sh_sir.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. /*
  2. * SuperH IrDA Driver
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on bfin_sir.c
  8. * Copyright 2006-2009 Analog Devices Inc.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/slab.h>
  17. #include <net/irda/wrapper.h>
  18. #include <net/irda/irda_device.h>
  19. #include <asm/clock.h>
  20. #define DRIVER_NAME "sh_sir"
  21. #define RX_PHASE (1 << 0)
  22. #define TX_PHASE (1 << 1)
  23. #define TX_COMP_PHASE (1 << 2) /* tx complete */
  24. #define NONE_PHASE (1 << 31)
  25. #define IRIF_RINTCLR 0x0016 /* DMA rx interrupt source clear */
  26. #define IRIF_TINTCLR 0x0018 /* DMA tx interrupt source clear */
  27. #define IRIF_SIR0 0x0020 /* IrDA-SIR10 control */
  28. #define IRIF_SIR1 0x0022 /* IrDA-SIR10 baudrate error correction */
  29. #define IRIF_SIR2 0x0024 /* IrDA-SIR10 baudrate count */
  30. #define IRIF_SIR3 0x0026 /* IrDA-SIR10 status */
  31. #define IRIF_SIR_FRM 0x0028 /* Hardware frame processing set */
  32. #define IRIF_SIR_EOF 0x002A /* EOF value */
  33. #define IRIF_SIR_FLG 0x002C /* Flag clear */
  34. #define IRIF_UART_STS2 0x002E /* UART status 2 */
  35. #define IRIF_UART0 0x0030 /* UART control */
  36. #define IRIF_UART1 0x0032 /* UART status */
  37. #define IRIF_UART2 0x0034 /* UART mode */
  38. #define IRIF_UART3 0x0036 /* UART transmit data */
  39. #define IRIF_UART4 0x0038 /* UART receive data */
  40. #define IRIF_UART5 0x003A /* UART interrupt mask */
  41. #define IRIF_UART6 0x003C /* UART baud rate error correction */
  42. #define IRIF_UART7 0x003E /* UART baud rate count set */
  43. #define IRIF_CRC0 0x0040 /* CRC engine control */
  44. #define IRIF_CRC1 0x0042 /* CRC engine input data */
  45. #define IRIF_CRC2 0x0044 /* CRC engine calculation */
  46. #define IRIF_CRC3 0x0046 /* CRC engine output data 1 */
  47. #define IRIF_CRC4 0x0048 /* CRC engine output data 2 */
  48. /* IRIF_SIR0 */
  49. #define IRTPW (1 << 1) /* transmit pulse width select */
  50. #define IRERRC (1 << 0) /* Clear receive pulse width error */
  51. /* IRIF_SIR3 */
  52. #define IRERR (1 << 0) /* received pulse width Error */
  53. /* IRIF_SIR_FRM */
  54. #define EOFD (1 << 9) /* EOF detection flag */
  55. #define FRER (1 << 8) /* Frame Error bit */
  56. #define FRP (1 << 0) /* Frame processing set */
  57. /* IRIF_UART_STS2 */
  58. #define IRSME (1 << 6) /* Receive Sum Error flag */
  59. #define IROVE (1 << 5) /* Receive Overrun Error flag */
  60. #define IRFRE (1 << 4) /* Receive Framing Error flag */
  61. #define IRPRE (1 << 3) /* Receive Parity Error flag */
  62. /* IRIF_UART0_*/
  63. #define TBEC (1 << 2) /* Transmit Data Clear */
  64. #define RIE (1 << 1) /* Receive Enable */
  65. #define TIE (1 << 0) /* Transmit Enable */
  66. /* IRIF_UART1 */
  67. #define URSME (1 << 6) /* Receive Sum Error Flag */
  68. #define UROVE (1 << 5) /* Receive Overrun Error Flag */
  69. #define URFRE (1 << 4) /* Receive Framing Error Flag */
  70. #define URPRE (1 << 3) /* Receive Parity Error Flag */
  71. #define RBF (1 << 2) /* Receive Buffer Full Flag */
  72. #define TSBE (1 << 1) /* Transmit Shift Buffer Empty Flag */
  73. #define TBE (1 << 0) /* Transmit Buffer Empty flag */
  74. #define TBCOMP (TSBE | TBE)
  75. /* IRIF_UART5 */
  76. #define RSEIM (1 << 6) /* Receive Sum Error Flag IRQ Mask */
  77. #define RBFIM (1 << 2) /* Receive Buffer Full Flag IRQ Mask */
  78. #define TSBEIM (1 << 1) /* Transmit Shift Buffer Empty Flag IRQ Mask */
  79. #define TBEIM (1 << 0) /* Transmit Buffer Empty Flag IRQ Mask */
  80. #define RX_MASK (RSEIM | RBFIM)
  81. /* IRIF_CRC0 */
  82. #define CRC_RST (1 << 15) /* CRC Engine Reset */
  83. #define CRC_CT_MASK 0x0FFF
  84. /************************************************************************
  85. structure
  86. ************************************************************************/
  87. struct sh_sir_self {
  88. void __iomem *membase;
  89. unsigned int irq;
  90. struct clk *clk;
  91. struct net_device *ndev;
  92. struct irlap_cb *irlap;
  93. struct qos_info qos;
  94. iobuff_t tx_buff;
  95. iobuff_t rx_buff;
  96. };
  97. /************************************************************************
  98. common function
  99. ************************************************************************/
  100. static void sh_sir_write(struct sh_sir_self *self, u32 offset, u16 data)
  101. {
  102. iowrite16(data, self->membase + offset);
  103. }
  104. static u16 sh_sir_read(struct sh_sir_self *self, u32 offset)
  105. {
  106. return ioread16(self->membase + offset);
  107. }
  108. static void sh_sir_update_bits(struct sh_sir_self *self, u32 offset,
  109. u16 mask, u16 data)
  110. {
  111. u16 old, new;
  112. old = sh_sir_read(self, offset);
  113. new = (old & ~mask) | data;
  114. if (old != new)
  115. sh_sir_write(self, offset, new);
  116. }
  117. /************************************************************************
  118. CRC function
  119. ************************************************************************/
  120. static void sh_sir_crc_reset(struct sh_sir_self *self)
  121. {
  122. sh_sir_write(self, IRIF_CRC0, CRC_RST);
  123. }
  124. static void sh_sir_crc_add(struct sh_sir_self *self, u8 data)
  125. {
  126. sh_sir_write(self, IRIF_CRC1, (u16)data);
  127. }
  128. static u16 sh_sir_crc_cnt(struct sh_sir_self *self)
  129. {
  130. return CRC_CT_MASK & sh_sir_read(self, IRIF_CRC0);
  131. }
  132. static u16 sh_sir_crc_out(struct sh_sir_self *self)
  133. {
  134. return sh_sir_read(self, IRIF_CRC4);
  135. }
  136. static int sh_sir_crc_init(struct sh_sir_self *self)
  137. {
  138. struct device *dev = &self->ndev->dev;
  139. int ret = -EIO;
  140. u16 val;
  141. sh_sir_crc_reset(self);
  142. sh_sir_crc_add(self, 0xCC);
  143. sh_sir_crc_add(self, 0xF5);
  144. sh_sir_crc_add(self, 0xF1);
  145. sh_sir_crc_add(self, 0xA7);
  146. val = sh_sir_crc_cnt(self);
  147. if (4 != val) {
  148. dev_err(dev, "CRC count error %x\n", val);
  149. goto crc_init_out;
  150. }
  151. val = sh_sir_crc_out(self);
  152. if (0x51DF != val) {
  153. dev_err(dev, "CRC result error%x\n", val);
  154. goto crc_init_out;
  155. }
  156. ret = 0;
  157. crc_init_out:
  158. sh_sir_crc_reset(self);
  159. return ret;
  160. }
  161. /************************************************************************
  162. baud rate functions
  163. ************************************************************************/
  164. #define SCLK_BASE 1843200 /* 1.8432MHz */
  165. static u32 sh_sir_find_sclk(struct clk *irda_clk)
  166. {
  167. struct cpufreq_frequency_table *freq_table = irda_clk->freq_table;
  168. struct clk *pclk = clk_get(NULL, "peripheral_clk");
  169. u32 limit, min = 0xffffffff, tmp;
  170. int i, index = 0;
  171. limit = clk_get_rate(pclk);
  172. clk_put(pclk);
  173. /* IrDA can not set over peripheral_clk */
  174. for (i = 0;
  175. freq_table[i].frequency != CPUFREQ_TABLE_END;
  176. i++) {
  177. u32 freq = freq_table[i].frequency;
  178. if (freq == CPUFREQ_ENTRY_INVALID)
  179. continue;
  180. /* IrDA should not over peripheral_clk */
  181. if (freq > limit)
  182. continue;
  183. tmp = freq % SCLK_BASE;
  184. if (tmp < min) {
  185. min = tmp;
  186. index = i;
  187. }
  188. }
  189. return freq_table[index].frequency;
  190. }
  191. #define ERR_ROUNDING(a) ((a + 5000) / 10000)
  192. static int sh_sir_set_baudrate(struct sh_sir_self *self, u32 baudrate)
  193. {
  194. struct clk *clk;
  195. struct device *dev = &self->ndev->dev;
  196. u32 rate;
  197. u16 uabca, uabc;
  198. u16 irbca, irbc;
  199. u32 min, rerr, tmp;
  200. int i;
  201. /* Baud Rate Error Correction x 10000 */
  202. u32 rate_err_array[] = {
  203. 0000, 0625, 1250, 1875,
  204. 2500, 3125, 3750, 4375,
  205. 5000, 5625, 6250, 6875,
  206. 7500, 8125, 8750, 9375,
  207. };
  208. /*
  209. * FIXME
  210. *
  211. * it support 9600 only now
  212. */
  213. switch (baudrate) {
  214. case 9600:
  215. break;
  216. default:
  217. dev_err(dev, "un-supported baudrate %d\n", baudrate);
  218. return -EIO;
  219. }
  220. clk = clk_get(NULL, "irda_clk");
  221. if (!clk) {
  222. dev_err(dev, "can not get irda_clk\n");
  223. return -EIO;
  224. }
  225. clk_set_rate(clk, sh_sir_find_sclk(clk));
  226. rate = clk_get_rate(clk);
  227. clk_put(clk);
  228. dev_dbg(dev, "selected sclk = %d\n", rate);
  229. /*
  230. * CALCULATION
  231. *
  232. * 1843200 = system rate / (irbca + (irbc + 1))
  233. */
  234. irbc = rate / SCLK_BASE;
  235. tmp = rate - (SCLK_BASE * irbc);
  236. tmp *= 10000;
  237. rerr = tmp / SCLK_BASE;
  238. min = 0xffffffff;
  239. irbca = 0;
  240. for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
  241. tmp = abs(rate_err_array[i] - rerr);
  242. if (min > tmp) {
  243. min = tmp;
  244. irbca = i;
  245. }
  246. }
  247. tmp = rate / (irbc + ERR_ROUNDING(rate_err_array[irbca]));
  248. if ((SCLK_BASE / 100) < abs(tmp - SCLK_BASE))
  249. dev_warn(dev, "IrDA freq error margin over %d\n", tmp);
  250. dev_dbg(dev, "target = %d, result = %d, infrared = %d.%d\n",
  251. SCLK_BASE, tmp, irbc, rate_err_array[irbca]);
  252. irbca = (irbca & 0xF) << 4;
  253. irbc = (irbc - 1) & 0xF;
  254. if (!irbc) {
  255. dev_err(dev, "sh_sir can not set 0 in IRIF_SIR2\n");
  256. return -EIO;
  257. }
  258. sh_sir_write(self, IRIF_SIR0, IRTPW | IRERRC);
  259. sh_sir_write(self, IRIF_SIR1, irbca);
  260. sh_sir_write(self, IRIF_SIR2, irbc);
  261. /*
  262. * CALCULATION
  263. *
  264. * BaudRate[bps] = system rate / (uabca + (uabc + 1) x 16)
  265. */
  266. uabc = rate / baudrate;
  267. uabc = (uabc / 16) - 1;
  268. uabc = (uabc + 1) * 16;
  269. tmp = rate - (uabc * baudrate);
  270. tmp *= 10000;
  271. rerr = tmp / baudrate;
  272. min = 0xffffffff;
  273. uabca = 0;
  274. for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
  275. tmp = abs(rate_err_array[i] - rerr);
  276. if (min > tmp) {
  277. min = tmp;
  278. uabca = i;
  279. }
  280. }
  281. tmp = rate / (uabc + ERR_ROUNDING(rate_err_array[uabca]));
  282. if ((baudrate / 100) < abs(tmp - baudrate))
  283. dev_warn(dev, "UART freq error margin over %d\n", tmp);
  284. dev_dbg(dev, "target = %d, result = %d, uart = %d.%d\n",
  285. baudrate, tmp,
  286. uabc, rate_err_array[uabca]);
  287. uabca = (uabca & 0xF) << 4;
  288. uabc = (uabc / 16) - 1;
  289. sh_sir_write(self, IRIF_UART6, uabca);
  290. sh_sir_write(self, IRIF_UART7, uabc);
  291. return 0;
  292. }
  293. /************************************************************************
  294. iobuf function
  295. ************************************************************************/
  296. static int __sh_sir_init_iobuf(iobuff_t *io, int size)
  297. {
  298. io->head = kmalloc(size, GFP_KERNEL);
  299. if (!io->head)
  300. return -ENOMEM;
  301. io->truesize = size;
  302. io->in_frame = FALSE;
  303. io->state = OUTSIDE_FRAME;
  304. io->data = io->head;
  305. return 0;
  306. }
  307. static void sh_sir_remove_iobuf(struct sh_sir_self *self)
  308. {
  309. kfree(self->rx_buff.head);
  310. kfree(self->tx_buff.head);
  311. self->rx_buff.head = NULL;
  312. self->tx_buff.head = NULL;
  313. }
  314. static int sh_sir_init_iobuf(struct sh_sir_self *self, int rxsize, int txsize)
  315. {
  316. int err = -ENOMEM;
  317. if (self->rx_buff.head ||
  318. self->tx_buff.head) {
  319. dev_err(&self->ndev->dev, "iobuff has already existed.");
  320. return err;
  321. }
  322. err = __sh_sir_init_iobuf(&self->rx_buff, rxsize);
  323. if (err)
  324. goto iobuf_err;
  325. err = __sh_sir_init_iobuf(&self->tx_buff, txsize);
  326. iobuf_err:
  327. if (err)
  328. sh_sir_remove_iobuf(self);
  329. return err;
  330. }
  331. /************************************************************************
  332. status function
  333. ************************************************************************/
  334. static void sh_sir_clear_all_err(struct sh_sir_self *self)
  335. {
  336. /* Clear error flag for receive pulse width */
  337. sh_sir_update_bits(self, IRIF_SIR0, IRERRC, IRERRC);
  338. /* Clear frame / EOF error flag */
  339. sh_sir_write(self, IRIF_SIR_FLG, 0xffff);
  340. /* Clear all status error */
  341. sh_sir_write(self, IRIF_UART_STS2, 0);
  342. }
  343. static void sh_sir_set_phase(struct sh_sir_self *self, int phase)
  344. {
  345. u16 uart5 = 0;
  346. u16 uart0 = 0;
  347. switch (phase) {
  348. case TX_PHASE:
  349. uart5 = TBEIM;
  350. uart0 = TBEC | TIE;
  351. break;
  352. case TX_COMP_PHASE:
  353. uart5 = TSBEIM;
  354. uart0 = TIE;
  355. break;
  356. case RX_PHASE:
  357. uart5 = RX_MASK;
  358. uart0 = RIE;
  359. break;
  360. default:
  361. break;
  362. }
  363. sh_sir_write(self, IRIF_UART5, uart5);
  364. sh_sir_write(self, IRIF_UART0, uart0);
  365. }
  366. static int sh_sir_is_which_phase(struct sh_sir_self *self)
  367. {
  368. u16 val = sh_sir_read(self, IRIF_UART5);
  369. if (val & TBEIM)
  370. return TX_PHASE;
  371. if (val & TSBEIM)
  372. return TX_COMP_PHASE;
  373. if (val & RX_MASK)
  374. return RX_PHASE;
  375. return NONE_PHASE;
  376. }
  377. static void sh_sir_tx(struct sh_sir_self *self, int phase)
  378. {
  379. switch (phase) {
  380. case TX_PHASE:
  381. if (0 >= self->tx_buff.len) {
  382. sh_sir_set_phase(self, TX_COMP_PHASE);
  383. } else {
  384. sh_sir_write(self, IRIF_UART3, self->tx_buff.data[0]);
  385. self->tx_buff.len--;
  386. self->tx_buff.data++;
  387. }
  388. break;
  389. case TX_COMP_PHASE:
  390. sh_sir_set_phase(self, RX_PHASE);
  391. netif_wake_queue(self->ndev);
  392. break;
  393. default:
  394. dev_err(&self->ndev->dev, "should not happen\n");
  395. break;
  396. }
  397. }
  398. static int sh_sir_read_data(struct sh_sir_self *self)
  399. {
  400. u16 val;
  401. int timeout = 1024;
  402. while (timeout--) {
  403. val = sh_sir_read(self, IRIF_UART1);
  404. /* data get */
  405. if (val & RBF) {
  406. if (val & (URSME | UROVE | URFRE | URPRE))
  407. break;
  408. return (int)sh_sir_read(self, IRIF_UART4);
  409. }
  410. udelay(1);
  411. }
  412. dev_err(&self->ndev->dev, "UART1 %04x : STATUS %04x\n",
  413. val, sh_sir_read(self, IRIF_UART_STS2));
  414. /* read data register for clear error */
  415. sh_sir_read(self, IRIF_UART4);
  416. return -1;
  417. }
  418. static void sh_sir_rx(struct sh_sir_self *self)
  419. {
  420. int timeout = 1024;
  421. int data;
  422. while (timeout--) {
  423. data = sh_sir_read_data(self);
  424. if (data < 0)
  425. break;
  426. async_unwrap_char(self->ndev, &self->ndev->stats,
  427. &self->rx_buff, (u8)data);
  428. self->ndev->last_rx = jiffies;
  429. if (EOFD & sh_sir_read(self, IRIF_SIR_FRM))
  430. continue;
  431. break;
  432. }
  433. }
  434. static irqreturn_t sh_sir_irq(int irq, void *dev_id)
  435. {
  436. struct sh_sir_self *self = dev_id;
  437. struct device *dev = &self->ndev->dev;
  438. int phase = sh_sir_is_which_phase(self);
  439. switch (phase) {
  440. case TX_COMP_PHASE:
  441. case TX_PHASE:
  442. sh_sir_tx(self, phase);
  443. break;
  444. case RX_PHASE:
  445. if (sh_sir_read(self, IRIF_SIR3))
  446. dev_err(dev, "rcv pulse width error occurred\n");
  447. sh_sir_rx(self);
  448. sh_sir_clear_all_err(self);
  449. break;
  450. default:
  451. dev_err(dev, "unknown interrupt\n");
  452. }
  453. return IRQ_HANDLED;
  454. }
  455. /************************************************************************
  456. net_device_ops function
  457. ************************************************************************/
  458. static int sh_sir_hard_xmit(struct sk_buff *skb, struct net_device *ndev)
  459. {
  460. struct sh_sir_self *self = netdev_priv(ndev);
  461. int speed = irda_get_next_speed(skb);
  462. if ((0 < speed) &&
  463. (9600 != speed)) {
  464. dev_err(&ndev->dev, "support 9600 only (%d)\n", speed);
  465. return -EIO;
  466. }
  467. netif_stop_queue(ndev);
  468. self->tx_buff.data = self->tx_buff.head;
  469. self->tx_buff.len = 0;
  470. if (skb->len)
  471. self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data,
  472. self->tx_buff.truesize);
  473. sh_sir_set_phase(self, TX_PHASE);
  474. dev_kfree_skb(skb);
  475. return 0;
  476. }
  477. static int sh_sir_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd)
  478. {
  479. /*
  480. * FIXME
  481. *
  482. * This function is needed for irda framework.
  483. * But nothing to do now
  484. */
  485. return 0;
  486. }
  487. static struct net_device_stats *sh_sir_stats(struct net_device *ndev)
  488. {
  489. struct sh_sir_self *self = netdev_priv(ndev);
  490. return &self->ndev->stats;
  491. }
  492. static int sh_sir_open(struct net_device *ndev)
  493. {
  494. struct sh_sir_self *self = netdev_priv(ndev);
  495. int err;
  496. clk_enable(self->clk);
  497. err = sh_sir_crc_init(self);
  498. if (err)
  499. goto open_err;
  500. sh_sir_set_baudrate(self, 9600);
  501. self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME);
  502. if (!self->irlap) {
  503. err = -ENODEV;
  504. goto open_err;
  505. }
  506. /*
  507. * Now enable the interrupt then start the queue
  508. */
  509. sh_sir_update_bits(self, IRIF_SIR_FRM, FRP, FRP);
  510. sh_sir_read(self, IRIF_UART1); /* flag clear */
  511. sh_sir_read(self, IRIF_UART4); /* flag clear */
  512. sh_sir_set_phase(self, RX_PHASE);
  513. netif_start_queue(ndev);
  514. dev_info(&self->ndev->dev, "opened\n");
  515. return 0;
  516. open_err:
  517. clk_disable(self->clk);
  518. return err;
  519. }
  520. static int sh_sir_stop(struct net_device *ndev)
  521. {
  522. struct sh_sir_self *self = netdev_priv(ndev);
  523. /* Stop IrLAP */
  524. if (self->irlap) {
  525. irlap_close(self->irlap);
  526. self->irlap = NULL;
  527. }
  528. netif_stop_queue(ndev);
  529. dev_info(&ndev->dev, "stoped\n");
  530. return 0;
  531. }
  532. static const struct net_device_ops sh_sir_ndo = {
  533. .ndo_open = sh_sir_open,
  534. .ndo_stop = sh_sir_stop,
  535. .ndo_start_xmit = sh_sir_hard_xmit,
  536. .ndo_do_ioctl = sh_sir_ioctl,
  537. .ndo_get_stats = sh_sir_stats,
  538. };
  539. /************************************************************************
  540. platform_driver function
  541. ************************************************************************/
  542. static int __devinit sh_sir_probe(struct platform_device *pdev)
  543. {
  544. struct net_device *ndev;
  545. struct sh_sir_self *self;
  546. struct resource *res;
  547. char clk_name[8];
  548. int irq;
  549. int err = -ENOMEM;
  550. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  551. irq = platform_get_irq(pdev, 0);
  552. if (!res || irq < 0) {
  553. dev_err(&pdev->dev, "Not enough platform resources.\n");
  554. goto exit;
  555. }
  556. ndev = alloc_irdadev(sizeof(*self));
  557. if (!ndev)
  558. goto exit;
  559. self = netdev_priv(ndev);
  560. self->membase = ioremap_nocache(res->start, resource_size(res));
  561. if (!self->membase) {
  562. err = -ENXIO;
  563. dev_err(&pdev->dev, "Unable to ioremap.\n");
  564. goto err_mem_1;
  565. }
  566. err = sh_sir_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME);
  567. if (err)
  568. goto err_mem_2;
  569. snprintf(clk_name, sizeof(clk_name), "irda%d", pdev->id);
  570. self->clk = clk_get(&pdev->dev, clk_name);
  571. if (IS_ERR(self->clk)) {
  572. dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
  573. goto err_mem_3;
  574. }
  575. irda_init_max_qos_capabilies(&self->qos);
  576. ndev->netdev_ops = &sh_sir_ndo;
  577. ndev->irq = irq;
  578. self->ndev = ndev;
  579. self->qos.baud_rate.bits &= IR_9600; /* FIXME */
  580. self->qos.min_turn_time.bits = 1; /* 10 ms or more */
  581. irda_qos_bits_to_value(&self->qos);
  582. err = register_netdev(ndev);
  583. if (err)
  584. goto err_mem_4;
  585. platform_set_drvdata(pdev, ndev);
  586. if (request_irq(irq, sh_sir_irq, IRQF_DISABLED, "sh_sir", self)) {
  587. dev_warn(&pdev->dev, "Unable to attach sh_sir interrupt\n");
  588. goto err_mem_4;
  589. }
  590. dev_info(&pdev->dev, "SuperH IrDA probed\n");
  591. goto exit;
  592. err_mem_4:
  593. clk_put(self->clk);
  594. err_mem_3:
  595. sh_sir_remove_iobuf(self);
  596. err_mem_2:
  597. iounmap(self->membase);
  598. err_mem_1:
  599. free_netdev(ndev);
  600. exit:
  601. return err;
  602. }
  603. static int __devexit sh_sir_remove(struct platform_device *pdev)
  604. {
  605. struct net_device *ndev = platform_get_drvdata(pdev);
  606. struct sh_sir_self *self = netdev_priv(ndev);
  607. if (!self)
  608. return 0;
  609. unregister_netdev(ndev);
  610. clk_put(self->clk);
  611. sh_sir_remove_iobuf(self);
  612. iounmap(self->membase);
  613. free_netdev(ndev);
  614. platform_set_drvdata(pdev, NULL);
  615. return 0;
  616. }
  617. static struct platform_driver sh_sir_driver = {
  618. .probe = sh_sir_probe,
  619. .remove = __devexit_p(sh_sir_remove),
  620. .driver = {
  621. .name = DRIVER_NAME,
  622. },
  623. };
  624. static int __init sh_sir_init(void)
  625. {
  626. return platform_driver_register(&sh_sir_driver);
  627. }
  628. static void __exit sh_sir_exit(void)
  629. {
  630. platform_driver_unregister(&sh_sir_driver);
  631. }
  632. module_init(sh_sir_init);
  633. module_exit(sh_sir_exit);
  634. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
  635. MODULE_DESCRIPTION("SuperH IrDA driver");
  636. MODULE_LICENSE("GPL");