = readl(gp->regs + MAC_RXCFG);
  1073. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1074. (void) readl(gp->regs + MAC_RXCFG);
  1075. /* Need to wait a bit ... done by the caller */
  1076. }
  1077. /* Must be invoked under gp->lock and gp->tx_lock. */
  1078. // XXX dbl check what that function should do when called on PCS PHY
  1079. static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
  1080. {
  1081. u32 advertise, features;
  1082. int autoneg;
  1083. int speed;
  1084. int duplex;
  1085. if (gp->phy_type != phy_mii_mdio0 &&
  1086. gp->phy_type != phy_mii_mdio1)
  1087. goto non_mii;
  1088. /* Setup advertise */
  1089. if (found_mii_phy(gp))
  1090. features = gp->phy_mii.def->features;
  1091. else
  1092. features = 0;
  1093. advertise = features & ADVERTISE_MASK;
  1094. if (gp->phy_mii.advertising != 0)
  1095. advertise &= gp->phy_mii.advertising;
  1096. autoneg = gp->want_autoneg;
  1097. speed = gp->phy_mii.speed;
  1098. duplex = gp->phy_mii.duplex;
  1099. /* Setup link parameters */
  1100. if (!ep)
  1101. goto start_aneg;
  1102. if (ep->autoneg == AUTONEG_ENABLE) {
  1103. advertise = ep->advertising;
  1104. autoneg = 1;
  1105. } else {
  1106. autoneg = 0;
  1107. speed = ep->speed;
  1108. duplex = ep->duplex;
  1109. }
  1110. start_aneg:
  1111. /* Sanitize settings based on PHY capabilities */
  1112. if ((features & SUPPORTED_Autoneg) == 0)
  1113. autoneg = 0;
  1114. if (speed == SPEED_1000 &&
  1115. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1116. speed = SPEED_100;
  1117. if (speed == SPEED_100 &&
  1118. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1119. speed = SPEED_10;
  1120. if (duplex == DUPLEX_FULL &&
  1121. !(features & (SUPPORTED_1000baseT_Full |
  1122. SUPPORTED_100baseT_Full |
  1123. SUPPORTED_10baseT_Full)))
  1124. duplex = DUPLEX_HALF;
  1125. if (speed == 0)
  1126. speed = SPEED_10;
  1127. /* If we are asleep, we don't try to actually setup the PHY, we
  1128. * just store the settings
  1129. */
  1130. if (gp->asleep) {
  1131. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1132. gp->phy_mii.speed = speed;
  1133. gp->phy_mii.duplex = duplex;
  1134. return;
  1135. }
  1136. /* Configure PHY & start aneg */
  1137. gp->want_autoneg = autoneg;
  1138. if (autoneg) {
  1139. if (found_mii_phy(gp))
  1140. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1141. gp->lstate = link_aneg;
  1142. } else {
  1143. if (found_mii_phy(gp))
  1144. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1145. gp->lstate = link_force_ok;
  1146. }
  1147. non_mii:
  1148. gp->timer_ticks = 0;
  1149. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1150. }
  1151. /* A link-up condition has occurred, initialize and enable the
  1152. * rest of the chip.
  1153. *
  1154. * Must be invoked under gp->lock and gp->tx_lock.
  1155. */
  1156. static int gem_set_link_modes(struct gem *gp)
  1157. {
  1158. u32 val;
  1159. int full_duplex, speed, pause;
  1160. full_duplex = 0;
  1161. speed = SPEED_10;
  1162. pause = 0;
  1163. if (found_mii_phy(gp)) {
  1164. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1165. return 1;
  1166. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1167. speed = gp->phy_mii.speed;
  1168. pause = gp->phy_mii.pause;
  1169. } else if (gp->phy_type == phy_serialink ||
  1170. gp->phy_type == phy_serdes) {
  1171. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1172. if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
  1173. full_duplex = 1;
  1174. speed = SPEED_1000;
  1175. }
  1176. if (netif_msg_link(gp))
  1177. printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
  1178. gp->dev->name, speed, (full_duplex ? "full" : "half"));
  1179. if (!gp->running)
  1180. return 0;
  1181. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1182. if (full_duplex) {
  1183. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1184. } else {
  1185. /* MAC_TXCFG_NBO must be zero. */
  1186. }
  1187. writel(val, gp->regs + MAC_TXCFG);
  1188. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1189. if (!full_duplex &&
  1190. (gp->phy_type == phy_mii_mdio0 ||
  1191. gp->phy_type == phy_mii_mdio1)) {
  1192. val |= MAC_XIFCFG_DISE;
  1193. } else if (full_duplex) {
  1194. val |= MAC_XIFCFG_FLED;
  1195. }
  1196. if (speed == SPEED_1000)
  1197. val |= (MAC_XIFCFG_GMII);
  1198. writel(val, gp->regs + MAC_XIFCFG);
  1199. /* If gigabit and half-duplex, enable carrier extension
  1200. * mode. Else, disable it.
  1201. */
  1202. if (speed == SPEED_1000 && !full_duplex) {
  1203. val = readl(gp->regs + MAC_TXCFG);
  1204. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1205. val = readl(gp->regs + MAC_RXCFG);
  1206. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1207. } else {
  1208. val = readl(gp->regs + MAC_TXCFG);
  1209. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1210. val = readl(gp->regs + MAC_RXCFG);
  1211. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1212. }
  1213. if (gp->phy_type == phy_serialink ||
  1214. gp->phy_type == phy_serdes) {
  1215. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1216. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1217. pause = 1;
  1218. }
  1219. if (netif_msg_link(gp)) {
  1220. if (pause) {
  1221. printk(KERN_INFO "%s: Pause is enabled "
  1222. "(rxfifo: %d off: %d on: %d)\n",
  1223. gp->dev->name,
  1224. gp->rx_fifo_sz,
  1225. gp->rx_pause_off,
  1226. gp->rx_pause_on);
  1227. } else {
  1228. printk(KERN_INFO "%s: Pause is disabled\n",
  1229. gp->dev->name);
  1230. }
  1231. }
  1232. if (!full_duplex)
  1233. writel(512, gp->regs + MAC_STIME);
  1234. else
  1235. writel(64, gp->regs + MAC_STIME);
  1236. val = readl(gp->regs + MAC_MCCFG);
  1237. if (pause)
  1238. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1239. else
  1240. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1241. writel(val, gp->regs + MAC_MCCFG);
  1242. gem_start_dma(gp);
  1243. return 0;
  1244. }
  1245. /* Must be invoked under gp->lock and gp->tx_lock. */
  1246. static int gem_mdio_link_not_up(struct gem *gp)
  1247. {
  1248. switch (gp->lstate) {
  1249. case link_force_ret:
  1250. if (netif_msg_link(gp))
  1251. printk(KERN_INFO "%s: Autoneg failed again, keeping"
  1252. " forced mode\n", gp->dev->name);
  1253. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1254. gp->last_forced_speed, DUPLEX_HALF);
  1255. gp->timer_ticks = 5;
  1256. gp->lstate = link_force_ok;
  1257. return 0;
  1258. case link_aneg:
  1259. /* We try forced modes after a failed aneg only on PHYs that don't
  1260. * have "magic_aneg" bit set, which means they internally do the
  1261. * while forced-mode thingy. On these, we just restart aneg
  1262. */
  1263. if (gp->phy_mii.def->magic_aneg)
  1264. return 1;
  1265. if (netif_msg_link(gp))
  1266. printk(KERN_INFO "%s: switching to forced 100bt\n",
  1267. gp->dev->name);
  1268. /* Try forced modes. */
  1269. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1270. DUPLEX_HALF);
  1271. gp->timer_ticks = 5;
  1272. gp->lstate = link_force_try;
  1273. return 0;
  1274. case link_force_try:
  1275. /* Downgrade from 100 to 10 Mbps if necessary.
  1276. * If already at 10Mbps, warn user about the
  1277. * situation every 10 ticks.
  1278. */
  1279. if (gp->phy_mii.speed == SPEED_100) {
  1280. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1281. DUPLEX_HALF);
  1282. gp->timer_ticks = 5;
  1283. if (netif_msg_link(gp))
  1284. printk(KERN_INFO "%s: switching to forced 10bt\n",
  1285. gp->dev->name);
  1286. return 0;
  1287. } else
  1288. return 1;
  1289. default:
  1290. return 0;
  1291. }
  1292. }
  1293. static void gem_link_timer(unsigned long data)
  1294. {
  1295. struct gem *gp = (struct gem *) data;
  1296. int restart_aneg = 0;
  1297. if (gp->asleep)
  1298. return;
  1299. spin_lock_irq(&gp->lock);
  1300. spin_lock(&gp->tx_lock);
  1301. gem_get_cell(gp);
  1302. /* If the reset task is still pending, we just
  1303. * reschedule the link timer
  1304. */
  1305. if (gp->reset_task_pending)
  1306. goto restart;
  1307. if (gp->phy_type == phy_serialink ||
  1308. gp->phy_type == phy_serdes) {
  1309. u32 val = readl(gp->regs + PCS_MIISTAT);
  1310. if (!(val & PCS_MIISTAT_LS))
  1311. val = readl(gp->regs + PCS_MIISTAT);
  1312. if ((val & PCS_MIISTAT_LS) != 0) {
  1313. if (gp->lstate == link_up)
  1314. goto restart;
  1315. gp->lstate = link_up;
  1316. netif_carrier_on(gp->dev);
  1317. (void)gem_set_link_modes(gp);
  1318. }
  1319. goto restart;
  1320. }
  1321. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1322. /* Ok, here we got a link. If we had it due to a forced
  1323. * fallback, and we were configured for autoneg, we do
  1324. * retry a short autoneg pass. If you know your hub is
  1325. * broken, use ethtool ;)
  1326. */
  1327. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1328. gp->lstate = link_force_ret;
  1329. gp->last_forced_speed = gp->phy_mii.speed;
  1330. gp->timer_ticks = 5;
  1331. if (netif_msg_link(gp))
  1332. printk(KERN_INFO "%s: Got link after fallback, retrying"
  1333. " autoneg once...\n", gp->dev->name);
  1334. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1335. } else if (gp->lstate != link_up) {
  1336. gp->lstate = link_up;
  1337. netif_carrier_on(gp->dev);
  1338. if (gem_set_link_modes(gp))
  1339. restart_aneg = 1;
  1340. }
  1341. } else {
  1342. /* If the link was previously up, we restart the
  1343. * whole process
  1344. */
  1345. if (gp->lstate == link_up) {
  1346. gp->lstate = link_down;
  1347. if (netif_msg_link(gp))
  1348. printk(KERN_INFO "%s: Link down\n",
  1349. gp->dev->name);
  1350. netif_carrier_off(gp->dev);
  1351. gp->reset_task_pending = 1;
  1352. schedule_work(&gp->reset_task);
  1353. restart_aneg = 1;
  1354. } else if (++gp->timer_ticks > 10) {
  1355. if (found_mii_phy(gp))
  1356. restart_aneg = gem_mdio_link_not_up(gp);
  1357. else
  1358. restart_aneg = 1;
  1359. }
  1360. }
  1361. if (restart_aneg) {
  1362. gem_begin_auto_negotiation(gp, NULL);
  1363. goto out_unlock;
  1364. }
  1365. restart:
  1366. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1367. out_unlock:
  1368. gem_put_cell(gp);
  1369. spin_unlock(&gp->tx_lock);
  1370. spin_unlock_irq(&gp->lock);
  1371. }
  1372. /* Must be invoked under gp->lock and gp->tx_lock. */
  1373. static void gem_clean_rings(struct gem *gp)
  1374. {
  1375. struct gem_init_block *gb = gp->init_block;
  1376. struct sk_buff *skb;
  1377. int i;
  1378. dma_addr_t dma_addr;
  1379. for (i = 0; i < RX_RING_SIZE; i++) {
  1380. struct gem_rxd *rxd;
  1381. rxd = &gb->rxd[i];
  1382. if (gp->rx_skbs[i] != NULL) {
  1383. skb = gp->rx_skbs[i];
  1384. dma_addr = le64_to_cpu(rxd->buffer);
  1385. pci_unmap_page(gp->pdev, dma_addr,
  1386. RX_BUF_ALLOC_SIZE(gp),
  1387. PCI_DMA_FROMDEVICE);
  1388. dev_kfree_skb_any(skb);
  1389. gp->rx_skbs[i] = NULL;
  1390. }
  1391. rxd->status_word = 0;
  1392. wmb();
  1393. rxd->buffer = 0;
  1394. }
  1395. for (i = 0; i < TX_RING_SIZE; i++) {
  1396. if (gp->tx_skbs[i] != NULL) {
  1397. struct gem_txd *txd;
  1398. int frag;
  1399. skb = gp->tx_skbs[i];
  1400. gp->tx_skbs[i] = NULL;
  1401. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1402. int ent = i & (TX_RING_SIZE - 1);
  1403. txd = &gb->txd[ent];
  1404. dma_addr = le64_to_cpu(txd->buffer);
  1405. pci_unmap_page(gp->pdev, dma_addr,
  1406. le64_to_cpu(txd->control_word) &
  1407. TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
  1408. if (frag != skb_shinfo(skb)->nr_frags)
  1409. i++;
  1410. }
  1411. dev_kfree_skb_any(skb);
  1412. }
  1413. }
  1414. }
  1415. /* Must be invoked under gp->lock and gp->tx_lock. */
  1416. static void gem_init_rings(struct gem *gp)
  1417. {
  1418. struct gem_init_block *gb = gp->init_block;
  1419. struct net_device *dev = gp->dev;
  1420. int i;
  1421. dma_addr_t dma_addr;
  1422. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1423. gem_clean_rings(gp);
  1424. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1425. (unsigned)VLAN_ETH_FRAME_LEN);
  1426. for (i = 0; i < RX_RING_SIZE; i++) {
  1427. struct sk_buff *skb;
  1428. struct gem_rxd *rxd = &gb->rxd[i];
  1429. skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  1430. if (!skb) {
  1431. rxd->buffer = 0;
  1432. rxd->status_word = 0;
  1433. continue;
  1434. }
  1435. gp->rx_skbs[i] = skb;
  1436. skb->dev = dev;
  1437. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1438. dma_addr = pci_map_page(gp->pdev,
  1439. virt_to_page(skb->data),
  1440. offset_in_page(skb->data),
  1441. RX_BUF_ALLOC_SIZE(gp),
  1442. PCI_DMA_FROMDEVICE);
  1443. rxd->buffer = cpu_to_le64(dma_addr);
  1444. wmb();
  1445. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1446. skb_reserve(skb, RX_OFFSET);
  1447. }
  1448. for (i = 0; i < TX_RING_SIZE; i++) {
  1449. struct gem_txd *txd = &gb->txd[i];
  1450. txd->control_word = 0;
  1451. wmb();
  1452. txd->buffer = 0;
  1453. }
  1454. wmb();
  1455. }
  1456. /* Init PHY interface and start link poll state machine */
  1457. static void gem_init_phy(struct gem *gp)
  1458. {
  1459. u32 mifcfg;
  1460. /* Revert MIF CFG setting done on stop_phy */
  1461. mifcfg = readl(gp->regs + MIF_CFG);
  1462. mifcfg &= ~MIF_CFG_BBMODE;
  1463. writel(mifcfg, gp->regs + MIF_CFG);
  1464. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1465. int i;
  1466. /* Those delay sucks, the HW seem to love them though, I'll
  1467. * serisouly consider breaking some locks here to be able
  1468. * to schedule instead
  1469. */
  1470. for (i = 0; i < 3; i++) {
  1471. #ifdef CONFIG_PPC_PMAC
  1472. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1473. msleep(20);
  1474. #endif
  1475. /* Some PHYs used by apple have problem getting back to us,
  1476. * we do an additional reset here
  1477. */
  1478. phy_write(gp, MII_BMCR, BMCR_RESET);
  1479. msleep(20);
  1480. if (phy_read(gp, MII_BMCR) != 0xffff)
  1481. break;
  1482. if (i == 2)
  1483. printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
  1484. gp->dev->name);
  1485. }
  1486. }
  1487. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1488. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1489. u32 val;
  1490. /* Init datapath mode register. */
  1491. if (gp->phy_type == phy_mii_mdio0 ||
  1492. gp->phy_type == phy_mii_mdio1) {
  1493. val = PCS_DMODE_MGM;
  1494. } else if (gp->phy_type == phy_serialink) {
  1495. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1496. } else {
  1497. val = PCS_DMODE_ESM;
  1498. }
  1499. writel(val, gp->regs + PCS_DMODE);
  1500. }
  1501. if (gp->phy_type == phy_mii_mdio0 ||
  1502. gp->phy_type == phy_mii_mdio1) {
  1503. // XXX check for errors
  1504. mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1505. /* Init PHY */
  1506. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1507. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1508. } else {
  1509. gem_pcs_reset(gp);
  1510. gem_pcs_reinit_adv(gp);
  1511. }
  1512. /* Default aneg parameters */
  1513. gp->timer_ticks = 0;
  1514. gp->lstate = link_down;
  1515. netif_carrier_off(gp->dev);
  1516. /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
  1517. spin_lock_irq(&gp->lock);
  1518. gem_begin_auto_negotiation(gp, NULL);
  1519. spin_unlock_irq(&gp->lock);
  1520. }
  1521. /* Must be invoked under gp->lock and gp->tx_lock. */
  1522. static void gem_init_dma(struct gem *gp)
  1523. {
  1524. u64 desc_dma = (u64) gp->gblock_dvma;
  1525. u32 val;
  1526. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1527. writel(val, gp->regs + TXDMA_CFG);
  1528. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1529. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1530. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1531. writel(0, gp->regs + TXDMA_KICK);
  1532. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1533. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  1534. writel(val, gp->regs + RXDMA_CFG);
  1535. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1536. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1537. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1538. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1539. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1540. writel(val, gp->regs + RXDMA_PTHRESH);
  1541. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1542. writel(((5 & RXDMA_BLANK_IPKTS) |
  1543. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1544. gp->regs + RXDMA_BLANK);
  1545. else
  1546. writel(((5 & RXDMA_BLANK_IPKTS) |
  1547. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1548. gp->regs + RXDMA_BLANK);
  1549. }
  1550. /* Must be invoked under gp->lock and gp->tx_lock. */
  1551. static u32 gem_setup_multicast(struct gem *gp)
  1552. {
  1553. u32 rxcfg = 0;
  1554. int i;
  1555. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1556. (netdev_mc_count(gp->dev) > 256)) {
  1557. for (i=0; i<16; i++)
  1558. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1559. rxcfg |= MAC_RXCFG_HFE;
  1560. } else if (gp->dev->flags & IFF_PROMISC) {
  1561. rxcfg |= MAC_RXCFG_PROM;
  1562. } else {
  1563. u16 hash_table[16];
  1564. u32 crc;
  1565. struct netdev_hw_addr *ha;
  1566. int i;
  1567. memset(hash_table, 0, sizeof(hash_table));
  1568. netdev_for_each_mc_addr(ha, gp->dev) {
  1569. char *addrs = ha->addr;
  1570. if (!(*addrs & 1))
  1571. continue;
  1572. crc = ether_crc_le(6, addrs);
  1573. crc >>= 24;
  1574. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1575. }
  1576. for (i=0; i<16; i++)
  1577. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1578. rxcfg |= MAC_RXCFG_HFE;
  1579. }
  1580. return rxcfg;
  1581. }
  1582. /* Must be invoked under gp->lock and gp->tx_lock. */
  1583. static void gem_init_mac(struct gem *gp)
  1584. {
  1585. unsigned char *e = &gp->dev->dev_addr[0];
  1586. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1587. writel(0x00, gp->regs + MAC_IPG0);
  1588. writel(0x08, gp->regs + MAC_IPG1);
  1589. writel(0x04, gp->regs + MAC_IPG2);
  1590. writel(0x40, gp->regs + MAC_STIME);
  1591. writel(0x40, gp->regs + MAC_MINFSZ);
  1592. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1593. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1594. writel(0x07, gp->regs + MAC_PASIZE);
  1595. writel(0x04, gp->regs + MAC_JAMSIZE);
  1596. writel(0x10, gp->regs + MAC_ATTLIM);
  1597. writel(0x8808, gp->regs + MAC_MCTYPE);
  1598. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1599. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1600. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1601. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1602. writel(0, gp->regs + MAC_ADDR3);
  1603. writel(0, gp->regs + MAC_ADDR4);
  1604. writel(0, gp->regs + MAC_ADDR5);
  1605. writel(0x0001, gp->regs + MAC_ADDR6);
  1606. writel(0xc200, gp->regs + MAC_ADDR7);
  1607. writel(0x0180, gp->regs + MAC_ADDR8);
  1608. writel(0, gp->regs + MAC_AFILT0);
  1609. writel(0, gp->regs + MAC_AFILT1);
  1610. writel(0, gp->regs + MAC_AFILT2);
  1611. writel(0, gp->regs + MAC_AF21MSK);
  1612. writel(0, gp->regs + MAC_AF0MSK);
  1613. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1614. #ifdef STRIP_FCS
  1615. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1616. #endif
  1617. writel(0, gp->regs + MAC_NCOLL);
  1618. writel(0, gp->regs + MAC_FASUCC);
  1619. writel(0, gp->regs + MAC_ECOLL);
  1620. writel(0, gp->regs + MAC_LCOLL);
  1621. writel(0, gp->regs + MAC_DTIMER);
  1622. writel(0, gp->regs + MAC_PATMPS);
  1623. writel(0, gp->regs + MAC_RFCTR);
  1624. writel(0, gp->regs + MAC_LERR);
  1625. writel(0, gp->regs + MAC_AERR);
  1626. writel(0, gp->regs + MAC_FCSERR);
  1627. writel(0, gp->regs + MAC_RXCVERR);
  1628. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1629. * them once a link is established.
  1630. */
  1631. writel(0, gp->regs + MAC_TXCFG);
  1632. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1633. writel(0, gp->regs + MAC_MCCFG);
  1634. writel(0, gp->regs + MAC_XIFCFG);
  1635. /* Setup MAC interrupts. We want to get all of the interesting
  1636. * counter expiration events, but we do not want to hear about
  1637. * normal rx/tx as the DMA engine tells us that.
  1638. */
  1639. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1640. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1641. /* Don't enable even the PAUSE interrupts for now, we
  1642. * make no use of those events other than to record them.
  1643. */
  1644. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1645. /* Don't enable GEM's WOL in normal operations
  1646. */
  1647. if (gp->has_wol)
  1648. writel(0, gp->regs + WOL_WAKECSR);
  1649. }
  1650. /* Must be invoked under gp->lock and gp->tx_lock. */
  1651. static void gem_init_pause_thresholds(struct gem *gp)
  1652. {
  1653. u32 cfg;
  1654. /* Calculate pause thresholds. Setting the OFF threshold to the
  1655. * full RX fifo size effectively disables PAUSE generation which
  1656. * is what we do for 10/100 only GEMs which have FIFOs too small
  1657. * to make real gains from PAUSE.
  1658. */
  1659. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1660. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1661. } else {
  1662. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1663. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1664. int on = off - max_frame;
  1665. gp->rx_pause_off = off;
  1666. gp->rx_pause_on = on;
  1667. }
  1668. /* Configure the chip "burst" DMA mode & enable some
  1669. * HW bug fixes on Apple version
  1670. */
  1671. cfg = 0;
  1672. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1673. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1674. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1675. cfg |= GREG_CFG_IBURST;
  1676. #endif
  1677. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1678. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1679. writel(cfg, gp->regs + GREG_CFG);
  1680. /* If Infinite Burst didn't stick, then use different
  1681. * thresholds (and Apple bug fixes don't exist)
  1682. */
  1683. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1684. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1685. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1686. writel(cfg, gp->regs + GREG_CFG);
  1687. }
  1688. }
  1689. static int gem_check_invariants(struct gem *gp)
  1690. {
  1691. struct pci_dev *pdev = gp->pdev;
  1692. u32 mif_cfg;
  1693. /* On Apple's sungem, we can't rely on registers as the chip
  1694. * was been powered down by the firmware. The PHY is looked
  1695. * up later on.
  1696. */
  1697. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1698. gp->phy_type = phy_mii_mdio0;
  1699. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1700. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1701. gp->swrst_base = 0;
  1702. mif_cfg = readl(gp->regs + MIF_CFG);
  1703. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1704. mif_cfg |= MIF_CFG_MDI0;
  1705. writel(mif_cfg, gp->regs + MIF_CFG);
  1706. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1707. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1708. /* We hard-code the PHY address so we can properly bring it out of
  1709. * reset later on, we can't really probe it at this point, though
  1710. * that isn't an issue.
  1711. */
  1712. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1713. gp->mii_phy_addr = 1;
  1714. else
  1715. gp->mii_phy_addr = 0;
  1716. return 0;
  1717. }
  1718. mif_cfg = readl(gp->regs + MIF_CFG);
  1719. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1720. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1721. /* One of the MII PHYs _must_ be present
  1722. * as this chip has no gigabit PHY.
  1723. */
  1724. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1725. printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1726. mif_cfg);
  1727. return -1;
  1728. }
  1729. }
  1730. /* Determine initial PHY interface type guess. MDIO1 is the
  1731. * external PHY and thus takes precedence over MDIO0.
  1732. */
  1733. if (mif_cfg & MIF_CFG_MDI1) {
  1734. gp->phy_type = phy_mii_mdio1;
  1735. mif_cfg |= MIF_CFG_PSELECT;
  1736. writel(mif_cfg, gp->regs + MIF_CFG);
  1737. } else if (mif_cfg & MIF_CFG_MDI0) {
  1738. gp->phy_type = phy_mii_mdio0;
  1739. mif_cfg &= ~MIF_CFG_PSELECT;
  1740. writel(mif_cfg, gp->regs + MIF_CFG);
  1741. } else {
  1742. #ifdef CONFIG_SPARC
  1743. const char *p;
  1744. p = of_get_property(gp->of_node, "shared-pins", NULL);
  1745. if (p && !strcmp(p, "serdes"))
  1746. gp->phy_type = phy_serdes;
  1747. else
  1748. #endif
  1749. gp->phy_type = phy_serialink;
  1750. }
  1751. if (gp->phy_type == phy_mii_mdio1 ||
  1752. gp->phy_type == phy_mii_mdio0) {
  1753. int i;
  1754. for (i = 0; i < 32; i++) {
  1755. gp->mii_phy_addr = i;
  1756. if (phy_read(gp, MII_BMCR) != 0xffff)
  1757. break;
  1758. }
  1759. if (i == 32) {
  1760. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1761. printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
  1762. return -1;
  1763. }
  1764. gp->phy_type = phy_serdes;
  1765. }
  1766. }
  1767. /* Fetch the FIFO configurations now too. */
  1768. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1769. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1770. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1771. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1772. if (gp->tx_fifo_sz != (9 * 1024) ||
  1773. gp->rx_fifo_sz != (20 * 1024)) {
  1774. printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1775. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1776. return -1;
  1777. }
  1778. gp->swrst_base = 0;
  1779. } else {
  1780. if (gp->tx_fifo_sz != (2 * 1024) ||
  1781. gp->rx_fifo_sz != (2 * 1024)) {
  1782. printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1783. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1784. return -1;
  1785. }
  1786. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1787. }
  1788. }
  1789. return 0;
  1790. }
  1791. /* Must be invoked under gp->lock and gp->tx_lock. */
  1792. static void gem_reinit_chip(struct gem *gp)
  1793. {
  1794. /* Reset the chip */
  1795. gem_reset(gp);
  1796. /* Make sure ints are disabled */
  1797. gem_disable_ints(gp);
  1798. /* Allocate & setup ring buffers */
  1799. gem_init_rings(gp);
  1800. /* Configure pause thresholds */
  1801. gem_init_pause_thresholds(gp);
  1802. /* Init DMA & MAC engines */
  1803. gem_init_dma(gp);
  1804. gem_init_mac(gp);
  1805. }
  1806. /* Must be invoked with no lock held. */
  1807. static void gem_stop_phy(struct gem *gp, int wol)
  1808. {
  1809. u32 mifcfg;
  1810. unsigned long flags;
  1811. /* Let the chip settle down a bit, it seems that helps
  1812. * for sleep mode on some models
  1813. */
  1814. msleep(10);
  1815. /* Make sure we aren't polling PHY status change. We
  1816. * don't currently use that feature though
  1817. */
  1818. mifcfg = readl(gp->regs + MIF_CFG);
  1819. mifcfg &= ~MIF_CFG_POLL;
  1820. writel(mifcfg, gp->regs + MIF_CFG);
  1821. if (wol && gp->has_wol) {
  1822. unsigned char *e = &gp->dev->dev_addr[0];
  1823. u32 csr;
  1824. /* Setup wake-on-lan for MAGIC packet */
  1825. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1826. gp->regs + MAC_RXCFG);
  1827. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1828. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1829. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1830. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1831. csr = WOL_WAKECSR_ENABLE;
  1832. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1833. csr |= WOL_WAKECSR_MII;
  1834. writel(csr, gp->regs + WOL_WAKECSR);
  1835. } else {
  1836. writel(0, gp->regs + MAC_RXCFG);
  1837. (void)readl(gp->regs + MAC_RXCFG);
  1838. /* Machine sleep will die in strange ways if we
  1839. * dont wait a bit here, looks like the chip takes
  1840. * some time to really shut down
  1841. */
  1842. msleep(10);
  1843. }
  1844. writel(0, gp->regs + MAC_TXCFG);
  1845. writel(0, gp->regs + MAC_XIFCFG);
  1846. writel(0, gp->regs + TXDMA_CFG);
  1847. writel(0, gp->regs + RXDMA_CFG);
  1848. if (!wol) {
  1849. spin_lock_irqsave(&gp->lock, flags);
  1850. spin_lock(&gp->tx_lock);
  1851. gem_reset(gp);
  1852. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1853. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1854. spin_unlock(&gp->tx_lock);
  1855. spin_unlock_irqrestore(&gp->lock, flags);
  1856. /* No need to take the lock here */
  1857. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1858. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1859. /* According to Apple, we must set the MDIO pins to this begnign
  1860. * state or we may 1) eat more current, 2) damage some PHYs
  1861. */
  1862. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1863. writel(0, gp->regs + MIF_BBCLK);
  1864. writel(0, gp->regs + MIF_BBDATA);
  1865. writel(0, gp->regs + MIF_BBOENAB);
  1866. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1867. (void) readl(gp->regs + MAC_XIFCFG);
  1868. }
  1869. }
  1870. static int gem_do_start(struct net_device *dev)
  1871. {
  1872. struct gem *gp = netdev_priv(dev);
  1873. unsigned long flags;
  1874. spin_lock_irqsave(&gp->lock, flags);
  1875. spin_lock(&gp->tx_lock);
  1876. /* Enable the cell */
  1877. gem_get_cell(gp);
  1878. /* Init & setup chip hardware */
  1879. gem_reinit_chip(gp);
  1880. gp->running = 1;
  1881. napi_enable(&gp->napi);
  1882. if (gp->lstate == link_up) {
  1883. netif_carrier_on(gp->dev);
  1884. gem_set_link_modes(gp);
  1885. }
  1886. netif_wake_queue(gp->dev);
  1887. spin_unlock(&gp->tx_lock);
  1888. spin_unlock_irqrestore(&gp->lock, flags);
  1889. if (request_irq(gp->pdev->irq, gem_interrupt,
  1890. IRQF_SHARED, dev->name, (void *)dev)) {
  1891. printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
  1892. spin_lock_irqsave(&gp->lock, flags);
  1893. spin_lock(&gp->tx_lock);
  1894. napi_disable(&gp->napi);
  1895. gp->running = 0;
  1896. gem_reset(gp);
  1897. gem_clean_rings(gp);
  1898. gem_put_cell(gp);
  1899. spin_unlock(&gp->tx_lock);
  1900. spin_unlock_irqrestore(&gp->lock, flags);
  1901. return -EAGAIN;
  1902. }
  1903. return 0;
  1904. }
  1905. static void gem_do_stop(struct net_device *dev, int wol)
  1906. {
  1907. struct gem *gp = netdev_priv(dev);
  1908. unsigned long flags;
  1909. spin_lock_irqsave(&gp->lock, flags);
  1910. spin_lock(&gp->tx_lock);
  1911. gp->running = 0;
  1912. /* Stop netif queue */
  1913. netif_stop_queue(dev);
  1914. /* Make sure ints are disabled */
  1915. gem_disable_ints(gp);
  1916. /* We can drop the lock now */
  1917. spin_unlock(&gp->tx_lock);
  1918. spin_unlock_irqrestore(&gp->lock, flags);
  1919. /* If we are going to sleep with WOL */
  1920. gem_stop_dma(gp);
  1921. msleep(10);
  1922. if (!wol)
  1923. gem_reset(gp);
  1924. msleep(10);
  1925. /* Get rid of rings */
  1926. gem_clean_rings(gp);
  1927. /* No irq needed anymore */
  1928. free_irq(gp->pdev->irq, (void *) dev);
  1929. /* Cell not needed neither if no WOL */
  1930. if (!wol) {
  1931. spin_lock_irqsave(&gp->lock, flags);
  1932. gem_put_cell(gp);
  1933. spin_unlock_irqrestore(&gp->lock, flags);
  1934. }
  1935. }
  1936. static void gem_reset_task(struct work_struct *work)
  1937. {
  1938. struct gem *gp = container_of(work, struct gem, reset_task);
  1939. mutex_lock(&gp->pm_mutex);
  1940. if (gp->opened)
  1941. napi_disable(&gp->napi);
  1942. spin_lock_irq(&gp->lock);
  1943. spin_lock(&gp->tx_lock);
  1944. if (gp->running) {
  1945. netif_stop_queue(gp->dev);
  1946. /* Reset the chip & rings */
  1947. gem_reinit_chip(gp);
  1948. if (gp->lstate == link_up)
  1949. gem_set_link_modes(gp);
  1950. netif_wake_queue(gp->dev);
  1951. }
  1952. gp->reset_task_pending = 0;
  1953. spin_unlock(&gp->tx_lock);
  1954. spin_unlock_irq(&gp->lock);
  1955. if (gp->opened)
  1956. napi_enable(&gp->napi);
  1957. mutex_unlock(&gp->pm_mutex);
  1958. }
  1959. static int gem_open(struct net_device *dev)
  1960. {
  1961. struct gem *gp = netdev_priv(dev);
  1962. int rc = 0;
  1963. mutex_lock(&gp->pm_mutex);
  1964. /* We need the cell enabled */
  1965. if (!gp->asleep)
  1966. rc = gem_do_start(dev);
  1967. gp->opened = (rc == 0);
  1968. mutex_unlock(&gp->pm_mutex);
  1969. return rc;
  1970. }
  1971. static int gem_close(struct net_device *dev)
  1972. {
  1973. struct gem *gp = netdev_priv(dev);
  1974. mutex_lock(&gp->pm_mutex);
  1975. napi_disable(&gp->napi);
  1976. gp->opened = 0;
  1977. if (!gp->asleep)
  1978. gem_do_stop(dev, 0);
  1979. mutex_unlock(&gp->pm_mutex);
  1980. return 0;
  1981. }
  1982. #ifdef CONFIG_PM
  1983. static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
  1984. {
  1985. struct net_device *dev = pci_get_drvdata(pdev);
  1986. struct gem *gp = netdev_priv(dev);
  1987. unsigned long flags;
  1988. mutex_lock(&gp->pm_mutex);
  1989. printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
  1990. dev->name,
  1991. (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
  1992. /* Keep the cell enabled during the entire operation */
  1993. spin_lock_irqsave(&gp->lock, flags);
  1994. spin_lock(&gp->tx_lock);
  1995. gem_get_cell(gp);
  1996. spin_unlock(&gp->tx_lock);
  1997. spin_unlock_irqrestore(&gp->lock, flags);
  1998. /* If the driver is opened, we stop the MAC */
  1999. if (gp->opened) {
  2000. napi_disable(&gp->napi);
  2001. /* Stop traffic, mark us closed */
  2002. netif_device_detach(dev);
  2003. /* Switch off MAC, remember WOL setting */
  2004. gp->asleep_wol = gp->wake_on_lan;
  2005. gem_do_stop(dev, gp->asleep_wol);
  2006. } else
  2007. gp->asleep_wol = 0;
  2008. /* Mark us asleep */
  2009. gp->asleep = 1;
  2010. wmb();
  2011. /* Stop the link timer */
  2012. del_timer_sync(&gp->link_timer);
  2013. /* Now we release the mutex to not block the reset task who
  2014. * can take it too. We are marked asleep, so there will be no
  2015. * conflict here
  2016. */
  2017. mutex_unlock(&gp->pm_mutex);
  2018. /* Wait for a pending reset task to complete */
  2019. while (gp->reset_task_pending)
  2020. yield();
  2021. flush_scheduled_work();
  2022. /* Shut the PHY down eventually and setup WOL */
  2023. gem_stop_phy(gp, gp->asleep_wol);
  2024. /* Make sure bus master is disabled */
  2025. pci_disable_device(gp->pdev);
  2026. /* Release the cell, no need to take a lock at this point since
  2027. * nothing else can happen now
  2028. */
  2029. gem_put_cell(gp);
  2030. return 0;
  2031. }
  2032. static int gem_resume(struct pci_dev *pdev)
  2033. {
  2034. struct net_device *dev = pci_get_drvdata(pdev);
  2035. struct gem *gp = netdev_priv(dev);
  2036. unsigned long flags;
  2037. printk(KERN_INFO "%s: resuming\n", dev->name);
  2038. mutex_lock(&gp->pm_mutex);
  2039. /* Keep the cell enabled during the entire operation, no need to
  2040. * take a lock here tho since nothing else can happen while we are
  2041. * marked asleep
  2042. */
  2043. gem_get_cell(gp);
  2044. /* Make sure PCI access and bus master are enabled */
  2045. if (pci_enable_device(gp->pdev)) {
  2046. printk(KERN_ERR "%s: Can't re-enable chip !\n",
  2047. dev->name);
  2048. /* Put cell and forget it for now, it will be considered as
  2049. * still asleep, a new sleep cycle may bring it back
  2050. */
  2051. gem_put_cell(gp);
  2052. mutex_unlock(&gp->pm_mutex);
  2053. return 0;
  2054. }
  2055. pci_set_master(gp->pdev);
  2056. /* Reset everything */
  2057. gem_reset(gp);
  2058. /* Mark us woken up */
  2059. gp->asleep = 0;
  2060. wmb();
  2061. /* Bring the PHY back. Again, lock is useless at this point as
  2062. * nothing can be happening until we restart the whole thing
  2063. */
  2064. gem_init_phy(gp);
  2065. /* If we were opened, bring everything back */
  2066. if (gp->opened) {
  2067. /* Restart MAC */
  2068. gem_do_start(dev);
  2069. /* Re-attach net device */
  2070. netif_device_attach(dev);
  2071. }
  2072. spin_lock_irqsave(&gp->lock, flags);
  2073. spin_lock(&gp->tx_lock);
  2074. /* If we had WOL enabled, the cell clock was never turned off during
  2075. * sleep, so we end up beeing unbalanced. Fix that here
  2076. */
  2077. if (gp->asleep_wol)
  2078. gem_put_cell(gp);
  2079. /* This function doesn't need to hold the cell, it will be held if the
  2080. * driver is open by gem_do_start().
  2081. */
  2082. gem_put_cell(gp);
  2083. spin_unlock(&gp->tx_lock);
  2084. spin_unlock_irqrestore(&gp->lock, flags);
  2085. mutex_unlock(&gp->pm_mutex);
  2086. return 0;
  2087. }
  2088. #endif /* CONFIG_PM */
  2089. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  2090. {
  2091. struct gem *gp = netdev_priv(dev);
  2092. struct net_device_stats *stats = &gp->net_stats;
  2093. spin_lock_irq(&gp->lock);
  2094. spin_lock(&gp->tx_lock);
  2095. /* I have seen this being called while the PM was in progress,
  2096. * so we shield against this
  2097. */
  2098. if (gp->running) {
  2099. stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2100. writel(0, gp->regs + MAC_FCSERR);
  2101. stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
  2102. writel(0, gp->regs + MAC_AERR);
  2103. stats->rx_length_errors += readl(gp->regs + MAC_LERR);
  2104. writel(0, gp->regs + MAC_LERR);
  2105. stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2106. stats->collisions +=
  2107. (readl(gp->regs + MAC_ECOLL) +
  2108. readl(gp->regs + MAC_LCOLL));
  2109. writel(0, gp->regs + MAC_ECOLL);
  2110. writel(0, gp->regs + MAC_LCOLL);
  2111. }
  2112. spin_unlock(&gp->tx_lock);
  2113. spin_unlock_irq(&gp->lock);
  2114. return &gp->net_stats;
  2115. }
  2116. static int gem_set_mac_address(struct net_device *dev, void *addr)
  2117. {
  2118. struct sockaddr *macaddr = (struct sockaddr *) addr;
  2119. struct gem *gp = netdev_priv(dev);
  2120. unsigned char *e = &dev->dev_addr[0];
  2121. if (!is_valid_ether_addr(macaddr->sa_data))
  2122. return -EADDRNOTAVAIL;
  2123. if (!netif_running(dev) || !netif_device_present(dev)) {
  2124. /* We'll just catch it later when the
  2125. * device is up'd or resumed.
  2126. */
  2127. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2128. return 0;
  2129. }
  2130. mutex_lock(&gp->pm_mutex);
  2131. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2132. if (gp->running) {
  2133. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  2134. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  2135. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  2136. }
  2137. mutex_unlock(&gp->pm_mutex);
  2138. return 0;
  2139. }
  2140. static void gem_set_multicast(struct net_device *dev)
  2141. {
  2142. struct gem *gp = netdev_priv(dev);
  2143. u32 rxcfg, rxcfg_new;
  2144. int limit = 10000;
  2145. spin_lock_irq(&gp->lock);
  2146. spin_lock(&gp->tx_lock);
  2147. if (!gp->running)
  2148. goto bail;
  2149. netif_stop_queue(dev);
  2150. rxcfg = readl(gp->regs + MAC_RXCFG);
  2151. rxcfg_new = gem_setup_multicast(gp);
  2152. #ifdef STRIP_FCS
  2153. rxcfg_new |= MAC_RXCFG_SFCS;
  2154. #endif
  2155. gp->mac_rx_cfg = rxcfg_new;
  2156. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2157. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2158. if (!limit--)
  2159. break;
  2160. udelay(10);
  2161. }
  2162. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2163. rxcfg |= rxcfg_new;
  2164. writel(rxcfg, gp->regs + MAC_RXCFG);
  2165. netif_wake_queue(dev);
  2166. bail:
  2167. spin_unlock(&gp->tx_lock);
  2168. spin_unlock_irq(&gp->lock);
  2169. }
  2170. /* Jumbo-grams don't seem to work :-( */
  2171. #define GEM_MIN_MTU 68
  2172. #if 1
  2173. #define GEM_MAX_MTU 1500
  2174. #else
  2175. #define GEM_MAX_MTU 9000
  2176. #endif
  2177. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2178. {
  2179. struct gem *gp = netdev_priv(dev);
  2180. if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
  2181. return -EINVAL;
  2182. if (!netif_running(dev) || !netif_device_present(dev)) {
  2183. /* We'll just catch it later when the
  2184. * device is up'd or resumed.
  2185. */
  2186. dev->mtu = new_mtu;
  2187. return 0;
  2188. }
  2189. mutex_lock(&gp->pm_mutex);
  2190. spin_lock_irq(&gp->lock);
  2191. spin_lock(&gp->tx_lock);
  2192. dev->mtu = new_mtu;
  2193. if (gp->running) {
  2194. gem_reinit_chip(gp);
  2195. if (gp->lstate == link_up)
  2196. gem_set_link_modes(gp);
  2197. }
  2198. spin_unlock(&gp->tx_lock);
  2199. spin_unlock_irq(&gp->lock);
  2200. mutex_unlock(&gp->pm_mutex);
  2201. return 0;
  2202. }
  2203. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2204. {
  2205. struct gem *gp = netdev_priv(dev);
  2206. strcpy(info->driver, DRV_NAME);
  2207. strcpy(info->version, DRV_VERSION);
  2208. strcpy(info->bus_info, pci_name(gp->pdev));
  2209. }
  2210. static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2211. {
  2212. struct gem *gp = netdev_priv(dev);
  2213. if (gp->phy_type == phy_mii_mdio0 ||
  2214. gp->phy_type == phy_mii_mdio1) {
  2215. if (gp->phy_mii.def)
  2216. cmd->supported = gp->phy_mii.def->features;
  2217. else
  2218. cmd->supported = (SUPPORTED_10baseT_Half |
  2219. SUPPORTED_10baseT_Full);
  2220. /* XXX hardcoded stuff for now */
  2221. cmd->port = PORT_MII;
  2222. cmd->transceiver = XCVR_EXTERNAL;
  2223. cmd->phy_address = 0; /* XXX fixed PHYAD */
  2224. /* Return current PHY settings */
  2225. spin_lock_irq(&gp->lock);
  2226. cmd->autoneg = gp->want_autoneg;
  2227. cmd->speed = gp->phy_mii.speed;
  2228. cmd->duplex = gp->phy_mii.duplex;
  2229. cmd->advertising = gp->phy_mii.advertising;
  2230. /* If we started with a forced mode, we don't have a default
  2231. * advertise set, we need to return something sensible so
  2232. * userland can re-enable autoneg properly.
  2233. */
  2234. if (cmd->advertising == 0)
  2235. cmd->advertising = cmd->supported;
  2236. spin_unlock_irq(&gp->lock);
  2237. } else { // XXX PCS ?
  2238. cmd->supported =
  2239. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2240. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2241. SUPPORTED_Autoneg);
  2242. cmd->advertising = cmd->supported;
  2243. cmd->speed = 0;
  2244. cmd->duplex = cmd->port = cmd->phy_address =
  2245. cmd->transceiver = cmd->autoneg = 0;
  2246. /* serdes means usually a Fibre connector, with most fixed */
  2247. if (gp->phy_type == phy_serdes) {
  2248. cmd->port = PORT_FIBRE;
  2249. cmd->supported = (SUPPORTED_1000baseT_Half |
  2250. SUPPORTED_1000baseT_Full |
  2251. SUPPORTED_FIBRE | SUPPORTED_Autoneg |
  2252. SUPPORTED_Pause | SUPPORTED_Asym_Pause);
  2253. cmd->advertising = cmd->supported;
  2254. cmd->transceiver = XCVR_INTERNAL;
  2255. if (gp->lstate == link_up)
  2256. cmd->speed = SPEED_1000;
  2257. cmd->duplex = DUPLEX_FULL;
  2258. cmd->autoneg = 1;
  2259. }
  2260. }
  2261. cmd->maxtxpkt = cmd->maxrxpkt = 0;
  2262. return 0;
  2263. }
  2264. static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2265. {
  2266. struct gem *gp = netdev_priv(dev);
  2267. /* Verify the settings we care about. */
  2268. if (cmd->autoneg != AUTONEG_ENABLE &&
  2269. cmd->autoneg != AUTONEG_DISABLE)
  2270. return -EINVAL;
  2271. if (cmd->autoneg == AUTONEG_ENABLE &&
  2272. cmd->advertising == 0)
  2273. return -EINVAL;
  2274. if (cmd->autoneg == AUTONEG_DISABLE &&
  2275. ((cmd->speed != SPEED_1000 &&
  2276. cmd->speed != SPEED_100 &&
  2277. cmd->speed != SPEED_10) ||
  2278. (cmd->duplex != DUPLEX_HALF &&
  2279. cmd->duplex != DUPLEX_FULL)))
  2280. return -EINVAL;
  2281. /* Apply settings and restart link process. */
  2282. spin_lock_irq(&gp->lock);
  2283. gem_get_cell(gp);
  2284. gem_begin_auto_negotiation(gp, cmd);
  2285. gem_put_cell(gp);
  2286. spin_unlock_irq(&gp->lock);
  2287. return 0;
  2288. }
  2289. static int gem_nway_reset(struct net_device *dev)
  2290. {
  2291. struct gem *gp = netdev_priv(dev);
  2292. if (!gp->want_autoneg)
  2293. return -EINVAL;
  2294. /* Restart link process. */
  2295. spin_lock_irq(&gp->lock);
  2296. gem_get_cell(gp);
  2297. gem_begin_auto_negotiation(gp, NULL);
  2298. gem_put_cell(gp);
  2299. spin_unlock_irq(&gp->lock);
  2300. return 0;
  2301. }
  2302. static u32 gem_get_msglevel(struct net_device *dev)
  2303. {
  2304. struct gem *gp = netdev_priv(dev);
  2305. return gp->msg_enable;
  2306. }
  2307. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2308. {
  2309. struct gem *gp = netdev_priv(dev);
  2310. gp->msg_enable = value;
  2311. }
  2312. /* Add more when I understand how to program the chip */
  2313. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2314. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2315. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2316. {
  2317. struct gem *gp = netdev_priv(dev);
  2318. /* Add more when I understand how to program the chip */
  2319. if (gp->has_wol) {
  2320. wol->supported = WOL_SUPPORTED_MASK;
  2321. wol->wolopts = gp->wake_on_lan;
  2322. } else {
  2323. wol->supported = 0;
  2324. wol->wolopts = 0;
  2325. }
  2326. }
  2327. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2328. {
  2329. struct gem *gp = netdev_priv(dev);
  2330. if (!gp->has_wol)
  2331. return -EOPNOTSUPP;
  2332. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2333. return 0;
  2334. }
  2335. static const struct ethtool_ops gem_ethtool_ops = {
  2336. .get_drvinfo = gem_get_drvinfo,
  2337. .get_link = ethtool_op_get_link,
  2338. .get_settings = gem_get_settings,
  2339. .set_settings = gem_set_settings,
  2340. .nway_reset = gem_nway_reset,
  2341. .get_msglevel = gem_get_msglevel,
  2342. .set_msglevel = gem_set_msglevel,
  2343. .get_wol = gem_get_wol,
  2344. .set_wol = gem_set_wol,
  2345. };
  2346. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2347. {
  2348. struct gem *gp = netdev_priv(dev);
  2349. struct mii_ioctl_data *data = if_mii(ifr);
  2350. int rc = -EOPNOTSUPP;
  2351. unsigned long flags;
  2352. /* Hold the PM mutex while doing ioctl's or we may collide
  2353. * with power management.
  2354. */
  2355. mutex_lock(&gp->pm_mutex);
  2356. spin_lock_irqsave(&gp->lock, flags);
  2357. gem_get_cell(gp);
  2358. spin_unlock_irqrestore(&gp->lock, flags);
  2359. switch (cmd) {
  2360. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2361. data->phy_id = gp->mii_phy_addr;
  2362. /* Fallthrough... */
  2363. case SIOCGMIIREG: /* Read MII PHY register. */
  2364. if (!gp->running)
  2365. rc = -EAGAIN;
  2366. else {
  2367. data->val_out = __phy_read(gp, data->phy_id & 0x1f,
  2368. data->reg_num & 0x1f);
  2369. rc = 0;
  2370. }
  2371. break;
  2372. case SIOCSMIIREG: /* Write MII PHY register. */
  2373. if (!gp->running)
  2374. rc = -EAGAIN;
  2375. else {
  2376. __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2377. data->val_in);
  2378. rc = 0;
  2379. }
  2380. break;
  2381. };
  2382. spin_lock_irqsave(&gp->lock, flags);
  2383. gem_put_cell(gp);
  2384. spin_unlock_irqrestore(&gp->lock, flags);
  2385. mutex_unlock(&gp->pm_mutex);
  2386. return rc;
  2387. }
  2388. #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
  2389. /* Fetch MAC address from vital product data of PCI ROM. */
  2390. static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2391. {
  2392. int this_offset;
  2393. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2394. void __iomem *p = rom_base + this_offset;
  2395. int i;
  2396. if (readb(p + 0) != 0x90 ||
  2397. readb(p + 1) != 0x00 ||
  2398. readb(p + 2) != 0x09 ||
  2399. readb(p + 3) != 0x4e ||
  2400. readb(p + 4) != 0x41 ||
  2401. readb(p + 5) != 0x06)
  2402. continue;
  2403. this_offset += 6;
  2404. p += 6;
  2405. for (i = 0; i < 6; i++)
  2406. dev_addr[i] = readb(p + i);
  2407. return 1;
  2408. }
  2409. return 0;
  2410. }
  2411. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2412. {
  2413. size_t size;
  2414. void __iomem *p = pci_map_rom(pdev, &size);
  2415. if (p) {
  2416. int found;
  2417. found = readb(p) == 0x55 &&
  2418. readb(p + 1) == 0xaa &&
  2419. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2420. pci_unmap_rom(pdev, p);
  2421. if (found)
  2422. return;
  2423. }
  2424. /* Sun MAC prefix then 3 random bytes. */
  2425. dev_addr[0] = 0x08;
  2426. dev_addr[1] = 0x00;
  2427. dev_addr[2] = 0x20;
  2428. get_random_bytes(dev_addr + 3, 3);
  2429. }
  2430. #endif /* not Sparc and not PPC */
  2431. static int __devinit gem_get_device_address(struct gem *gp)
  2432. {
  2433. #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
  2434. struct net_device *dev = gp->dev;
  2435. const unsigned char *addr;
  2436. addr = of_get_property(gp->of_node, "local-mac-address", NULL);
  2437. if (addr == NULL) {
  2438. #ifdef CONFIG_SPARC
  2439. addr = idprom->id_ethaddr;
  2440. #else
  2441. printk("\n");
  2442. printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
  2443. return -1;
  2444. #endif
  2445. }
  2446. memcpy(dev->dev_addr, addr, 6);
  2447. #else
  2448. get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
  2449. #endif
  2450. return 0;
  2451. }
  2452. static void gem_remove_one(struct pci_dev *pdev)
  2453. {
  2454. struct net_device *dev = pci_get_drvdata(pdev);
  2455. if (dev) {
  2456. struct gem *gp = netdev_priv(dev);
  2457. unregister_netdev(dev);
  2458. /* Stop the link timer */
  2459. del_timer_sync(&gp->link_timer);
  2460. /* We shouldn't need any locking here */
  2461. gem_get_cell(gp);
  2462. /* Wait for a pending reset task to complete */
  2463. while (gp->reset_task_pending)
  2464. yield();
  2465. flush_scheduled_work();
  2466. /* Shut the PHY down */
  2467. gem_stop_phy(gp, 0);
  2468. gem_put_cell(gp);
  2469. /* Make sure bus master is disabled */
  2470. pci_disable_device(gp->pdev);
  2471. /* Free resources */
  2472. pci_free_consistent(pdev,
  2473. sizeof(struct gem_init_block),
  2474. gp->init_block,
  2475. gp->gblock_dvma);
  2476. iounmap(gp->regs);
  2477. pci_release_regions(pdev);
  2478. free_netdev(dev);
  2479. pci_set_drvdata(pdev, NULL);
  2480. }
  2481. }
  2482. static const struct net_device_ops gem_netdev_ops = {
  2483. .ndo_open = gem_open,
  2484. .ndo_stop = gem_close,
  2485. .ndo_start_xmit = gem_start_xmit,
  2486. .ndo_get_stats = gem_get_stats,
  2487. .ndo_set_multicast_list = gem_set_multicast,
  2488. .ndo_do_ioctl = gem_ioctl,
  2489. .ndo_tx_timeout = gem_tx_timeout,
  2490. .ndo_change_mtu = gem_change_mtu,
  2491. .ndo_validate_addr = eth_validate_addr,
  2492. .ndo_set_mac_address = gem_set_mac_address,
  2493. #ifdef CONFIG_NET_POLL_CONTROLLER
  2494. .ndo_poll_controller = gem_poll_controller,
  2495. #endif
  2496. };
  2497. static int __devinit gem_init_one(struct pci_dev *pdev,
  2498. const struct pci_device_id *ent)
  2499. {
  2500. static int gem_version_printed = 0;
  2501. unsigned long gemreg_base, gemreg_len;
  2502. struct net_device *dev;
  2503. struct gem *gp;
  2504. int err, pci_using_dac;
  2505. if (gem_version_printed++ == 0)
  2506. printk(KERN_INFO "%s", version);
  2507. /* Apple gmac note: during probe, the chip is powered up by
  2508. * the arch code to allow the code below to work (and to let
  2509. * the chip be probed on the config space. It won't stay powered
  2510. * up until the interface is brought up however, so we can't rely
  2511. * on register configuration done at this point.
  2512. */
  2513. err = pci_enable_device(pdev);
  2514. if (err) {
  2515. printk(KERN_ERR PFX "Cannot enable MMIO operation, "
  2516. "aborting.\n");
  2517. return err;
  2518. }
  2519. pci_set_master(pdev);
  2520. /* Configure DMA attributes. */
  2521. /* All of the GEM documentation states that 64-bit DMA addressing
  2522. * is fully supported and should work just fine. However the
  2523. * front end for RIO based GEMs is different and only supports
  2524. * 32-bit addressing.
  2525. *
  2526. * For now we assume the various PPC GEMs are 32-bit only as well.
  2527. */
  2528. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2529. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2530. !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  2531. pci_using_dac = 1;
  2532. } else {
  2533. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2534. if (err) {
  2535. printk(KERN_ERR PFX "No usable DMA configuration, "
  2536. "aborting.\n");
  2537. goto err_disable_device;
  2538. }
  2539. pci_using_dac = 0;
  2540. }
  2541. gemreg_base = pci_resource_start(pdev, 0);
  2542. gemreg_len = pci_resource_len(pdev, 0);
  2543. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2544. printk(KERN_ERR PFX "Cannot find proper PCI device "
  2545. "base address, aborting.\n");
  2546. err = -ENODEV;
  2547. goto err_disable_device;
  2548. }
  2549. dev = alloc_etherdev(sizeof(*gp));
  2550. if (!dev) {
  2551. printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
  2552. err = -ENOMEM;
  2553. goto err_disable_device;
  2554. }
  2555. SET_NETDEV_DEV(dev, &pdev->dev);
  2556. gp = netdev_priv(dev);
  2557. err = pci_request_regions(pdev, DRV_NAME);
  2558. if (err) {
  2559. printk(KERN_ERR PFX "Cannot obtain PCI resources, "
  2560. "aborting.\n");
  2561. goto err_out_free_netdev;
  2562. }
  2563. gp->pdev = pdev;
  2564. dev->base_addr = (long) pdev;
  2565. gp->dev = dev;
  2566. gp->msg_enable = DEFAULT_MSG;
  2567. spin_lock_init(&gp->lock);
  2568. spin_lock_init(&gp->tx_lock);
  2569. mutex_init(&gp->pm_mutex);
  2570. init_timer(&gp->link_timer);
  2571. gp->link_timer.function = gem_link_timer;
  2572. gp->link_timer.data = (unsigned long) gp;
  2573. INIT_WORK(&gp->reset_task, gem_reset_task);
  2574. gp->lstate = link_down;
  2575. gp->timer_ticks = 0;
  2576. netif_carrier_off(dev);
  2577. gp->regs = ioremap(gemreg_base, gemreg_len);
  2578. if (!gp->regs) {
  2579. printk(KERN_ERR PFX "Cannot map device registers, "
  2580. "aborting.\n");
  2581. err = -EIO;
  2582. goto err_out_free_res;
  2583. }
  2584. /* On Apple, we want a reference to the Open Firmware device-tree
  2585. * node. We use it for clock control.
  2586. */
  2587. #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
  2588. gp->of_node = pci_device_to_OF_node(pdev);
  2589. #endif
  2590. /* Only Apple version supports WOL afaik */
  2591. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2592. gp->has_wol = 1;
  2593. /* Make sure cell is enabled */
  2594. gem_get_cell(gp);
  2595. /* Make sure everything is stopped and in init state */
  2596. gem_reset(gp);
  2597. /* Fill up the mii_phy structure (even if we won't use it) */
  2598. gp->phy_mii.dev = dev;
  2599. gp->phy_mii.mdio_read = _phy_read;
  2600. gp->phy_mii.mdio_write = _phy_write;
  2601. #ifdef CONFIG_PPC_PMAC
  2602. gp->phy_mii.platform_data = gp->of_node;
  2603. #endif
  2604. /* By default, we start with autoneg */
  2605. gp->want_autoneg = 1;
  2606. /* Check fifo sizes, PHY type, etc... */
  2607. if (gem_check_invariants(gp)) {
  2608. err = -ENODEV;
  2609. goto err_out_iounmap;
  2610. }
  2611. /* It is guaranteed that the returned buffer will be at least
  2612. * PAGE_SIZE aligned.
  2613. */
  2614. gp->init_block = (struct gem_init_block *)
  2615. pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
  2616. &gp->gblock_dvma);
  2617. if (!gp->init_block) {
  2618. printk(KERN_ERR PFX "Cannot allocate init block, "
  2619. "aborting.\n");
  2620. err = -ENOMEM;
  2621. goto err_out_iounmap;
  2622. }
  2623. if (gem_get_device_address(gp))
  2624. goto err_out_free_consistent;
  2625. dev->netdev_ops = &gem_netdev_ops;
  2626. netif_napi_add(dev, &gp->napi, gem_poll, 64);
  2627. dev->ethtool_ops = &gem_ethtool_ops;
  2628. dev->watchdog_timeo = 5 * HZ;
  2629. dev->irq = pdev->irq;
  2630. dev->dma = 0;
  2631. /* Set that now, in case PM kicks in now */
  2632. pci_set_drvdata(pdev, dev);
  2633. /* Detect & init PHY, start autoneg, we release the cell now
  2634. * too, it will be managed by whoever needs it
  2635. */
  2636. gem_init_phy(gp);
  2637. spin_lock_irq(&gp->lock);
  2638. gem_put_cell(gp);
  2639. spin_unlock_irq(&gp->lock);
  2640. /* Register with kernel */
  2641. if (register_netdev(dev)) {
  2642. printk(KERN_ERR PFX "Cannot register net device, "
  2643. "aborting.\n");
  2644. err = -ENOMEM;
  2645. goto err_out_free_consistent;
  2646. }
  2647. printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
  2648. dev->name, dev->dev_addr);
  2649. if (gp->phy_type == phy_mii_mdio0 ||
  2650. gp->phy_type == phy_mii_mdio1)
  2651. printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
  2652. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  2653. /* GEM can do it all... */
  2654. dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
  2655. if (pci_using_dac)
  2656. dev->features |= NETIF_F_HIGHDMA;
  2657. return 0;
  2658. err_out_free_consistent:
  2659. gem_remove_one(pdev);
  2660. err_out_iounmap:
  2661. gem_put_cell(gp);
  2662. iounmap(gp->regs);
  2663. err_out_free_res:
  2664. pci_release_regions(pdev);
  2665. err_out_free_netdev:
  2666. free_netdev(dev);
  2667. err_disable_device:
  2668. pci_disable_device(pdev);
  2669. return err;
  2670. }
  2671. static struct pci_driver gem_driver = {
  2672. .name = GEM_MODULE_NAME,
  2673. .id_table = gem_pci_tbl,
  2674. .probe = gem_init_one,
  2675. .remove = gem_remove_one,
  2676. #ifdef CONFIG_PM
  2677. .suspend = gem_suspend,
  2678. .resume = gem_resume,
  2679. #endif /* CONFIG_PM */
  2680. };
  2681. static int __init gem_init(void)
  2682. {
  2683. return pci_register_driver(&gem_driver);
  2684. }
  2685. static void __exit gem_cleanup(void)
  2686. {
  2687. pci_unregister_driver(&gem_driver);
  2688. }
  2689. module_init(gem_init);
  2690. module_exit(gem_cleanup);