qlge_dbg.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196
  1. #include <linux/slab.h>
  2. #include "qlge.h"
  3. /* Read a NIC register from the alternate function. */
  4. static u32 ql_read_other_func_reg(struct ql_adapter *qdev,
  5. u32 reg)
  6. {
  7. u32 register_to_read;
  8. u32 reg_val;
  9. unsigned int status = 0;
  10. register_to_read = MPI_NIC_REG_BLOCK
  11. | MPI_NIC_READ
  12. | (qdev->alt_func << MPI_NIC_FUNCTION_SHIFT)
  13. | reg;
  14. status = ql_read_mpi_reg(qdev, register_to_read, &reg_val);
  15. if (status != 0)
  16. return 0xffffffff;
  17. return reg_val;
  18. }
  19. /* Write a NIC register from the alternate function. */
  20. static int ql_write_other_func_reg(struct ql_adapter *qdev,
  21. u32 reg, u32 reg_val)
  22. {
  23. u32 register_to_read;
  24. int status = 0;
  25. register_to_read = MPI_NIC_REG_BLOCK
  26. | MPI_NIC_READ
  27. | (qdev->alt_func << MPI_NIC_FUNCTION_SHIFT)
  28. | reg;
  29. status = ql_write_mpi_reg(qdev, register_to_read, reg_val);
  30. return status;
  31. }
  32. static int ql_wait_other_func_reg_rdy(struct ql_adapter *qdev, u32 reg,
  33. u32 bit, u32 err_bit)
  34. {
  35. u32 temp;
  36. int count = 10;
  37. while (count) {
  38. temp = ql_read_other_func_reg(qdev, reg);
  39. /* check for errors */
  40. if (temp & err_bit)
  41. return -1;
  42. else if (temp & bit)
  43. return 0;
  44. mdelay(10);
  45. count--;
  46. }
  47. return -1;
  48. }
  49. static int ql_read_other_func_serdes_reg(struct ql_adapter *qdev, u32 reg,
  50. u32 *data)
  51. {
  52. int status;
  53. /* wait for reg to come ready */
  54. status = ql_wait_other_func_reg_rdy(qdev, XG_SERDES_ADDR / 4,
  55. XG_SERDES_ADDR_RDY, 0);
  56. if (status)
  57. goto exit;
  58. /* set up for reg read */
  59. ql_write_other_func_reg(qdev, XG_SERDES_ADDR/4, reg | PROC_ADDR_R);
  60. /* wait for reg to come ready */
  61. status = ql_wait_other_func_reg_rdy(qdev, XG_SERDES_ADDR / 4,
  62. XG_SERDES_ADDR_RDY, 0);
  63. if (status)
  64. goto exit;
  65. /* get the data */
  66. *data = ql_read_other_func_reg(qdev, (XG_SERDES_DATA / 4));
  67. exit:
  68. return status;
  69. }
  70. /* Read out the SERDES registers */
  71. static int ql_read_serdes_reg(struct ql_adapter *qdev, u32 reg, u32 * data)
  72. {
  73. int status;
  74. /* wait for reg to come ready */
  75. status = ql_wait_reg_rdy(qdev, XG_SERDES_ADDR, XG_SERDES_ADDR_RDY, 0);
  76. if (status)
  77. goto exit;
  78. /* set up for reg read */
  79. ql_write32(qdev, XG_SERDES_ADDR, reg | PROC_ADDR_R);
  80. /* wait for reg to come ready */
  81. status = ql_wait_reg_rdy(qdev, XG_SERDES_ADDR, XG_SERDES_ADDR_RDY, 0);
  82. if (status)
  83. goto exit;
  84. /* get the data */
  85. *data = ql_read32(qdev, XG_SERDES_DATA);
  86. exit:
  87. return status;
  88. }
  89. static void ql_get_both_serdes(struct ql_adapter *qdev, u32 addr,
  90. u32 *direct_ptr, u32 *indirect_ptr,
  91. unsigned int direct_valid, unsigned int indirect_valid)
  92. {
  93. unsigned int status;
  94. status = 1;
  95. if (direct_valid)
  96. status = ql_read_serdes_reg(qdev, addr, direct_ptr);
  97. /* Dead fill any failures or invalids. */
  98. if (status)
  99. *direct_ptr = 0xDEADBEEF;
  100. status = 1;
  101. if (indirect_valid)
  102. status = ql_read_other_func_serdes_reg(
  103. qdev, addr, indirect_ptr);
  104. /* Dead fill any failures or invalids. */
  105. if (status)
  106. *indirect_ptr = 0xDEADBEEF;
  107. }
  108. static int ql_get_serdes_regs(struct ql_adapter *qdev,
  109. struct ql_mpi_coredump *mpi_coredump)
  110. {
  111. int status;
  112. unsigned int xfi_direct_valid, xfi_indirect_valid, xaui_direct_valid;
  113. unsigned int xaui_indirect_valid, i;
  114. u32 *direct_ptr, temp;
  115. u32 *indirect_ptr;
  116. xfi_direct_valid = xfi_indirect_valid = 0;
  117. xaui_direct_valid = xaui_indirect_valid = 1;
  118. /* The XAUI needs to be read out per port */
  119. if (qdev->func & 1) {
  120. /* We are NIC 2 */
  121. status = ql_read_other_func_serdes_reg(qdev,
  122. XG_SERDES_XAUI_HSS_PCS_START, &temp);
  123. if (status)
  124. temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
  125. if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
  126. XG_SERDES_ADDR_XAUI_PWR_DOWN)
  127. xaui_indirect_valid = 0;
  128. status = ql_read_serdes_reg(qdev,
  129. XG_SERDES_XAUI_HSS_PCS_START, &temp);
  130. if (status)
  131. temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
  132. if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
  133. XG_SERDES_ADDR_XAUI_PWR_DOWN)
  134. xaui_direct_valid = 0;
  135. } else {
  136. /* We are NIC 1 */
  137. status = ql_read_other_func_serdes_reg(qdev,
  138. XG_SERDES_XAUI_HSS_PCS_START, &temp);
  139. if (status)
  140. temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
  141. if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
  142. XG_SERDES_ADDR_XAUI_PWR_DOWN)
  143. xaui_indirect_valid = 0;
  144. status = ql_read_serdes_reg(qdev,
  145. XG_SERDES_XAUI_HSS_PCS_START, &temp);
  146. if (status)
  147. temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
  148. if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
  149. XG_SERDES_ADDR_XAUI_PWR_DOWN)
  150. xaui_direct_valid = 0;
  151. }
  152. /*
  153. * XFI register is shared so only need to read one
  154. * functions and then check the bits.
  155. */
  156. status = ql_read_serdes_reg(qdev, XG_SERDES_ADDR_STS, &temp);
  157. if (status)
  158. temp = 0;
  159. if ((temp & XG_SERDES_ADDR_XFI1_PWR_UP) ==
  160. XG_SERDES_ADDR_XFI1_PWR_UP) {
  161. /* now see if i'm NIC 1 or NIC 2 */
  162. if (qdev->func & 1)
  163. /* I'm NIC 2, so the indirect (NIC1) xfi is up. */
  164. xfi_indirect_valid = 1;
  165. else
  166. xfi_direct_valid = 1;
  167. }
  168. if ((temp & XG_SERDES_ADDR_XFI2_PWR_UP) ==
  169. XG_SERDES_ADDR_XFI2_PWR_UP) {
  170. /* now see if i'm NIC 1 or NIC 2 */
  171. if (qdev->func & 1)
  172. /* I'm NIC 2, so the indirect (NIC1) xfi is up. */
  173. xfi_direct_valid = 1;
  174. else
  175. xfi_indirect_valid = 1;
  176. }
  177. /* Get XAUI_AN register block. */
  178. if (qdev->func & 1) {
  179. /* Function 2 is direct */
  180. direct_ptr = mpi_coredump->serdes2_xaui_an;
  181. indirect_ptr = mpi_coredump->serdes_xaui_an;
  182. } else {
  183. /* Function 1 is direct */
  184. direct_ptr = mpi_coredump->serdes_xaui_an;
  185. indirect_ptr = mpi_coredump->serdes2_xaui_an;
  186. }
  187. for (i = 0; i <= 0x000000034; i += 4, direct_ptr++, indirect_ptr++)
  188. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  189. xaui_direct_valid, xaui_indirect_valid);
  190. /* Get XAUI_HSS_PCS register block. */
  191. if (qdev->func & 1) {
  192. direct_ptr =
  193. mpi_coredump->serdes2_xaui_hss_pcs;
  194. indirect_ptr =
  195. mpi_coredump->serdes_xaui_hss_pcs;
  196. } else {
  197. direct_ptr =
  198. mpi_coredump->serdes_xaui_hss_pcs;
  199. indirect_ptr =
  200. mpi_coredump->serdes2_xaui_hss_pcs;
  201. }
  202. for (i = 0x800; i <= 0x880; i += 4, direct_ptr++, indirect_ptr++)
  203. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  204. xaui_direct_valid, xaui_indirect_valid);
  205. /* Get XAUI_XFI_AN register block. */
  206. if (qdev->func & 1) {
  207. direct_ptr = mpi_coredump->serdes2_xfi_an;
  208. indirect_ptr = mpi_coredump->serdes_xfi_an;
  209. } else {
  210. direct_ptr = mpi_coredump->serdes_xfi_an;
  211. indirect_ptr = mpi_coredump->serdes2_xfi_an;
  212. }
  213. for (i = 0x1000; i <= 0x1034; i += 4, direct_ptr++, indirect_ptr++)
  214. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  215. xfi_direct_valid, xfi_indirect_valid);
  216. /* Get XAUI_XFI_TRAIN register block. */
  217. if (qdev->func & 1) {
  218. direct_ptr = mpi_coredump->serdes2_xfi_train;
  219. indirect_ptr =
  220. mpi_coredump->serdes_xfi_train;
  221. } else {
  222. direct_ptr = mpi_coredump->serdes_xfi_train;
  223. indirect_ptr =
  224. mpi_coredump->serdes2_xfi_train;
  225. }
  226. for (i = 0x1050; i <= 0x107c; i += 4, direct_ptr++, indirect_ptr++)
  227. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  228. xfi_direct_valid, xfi_indirect_valid);
  229. /* Get XAUI_XFI_HSS_PCS register block. */
  230. if (qdev->func & 1) {
  231. direct_ptr =
  232. mpi_coredump->serdes2_xfi_hss_pcs;
  233. indirect_ptr =
  234. mpi_coredump->serdes_xfi_hss_pcs;
  235. } else {
  236. direct_ptr =
  237. mpi_coredump->serdes_xfi_hss_pcs;
  238. indirect_ptr =
  239. mpi_coredump->serdes2_xfi_hss_pcs;
  240. }
  241. for (i = 0x1800; i <= 0x1838; i += 4, direct_ptr++, indirect_ptr++)
  242. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  243. xfi_direct_valid, xfi_indirect_valid);
  244. /* Get XAUI_XFI_HSS_TX register block. */
  245. if (qdev->func & 1) {
  246. direct_ptr =
  247. mpi_coredump->serdes2_xfi_hss_tx;
  248. indirect_ptr =
  249. mpi_coredump->serdes_xfi_hss_tx;
  250. } else {
  251. direct_ptr = mpi_coredump->serdes_xfi_hss_tx;
  252. indirect_ptr =
  253. mpi_coredump->serdes2_xfi_hss_tx;
  254. }
  255. for (i = 0x1c00; i <= 0x1c1f; i++, direct_ptr++, indirect_ptr++)
  256. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  257. xfi_direct_valid, xfi_indirect_valid);
  258. /* Get XAUI_XFI_HSS_RX register block. */
  259. if (qdev->func & 1) {
  260. direct_ptr =
  261. mpi_coredump->serdes2_xfi_hss_rx;
  262. indirect_ptr =
  263. mpi_coredump->serdes_xfi_hss_rx;
  264. } else {
  265. direct_ptr = mpi_coredump->serdes_xfi_hss_rx;
  266. indirect_ptr =
  267. mpi_coredump->serdes2_xfi_hss_rx;
  268. }
  269. for (i = 0x1c40; i <= 0x1c5f; i++, direct_ptr++, indirect_ptr++)
  270. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  271. xfi_direct_valid, xfi_indirect_valid);
  272. /* Get XAUI_XFI_HSS_PLL register block. */
  273. if (qdev->func & 1) {
  274. direct_ptr =
  275. mpi_coredump->serdes2_xfi_hss_pll;
  276. indirect_ptr =
  277. mpi_coredump->serdes_xfi_hss_pll;
  278. } else {
  279. direct_ptr =
  280. mpi_coredump->serdes_xfi_hss_pll;
  281. indirect_ptr =
  282. mpi_coredump->serdes2_xfi_hss_pll;
  283. }
  284. for (i = 0x1e00; i <= 0x1e1f; i++, direct_ptr++, indirect_ptr++)
  285. ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
  286. xfi_direct_valid, xfi_indirect_valid);
  287. return 0;
  288. }
  289. static int ql_read_other_func_xgmac_reg(struct ql_adapter *qdev, u32 reg,
  290. u32 *data)
  291. {
  292. int status = 0;
  293. /* wait for reg to come ready */
  294. status = ql_wait_other_func_reg_rdy(qdev, XGMAC_ADDR / 4,
  295. XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  296. if (status)
  297. goto exit;
  298. /* set up for reg read */
  299. ql_write_other_func_reg(qdev, XGMAC_ADDR / 4, reg | XGMAC_ADDR_R);
  300. /* wait for reg to come ready */
  301. status = ql_wait_other_func_reg_rdy(qdev, XGMAC_ADDR / 4,
  302. XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  303. if (status)
  304. goto exit;
  305. /* get the data */
  306. *data = ql_read_other_func_reg(qdev, XGMAC_DATA / 4);
  307. exit:
  308. return status;
  309. }
  310. /* Read the 400 xgmac control/statistics registers
  311. * skipping unused locations.
  312. */
  313. static int ql_get_xgmac_regs(struct ql_adapter *qdev, u32 * buf,
  314. unsigned int other_function)
  315. {
  316. int status = 0;
  317. int i;
  318. for (i = PAUSE_SRC_LO; i < XGMAC_REGISTER_END; i += 4, buf++) {
  319. /* We're reading 400 xgmac registers, but we filter out
  320. * serveral locations that are non-responsive to reads.
  321. */
  322. if ((i == 0x00000114) ||
  323. (i == 0x00000118) ||
  324. (i == 0x0000013c) ||
  325. (i == 0x00000140) ||
  326. (i > 0x00000150 && i < 0x000001fc) ||
  327. (i > 0x00000278 && i < 0x000002a0) ||
  328. (i > 0x000002c0 && i < 0x000002cf) ||
  329. (i > 0x000002dc && i < 0x000002f0) ||
  330. (i > 0x000003c8 && i < 0x00000400) ||
  331. (i > 0x00000400 && i < 0x00000410) ||
  332. (i > 0x00000410 && i < 0x00000420) ||
  333. (i > 0x00000420 && i < 0x00000430) ||
  334. (i > 0x00000430 && i < 0x00000440) ||
  335. (i > 0x00000440 && i < 0x00000450) ||
  336. (i > 0x00000450 && i < 0x00000500) ||
  337. (i > 0x0000054c && i < 0x00000568) ||
  338. (i > 0x000005c8 && i < 0x00000600)) {
  339. if (other_function)
  340. status =
  341. ql_read_other_func_xgmac_reg(qdev, i, buf);
  342. else
  343. status = ql_read_xgmac_reg(qdev, i, buf);
  344. if (status)
  345. *buf = 0xdeadbeef;
  346. break;
  347. }
  348. }
  349. return status;
  350. }
  351. static int ql_get_ets_regs(struct ql_adapter *qdev, u32 * buf)
  352. {
  353. int status = 0;
  354. int i;
  355. for (i = 0; i < 8; i++, buf++) {
  356. ql_write32(qdev, NIC_ETS, i << 29 | 0x08000000);
  357. *buf = ql_read32(qdev, NIC_ETS);
  358. }
  359. for (i = 0; i < 2; i++, buf++) {
  360. ql_write32(qdev, CNA_ETS, i << 29 | 0x08000000);
  361. *buf = ql_read32(qdev, CNA_ETS);
  362. }
  363. return status;
  364. }
  365. static void ql_get_intr_states(struct ql_adapter *qdev, u32 * buf)
  366. {
  367. int i;
  368. for (i = 0; i < qdev->rx_ring_count; i++, buf++) {
  369. ql_write32(qdev, INTR_EN,
  370. qdev->intr_context[i].intr_read_mask);
  371. *buf = ql_read32(qdev, INTR_EN);
  372. }
  373. }
  374. static int ql_get_cam_entries(struct ql_adapter *qdev, u32 * buf)
  375. {
  376. int i, status;
  377. u32 value[3];
  378. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  379. if (status)
  380. return status;
  381. for (i = 0; i < 16; i++) {
  382. status = ql_get_mac_addr_reg(qdev,
  383. MAC_ADDR_TYPE_CAM_MAC, i, value);
  384. if (status) {
  385. netif_err(qdev, drv, qdev->ndev,
  386. "Failed read of mac index register.\n");
  387. goto err;
  388. }
  389. *buf++ = value[0]; /* lower MAC address */
  390. *buf++ = value[1]; /* upper MAC address */
  391. *buf++ = value[2]; /* output */
  392. }
  393. for (i = 0; i < 32; i++) {
  394. status = ql_get_mac_addr_reg(qdev,
  395. MAC_ADDR_TYPE_MULTI_MAC, i, value);
  396. if (status) {
  397. netif_err(qdev, drv, qdev->ndev,
  398. "Failed read of mac index register.\n");
  399. goto err;
  400. }
  401. *buf++ = value[0]; /* lower Mcast address */
  402. *buf++ = value[1]; /* upper Mcast address */
  403. }
  404. err:
  405. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  406. return status;
  407. }
  408. static int ql_get_routing_entries(struct ql_adapter *qdev, u32 * buf)
  409. {
  410. int status;
  411. u32 value, i;
  412. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  413. if (status)
  414. return status;
  415. for (i = 0; i < 16; i++) {
  416. status = ql_get_routing_reg(qdev, i, &value);
  417. if (status) {
  418. netif_err(qdev, drv, qdev->ndev,
  419. "Failed read of routing index register.\n");
  420. goto err;
  421. } else {
  422. *buf++ = value;
  423. }
  424. }
  425. err:
  426. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  427. return status;
  428. }
  429. /* Read the MPI Processor shadow registers */
  430. static int ql_get_mpi_shadow_regs(struct ql_adapter *qdev, u32 * buf)
  431. {
  432. u32 i;
  433. int status;
  434. for (i = 0; i < MPI_CORE_SH_REGS_CNT; i++, buf++) {
  435. status = ql_write_mpi_reg(qdev, RISC_124,
  436. (SHADOW_OFFSET | i << SHADOW_REG_SHIFT));
  437. if (status)
  438. goto end;
  439. status = ql_read_mpi_reg(qdev, RISC_127, buf);
  440. if (status)
  441. goto end;
  442. }
  443. end:
  444. return status;
  445. }
  446. /* Read the MPI Processor core registers */
  447. static int ql_get_mpi_regs(struct ql_adapter *qdev, u32 * buf,
  448. u32 offset, u32 count)
  449. {
  450. int i, status = 0;
  451. for (i = 0; i < count; i++, buf++) {
  452. status = ql_read_mpi_reg(qdev, offset + i, buf);
  453. if (status)
  454. return status;
  455. }
  456. return status;
  457. }
  458. /* Read the ASIC probe dump */
  459. static unsigned int *ql_get_probe(struct ql_adapter *qdev, u32 clock,
  460. u32 valid, u32 *buf)
  461. {
  462. u32 module, mux_sel, probe, lo_val, hi_val;
  463. for (module = 0; module < PRB_MX_ADDR_MAX_MODS; module++) {
  464. if (!((valid >> module) & 1))
  465. continue;
  466. for (mux_sel = 0; mux_sel < PRB_MX_ADDR_MAX_MUX; mux_sel++) {
  467. probe = clock
  468. | PRB_MX_ADDR_ARE
  469. | mux_sel
  470. | (module << PRB_MX_ADDR_MOD_SEL_SHIFT);
  471. ql_write32(qdev, PRB_MX_ADDR, probe);
  472. lo_val = ql_read32(qdev, PRB_MX_DATA);
  473. if (mux_sel == 0) {
  474. *buf = probe;
  475. buf++;
  476. }
  477. probe |= PRB_MX_ADDR_UP;
  478. ql_write32(qdev, PRB_MX_ADDR, probe);
  479. hi_val = ql_read32(qdev, PRB_MX_DATA);
  480. *buf = lo_val;
  481. buf++;
  482. *buf = hi_val;
  483. buf++;
  484. }
  485. }
  486. return buf;
  487. }
  488. static int ql_get_probe_dump(struct ql_adapter *qdev, unsigned int *buf)
  489. {
  490. /* First we have to enable the probe mux */
  491. ql_write_mpi_reg(qdev, MPI_TEST_FUNC_PRB_CTL, MPI_TEST_FUNC_PRB_EN);
  492. buf = ql_get_probe(qdev, PRB_MX_ADDR_SYS_CLOCK,
  493. PRB_MX_ADDR_VALID_SYS_MOD, buf);
  494. buf = ql_get_probe(qdev, PRB_MX_ADDR_PCI_CLOCK,
  495. PRB_MX_ADDR_VALID_PCI_MOD, buf);
  496. buf = ql_get_probe(qdev, PRB_MX_ADDR_XGM_CLOCK,
  497. PRB_MX_ADDR_VALID_XGM_MOD, buf);
  498. buf = ql_get_probe(qdev, PRB_MX_ADDR_FC_CLOCK,
  499. PRB_MX_ADDR_VALID_FC_MOD, buf);
  500. return 0;
  501. }
  502. /* Read out the routing index registers */
  503. static int ql_get_routing_index_registers(struct ql_adapter *qdev, u32 *buf)
  504. {
  505. int status;
  506. u32 type, index, index_max;
  507. u32 result_index;
  508. u32 result_data;
  509. u32 val;
  510. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  511. if (status)
  512. return status;
  513. for (type = 0; type < 4; type++) {
  514. if (type < 2)
  515. index_max = 8;
  516. else
  517. index_max = 16;
  518. for (index = 0; index < index_max; index++) {
  519. val = RT_IDX_RS
  520. | (type << RT_IDX_TYPE_SHIFT)
  521. | (index << RT_IDX_IDX_SHIFT);
  522. ql_write32(qdev, RT_IDX, val);
  523. result_index = 0;
  524. while ((result_index & RT_IDX_MR) == 0)
  525. result_index = ql_read32(qdev, RT_IDX);
  526. result_data = ql_read32(qdev, RT_DATA);
  527. *buf = type;
  528. buf++;
  529. *buf = index;
  530. buf++;
  531. *buf = result_index;
  532. buf++;
  533. *buf = result_data;
  534. buf++;
  535. }
  536. }
  537. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  538. return status;
  539. }
  540. /* Read out the MAC protocol registers */
  541. static void ql_get_mac_protocol_registers(struct ql_adapter *qdev, u32 *buf)
  542. {
  543. u32 result_index, result_data;
  544. u32 type;
  545. u32 index;
  546. u32 offset;
  547. u32 val;
  548. u32 initial_val = MAC_ADDR_RS;
  549. u32 max_index;
  550. u32 max_offset;
  551. for (type = 0; type < MAC_ADDR_TYPE_COUNT; type++) {
  552. switch (type) {
  553. case 0: /* CAM */
  554. initial_val |= MAC_ADDR_ADR;
  555. max_index = MAC_ADDR_MAX_CAM_ENTRIES;
  556. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  557. break;
  558. case 1: /* Multicast MAC Address */
  559. max_index = MAC_ADDR_MAX_CAM_WCOUNT;
  560. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  561. break;
  562. case 2: /* VLAN filter mask */
  563. case 3: /* MC filter mask */
  564. max_index = MAC_ADDR_MAX_CAM_WCOUNT;
  565. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  566. break;
  567. case 4: /* FC MAC addresses */
  568. max_index = MAC_ADDR_MAX_FC_MAC_ENTRIES;
  569. max_offset = MAC_ADDR_MAX_FC_MAC_WCOUNT;
  570. break;
  571. case 5: /* Mgmt MAC addresses */
  572. max_index = MAC_ADDR_MAX_MGMT_MAC_ENTRIES;
  573. max_offset = MAC_ADDR_MAX_MGMT_MAC_WCOUNT;
  574. break;
  575. case 6: /* Mgmt VLAN addresses */
  576. max_index = MAC_ADDR_MAX_MGMT_VLAN_ENTRIES;
  577. max_offset = MAC_ADDR_MAX_MGMT_VLAN_WCOUNT;
  578. break;
  579. case 7: /* Mgmt IPv4 address */
  580. max_index = MAC_ADDR_MAX_MGMT_V4_ENTRIES;
  581. max_offset = MAC_ADDR_MAX_MGMT_V4_WCOUNT;
  582. break;
  583. case 8: /* Mgmt IPv6 address */
  584. max_index = MAC_ADDR_MAX_MGMT_V6_ENTRIES;
  585. max_offset = MAC_ADDR_MAX_MGMT_V6_WCOUNT;
  586. break;
  587. case 9: /* Mgmt TCP/UDP Dest port */
  588. max_index = MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES;
  589. max_offset = MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT;
  590. break;
  591. default:
  592. printk(KERN_ERR"Bad type!!! 0x%08x\n", type);
  593. max_index = 0;
  594. max_offset = 0;
  595. break;
  596. }
  597. for (index = 0; index < max_index; index++) {
  598. for (offset = 0; offset < max_offset; offset++) {
  599. val = initial_val
  600. | (type << MAC_ADDR_TYPE_SHIFT)
  601. | (index << MAC_ADDR_IDX_SHIFT)
  602. | (offset);
  603. ql_write32(qdev, MAC_ADDR_IDX, val);
  604. result_index = 0;
  605. while ((result_index & MAC_ADDR_MR) == 0) {
  606. result_index = ql_read32(qdev,
  607. MAC_ADDR_IDX);
  608. }
  609. result_data = ql_read32(qdev, MAC_ADDR_DATA);
  610. *buf = result_index;
  611. buf++;
  612. *buf = result_data;
  613. buf++;
  614. }
  615. }
  616. }
  617. }
  618. static void ql_get_sem_registers(struct ql_adapter *qdev, u32 *buf)
  619. {
  620. u32 func_num, reg, reg_val;
  621. int status;
  622. for (func_num = 0; func_num < MAX_SEMAPHORE_FUNCTIONS ; func_num++) {
  623. reg = MPI_NIC_REG_BLOCK
  624. | (func_num << MPI_NIC_FUNCTION_SHIFT)
  625. | (SEM / 4);
  626. status = ql_read_mpi_reg(qdev, reg, &reg_val);
  627. *buf = reg_val;
  628. /* if the read failed then dead fill the element. */
  629. if (!status)
  630. *buf = 0xdeadbeef;
  631. buf++;
  632. }
  633. }
  634. /* Create a coredump segment header */
  635. static void ql_build_coredump_seg_header(
  636. struct mpi_coredump_segment_header *seg_hdr,
  637. u32 seg_number, u32 seg_size, u8 *desc)
  638. {
  639. memset(seg_hdr, 0, sizeof(struct mpi_coredump_segment_header));
  640. seg_hdr->cookie = MPI_COREDUMP_COOKIE;
  641. seg_hdr->segNum = seg_number;
  642. seg_hdr->segSize = seg_size;
  643. memcpy(seg_hdr->description, desc, (sizeof(seg_hdr->description)) - 1);
  644. }
  645. /*
  646. * This function should be called when a coredump / probedump
  647. * is to be extracted from the HBA. It is assumed there is a
  648. * qdev structure that contains the base address of the register
  649. * space for this function as well as a coredump structure that
  650. * will contain the dump.
  651. */
  652. int ql_core_dump(struct ql_adapter *qdev, struct ql_mpi_coredump *mpi_coredump)
  653. {
  654. int status;
  655. int i;
  656. if (!mpi_coredump) {
  657. netif_err(qdev, drv, qdev->ndev, "No memory available.\n");
  658. return -ENOMEM;
  659. }
  660. /* Try to get the spinlock, but dont worry if
  661. * it isn't available. If the firmware died it
  662. * might be holding the sem.
  663. */
  664. ql_sem_spinlock(qdev, SEM_PROC_REG_MASK);
  665. status = ql_pause_mpi_risc(qdev);
  666. if (status) {
  667. netif_err(qdev, drv, qdev->ndev,
  668. "Failed RISC pause. Status = 0x%.08x\n", status);
  669. goto err;
  670. }
  671. /* Insert the global header */
  672. memset(&(mpi_coredump->mpi_global_header), 0,
  673. sizeof(struct mpi_coredump_global_header));
  674. mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
  675. mpi_coredump->mpi_global_header.headerSize =
  676. sizeof(struct mpi_coredump_global_header);
  677. mpi_coredump->mpi_global_header.imageSize =
  678. sizeof(struct ql_mpi_coredump);
  679. memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
  680. sizeof(mpi_coredump->mpi_global_header.idString));
  681. /* Get generic NIC reg dump */
  682. ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
  683. NIC1_CONTROL_SEG_NUM,
  684. sizeof(struct mpi_coredump_segment_header) +
  685. sizeof(mpi_coredump->nic_regs), "NIC1 Registers");
  686. ql_build_coredump_seg_header(&mpi_coredump->nic2_regs_seg_hdr,
  687. NIC2_CONTROL_SEG_NUM,
  688. sizeof(struct mpi_coredump_segment_header) +
  689. sizeof(mpi_coredump->nic2_regs), "NIC2 Registers");
  690. /* Get XGMac registers. (Segment 18, Rev C. step 21) */
  691. ql_build_coredump_seg_header(&mpi_coredump->xgmac1_seg_hdr,
  692. NIC1_XGMAC_SEG_NUM,
  693. sizeof(struct mpi_coredump_segment_header) +
  694. sizeof(mpi_coredump->xgmac1), "NIC1 XGMac Registers");
  695. ql_build_coredump_seg_header(&mpi_coredump->xgmac2_seg_hdr,
  696. NIC2_XGMAC_SEG_NUM,
  697. sizeof(struct mpi_coredump_segment_header) +
  698. sizeof(mpi_coredump->xgmac2), "NIC2 XGMac Registers");
  699. if (qdev->func & 1) {
  700. /* Odd means our function is NIC 2 */
  701. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  702. mpi_coredump->nic2_regs[i] =
  703. ql_read32(qdev, i * sizeof(u32));
  704. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  705. mpi_coredump->nic_regs[i] =
  706. ql_read_other_func_reg(qdev, (i * sizeof(u32)) / 4);
  707. ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac2[0], 0);
  708. ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac1[0], 1);
  709. } else {
  710. /* Even means our function is NIC 1 */
  711. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  712. mpi_coredump->nic_regs[i] =
  713. ql_read32(qdev, i * sizeof(u32));
  714. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  715. mpi_coredump->nic2_regs[i] =
  716. ql_read_other_func_reg(qdev, (i * sizeof(u32)) / 4);
  717. ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac1[0], 0);
  718. ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac2[0], 1);
  719. }
  720. /* Rev C. Step 20a */
  721. ql_build_coredump_seg_header(&mpi_coredump->xaui_an_hdr,
  722. XAUI_AN_SEG_NUM,
  723. sizeof(struct mpi_coredump_segment_header) +
  724. sizeof(mpi_coredump->serdes_xaui_an),
  725. "XAUI AN Registers");
  726. /* Rev C. Step 20b */
  727. ql_build_coredump_seg_header(&mpi_coredump->xaui_hss_pcs_hdr,
  728. XAUI_HSS_PCS_SEG_NUM,
  729. sizeof(struct mpi_coredump_segment_header) +
  730. sizeof(mpi_coredump->serdes_xaui_hss_pcs),
  731. "XAUI HSS PCS Registers");
  732. ql_build_coredump_seg_header(&mpi_coredump->xfi_an_hdr, XFI_AN_SEG_NUM,
  733. sizeof(struct mpi_coredump_segment_header) +
  734. sizeof(mpi_coredump->serdes_xfi_an),
  735. "XFI AN Registers");
  736. ql_build_coredump_seg_header(&mpi_coredump->xfi_train_hdr,
  737. XFI_TRAIN_SEG_NUM,
  738. sizeof(struct mpi_coredump_segment_header) +
  739. sizeof(mpi_coredump->serdes_xfi_train),
  740. "XFI TRAIN Registers");
  741. ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_pcs_hdr,
  742. XFI_HSS_PCS_SEG_NUM,
  743. sizeof(struct mpi_coredump_segment_header) +
  744. sizeof(mpi_coredump->serdes_xfi_hss_pcs),
  745. "XFI HSS PCS Registers");
  746. ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_tx_hdr,
  747. XFI_HSS_TX_SEG_NUM,
  748. sizeof(struct mpi_coredump_segment_header) +
  749. sizeof(mpi_coredump->serdes_xfi_hss_tx),
  750. "XFI HSS TX Registers");
  751. ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_rx_hdr,
  752. XFI_HSS_RX_SEG_NUM,
  753. sizeof(struct mpi_coredump_segment_header) +
  754. sizeof(mpi_coredump->serdes_xfi_hss_rx),
  755. "XFI HSS RX Registers");
  756. ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_pll_hdr,
  757. XFI_HSS_PLL_SEG_NUM,
  758. sizeof(struct mpi_coredump_segment_header) +
  759. sizeof(mpi_coredump->serdes_xfi_hss_pll),
  760. "XFI HSS PLL Registers");
  761. ql_build_coredump_seg_header(&mpi_coredump->xaui2_an_hdr,
  762. XAUI2_AN_SEG_NUM,
  763. sizeof(struct mpi_coredump_segment_header) +
  764. sizeof(mpi_coredump->serdes2_xaui_an),
  765. "XAUI2 AN Registers");
  766. ql_build_coredump_seg_header(&mpi_coredump->xaui2_hss_pcs_hdr,
  767. XAUI2_HSS_PCS_SEG_NUM,
  768. sizeof(struct mpi_coredump_segment_header) +
  769. sizeof(mpi_coredump->serdes2_xaui_hss_pcs),
  770. "XAUI2 HSS PCS Registers");
  771. ql_build_coredump_seg_header(&mpi_coredump->xfi2_an_hdr,
  772. XFI2_AN_SEG_NUM,
  773. sizeof(struct mpi_coredump_segment_header) +
  774. sizeof(mpi_coredump->serdes2_xfi_an),
  775. "XFI2 AN Registers");
  776. ql_build_coredump_seg_header(&mpi_coredump->xfi2_train_hdr,
  777. XFI2_TRAIN_SEG_NUM,
  778. sizeof(struct mpi_coredump_segment_header) +
  779. sizeof(mpi_coredump->serdes2_xfi_train),
  780. "XFI2 TRAIN Registers");
  781. ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_pcs_hdr,
  782. XFI2_HSS_PCS_SEG_NUM,
  783. sizeof(struct mpi_coredump_segment_header) +
  784. sizeof(mpi_coredump->serdes2_xfi_hss_pcs),
  785. "XFI2 HSS PCS Registers");
  786. ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_tx_hdr,
  787. XFI2_HSS_TX_SEG_NUM,
  788. sizeof(struct mpi_coredump_segment_header) +
  789. sizeof(mpi_coredump->serdes2_xfi_hss_tx),
  790. "XFI2 HSS TX Registers");
  791. ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_rx_hdr,
  792. XFI2_HSS_RX_SEG_NUM,
  793. sizeof(struct mpi_coredump_segment_header) +
  794. sizeof(mpi_coredump->serdes2_xfi_hss_rx),
  795. "XFI2 HSS RX Registers");
  796. ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_pll_hdr,
  797. XFI2_HSS_PLL_SEG_NUM,
  798. sizeof(struct mpi_coredump_segment_header) +
  799. sizeof(mpi_coredump->serdes2_xfi_hss_pll),
  800. "XFI2 HSS PLL Registers");
  801. status = ql_get_serdes_regs(qdev, mpi_coredump);
  802. if (status) {
  803. netif_err(qdev, drv, qdev->ndev,
  804. "Failed Dump of Serdes Registers. Status = 0x%.08x\n",
  805. status);
  806. goto err;
  807. }
  808. ql_build_coredump_seg_header(&mpi_coredump->core_regs_seg_hdr,
  809. CORE_SEG_NUM,
  810. sizeof(mpi_coredump->core_regs_seg_hdr) +
  811. sizeof(mpi_coredump->mpi_core_regs) +
  812. sizeof(mpi_coredump->mpi_core_sh_regs),
  813. "Core Registers");
  814. /* Get the MPI Core Registers */
  815. status = ql_get_mpi_regs(qdev, &mpi_coredump->mpi_core_regs[0],
  816. MPI_CORE_REGS_ADDR, MPI_CORE_REGS_CNT);
  817. if (status)
  818. goto err;
  819. /* Get the 16 MPI shadow registers */
  820. status = ql_get_mpi_shadow_regs(qdev,
  821. &mpi_coredump->mpi_core_sh_regs[0]);
  822. if (status)
  823. goto err;
  824. /* Get the Test Logic Registers */
  825. ql_build_coredump_seg_header(&mpi_coredump->test_logic_regs_seg_hdr,
  826. TEST_LOGIC_SEG_NUM,
  827. sizeof(struct mpi_coredump_segment_header)
  828. + sizeof(mpi_coredump->test_logic_regs),
  829. "Test Logic Regs");
  830. status = ql_get_mpi_regs(qdev, &mpi_coredump->test_logic_regs[0],
  831. TEST_REGS_ADDR, TEST_REGS_CNT);
  832. if (status)
  833. goto err;
  834. /* Get the RMII Registers */
  835. ql_build_coredump_seg_header(&mpi_coredump->rmii_regs_seg_hdr,
  836. RMII_SEG_NUM,
  837. sizeof(struct mpi_coredump_segment_header)
  838. + sizeof(mpi_coredump->rmii_regs),
  839. "RMII Registers");
  840. status = ql_get_mpi_regs(qdev, &mpi_coredump->rmii_regs[0],
  841. RMII_REGS_ADDR, RMII_REGS_CNT);
  842. if (status)
  843. goto err;
  844. /* Get the FCMAC1 Registers */
  845. ql_build_coredump_seg_header(&mpi_coredump->fcmac1_regs_seg_hdr,
  846. FCMAC1_SEG_NUM,
  847. sizeof(struct mpi_coredump_segment_header)
  848. + sizeof(mpi_coredump->fcmac1_regs),
  849. "FCMAC1 Registers");
  850. status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac1_regs[0],
  851. FCMAC1_REGS_ADDR, FCMAC_REGS_CNT);
  852. if (status)
  853. goto err;
  854. /* Get the FCMAC2 Registers */
  855. ql_build_coredump_seg_header(&mpi_coredump->fcmac2_regs_seg_hdr,
  856. FCMAC2_SEG_NUM,
  857. sizeof(struct mpi_coredump_segment_header)
  858. + sizeof(mpi_coredump->fcmac2_regs),
  859. "FCMAC2 Registers");
  860. status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac2_regs[0],
  861. FCMAC2_REGS_ADDR, FCMAC_REGS_CNT);
  862. if (status)
  863. goto err;
  864. /* Get the FC1 MBX Registers */
  865. ql_build_coredump_seg_header(&mpi_coredump->fc1_mbx_regs_seg_hdr,
  866. FC1_MBOX_SEG_NUM,
  867. sizeof(struct mpi_coredump_segment_header)
  868. + sizeof(mpi_coredump->fc1_mbx_regs),
  869. "FC1 MBox Regs");
  870. status = ql_get_mpi_regs(qdev, &mpi_coredump->fc1_mbx_regs[0],
  871. FC1_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
  872. if (status)
  873. goto err;
  874. /* Get the IDE Registers */
  875. ql_build_coredump_seg_header(&mpi_coredump->ide_regs_seg_hdr,
  876. IDE_SEG_NUM,
  877. sizeof(struct mpi_coredump_segment_header)
  878. + sizeof(mpi_coredump->ide_regs),
  879. "IDE Registers");
  880. status = ql_get_mpi_regs(qdev, &mpi_coredump->ide_regs[0],
  881. IDE_REGS_ADDR, IDE_REGS_CNT);
  882. if (status)
  883. goto err;
  884. /* Get the NIC1 MBX Registers */
  885. ql_build_coredump_seg_header(&mpi_coredump->nic1_mbx_regs_seg_hdr,
  886. NIC1_MBOX_SEG_NUM,
  887. sizeof(struct mpi_coredump_segment_header)
  888. + sizeof(mpi_coredump->nic1_mbx_regs),
  889. "NIC1 MBox Regs");
  890. status = ql_get_mpi_regs(qdev, &mpi_coredump->nic1_mbx_regs[0],
  891. NIC1_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
  892. if (status)
  893. goto err;
  894. /* Get the SMBus Registers */
  895. ql_build_coredump_seg_header(&mpi_coredump->smbus_regs_seg_hdr,
  896. SMBUS_SEG_NUM,
  897. sizeof(struct mpi_coredump_segment_header)
  898. + sizeof(mpi_coredump->smbus_regs),
  899. "SMBus Registers");
  900. status = ql_get_mpi_regs(qdev, &mpi_coredump->smbus_regs[0],
  901. SMBUS_REGS_ADDR, SMBUS_REGS_CNT);
  902. if (status)
  903. goto err;
  904. /* Get the FC2 MBX Registers */
  905. ql_build_coredump_seg_header(&mpi_coredump->fc2_mbx_regs_seg_hdr,
  906. FC2_MBOX_SEG_NUM,
  907. sizeof(struct mpi_coredump_segment_header)
  908. + sizeof(mpi_coredump->fc2_mbx_regs),
  909. "FC2 MBox Regs");
  910. status = ql_get_mpi_regs(qdev, &mpi_coredump->fc2_mbx_regs[0],
  911. FC2_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
  912. if (status)
  913. goto err;
  914. /* Get the NIC2 MBX Registers */
  915. ql_build_coredump_seg_header(&mpi_coredump->nic2_mbx_regs_seg_hdr,
  916. NIC2_MBOX_SEG_NUM,
  917. sizeof(struct mpi_coredump_segment_header)
  918. + sizeof(mpi_coredump->nic2_mbx_regs),
  919. "NIC2 MBox Regs");
  920. status = ql_get_mpi_regs(qdev, &mpi_coredump->nic2_mbx_regs[0],
  921. NIC2_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
  922. if (status)
  923. goto err;
  924. /* Get the I2C Registers */
  925. ql_build_coredump_seg_header(&mpi_coredump->i2c_regs_seg_hdr,
  926. I2C_SEG_NUM,
  927. sizeof(struct mpi_coredump_segment_header)
  928. + sizeof(mpi_coredump->i2c_regs),
  929. "I2C Registers");
  930. status = ql_get_mpi_regs(qdev, &mpi_coredump->i2c_regs[0],
  931. I2C_REGS_ADDR, I2C_REGS_CNT);
  932. if (status)
  933. goto err;
  934. /* Get the MEMC Registers */
  935. ql_build_coredump_seg_header(&mpi_coredump->memc_regs_seg_hdr,
  936. MEMC_SEG_NUM,
  937. sizeof(struct mpi_coredump_segment_header)
  938. + sizeof(mpi_coredump->memc_regs),
  939. "MEMC Registers");
  940. status = ql_get_mpi_regs(qdev, &mpi_coredump->memc_regs[0],
  941. MEMC_REGS_ADDR, MEMC_REGS_CNT);
  942. if (status)
  943. goto err;
  944. /* Get the PBus Registers */
  945. ql_build_coredump_seg_header(&mpi_coredump->pbus_regs_seg_hdr,
  946. PBUS_SEG_NUM,
  947. sizeof(struct mpi_coredump_segment_header)
  948. + sizeof(mpi_coredump->pbus_regs),
  949. "PBUS Registers");
  950. status = ql_get_mpi_regs(qdev, &mpi_coredump->pbus_regs[0],
  951. PBUS_REGS_ADDR, PBUS_REGS_CNT);
  952. if (status)
  953. goto err;
  954. /* Get the MDE Registers */
  955. ql_build_coredump_seg_header(&mpi_coredump->mde_regs_seg_hdr,
  956. MDE_SEG_NUM,
  957. sizeof(struct mpi_coredump_segment_header)
  958. + sizeof(mpi_coredump->mde_regs),
  959. "MDE Registers");
  960. status = ql_get_mpi_regs(qdev, &mpi_coredump->mde_regs[0],
  961. MDE_REGS_ADDR, MDE_REGS_CNT);
  962. if (status)
  963. goto err;
  964. ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
  965. MISC_NIC_INFO_SEG_NUM,
  966. sizeof(struct mpi_coredump_segment_header)
  967. + sizeof(mpi_coredump->misc_nic_info),
  968. "MISC NIC INFO");
  969. mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
  970. mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
  971. mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
  972. mpi_coredump->misc_nic_info.function = qdev->func;
  973. /* Segment 31 */
  974. /* Get indexed register values. */
  975. ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
  976. INTR_STATES_SEG_NUM,
  977. sizeof(struct mpi_coredump_segment_header)
  978. + sizeof(mpi_coredump->intr_states),
  979. "INTR States");
  980. ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
  981. ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
  982. CAM_ENTRIES_SEG_NUM,
  983. sizeof(struct mpi_coredump_segment_header)
  984. + sizeof(mpi_coredump->cam_entries),
  985. "CAM Entries");
  986. status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
  987. if (status)
  988. goto err;
  989. ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
  990. ROUTING_WORDS_SEG_NUM,
  991. sizeof(struct mpi_coredump_segment_header)
  992. + sizeof(mpi_coredump->nic_routing_words),
  993. "Routing Words");
  994. status = ql_get_routing_entries(qdev,
  995. &mpi_coredump->nic_routing_words[0]);
  996. if (status)
  997. goto err;
  998. /* Segment 34 (Rev C. step 23) */
  999. ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
  1000. ETS_SEG_NUM,
  1001. sizeof(struct mpi_coredump_segment_header)
  1002. + sizeof(mpi_coredump->ets),
  1003. "ETS Registers");
  1004. status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
  1005. if (status)
  1006. goto err;
  1007. ql_build_coredump_seg_header(&mpi_coredump->probe_dump_seg_hdr,
  1008. PROBE_DUMP_SEG_NUM,
  1009. sizeof(struct mpi_coredump_segment_header)
  1010. + sizeof(mpi_coredump->probe_dump),
  1011. "Probe Dump");
  1012. ql_get_probe_dump(qdev, &mpi_coredump->probe_dump[0]);
  1013. ql_build_coredump_seg_header(&mpi_coredump->routing_reg_seg_hdr,
  1014. ROUTING_INDEX_SEG_NUM,
  1015. sizeof(struct mpi_coredump_segment_header)
  1016. + sizeof(mpi_coredump->routing_regs),
  1017. "Routing Regs");
  1018. status = ql_get_routing_index_registers(qdev,
  1019. &mpi_coredump->routing_regs[0]);
  1020. if (status)
  1021. goto err;
  1022. ql_build_coredump_seg_header(&mpi_coredump->mac_prot_reg_seg_hdr,
  1023. MAC_PROTOCOL_SEG_NUM,
  1024. sizeof(struct mpi_coredump_segment_header)
  1025. + sizeof(mpi_coredump->mac_prot_regs),
  1026. "MAC Prot Regs");
  1027. ql_get_mac_protocol_registers(qdev, &mpi_coredump->mac_prot_regs[0]);
  1028. /* Get the semaphore registers for all 5 functions */
  1029. ql_build_coredump_seg_header(&mpi_coredump->sem_regs_seg_hdr,
  1030. SEM_REGS_SEG_NUM,
  1031. sizeof(struct mpi_coredump_segment_header) +
  1032. sizeof(mpi_coredump->sem_regs), "Sem Registers");
  1033. ql_get_sem_registers(qdev, &mpi_coredump->sem_regs[0]);
  1034. /* Prevent the mpi restarting while we dump the memory.*/
  1035. ql_write_mpi_reg(qdev, MPI_TEST_FUNC_RST_STS, MPI_TEST_FUNC_RST_FRC);
  1036. /* clear the pause */
  1037. status = ql_unpause_mpi_risc(qdev);
  1038. if (status) {
  1039. netif_err(qdev, drv, qdev->ndev,
  1040. "Failed RISC unpause. Status = 0x%.08x\n", status);
  1041. goto err;
  1042. }
  1043. /* Reset the RISC so we can dump RAM */
  1044. status = ql_hard_reset_mpi_risc(qdev);
  1045. if (status) {
  1046. netif_err(qdev, drv, qdev->ndev,
  1047. "Failed RISC reset. Status = 0x%.08x\n", status);
  1048. goto err;
  1049. }
  1050. ql_build_coredump_seg_header(&mpi_coredump->code_ram_seg_hdr,
  1051. WCS_RAM_SEG_NUM,
  1052. sizeof(struct mpi_coredump_segment_header)
  1053. + sizeof(mpi_coredump->code_ram),
  1054. "WCS RAM");
  1055. status = ql_dump_risc_ram_area(qdev, &mpi_coredump->code_ram[0],
  1056. CODE_RAM_ADDR, CODE_RAM_CNT);
  1057. if (status) {
  1058. netif_err(qdev, drv, qdev->ndev,
  1059. "Failed Dump of CODE RAM. Status = 0x%.08x\n",
  1060. status);
  1061. goto err;
  1062. }
  1063. /* Insert the segment header */
  1064. ql_build_coredump_seg_header(&mpi_coredump->memc_ram_seg_hdr,
  1065. MEMC_RAM_SEG_NUM,
  1066. sizeof(struct mpi_coredump_segment_header)
  1067. + sizeof(mpi_coredump->memc_ram),
  1068. "MEMC RAM");
  1069. status = ql_dump_risc_ram_area(qdev, &mpi_coredump->memc_ram[0],
  1070. MEMC_RAM_ADDR, MEMC_RAM_CNT);
  1071. if (status) {
  1072. netif_err(qdev, drv, qdev->ndev,
  1073. "Failed Dump of MEMC RAM. Status = 0x%.08x\n",
  1074. status);
  1075. goto err;
  1076. }
  1077. err:
  1078. ql_sem_unlock(qdev, SEM_PROC_REG_MASK); /* does flush too */
  1079. return status;
  1080. }
  1081. static void ql_get_core_dump(struct ql_adapter *qdev)
  1082. {
  1083. if (!ql_own_firmware(qdev)) {
  1084. netif_err(qdev, drv, qdev->ndev, "Don't own firmware!\n");
  1085. return;
  1086. }
  1087. if (!netif_running(qdev->ndev)) {
  1088. netif_err(qdev, ifup, qdev->ndev,
  1089. "Force Coredump can only be done from interface that is up.\n");
  1090. return;
  1091. }
  1092. ql_queue_fw_error(qdev);
  1093. }
  1094. void ql_gen_reg_dump(struct ql_adapter *qdev,
  1095. struct ql_reg_dump *mpi_coredump)
  1096. {
  1097. int i, status;
  1098. memset(&(mpi_coredump->mpi_global_header), 0,
  1099. sizeof(struct mpi_coredump_global_header));
  1100. mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
  1101. mpi_coredump->mpi_global_header.headerSize =
  1102. sizeof(struct mpi_coredump_global_header);
  1103. mpi_coredump->mpi_global_header.imageSize =
  1104. sizeof(struct ql_reg_dump);
  1105. memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
  1106. sizeof(mpi_coredump->mpi_global_header.idString));
  1107. /* segment 16 */
  1108. ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
  1109. MISC_NIC_INFO_SEG_NUM,
  1110. sizeof(struct mpi_coredump_segment_header)
  1111. + sizeof(mpi_coredump->misc_nic_info),
  1112. "MISC NIC INFO");
  1113. mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
  1114. mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
  1115. mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
  1116. mpi_coredump->misc_nic_info.function = qdev->func;
  1117. /* Segment 16, Rev C. Step 18 */
  1118. ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
  1119. NIC1_CONTROL_SEG_NUM,
  1120. sizeof(struct mpi_coredump_segment_header)
  1121. + sizeof(mpi_coredump->nic_regs),
  1122. "NIC Registers");
  1123. /* Get generic reg dump */
  1124. for (i = 0; i < 64; i++)
  1125. mpi_coredump->nic_regs[i] = ql_read32(qdev, i * sizeof(u32));
  1126. /* Segment 31 */
  1127. /* Get indexed register values. */
  1128. ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
  1129. INTR_STATES_SEG_NUM,
  1130. sizeof(struct mpi_coredump_segment_header)
  1131. + sizeof(mpi_coredump->intr_states),
  1132. "INTR States");
  1133. ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
  1134. ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
  1135. CAM_ENTRIES_SEG_NUM,
  1136. sizeof(struct mpi_coredump_segment_header)
  1137. + sizeof(mpi_coredump->cam_entries),
  1138. "CAM Entries");
  1139. status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
  1140. if (status)
  1141. return;
  1142. ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
  1143. ROUTING_WORDS_SEG_NUM,
  1144. sizeof(struct mpi_coredump_segment_header)
  1145. + sizeof(mpi_coredump->nic_routing_words),
  1146. "Routing Words");
  1147. status = ql_get_routing_entries(qdev,
  1148. &mpi_coredump->nic_routing_words[0]);
  1149. if (status)
  1150. return;
  1151. /* Segment 34 (Rev C. step 23) */
  1152. ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
  1153. ETS_SEG_NUM,
  1154. sizeof(struct mpi_coredump_segment_header)
  1155. + sizeof(mpi_coredump->ets),
  1156. "ETS Registers");
  1157. status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
  1158. if (status)
  1159. return;
  1160. if (test_bit(QL_FRC_COREDUMP, &qdev->flags))
  1161. ql_get_core_dump(qdev);
  1162. }
  1163. /* Coredump to messages log file using separate worker thread */
  1164. void ql_mpi_core_to_log(struct work_struct *work)
  1165. {
  1166. struct ql_adapter *qdev =
  1167. container_of(work, struct ql_adapter, mpi_core_to_log.work);
  1168. u32 *tmp, count;
  1169. int i;
  1170. count = sizeof(struct ql_mpi_coredump) / sizeof(u32);
  1171. tmp = (u32 *)qdev->mpi_coredump;
  1172. netif_printk(qdev, drv, KERN_DEBUG, qdev->ndev,
  1173. "Core is dumping to log file!\n");
  1174. for (i = 0; i < count; i += 8) {
  1175. printk(KERN_ERR "%.08x: %.08x %.08x %.08x %.08x %.08x "
  1176. "%.08x %.08x %.08x\n", i,
  1177. tmp[i + 0],
  1178. tmp[i + 1],
  1179. tmp[i + 2],
  1180. tmp[i + 3],
  1181. tmp[i + 4],
  1182. tmp[i + 5],
  1183. tmp[i + 6],
  1184. tmp[i + 7]);
  1185. msleep(5);
  1186. }
  1187. }
  1188. #ifdef QL_REG_DUMP
  1189. static void ql_dump_intr_states(struct ql_adapter *qdev)
  1190. {
  1191. int i;
  1192. u32 value;
  1193. for (i = 0; i < qdev->intr_count; i++) {
  1194. ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask);
  1195. value = ql_read32(qdev, INTR_EN);
  1196. printk(KERN_ERR PFX
  1197. "%s: Interrupt %d is %s.\n",
  1198. qdev->ndev->name, i,
  1199. (value & INTR_EN_EN ? "enabled" : "disabled"));
  1200. }
  1201. }
  1202. void ql_dump_xgmac_control_regs(struct ql_adapter *qdev)
  1203. {
  1204. u32 data;
  1205. if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
  1206. printk(KERN_ERR "%s: Couldn't get xgmac sem.\n", __func__);
  1207. return;
  1208. }
  1209. ql_read_xgmac_reg(qdev, PAUSE_SRC_LO, &data);
  1210. printk(KERN_ERR PFX "%s: PAUSE_SRC_LO = 0x%.08x.\n", qdev->ndev->name,
  1211. data);
  1212. ql_read_xgmac_reg(qdev, PAUSE_SRC_HI, &data);
  1213. printk(KERN_ERR PFX "%s: PAUSE_SRC_HI = 0x%.08x.\n", qdev->ndev->name,
  1214. data);
  1215. ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  1216. printk(KERN_ERR PFX "%s: GLOBAL_CFG = 0x%.08x.\n", qdev->ndev->name,
  1217. data);
  1218. ql_read_xgmac_reg(qdev, TX_CFG, &data);
  1219. printk(KERN_ERR PFX "%s: TX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
  1220. ql_read_xgmac_reg(qdev, RX_CFG, &data);
  1221. printk(KERN_ERR PFX "%s: RX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
  1222. ql_read_xgmac_reg(qdev, FLOW_CTL, &data);
  1223. printk(KERN_ERR PFX "%s: FLOW_CTL = 0x%.08x.\n", qdev->ndev->name,
  1224. data);
  1225. ql_read_xgmac_reg(qdev, PAUSE_OPCODE, &data);
  1226. printk(KERN_ERR PFX "%s: PAUSE_OPCODE = 0x%.08x.\n", qdev->ndev->name,
  1227. data);
  1228. ql_read_xgmac_reg(qdev, PAUSE_TIMER, &data);
  1229. printk(KERN_ERR PFX "%s: PAUSE_TIMER = 0x%.08x.\n", qdev->ndev->name,
  1230. data);
  1231. ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_LO, &data);
  1232. printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_LO = 0x%.08x.\n",
  1233. qdev->ndev->name, data);
  1234. ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_HI, &data);
  1235. printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_HI = 0x%.08x.\n",
  1236. qdev->ndev->name, data);
  1237. ql_read_xgmac_reg(qdev, MAC_TX_PARAMS, &data);
  1238. printk(KERN_ERR PFX "%s: MAC_TX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
  1239. data);
  1240. ql_read_xgmac_reg(qdev, MAC_RX_PARAMS, &data);
  1241. printk(KERN_ERR PFX "%s: MAC_RX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
  1242. data);
  1243. ql_read_xgmac_reg(qdev, MAC_SYS_INT, &data);
  1244. printk(KERN_ERR PFX "%s: MAC_SYS_INT = 0x%.08x.\n", qdev->ndev->name,
  1245. data);
  1246. ql_read_xgmac_reg(qdev, MAC_SYS_INT_MASK, &data);
  1247. printk(KERN_ERR PFX "%s: MAC_SYS_INT_MASK = 0x%.08x.\n",
  1248. qdev->ndev->name, data);
  1249. ql_read_xgmac_reg(qdev, MAC_MGMT_INT, &data);
  1250. printk(KERN_ERR PFX "%s: MAC_MGMT_INT = 0x%.08x.\n", qdev->ndev->name,
  1251. data);
  1252. ql_read_xgmac_reg(qdev, MAC_MGMT_IN_MASK, &data);
  1253. printk(KERN_ERR PFX "%s: MAC_MGMT_IN_MASK = 0x%.08x.\n",
  1254. qdev->ndev->name, data);
  1255. ql_read_xgmac_reg(qdev, EXT_ARB_MODE, &data);
  1256. printk(KERN_ERR PFX "%s: EXT_ARB_MODE = 0x%.08x.\n", qdev->ndev->name,
  1257. data);
  1258. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  1259. }
  1260. static void ql_dump_ets_regs(struct ql_adapter *qdev)
  1261. {
  1262. }
  1263. static void ql_dump_cam_entries(struct ql_adapter *qdev)
  1264. {
  1265. int i;
  1266. u32 value[3];
  1267. i = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1268. if (i)
  1269. return;
  1270. for (i = 0; i < 4; i++) {
  1271. if (ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value)) {
  1272. printk(KERN_ERR PFX
  1273. "%s: Failed read of mac index register.\n",
  1274. __func__);
  1275. return;
  1276. } else {
  1277. if (value[0])
  1278. printk(KERN_ERR PFX
  1279. "%s: CAM index %d CAM Lookup Lower = 0x%.08x:%.08x, Output = 0x%.08x.\n",
  1280. qdev->ndev->name, i, value[1], value[0],
  1281. value[2]);
  1282. }
  1283. }
  1284. for (i = 0; i < 32; i++) {
  1285. if (ql_get_mac_addr_reg
  1286. (qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value)) {
  1287. printk(KERN_ERR PFX
  1288. "%s: Failed read of mac index register.\n",
  1289. __func__);
  1290. return;
  1291. } else {
  1292. if (value[0])
  1293. printk(KERN_ERR PFX
  1294. "%s: MCAST index %d CAM Lookup Lower = 0x%.08x:%.08x.\n",
  1295. qdev->ndev->name, i, value[1], value[0]);
  1296. }
  1297. }
  1298. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1299. }
  1300. void ql_dump_routing_entries(struct ql_adapter *qdev)
  1301. {
  1302. int i;
  1303. u32 value;
  1304. i = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  1305. if (i)
  1306. return;
  1307. for (i = 0; i < 16; i++) {
  1308. value = 0;
  1309. if (ql_get_routing_reg(qdev, i, &value)) {
  1310. printk(KERN_ERR PFX
  1311. "%s: Failed read of routing index register.\n",
  1312. __func__);
  1313. return;
  1314. } else {
  1315. if (value)
  1316. printk(KERN_ERR PFX
  1317. "%s: Routing Mask %d = 0x%.08x.\n",
  1318. qdev->ndev->name, i, value);
  1319. }
  1320. }
  1321. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  1322. }
  1323. void ql_dump_regs(struct ql_adapter *qdev)
  1324. {
  1325. printk(KERN_ERR PFX "reg dump for function #%d.\n", qdev->func);
  1326. printk(KERN_ERR PFX "SYS = 0x%x.\n",
  1327. ql_read32(qdev, SYS));
  1328. printk(KERN_ERR PFX "RST_FO = 0x%x.\n",
  1329. ql_read32(qdev, RST_FO));
  1330. printk(KERN_ERR PFX "FSC = 0x%x.\n",
  1331. ql_read32(qdev, FSC));
  1332. printk(KERN_ERR PFX "CSR = 0x%x.\n",
  1333. ql_read32(qdev, CSR));
  1334. printk(KERN_ERR PFX "ICB_RID = 0x%x.\n",
  1335. ql_read32(qdev, ICB_RID));
  1336. printk(KERN_ERR PFX "ICB_L = 0x%x.\n",
  1337. ql_read32(qdev, ICB_L));
  1338. printk(KERN_ERR PFX "ICB_H = 0x%x.\n",
  1339. ql_read32(qdev, ICB_H));
  1340. printk(KERN_ERR PFX "CFG = 0x%x.\n",
  1341. ql_read32(qdev, CFG));
  1342. printk(KERN_ERR PFX "BIOS_ADDR = 0x%x.\n",
  1343. ql_read32(qdev, BIOS_ADDR));
  1344. printk(KERN_ERR PFX "STS = 0x%x.\n",
  1345. ql_read32(qdev, STS));
  1346. printk(KERN_ERR PFX "INTR_EN = 0x%x.\n",
  1347. ql_read32(qdev, INTR_EN));
  1348. printk(KERN_ERR PFX "INTR_MASK = 0x%x.\n",
  1349. ql_read32(qdev, INTR_MASK));
  1350. printk(KERN_ERR PFX "ISR1 = 0x%x.\n",
  1351. ql_read32(qdev, ISR1));
  1352. printk(KERN_ERR PFX "ISR2 = 0x%x.\n",
  1353. ql_read32(qdev, ISR2));
  1354. printk(KERN_ERR PFX "ISR3 = 0x%x.\n",
  1355. ql_read32(qdev, ISR3));
  1356. printk(KERN_ERR PFX "ISR4 = 0x%x.\n",
  1357. ql_read32(qdev, ISR4));
  1358. printk(KERN_ERR PFX "REV_ID = 0x%x.\n",
  1359. ql_read32(qdev, REV_ID));
  1360. printk(KERN_ERR PFX "FRC_ECC_ERR = 0x%x.\n",
  1361. ql_read32(qdev, FRC_ECC_ERR));
  1362. printk(KERN_ERR PFX "ERR_STS = 0x%x.\n",
  1363. ql_read32(qdev, ERR_STS));
  1364. printk(KERN_ERR PFX "RAM_DBG_ADDR = 0x%x.\n",
  1365. ql_read32(qdev, RAM_DBG_ADDR));
  1366. printk(KERN_ERR PFX "RAM_DBG_DATA = 0x%x.\n",
  1367. ql_read32(qdev, RAM_DBG_DATA));
  1368. printk(KERN_ERR PFX "ECC_ERR_CNT = 0x%x.\n",
  1369. ql_read32(qdev, ECC_ERR_CNT));
  1370. printk(KERN_ERR PFX "SEM = 0x%x.\n",
  1371. ql_read32(qdev, SEM));
  1372. printk(KERN_ERR PFX "GPIO_1 = 0x%x.\n",
  1373. ql_read32(qdev, GPIO_1));
  1374. printk(KERN_ERR PFX "GPIO_2 = 0x%x.\n",
  1375. ql_read32(qdev, GPIO_2));
  1376. printk(KERN_ERR PFX "GPIO_3 = 0x%x.\n",
  1377. ql_read32(qdev, GPIO_3));
  1378. printk(KERN_ERR PFX "XGMAC_ADDR = 0x%x.\n",
  1379. ql_read32(qdev, XGMAC_ADDR));
  1380. printk(KERN_ERR PFX "XGMAC_DATA = 0x%x.\n",
  1381. ql_read32(qdev, XGMAC_DATA));
  1382. printk(KERN_ERR PFX "NIC_ETS = 0x%x.\n",
  1383. ql_read32(qdev, NIC_ETS));
  1384. printk(KERN_ERR PFX "CNA_ETS = 0x%x.\n",
  1385. ql_read32(qdev, CNA_ETS));
  1386. printk(KERN_ERR PFX "FLASH_ADDR = 0x%x.\n",
  1387. ql_read32(qdev, FLASH_ADDR));
  1388. printk(KERN_ERR PFX "FLASH_DATA = 0x%x.\n",
  1389. ql_read32(qdev, FLASH_DATA));
  1390. printk(KERN_ERR PFX "CQ_STOP = 0x%x.\n",
  1391. ql_read32(qdev, CQ_STOP));
  1392. printk(KERN_ERR PFX "PAGE_TBL_RID = 0x%x.\n",
  1393. ql_read32(qdev, PAGE_TBL_RID));
  1394. printk(KERN_ERR PFX "WQ_PAGE_TBL_LO = 0x%x.\n",
  1395. ql_read32(qdev, WQ_PAGE_TBL_LO));
  1396. printk(KERN_ERR PFX "WQ_PAGE_TBL_HI = 0x%x.\n",
  1397. ql_read32(qdev, WQ_PAGE_TBL_HI));
  1398. printk(KERN_ERR PFX "CQ_PAGE_TBL_LO = 0x%x.\n",
  1399. ql_read32(qdev, CQ_PAGE_TBL_LO));
  1400. printk(KERN_ERR PFX "CQ_PAGE_TBL_HI = 0x%x.\n",
  1401. ql_read32(qdev, CQ_PAGE_TBL_HI));
  1402. printk(KERN_ERR PFX "COS_DFLT_CQ1 = 0x%x.\n",
  1403. ql_read32(qdev, COS_DFLT_CQ1));
  1404. printk(KERN_ERR PFX "COS_DFLT_CQ2 = 0x%x.\n",
  1405. ql_read32(qdev, COS_DFLT_CQ2));
  1406. printk(KERN_ERR PFX "SPLT_HDR = 0x%x.\n",
  1407. ql_read32(qdev, SPLT_HDR));
  1408. printk(KERN_ERR PFX "FC_PAUSE_THRES = 0x%x.\n",
  1409. ql_read32(qdev, FC_PAUSE_THRES));
  1410. printk(KERN_ERR PFX "NIC_PAUSE_THRES = 0x%x.\n",
  1411. ql_read32(qdev, NIC_PAUSE_THRES));
  1412. printk(KERN_ERR PFX "FC_ETHERTYPE = 0x%x.\n",
  1413. ql_read32(qdev, FC_ETHERTYPE));
  1414. printk(KERN_ERR PFX "FC_RCV_CFG = 0x%x.\n",
  1415. ql_read32(qdev, FC_RCV_CFG));
  1416. printk(KERN_ERR PFX "NIC_RCV_CFG = 0x%x.\n",
  1417. ql_read32(qdev, NIC_RCV_CFG));
  1418. printk(KERN_ERR PFX "FC_COS_TAGS = 0x%x.\n",
  1419. ql_read32(qdev, FC_COS_TAGS));
  1420. printk(KERN_ERR PFX "NIC_COS_TAGS = 0x%x.\n",
  1421. ql_read32(qdev, NIC_COS_TAGS));
  1422. printk(KERN_ERR PFX "MGMT_RCV_CFG = 0x%x.\n",
  1423. ql_read32(qdev, MGMT_RCV_CFG));
  1424. printk(KERN_ERR PFX "XG_SERDES_ADDR = 0x%x.\n",
  1425. ql_read32(qdev, XG_SERDES_ADDR));
  1426. printk(KERN_ERR PFX "XG_SERDES_DATA = 0x%x.\n",
  1427. ql_read32(qdev, XG_SERDES_DATA));
  1428. printk(KERN_ERR PFX "PRB_MX_ADDR = 0x%x.\n",
  1429. ql_read32(qdev, PRB_MX_ADDR));
  1430. printk(KERN_ERR PFX "PRB_MX_DATA = 0x%x.\n",
  1431. ql_read32(qdev, PRB_MX_DATA));
  1432. ql_dump_intr_states(qdev);
  1433. ql_dump_xgmac_control_regs(qdev);
  1434. ql_dump_ets_regs(qdev);
  1435. ql_dump_cam_entries(qdev);
  1436. ql_dump_routing_entries(qdev);
  1437. }
  1438. #endif
  1439. #ifdef QL_STAT_DUMP
  1440. void ql_dump_stat(struct ql_adapter *qdev)
  1441. {
  1442. printk(KERN_ERR "%s: Enter.\n", __func__);
  1443. printk(KERN_ERR "tx_pkts = %ld\n",
  1444. (unsigned long)qdev->nic_stats.tx_pkts);
  1445. printk(KERN_ERR "tx_bytes = %ld\n",
  1446. (unsigned long)qdev->nic_stats.tx_bytes);
  1447. printk(KERN_ERR "tx_mcast_pkts = %ld.\n",
  1448. (unsigned long)qdev->nic_stats.tx_mcast_pkts);
  1449. printk(KERN_ERR "tx_bcast_pkts = %ld.\n",
  1450. (unsigned long)qdev->nic_stats.tx_bcast_pkts);
  1451. printk(KERN_ERR "tx_ucast_pkts = %ld.\n",
  1452. (unsigned long)qdev->nic_stats.tx_ucast_pkts);
  1453. printk(KERN_ERR "tx_ctl_pkts = %ld.\n",
  1454. (unsigned long)qdev->nic_stats.tx_ctl_pkts);
  1455. printk(KERN_ERR "tx_pause_pkts = %ld.\n",
  1456. (unsigned long)qdev->nic_stats.tx_pause_pkts);
  1457. printk(KERN_ERR "tx_64_pkt = %ld.\n",
  1458. (unsigned long)qdev->nic_stats.tx_64_pkt);
  1459. printk(KERN_ERR "tx_65_to_127_pkt = %ld.\n",
  1460. (unsigned long)qdev->nic_stats.tx_65_to_127_pkt);
  1461. printk(KERN_ERR "tx_128_to_255_pkt = %ld.\n",
  1462. (unsigned long)qdev->nic_stats.tx_128_to_255_pkt);
  1463. printk(KERN_ERR "tx_256_511_pkt = %ld.\n",
  1464. (unsigned long)qdev->nic_stats.tx_256_511_pkt);
  1465. printk(KERN_ERR "tx_512_to_1023_pkt = %ld.\n",
  1466. (unsigned long)qdev->nic_stats.tx_512_to_1023_pkt);
  1467. printk(KERN_ERR "tx_1024_to_1518_pkt = %ld.\n",
  1468. (unsigned long)qdev->nic_stats.tx_1024_to_1518_pkt);
  1469. printk(KERN_ERR "tx_1519_to_max_pkt = %ld.\n",
  1470. (unsigned long)qdev->nic_stats.tx_1519_to_max_pkt);
  1471. printk(KERN_ERR "tx_undersize_pkt = %ld.\n",
  1472. (unsigned long)qdev->nic_stats.tx_undersize_pkt);
  1473. printk(KERN_ERR "tx_oversize_pkt = %ld.\n",
  1474. (unsigned long)qdev->nic_stats.tx_oversize_pkt);
  1475. printk(KERN_ERR "rx_bytes = %ld.\n",
  1476. (unsigned long)qdev->nic_stats.rx_bytes);
  1477. printk(KERN_ERR "rx_bytes_ok = %ld.\n",
  1478. (unsigned long)qdev->nic_stats.rx_bytes_ok);
  1479. printk(KERN_ERR "rx_pkts = %ld.\n",
  1480. (unsigned long)qdev->nic_stats.rx_pkts);
  1481. printk(KERN_ERR "rx_pkts_ok = %ld.\n",
  1482. (unsigned long)qdev->nic_stats.rx_pkts_ok);
  1483. printk(KERN_ERR "rx_bcast_pkts = %ld.\n",
  1484. (unsigned long)qdev->nic_stats.rx_bcast_pkts);
  1485. printk(KERN_ERR "rx_mcast_pkts = %ld.\n",
  1486. (unsigned long)qdev->nic_stats.rx_mcast_pkts);
  1487. printk(KERN_ERR "rx_ucast_pkts = %ld.\n",
  1488. (unsigned long)qdev->nic_stats.rx_ucast_pkts);
  1489. printk(KERN_ERR "rx_undersize_pkts = %ld.\n",
  1490. (unsigned long)qdev->nic_stats.rx_undersize_pkts);
  1491. printk(KERN_ERR "rx_oversize_pkts = %ld.\n",
  1492. (unsigned long)qdev->nic_stats.rx_oversize_pkts);
  1493. printk(KERN_ERR "rx_jabber_pkts = %ld.\n",
  1494. (unsigned long)qdev->nic_stats.rx_jabber_pkts);
  1495. printk(KERN_ERR "rx_undersize_fcerr_pkts = %ld.\n",
  1496. (unsigned long)qdev->nic_stats.rx_undersize_fcerr_pkts);
  1497. printk(KERN_ERR "rx_drop_events = %ld.\n",
  1498. (unsigned long)qdev->nic_stats.rx_drop_events);
  1499. printk(KERN_ERR "rx_fcerr_pkts = %ld.\n",
  1500. (unsigned long)qdev->nic_stats.rx_fcerr_pkts);
  1501. printk(KERN_ERR "rx_align_err = %ld.\n",
  1502. (unsigned long)qdev->nic_stats.rx_align_err);
  1503. printk(KERN_ERR "rx_symbol_err = %ld.\n",
  1504. (unsigned long)qdev->nic_stats.rx_symbol_err);
  1505. printk(KERN_ERR "rx_mac_err = %ld.\n",
  1506. (unsigned long)qdev->nic_stats.rx_mac_err);
  1507. printk(KERN_ERR "rx_ctl_pkts = %ld.\n",
  1508. (unsigned long)qdev->nic_stats.rx_ctl_pkts);
  1509. printk(KERN_ERR "rx_pause_pkts = %ld.\n",
  1510. (unsigned long)qdev->nic_stats.rx_pause_pkts);
  1511. printk(KERN_ERR "rx_64_pkts = %ld.\n",
  1512. (unsigned long)qdev->nic_stats.rx_64_pkts);
  1513. printk(KERN_ERR "rx_65_to_127_pkts = %ld.\n",
  1514. (unsigned long)qdev->nic_stats.rx_65_to_127_pkts);
  1515. printk(KERN_ERR "rx_128_255_pkts = %ld.\n",
  1516. (unsigned long)qdev->nic_stats.rx_128_255_pkts);
  1517. printk(KERN_ERR "rx_256_511_pkts = %ld.\n",
  1518. (unsigned long)qdev->nic_stats.rx_256_511_pkts);
  1519. printk(KERN_ERR "rx_512_to_1023_pkts = %ld.\n",
  1520. (unsigned long)qdev->nic_stats.rx_512_to_1023_pkts);
  1521. printk(KERN_ERR "rx_1024_to_1518_pkts = %ld.\n",
  1522. (unsigned long)qdev->nic_stats.rx_1024_to_1518_pkts);
  1523. printk(KERN_ERR "rx_1519_to_max_pkts = %ld.\n",
  1524. (unsigned long)qdev->nic_stats.rx_1519_to_max_pkts);
  1525. printk(KERN_ERR "rx_len_err_pkts = %ld.\n",
  1526. (unsigned long)qdev->nic_stats.rx_len_err_pkts);
  1527. };
  1528. #endif
  1529. #ifdef QL_DEV_DUMP
  1530. void ql_dump_qdev(struct ql_adapter *qdev)
  1531. {
  1532. int i;
  1533. printk(KERN_ERR PFX "qdev->flags = %lx.\n",
  1534. qdev->flags);
  1535. printk(KERN_ERR PFX "qdev->vlgrp = %p.\n",
  1536. qdev->vlgrp);
  1537. printk(KERN_ERR PFX "qdev->pdev = %p.\n",
  1538. qdev->pdev);
  1539. printk(KERN_ERR PFX "qdev->ndev = %p.\n",
  1540. qdev->ndev);
  1541. printk(KERN_ERR PFX "qdev->chip_rev_id = %d.\n",
  1542. qdev->chip_rev_id);
  1543. printk(KERN_ERR PFX "qdev->reg_base = %p.\n",
  1544. qdev->reg_base);
  1545. printk(KERN_ERR PFX "qdev->doorbell_area = %p.\n",
  1546. qdev->doorbell_area);
  1547. printk(KERN_ERR PFX "qdev->doorbell_area_size = %d.\n",
  1548. qdev->doorbell_area_size);
  1549. printk(KERN_ERR PFX "msg_enable = %x.\n",
  1550. qdev->msg_enable);
  1551. printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_area = %p.\n",
  1552. qdev->rx_ring_shadow_reg_area);
  1553. printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_dma = %llx.\n",
  1554. (unsigned long long) qdev->rx_ring_shadow_reg_dma);
  1555. printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_area = %p.\n",
  1556. qdev->tx_ring_shadow_reg_area);
  1557. printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_dma = %llx.\n",
  1558. (unsigned long long) qdev->tx_ring_shadow_reg_dma);
  1559. printk(KERN_ERR PFX "qdev->intr_count = %d.\n",
  1560. qdev->intr_count);
  1561. if (qdev->msi_x_entry)
  1562. for (i = 0; i < qdev->intr_count; i++) {
  1563. printk(KERN_ERR PFX
  1564. "msi_x_entry.[%d]vector = %d.\n", i,
  1565. qdev->msi_x_entry[i].vector);
  1566. printk(KERN_ERR PFX
  1567. "msi_x_entry.[%d]entry = %d.\n", i,
  1568. qdev->msi_x_entry[i].entry);
  1569. }
  1570. for (i = 0; i < qdev->intr_count; i++) {
  1571. printk(KERN_ERR PFX
  1572. "intr_context[%d].qdev = %p.\n", i,
  1573. qdev->intr_context[i].qdev);
  1574. printk(KERN_ERR PFX
  1575. "intr_context[%d].intr = %d.\n", i,
  1576. qdev->intr_context[i].intr);
  1577. printk(KERN_ERR PFX
  1578. "intr_context[%d].hooked = %d.\n", i,
  1579. qdev->intr_context[i].hooked);
  1580. printk(KERN_ERR PFX
  1581. "intr_context[%d].intr_en_mask = 0x%08x.\n", i,
  1582. qdev->intr_context[i].intr_en_mask);
  1583. printk(KERN_ERR PFX
  1584. "intr_context[%d].intr_dis_mask = 0x%08x.\n", i,
  1585. qdev->intr_context[i].intr_dis_mask);
  1586. printk(KERN_ERR PFX
  1587. "intr_context[%d].intr_read_mask = 0x%08x.\n", i,
  1588. qdev->intr_context[i].intr_read_mask);
  1589. }
  1590. printk(KERN_ERR PFX "qdev->tx_ring_count = %d.\n", qdev->tx_ring_count);
  1591. printk(KERN_ERR PFX "qdev->rx_ring_count = %d.\n", qdev->rx_ring_count);
  1592. printk(KERN_ERR PFX "qdev->ring_mem_size = %d.\n", qdev->ring_mem_size);
  1593. printk(KERN_ERR PFX "qdev->ring_mem = %p.\n", qdev->ring_mem);
  1594. printk(KERN_ERR PFX "qdev->intr_count = %d.\n", qdev->intr_count);
  1595. printk(KERN_ERR PFX "qdev->tx_ring = %p.\n",
  1596. qdev->tx_ring);
  1597. printk(KERN_ERR PFX "qdev->rss_ring_count = %d.\n",
  1598. qdev->rss_ring_count);
  1599. printk(KERN_ERR PFX "qdev->rx_ring = %p.\n", qdev->rx_ring);
  1600. printk(KERN_ERR PFX "qdev->default_rx_queue = %d.\n",
  1601. qdev->default_rx_queue);
  1602. printk(KERN_ERR PFX "qdev->xg_sem_mask = 0x%08x.\n",
  1603. qdev->xg_sem_mask);
  1604. printk(KERN_ERR PFX "qdev->port_link_up = 0x%08x.\n",
  1605. qdev->port_link_up);
  1606. printk(KERN_ERR PFX "qdev->port_init = 0x%08x.\n",
  1607. qdev->port_init);
  1608. }
  1609. #endif
  1610. #ifdef QL_CB_DUMP
  1611. void ql_dump_wqicb(struct wqicb *wqicb)
  1612. {
  1613. printk(KERN_ERR PFX "Dumping wqicb stuff...\n");
  1614. printk(KERN_ERR PFX "wqicb->len = 0x%x.\n", le16_to_cpu(wqicb->len));
  1615. printk(KERN_ERR PFX "wqicb->flags = %x.\n", le16_to_cpu(wqicb->flags));
  1616. printk(KERN_ERR PFX "wqicb->cq_id_rss = %d.\n",
  1617. le16_to_cpu(wqicb->cq_id_rss));
  1618. printk(KERN_ERR PFX "wqicb->rid = 0x%x.\n", le16_to_cpu(wqicb->rid));
  1619. printk(KERN_ERR PFX "wqicb->wq_addr = 0x%llx.\n",
  1620. (unsigned long long) le64_to_cpu(wqicb->addr));
  1621. printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr = 0x%llx.\n",
  1622. (unsigned long long) le64_to_cpu(wqicb->cnsmr_idx_addr));
  1623. }
  1624. void ql_dump_tx_ring(struct tx_ring *tx_ring)
  1625. {
  1626. if (tx_ring == NULL)
  1627. return;
  1628. printk(KERN_ERR PFX
  1629. "===================== Dumping tx_ring %d ===============.\n",
  1630. tx_ring->wq_id);
  1631. printk(KERN_ERR PFX "tx_ring->base = %p.\n", tx_ring->wq_base);
  1632. printk(KERN_ERR PFX "tx_ring->base_dma = 0x%llx.\n",
  1633. (unsigned long long) tx_ring->wq_base_dma);
  1634. printk(KERN_ERR PFX
  1635. "tx_ring->cnsmr_idx_sh_reg, addr = 0x%p, value = %d.\n",
  1636. tx_ring->cnsmr_idx_sh_reg,
  1637. tx_ring->cnsmr_idx_sh_reg
  1638. ? ql_read_sh_reg(tx_ring->cnsmr_idx_sh_reg) : 0);
  1639. printk(KERN_ERR PFX "tx_ring->size = %d.\n", tx_ring->wq_size);
  1640. printk(KERN_ERR PFX "tx_ring->len = %d.\n", tx_ring->wq_len);
  1641. printk(KERN_ERR PFX "tx_ring->prod_idx_db_reg = %p.\n",
  1642. tx_ring->prod_idx_db_reg);
  1643. printk(KERN_ERR PFX "tx_ring->valid_db_reg = %p.\n",
  1644. tx_ring->valid_db_reg);
  1645. printk(KERN_ERR PFX "tx_ring->prod_idx = %d.\n", tx_ring->prod_idx);
  1646. printk(KERN_ERR PFX "tx_ring->cq_id = %d.\n", tx_ring->cq_id);
  1647. printk(KERN_ERR PFX "tx_ring->wq_id = %d.\n", tx_ring->wq_id);
  1648. printk(KERN_ERR PFX "tx_ring->q = %p.\n", tx_ring->q);
  1649. printk(KERN_ERR PFX "tx_ring->tx_count = %d.\n",
  1650. atomic_read(&tx_ring->tx_count));
  1651. }
  1652. void ql_dump_ricb(struct ricb *ricb)
  1653. {
  1654. int i;
  1655. printk(KERN_ERR PFX
  1656. "===================== Dumping ricb ===============.\n");
  1657. printk(KERN_ERR PFX "Dumping ricb stuff...\n");
  1658. printk(KERN_ERR PFX "ricb->base_cq = %d.\n", ricb->base_cq & 0x1f);
  1659. printk(KERN_ERR PFX "ricb->flags = %s%s%s%s%s%s%s%s%s.\n",
  1660. ricb->base_cq & RSS_L4K ? "RSS_L4K " : "",
  1661. ricb->flags & RSS_L6K ? "RSS_L6K " : "",
  1662. ricb->flags & RSS_LI ? "RSS_LI " : "",
  1663. ricb->flags & RSS_LB ? "RSS_LB " : "",
  1664. ricb->flags & RSS_LM ? "RSS_LM " : "",
  1665. ricb->flags & RSS_RI4 ? "RSS_RI4 " : "",
  1666. ricb->flags & RSS_RT4 ? "RSS_RT4 " : "",
  1667. ricb->flags & RSS_RI6 ? "RSS_RI6 " : "",
  1668. ricb->flags & RSS_RT6 ? "RSS_RT6 " : "");
  1669. printk(KERN_ERR PFX "ricb->mask = 0x%.04x.\n", le16_to_cpu(ricb->mask));
  1670. for (i = 0; i < 16; i++)
  1671. printk(KERN_ERR PFX "ricb->hash_cq_id[%d] = 0x%.08x.\n", i,
  1672. le32_to_cpu(ricb->hash_cq_id[i]));
  1673. for (i = 0; i < 10; i++)
  1674. printk(KERN_ERR PFX "ricb->ipv6_hash_key[%d] = 0x%.08x.\n", i,
  1675. le32_to_cpu(ricb->ipv6_hash_key[i]));
  1676. for (i = 0; i < 4; i++)
  1677. printk(KERN_ERR PFX "ricb->ipv4_hash_key[%d] = 0x%.08x.\n", i,
  1678. le32_to_cpu(ricb->ipv4_hash_key[i]));
  1679. }
  1680. void ql_dump_cqicb(struct cqicb *cqicb)
  1681. {
  1682. printk(KERN_ERR PFX "Dumping cqicb stuff...\n");
  1683. printk(KERN_ERR PFX "cqicb->msix_vect = %d.\n", cqicb->msix_vect);
  1684. printk(KERN_ERR PFX "cqicb->flags = %x.\n", cqicb->flags);
  1685. printk(KERN_ERR PFX "cqicb->len = %d.\n", le16_to_cpu(cqicb->len));
  1686. printk(KERN_ERR PFX "cqicb->addr = 0x%llx.\n",
  1687. (unsigned long long) le64_to_cpu(cqicb->addr));
  1688. printk(KERN_ERR PFX "cqicb->prod_idx_addr = 0x%llx.\n",
  1689. (unsigned long long) le64_to_cpu(cqicb->prod_idx_addr));
  1690. printk(KERN_ERR PFX "cqicb->pkt_delay = 0x%.04x.\n",
  1691. le16_to_cpu(cqicb->pkt_delay));
  1692. printk(KERN_ERR PFX "cqicb->irq_delay = 0x%.04x.\n",
  1693. le16_to_cpu(cqicb->irq_delay));
  1694. printk(KERN_ERR PFX "cqicb->lbq_addr = 0x%llx.\n",
  1695. (unsigned long long) le64_to_cpu(cqicb->lbq_addr));
  1696. printk(KERN_ERR PFX "cqicb->lbq_buf_size = 0x%.04x.\n",
  1697. le16_to_cpu(cqicb->lbq_buf_size));
  1698. printk(KERN_ERR PFX "cqicb->lbq_len = 0x%.04x.\n",
  1699. le16_to_cpu(cqicb->lbq_len));
  1700. printk(KERN_ERR PFX "cqicb->sbq_addr = 0x%llx.\n",
  1701. (unsigned long long) le64_to_cpu(cqicb->sbq_addr));
  1702. printk(KERN_ERR PFX "cqicb->sbq_buf_size = 0x%.04x.\n",
  1703. le16_to_cpu(cqicb->sbq_buf_size));
  1704. printk(KERN_ERR PFX "cqicb->sbq_len = 0x%.04x.\n",
  1705. le16_to_cpu(cqicb->sbq_len));
  1706. }
  1707. void ql_dump_rx_ring(struct rx_ring *rx_ring)
  1708. {
  1709. if (rx_ring == NULL)
  1710. return;
  1711. printk(KERN_ERR PFX
  1712. "===================== Dumping rx_ring %d ===============.\n",
  1713. rx_ring->cq_id);
  1714. printk(KERN_ERR PFX "Dumping rx_ring %d, type = %s%s%s.\n",
  1715. rx_ring->cq_id, rx_ring->type == DEFAULT_Q ? "DEFAULT" : "",
  1716. rx_ring->type == TX_Q ? "OUTBOUND COMPLETIONS" : "",
  1717. rx_ring->type == RX_Q ? "INBOUND_COMPLETIONS" : "");
  1718. printk(KERN_ERR PFX "rx_ring->cqicb = %p.\n", &rx_ring->cqicb);
  1719. printk(KERN_ERR PFX "rx_ring->cq_base = %p.\n", rx_ring->cq_base);
  1720. printk(KERN_ERR PFX "rx_ring->cq_base_dma = %llx.\n",
  1721. (unsigned long long) rx_ring->cq_base_dma);
  1722. printk(KERN_ERR PFX "rx_ring->cq_size = %d.\n", rx_ring->cq_size);
  1723. printk(KERN_ERR PFX "rx_ring->cq_len = %d.\n", rx_ring->cq_len);
  1724. printk(KERN_ERR PFX
  1725. "rx_ring->prod_idx_sh_reg, addr = 0x%p, value = %d.\n",
  1726. rx_ring->prod_idx_sh_reg,
  1727. rx_ring->prod_idx_sh_reg
  1728. ? ql_read_sh_reg(rx_ring->prod_idx_sh_reg) : 0);
  1729. printk(KERN_ERR PFX "rx_ring->prod_idx_sh_reg_dma = %llx.\n",
  1730. (unsigned long long) rx_ring->prod_idx_sh_reg_dma);
  1731. printk(KERN_ERR PFX "rx_ring->cnsmr_idx_db_reg = %p.\n",
  1732. rx_ring->cnsmr_idx_db_reg);
  1733. printk(KERN_ERR PFX "rx_ring->cnsmr_idx = %d.\n", rx_ring->cnsmr_idx);
  1734. printk(KERN_ERR PFX "rx_ring->curr_entry = %p.\n", rx_ring->curr_entry);
  1735. printk(KERN_ERR PFX "rx_ring->valid_db_reg = %p.\n",
  1736. rx_ring->valid_db_reg);
  1737. printk(KERN_ERR PFX "rx_ring->lbq_base = %p.\n", rx_ring->lbq_base);
  1738. printk(KERN_ERR PFX "rx_ring->lbq_base_dma = %llx.\n",
  1739. (unsigned long long) rx_ring->lbq_base_dma);
  1740. printk(KERN_ERR PFX "rx_ring->lbq_base_indirect = %p.\n",
  1741. rx_ring->lbq_base_indirect);
  1742. printk(KERN_ERR PFX "rx_ring->lbq_base_indirect_dma = %llx.\n",
  1743. (unsigned long long) rx_ring->lbq_base_indirect_dma);
  1744. printk(KERN_ERR PFX "rx_ring->lbq = %p.\n", rx_ring->lbq);
  1745. printk(KERN_ERR PFX "rx_ring->lbq_len = %d.\n", rx_ring->lbq_len);
  1746. printk(KERN_ERR PFX "rx_ring->lbq_size = %d.\n", rx_ring->lbq_size);
  1747. printk(KERN_ERR PFX "rx_ring->lbq_prod_idx_db_reg = %p.\n",
  1748. rx_ring->lbq_prod_idx_db_reg);
  1749. printk(KERN_ERR PFX "rx_ring->lbq_prod_idx = %d.\n",
  1750. rx_ring->lbq_prod_idx);
  1751. printk(KERN_ERR PFX "rx_ring->lbq_curr_idx = %d.\n",
  1752. rx_ring->lbq_curr_idx);
  1753. printk(KERN_ERR PFX "rx_ring->lbq_clean_idx = %d.\n",
  1754. rx_ring->lbq_clean_idx);
  1755. printk(KERN_ERR PFX "rx_ring->lbq_free_cnt = %d.\n",
  1756. rx_ring->lbq_free_cnt);
  1757. printk(KERN_ERR PFX "rx_ring->lbq_buf_size = %d.\n",
  1758. rx_ring->lbq_buf_size);
  1759. printk(KERN_ERR PFX "rx_ring->sbq_base = %p.\n", rx_ring->sbq_base);
  1760. printk(KERN_ERR PFX "rx_ring->sbq_base_dma = %llx.\n",
  1761. (unsigned long long) rx_ring->sbq_base_dma);
  1762. printk(KERN_ERR PFX "rx_ring->sbq_base_indirect = %p.\n",
  1763. rx_ring->sbq_base_indirect);
  1764. printk(KERN_ERR PFX "rx_ring->sbq_base_indirect_dma = %llx.\n",
  1765. (unsigned long long) rx_ring->sbq_base_indirect_dma);
  1766. printk(KERN_ERR PFX "rx_ring->sbq = %p.\n", rx_ring->sbq);
  1767. printk(KERN_ERR PFX "rx_ring->sbq_len = %d.\n", rx_ring->sbq_len);
  1768. printk(KERN_ERR PFX "rx_ring->sbq_size = %d.\n", rx_ring->sbq_size);
  1769. printk(KERN_ERR PFX "rx_ring->sbq_prod_idx_db_reg addr = %p.\n",
  1770. rx_ring->sbq_prod_idx_db_reg);
  1771. printk(KERN_ERR PFX "rx_ring->sbq_prod_idx = %d.\n",
  1772. rx_ring->sbq_prod_idx);
  1773. printk(KERN_ERR PFX "rx_ring->sbq_curr_idx = %d.\n",
  1774. rx_ring->sbq_curr_idx);
  1775. printk(KERN_ERR PFX "rx_ring->sbq_clean_idx = %d.\n",
  1776. rx_ring->sbq_clean_idx);
  1777. printk(KERN_ERR PFX "rx_ring->sbq_free_cnt = %d.\n",
  1778. rx_ring->sbq_free_cnt);
  1779. printk(KERN_ERR PFX "rx_ring->sbq_buf_size = %d.\n",
  1780. rx_ring->sbq_buf_size);
  1781. printk(KERN_ERR PFX "rx_ring->cq_id = %d.\n", rx_ring->cq_id);
  1782. printk(KERN_ERR PFX "rx_ring->irq = %d.\n", rx_ring->irq);
  1783. printk(KERN_ERR PFX "rx_ring->cpu = %d.\n", rx_ring->cpu);
  1784. printk(KERN_ERR PFX "rx_ring->qdev = %p.\n", rx_ring->qdev);
  1785. }
  1786. void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id)
  1787. {
  1788. void *ptr;
  1789. printk(KERN_ERR PFX "%s: Enter.\n", __func__);
  1790. ptr = kmalloc(size, GFP_ATOMIC);
  1791. if (ptr == NULL) {
  1792. printk(KERN_ERR PFX "%s: Couldn't allocate a buffer.\n",
  1793. __func__);
  1794. return;
  1795. }
  1796. if (ql_write_cfg(qdev, ptr, size, bit, q_id)) {
  1797. printk(KERN_ERR "%s: Failed to upload control block!\n",
  1798. __func__);
  1799. goto fail_it;
  1800. }
  1801. switch (bit) {
  1802. case CFG_DRQ:
  1803. ql_dump_wqicb((struct wqicb *)ptr);
  1804. break;
  1805. case CFG_DCQ:
  1806. ql_dump_cqicb((struct cqicb *)ptr);
  1807. break;
  1808. case CFG_DR:
  1809. ql_dump_ricb((struct ricb *)ptr);
  1810. break;
  1811. default:
  1812. printk(KERN_ERR PFX "%s: Invalid bit value = %x.\n",
  1813. __func__, bit);
  1814. break;
  1815. }
  1816. fail_it:
  1817. kfree(ptr);
  1818. }
  1819. #endif
  1820. #ifdef QL_OB_DUMP
  1821. void ql_dump_tx_desc(struct tx_buf_desc *tbd)
  1822. {
  1823. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1824. le64_to_cpu((u64) tbd->addr));
  1825. printk(KERN_ERR PFX "tbd->len = %d\n",
  1826. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1827. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1828. tbd->len & TX_DESC_C ? "C" : ".",
  1829. tbd->len & TX_DESC_E ? "E" : ".");
  1830. tbd++;
  1831. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1832. le64_to_cpu((u64) tbd->addr));
  1833. printk(KERN_ERR PFX "tbd->len = %d\n",
  1834. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1835. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1836. tbd->len & TX_DESC_C ? "C" : ".",
  1837. tbd->len & TX_DESC_E ? "E" : ".");
  1838. tbd++;
  1839. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1840. le64_to_cpu((u64) tbd->addr));
  1841. printk(KERN_ERR PFX "tbd->len = %d\n",
  1842. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1843. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1844. tbd->len & TX_DESC_C ? "C" : ".",
  1845. tbd->len & TX_DESC_E ? "E" : ".");
  1846. }
  1847. void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb)
  1848. {
  1849. struct ob_mac_tso_iocb_req *ob_mac_tso_iocb =
  1850. (struct ob_mac_tso_iocb_req *)ob_mac_iocb;
  1851. struct tx_buf_desc *tbd;
  1852. u16 frame_len;
  1853. printk(KERN_ERR PFX "%s\n", __func__);
  1854. printk(KERN_ERR PFX "opcode = %s\n",
  1855. (ob_mac_iocb->opcode == OPCODE_OB_MAC_IOCB) ? "MAC" : "TSO");
  1856. printk(KERN_ERR PFX "flags1 = %s %s %s %s %s\n",
  1857. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_OI ? "OI" : "",
  1858. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_I ? "I" : "",
  1859. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_D ? "D" : "",
  1860. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP4 ? "IP4" : "",
  1861. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP6 ? "IP6" : "");
  1862. printk(KERN_ERR PFX "flags2 = %s %s %s\n",
  1863. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_LSO ? "LSO" : "",
  1864. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_UC ? "UC" : "",
  1865. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_TC ? "TC" : "");
  1866. printk(KERN_ERR PFX "flags3 = %s %s %s\n",
  1867. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_IC ? "IC" : "",
  1868. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_DFP ? "DFP" : "",
  1869. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_V ? "V" : "");
  1870. printk(KERN_ERR PFX "tid = %x\n", ob_mac_iocb->tid);
  1871. printk(KERN_ERR PFX "txq_idx = %d\n", ob_mac_iocb->txq_idx);
  1872. printk(KERN_ERR PFX "vlan_tci = %x\n", ob_mac_tso_iocb->vlan_tci);
  1873. if (ob_mac_iocb->opcode == OPCODE_OB_MAC_TSO_IOCB) {
  1874. printk(KERN_ERR PFX "frame_len = %d\n",
  1875. le32_to_cpu(ob_mac_tso_iocb->frame_len));
  1876. printk(KERN_ERR PFX "mss = %d\n",
  1877. le16_to_cpu(ob_mac_tso_iocb->mss));
  1878. printk(KERN_ERR PFX "prot_hdr_len = %d\n",
  1879. le16_to_cpu(ob_mac_tso_iocb->total_hdrs_len));
  1880. printk(KERN_ERR PFX "hdr_offset = 0x%.04x\n",
  1881. le16_to_cpu(ob_mac_tso_iocb->net_trans_offset));
  1882. frame_len = le32_to_cpu(ob_mac_tso_iocb->frame_len);
  1883. } else {
  1884. printk(KERN_ERR PFX "frame_len = %d\n",
  1885. le16_to_cpu(ob_mac_iocb->frame_len));
  1886. frame_len = le16_to_cpu(ob_mac_iocb->frame_len);
  1887. }
  1888. tbd = &ob_mac_iocb->tbd[0];
  1889. ql_dump_tx_desc(tbd);
  1890. }
  1891. void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp)
  1892. {
  1893. printk(KERN_ERR PFX "%s\n", __func__);
  1894. printk(KERN_ERR PFX "opcode = %d\n", ob_mac_rsp->opcode);
  1895. printk(KERN_ERR PFX "flags = %s %s %s %s %s %s %s\n",
  1896. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_OI ? "OI" : ".",
  1897. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_I ? "I" : ".",
  1898. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_E ? "E" : ".",
  1899. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_S ? "S" : ".",
  1900. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_L ? "L" : ".",
  1901. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_P ? "P" : ".",
  1902. ob_mac_rsp->flags2 & OB_MAC_IOCB_RSP_B ? "B" : ".");
  1903. printk(KERN_ERR PFX "tid = %x\n", ob_mac_rsp->tid);
  1904. }
  1905. #endif
  1906. #ifdef QL_IB_DUMP
  1907. void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp)
  1908. {
  1909. printk(KERN_ERR PFX "%s\n", __func__);
  1910. printk(KERN_ERR PFX "opcode = 0x%x\n", ib_mac_rsp->opcode);
  1911. printk(KERN_ERR PFX "flags1 = %s%s%s%s%s%s\n",
  1912. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_OI ? "OI " : "",
  1913. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_I ? "I " : "",
  1914. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_TE ? "TE " : "",
  1915. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU ? "NU " : "",
  1916. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_IE ? "IE " : "",
  1917. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_B ? "B " : "");
  1918. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK)
  1919. printk(KERN_ERR PFX "%s%s%s Multicast.\n",
  1920. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1921. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1922. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1923. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1924. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1925. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1926. printk(KERN_ERR PFX "flags2 = %s%s%s%s%s\n",
  1927. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) ? "P " : "",
  1928. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? "V " : "",
  1929. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) ? "U " : "",
  1930. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ? "T " : "",
  1931. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_FO) ? "FO " : "");
  1932. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK)
  1933. printk(KERN_ERR PFX "%s%s%s%s%s error.\n",
  1934. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1935. IB_MAC_IOCB_RSP_ERR_OVERSIZE ? "oversize" : "",
  1936. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1937. IB_MAC_IOCB_RSP_ERR_UNDERSIZE ? "undersize" : "",
  1938. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1939. IB_MAC_IOCB_RSP_ERR_PREAMBLE ? "preamble" : "",
  1940. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1941. IB_MAC_IOCB_RSP_ERR_FRAME_LEN ? "frame length" : "",
  1942. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1943. IB_MAC_IOCB_RSP_ERR_CRC ? "CRC" : "");
  1944. printk(KERN_ERR PFX "flags3 = %s%s.\n",
  1945. ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS ? "DS " : "",
  1946. ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL ? "DL " : "");
  1947. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
  1948. printk(KERN_ERR PFX "RSS flags = %s%s%s%s.\n",
  1949. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1950. IB_MAC_IOCB_RSP_M_IPV4) ? "IPv4 RSS" : "",
  1951. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1952. IB_MAC_IOCB_RSP_M_IPV6) ? "IPv6 RSS " : "",
  1953. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1954. IB_MAC_IOCB_RSP_M_TCP_V4) ? "TCP/IPv4 RSS" : "",
  1955. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1956. IB_MAC_IOCB_RSP_M_TCP_V6) ? "TCP/IPv6 RSS" : "");
  1957. printk(KERN_ERR PFX "data_len = %d\n",
  1958. le32_to_cpu(ib_mac_rsp->data_len));
  1959. printk(KERN_ERR PFX "data_addr = 0x%llx\n",
  1960. (unsigned long long) le64_to_cpu(ib_mac_rsp->data_addr));
  1961. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
  1962. printk(KERN_ERR PFX "rss = %x\n",
  1963. le32_to_cpu(ib_mac_rsp->rss));
  1964. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)
  1965. printk(KERN_ERR PFX "vlan_id = %x\n",
  1966. le16_to_cpu(ib_mac_rsp->vlan_id));
  1967. printk(KERN_ERR PFX "flags4 = %s%s%s.\n",
  1968. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV ? "HV " : "",
  1969. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS ? "HS " : "",
  1970. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HL ? "HL " : "");
  1971. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1972. printk(KERN_ERR PFX "hdr length = %d.\n",
  1973. le32_to_cpu(ib_mac_rsp->hdr_len));
  1974. printk(KERN_ERR PFX "hdr addr = 0x%llx.\n",
  1975. (unsigned long long) le64_to_cpu(ib_mac_rsp->hdr_addr));
  1976. }
  1977. }
  1978. #endif
  1979. #ifdef QL_ALL_DUMP
  1980. void ql_dump_all(struct ql_adapter *qdev)
  1981. {
  1982. int i;
  1983. QL_DUMP_REGS(qdev);
  1984. QL_DUMP_QDEV(qdev);
  1985. for (i = 0; i < qdev->tx_ring_count; i++) {
  1986. QL_DUMP_TX_RING(&qdev->tx_ring[i]);
  1987. QL_DUMP_WQICB((struct wqicb *)&qdev->tx_ring[i]);
  1988. }
  1989. for (i = 0; i < qdev->rx_ring_count; i++) {
  1990. QL_DUMP_RX_RING(&qdev->rx_ring[i]);
  1991. QL_DUMP_CQICB((struct cqicb *)&qdev->rx_ring[i]);
  1992. }
  1993. }
  1994. #endif