greth.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633
  1. /*
  2. * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
  3. *
  4. * 2005-2009 (c) Aeroflex Gaisler AB
  5. *
  6. * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
  7. * available in the GRLIB VHDL IP core library.
  8. *
  9. * Full documentation of both cores can be found here:
  10. * http://www.gaisler.com/products/grlib/grip.pdf
  11. *
  12. * The Gigabit version supports scatter/gather DMA, any alignment of
  13. * buffers and checksum offloading.
  14. *
  15. * This program is free software; you can redistribute it and/or modify it
  16. * under the terms of the GNU General Public License as published by the
  17. * Free Software Foundation; either version 2 of the License, or (at your
  18. * option) any later version.
  19. *
  20. * Contributors: Kristoffer Glembo
  21. * Daniel Hellstrom
  22. * Marko Isomaki
  23. */
  24. #include <linux/module.h>
  25. #include <linux/uaccess.h>
  26. #include <linux/init.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/io.h>
  32. #include <linux/crc32.h>
  33. #include <linux/mii.h>
  34. #include <linux/of_device.h>
  35. #include <linux/of_platform.h>
  36. #include <linux/slab.h>
  37. #include <asm/cacheflush.h>
  38. #include <asm/byteorder.h>
  39. #ifdef CONFIG_SPARC
  40. #include <asm/idprom.h>
  41. #endif
  42. #include "greth.h"
  43. #define GRETH_DEF_MSG_ENABLE \
  44. (NETIF_MSG_DRV | \
  45. NETIF_MSG_PROBE | \
  46. NETIF_MSG_LINK | \
  47. NETIF_MSG_IFDOWN | \
  48. NETIF_MSG_IFUP | \
  49. NETIF_MSG_RX_ERR | \
  50. NETIF_MSG_TX_ERR)
  51. static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
  52. module_param(greth_debug, int, 0);
  53. MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
  54. /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  55. static int macaddr[6];
  56. module_param_array(macaddr, int, NULL, 0);
  57. MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
  58. static int greth_edcl = 1;
  59. module_param(greth_edcl, int, 0);
  60. MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
  61. static int greth_open(struct net_device *dev);
  62. static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
  63. struct net_device *dev);
  64. static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
  65. struct net_device *dev);
  66. static int greth_rx(struct net_device *dev, int limit);
  67. static int greth_rx_gbit(struct net_device *dev, int limit);
  68. static void greth_clean_tx(struct net_device *dev);
  69. static void greth_clean_tx_gbit(struct net_device *dev);
  70. static irqreturn_t greth_interrupt(int irq, void *dev_id);
  71. static int greth_close(struct net_device *dev);
  72. static int greth_set_mac_add(struct net_device *dev, void *p);
  73. static void greth_set_multicast_list(struct net_device *dev);
  74. #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
  75. #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
  76. #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
  77. #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
  78. #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
  79. #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
  80. #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
  81. static void greth_print_rx_packet(void *addr, int len)
  82. {
  83. print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
  84. addr, len, true);
  85. }
  86. static void greth_print_tx_packet(struct sk_buff *skb)
  87. {
  88. int i;
  89. int length;
  90. if (skb_shinfo(skb)->nr_frags == 0)
  91. length = skb->len;
  92. else
  93. length = skb_headlen(skb);
  94. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  95. skb->data, length, true);
  96. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  97. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  98. phys_to_virt(page_to_phys(skb_shinfo(skb)->frags[i].page)) +
  99. skb_shinfo(skb)->frags[i].page_offset,
  100. length, true);
  101. }
  102. }
  103. static inline void greth_enable_tx(struct greth_private *greth)
  104. {
  105. wmb();
  106. GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
  107. }
  108. static inline void greth_disable_tx(struct greth_private *greth)
  109. {
  110. GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
  111. }
  112. static inline void greth_enable_rx(struct greth_private *greth)
  113. {
  114. wmb();
  115. GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
  116. }
  117. static inline void greth_disable_rx(struct greth_private *greth)
  118. {
  119. GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
  120. }
  121. static inline void greth_enable_irqs(struct greth_private *greth)
  122. {
  123. GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
  124. }
  125. static inline void greth_disable_irqs(struct greth_private *greth)
  126. {
  127. GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
  128. }
  129. static inline void greth_write_bd(u32 *bd, u32 val)
  130. {
  131. __raw_writel(cpu_to_be32(val), bd);
  132. }
  133. static inline u32 greth_read_bd(u32 *bd)
  134. {
  135. return be32_to_cpu(__raw_readl(bd));
  136. }
  137. static void greth_clean_rings(struct greth_private *greth)
  138. {
  139. int i;
  140. struct greth_bd *rx_bdp = greth->rx_bd_base;
  141. struct greth_bd *tx_bdp = greth->tx_bd_base;
  142. if (greth->gbit_mac) {
  143. /* Free and unmap RX buffers */
  144. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  145. if (greth->rx_skbuff[i] != NULL) {
  146. dev_kfree_skb(greth->rx_skbuff[i]);
  147. dma_unmap_single(greth->dev,
  148. greth_read_bd(&rx_bdp->addr),
  149. MAX_FRAME_SIZE+NET_IP_ALIGN,
  150. DMA_FROM_DEVICE);
  151. }
  152. }
  153. /* TX buffers */
  154. while (greth->tx_free < GRETH_TXBD_NUM) {
  155. struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
  156. int nr_frags = skb_shinfo(skb)->nr_frags;
  157. tx_bdp = greth->tx_bd_base + greth->tx_last;
  158. greth->tx_last = NEXT_TX(greth->tx_last);
  159. dma_unmap_single(greth->dev,
  160. greth_read_bd(&tx_bdp->addr),
  161. skb_headlen(skb),
  162. DMA_TO_DEVICE);
  163. for (i = 0; i < nr_frags; i++) {
  164. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  165. tx_bdp = greth->tx_bd_base + greth->tx_last;
  166. dma_unmap_page(greth->dev,
  167. greth_read_bd(&tx_bdp->addr),
  168. frag->size,
  169. DMA_TO_DEVICE);
  170. greth->tx_last = NEXT_TX(greth->tx_last);
  171. }
  172. greth->tx_free += nr_frags+1;
  173. dev_kfree_skb(skb);
  174. }
  175. } else { /* 10/100 Mbps MAC */
  176. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  177. kfree(greth->rx_bufs[i]);
  178. dma_unmap_single(greth->dev,
  179. greth_read_bd(&rx_bdp->addr),
  180. MAX_FRAME_SIZE,
  181. DMA_FROM_DEVICE);
  182. }
  183. for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
  184. kfree(greth->tx_bufs[i]);
  185. dma_unmap_single(greth->dev,
  186. greth_read_bd(&tx_bdp->addr),
  187. MAX_FRAME_SIZE,
  188. DMA_TO_DEVICE);
  189. }
  190. }
  191. }
  192. static int greth_init_rings(struct greth_private *greth)
  193. {
  194. struct sk_buff *skb;
  195. struct greth_bd *rx_bd, *tx_bd;
  196. u32 dma_addr;
  197. int i;
  198. rx_bd = greth->rx_bd_base;
  199. tx_bd = greth->tx_bd_base;
  200. /* Initialize descriptor rings and buffers */
  201. if (greth->gbit_mac) {
  202. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  203. skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
  204. if (skb == NULL) {
  205. if (netif_msg_ifup(greth))
  206. dev_err(greth->dev, "Error allocating DMA ring.\n");
  207. goto cleanup;
  208. }
  209. skb_reserve(skb, NET_IP_ALIGN);
  210. dma_addr = dma_map_single(greth->dev,
  211. skb->data,
  212. MAX_FRAME_SIZE+NET_IP_ALIGN,
  213. DMA_FROM_DEVICE);
  214. if (dma_mapping_error(greth->dev, dma_addr)) {
  215. if (netif_msg_ifup(greth))
  216. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  217. goto cleanup;
  218. }
  219. greth->rx_skbuff[i] = skb;
  220. greth_write_bd(&rx_bd[i].addr, dma_addr);
  221. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  222. }
  223. } else {
  224. /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
  225. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  226. greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  227. if (greth->rx_bufs[i] == NULL) {
  228. if (netif_msg_ifup(greth))
  229. dev_err(greth->dev, "Error allocating DMA ring.\n");
  230. goto cleanup;
  231. }
  232. dma_addr = dma_map_single(greth->dev,
  233. greth->rx_bufs[i],
  234. MAX_FRAME_SIZE,
  235. DMA_FROM_DEVICE);
  236. if (dma_mapping_error(greth->dev, dma_addr)) {
  237. if (netif_msg_ifup(greth))
  238. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  239. goto cleanup;
  240. }
  241. greth_write_bd(&rx_bd[i].addr, dma_addr);
  242. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  243. }
  244. for (i = 0; i < GRETH_TXBD_NUM; i++) {
  245. greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  246. if (greth->tx_bufs[i] == NULL) {
  247. if (netif_msg_ifup(greth))
  248. dev_err(greth->dev, "Error allocating DMA ring.\n");
  249. goto cleanup;
  250. }
  251. dma_addr = dma_map_single(greth->dev,
  252. greth->tx_bufs[i],
  253. MAX_FRAME_SIZE,
  254. DMA_TO_DEVICE);
  255. if (dma_mapping_error(greth->dev, dma_addr)) {
  256. if (netif_msg_ifup(greth))
  257. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  258. goto cleanup;
  259. }
  260. greth_write_bd(&tx_bd[i].addr, dma_addr);
  261. greth_write_bd(&tx_bd[i].stat, 0);
  262. }
  263. }
  264. greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
  265. greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
  266. /* Initialize pointers. */
  267. greth->rx_cur = 0;
  268. greth->tx_next = 0;
  269. greth->tx_last = 0;
  270. greth->tx_free = GRETH_TXBD_NUM;
  271. /* Initialize descriptor base address */
  272. GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
  273. GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
  274. return 0;
  275. cleanup:
  276. greth_clean_rings(greth);
  277. return -ENOMEM;
  278. }
  279. static int greth_open(struct net_device *dev)
  280. {
  281. struct greth_private *greth = netdev_priv(dev);
  282. int err;
  283. err = greth_init_rings(greth);
  284. if (err) {
  285. if (netif_msg_ifup(greth))
  286. dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
  287. return err;
  288. }
  289. err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
  290. if (err) {
  291. if (netif_msg_ifup(greth))
  292. dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
  293. greth_clean_rings(greth);
  294. return err;
  295. }
  296. if (netif_msg_ifup(greth))
  297. dev_dbg(&dev->dev, " starting queue\n");
  298. netif_start_queue(dev);
  299. napi_enable(&greth->napi);
  300. greth_enable_irqs(greth);
  301. greth_enable_tx(greth);
  302. greth_enable_rx(greth);
  303. return 0;
  304. }
  305. static int greth_close(struct net_device *dev)
  306. {
  307. struct greth_private *greth = netdev_priv(dev);
  308. napi_disable(&greth->napi);
  309. greth_disable_tx(greth);
  310. netif_stop_queue(dev);
  311. free_irq(greth->irq, (void *) dev);
  312. greth_clean_rings(greth);
  313. return 0;
  314. }
  315. static netdev_tx_t
  316. greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
  317. {
  318. struct greth_private *greth = netdev_priv(dev);
  319. struct greth_bd *bdp;
  320. int err = NETDEV_TX_OK;
  321. u32 status, dma_addr;
  322. bdp = greth->tx_bd_base + greth->tx_next;
  323. if (unlikely(greth->tx_free <= 0)) {
  324. netif_stop_queue(dev);
  325. return NETDEV_TX_BUSY;
  326. }
  327. if (netif_msg_pktdata(greth))
  328. greth_print_tx_packet(skb);
  329. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  330. dev->stats.tx_errors++;
  331. goto out;
  332. }
  333. dma_addr = greth_read_bd(&bdp->addr);
  334. memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
  335. dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
  336. status = GRETH_BD_EN | (skb->len & GRETH_BD_LEN);
  337. /* Wrap around descriptor ring */
  338. if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
  339. status |= GRETH_BD_WR;
  340. }
  341. greth->tx_next = NEXT_TX(greth->tx_next);
  342. greth->tx_free--;
  343. /* No more descriptors */
  344. if (unlikely(greth->tx_free == 0)) {
  345. /* Free transmitted descriptors */
  346. greth_clean_tx(dev);
  347. /* If nothing was cleaned, stop queue & wait for irq */
  348. if (unlikely(greth->tx_free == 0)) {
  349. status |= GRETH_BD_IE;
  350. netif_stop_queue(dev);
  351. }
  352. }
  353. /* Write descriptor control word and enable transmission */
  354. greth_write_bd(&bdp->stat, status);
  355. greth_enable_tx(greth);
  356. out:
  357. dev_kfree_skb(skb);
  358. return err;
  359. }
  360. static netdev_tx_t
  361. greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
  362. {
  363. struct greth_private *greth = netdev_priv(dev);
  364. struct greth_bd *bdp;
  365. u32 status = 0, dma_addr;
  366. int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
  367. nr_frags = skb_shinfo(skb)->nr_frags;
  368. if (greth->tx_free < nr_frags + 1) {
  369. netif_stop_queue(dev);
  370. err = NETDEV_TX_BUSY;
  371. goto out;
  372. }
  373. if (netif_msg_pktdata(greth))
  374. greth_print_tx_packet(skb);
  375. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  376. dev->stats.tx_errors++;
  377. goto out;
  378. }
  379. /* Save skb pointer. */
  380. greth->tx_skbuff[greth->tx_next] = skb;
  381. /* Linear buf */
  382. if (nr_frags != 0)
  383. status = GRETH_TXBD_MORE;
  384. status |= GRETH_TXBD_CSALL;
  385. status |= skb_headlen(skb) & GRETH_BD_LEN;
  386. if (greth->tx_next == GRETH_TXBD_NUM_MASK)
  387. status |= GRETH_BD_WR;
  388. bdp = greth->tx_bd_base + greth->tx_next;
  389. greth_write_bd(&bdp->stat, status);
  390. dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
  391. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  392. goto map_error;
  393. greth_write_bd(&bdp->addr, dma_addr);
  394. curr_tx = NEXT_TX(greth->tx_next);
  395. /* Frags */
  396. for (i = 0; i < nr_frags; i++) {
  397. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  398. greth->tx_skbuff[curr_tx] = NULL;
  399. bdp = greth->tx_bd_base + curr_tx;
  400. status = GRETH_TXBD_CSALL;
  401. status |= frag->size & GRETH_BD_LEN;
  402. /* Wrap around descriptor ring */
  403. if (curr_tx == GRETH_TXBD_NUM_MASK)
  404. status |= GRETH_BD_WR;
  405. /* More fragments left */
  406. if (i < nr_frags - 1)
  407. status |= GRETH_TXBD_MORE;
  408. /* ... last fragment, check if out of descriptors */
  409. else if (greth->tx_free - nr_frags - 1 < (MAX_SKB_FRAGS + 1)) {
  410. /* Enable interrupts and stop queue */
  411. status |= GRETH_BD_IE;
  412. netif_stop_queue(dev);
  413. }
  414. greth_write_bd(&bdp->stat, status);
  415. dma_addr = dma_map_page(greth->dev,
  416. frag->page,
  417. frag->page_offset,
  418. frag->size,
  419. DMA_TO_DEVICE);
  420. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  421. goto frag_map_error;
  422. greth_write_bd(&bdp->addr, dma_addr);
  423. curr_tx = NEXT_TX(curr_tx);
  424. }
  425. wmb();
  426. /* Enable the descriptors that we configured ... */
  427. for (i = 0; i < nr_frags + 1; i++) {
  428. bdp = greth->tx_bd_base + greth->tx_next;
  429. greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN);
  430. greth->tx_next = NEXT_TX(greth->tx_next);
  431. greth->tx_free--;
  432. }
  433. greth_enable_tx(greth);
  434. return NETDEV_TX_OK;
  435. frag_map_error:
  436. /* Unmap SKB mappings that succeeded */
  437. for (i = 0; greth->tx_next + i != curr_tx; i++) {
  438. bdp = greth->tx_bd_base + greth->tx_next + i;
  439. dma_unmap_single(greth->dev,
  440. greth_read_bd(&bdp->addr),
  441. greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
  442. DMA_TO_DEVICE);
  443. }
  444. map_error:
  445. if (net_ratelimit())
  446. dev_warn(greth->dev, "Could not create TX DMA mapping\n");
  447. dev_kfree_skb(skb);
  448. out:
  449. return err;
  450. }
  451. static irqreturn_t greth_interrupt(int irq, void *dev_id)
  452. {
  453. struct net_device *dev = dev_id;
  454. struct greth_private *greth;
  455. u32 status;
  456. irqreturn_t retval = IRQ_NONE;
  457. greth = netdev_priv(dev);
  458. spin_lock(&greth->devlock);
  459. /* Get the interrupt events that caused us to be here. */
  460. status = GRETH_REGLOAD(greth->regs->status);
  461. /* Handle rx and tx interrupts through poll */
  462. if (status & (GRETH_INT_RX | GRETH_INT_TX)) {
  463. /* Clear interrupt status */
  464. GRETH_REGORIN(greth->regs->status,
  465. status & (GRETH_INT_RX | GRETH_INT_TX));
  466. retval = IRQ_HANDLED;
  467. /* Disable interrupts and schedule poll() */
  468. greth_disable_irqs(greth);
  469. napi_schedule(&greth->napi);
  470. }
  471. mmiowb();
  472. spin_unlock(&greth->devlock);
  473. return retval;
  474. }
  475. static void greth_clean_tx(struct net_device *dev)
  476. {
  477. struct greth_private *greth;
  478. struct greth_bd *bdp;
  479. u32 stat;
  480. greth = netdev_priv(dev);
  481. while (1) {
  482. bdp = greth->tx_bd_base + greth->tx_last;
  483. stat = greth_read_bd(&bdp->stat);
  484. if (unlikely(stat & GRETH_BD_EN))
  485. break;
  486. if (greth->tx_free == GRETH_TXBD_NUM)
  487. break;
  488. /* Check status for errors */
  489. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  490. dev->stats.tx_errors++;
  491. if (stat & GRETH_TXBD_ERR_AL)
  492. dev->stats.tx_aborted_errors++;
  493. if (stat & GRETH_TXBD_ERR_UE)
  494. dev->stats.tx_fifo_errors++;
  495. }
  496. dev->stats.tx_packets++;
  497. greth->tx_last = NEXT_TX(greth->tx_last);
  498. greth->tx_free++;
  499. }
  500. if (greth->tx_free > 0) {
  501. netif_wake_queue(dev);
  502. }
  503. }
  504. static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
  505. {
  506. /* Check status for errors */
  507. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  508. dev->stats.tx_errors++;
  509. if (stat & GRETH_TXBD_ERR_AL)
  510. dev->stats.tx_aborted_errors++;
  511. if (stat & GRETH_TXBD_ERR_UE)
  512. dev->stats.tx_fifo_errors++;
  513. if (stat & GRETH_TXBD_ERR_LC)
  514. dev->stats.tx_aborted_errors++;
  515. }
  516. dev->stats.tx_packets++;
  517. }
  518. static void greth_clean_tx_gbit(struct net_device *dev)
  519. {
  520. struct greth_private *greth;
  521. struct greth_bd *bdp, *bdp_last_frag;
  522. struct sk_buff *skb;
  523. u32 stat;
  524. int nr_frags, i;
  525. greth = netdev_priv(dev);
  526. while (greth->tx_free < GRETH_TXBD_NUM) {
  527. skb = greth->tx_skbuff[greth->tx_last];
  528. nr_frags = skb_shinfo(skb)->nr_frags;
  529. /* We only clean fully completed SKBs */
  530. bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags);
  531. stat = bdp_last_frag->stat;
  532. if (stat & GRETH_BD_EN)
  533. break;
  534. greth->tx_skbuff[greth->tx_last] = NULL;
  535. greth_update_tx_stats(dev, stat);
  536. bdp = greth->tx_bd_base + greth->tx_last;
  537. greth->tx_last = NEXT_TX(greth->tx_last);
  538. dma_unmap_single(greth->dev,
  539. greth_read_bd(&bdp->addr),
  540. skb_headlen(skb),
  541. DMA_TO_DEVICE);
  542. for (i = 0; i < nr_frags; i++) {
  543. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  544. bdp = greth->tx_bd_base + greth->tx_last;
  545. dma_unmap_page(greth->dev,
  546. greth_read_bd(&bdp->addr),
  547. frag->size,
  548. DMA_TO_DEVICE);
  549. greth->tx_last = NEXT_TX(greth->tx_last);
  550. }
  551. greth->tx_free += nr_frags+1;
  552. dev_kfree_skb(skb);
  553. }
  554. if (greth->tx_free > (MAX_SKB_FRAGS + 1)) {
  555. netif_wake_queue(dev);
  556. }
  557. }
  558. static int greth_pending_packets(struct greth_private *greth)
  559. {
  560. struct greth_bd *bdp;
  561. u32 status;
  562. bdp = greth->rx_bd_base + greth->rx_cur;
  563. status = greth_read_bd(&bdp->stat);
  564. if (status & GRETH_BD_EN)
  565. return 0;
  566. else
  567. return 1;
  568. }
  569. static int greth_rx(struct net_device *dev, int limit)
  570. {
  571. struct greth_private *greth;
  572. struct greth_bd *bdp;
  573. struct sk_buff *skb;
  574. int pkt_len;
  575. int bad, count;
  576. u32 status, dma_addr;
  577. greth = netdev_priv(dev);
  578. for (count = 0; count < limit; ++count) {
  579. bdp = greth->rx_bd_base + greth->rx_cur;
  580. status = greth_read_bd(&bdp->stat);
  581. dma_addr = greth_read_bd(&bdp->addr);
  582. bad = 0;
  583. if (unlikely(status & GRETH_BD_EN)) {
  584. break;
  585. }
  586. /* Check status for errors. */
  587. if (unlikely(status & GRETH_RXBD_STATUS)) {
  588. if (status & GRETH_RXBD_ERR_FT) {
  589. dev->stats.rx_length_errors++;
  590. bad = 1;
  591. }
  592. if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
  593. dev->stats.rx_frame_errors++;
  594. bad = 1;
  595. }
  596. if (status & GRETH_RXBD_ERR_CRC) {
  597. dev->stats.rx_crc_errors++;
  598. bad = 1;
  599. }
  600. }
  601. if (unlikely(bad)) {
  602. dev->stats.rx_errors++;
  603. } else {
  604. pkt_len = status & GRETH_BD_LEN;
  605. skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
  606. if (unlikely(skb == NULL)) {
  607. if (net_ratelimit())
  608. dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
  609. dev->stats.rx_dropped++;
  610. } else {
  611. skb_reserve(skb, NET_IP_ALIGN);
  612. skb->dev = dev;
  613. dma_sync_single_for_cpu(greth->dev,
  614. dma_addr,
  615. pkt_len,
  616. DMA_FROM_DEVICE);
  617. if (netif_msg_pktdata(greth))
  618. greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
  619. memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
  620. skb->protocol = eth_type_trans(skb, dev);
  621. dev->stats.rx_packets++;
  622. netif_receive_skb(skb);
  623. }
  624. }
  625. status = GRETH_BD_EN | GRETH_BD_IE;
  626. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  627. status |= GRETH_BD_WR;
  628. }
  629. wmb();
  630. greth_write_bd(&bdp->stat, status);
  631. dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
  632. greth_enable_rx(greth);
  633. greth->rx_cur = NEXT_RX(greth->rx_cur);
  634. }
  635. return count;
  636. }
  637. static inline int hw_checksummed(u32 status)
  638. {
  639. if (status & GRETH_RXBD_IP_FRAG)
  640. return 0;
  641. if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
  642. return 0;
  643. if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
  644. return 0;
  645. if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
  646. return 0;
  647. return 1;
  648. }
  649. static int greth_rx_gbit(struct net_device *dev, int limit)
  650. {
  651. struct greth_private *greth;
  652. struct greth_bd *bdp;
  653. struct sk_buff *skb, *newskb;
  654. int pkt_len;
  655. int bad, count = 0;
  656. u32 status, dma_addr;
  657. greth = netdev_priv(dev);
  658. for (count = 0; count < limit; ++count) {
  659. bdp = greth->rx_bd_base + greth->rx_cur;
  660. skb = greth->rx_skbuff[greth->rx_cur];
  661. status = greth_read_bd(&bdp->stat);
  662. bad = 0;
  663. if (status & GRETH_BD_EN)
  664. break;
  665. /* Check status for errors. */
  666. if (unlikely(status & GRETH_RXBD_STATUS)) {
  667. if (status & GRETH_RXBD_ERR_FT) {
  668. dev->stats.rx_length_errors++;
  669. bad = 1;
  670. } else if (status &
  671. (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
  672. dev->stats.rx_frame_errors++;
  673. bad = 1;
  674. } else if (status & GRETH_RXBD_ERR_CRC) {
  675. dev->stats.rx_crc_errors++;
  676. bad = 1;
  677. }
  678. }
  679. /* Allocate new skb to replace current */
  680. newskb = netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN);
  681. if (!bad && newskb) {
  682. skb_reserve(newskb, NET_IP_ALIGN);
  683. dma_addr = dma_map_single(greth->dev,
  684. newskb->data,
  685. MAX_FRAME_SIZE + NET_IP_ALIGN,
  686. DMA_FROM_DEVICE);
  687. if (!dma_mapping_error(greth->dev, dma_addr)) {
  688. /* Process the incoming frame. */
  689. pkt_len = status & GRETH_BD_LEN;
  690. dma_unmap_single(greth->dev,
  691. greth_read_bd(&bdp->addr),
  692. MAX_FRAME_SIZE + NET_IP_ALIGN,
  693. DMA_FROM_DEVICE);
  694. if (netif_msg_pktdata(greth))
  695. greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
  696. skb_put(skb, pkt_len);
  697. if (greth->flags & GRETH_FLAG_RX_CSUM && hw_checksummed(status))
  698. skb->ip_summed = CHECKSUM_UNNECESSARY;
  699. else
  700. skb->ip_summed = CHECKSUM_NONE;
  701. skb->protocol = eth_type_trans(skb, dev);
  702. dev->stats.rx_packets++;
  703. netif_receive_skb(skb);
  704. greth->rx_skbuff[greth->rx_cur] = newskb;
  705. greth_write_bd(&bdp->addr, dma_addr);
  706. } else {
  707. if (net_ratelimit())
  708. dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
  709. dev_kfree_skb(newskb);
  710. dev->stats.rx_dropped++;
  711. }
  712. } else {
  713. if (net_ratelimit())
  714. dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
  715. dev->stats.rx_dropped++;
  716. }
  717. status = GRETH_BD_EN | GRETH_BD_IE;
  718. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  719. status |= GRETH_BD_WR;
  720. }
  721. wmb();
  722. greth_write_bd(&bdp->stat, status);
  723. greth_enable_rx(greth);
  724. greth->rx_cur = NEXT_RX(greth->rx_cur);
  725. }
  726. return count;
  727. }
  728. static int greth_poll(struct napi_struct *napi, int budget)
  729. {
  730. struct greth_private *greth;
  731. int work_done = 0;
  732. greth = container_of(napi, struct greth_private, napi);
  733. if (greth->gbit_mac) {
  734. greth_clean_tx_gbit(greth->netdev);
  735. } else {
  736. greth_clean_tx(greth->netdev);
  737. }
  738. restart_poll:
  739. if (greth->gbit_mac) {
  740. work_done += greth_rx_gbit(greth->netdev, budget - work_done);
  741. } else {
  742. work_done += greth_rx(greth->netdev, budget - work_done);
  743. }
  744. if (work_done < budget) {
  745. napi_complete(napi);
  746. if (greth_pending_packets(greth)) {
  747. napi_reschedule(napi);
  748. goto restart_poll;
  749. }
  750. }
  751. greth_enable_irqs(greth);
  752. return work_done;
  753. }
  754. static int greth_set_mac_add(struct net_device *dev, void *p)
  755. {
  756. struct sockaddr *addr = p;
  757. struct greth_private *greth;
  758. struct greth_regs *regs;
  759. greth = netdev_priv(dev);
  760. regs = (struct greth_regs *) greth->regs;
  761. if (!is_valid_ether_addr(addr->sa_data))
  762. return -EINVAL;
  763. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  764. GRETH_REGSAVE(regs->esa_msb, addr->sa_data[0] << 8 | addr->sa_data[1]);
  765. GRETH_REGSAVE(regs->esa_lsb,
  766. addr->sa_data[2] << 24 | addr->
  767. sa_data[3] << 16 | addr->sa_data[4] << 8 | addr->sa_data[5]);
  768. return 0;
  769. }
  770. static u32 greth_hash_get_index(__u8 *addr)
  771. {
  772. return (ether_crc(6, addr)) & 0x3F;
  773. }
  774. static void greth_set_hash_filter(struct net_device *dev)
  775. {
  776. struct netdev_hw_addr *ha;
  777. struct greth_private *greth = netdev_priv(dev);
  778. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  779. u32 mc_filter[2];
  780. unsigned int bitnr;
  781. mc_filter[0] = mc_filter[1] = 0;
  782. netdev_for_each_mc_addr(ha, dev) {
  783. bitnr = greth_hash_get_index(ha->addr);
  784. mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
  785. }
  786. GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
  787. GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
  788. }
  789. static void greth_set_multicast_list(struct net_device *dev)
  790. {
  791. int cfg;
  792. struct greth_private *greth = netdev_priv(dev);
  793. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  794. cfg = GRETH_REGLOAD(regs->control);
  795. if (dev->flags & IFF_PROMISC)
  796. cfg |= GRETH_CTRL_PR;
  797. else
  798. cfg &= ~GRETH_CTRL_PR;
  799. if (greth->multicast) {
  800. if (dev->flags & IFF_ALLMULTI) {
  801. GRETH_REGSAVE(regs->hash_msb, -1);
  802. GRETH_REGSAVE(regs->hash_lsb, -1);
  803. cfg |= GRETH_CTRL_MCEN;
  804. GRETH_REGSAVE(regs->control, cfg);
  805. return;
  806. }
  807. if (netdev_mc_empty(dev)) {
  808. cfg &= ~GRETH_CTRL_MCEN;
  809. GRETH_REGSAVE(regs->control, cfg);
  810. return;
  811. }
  812. /* Setup multicast filter */
  813. greth_set_hash_filter(dev);
  814. cfg |= GRETH_CTRL_MCEN;
  815. }
  816. GRETH_REGSAVE(regs->control, cfg);
  817. }
  818. static u32 greth_get_msglevel(struct net_device *dev)
  819. {
  820. struct greth_private *greth = netdev_priv(dev);
  821. return greth->msg_enable;
  822. }
  823. static void greth_set_msglevel(struct net_device *dev, u32 value)
  824. {
  825. struct greth_private *greth = netdev_priv(dev);
  826. greth->msg_enable = value;
  827. }
  828. static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  829. {
  830. struct greth_private *greth = netdev_priv(dev);
  831. struct phy_device *phy = greth->phy;
  832. if (!phy)
  833. return -ENODEV;
  834. return phy_ethtool_gset(phy, cmd);
  835. }
  836. static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  837. {
  838. struct greth_private *greth = netdev_priv(dev);
  839. struct phy_device *phy = greth->phy;
  840. if (!phy)
  841. return -ENODEV;
  842. return phy_ethtool_sset(phy, cmd);
  843. }
  844. static int greth_get_regs_len(struct net_device *dev)
  845. {
  846. return sizeof(struct greth_regs);
  847. }
  848. static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  849. {
  850. struct greth_private *greth = netdev_priv(dev);
  851. strncpy(info->driver, dev_driver_string(greth->dev), 32);
  852. strncpy(info->version, "revision: 1.0", 32);
  853. strncpy(info->bus_info, greth->dev->bus->name, 32);
  854. strncpy(info->fw_version, "N/A", 32);
  855. info->eedump_len = 0;
  856. info->regdump_len = sizeof(struct greth_regs);
  857. }
  858. static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
  859. {
  860. int i;
  861. struct greth_private *greth = netdev_priv(dev);
  862. u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
  863. u32 *buff = p;
  864. for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
  865. buff[i] = greth_read_bd(&greth_regs[i]);
  866. }
  867. static u32 greth_get_rx_csum(struct net_device *dev)
  868. {
  869. struct greth_private *greth = netdev_priv(dev);
  870. return (greth->flags & GRETH_FLAG_RX_CSUM) != 0;
  871. }
  872. static int greth_set_rx_csum(struct net_device *dev, u32 data)
  873. {
  874. struct greth_private *greth = netdev_priv(dev);
  875. spin_lock_bh(&greth->devlock);
  876. if (data)
  877. greth->flags |= GRETH_FLAG_RX_CSUM;
  878. else
  879. greth->flags &= ~GRETH_FLAG_RX_CSUM;
  880. spin_unlock_bh(&greth->devlock);
  881. return 0;
  882. }
  883. static u32 greth_get_tx_csum(struct net_device *dev)
  884. {
  885. return (dev->features & NETIF_F_IP_CSUM) != 0;
  886. }
  887. static int greth_set_tx_csum(struct net_device *dev, u32 data)
  888. {
  889. netif_tx_lock_bh(dev);
  890. ethtool_op_set_tx_csum(dev, data);
  891. netif_tx_unlock_bh(dev);
  892. return 0;
  893. }
  894. static const struct ethtool_ops greth_ethtool_ops = {
  895. .get_msglevel = greth_get_msglevel,
  896. .set_msglevel = greth_set_msglevel,
  897. .get_settings = greth_get_settings,
  898. .set_settings = greth_set_settings,
  899. .get_drvinfo = greth_get_drvinfo,
  900. .get_regs_len = greth_get_regs_len,
  901. .get_regs = greth_get_regs,
  902. .get_rx_csum = greth_get_rx_csum,
  903. .set_rx_csum = greth_set_rx_csum,
  904. .get_tx_csum = greth_get_tx_csum,
  905. .set_tx_csum = greth_set_tx_csum,
  906. .get_link = ethtool_op_get_link,
  907. };
  908. static struct net_device_ops greth_netdev_ops = {
  909. .ndo_open = greth_open,
  910. .ndo_stop = greth_close,
  911. .ndo_start_xmit = greth_start_xmit,
  912. .ndo_set_mac_address = greth_set_mac_add,
  913. .ndo_validate_addr = eth_validate_addr,
  914. };
  915. static inline int wait_for_mdio(struct greth_private *greth)
  916. {
  917. unsigned long timeout = jiffies + 4*HZ/100;
  918. while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
  919. if (time_after(jiffies, timeout))
  920. return 0;
  921. }
  922. return 1;
  923. }
  924. static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
  925. {
  926. struct greth_private *greth = bus->priv;
  927. int data;
  928. if (!wait_for_mdio(greth))
  929. return -EBUSY;
  930. GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
  931. if (!wait_for_mdio(greth))
  932. return -EBUSY;
  933. if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
  934. data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
  935. return data;
  936. } else {
  937. return -1;
  938. }
  939. }
  940. static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
  941. {
  942. struct greth_private *greth = bus->priv;
  943. if (!wait_for_mdio(greth))
  944. return -EBUSY;
  945. GRETH_REGSAVE(greth->regs->mdio,
  946. ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
  947. if (!wait_for_mdio(greth))
  948. return -EBUSY;
  949. return 0;
  950. }
  951. static int greth_mdio_reset(struct mii_bus *bus)
  952. {
  953. return 0;
  954. }
  955. static void greth_link_change(struct net_device *dev)
  956. {
  957. struct greth_private *greth = netdev_priv(dev);
  958. struct phy_device *phydev = greth->phy;
  959. unsigned long flags;
  960. int status_change = 0;
  961. spin_lock_irqsave(&greth->devlock, flags);
  962. if (phydev->link) {
  963. if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
  964. GRETH_REGANDIN(greth->regs->control,
  965. ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB));
  966. if (phydev->duplex)
  967. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_FD);
  968. if (phydev->speed == SPEED_100) {
  969. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_SP);
  970. }
  971. else if (phydev->speed == SPEED_1000)
  972. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_GB);
  973. greth->speed = phydev->speed;
  974. greth->duplex = phydev->duplex;
  975. status_change = 1;
  976. }
  977. }
  978. if (phydev->link != greth->link) {
  979. if (!phydev->link) {
  980. greth->speed = 0;
  981. greth->duplex = -1;
  982. }
  983. greth->link = phydev->link;
  984. status_change = 1;
  985. }
  986. spin_unlock_irqrestore(&greth->devlock, flags);
  987. if (status_change) {
  988. if (phydev->link)
  989. pr_debug("%s: link up (%d/%s)\n",
  990. dev->name, phydev->speed,
  991. DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
  992. else
  993. pr_debug("%s: link down\n", dev->name);
  994. }
  995. }
  996. static int greth_mdio_probe(struct net_device *dev)
  997. {
  998. struct greth_private *greth = netdev_priv(dev);
  999. struct phy_device *phy = NULL;
  1000. int ret;
  1001. /* Find the first PHY */
  1002. phy = phy_find_first(greth->mdio);
  1003. if (!phy) {
  1004. if (netif_msg_probe(greth))
  1005. dev_err(&dev->dev, "no PHY found\n");
  1006. return -ENXIO;
  1007. }
  1008. ret = phy_connect_direct(dev, phy, &greth_link_change,
  1009. 0, greth->gbit_mac ?
  1010. PHY_INTERFACE_MODE_GMII :
  1011. PHY_INTERFACE_MODE_MII);
  1012. if (ret) {
  1013. if (netif_msg_ifup(greth))
  1014. dev_err(&dev->dev, "could not attach to PHY\n");
  1015. return ret;
  1016. }
  1017. if (greth->gbit_mac)
  1018. phy->supported &= PHY_GBIT_FEATURES;
  1019. else
  1020. phy->supported &= PHY_BASIC_FEATURES;
  1021. phy->advertising = phy->supported;
  1022. greth->link = 0;
  1023. greth->speed = 0;
  1024. greth->duplex = -1;
  1025. greth->phy = phy;
  1026. return 0;
  1027. }
  1028. static inline int phy_aneg_done(struct phy_device *phydev)
  1029. {
  1030. int retval;
  1031. retval = phy_read(phydev, MII_BMSR);
  1032. return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
  1033. }
  1034. static int greth_mdio_init(struct greth_private *greth)
  1035. {
  1036. int ret, phy;
  1037. unsigned long timeout;
  1038. greth->mdio = mdiobus_alloc();
  1039. if (!greth->mdio) {
  1040. return -ENOMEM;
  1041. }
  1042. greth->mdio->name = "greth-mdio";
  1043. snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
  1044. greth->mdio->read = greth_mdio_read;
  1045. greth->mdio->write = greth_mdio_write;
  1046. greth->mdio->reset = greth_mdio_reset;
  1047. greth->mdio->priv = greth;
  1048. greth->mdio->irq = greth->mdio_irqs;
  1049. for (phy = 0; phy < PHY_MAX_ADDR; phy++)
  1050. greth->mdio->irq[phy] = PHY_POLL;
  1051. ret = mdiobus_register(greth->mdio);
  1052. if (ret) {
  1053. goto error;
  1054. }
  1055. ret = greth_mdio_probe(greth->netdev);
  1056. if (ret) {
  1057. if (netif_msg_probe(greth))
  1058. dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
  1059. goto unreg_mdio;
  1060. }
  1061. phy_start(greth->phy);
  1062. /* If Ethernet debug link is used make autoneg happen right away */
  1063. if (greth->edcl && greth_edcl == 1) {
  1064. phy_start_aneg(greth->phy);
  1065. timeout = jiffies + 6*HZ;
  1066. while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) {
  1067. }
  1068. genphy_read_status(greth->phy);
  1069. greth_link_change(greth->netdev);
  1070. }
  1071. return 0;
  1072. unreg_mdio:
  1073. mdiobus_unregister(greth->mdio);
  1074. error:
  1075. mdiobus_free(greth->mdio);
  1076. return ret;
  1077. }
  1078. /* Initialize the GRETH MAC */
  1079. static int __devinit greth_of_probe(struct of_device *ofdev, const struct of_device_id *match)
  1080. {
  1081. struct net_device *dev;
  1082. struct greth_private *greth;
  1083. struct greth_regs *regs;
  1084. int i;
  1085. int err;
  1086. int tmp;
  1087. unsigned long timeout;
  1088. dev = alloc_etherdev(sizeof(struct greth_private));
  1089. if (dev == NULL)
  1090. return -ENOMEM;
  1091. greth = netdev_priv(dev);
  1092. greth->netdev = dev;
  1093. greth->dev = &ofdev->dev;
  1094. if (greth_debug > 0)
  1095. greth->msg_enable = greth_debug;
  1096. else
  1097. greth->msg_enable = GRETH_DEF_MSG_ENABLE;
  1098. spin_lock_init(&greth->devlock);
  1099. greth->regs = of_ioremap(&ofdev->resource[0], 0,
  1100. resource_size(&ofdev->resource[0]),
  1101. "grlib-greth regs");
  1102. if (greth->regs == NULL) {
  1103. if (netif_msg_probe(greth))
  1104. dev_err(greth->dev, "ioremap failure.\n");
  1105. err = -EIO;
  1106. goto error1;
  1107. }
  1108. regs = (struct greth_regs *) greth->regs;
  1109. greth->irq = ofdev->irqs[0];
  1110. dev_set_drvdata(greth->dev, dev);
  1111. SET_NETDEV_DEV(dev, greth->dev);
  1112. if (netif_msg_probe(greth))
  1113. dev_dbg(greth->dev, "reseting controller.\n");
  1114. /* Reset the controller. */
  1115. GRETH_REGSAVE(regs->control, GRETH_RESET);
  1116. /* Wait for MAC to reset itself */
  1117. timeout = jiffies + HZ/100;
  1118. while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
  1119. if (time_after(jiffies, timeout)) {
  1120. err = -EIO;
  1121. if (netif_msg_probe(greth))
  1122. dev_err(greth->dev, "timeout when waiting for reset.\n");
  1123. goto error2;
  1124. }
  1125. }
  1126. /* Get default PHY address */
  1127. greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
  1128. /* Check if we have GBIT capable MAC */
  1129. tmp = GRETH_REGLOAD(regs->control);
  1130. greth->gbit_mac = (tmp >> 27) & 1;
  1131. /* Check for multicast capability */
  1132. greth->multicast = (tmp >> 25) & 1;
  1133. greth->edcl = (tmp >> 31) & 1;
  1134. /* If we have EDCL we disable the EDCL speed-duplex FSM so
  1135. * it doesn't interfere with the software */
  1136. if (greth->edcl != 0)
  1137. GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
  1138. /* Check if MAC can handle MDIO interrupts */
  1139. greth->mdio_int_en = (tmp >> 26) & 1;
  1140. err = greth_mdio_init(greth);
  1141. if (err) {
  1142. if (netif_msg_probe(greth))
  1143. dev_err(greth->dev, "failed to register MDIO bus\n");
  1144. goto error2;
  1145. }
  1146. /* Allocate TX descriptor ring in coherent memory */
  1147. greth->tx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1148. 1024,
  1149. &greth->tx_bd_base_phys,
  1150. GFP_KERNEL);
  1151. if (!greth->tx_bd_base) {
  1152. if (netif_msg_probe(greth))
  1153. dev_err(&dev->dev, "could not allocate descriptor memory.\n");
  1154. err = -ENOMEM;
  1155. goto error3;
  1156. }
  1157. memset(greth->tx_bd_base, 0, 1024);
  1158. /* Allocate RX descriptor ring in coherent memory */
  1159. greth->rx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1160. 1024,
  1161. &greth->rx_bd_base_phys,
  1162. GFP_KERNEL);
  1163. if (!greth->rx_bd_base) {
  1164. if (netif_msg_probe(greth))
  1165. dev_err(greth->dev, "could not allocate descriptor memory.\n");
  1166. err = -ENOMEM;
  1167. goto error4;
  1168. }
  1169. memset(greth->rx_bd_base, 0, 1024);
  1170. /* Get MAC address from: module param, OF property or ID prom */
  1171. for (i = 0; i < 6; i++) {
  1172. if (macaddr[i] != 0)
  1173. break;
  1174. }
  1175. if (i == 6) {
  1176. const unsigned char *addr;
  1177. int len;
  1178. addr = of_get_property(ofdev->dev.of_node, "local-mac-address",
  1179. &len);
  1180. if (addr != NULL && len == 6) {
  1181. for (i = 0; i < 6; i++)
  1182. macaddr[i] = (unsigned int) addr[i];
  1183. } else {
  1184. #ifdef CONFIG_SPARC
  1185. for (i = 0; i < 6; i++)
  1186. macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
  1187. #endif
  1188. }
  1189. }
  1190. for (i = 0; i < 6; i++)
  1191. dev->dev_addr[i] = macaddr[i];
  1192. macaddr[5]++;
  1193. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  1194. if (netif_msg_probe(greth))
  1195. dev_err(greth->dev, "no valid ethernet address, aborting.\n");
  1196. err = -EINVAL;
  1197. goto error5;
  1198. }
  1199. GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  1200. GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
  1201. dev->dev_addr[4] << 8 | dev->dev_addr[5]);
  1202. /* Clear all pending interrupts except PHY irq */
  1203. GRETH_REGSAVE(regs->status, 0xFF);
  1204. if (greth->gbit_mac) {
  1205. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HIGHDMA;
  1206. greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
  1207. greth->flags = GRETH_FLAG_RX_CSUM;
  1208. }
  1209. if (greth->multicast) {
  1210. greth_netdev_ops.ndo_set_multicast_list = greth_set_multicast_list;
  1211. dev->flags |= IFF_MULTICAST;
  1212. } else {
  1213. dev->flags &= ~IFF_MULTICAST;
  1214. }
  1215. dev->netdev_ops = &greth_netdev_ops;
  1216. dev->ethtool_ops = &greth_ethtool_ops;
  1217. if (register_netdev(dev)) {
  1218. if (netif_msg_probe(greth))
  1219. dev_err(greth->dev, "netdevice registration failed.\n");
  1220. err = -ENOMEM;
  1221. goto error5;
  1222. }
  1223. /* setup NAPI */
  1224. netif_napi_add(dev, &greth->napi, greth_poll, 64);
  1225. return 0;
  1226. error5:
  1227. dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1228. error4:
  1229. dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1230. error3:
  1231. mdiobus_unregister(greth->mdio);
  1232. error2:
  1233. of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
  1234. error1:
  1235. free_netdev(dev);
  1236. return err;
  1237. }
  1238. static int __devexit greth_of_remove(struct of_device *of_dev)
  1239. {
  1240. struct net_device *ndev = dev_get_drvdata(&of_dev->dev);
  1241. struct greth_private *greth = netdev_priv(ndev);
  1242. /* Free descriptor areas */
  1243. dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1244. dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1245. dev_set_drvdata(&of_dev->dev, NULL);
  1246. if (greth->phy)
  1247. phy_stop(greth->phy);
  1248. mdiobus_unregister(greth->mdio);
  1249. unregister_netdev(ndev);
  1250. free_netdev(ndev);
  1251. of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
  1252. return 0;
  1253. }
  1254. static struct of_device_id greth_of_match[] = {
  1255. {
  1256. .name = "GAISLER_ETHMAC",
  1257. },
  1258. {},
  1259. };
  1260. MODULE_DEVICE_TABLE(of, greth_of_match);
  1261. static struct of_platform_driver greth_of_driver = {
  1262. .driver = {
  1263. .name = "grlib-greth",
  1264. .owner = THIS_MODULE,
  1265. .of_match_table = greth_of_match,
  1266. },
  1267. .probe = greth_of_probe,
  1268. .remove = __devexit_p(greth_of_remove),
  1269. };
  1270. static int __init greth_init(void)
  1271. {
  1272. return of_register_platform_driver(&greth_of_driver);
  1273. }
  1274. static void __exit greth_cleanup(void)
  1275. {
  1276. of_unregister_platform_driver(&greth_of_driver);
  1277. }
  1278. module_init(greth_init);
  1279. module_exit(greth_cleanup);
  1280. MODULE_AUTHOR("Aeroflex Gaisler AB.");
  1281. MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
  1282. MODULE_LICENSE("GPL");