sh_eth.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2009 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mdio-bitbang.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/phy.h>
  30. #include <linux/cache.h>
  31. #include <linux/io.h>
  32. #include <linux/pm_runtime.h>
  33. #include <linux/slab.h>
  34. #include <asm/cacheflush.h>
  35. #include "sh_eth.h"
  36. /* There is CPU dependent code */
  37. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  38. #define SH_ETH_RESET_DEFAULT 1
  39. static void sh_eth_set_duplex(struct net_device *ndev)
  40. {
  41. struct sh_eth_private *mdp = netdev_priv(ndev);
  42. u32 ioaddr = ndev->base_addr;
  43. if (mdp->duplex) /* Full */
  44. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
  45. else /* Half */
  46. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
  47. }
  48. static void sh_eth_set_rate(struct net_device *ndev)
  49. {
  50. struct sh_eth_private *mdp = netdev_priv(ndev);
  51. u32 ioaddr = ndev->base_addr;
  52. switch (mdp->speed) {
  53. case 10: /* 10BASE */
  54. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_RTM, ioaddr + ECMR);
  55. break;
  56. case 100:/* 100BASE */
  57. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_RTM, ioaddr + ECMR);
  58. break;
  59. default:
  60. break;
  61. }
  62. }
  63. /* SH7724 */
  64. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  65. .set_duplex = sh_eth_set_duplex,
  66. .set_rate = sh_eth_set_rate,
  67. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  68. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  69. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  70. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  71. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  72. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  73. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  74. .apr = 1,
  75. .mpr = 1,
  76. .tpauser = 1,
  77. .hw_swap = 1,
  78. .rpadir = 1,
  79. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  80. };
  81. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  82. #define SH_ETH_RESET_DEFAULT 1
  83. static void sh_eth_set_duplex(struct net_device *ndev)
  84. {
  85. struct sh_eth_private *mdp = netdev_priv(ndev);
  86. u32 ioaddr = ndev->base_addr;
  87. if (mdp->duplex) /* Full */
  88. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
  89. else /* Half */
  90. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
  91. }
  92. static void sh_eth_set_rate(struct net_device *ndev)
  93. {
  94. struct sh_eth_private *mdp = netdev_priv(ndev);
  95. u32 ioaddr = ndev->base_addr;
  96. switch (mdp->speed) {
  97. case 10: /* 10BASE */
  98. ctrl_outl(0, ioaddr + RTRATE);
  99. break;
  100. case 100:/* 100BASE */
  101. ctrl_outl(1, ioaddr + RTRATE);
  102. break;
  103. default:
  104. break;
  105. }
  106. }
  107. /* SH7757 */
  108. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  109. .set_duplex = sh_eth_set_duplex,
  110. .set_rate = sh_eth_set_rate,
  111. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  112. .rmcr_value = 0x00000001,
  113. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  114. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  115. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  116. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  117. .apr = 1,
  118. .mpr = 1,
  119. .tpauser = 1,
  120. .hw_swap = 1,
  121. .no_ade = 1,
  122. };
  123. #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
  124. #define SH_ETH_HAS_TSU 1
  125. static void sh_eth_chip_reset(struct net_device *ndev)
  126. {
  127. /* reset device */
  128. ctrl_outl(ARSTR_ARSTR, ARSTR);
  129. mdelay(1);
  130. }
  131. static void sh_eth_reset(struct net_device *ndev)
  132. {
  133. u32 ioaddr = ndev->base_addr;
  134. int cnt = 100;
  135. ctrl_outl(EDSR_ENALL, ioaddr + EDSR);
  136. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  137. while (cnt > 0) {
  138. if (!(ctrl_inl(ioaddr + EDMR) & 0x3))
  139. break;
  140. mdelay(1);
  141. cnt--;
  142. }
  143. if (cnt == 0)
  144. printk(KERN_ERR "Device reset fail\n");
  145. /* Table Init */
  146. ctrl_outl(0x0, ioaddr + TDLAR);
  147. ctrl_outl(0x0, ioaddr + TDFAR);
  148. ctrl_outl(0x0, ioaddr + TDFXR);
  149. ctrl_outl(0x0, ioaddr + TDFFR);
  150. ctrl_outl(0x0, ioaddr + RDLAR);
  151. ctrl_outl(0x0, ioaddr + RDFAR);
  152. ctrl_outl(0x0, ioaddr + RDFXR);
  153. ctrl_outl(0x0, ioaddr + RDFFR);
  154. }
  155. static void sh_eth_set_duplex(struct net_device *ndev)
  156. {
  157. struct sh_eth_private *mdp = netdev_priv(ndev);
  158. u32 ioaddr = ndev->base_addr;
  159. if (mdp->duplex) /* Full */
  160. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
  161. else /* Half */
  162. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
  163. }
  164. static void sh_eth_set_rate(struct net_device *ndev)
  165. {
  166. struct sh_eth_private *mdp = netdev_priv(ndev);
  167. u32 ioaddr = ndev->base_addr;
  168. switch (mdp->speed) {
  169. case 10: /* 10BASE */
  170. ctrl_outl(GECMR_10, ioaddr + GECMR);
  171. break;
  172. case 100:/* 100BASE */
  173. ctrl_outl(GECMR_100, ioaddr + GECMR);
  174. break;
  175. case 1000: /* 1000BASE */
  176. ctrl_outl(GECMR_1000, ioaddr + GECMR);
  177. break;
  178. default:
  179. break;
  180. }
  181. }
  182. /* sh7763 */
  183. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  184. .chip_reset = sh_eth_chip_reset,
  185. .set_duplex = sh_eth_set_duplex,
  186. .set_rate = sh_eth_set_rate,
  187. .ecsr_value = ECSR_ICD | ECSR_MPD,
  188. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  189. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  190. .tx_check = EESR_TC1 | EESR_FTC,
  191. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  192. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  193. EESR_ECI,
  194. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  195. EESR_TFE,
  196. .apr = 1,
  197. .mpr = 1,
  198. .tpauser = 1,
  199. .bculr = 1,
  200. .hw_swap = 1,
  201. .no_trimd = 1,
  202. .no_ade = 1,
  203. };
  204. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  205. #define SH_ETH_RESET_DEFAULT 1
  206. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  207. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  208. .apr = 1,
  209. .mpr = 1,
  210. .tpauser = 1,
  211. .hw_swap = 1,
  212. };
  213. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  214. #define SH_ETH_RESET_DEFAULT 1
  215. #define SH_ETH_HAS_TSU 1
  216. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  217. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  218. };
  219. #endif
  220. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  221. {
  222. if (!cd->ecsr_value)
  223. cd->ecsr_value = DEFAULT_ECSR_INIT;
  224. if (!cd->ecsipr_value)
  225. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  226. if (!cd->fcftr_value)
  227. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  228. DEFAULT_FIFO_F_D_RFD;
  229. if (!cd->fdr_value)
  230. cd->fdr_value = DEFAULT_FDR_INIT;
  231. if (!cd->rmcr_value)
  232. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  233. if (!cd->tx_check)
  234. cd->tx_check = DEFAULT_TX_CHECK;
  235. if (!cd->eesr_err_check)
  236. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  237. if (!cd->tx_error_check)
  238. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  239. }
  240. #if defined(SH_ETH_RESET_DEFAULT)
  241. /* Chip Reset */
  242. static void sh_eth_reset(struct net_device *ndev)
  243. {
  244. u32 ioaddr = ndev->base_addr;
  245. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  246. mdelay(3);
  247. ctrl_outl(ctrl_inl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR);
  248. }
  249. #endif
  250. #if defined(CONFIG_CPU_SH4)
  251. static void sh_eth_set_receive_align(struct sk_buff *skb)
  252. {
  253. int reserve;
  254. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  255. if (reserve)
  256. skb_reserve(skb, reserve);
  257. }
  258. #else
  259. static void sh_eth_set_receive_align(struct sk_buff *skb)
  260. {
  261. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  262. }
  263. #endif
  264. /* CPU <-> EDMAC endian convert */
  265. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  266. {
  267. switch (mdp->edmac_endian) {
  268. case EDMAC_LITTLE_ENDIAN:
  269. return cpu_to_le32(x);
  270. case EDMAC_BIG_ENDIAN:
  271. return cpu_to_be32(x);
  272. }
  273. return x;
  274. }
  275. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  276. {
  277. switch (mdp->edmac_endian) {
  278. case EDMAC_LITTLE_ENDIAN:
  279. return le32_to_cpu(x);
  280. case EDMAC_BIG_ENDIAN:
  281. return be32_to_cpu(x);
  282. }
  283. return x;
  284. }
  285. /*
  286. * Program the hardware MAC address from dev->dev_addr.
  287. */
  288. static void update_mac_address(struct net_device *ndev)
  289. {
  290. u32 ioaddr = ndev->base_addr;
  291. ctrl_outl((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  292. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]),
  293. ioaddr + MAHR);
  294. ctrl_outl((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]),
  295. ioaddr + MALR);
  296. }
  297. /*
  298. * Get MAC address from SuperH MAC address register
  299. *
  300. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  301. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  302. * When you want use this device, you must set MAC address in bootloader.
  303. *
  304. */
  305. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  306. {
  307. u32 ioaddr = ndev->base_addr;
  308. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  309. memcpy(ndev->dev_addr, mac, 6);
  310. } else {
  311. ndev->dev_addr[0] = (ctrl_inl(ioaddr + MAHR) >> 24);
  312. ndev->dev_addr[1] = (ctrl_inl(ioaddr + MAHR) >> 16) & 0xFF;
  313. ndev->dev_addr[2] = (ctrl_inl(ioaddr + MAHR) >> 8) & 0xFF;
  314. ndev->dev_addr[3] = (ctrl_inl(ioaddr + MAHR) & 0xFF);
  315. ndev->dev_addr[4] = (ctrl_inl(ioaddr + MALR) >> 8) & 0xFF;
  316. ndev->dev_addr[5] = (ctrl_inl(ioaddr + MALR) & 0xFF);
  317. }
  318. }
  319. struct bb_info {
  320. struct mdiobb_ctrl ctrl;
  321. u32 addr;
  322. u32 mmd_msk;/* MMD */
  323. u32 mdo_msk;
  324. u32 mdi_msk;
  325. u32 mdc_msk;
  326. };
  327. /* PHY bit set */
  328. static void bb_set(u32 addr, u32 msk)
  329. {
  330. ctrl_outl(ctrl_inl(addr) | msk, addr);
  331. }
  332. /* PHY bit clear */
  333. static void bb_clr(u32 addr, u32 msk)
  334. {
  335. ctrl_outl((ctrl_inl(addr) & ~msk), addr);
  336. }
  337. /* PHY bit read */
  338. static int bb_read(u32 addr, u32 msk)
  339. {
  340. return (ctrl_inl(addr) & msk) != 0;
  341. }
  342. /* Data I/O pin control */
  343. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  344. {
  345. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  346. if (bit)
  347. bb_set(bitbang->addr, bitbang->mmd_msk);
  348. else
  349. bb_clr(bitbang->addr, bitbang->mmd_msk);
  350. }
  351. /* Set bit data*/
  352. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  353. {
  354. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  355. if (bit)
  356. bb_set(bitbang->addr, bitbang->mdo_msk);
  357. else
  358. bb_clr(bitbang->addr, bitbang->mdo_msk);
  359. }
  360. /* Get bit data*/
  361. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  362. {
  363. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  364. return bb_read(bitbang->addr, bitbang->mdi_msk);
  365. }
  366. /* MDC pin control */
  367. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  368. {
  369. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  370. if (bit)
  371. bb_set(bitbang->addr, bitbang->mdc_msk);
  372. else
  373. bb_clr(bitbang->addr, bitbang->mdc_msk);
  374. }
  375. /* mdio bus control struct */
  376. static struct mdiobb_ops bb_ops = {
  377. .owner = THIS_MODULE,
  378. .set_mdc = sh_mdc_ctrl,
  379. .set_mdio_dir = sh_mmd_ctrl,
  380. .set_mdio_data = sh_set_mdio,
  381. .get_mdio_data = sh_get_mdio,
  382. };
  383. /* free skb and descriptor buffer */
  384. static void sh_eth_ring_free(struct net_device *ndev)
  385. {
  386. struct sh_eth_private *mdp = netdev_priv(ndev);
  387. int i;
  388. /* Free Rx skb ringbuffer */
  389. if (mdp->rx_skbuff) {
  390. for (i = 0; i < RX_RING_SIZE; i++) {
  391. if (mdp->rx_skbuff[i])
  392. dev_kfree_skb(mdp->rx_skbuff[i]);
  393. }
  394. }
  395. kfree(mdp->rx_skbuff);
  396. /* Free Tx skb ringbuffer */
  397. if (mdp->tx_skbuff) {
  398. for (i = 0; i < TX_RING_SIZE; i++) {
  399. if (mdp->tx_skbuff[i])
  400. dev_kfree_skb(mdp->tx_skbuff[i]);
  401. }
  402. }
  403. kfree(mdp->tx_skbuff);
  404. }
  405. /* format skb and descriptor buffer */
  406. static void sh_eth_ring_format(struct net_device *ndev)
  407. {
  408. u32 ioaddr = ndev->base_addr;
  409. struct sh_eth_private *mdp = netdev_priv(ndev);
  410. int i;
  411. struct sk_buff *skb;
  412. struct sh_eth_rxdesc *rxdesc = NULL;
  413. struct sh_eth_txdesc *txdesc = NULL;
  414. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  415. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  416. mdp->cur_rx = mdp->cur_tx = 0;
  417. mdp->dirty_rx = mdp->dirty_tx = 0;
  418. memset(mdp->rx_ring, 0, rx_ringsize);
  419. /* build Rx ring buffer */
  420. for (i = 0; i < RX_RING_SIZE; i++) {
  421. /* skb */
  422. mdp->rx_skbuff[i] = NULL;
  423. skb = dev_alloc_skb(mdp->rx_buf_sz);
  424. mdp->rx_skbuff[i] = skb;
  425. if (skb == NULL)
  426. break;
  427. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  428. DMA_FROM_DEVICE);
  429. skb->dev = ndev; /* Mark as being used by this device. */
  430. sh_eth_set_receive_align(skb);
  431. /* RX descriptor */
  432. rxdesc = &mdp->rx_ring[i];
  433. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  434. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  435. /* The size of the buffer is 16 byte boundary. */
  436. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  437. /* Rx descriptor address set */
  438. if (i == 0) {
  439. ctrl_outl(mdp->rx_desc_dma, ioaddr + RDLAR);
  440. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  441. ctrl_outl(mdp->rx_desc_dma, ioaddr + RDFAR);
  442. #endif
  443. }
  444. }
  445. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  446. /* Mark the last entry as wrapping the ring. */
  447. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  448. memset(mdp->tx_ring, 0, tx_ringsize);
  449. /* build Tx ring buffer */
  450. for (i = 0; i < TX_RING_SIZE; i++) {
  451. mdp->tx_skbuff[i] = NULL;
  452. txdesc = &mdp->tx_ring[i];
  453. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  454. txdesc->buffer_length = 0;
  455. if (i == 0) {
  456. /* Tx descriptor address set */
  457. ctrl_outl(mdp->tx_desc_dma, ioaddr + TDLAR);
  458. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  459. ctrl_outl(mdp->tx_desc_dma, ioaddr + TDFAR);
  460. #endif
  461. }
  462. }
  463. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  464. }
  465. /* Get skb and descriptor buffer */
  466. static int sh_eth_ring_init(struct net_device *ndev)
  467. {
  468. struct sh_eth_private *mdp = netdev_priv(ndev);
  469. int rx_ringsize, tx_ringsize, ret = 0;
  470. /*
  471. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  472. * card needs room to do 8 byte alignment, +2 so we can reserve
  473. * the first 2 bytes, and +16 gets room for the status word from the
  474. * card.
  475. */
  476. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  477. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  478. if (mdp->cd->rpadir)
  479. mdp->rx_buf_sz += NET_IP_ALIGN;
  480. /* Allocate RX and TX skb rings */
  481. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  482. GFP_KERNEL);
  483. if (!mdp->rx_skbuff) {
  484. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  485. ret = -ENOMEM;
  486. return ret;
  487. }
  488. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  489. GFP_KERNEL);
  490. if (!mdp->tx_skbuff) {
  491. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  492. ret = -ENOMEM;
  493. goto skb_ring_free;
  494. }
  495. /* Allocate all Rx descriptors. */
  496. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  497. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  498. GFP_KERNEL);
  499. if (!mdp->rx_ring) {
  500. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  501. rx_ringsize);
  502. ret = -ENOMEM;
  503. goto desc_ring_free;
  504. }
  505. mdp->dirty_rx = 0;
  506. /* Allocate all Tx descriptors. */
  507. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  508. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  509. GFP_KERNEL);
  510. if (!mdp->tx_ring) {
  511. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  512. tx_ringsize);
  513. ret = -ENOMEM;
  514. goto desc_ring_free;
  515. }
  516. return ret;
  517. desc_ring_free:
  518. /* free DMA buffer */
  519. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  520. skb_ring_free:
  521. /* Free Rx and Tx skb ring buffer */
  522. sh_eth_ring_free(ndev);
  523. return ret;
  524. }
  525. static int sh_eth_dev_init(struct net_device *ndev)
  526. {
  527. int ret = 0;
  528. struct sh_eth_private *mdp = netdev_priv(ndev);
  529. u32 ioaddr = ndev->base_addr;
  530. u_int32_t rx_int_var, tx_int_var;
  531. u32 val;
  532. /* Soft Reset */
  533. sh_eth_reset(ndev);
  534. /* Descriptor format */
  535. sh_eth_ring_format(ndev);
  536. if (mdp->cd->rpadir)
  537. ctrl_outl(mdp->cd->rpadir_value, ioaddr + RPADIR);
  538. /* all sh_eth int mask */
  539. ctrl_outl(0, ioaddr + EESIPR);
  540. #if defined(__LITTLE_ENDIAN__)
  541. if (mdp->cd->hw_swap)
  542. ctrl_outl(EDMR_EL, ioaddr + EDMR);
  543. else
  544. #endif
  545. ctrl_outl(0, ioaddr + EDMR);
  546. /* FIFO size set */
  547. ctrl_outl(mdp->cd->fdr_value, ioaddr + FDR);
  548. ctrl_outl(0, ioaddr + TFTR);
  549. /* Frame recv control */
  550. ctrl_outl(mdp->cd->rmcr_value, ioaddr + RMCR);
  551. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  552. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  553. ctrl_outl(rx_int_var | tx_int_var, ioaddr + TRSCER);
  554. if (mdp->cd->bculr)
  555. ctrl_outl(0x800, ioaddr + BCULR); /* Burst sycle set */
  556. ctrl_outl(mdp->cd->fcftr_value, ioaddr + FCFTR);
  557. if (!mdp->cd->no_trimd)
  558. ctrl_outl(0, ioaddr + TRIMD);
  559. /* Recv frame limit set register */
  560. ctrl_outl(RFLR_VALUE, ioaddr + RFLR);
  561. ctrl_outl(ctrl_inl(ioaddr + EESR), ioaddr + EESR);
  562. ctrl_outl(mdp->cd->eesipr_value, ioaddr + EESIPR);
  563. /* PAUSE Prohibition */
  564. val = (ctrl_inl(ioaddr + ECMR) & ECMR_DM) |
  565. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  566. ctrl_outl(val, ioaddr + ECMR);
  567. if (mdp->cd->set_rate)
  568. mdp->cd->set_rate(ndev);
  569. /* E-MAC Status Register clear */
  570. ctrl_outl(mdp->cd->ecsr_value, ioaddr + ECSR);
  571. /* E-MAC Interrupt Enable register */
  572. ctrl_outl(mdp->cd->ecsipr_value, ioaddr + ECSIPR);
  573. /* Set MAC address */
  574. update_mac_address(ndev);
  575. /* mask reset */
  576. if (mdp->cd->apr)
  577. ctrl_outl(APR_AP, ioaddr + APR);
  578. if (mdp->cd->mpr)
  579. ctrl_outl(MPR_MP, ioaddr + MPR);
  580. if (mdp->cd->tpauser)
  581. ctrl_outl(TPAUSER_UNLIMITED, ioaddr + TPAUSER);
  582. /* Setting the Rx mode will start the Rx process. */
  583. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  584. netif_start_queue(ndev);
  585. return ret;
  586. }
  587. /* free Tx skb function */
  588. static int sh_eth_txfree(struct net_device *ndev)
  589. {
  590. struct sh_eth_private *mdp = netdev_priv(ndev);
  591. struct sh_eth_txdesc *txdesc;
  592. int freeNum = 0;
  593. int entry = 0;
  594. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  595. entry = mdp->dirty_tx % TX_RING_SIZE;
  596. txdesc = &mdp->tx_ring[entry];
  597. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  598. break;
  599. /* Free the original skb. */
  600. if (mdp->tx_skbuff[entry]) {
  601. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  602. mdp->tx_skbuff[entry] = NULL;
  603. freeNum++;
  604. }
  605. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  606. if (entry >= TX_RING_SIZE - 1)
  607. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  608. mdp->stats.tx_packets++;
  609. mdp->stats.tx_bytes += txdesc->buffer_length;
  610. }
  611. return freeNum;
  612. }
  613. /* Packet receive function */
  614. static int sh_eth_rx(struct net_device *ndev)
  615. {
  616. struct sh_eth_private *mdp = netdev_priv(ndev);
  617. struct sh_eth_rxdesc *rxdesc;
  618. int entry = mdp->cur_rx % RX_RING_SIZE;
  619. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  620. struct sk_buff *skb;
  621. u16 pkt_len = 0;
  622. u32 desc_status;
  623. rxdesc = &mdp->rx_ring[entry];
  624. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  625. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  626. pkt_len = rxdesc->frame_length;
  627. if (--boguscnt < 0)
  628. break;
  629. if (!(desc_status & RDFEND))
  630. mdp->stats.rx_length_errors++;
  631. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  632. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  633. mdp->stats.rx_errors++;
  634. if (desc_status & RD_RFS1)
  635. mdp->stats.rx_crc_errors++;
  636. if (desc_status & RD_RFS2)
  637. mdp->stats.rx_frame_errors++;
  638. if (desc_status & RD_RFS3)
  639. mdp->stats.rx_length_errors++;
  640. if (desc_status & RD_RFS4)
  641. mdp->stats.rx_length_errors++;
  642. if (desc_status & RD_RFS6)
  643. mdp->stats.rx_missed_errors++;
  644. if (desc_status & RD_RFS10)
  645. mdp->stats.rx_over_errors++;
  646. } else {
  647. if (!mdp->cd->hw_swap)
  648. sh_eth_soft_swap(
  649. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  650. pkt_len + 2);
  651. skb = mdp->rx_skbuff[entry];
  652. mdp->rx_skbuff[entry] = NULL;
  653. if (mdp->cd->rpadir)
  654. skb_reserve(skb, NET_IP_ALIGN);
  655. skb_put(skb, pkt_len);
  656. skb->protocol = eth_type_trans(skb, ndev);
  657. netif_rx(skb);
  658. mdp->stats.rx_packets++;
  659. mdp->stats.rx_bytes += pkt_len;
  660. }
  661. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  662. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  663. rxdesc = &mdp->rx_ring[entry];
  664. }
  665. /* Refill the Rx ring buffers. */
  666. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  667. entry = mdp->dirty_rx % RX_RING_SIZE;
  668. rxdesc = &mdp->rx_ring[entry];
  669. /* The size of the buffer is 16 byte boundary. */
  670. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  671. if (mdp->rx_skbuff[entry] == NULL) {
  672. skb = dev_alloc_skb(mdp->rx_buf_sz);
  673. mdp->rx_skbuff[entry] = skb;
  674. if (skb == NULL)
  675. break; /* Better luck next round. */
  676. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  677. DMA_FROM_DEVICE);
  678. skb->dev = ndev;
  679. sh_eth_set_receive_align(skb);
  680. skb->ip_summed = CHECKSUM_NONE;
  681. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  682. }
  683. if (entry >= RX_RING_SIZE - 1)
  684. rxdesc->status |=
  685. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  686. else
  687. rxdesc->status |=
  688. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  689. }
  690. /* Restart Rx engine if stopped. */
  691. /* If we don't need to check status, don't. -KDU */
  692. if (!(ctrl_inl(ndev->base_addr + EDRRR) & EDRRR_R))
  693. ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR);
  694. return 0;
  695. }
  696. /* error control function */
  697. static void sh_eth_error(struct net_device *ndev, int intr_status)
  698. {
  699. struct sh_eth_private *mdp = netdev_priv(ndev);
  700. u32 ioaddr = ndev->base_addr;
  701. u32 felic_stat;
  702. u32 link_stat;
  703. u32 mask;
  704. if (intr_status & EESR_ECI) {
  705. felic_stat = ctrl_inl(ioaddr + ECSR);
  706. ctrl_outl(felic_stat, ioaddr + ECSR); /* clear int */
  707. if (felic_stat & ECSR_ICD)
  708. mdp->stats.tx_carrier_errors++;
  709. if (felic_stat & ECSR_LCHNG) {
  710. /* Link Changed */
  711. if (mdp->cd->no_psr || mdp->no_ether_link) {
  712. if (mdp->link == PHY_DOWN)
  713. link_stat = 0;
  714. else
  715. link_stat = PHY_ST_LINK;
  716. } else {
  717. link_stat = (ctrl_inl(ioaddr + PSR));
  718. if (mdp->ether_link_active_low)
  719. link_stat = ~link_stat;
  720. }
  721. if (!(link_stat & PHY_ST_LINK)) {
  722. /* Link Down : disable tx and rx */
  723. ctrl_outl(ctrl_inl(ioaddr + ECMR) &
  724. ~(ECMR_RE | ECMR_TE), ioaddr + ECMR);
  725. } else {
  726. /* Link Up */
  727. ctrl_outl(ctrl_inl(ioaddr + EESIPR) &
  728. ~DMAC_M_ECI, ioaddr + EESIPR);
  729. /*clear int */
  730. ctrl_outl(ctrl_inl(ioaddr + ECSR),
  731. ioaddr + ECSR);
  732. ctrl_outl(ctrl_inl(ioaddr + EESIPR) |
  733. DMAC_M_ECI, ioaddr + EESIPR);
  734. /* enable tx and rx */
  735. ctrl_outl(ctrl_inl(ioaddr + ECMR) |
  736. (ECMR_RE | ECMR_TE), ioaddr + ECMR);
  737. }
  738. }
  739. }
  740. if (intr_status & EESR_TWB) {
  741. /* Write buck end. unused write back interrupt */
  742. if (intr_status & EESR_TABT) /* Transmit Abort int */
  743. mdp->stats.tx_aborted_errors++;
  744. }
  745. if (intr_status & EESR_RABT) {
  746. /* Receive Abort int */
  747. if (intr_status & EESR_RFRMER) {
  748. /* Receive Frame Overflow int */
  749. mdp->stats.rx_frame_errors++;
  750. dev_err(&ndev->dev, "Receive Frame Overflow\n");
  751. }
  752. }
  753. if (!mdp->cd->no_ade) {
  754. if (intr_status & EESR_ADE && intr_status & EESR_TDE &&
  755. intr_status & EESR_TFE)
  756. mdp->stats.tx_fifo_errors++;
  757. }
  758. if (intr_status & EESR_RDE) {
  759. /* Receive Descriptor Empty int */
  760. mdp->stats.rx_over_errors++;
  761. if (ctrl_inl(ioaddr + EDRRR) ^ EDRRR_R)
  762. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  763. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  764. }
  765. if (intr_status & EESR_RFE) {
  766. /* Receive FIFO Overflow int */
  767. mdp->stats.rx_fifo_errors++;
  768. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  769. }
  770. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  771. if (mdp->cd->no_ade)
  772. mask &= ~EESR_ADE;
  773. if (intr_status & mask) {
  774. /* Tx error */
  775. u32 edtrr = ctrl_inl(ndev->base_addr + EDTRR);
  776. /* dmesg */
  777. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  778. intr_status, mdp->cur_tx);
  779. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  780. mdp->dirty_tx, (u32) ndev->state, edtrr);
  781. /* dirty buffer free */
  782. sh_eth_txfree(ndev);
  783. /* SH7712 BUG */
  784. if (edtrr ^ EDTRR_TRNS) {
  785. /* tx dma start */
  786. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  787. }
  788. /* wakeup */
  789. netif_wake_queue(ndev);
  790. }
  791. }
  792. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  793. {
  794. struct net_device *ndev = netdev;
  795. struct sh_eth_private *mdp = netdev_priv(ndev);
  796. struct sh_eth_cpu_data *cd = mdp->cd;
  797. irqreturn_t ret = IRQ_NONE;
  798. u32 ioaddr, intr_status = 0;
  799. ioaddr = ndev->base_addr;
  800. spin_lock(&mdp->lock);
  801. /* Get interrpt stat */
  802. intr_status = ctrl_inl(ioaddr + EESR);
  803. /* Clear interrupt */
  804. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  805. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  806. cd->tx_check | cd->eesr_err_check)) {
  807. ctrl_outl(intr_status, ioaddr + EESR);
  808. ret = IRQ_HANDLED;
  809. } else
  810. goto other_irq;
  811. if (intr_status & (EESR_FRC | /* Frame recv*/
  812. EESR_RMAF | /* Multi cast address recv*/
  813. EESR_RRF | /* Bit frame recv */
  814. EESR_RTLF | /* Long frame recv*/
  815. EESR_RTSF | /* short frame recv */
  816. EESR_PRE | /* PHY-LSI recv error */
  817. EESR_CERF)){ /* recv frame CRC error */
  818. sh_eth_rx(ndev);
  819. }
  820. /* Tx Check */
  821. if (intr_status & cd->tx_check) {
  822. sh_eth_txfree(ndev);
  823. netif_wake_queue(ndev);
  824. }
  825. if (intr_status & cd->eesr_err_check)
  826. sh_eth_error(ndev, intr_status);
  827. other_irq:
  828. spin_unlock(&mdp->lock);
  829. return ret;
  830. }
  831. static void sh_eth_timer(unsigned long data)
  832. {
  833. struct net_device *ndev = (struct net_device *)data;
  834. struct sh_eth_private *mdp = netdev_priv(ndev);
  835. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  836. }
  837. /* PHY state control function */
  838. static void sh_eth_adjust_link(struct net_device *ndev)
  839. {
  840. struct sh_eth_private *mdp = netdev_priv(ndev);
  841. struct phy_device *phydev = mdp->phydev;
  842. u32 ioaddr = ndev->base_addr;
  843. int new_state = 0;
  844. if (phydev->link != PHY_DOWN) {
  845. if (phydev->duplex != mdp->duplex) {
  846. new_state = 1;
  847. mdp->duplex = phydev->duplex;
  848. if (mdp->cd->set_duplex)
  849. mdp->cd->set_duplex(ndev);
  850. }
  851. if (phydev->speed != mdp->speed) {
  852. new_state = 1;
  853. mdp->speed = phydev->speed;
  854. if (mdp->cd->set_rate)
  855. mdp->cd->set_rate(ndev);
  856. }
  857. if (mdp->link == PHY_DOWN) {
  858. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_TXF)
  859. | ECMR_DM, ioaddr + ECMR);
  860. new_state = 1;
  861. mdp->link = phydev->link;
  862. }
  863. } else if (mdp->link) {
  864. new_state = 1;
  865. mdp->link = PHY_DOWN;
  866. mdp->speed = 0;
  867. mdp->duplex = -1;
  868. }
  869. if (new_state)
  870. phy_print_status(phydev);
  871. }
  872. /* PHY init function */
  873. static int sh_eth_phy_init(struct net_device *ndev)
  874. {
  875. struct sh_eth_private *mdp = netdev_priv(ndev);
  876. char phy_id[MII_BUS_ID_SIZE + 3];
  877. struct phy_device *phydev = NULL;
  878. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  879. mdp->mii_bus->id , mdp->phy_id);
  880. mdp->link = PHY_DOWN;
  881. mdp->speed = 0;
  882. mdp->duplex = -1;
  883. /* Try connect to PHY */
  884. phydev = phy_connect(ndev, phy_id, &sh_eth_adjust_link,
  885. 0, PHY_INTERFACE_MODE_MII);
  886. if (IS_ERR(phydev)) {
  887. dev_err(&ndev->dev, "phy_connect failed\n");
  888. return PTR_ERR(phydev);
  889. }
  890. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  891. phydev->addr, phydev->drv->name);
  892. mdp->phydev = phydev;
  893. return 0;
  894. }
  895. /* PHY control start function */
  896. static int sh_eth_phy_start(struct net_device *ndev)
  897. {
  898. struct sh_eth_private *mdp = netdev_priv(ndev);
  899. int ret;
  900. ret = sh_eth_phy_init(ndev);
  901. if (ret)
  902. return ret;
  903. /* reset phy - this also wakes it from PDOWN */
  904. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  905. phy_start(mdp->phydev);
  906. return 0;
  907. }
  908. /* network device open function */
  909. static int sh_eth_open(struct net_device *ndev)
  910. {
  911. int ret = 0;
  912. struct sh_eth_private *mdp = netdev_priv(ndev);
  913. pm_runtime_get_sync(&mdp->pdev->dev);
  914. ret = request_irq(ndev->irq, sh_eth_interrupt,
  915. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  916. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  917. defined(CONFIG_CPU_SUBTYPE_SH7757)
  918. IRQF_SHARED,
  919. #else
  920. 0,
  921. #endif
  922. ndev->name, ndev);
  923. if (ret) {
  924. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  925. return ret;
  926. }
  927. /* Descriptor set */
  928. ret = sh_eth_ring_init(ndev);
  929. if (ret)
  930. goto out_free_irq;
  931. /* device init */
  932. ret = sh_eth_dev_init(ndev);
  933. if (ret)
  934. goto out_free_irq;
  935. /* PHY control start*/
  936. ret = sh_eth_phy_start(ndev);
  937. if (ret)
  938. goto out_free_irq;
  939. /* Set the timer to check for link beat. */
  940. init_timer(&mdp->timer);
  941. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  942. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  943. return ret;
  944. out_free_irq:
  945. free_irq(ndev->irq, ndev);
  946. pm_runtime_put_sync(&mdp->pdev->dev);
  947. return ret;
  948. }
  949. /* Timeout function */
  950. static void sh_eth_tx_timeout(struct net_device *ndev)
  951. {
  952. struct sh_eth_private *mdp = netdev_priv(ndev);
  953. u32 ioaddr = ndev->base_addr;
  954. struct sh_eth_rxdesc *rxdesc;
  955. int i;
  956. netif_stop_queue(ndev);
  957. /* worning message out. */
  958. printk(KERN_WARNING "%s: transmit timed out, status %8.8x,"
  959. " resetting...\n", ndev->name, (int)ctrl_inl(ioaddr + EESR));
  960. /* tx_errors count up */
  961. mdp->stats.tx_errors++;
  962. /* timer off */
  963. del_timer_sync(&mdp->timer);
  964. /* Free all the skbuffs in the Rx queue. */
  965. for (i = 0; i < RX_RING_SIZE; i++) {
  966. rxdesc = &mdp->rx_ring[i];
  967. rxdesc->status = 0;
  968. rxdesc->addr = 0xBADF00D0;
  969. if (mdp->rx_skbuff[i])
  970. dev_kfree_skb(mdp->rx_skbuff[i]);
  971. mdp->rx_skbuff[i] = NULL;
  972. }
  973. for (i = 0; i < TX_RING_SIZE; i++) {
  974. if (mdp->tx_skbuff[i])
  975. dev_kfree_skb(mdp->tx_skbuff[i]);
  976. mdp->tx_skbuff[i] = NULL;
  977. }
  978. /* device init */
  979. sh_eth_dev_init(ndev);
  980. /* timer on */
  981. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  982. add_timer(&mdp->timer);
  983. }
  984. /* Packet transmit function */
  985. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  986. {
  987. struct sh_eth_private *mdp = netdev_priv(ndev);
  988. struct sh_eth_txdesc *txdesc;
  989. u32 entry;
  990. unsigned long flags;
  991. spin_lock_irqsave(&mdp->lock, flags);
  992. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  993. if (!sh_eth_txfree(ndev)) {
  994. netif_stop_queue(ndev);
  995. spin_unlock_irqrestore(&mdp->lock, flags);
  996. return NETDEV_TX_BUSY;
  997. }
  998. }
  999. spin_unlock_irqrestore(&mdp->lock, flags);
  1000. entry = mdp->cur_tx % TX_RING_SIZE;
  1001. mdp->tx_skbuff[entry] = skb;
  1002. txdesc = &mdp->tx_ring[entry];
  1003. txdesc->addr = virt_to_phys(skb->data);
  1004. /* soft swap. */
  1005. if (!mdp->cd->hw_swap)
  1006. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1007. skb->len + 2);
  1008. /* write back */
  1009. __flush_purge_region(skb->data, skb->len);
  1010. if (skb->len < ETHERSMALL)
  1011. txdesc->buffer_length = ETHERSMALL;
  1012. else
  1013. txdesc->buffer_length = skb->len;
  1014. if (entry >= TX_RING_SIZE - 1)
  1015. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1016. else
  1017. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1018. mdp->cur_tx++;
  1019. if (!(ctrl_inl(ndev->base_addr + EDTRR) & EDTRR_TRNS))
  1020. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  1021. return NETDEV_TX_OK;
  1022. }
  1023. /* device close function */
  1024. static int sh_eth_close(struct net_device *ndev)
  1025. {
  1026. struct sh_eth_private *mdp = netdev_priv(ndev);
  1027. u32 ioaddr = ndev->base_addr;
  1028. int ringsize;
  1029. netif_stop_queue(ndev);
  1030. /* Disable interrupts by clearing the interrupt mask. */
  1031. ctrl_outl(0x0000, ioaddr + EESIPR);
  1032. /* Stop the chip's Tx and Rx processes. */
  1033. ctrl_outl(0, ioaddr + EDTRR);
  1034. ctrl_outl(0, ioaddr + EDRRR);
  1035. /* PHY Disconnect */
  1036. if (mdp->phydev) {
  1037. phy_stop(mdp->phydev);
  1038. phy_disconnect(mdp->phydev);
  1039. }
  1040. free_irq(ndev->irq, ndev);
  1041. del_timer_sync(&mdp->timer);
  1042. /* Free all the skbuffs in the Rx queue. */
  1043. sh_eth_ring_free(ndev);
  1044. /* free DMA buffer */
  1045. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  1046. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  1047. /* free DMA buffer */
  1048. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1049. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1050. pm_runtime_put_sync(&mdp->pdev->dev);
  1051. return 0;
  1052. }
  1053. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1054. {
  1055. struct sh_eth_private *mdp = netdev_priv(ndev);
  1056. u32 ioaddr = ndev->base_addr;
  1057. pm_runtime_get_sync(&mdp->pdev->dev);
  1058. mdp->stats.tx_dropped += ctrl_inl(ioaddr + TROCR);
  1059. ctrl_outl(0, ioaddr + TROCR); /* (write clear) */
  1060. mdp->stats.collisions += ctrl_inl(ioaddr + CDCR);
  1061. ctrl_outl(0, ioaddr + CDCR); /* (write clear) */
  1062. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + LCCR);
  1063. ctrl_outl(0, ioaddr + LCCR); /* (write clear) */
  1064. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  1065. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CERCR);/* CERCR */
  1066. ctrl_outl(0, ioaddr + CERCR); /* (write clear) */
  1067. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CEECR);/* CEECR */
  1068. ctrl_outl(0, ioaddr + CEECR); /* (write clear) */
  1069. #else
  1070. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CNDCR);
  1071. ctrl_outl(0, ioaddr + CNDCR); /* (write clear) */
  1072. #endif
  1073. pm_runtime_put_sync(&mdp->pdev->dev);
  1074. return &mdp->stats;
  1075. }
  1076. /* ioctl to device funciotn*/
  1077. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1078. int cmd)
  1079. {
  1080. struct sh_eth_private *mdp = netdev_priv(ndev);
  1081. struct phy_device *phydev = mdp->phydev;
  1082. if (!netif_running(ndev))
  1083. return -EINVAL;
  1084. if (!phydev)
  1085. return -ENODEV;
  1086. return phy_mii_ioctl(phydev, rq, cmd);
  1087. }
  1088. #if defined(SH_ETH_HAS_TSU)
  1089. /* Multicast reception directions set */
  1090. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1091. {
  1092. u32 ioaddr = ndev->base_addr;
  1093. if (ndev->flags & IFF_PROMISC) {
  1094. /* Set promiscuous. */
  1095. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM,
  1096. ioaddr + ECMR);
  1097. } else {
  1098. /* Normal, unicast/broadcast-only mode. */
  1099. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT,
  1100. ioaddr + ECMR);
  1101. }
  1102. }
  1103. /* SuperH's TSU register init function */
  1104. static void sh_eth_tsu_init(u32 ioaddr)
  1105. {
  1106. ctrl_outl(0, ioaddr + TSU_FWEN0); /* Disable forward(0->1) */
  1107. ctrl_outl(0, ioaddr + TSU_FWEN1); /* Disable forward(1->0) */
  1108. ctrl_outl(0, ioaddr + TSU_FCM); /* forward fifo 3k-3k */
  1109. ctrl_outl(0xc, ioaddr + TSU_BSYSL0);
  1110. ctrl_outl(0xc, ioaddr + TSU_BSYSL1);
  1111. ctrl_outl(0, ioaddr + TSU_PRISL0);
  1112. ctrl_outl(0, ioaddr + TSU_PRISL1);
  1113. ctrl_outl(0, ioaddr + TSU_FWSL0);
  1114. ctrl_outl(0, ioaddr + TSU_FWSL1);
  1115. ctrl_outl(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC);
  1116. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  1117. ctrl_outl(0, ioaddr + TSU_QTAG0); /* Disable QTAG(0->1) */
  1118. ctrl_outl(0, ioaddr + TSU_QTAG1); /* Disable QTAG(1->0) */
  1119. #else
  1120. ctrl_outl(0, ioaddr + TSU_QTAGM0); /* Disable QTAG(0->1) */
  1121. ctrl_outl(0, ioaddr + TSU_QTAGM1); /* Disable QTAG(1->0) */
  1122. #endif
  1123. ctrl_outl(0, ioaddr + TSU_FWSR); /* all interrupt status clear */
  1124. ctrl_outl(0, ioaddr + TSU_FWINMK); /* Disable all interrupt */
  1125. ctrl_outl(0, ioaddr + TSU_TEN); /* Disable all CAM entry */
  1126. ctrl_outl(0, ioaddr + TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1127. ctrl_outl(0, ioaddr + TSU_POST2); /* Disable CAM entry [ 8-15] */
  1128. ctrl_outl(0, ioaddr + TSU_POST3); /* Disable CAM entry [16-23] */
  1129. ctrl_outl(0, ioaddr + TSU_POST4); /* Disable CAM entry [24-31] */
  1130. }
  1131. #endif /* SH_ETH_HAS_TSU */
  1132. /* MDIO bus release function */
  1133. static int sh_mdio_release(struct net_device *ndev)
  1134. {
  1135. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1136. /* unregister mdio bus */
  1137. mdiobus_unregister(bus);
  1138. /* remove mdio bus info from net_device */
  1139. dev_set_drvdata(&ndev->dev, NULL);
  1140. /* free interrupts memory */
  1141. kfree(bus->irq);
  1142. /* free bitbang info */
  1143. free_mdio_bitbang(bus);
  1144. return 0;
  1145. }
  1146. /* MDIO bus init function */
  1147. static int sh_mdio_init(struct net_device *ndev, int id)
  1148. {
  1149. int ret, i;
  1150. struct bb_info *bitbang;
  1151. struct sh_eth_private *mdp = netdev_priv(ndev);
  1152. /* create bit control struct for PHY */
  1153. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1154. if (!bitbang) {
  1155. ret = -ENOMEM;
  1156. goto out;
  1157. }
  1158. /* bitbang init */
  1159. bitbang->addr = ndev->base_addr + PIR;
  1160. bitbang->mdi_msk = 0x08;
  1161. bitbang->mdo_msk = 0x04;
  1162. bitbang->mmd_msk = 0x02;/* MMD */
  1163. bitbang->mdc_msk = 0x01;
  1164. bitbang->ctrl.ops = &bb_ops;
  1165. /* MII contorller setting */
  1166. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1167. if (!mdp->mii_bus) {
  1168. ret = -ENOMEM;
  1169. goto out_free_bitbang;
  1170. }
  1171. /* Hook up MII support for ethtool */
  1172. mdp->mii_bus->name = "sh_mii";
  1173. mdp->mii_bus->parent = &ndev->dev;
  1174. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
  1175. /* PHY IRQ */
  1176. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1177. if (!mdp->mii_bus->irq) {
  1178. ret = -ENOMEM;
  1179. goto out_free_bus;
  1180. }
  1181. for (i = 0; i < PHY_MAX_ADDR; i++)
  1182. mdp->mii_bus->irq[i] = PHY_POLL;
  1183. /* regist mdio bus */
  1184. ret = mdiobus_register(mdp->mii_bus);
  1185. if (ret)
  1186. goto out_free_irq;
  1187. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1188. return 0;
  1189. out_free_irq:
  1190. kfree(mdp->mii_bus->irq);
  1191. out_free_bus:
  1192. free_mdio_bitbang(mdp->mii_bus);
  1193. out_free_bitbang:
  1194. kfree(bitbang);
  1195. out:
  1196. return ret;
  1197. }
  1198. static const struct net_device_ops sh_eth_netdev_ops = {
  1199. .ndo_open = sh_eth_open,
  1200. .ndo_stop = sh_eth_close,
  1201. .ndo_start_xmit = sh_eth_start_xmit,
  1202. .ndo_get_stats = sh_eth_get_stats,
  1203. #if defined(SH_ETH_HAS_TSU)
  1204. .ndo_set_multicast_list = sh_eth_set_multicast_list,
  1205. #endif
  1206. .ndo_tx_timeout = sh_eth_tx_timeout,
  1207. .ndo_do_ioctl = sh_eth_do_ioctl,
  1208. .ndo_validate_addr = eth_validate_addr,
  1209. .ndo_set_mac_address = eth_mac_addr,
  1210. .ndo_change_mtu = eth_change_mtu,
  1211. };
  1212. static int sh_eth_drv_probe(struct platform_device *pdev)
  1213. {
  1214. int ret, i, devno = 0;
  1215. struct resource *res;
  1216. struct net_device *ndev = NULL;
  1217. struct sh_eth_private *mdp;
  1218. struct sh_eth_plat_data *pd;
  1219. /* get base addr */
  1220. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1221. if (unlikely(res == NULL)) {
  1222. dev_err(&pdev->dev, "invalid resource\n");
  1223. ret = -EINVAL;
  1224. goto out;
  1225. }
  1226. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1227. if (!ndev) {
  1228. dev_err(&pdev->dev, "Could not allocate device.\n");
  1229. ret = -ENOMEM;
  1230. goto out;
  1231. }
  1232. /* The sh Ether-specific entries in the device structure. */
  1233. ndev->base_addr = res->start;
  1234. devno = pdev->id;
  1235. if (devno < 0)
  1236. devno = 0;
  1237. ndev->dma = -1;
  1238. ret = platform_get_irq(pdev, 0);
  1239. if (ret < 0) {
  1240. ret = -ENODEV;
  1241. goto out_release;
  1242. }
  1243. ndev->irq = ret;
  1244. SET_NETDEV_DEV(ndev, &pdev->dev);
  1245. /* Fill in the fields of the device structure with ethernet values. */
  1246. ether_setup(ndev);
  1247. mdp = netdev_priv(ndev);
  1248. spin_lock_init(&mdp->lock);
  1249. mdp->pdev = pdev;
  1250. pm_runtime_enable(&pdev->dev);
  1251. pm_runtime_resume(&pdev->dev);
  1252. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1253. /* get PHY ID */
  1254. mdp->phy_id = pd->phy;
  1255. /* EDMAC endian */
  1256. mdp->edmac_endian = pd->edmac_endian;
  1257. mdp->no_ether_link = pd->no_ether_link;
  1258. mdp->ether_link_active_low = pd->ether_link_active_low;
  1259. /* set cpu data */
  1260. mdp->cd = &sh_eth_my_cpu_data;
  1261. sh_eth_set_default_cpu_data(mdp->cd);
  1262. /* set function */
  1263. ndev->netdev_ops = &sh_eth_netdev_ops;
  1264. ndev->watchdog_timeo = TX_TIMEOUT;
  1265. mdp->post_rx = POST_RX >> (devno << 1);
  1266. mdp->post_fw = POST_FW >> (devno << 1);
  1267. /* read and set MAC address */
  1268. read_mac_address(ndev, pd->mac_addr);
  1269. /* First device only init */
  1270. if (!devno) {
  1271. if (mdp->cd->chip_reset)
  1272. mdp->cd->chip_reset(ndev);
  1273. #if defined(SH_ETH_HAS_TSU)
  1274. /* TSU init (Init only)*/
  1275. sh_eth_tsu_init(SH_TSU_ADDR);
  1276. #endif
  1277. }
  1278. /* network device register */
  1279. ret = register_netdev(ndev);
  1280. if (ret)
  1281. goto out_release;
  1282. /* mdio bus init */
  1283. ret = sh_mdio_init(ndev, pdev->id);
  1284. if (ret)
  1285. goto out_unregister;
  1286. /* print device infomation */
  1287. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  1288. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1289. platform_set_drvdata(pdev, ndev);
  1290. return ret;
  1291. out_unregister:
  1292. unregister_netdev(ndev);
  1293. out_release:
  1294. /* net_dev free */
  1295. if (ndev)
  1296. free_netdev(ndev);
  1297. out:
  1298. return ret;
  1299. }
  1300. static int sh_eth_drv_remove(struct platform_device *pdev)
  1301. {
  1302. struct net_device *ndev = platform_get_drvdata(pdev);
  1303. sh_mdio_release(ndev);
  1304. unregister_netdev(ndev);
  1305. flush_scheduled_work();
  1306. pm_runtime_disable(&pdev->dev);
  1307. free_netdev(ndev);
  1308. platform_set_drvdata(pdev, NULL);
  1309. return 0;
  1310. }
  1311. static int sh_eth_runtime_nop(struct device *dev)
  1312. {
  1313. /*
  1314. * Runtime PM callback shared between ->runtime_suspend()
  1315. * and ->runtime_resume(). Simply returns success.
  1316. *
  1317. * This driver re-initializes all registers after
  1318. * pm_runtime_get_sync() anyway so there is no need
  1319. * to save and restore registers here.
  1320. */
  1321. return 0;
  1322. }
  1323. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  1324. .runtime_suspend = sh_eth_runtime_nop,
  1325. .runtime_resume = sh_eth_runtime_nop,
  1326. };
  1327. static struct platform_driver sh_eth_driver = {
  1328. .probe = sh_eth_drv_probe,
  1329. .remove = sh_eth_drv_remove,
  1330. .driver = {
  1331. .name = CARDNAME,
  1332. .pm = &sh_eth_dev_pm_ops,
  1333. },
  1334. };
  1335. static int __init sh_eth_init(void)
  1336. {
  1337. return platform_driver_register(&sh_eth_driver);
  1338. }
  1339. static void __exit sh_eth_cleanup(void)
  1340. {
  1341. platform_driver_unregister(&sh_eth_driver);
  1342. }
  1343. module_init(sh_eth_init);
  1344. module_exit(sh_eth_cleanup);
  1345. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1346. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1347. MODULE_LICENSE("GPL v2");