forcedeth.c 188 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.64"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/sched.h>
  52. #include <linux/spinlock.h>
  53. #include <linux/ethtool.h>
  54. #include <linux/timer.h>
  55. #include <linux/skbuff.h>
  56. #include <linux/mii.h>
  57. #include <linux/random.h>
  58. #include <linux/init.h>
  59. #include <linux/if_vlan.h>
  60. #include <linux/dma-mapping.h>
  61. #include <linux/slab.h>
  62. #include <asm/irq.h>
  63. #include <asm/io.h>
  64. #include <asm/uaccess.h>
  65. #include <asm/system.h>
  66. #if 0
  67. #define dprintk printk
  68. #else
  69. #define dprintk(x...) do { } while (0)
  70. #endif
  71. #define TX_WORK_PER_LOOP 64
  72. #define RX_WORK_PER_LOOP 64
  73. /*
  74. * Hardware access:
  75. */
  76. #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
  77. #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
  78. #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
  79. #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
  80. #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
  81. #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
  82. #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
  83. #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
  84. #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
  85. #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
  86. #define DEV_HAS_STATISTICS_V2 0x0000600 /* device supports hw statistics version 2 */
  87. #define DEV_HAS_STATISTICS_V3 0x0000e00 /* device supports hw statistics version 3 */
  88. #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
  89. #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
  90. #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
  91. #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
  92. #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
  93. #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
  94. #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
  95. #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
  96. #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
  97. #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
  98. #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
  99. #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
  100. #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
  101. enum {
  102. NvRegIrqStatus = 0x000,
  103. #define NVREG_IRQSTAT_MIIEVENT 0x040
  104. #define NVREG_IRQSTAT_MASK 0x83ff
  105. NvRegIrqMask = 0x004,
  106. #define NVREG_IRQ_RX_ERROR 0x0001
  107. #define NVREG_IRQ_RX 0x0002
  108. #define NVREG_IRQ_RX_NOBUF 0x0004
  109. #define NVREG_IRQ_TX_ERR 0x0008
  110. #define NVREG_IRQ_TX_OK 0x0010
  111. #define NVREG_IRQ_TIMER 0x0020
  112. #define NVREG_IRQ_LINK 0x0040
  113. #define NVREG_IRQ_RX_FORCED 0x0080
  114. #define NVREG_IRQ_TX_FORCED 0x0100
  115. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  116. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  117. #define NVREG_IRQMASK_CPU 0x0060
  118. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  119. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  120. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  121. NvRegUnknownSetupReg6 = 0x008,
  122. #define NVREG_UNKSETUP6_VAL 3
  123. /*
  124. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  125. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  126. */
  127. NvRegPollingInterval = 0x00c,
  128. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  129. #define NVREG_POLL_DEFAULT_CPU 13
  130. NvRegMSIMap0 = 0x020,
  131. NvRegMSIMap1 = 0x024,
  132. NvRegMSIIrqMask = 0x030,
  133. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  134. NvRegMisc1 = 0x080,
  135. #define NVREG_MISC1_PAUSE_TX 0x01
  136. #define NVREG_MISC1_HD 0x02
  137. #define NVREG_MISC1_FORCE 0x3b0f3c
  138. NvRegMacReset = 0x34,
  139. #define NVREG_MAC_RESET_ASSERT 0x0F3
  140. NvRegTransmitterControl = 0x084,
  141. #define NVREG_XMITCTL_START 0x01
  142. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  143. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  144. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  145. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  146. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  147. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  148. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  149. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  150. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  151. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  152. #define NVREG_XMITCTL_DATA_START 0x00100000
  153. #define NVREG_XMITCTL_DATA_READY 0x00010000
  154. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  155. NvRegTransmitterStatus = 0x088,
  156. #define NVREG_XMITSTAT_BUSY 0x01
  157. NvRegPacketFilterFlags = 0x8c,
  158. #define NVREG_PFF_PAUSE_RX 0x08
  159. #define NVREG_PFF_ALWAYS 0x7F0000
  160. #define NVREG_PFF_PROMISC 0x80
  161. #define NVREG_PFF_MYADDR 0x20
  162. #define NVREG_PFF_LOOPBACK 0x10
  163. NvRegOffloadConfig = 0x90,
  164. #define NVREG_OFFLOAD_HOMEPHY 0x601
  165. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  166. NvRegReceiverControl = 0x094,
  167. #define NVREG_RCVCTL_START 0x01
  168. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  169. NvRegReceiverStatus = 0x98,
  170. #define NVREG_RCVSTAT_BUSY 0x01
  171. NvRegSlotTime = 0x9c,
  172. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  173. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  174. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  175. #define NVREG_SLOTTIME_HALF 0x0000ff00
  176. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  177. #define NVREG_SLOTTIME_MASK 0x000000ff
  178. NvRegTxDeferral = 0xA0,
  179. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  180. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  181. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  182. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  183. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  184. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  185. NvRegRxDeferral = 0xA4,
  186. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  187. NvRegMacAddrA = 0xA8,
  188. NvRegMacAddrB = 0xAC,
  189. NvRegMulticastAddrA = 0xB0,
  190. #define NVREG_MCASTADDRA_FORCE 0x01
  191. NvRegMulticastAddrB = 0xB4,
  192. NvRegMulticastMaskA = 0xB8,
  193. #define NVREG_MCASTMASKA_NONE 0xffffffff
  194. NvRegMulticastMaskB = 0xBC,
  195. #define NVREG_MCASTMASKB_NONE 0xffff
  196. NvRegPhyInterface = 0xC0,
  197. #define PHY_RGMII 0x10000000
  198. NvRegBackOffControl = 0xC4,
  199. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  200. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  201. #define NVREG_BKOFFCTRL_SELECT 24
  202. #define NVREG_BKOFFCTRL_GEAR 12
  203. NvRegTxRingPhysAddr = 0x100,
  204. NvRegRxRingPhysAddr = 0x104,
  205. NvRegRingSizes = 0x108,
  206. #define NVREG_RINGSZ_TXSHIFT 0
  207. #define NVREG_RINGSZ_RXSHIFT 16
  208. NvRegTransmitPoll = 0x10c,
  209. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  210. NvRegLinkSpeed = 0x110,
  211. #define NVREG_LINKSPEED_FORCE 0x10000
  212. #define NVREG_LINKSPEED_10 1000
  213. #define NVREG_LINKSPEED_100 100
  214. #define NVREG_LINKSPEED_1000 50
  215. #define NVREG_LINKSPEED_MASK (0xFFF)
  216. NvRegUnknownSetupReg5 = 0x130,
  217. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  218. NvRegTxWatermark = 0x13c,
  219. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  220. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  221. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  222. NvRegTxRxControl = 0x144,
  223. #define NVREG_TXRXCTL_KICK 0x0001
  224. #define NVREG_TXRXCTL_BIT1 0x0002
  225. #define NVREG_TXRXCTL_BIT2 0x0004
  226. #define NVREG_TXRXCTL_IDLE 0x0008
  227. #define NVREG_TXRXCTL_RESET 0x0010
  228. #define NVREG_TXRXCTL_RXCHECK 0x0400
  229. #define NVREG_TXRXCTL_DESC_1 0
  230. #define NVREG_TXRXCTL_DESC_2 0x002100
  231. #define NVREG_TXRXCTL_DESC_3 0xc02200
  232. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  233. #define NVREG_TXRXCTL_VLANINS 0x00080
  234. NvRegTxRingPhysAddrHigh = 0x148,
  235. NvRegRxRingPhysAddrHigh = 0x14C,
  236. NvRegTxPauseFrame = 0x170,
  237. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  238. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  239. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  240. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  241. NvRegTxPauseFrameLimit = 0x174,
  242. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  243. NvRegMIIStatus = 0x180,
  244. #define NVREG_MIISTAT_ERROR 0x0001
  245. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  246. #define NVREG_MIISTAT_MASK_RW 0x0007
  247. #define NVREG_MIISTAT_MASK_ALL 0x000f
  248. NvRegMIIMask = 0x184,
  249. #define NVREG_MII_LINKCHANGE 0x0008
  250. NvRegAdapterControl = 0x188,
  251. #define NVREG_ADAPTCTL_START 0x02
  252. #define NVREG_ADAPTCTL_LINKUP 0x04
  253. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  254. #define NVREG_ADAPTCTL_RUNNING 0x100000
  255. #define NVREG_ADAPTCTL_PHYSHIFT 24
  256. NvRegMIISpeed = 0x18c,
  257. #define NVREG_MIISPEED_BIT8 (1<<8)
  258. #define NVREG_MIIDELAY 5
  259. NvRegMIIControl = 0x190,
  260. #define NVREG_MIICTL_INUSE 0x08000
  261. #define NVREG_MIICTL_WRITE 0x00400
  262. #define NVREG_MIICTL_ADDRSHIFT 5
  263. NvRegMIIData = 0x194,
  264. NvRegTxUnicast = 0x1a0,
  265. NvRegTxMulticast = 0x1a4,
  266. NvRegTxBroadcast = 0x1a8,
  267. NvRegWakeUpFlags = 0x200,
  268. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  269. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  270. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  271. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  272. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  273. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  274. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  275. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  276. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  277. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  278. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  279. NvRegMgmtUnitGetVersion = 0x204,
  280. #define NVREG_MGMTUNITGETVERSION 0x01
  281. NvRegMgmtUnitVersion = 0x208,
  282. #define NVREG_MGMTUNITVERSION 0x08
  283. NvRegPowerCap = 0x268,
  284. #define NVREG_POWERCAP_D3SUPP (1<<30)
  285. #define NVREG_POWERCAP_D2SUPP (1<<26)
  286. #define NVREG_POWERCAP_D1SUPP (1<<25)
  287. NvRegPowerState = 0x26c,
  288. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  289. #define NVREG_POWERSTATE_VALID 0x0100
  290. #define NVREG_POWERSTATE_MASK 0x0003
  291. #define NVREG_POWERSTATE_D0 0x0000
  292. #define NVREG_POWERSTATE_D1 0x0001
  293. #define NVREG_POWERSTATE_D2 0x0002
  294. #define NVREG_POWERSTATE_D3 0x0003
  295. NvRegMgmtUnitControl = 0x278,
  296. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  297. NvRegTxCnt = 0x280,
  298. NvRegTxZeroReXmt = 0x284,
  299. NvRegTxOneReXmt = 0x288,
  300. NvRegTxManyReXmt = 0x28c,
  301. NvRegTxLateCol = 0x290,
  302. NvRegTxUnderflow = 0x294,
  303. NvRegTxLossCarrier = 0x298,
  304. NvRegTxExcessDef = 0x29c,
  305. NvRegTxRetryErr = 0x2a0,
  306. NvRegRxFrameErr = 0x2a4,
  307. NvRegRxExtraByte = 0x2a8,
  308. NvRegRxLateCol = 0x2ac,
  309. NvRegRxRunt = 0x2b0,
  310. NvRegRxFrameTooLong = 0x2b4,
  311. NvRegRxOverflow = 0x2b8,
  312. NvRegRxFCSErr = 0x2bc,
  313. NvRegRxFrameAlignErr = 0x2c0,
  314. NvRegRxLenErr = 0x2c4,
  315. NvRegRxUnicast = 0x2c8,
  316. NvRegRxMulticast = 0x2cc,
  317. NvRegRxBroadcast = 0x2d0,
  318. NvRegTxDef = 0x2d4,
  319. NvRegTxFrame = 0x2d8,
  320. NvRegRxCnt = 0x2dc,
  321. NvRegTxPause = 0x2e0,
  322. NvRegRxPause = 0x2e4,
  323. NvRegRxDropFrame = 0x2e8,
  324. NvRegVlanControl = 0x300,
  325. #define NVREG_VLANCONTROL_ENABLE 0x2000
  326. NvRegMSIXMap0 = 0x3e0,
  327. NvRegMSIXMap1 = 0x3e4,
  328. NvRegMSIXIrqStatus = 0x3f0,
  329. NvRegPowerState2 = 0x600,
  330. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  331. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  332. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  333. #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
  334. };
  335. /* Big endian: should work, but is untested */
  336. struct ring_desc {
  337. __le32 buf;
  338. __le32 flaglen;
  339. };
  340. struct ring_desc_ex {
  341. __le32 bufhigh;
  342. __le32 buflow;
  343. __le32 txvlan;
  344. __le32 flaglen;
  345. };
  346. union ring_type {
  347. struct ring_desc* orig;
  348. struct ring_desc_ex* ex;
  349. };
  350. #define FLAG_MASK_V1 0xffff0000
  351. #define FLAG_MASK_V2 0xffffc000
  352. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  353. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  354. #define NV_TX_LASTPACKET (1<<16)
  355. #define NV_TX_RETRYERROR (1<<19)
  356. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  357. #define NV_TX_FORCED_INTERRUPT (1<<24)
  358. #define NV_TX_DEFERRED (1<<26)
  359. #define NV_TX_CARRIERLOST (1<<27)
  360. #define NV_TX_LATECOLLISION (1<<28)
  361. #define NV_TX_UNDERFLOW (1<<29)
  362. #define NV_TX_ERROR (1<<30)
  363. #define NV_TX_VALID (1<<31)
  364. #define NV_TX2_LASTPACKET (1<<29)
  365. #define NV_TX2_RETRYERROR (1<<18)
  366. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  367. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  368. #define NV_TX2_DEFERRED (1<<25)
  369. #define NV_TX2_CARRIERLOST (1<<26)
  370. #define NV_TX2_LATECOLLISION (1<<27)
  371. #define NV_TX2_UNDERFLOW (1<<28)
  372. /* error and valid are the same for both */
  373. #define NV_TX2_ERROR (1<<30)
  374. #define NV_TX2_VALID (1<<31)
  375. #define NV_TX2_TSO (1<<28)
  376. #define NV_TX2_TSO_SHIFT 14
  377. #define NV_TX2_TSO_MAX_SHIFT 14
  378. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  379. #define NV_TX2_CHECKSUM_L3 (1<<27)
  380. #define NV_TX2_CHECKSUM_L4 (1<<26)
  381. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  382. #define NV_RX_DESCRIPTORVALID (1<<16)
  383. #define NV_RX_MISSEDFRAME (1<<17)
  384. #define NV_RX_SUBSTRACT1 (1<<18)
  385. #define NV_RX_ERROR1 (1<<23)
  386. #define NV_RX_ERROR2 (1<<24)
  387. #define NV_RX_ERROR3 (1<<25)
  388. #define NV_RX_ERROR4 (1<<26)
  389. #define NV_RX_CRCERR (1<<27)
  390. #define NV_RX_OVERFLOW (1<<28)
  391. #define NV_RX_FRAMINGERR (1<<29)
  392. #define NV_RX_ERROR (1<<30)
  393. #define NV_RX_AVAIL (1<<31)
  394. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  395. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  396. #define NV_RX2_CHECKSUM_IP (0x10000000)
  397. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  398. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  399. #define NV_RX2_DESCRIPTORVALID (1<<29)
  400. #define NV_RX2_SUBSTRACT1 (1<<25)
  401. #define NV_RX2_ERROR1 (1<<18)
  402. #define NV_RX2_ERROR2 (1<<19)
  403. #define NV_RX2_ERROR3 (1<<20)
  404. #define NV_RX2_ERROR4 (1<<21)
  405. #define NV_RX2_CRCERR (1<<22)
  406. #define NV_RX2_OVERFLOW (1<<23)
  407. #define NV_RX2_FRAMINGERR (1<<24)
  408. /* error and avail are the same for both */
  409. #define NV_RX2_ERROR (1<<30)
  410. #define NV_RX2_AVAIL (1<<31)
  411. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  412. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  413. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  414. /* Miscelaneous hardware related defines: */
  415. #define NV_PCI_REGSZ_VER1 0x270
  416. #define NV_PCI_REGSZ_VER2 0x2d4
  417. #define NV_PCI_REGSZ_VER3 0x604
  418. #define NV_PCI_REGSZ_MAX 0x604
  419. /* various timeout delays: all in usec */
  420. #define NV_TXRX_RESET_DELAY 4
  421. #define NV_TXSTOP_DELAY1 10
  422. #define NV_TXSTOP_DELAY1MAX 500000
  423. #define NV_TXSTOP_DELAY2 100
  424. #define NV_RXSTOP_DELAY1 10
  425. #define NV_RXSTOP_DELAY1MAX 500000
  426. #define NV_RXSTOP_DELAY2 100
  427. #define NV_SETUP5_DELAY 5
  428. #define NV_SETUP5_DELAYMAX 50000
  429. #define NV_POWERUP_DELAY 5
  430. #define NV_POWERUP_DELAYMAX 5000
  431. #define NV_MIIBUSY_DELAY 50
  432. #define NV_MIIPHY_DELAY 10
  433. #define NV_MIIPHY_DELAYMAX 10000
  434. #define NV_MAC_RESET_DELAY 64
  435. #define NV_WAKEUPPATTERNS 5
  436. #define NV_WAKEUPMASKENTRIES 4
  437. /* General driver defaults */
  438. #define NV_WATCHDOG_TIMEO (5*HZ)
  439. #define RX_RING_DEFAULT 512
  440. #define TX_RING_DEFAULT 256
  441. #define RX_RING_MIN 128
  442. #define TX_RING_MIN 64
  443. #define RING_MAX_DESC_VER_1 1024
  444. #define RING_MAX_DESC_VER_2_3 16384
  445. /* rx/tx mac addr + type + vlan + align + slack*/
  446. #define NV_RX_HEADERS (64)
  447. /* even more slack. */
  448. #define NV_RX_ALLOC_PAD (64)
  449. /* maximum mtu size */
  450. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  451. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  452. #define OOM_REFILL (1+HZ/20)
  453. #define POLL_WAIT (1+HZ/100)
  454. #define LINK_TIMEOUT (3*HZ)
  455. #define STATS_INTERVAL (10*HZ)
  456. /*
  457. * desc_ver values:
  458. * The nic supports three different descriptor types:
  459. * - DESC_VER_1: Original
  460. * - DESC_VER_2: support for jumbo frames.
  461. * - DESC_VER_3: 64-bit format.
  462. */
  463. #define DESC_VER_1 1
  464. #define DESC_VER_2 2
  465. #define DESC_VER_3 3
  466. /* PHY defines */
  467. #define PHY_OUI_MARVELL 0x5043
  468. #define PHY_OUI_CICADA 0x03f1
  469. #define PHY_OUI_VITESSE 0x01c1
  470. #define PHY_OUI_REALTEK 0x0732
  471. #define PHY_OUI_REALTEK2 0x0020
  472. #define PHYID1_OUI_MASK 0x03ff
  473. #define PHYID1_OUI_SHFT 6
  474. #define PHYID2_OUI_MASK 0xfc00
  475. #define PHYID2_OUI_SHFT 10
  476. #define PHYID2_MODEL_MASK 0x03f0
  477. #define PHY_MODEL_REALTEK_8211 0x0110
  478. #define PHY_REV_MASK 0x0001
  479. #define PHY_REV_REALTEK_8211B 0x0000
  480. #define PHY_REV_REALTEK_8211C 0x0001
  481. #define PHY_MODEL_REALTEK_8201 0x0200
  482. #define PHY_MODEL_MARVELL_E3016 0x0220
  483. #define PHY_MARVELL_E3016_INITMASK 0x0300
  484. #define PHY_CICADA_INIT1 0x0f000
  485. #define PHY_CICADA_INIT2 0x0e00
  486. #define PHY_CICADA_INIT3 0x01000
  487. #define PHY_CICADA_INIT4 0x0200
  488. #define PHY_CICADA_INIT5 0x0004
  489. #define PHY_CICADA_INIT6 0x02000
  490. #define PHY_VITESSE_INIT_REG1 0x1f
  491. #define PHY_VITESSE_INIT_REG2 0x10
  492. #define PHY_VITESSE_INIT_REG3 0x11
  493. #define PHY_VITESSE_INIT_REG4 0x12
  494. #define PHY_VITESSE_INIT_MSK1 0xc
  495. #define PHY_VITESSE_INIT_MSK2 0x0180
  496. #define PHY_VITESSE_INIT1 0x52b5
  497. #define PHY_VITESSE_INIT2 0xaf8a
  498. #define PHY_VITESSE_INIT3 0x8
  499. #define PHY_VITESSE_INIT4 0x8f8a
  500. #define PHY_VITESSE_INIT5 0xaf86
  501. #define PHY_VITESSE_INIT6 0x8f86
  502. #define PHY_VITESSE_INIT7 0xaf82
  503. #define PHY_VITESSE_INIT8 0x0100
  504. #define PHY_VITESSE_INIT9 0x8f82
  505. #define PHY_VITESSE_INIT10 0x0
  506. #define PHY_REALTEK_INIT_REG1 0x1f
  507. #define PHY_REALTEK_INIT_REG2 0x19
  508. #define PHY_REALTEK_INIT_REG3 0x13
  509. #define PHY_REALTEK_INIT_REG4 0x14
  510. #define PHY_REALTEK_INIT_REG5 0x18
  511. #define PHY_REALTEK_INIT_REG6 0x11
  512. #define PHY_REALTEK_INIT_REG7 0x01
  513. #define PHY_REALTEK_INIT1 0x0000
  514. #define PHY_REALTEK_INIT2 0x8e00
  515. #define PHY_REALTEK_INIT3 0x0001
  516. #define PHY_REALTEK_INIT4 0xad17
  517. #define PHY_REALTEK_INIT5 0xfb54
  518. #define PHY_REALTEK_INIT6 0xf5c7
  519. #define PHY_REALTEK_INIT7 0x1000
  520. #define PHY_REALTEK_INIT8 0x0003
  521. #define PHY_REALTEK_INIT9 0x0008
  522. #define PHY_REALTEK_INIT10 0x0005
  523. #define PHY_REALTEK_INIT11 0x0200
  524. #define PHY_REALTEK_INIT_MSK1 0x0003
  525. #define PHY_GIGABIT 0x0100
  526. #define PHY_TIMEOUT 0x1
  527. #define PHY_ERROR 0x2
  528. #define PHY_100 0x1
  529. #define PHY_1000 0x2
  530. #define PHY_HALF 0x100
  531. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  532. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  533. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  534. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  535. #define NV_PAUSEFRAME_RX_REQ 0x0010
  536. #define NV_PAUSEFRAME_TX_REQ 0x0020
  537. #define NV_PAUSEFRAME_AUTONEG 0x0040
  538. /* MSI/MSI-X defines */
  539. #define NV_MSI_X_MAX_VECTORS 8
  540. #define NV_MSI_X_VECTORS_MASK 0x000f
  541. #define NV_MSI_CAPABLE 0x0010
  542. #define NV_MSI_X_CAPABLE 0x0020
  543. #define NV_MSI_ENABLED 0x0040
  544. #define NV_MSI_X_ENABLED 0x0080
  545. #define NV_MSI_X_VECTOR_ALL 0x0
  546. #define NV_MSI_X_VECTOR_RX 0x0
  547. #define NV_MSI_X_VECTOR_TX 0x1
  548. #define NV_MSI_X_VECTOR_OTHER 0x2
  549. #define NV_MSI_PRIV_OFFSET 0x68
  550. #define NV_MSI_PRIV_VALUE 0xffffffff
  551. #define NV_RESTART_TX 0x1
  552. #define NV_RESTART_RX 0x2
  553. #define NV_TX_LIMIT_COUNT 16
  554. #define NV_DYNAMIC_THRESHOLD 4
  555. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  556. /* statistics */
  557. struct nv_ethtool_str {
  558. char name[ETH_GSTRING_LEN];
  559. };
  560. static const struct nv_ethtool_str nv_estats_str[] = {
  561. { "tx_bytes" },
  562. { "tx_zero_rexmt" },
  563. { "tx_one_rexmt" },
  564. { "tx_many_rexmt" },
  565. { "tx_late_collision" },
  566. { "tx_fifo_errors" },
  567. { "tx_carrier_errors" },
  568. { "tx_excess_deferral" },
  569. { "tx_retry_error" },
  570. { "rx_frame_error" },
  571. { "rx_extra_byte" },
  572. { "rx_late_collision" },
  573. { "rx_runt" },
  574. { "rx_frame_too_long" },
  575. { "rx_over_errors" },
  576. { "rx_crc_errors" },
  577. { "rx_frame_align_error" },
  578. { "rx_length_error" },
  579. { "rx_unicast" },
  580. { "rx_multicast" },
  581. { "rx_broadcast" },
  582. { "rx_packets" },
  583. { "rx_errors_total" },
  584. { "tx_errors_total" },
  585. /* version 2 stats */
  586. { "tx_deferral" },
  587. { "tx_packets" },
  588. { "rx_bytes" },
  589. { "tx_pause" },
  590. { "rx_pause" },
  591. { "rx_drop_frame" },
  592. /* version 3 stats */
  593. { "tx_unicast" },
  594. { "tx_multicast" },
  595. { "tx_broadcast" }
  596. };
  597. struct nv_ethtool_stats {
  598. u64 tx_bytes;
  599. u64 tx_zero_rexmt;
  600. u64 tx_one_rexmt;
  601. u64 tx_many_rexmt;
  602. u64 tx_late_collision;
  603. u64 tx_fifo_errors;
  604. u64 tx_carrier_errors;
  605. u64 tx_excess_deferral;
  606. u64 tx_retry_error;
  607. u64 rx_frame_error;
  608. u64 rx_extra_byte;
  609. u64 rx_late_collision;
  610. u64 rx_runt;
  611. u64 rx_frame_too_long;
  612. u64 rx_over_errors;
  613. u64 rx_crc_errors;
  614. u64 rx_frame_align_error;
  615. u64 rx_length_error;
  616. u64 rx_unicast;
  617. u64 rx_multicast;
  618. u64 rx_broadcast;
  619. u64 rx_packets;
  620. u64 rx_errors_total;
  621. u64 tx_errors_total;
  622. /* version 2 stats */
  623. u64 tx_deferral;
  624. u64 tx_packets;
  625. u64 rx_bytes;
  626. u64 tx_pause;
  627. u64 rx_pause;
  628. u64 rx_drop_frame;
  629. /* version 3 stats */
  630. u64 tx_unicast;
  631. u64 tx_multicast;
  632. u64 tx_broadcast;
  633. };
  634. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  635. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  636. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  637. /* diagnostics */
  638. #define NV_TEST_COUNT_BASE 3
  639. #define NV_TEST_COUNT_EXTENDED 4
  640. static const struct nv_ethtool_str nv_etests_str[] = {
  641. { "link (online/offline)" },
  642. { "register (offline) " },
  643. { "interrupt (offline) " },
  644. { "loopback (offline) " }
  645. };
  646. struct register_test {
  647. __u32 reg;
  648. __u32 mask;
  649. };
  650. static const struct register_test nv_registers_test[] = {
  651. { NvRegUnknownSetupReg6, 0x01 },
  652. { NvRegMisc1, 0x03c },
  653. { NvRegOffloadConfig, 0x03ff },
  654. { NvRegMulticastAddrA, 0xffffffff },
  655. { NvRegTxWatermark, 0x0ff },
  656. { NvRegWakeUpFlags, 0x07777 },
  657. { 0,0 }
  658. };
  659. struct nv_skb_map {
  660. struct sk_buff *skb;
  661. dma_addr_t dma;
  662. unsigned int dma_len:31;
  663. unsigned int dma_single:1;
  664. struct ring_desc_ex *first_tx_desc;
  665. struct nv_skb_map *next_tx_ctx;
  666. };
  667. /*
  668. * SMP locking:
  669. * All hardware access under netdev_priv(dev)->lock, except the performance
  670. * critical parts:
  671. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  672. * by the arch code for interrupts.
  673. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  674. * needs netdev_priv(dev)->lock :-(
  675. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  676. */
  677. /* in dev: base, irq */
  678. struct fe_priv {
  679. spinlock_t lock;
  680. struct net_device *dev;
  681. struct napi_struct napi;
  682. /* General data:
  683. * Locking: spin_lock(&np->lock); */
  684. struct nv_ethtool_stats estats;
  685. int in_shutdown;
  686. u32 linkspeed;
  687. int duplex;
  688. int autoneg;
  689. int fixed_mode;
  690. int phyaddr;
  691. int wolenabled;
  692. unsigned int phy_oui;
  693. unsigned int phy_model;
  694. unsigned int phy_rev;
  695. u16 gigabit;
  696. int intr_test;
  697. int recover_error;
  698. int quiet_count;
  699. /* General data: RO fields */
  700. dma_addr_t ring_addr;
  701. struct pci_dev *pci_dev;
  702. u32 orig_mac[2];
  703. u32 events;
  704. u32 irqmask;
  705. u32 desc_ver;
  706. u32 txrxctl_bits;
  707. u32 vlanctl_bits;
  708. u32 driver_data;
  709. u32 device_id;
  710. u32 register_size;
  711. int rx_csum;
  712. u32 mac_in_use;
  713. int mgmt_version;
  714. int mgmt_sema;
  715. void __iomem *base;
  716. /* rx specific fields.
  717. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  718. */
  719. union ring_type get_rx, put_rx, first_rx, last_rx;
  720. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  721. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  722. struct nv_skb_map *rx_skb;
  723. union ring_type rx_ring;
  724. unsigned int rx_buf_sz;
  725. unsigned int pkt_limit;
  726. struct timer_list oom_kick;
  727. struct timer_list nic_poll;
  728. struct timer_list stats_poll;
  729. u32 nic_poll_irq;
  730. int rx_ring_size;
  731. /* media detection workaround.
  732. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  733. */
  734. int need_linktimer;
  735. unsigned long link_timeout;
  736. /*
  737. * tx specific fields.
  738. */
  739. union ring_type get_tx, put_tx, first_tx, last_tx;
  740. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  741. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  742. struct nv_skb_map *tx_skb;
  743. union ring_type tx_ring;
  744. u32 tx_flags;
  745. int tx_ring_size;
  746. int tx_limit;
  747. u32 tx_pkts_in_progress;
  748. struct nv_skb_map *tx_change_owner;
  749. struct nv_skb_map *tx_end_flip;
  750. int tx_stop;
  751. /* vlan fields */
  752. struct vlan_group *vlangrp;
  753. /* msi/msi-x fields */
  754. u32 msi_flags;
  755. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  756. /* flow control */
  757. u32 pause_flags;
  758. /* power saved state */
  759. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  760. /* for different msi-x irq type */
  761. char name_rx[IFNAMSIZ + 3]; /* -rx */
  762. char name_tx[IFNAMSIZ + 3]; /* -tx */
  763. char name_other[IFNAMSIZ + 6]; /* -other */
  764. };
  765. /*
  766. * Maximum number of loops until we assume that a bit in the irq mask
  767. * is stuck. Overridable with module param.
  768. */
  769. static int max_interrupt_work = 4;
  770. /*
  771. * Optimization can be either throuput mode or cpu mode
  772. *
  773. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  774. * CPU Mode: Interrupts are controlled by a timer.
  775. */
  776. enum {
  777. NV_OPTIMIZATION_MODE_THROUGHPUT,
  778. NV_OPTIMIZATION_MODE_CPU,
  779. NV_OPTIMIZATION_MODE_DYNAMIC
  780. };
  781. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  782. /*
  783. * Poll interval for timer irq
  784. *
  785. * This interval determines how frequent an interrupt is generated.
  786. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  787. * Min = 0, and Max = 65535
  788. */
  789. static int poll_interval = -1;
  790. /*
  791. * MSI interrupts
  792. */
  793. enum {
  794. NV_MSI_INT_DISABLED,
  795. NV_MSI_INT_ENABLED
  796. };
  797. static int msi = NV_MSI_INT_ENABLED;
  798. /*
  799. * MSIX interrupts
  800. */
  801. enum {
  802. NV_MSIX_INT_DISABLED,
  803. NV_MSIX_INT_ENABLED
  804. };
  805. static int msix = NV_MSIX_INT_ENABLED;
  806. /*
  807. * DMA 64bit
  808. */
  809. enum {
  810. NV_DMA_64BIT_DISABLED,
  811. NV_DMA_64BIT_ENABLED
  812. };
  813. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  814. /*
  815. * Crossover Detection
  816. * Realtek 8201 phy + some OEM boards do not work properly.
  817. */
  818. enum {
  819. NV_CROSSOVER_DETECTION_DISABLED,
  820. NV_CROSSOVER_DETECTION_ENABLED
  821. };
  822. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  823. /*
  824. * Power down phy when interface is down (persists through reboot;
  825. * older Linux and other OSes may not power it up again)
  826. */
  827. static int phy_power_down = 0;
  828. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  829. {
  830. return netdev_priv(dev);
  831. }
  832. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  833. {
  834. return ((struct fe_priv *)netdev_priv(dev))->base;
  835. }
  836. static inline void pci_push(u8 __iomem *base)
  837. {
  838. /* force out pending posted writes */
  839. readl(base);
  840. }
  841. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  842. {
  843. return le32_to_cpu(prd->flaglen)
  844. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  845. }
  846. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  847. {
  848. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  849. }
  850. static bool nv_optimized(struct fe_priv *np)
  851. {
  852. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  853. return false;
  854. return true;
  855. }
  856. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  857. int delay, int delaymax, const char *msg)
  858. {
  859. u8 __iomem *base = get_hwbase(dev);
  860. pci_push(base);
  861. do {
  862. udelay(delay);
  863. delaymax -= delay;
  864. if (delaymax < 0) {
  865. if (msg)
  866. printk("%s", msg);
  867. return 1;
  868. }
  869. } while ((readl(base + offset) & mask) != target);
  870. return 0;
  871. }
  872. #define NV_SETUP_RX_RING 0x01
  873. #define NV_SETUP_TX_RING 0x02
  874. static inline u32 dma_low(dma_addr_t addr)
  875. {
  876. return addr;
  877. }
  878. static inline u32 dma_high(dma_addr_t addr)
  879. {
  880. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  881. }
  882. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  883. {
  884. struct fe_priv *np = get_nvpriv(dev);
  885. u8 __iomem *base = get_hwbase(dev);
  886. if (!nv_optimized(np)) {
  887. if (rxtx_flags & NV_SETUP_RX_RING) {
  888. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  889. }
  890. if (rxtx_flags & NV_SETUP_TX_RING) {
  891. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  892. }
  893. } else {
  894. if (rxtx_flags & NV_SETUP_RX_RING) {
  895. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  896. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  897. }
  898. if (rxtx_flags & NV_SETUP_TX_RING) {
  899. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  900. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  901. }
  902. }
  903. }
  904. static void free_rings(struct net_device *dev)
  905. {
  906. struct fe_priv *np = get_nvpriv(dev);
  907. if (!nv_optimized(np)) {
  908. if (np->rx_ring.orig)
  909. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  910. np->rx_ring.orig, np->ring_addr);
  911. } else {
  912. if (np->rx_ring.ex)
  913. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  914. np->rx_ring.ex, np->ring_addr);
  915. }
  916. if (np->rx_skb)
  917. kfree(np->rx_skb);
  918. if (np->tx_skb)
  919. kfree(np->tx_skb);
  920. }
  921. static int using_multi_irqs(struct net_device *dev)
  922. {
  923. struct fe_priv *np = get_nvpriv(dev);
  924. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  925. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  926. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  927. return 0;
  928. else
  929. return 1;
  930. }
  931. static void nv_txrx_gate(struct net_device *dev, bool gate)
  932. {
  933. struct fe_priv *np = get_nvpriv(dev);
  934. u8 __iomem *base = get_hwbase(dev);
  935. u32 powerstate;
  936. if (!np->mac_in_use &&
  937. (np->driver_data & DEV_HAS_POWER_CNTRL)) {
  938. powerstate = readl(base + NvRegPowerState2);
  939. if (gate)
  940. powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
  941. else
  942. powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
  943. writel(powerstate, base + NvRegPowerState2);
  944. }
  945. }
  946. static void nv_enable_irq(struct net_device *dev)
  947. {
  948. struct fe_priv *np = get_nvpriv(dev);
  949. if (!using_multi_irqs(dev)) {
  950. if (np->msi_flags & NV_MSI_X_ENABLED)
  951. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  952. else
  953. enable_irq(np->pci_dev->irq);
  954. } else {
  955. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  956. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  957. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  958. }
  959. }
  960. static void nv_disable_irq(struct net_device *dev)
  961. {
  962. struct fe_priv *np = get_nvpriv(dev);
  963. if (!using_multi_irqs(dev)) {
  964. if (np->msi_flags & NV_MSI_X_ENABLED)
  965. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  966. else
  967. disable_irq(np->pci_dev->irq);
  968. } else {
  969. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  970. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  971. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  972. }
  973. }
  974. /* In MSIX mode, a write to irqmask behaves as XOR */
  975. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  976. {
  977. u8 __iomem *base = get_hwbase(dev);
  978. writel(mask, base + NvRegIrqMask);
  979. }
  980. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  981. {
  982. struct fe_priv *np = get_nvpriv(dev);
  983. u8 __iomem *base = get_hwbase(dev);
  984. if (np->msi_flags & NV_MSI_X_ENABLED) {
  985. writel(mask, base + NvRegIrqMask);
  986. } else {
  987. if (np->msi_flags & NV_MSI_ENABLED)
  988. writel(0, base + NvRegMSIIrqMask);
  989. writel(0, base + NvRegIrqMask);
  990. }
  991. }
  992. static void nv_napi_enable(struct net_device *dev)
  993. {
  994. struct fe_priv *np = get_nvpriv(dev);
  995. napi_enable(&np->napi);
  996. }
  997. static void nv_napi_disable(struct net_device *dev)
  998. {
  999. struct fe_priv *np = get_nvpriv(dev);
  1000. napi_disable(&np->napi);
  1001. }
  1002. #define MII_READ (-1)
  1003. /* mii_rw: read/write a register on the PHY.
  1004. *
  1005. * Caller must guarantee serialization
  1006. */
  1007. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  1008. {
  1009. u8 __iomem *base = get_hwbase(dev);
  1010. u32 reg;
  1011. int retval;
  1012. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  1013. reg = readl(base + NvRegMIIControl);
  1014. if (reg & NVREG_MIICTL_INUSE) {
  1015. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  1016. udelay(NV_MIIBUSY_DELAY);
  1017. }
  1018. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  1019. if (value != MII_READ) {
  1020. writel(value, base + NvRegMIIData);
  1021. reg |= NVREG_MIICTL_WRITE;
  1022. }
  1023. writel(reg, base + NvRegMIIControl);
  1024. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1025. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  1026. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  1027. dev->name, miireg, addr);
  1028. retval = -1;
  1029. } else if (value != MII_READ) {
  1030. /* it was a write operation - fewer failures are detectable */
  1031. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1032. dev->name, value, miireg, addr);
  1033. retval = 0;
  1034. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1035. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1036. dev->name, miireg, addr);
  1037. retval = -1;
  1038. } else {
  1039. retval = readl(base + NvRegMIIData);
  1040. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1041. dev->name, miireg, addr, retval);
  1042. }
  1043. return retval;
  1044. }
  1045. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1046. {
  1047. struct fe_priv *np = netdev_priv(dev);
  1048. u32 miicontrol;
  1049. unsigned int tries = 0;
  1050. miicontrol = BMCR_RESET | bmcr_setup;
  1051. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1052. return -1;
  1053. }
  1054. /* wait for 500ms */
  1055. msleep(500);
  1056. /* must wait till reset is deasserted */
  1057. while (miicontrol & BMCR_RESET) {
  1058. msleep(10);
  1059. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1060. /* FIXME: 100 tries seem excessive */
  1061. if (tries++ > 100)
  1062. return -1;
  1063. }
  1064. return 0;
  1065. }
  1066. static int phy_init(struct net_device *dev)
  1067. {
  1068. struct fe_priv *np = get_nvpriv(dev);
  1069. u8 __iomem *base = get_hwbase(dev);
  1070. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1071. /* phy errata for E3016 phy */
  1072. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1073. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1074. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1075. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1076. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1077. return PHY_ERROR;
  1078. }
  1079. }
  1080. if (np->phy_oui == PHY_OUI_REALTEK) {
  1081. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1082. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1083. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1084. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1085. return PHY_ERROR;
  1086. }
  1087. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1088. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1089. return PHY_ERROR;
  1090. }
  1091. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1092. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1093. return PHY_ERROR;
  1094. }
  1095. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1096. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1097. return PHY_ERROR;
  1098. }
  1099. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1100. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1101. return PHY_ERROR;
  1102. }
  1103. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1104. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1105. return PHY_ERROR;
  1106. }
  1107. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1108. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1109. return PHY_ERROR;
  1110. }
  1111. }
  1112. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1113. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1114. u32 powerstate = readl(base + NvRegPowerState2);
  1115. /* need to perform hw phy reset */
  1116. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1117. writel(powerstate, base + NvRegPowerState2);
  1118. msleep(25);
  1119. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1120. writel(powerstate, base + NvRegPowerState2);
  1121. msleep(25);
  1122. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1123. reg |= PHY_REALTEK_INIT9;
  1124. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1125. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1126. return PHY_ERROR;
  1127. }
  1128. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1129. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1130. return PHY_ERROR;
  1131. }
  1132. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1133. if (!(reg & PHY_REALTEK_INIT11)) {
  1134. reg |= PHY_REALTEK_INIT11;
  1135. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1136. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1137. return PHY_ERROR;
  1138. }
  1139. }
  1140. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1141. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1142. return PHY_ERROR;
  1143. }
  1144. }
  1145. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1146. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1147. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1148. phy_reserved |= PHY_REALTEK_INIT7;
  1149. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1150. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1151. return PHY_ERROR;
  1152. }
  1153. }
  1154. }
  1155. }
  1156. /* set advertise register */
  1157. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1158. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1159. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1160. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1161. return PHY_ERROR;
  1162. }
  1163. /* get phy interface type */
  1164. phyinterface = readl(base + NvRegPhyInterface);
  1165. /* see if gigabit phy */
  1166. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1167. if (mii_status & PHY_GIGABIT) {
  1168. np->gigabit = PHY_GIGABIT;
  1169. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1170. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1171. if (phyinterface & PHY_RGMII)
  1172. mii_control_1000 |= ADVERTISE_1000FULL;
  1173. else
  1174. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1175. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1176. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1177. return PHY_ERROR;
  1178. }
  1179. }
  1180. else
  1181. np->gigabit = 0;
  1182. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1183. mii_control |= BMCR_ANENABLE;
  1184. if (np->phy_oui == PHY_OUI_REALTEK &&
  1185. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1186. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1187. /* start autoneg since we already performed hw reset above */
  1188. mii_control |= BMCR_ANRESTART;
  1189. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1190. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1191. return PHY_ERROR;
  1192. }
  1193. } else {
  1194. /* reset the phy
  1195. * (certain phys need bmcr to be setup with reset)
  1196. */
  1197. if (phy_reset(dev, mii_control)) {
  1198. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1199. return PHY_ERROR;
  1200. }
  1201. }
  1202. /* phy vendor specific configuration */
  1203. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1204. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1205. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1206. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1207. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1208. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1209. return PHY_ERROR;
  1210. }
  1211. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1212. phy_reserved |= PHY_CICADA_INIT5;
  1213. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1214. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1215. return PHY_ERROR;
  1216. }
  1217. }
  1218. if (np->phy_oui == PHY_OUI_CICADA) {
  1219. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1220. phy_reserved |= PHY_CICADA_INIT6;
  1221. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1222. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1223. return PHY_ERROR;
  1224. }
  1225. }
  1226. if (np->phy_oui == PHY_OUI_VITESSE) {
  1227. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1228. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1229. return PHY_ERROR;
  1230. }
  1231. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1232. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1233. return PHY_ERROR;
  1234. }
  1235. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1236. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1237. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1238. return PHY_ERROR;
  1239. }
  1240. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1241. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1242. phy_reserved |= PHY_VITESSE_INIT3;
  1243. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1244. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1245. return PHY_ERROR;
  1246. }
  1247. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1248. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1249. return PHY_ERROR;
  1250. }
  1251. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1252. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1253. return PHY_ERROR;
  1254. }
  1255. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1256. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1257. phy_reserved |= PHY_VITESSE_INIT3;
  1258. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1259. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1260. return PHY_ERROR;
  1261. }
  1262. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1263. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1264. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1265. return PHY_ERROR;
  1266. }
  1267. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1268. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1269. return PHY_ERROR;
  1270. }
  1271. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1272. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1273. return PHY_ERROR;
  1274. }
  1275. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1276. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1277. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1278. return PHY_ERROR;
  1279. }
  1280. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1281. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1282. phy_reserved |= PHY_VITESSE_INIT8;
  1283. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1284. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1285. return PHY_ERROR;
  1286. }
  1287. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1288. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1289. return PHY_ERROR;
  1290. }
  1291. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1292. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1293. return PHY_ERROR;
  1294. }
  1295. }
  1296. if (np->phy_oui == PHY_OUI_REALTEK) {
  1297. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1298. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1299. /* reset could have cleared these out, set them back */
  1300. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1301. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1302. return PHY_ERROR;
  1303. }
  1304. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1305. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1306. return PHY_ERROR;
  1307. }
  1308. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1309. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1310. return PHY_ERROR;
  1311. }
  1312. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1313. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1314. return PHY_ERROR;
  1315. }
  1316. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1317. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1318. return PHY_ERROR;
  1319. }
  1320. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1321. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1322. return PHY_ERROR;
  1323. }
  1324. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1325. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1326. return PHY_ERROR;
  1327. }
  1328. }
  1329. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1330. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1331. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1332. phy_reserved |= PHY_REALTEK_INIT7;
  1333. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1334. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1335. return PHY_ERROR;
  1336. }
  1337. }
  1338. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1339. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1340. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1341. return PHY_ERROR;
  1342. }
  1343. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1344. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1345. phy_reserved |= PHY_REALTEK_INIT3;
  1346. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1347. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1348. return PHY_ERROR;
  1349. }
  1350. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1351. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1352. return PHY_ERROR;
  1353. }
  1354. }
  1355. }
  1356. }
  1357. /* some phys clear out pause advertisment on reset, set it back */
  1358. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1359. /* restart auto negotiation, power down phy */
  1360. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1361. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1362. if (phy_power_down) {
  1363. mii_control |= BMCR_PDOWN;
  1364. }
  1365. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1366. return PHY_ERROR;
  1367. }
  1368. return 0;
  1369. }
  1370. static void nv_start_rx(struct net_device *dev)
  1371. {
  1372. struct fe_priv *np = netdev_priv(dev);
  1373. u8 __iomem *base = get_hwbase(dev);
  1374. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1375. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1376. /* Already running? Stop it. */
  1377. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1378. rx_ctrl &= ~NVREG_RCVCTL_START;
  1379. writel(rx_ctrl, base + NvRegReceiverControl);
  1380. pci_push(base);
  1381. }
  1382. writel(np->linkspeed, base + NvRegLinkSpeed);
  1383. pci_push(base);
  1384. rx_ctrl |= NVREG_RCVCTL_START;
  1385. if (np->mac_in_use)
  1386. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1387. writel(rx_ctrl, base + NvRegReceiverControl);
  1388. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1389. dev->name, np->duplex, np->linkspeed);
  1390. pci_push(base);
  1391. }
  1392. static void nv_stop_rx(struct net_device *dev)
  1393. {
  1394. struct fe_priv *np = netdev_priv(dev);
  1395. u8 __iomem *base = get_hwbase(dev);
  1396. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1397. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1398. if (!np->mac_in_use)
  1399. rx_ctrl &= ~NVREG_RCVCTL_START;
  1400. else
  1401. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1402. writel(rx_ctrl, base + NvRegReceiverControl);
  1403. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1404. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1405. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1406. udelay(NV_RXSTOP_DELAY2);
  1407. if (!np->mac_in_use)
  1408. writel(0, base + NvRegLinkSpeed);
  1409. }
  1410. static void nv_start_tx(struct net_device *dev)
  1411. {
  1412. struct fe_priv *np = netdev_priv(dev);
  1413. u8 __iomem *base = get_hwbase(dev);
  1414. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1415. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1416. tx_ctrl |= NVREG_XMITCTL_START;
  1417. if (np->mac_in_use)
  1418. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1419. writel(tx_ctrl, base + NvRegTransmitterControl);
  1420. pci_push(base);
  1421. }
  1422. static void nv_stop_tx(struct net_device *dev)
  1423. {
  1424. struct fe_priv *np = netdev_priv(dev);
  1425. u8 __iomem *base = get_hwbase(dev);
  1426. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1427. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1428. if (!np->mac_in_use)
  1429. tx_ctrl &= ~NVREG_XMITCTL_START;
  1430. else
  1431. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1432. writel(tx_ctrl, base + NvRegTransmitterControl);
  1433. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1434. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1435. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1436. udelay(NV_TXSTOP_DELAY2);
  1437. if (!np->mac_in_use)
  1438. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1439. base + NvRegTransmitPoll);
  1440. }
  1441. static void nv_start_rxtx(struct net_device *dev)
  1442. {
  1443. nv_start_rx(dev);
  1444. nv_start_tx(dev);
  1445. }
  1446. static void nv_stop_rxtx(struct net_device *dev)
  1447. {
  1448. nv_stop_rx(dev);
  1449. nv_stop_tx(dev);
  1450. }
  1451. static void nv_txrx_reset(struct net_device *dev)
  1452. {
  1453. struct fe_priv *np = netdev_priv(dev);
  1454. u8 __iomem *base = get_hwbase(dev);
  1455. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1456. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1457. pci_push(base);
  1458. udelay(NV_TXRX_RESET_DELAY);
  1459. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1460. pci_push(base);
  1461. }
  1462. static void nv_mac_reset(struct net_device *dev)
  1463. {
  1464. struct fe_priv *np = netdev_priv(dev);
  1465. u8 __iomem *base = get_hwbase(dev);
  1466. u32 temp1, temp2, temp3;
  1467. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1468. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1469. pci_push(base);
  1470. /* save registers since they will be cleared on reset */
  1471. temp1 = readl(base + NvRegMacAddrA);
  1472. temp2 = readl(base + NvRegMacAddrB);
  1473. temp3 = readl(base + NvRegTransmitPoll);
  1474. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1475. pci_push(base);
  1476. udelay(NV_MAC_RESET_DELAY);
  1477. writel(0, base + NvRegMacReset);
  1478. pci_push(base);
  1479. udelay(NV_MAC_RESET_DELAY);
  1480. /* restore saved registers */
  1481. writel(temp1, base + NvRegMacAddrA);
  1482. writel(temp2, base + NvRegMacAddrB);
  1483. writel(temp3, base + NvRegTransmitPoll);
  1484. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1485. pci_push(base);
  1486. }
  1487. static void nv_get_hw_stats(struct net_device *dev)
  1488. {
  1489. struct fe_priv *np = netdev_priv(dev);
  1490. u8 __iomem *base = get_hwbase(dev);
  1491. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1492. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1493. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1494. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1495. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1496. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1497. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1498. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1499. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1500. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1501. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1502. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1503. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1504. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1505. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1506. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1507. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1508. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1509. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1510. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1511. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1512. np->estats.rx_packets =
  1513. np->estats.rx_unicast +
  1514. np->estats.rx_multicast +
  1515. np->estats.rx_broadcast;
  1516. np->estats.rx_errors_total =
  1517. np->estats.rx_crc_errors +
  1518. np->estats.rx_over_errors +
  1519. np->estats.rx_frame_error +
  1520. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1521. np->estats.rx_late_collision +
  1522. np->estats.rx_runt +
  1523. np->estats.rx_frame_too_long;
  1524. np->estats.tx_errors_total =
  1525. np->estats.tx_late_collision +
  1526. np->estats.tx_fifo_errors +
  1527. np->estats.tx_carrier_errors +
  1528. np->estats.tx_excess_deferral +
  1529. np->estats.tx_retry_error;
  1530. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1531. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1532. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1533. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1534. np->estats.tx_pause += readl(base + NvRegTxPause);
  1535. np->estats.rx_pause += readl(base + NvRegRxPause);
  1536. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1537. }
  1538. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1539. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1540. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1541. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1542. }
  1543. }
  1544. /*
  1545. * nv_get_stats: dev->get_stats function
  1546. * Get latest stats value from the nic.
  1547. * Called with read_lock(&dev_base_lock) held for read -
  1548. * only synchronized against unregister_netdevice.
  1549. */
  1550. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1551. {
  1552. struct fe_priv *np = netdev_priv(dev);
  1553. /* If the nic supports hw counters then retrieve latest values */
  1554. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1555. nv_get_hw_stats(dev);
  1556. /* copy to net_device stats */
  1557. dev->stats.tx_bytes = np->estats.tx_bytes;
  1558. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1559. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1560. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1561. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1562. dev->stats.rx_errors = np->estats.rx_errors_total;
  1563. dev->stats.tx_errors = np->estats.tx_errors_total;
  1564. }
  1565. return &dev->stats;
  1566. }
  1567. /*
  1568. * nv_alloc_rx: fill rx ring entries.
  1569. * Return 1 if the allocations for the skbs failed and the
  1570. * rx engine is without Available descriptors
  1571. */
  1572. static int nv_alloc_rx(struct net_device *dev)
  1573. {
  1574. struct fe_priv *np = netdev_priv(dev);
  1575. struct ring_desc* less_rx;
  1576. less_rx = np->get_rx.orig;
  1577. if (less_rx-- == np->first_rx.orig)
  1578. less_rx = np->last_rx.orig;
  1579. while (np->put_rx.orig != less_rx) {
  1580. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1581. if (skb) {
  1582. np->put_rx_ctx->skb = skb;
  1583. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1584. skb->data,
  1585. skb_tailroom(skb),
  1586. PCI_DMA_FROMDEVICE);
  1587. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1588. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1589. wmb();
  1590. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1591. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1592. np->put_rx.orig = np->first_rx.orig;
  1593. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1594. np->put_rx_ctx = np->first_rx_ctx;
  1595. } else {
  1596. return 1;
  1597. }
  1598. }
  1599. return 0;
  1600. }
  1601. static int nv_alloc_rx_optimized(struct net_device *dev)
  1602. {
  1603. struct fe_priv *np = netdev_priv(dev);
  1604. struct ring_desc_ex* less_rx;
  1605. less_rx = np->get_rx.ex;
  1606. if (less_rx-- == np->first_rx.ex)
  1607. less_rx = np->last_rx.ex;
  1608. while (np->put_rx.ex != less_rx) {
  1609. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1610. if (skb) {
  1611. np->put_rx_ctx->skb = skb;
  1612. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1613. skb->data,
  1614. skb_tailroom(skb),
  1615. PCI_DMA_FROMDEVICE);
  1616. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1617. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1618. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1619. wmb();
  1620. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1621. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1622. np->put_rx.ex = np->first_rx.ex;
  1623. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1624. np->put_rx_ctx = np->first_rx_ctx;
  1625. } else {
  1626. return 1;
  1627. }
  1628. }
  1629. return 0;
  1630. }
  1631. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1632. static void nv_do_rx_refill(unsigned long data)
  1633. {
  1634. struct net_device *dev = (struct net_device *) data;
  1635. struct fe_priv *np = netdev_priv(dev);
  1636. /* Just reschedule NAPI rx processing */
  1637. napi_schedule(&np->napi);
  1638. }
  1639. static void nv_init_rx(struct net_device *dev)
  1640. {
  1641. struct fe_priv *np = netdev_priv(dev);
  1642. int i;
  1643. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1644. if (!nv_optimized(np))
  1645. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1646. else
  1647. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1648. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1649. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1650. for (i = 0; i < np->rx_ring_size; i++) {
  1651. if (!nv_optimized(np)) {
  1652. np->rx_ring.orig[i].flaglen = 0;
  1653. np->rx_ring.orig[i].buf = 0;
  1654. } else {
  1655. np->rx_ring.ex[i].flaglen = 0;
  1656. np->rx_ring.ex[i].txvlan = 0;
  1657. np->rx_ring.ex[i].bufhigh = 0;
  1658. np->rx_ring.ex[i].buflow = 0;
  1659. }
  1660. np->rx_skb[i].skb = NULL;
  1661. np->rx_skb[i].dma = 0;
  1662. }
  1663. }
  1664. static void nv_init_tx(struct net_device *dev)
  1665. {
  1666. struct fe_priv *np = netdev_priv(dev);
  1667. int i;
  1668. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1669. if (!nv_optimized(np))
  1670. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1671. else
  1672. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1673. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1674. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1675. np->tx_pkts_in_progress = 0;
  1676. np->tx_change_owner = NULL;
  1677. np->tx_end_flip = NULL;
  1678. np->tx_stop = 0;
  1679. for (i = 0; i < np->tx_ring_size; i++) {
  1680. if (!nv_optimized(np)) {
  1681. np->tx_ring.orig[i].flaglen = 0;
  1682. np->tx_ring.orig[i].buf = 0;
  1683. } else {
  1684. np->tx_ring.ex[i].flaglen = 0;
  1685. np->tx_ring.ex[i].txvlan = 0;
  1686. np->tx_ring.ex[i].bufhigh = 0;
  1687. np->tx_ring.ex[i].buflow = 0;
  1688. }
  1689. np->tx_skb[i].skb = NULL;
  1690. np->tx_skb[i].dma = 0;
  1691. np->tx_skb[i].dma_len = 0;
  1692. np->tx_skb[i].dma_single = 0;
  1693. np->tx_skb[i].first_tx_desc = NULL;
  1694. np->tx_skb[i].next_tx_ctx = NULL;
  1695. }
  1696. }
  1697. static int nv_init_ring(struct net_device *dev)
  1698. {
  1699. struct fe_priv *np = netdev_priv(dev);
  1700. nv_init_tx(dev);
  1701. nv_init_rx(dev);
  1702. if (!nv_optimized(np))
  1703. return nv_alloc_rx(dev);
  1704. else
  1705. return nv_alloc_rx_optimized(dev);
  1706. }
  1707. static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1708. {
  1709. if (tx_skb->dma) {
  1710. if (tx_skb->dma_single)
  1711. pci_unmap_single(np->pci_dev, tx_skb->dma,
  1712. tx_skb->dma_len,
  1713. PCI_DMA_TODEVICE);
  1714. else
  1715. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1716. tx_skb->dma_len,
  1717. PCI_DMA_TODEVICE);
  1718. tx_skb->dma = 0;
  1719. }
  1720. }
  1721. static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1722. {
  1723. nv_unmap_txskb(np, tx_skb);
  1724. if (tx_skb->skb) {
  1725. dev_kfree_skb_any(tx_skb->skb);
  1726. tx_skb->skb = NULL;
  1727. return 1;
  1728. }
  1729. return 0;
  1730. }
  1731. static void nv_drain_tx(struct net_device *dev)
  1732. {
  1733. struct fe_priv *np = netdev_priv(dev);
  1734. unsigned int i;
  1735. for (i = 0; i < np->tx_ring_size; i++) {
  1736. if (!nv_optimized(np)) {
  1737. np->tx_ring.orig[i].flaglen = 0;
  1738. np->tx_ring.orig[i].buf = 0;
  1739. } else {
  1740. np->tx_ring.ex[i].flaglen = 0;
  1741. np->tx_ring.ex[i].txvlan = 0;
  1742. np->tx_ring.ex[i].bufhigh = 0;
  1743. np->tx_ring.ex[i].buflow = 0;
  1744. }
  1745. if (nv_release_txskb(np, &np->tx_skb[i]))
  1746. dev->stats.tx_dropped++;
  1747. np->tx_skb[i].dma = 0;
  1748. np->tx_skb[i].dma_len = 0;
  1749. np->tx_skb[i].dma_single = 0;
  1750. np->tx_skb[i].first_tx_desc = NULL;
  1751. np->tx_skb[i].next_tx_ctx = NULL;
  1752. }
  1753. np->tx_pkts_in_progress = 0;
  1754. np->tx_change_owner = NULL;
  1755. np->tx_end_flip = NULL;
  1756. }
  1757. static void nv_drain_rx(struct net_device *dev)
  1758. {
  1759. struct fe_priv *np = netdev_priv(dev);
  1760. int i;
  1761. for (i = 0; i < np->rx_ring_size; i++) {
  1762. if (!nv_optimized(np)) {
  1763. np->rx_ring.orig[i].flaglen = 0;
  1764. np->rx_ring.orig[i].buf = 0;
  1765. } else {
  1766. np->rx_ring.ex[i].flaglen = 0;
  1767. np->rx_ring.ex[i].txvlan = 0;
  1768. np->rx_ring.ex[i].bufhigh = 0;
  1769. np->rx_ring.ex[i].buflow = 0;
  1770. }
  1771. wmb();
  1772. if (np->rx_skb[i].skb) {
  1773. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1774. (skb_end_pointer(np->rx_skb[i].skb) -
  1775. np->rx_skb[i].skb->data),
  1776. PCI_DMA_FROMDEVICE);
  1777. dev_kfree_skb(np->rx_skb[i].skb);
  1778. np->rx_skb[i].skb = NULL;
  1779. }
  1780. }
  1781. }
  1782. static void nv_drain_rxtx(struct net_device *dev)
  1783. {
  1784. nv_drain_tx(dev);
  1785. nv_drain_rx(dev);
  1786. }
  1787. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1788. {
  1789. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1790. }
  1791. static void nv_legacybackoff_reseed(struct net_device *dev)
  1792. {
  1793. u8 __iomem *base = get_hwbase(dev);
  1794. u32 reg;
  1795. u32 low;
  1796. int tx_status = 0;
  1797. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1798. get_random_bytes(&low, sizeof(low));
  1799. reg |= low & NVREG_SLOTTIME_MASK;
  1800. /* Need to stop tx before change takes effect.
  1801. * Caller has already gained np->lock.
  1802. */
  1803. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1804. if (tx_status)
  1805. nv_stop_tx(dev);
  1806. nv_stop_rx(dev);
  1807. writel(reg, base + NvRegSlotTime);
  1808. if (tx_status)
  1809. nv_start_tx(dev);
  1810. nv_start_rx(dev);
  1811. }
  1812. /* Gear Backoff Seeds */
  1813. #define BACKOFF_SEEDSET_ROWS 8
  1814. #define BACKOFF_SEEDSET_LFSRS 15
  1815. /* Known Good seed sets */
  1816. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1817. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1818. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1819. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1820. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1821. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1822. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1823. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1824. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1825. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1826. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1827. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1828. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1829. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1830. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1831. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1832. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1833. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1834. static void nv_gear_backoff_reseed(struct net_device *dev)
  1835. {
  1836. u8 __iomem *base = get_hwbase(dev);
  1837. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1838. u32 temp, seedset, combinedSeed;
  1839. int i;
  1840. /* Setup seed for free running LFSR */
  1841. /* We are going to read the time stamp counter 3 times
  1842. and swizzle bits around to increase randomness */
  1843. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1844. miniseed1 &= 0x0fff;
  1845. if (miniseed1 == 0)
  1846. miniseed1 = 0xabc;
  1847. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1848. miniseed2 &= 0x0fff;
  1849. if (miniseed2 == 0)
  1850. miniseed2 = 0xabc;
  1851. miniseed2_reversed =
  1852. ((miniseed2 & 0xF00) >> 8) |
  1853. (miniseed2 & 0x0F0) |
  1854. ((miniseed2 & 0x00F) << 8);
  1855. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1856. miniseed3 &= 0x0fff;
  1857. if (miniseed3 == 0)
  1858. miniseed3 = 0xabc;
  1859. miniseed3_reversed =
  1860. ((miniseed3 & 0xF00) >> 8) |
  1861. (miniseed3 & 0x0F0) |
  1862. ((miniseed3 & 0x00F) << 8);
  1863. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1864. (miniseed2 ^ miniseed3_reversed);
  1865. /* Seeds can not be zero */
  1866. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1867. combinedSeed |= 0x08;
  1868. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1869. combinedSeed |= 0x8000;
  1870. /* No need to disable tx here */
  1871. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1872. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1873. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1874. writel(temp,base + NvRegBackOffControl);
  1875. /* Setup seeds for all gear LFSRs. */
  1876. get_random_bytes(&seedset, sizeof(seedset));
  1877. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1878. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1879. {
  1880. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1881. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1882. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1883. writel(temp, base + NvRegBackOffControl);
  1884. }
  1885. }
  1886. /*
  1887. * nv_start_xmit: dev->hard_start_xmit function
  1888. * Called with netif_tx_lock held.
  1889. */
  1890. static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1891. {
  1892. struct fe_priv *np = netdev_priv(dev);
  1893. u32 tx_flags = 0;
  1894. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1895. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1896. unsigned int i;
  1897. u32 offset = 0;
  1898. u32 bcnt;
  1899. u32 size = skb_headlen(skb);
  1900. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1901. u32 empty_slots;
  1902. struct ring_desc* put_tx;
  1903. struct ring_desc* start_tx;
  1904. struct ring_desc* prev_tx;
  1905. struct nv_skb_map* prev_tx_ctx;
  1906. unsigned long flags;
  1907. /* add fragments to entries count */
  1908. for (i = 0; i < fragments; i++) {
  1909. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1910. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1911. }
  1912. spin_lock_irqsave(&np->lock, flags);
  1913. empty_slots = nv_get_empty_tx_slots(np);
  1914. if (unlikely(empty_slots <= entries)) {
  1915. netif_stop_queue(dev);
  1916. np->tx_stop = 1;
  1917. spin_unlock_irqrestore(&np->lock, flags);
  1918. return NETDEV_TX_BUSY;
  1919. }
  1920. spin_unlock_irqrestore(&np->lock, flags);
  1921. start_tx = put_tx = np->put_tx.orig;
  1922. /* setup the header buffer */
  1923. do {
  1924. prev_tx = put_tx;
  1925. prev_tx_ctx = np->put_tx_ctx;
  1926. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1927. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1928. PCI_DMA_TODEVICE);
  1929. np->put_tx_ctx->dma_len = bcnt;
  1930. np->put_tx_ctx->dma_single = 1;
  1931. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1932. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1933. tx_flags = np->tx_flags;
  1934. offset += bcnt;
  1935. size -= bcnt;
  1936. if (unlikely(put_tx++ == np->last_tx.orig))
  1937. put_tx = np->first_tx.orig;
  1938. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1939. np->put_tx_ctx = np->first_tx_ctx;
  1940. } while (size);
  1941. /* setup the fragments */
  1942. for (i = 0; i < fragments; i++) {
  1943. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1944. u32 size = frag->size;
  1945. offset = 0;
  1946. do {
  1947. prev_tx = put_tx;
  1948. prev_tx_ctx = np->put_tx_ctx;
  1949. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1950. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1951. PCI_DMA_TODEVICE);
  1952. np->put_tx_ctx->dma_len = bcnt;
  1953. np->put_tx_ctx->dma_single = 0;
  1954. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1955. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1956. offset += bcnt;
  1957. size -= bcnt;
  1958. if (unlikely(put_tx++ == np->last_tx.orig))
  1959. put_tx = np->first_tx.orig;
  1960. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1961. np->put_tx_ctx = np->first_tx_ctx;
  1962. } while (size);
  1963. }
  1964. /* set last fragment flag */
  1965. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1966. /* save skb in this slot's context area */
  1967. prev_tx_ctx->skb = skb;
  1968. if (skb_is_gso(skb))
  1969. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1970. else
  1971. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1972. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1973. spin_lock_irqsave(&np->lock, flags);
  1974. /* set tx flags */
  1975. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1976. np->put_tx.orig = put_tx;
  1977. spin_unlock_irqrestore(&np->lock, flags);
  1978. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1979. dev->name, entries, tx_flags_extra);
  1980. {
  1981. int j;
  1982. for (j=0; j<64; j++) {
  1983. if ((j%16) == 0)
  1984. dprintk("\n%03x:", j);
  1985. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1986. }
  1987. dprintk("\n");
  1988. }
  1989. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1990. return NETDEV_TX_OK;
  1991. }
  1992. static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
  1993. struct net_device *dev)
  1994. {
  1995. struct fe_priv *np = netdev_priv(dev);
  1996. u32 tx_flags = 0;
  1997. u32 tx_flags_extra;
  1998. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1999. unsigned int i;
  2000. u32 offset = 0;
  2001. u32 bcnt;
  2002. u32 size = skb_headlen(skb);
  2003. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2004. u32 empty_slots;
  2005. struct ring_desc_ex* put_tx;
  2006. struct ring_desc_ex* start_tx;
  2007. struct ring_desc_ex* prev_tx;
  2008. struct nv_skb_map* prev_tx_ctx;
  2009. struct nv_skb_map* start_tx_ctx;
  2010. unsigned long flags;
  2011. /* add fragments to entries count */
  2012. for (i = 0; i < fragments; i++) {
  2013. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  2014. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2015. }
  2016. spin_lock_irqsave(&np->lock, flags);
  2017. empty_slots = nv_get_empty_tx_slots(np);
  2018. if (unlikely(empty_slots <= entries)) {
  2019. netif_stop_queue(dev);
  2020. np->tx_stop = 1;
  2021. spin_unlock_irqrestore(&np->lock, flags);
  2022. return NETDEV_TX_BUSY;
  2023. }
  2024. spin_unlock_irqrestore(&np->lock, flags);
  2025. start_tx = put_tx = np->put_tx.ex;
  2026. start_tx_ctx = np->put_tx_ctx;
  2027. /* setup the header buffer */
  2028. do {
  2029. prev_tx = put_tx;
  2030. prev_tx_ctx = np->put_tx_ctx;
  2031. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2032. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2033. PCI_DMA_TODEVICE);
  2034. np->put_tx_ctx->dma_len = bcnt;
  2035. np->put_tx_ctx->dma_single = 1;
  2036. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2037. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2038. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2039. tx_flags = NV_TX2_VALID;
  2040. offset += bcnt;
  2041. size -= bcnt;
  2042. if (unlikely(put_tx++ == np->last_tx.ex))
  2043. put_tx = np->first_tx.ex;
  2044. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2045. np->put_tx_ctx = np->first_tx_ctx;
  2046. } while (size);
  2047. /* setup the fragments */
  2048. for (i = 0; i < fragments; i++) {
  2049. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2050. u32 size = frag->size;
  2051. offset = 0;
  2052. do {
  2053. prev_tx = put_tx;
  2054. prev_tx_ctx = np->put_tx_ctx;
  2055. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2056. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2057. PCI_DMA_TODEVICE);
  2058. np->put_tx_ctx->dma_len = bcnt;
  2059. np->put_tx_ctx->dma_single = 0;
  2060. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2061. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2062. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2063. offset += bcnt;
  2064. size -= bcnt;
  2065. if (unlikely(put_tx++ == np->last_tx.ex))
  2066. put_tx = np->first_tx.ex;
  2067. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2068. np->put_tx_ctx = np->first_tx_ctx;
  2069. } while (size);
  2070. }
  2071. /* set last fragment flag */
  2072. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2073. /* save skb in this slot's context area */
  2074. prev_tx_ctx->skb = skb;
  2075. if (skb_is_gso(skb))
  2076. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2077. else
  2078. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2079. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2080. /* vlan tag */
  2081. if (likely(!np->vlangrp)) {
  2082. start_tx->txvlan = 0;
  2083. } else {
  2084. if (vlan_tx_tag_present(skb))
  2085. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2086. else
  2087. start_tx->txvlan = 0;
  2088. }
  2089. spin_lock_irqsave(&np->lock, flags);
  2090. if (np->tx_limit) {
  2091. /* Limit the number of outstanding tx. Setup all fragments, but
  2092. * do not set the VALID bit on the first descriptor. Save a pointer
  2093. * to that descriptor and also for next skb_map element.
  2094. */
  2095. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2096. if (!np->tx_change_owner)
  2097. np->tx_change_owner = start_tx_ctx;
  2098. /* remove VALID bit */
  2099. tx_flags &= ~NV_TX2_VALID;
  2100. start_tx_ctx->first_tx_desc = start_tx;
  2101. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2102. np->tx_end_flip = np->put_tx_ctx;
  2103. } else {
  2104. np->tx_pkts_in_progress++;
  2105. }
  2106. }
  2107. /* set tx flags */
  2108. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2109. np->put_tx.ex = put_tx;
  2110. spin_unlock_irqrestore(&np->lock, flags);
  2111. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2112. dev->name, entries, tx_flags_extra);
  2113. {
  2114. int j;
  2115. for (j=0; j<64; j++) {
  2116. if ((j%16) == 0)
  2117. dprintk("\n%03x:", j);
  2118. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2119. }
  2120. dprintk("\n");
  2121. }
  2122. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2123. return NETDEV_TX_OK;
  2124. }
  2125. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2126. {
  2127. struct fe_priv *np = netdev_priv(dev);
  2128. np->tx_pkts_in_progress--;
  2129. if (np->tx_change_owner) {
  2130. np->tx_change_owner->first_tx_desc->flaglen |=
  2131. cpu_to_le32(NV_TX2_VALID);
  2132. np->tx_pkts_in_progress++;
  2133. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2134. if (np->tx_change_owner == np->tx_end_flip)
  2135. np->tx_change_owner = NULL;
  2136. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2137. }
  2138. }
  2139. /*
  2140. * nv_tx_done: check for completed packets, release the skbs.
  2141. *
  2142. * Caller must own np->lock.
  2143. */
  2144. static int nv_tx_done(struct net_device *dev, int limit)
  2145. {
  2146. struct fe_priv *np = netdev_priv(dev);
  2147. u32 flags;
  2148. int tx_work = 0;
  2149. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2150. while ((np->get_tx.orig != np->put_tx.orig) &&
  2151. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2152. (tx_work < limit)) {
  2153. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2154. dev->name, flags);
  2155. nv_unmap_txskb(np, np->get_tx_ctx);
  2156. if (np->desc_ver == DESC_VER_1) {
  2157. if (flags & NV_TX_LASTPACKET) {
  2158. if (flags & NV_TX_ERROR) {
  2159. if (flags & NV_TX_UNDERFLOW)
  2160. dev->stats.tx_fifo_errors++;
  2161. if (flags & NV_TX_CARRIERLOST)
  2162. dev->stats.tx_carrier_errors++;
  2163. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2164. nv_legacybackoff_reseed(dev);
  2165. dev->stats.tx_errors++;
  2166. } else {
  2167. dev->stats.tx_packets++;
  2168. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2169. }
  2170. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2171. np->get_tx_ctx->skb = NULL;
  2172. tx_work++;
  2173. }
  2174. } else {
  2175. if (flags & NV_TX2_LASTPACKET) {
  2176. if (flags & NV_TX2_ERROR) {
  2177. if (flags & NV_TX2_UNDERFLOW)
  2178. dev->stats.tx_fifo_errors++;
  2179. if (flags & NV_TX2_CARRIERLOST)
  2180. dev->stats.tx_carrier_errors++;
  2181. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2182. nv_legacybackoff_reseed(dev);
  2183. dev->stats.tx_errors++;
  2184. } else {
  2185. dev->stats.tx_packets++;
  2186. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2187. }
  2188. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2189. np->get_tx_ctx->skb = NULL;
  2190. tx_work++;
  2191. }
  2192. }
  2193. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2194. np->get_tx.orig = np->first_tx.orig;
  2195. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2196. np->get_tx_ctx = np->first_tx_ctx;
  2197. }
  2198. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2199. np->tx_stop = 0;
  2200. netif_wake_queue(dev);
  2201. }
  2202. return tx_work;
  2203. }
  2204. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2205. {
  2206. struct fe_priv *np = netdev_priv(dev);
  2207. u32 flags;
  2208. int tx_work = 0;
  2209. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2210. while ((np->get_tx.ex != np->put_tx.ex) &&
  2211. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
  2212. (tx_work < limit)) {
  2213. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2214. dev->name, flags);
  2215. nv_unmap_txskb(np, np->get_tx_ctx);
  2216. if (flags & NV_TX2_LASTPACKET) {
  2217. if (!(flags & NV_TX2_ERROR))
  2218. dev->stats.tx_packets++;
  2219. else {
  2220. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2221. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2222. nv_gear_backoff_reseed(dev);
  2223. else
  2224. nv_legacybackoff_reseed(dev);
  2225. }
  2226. }
  2227. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2228. np->get_tx_ctx->skb = NULL;
  2229. tx_work++;
  2230. if (np->tx_limit) {
  2231. nv_tx_flip_ownership(dev);
  2232. }
  2233. }
  2234. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2235. np->get_tx.ex = np->first_tx.ex;
  2236. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2237. np->get_tx_ctx = np->first_tx_ctx;
  2238. }
  2239. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2240. np->tx_stop = 0;
  2241. netif_wake_queue(dev);
  2242. }
  2243. return tx_work;
  2244. }
  2245. /*
  2246. * nv_tx_timeout: dev->tx_timeout function
  2247. * Called with netif_tx_lock held.
  2248. */
  2249. static void nv_tx_timeout(struct net_device *dev)
  2250. {
  2251. struct fe_priv *np = netdev_priv(dev);
  2252. u8 __iomem *base = get_hwbase(dev);
  2253. u32 status;
  2254. union ring_type put_tx;
  2255. int saved_tx_limit;
  2256. if (np->msi_flags & NV_MSI_X_ENABLED)
  2257. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2258. else
  2259. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2260. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2261. {
  2262. int i;
  2263. printk(KERN_INFO "%s: Ring at %lx\n",
  2264. dev->name, (unsigned long)np->ring_addr);
  2265. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2266. for (i=0;i<=np->register_size;i+= 32) {
  2267. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2268. i,
  2269. readl(base + i + 0), readl(base + i + 4),
  2270. readl(base + i + 8), readl(base + i + 12),
  2271. readl(base + i + 16), readl(base + i + 20),
  2272. readl(base + i + 24), readl(base + i + 28));
  2273. }
  2274. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2275. for (i=0;i<np->tx_ring_size;i+= 4) {
  2276. if (!nv_optimized(np)) {
  2277. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2278. i,
  2279. le32_to_cpu(np->tx_ring.orig[i].buf),
  2280. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2281. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2282. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2283. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2284. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2285. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2286. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2287. } else {
  2288. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2289. i,
  2290. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2291. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2292. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2293. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2294. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2295. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2296. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2297. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2298. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2299. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2300. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2301. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2302. }
  2303. }
  2304. }
  2305. spin_lock_irq(&np->lock);
  2306. /* 1) stop tx engine */
  2307. nv_stop_tx(dev);
  2308. /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
  2309. saved_tx_limit = np->tx_limit;
  2310. np->tx_limit = 0; /* prevent giving HW any limited pkts */
  2311. np->tx_stop = 0; /* prevent waking tx queue */
  2312. if (!nv_optimized(np))
  2313. nv_tx_done(dev, np->tx_ring_size);
  2314. else
  2315. nv_tx_done_optimized(dev, np->tx_ring_size);
  2316. /* save current HW postion */
  2317. if (np->tx_change_owner)
  2318. put_tx.ex = np->tx_change_owner->first_tx_desc;
  2319. else
  2320. put_tx = np->put_tx;
  2321. /* 3) clear all tx state */
  2322. nv_drain_tx(dev);
  2323. nv_init_tx(dev);
  2324. /* 4) restore state to current HW position */
  2325. np->get_tx = np->put_tx = put_tx;
  2326. np->tx_limit = saved_tx_limit;
  2327. /* 5) restart tx engine */
  2328. nv_start_tx(dev);
  2329. netif_wake_queue(dev);
  2330. spin_unlock_irq(&np->lock);
  2331. }
  2332. /*
  2333. * Called when the nic notices a mismatch between the actual data len on the
  2334. * wire and the len indicated in the 802 header
  2335. */
  2336. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2337. {
  2338. int hdrlen; /* length of the 802 header */
  2339. int protolen; /* length as stored in the proto field */
  2340. /* 1) calculate len according to header */
  2341. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2342. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2343. hdrlen = VLAN_HLEN;
  2344. } else {
  2345. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2346. hdrlen = ETH_HLEN;
  2347. }
  2348. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2349. dev->name, datalen, protolen, hdrlen);
  2350. if (protolen > ETH_DATA_LEN)
  2351. return datalen; /* Value in proto field not a len, no checks possible */
  2352. protolen += hdrlen;
  2353. /* consistency checks: */
  2354. if (datalen > ETH_ZLEN) {
  2355. if (datalen >= protolen) {
  2356. /* more data on wire than in 802 header, trim of
  2357. * additional data.
  2358. */
  2359. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2360. dev->name, protolen);
  2361. return protolen;
  2362. } else {
  2363. /* less data on wire than mentioned in header.
  2364. * Discard the packet.
  2365. */
  2366. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2367. dev->name);
  2368. return -1;
  2369. }
  2370. } else {
  2371. /* short packet. Accept only if 802 values are also short */
  2372. if (protolen > ETH_ZLEN) {
  2373. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2374. dev->name);
  2375. return -1;
  2376. }
  2377. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2378. dev->name, datalen);
  2379. return datalen;
  2380. }
  2381. }
  2382. static int nv_rx_process(struct net_device *dev, int limit)
  2383. {
  2384. struct fe_priv *np = netdev_priv(dev);
  2385. u32 flags;
  2386. int rx_work = 0;
  2387. struct sk_buff *skb;
  2388. int len;
  2389. while((np->get_rx.orig != np->put_rx.orig) &&
  2390. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2391. (rx_work < limit)) {
  2392. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2393. dev->name, flags);
  2394. /*
  2395. * the packet is for us - immediately tear down the pci mapping.
  2396. * TODO: check if a prefetch of the first cacheline improves
  2397. * the performance.
  2398. */
  2399. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2400. np->get_rx_ctx->dma_len,
  2401. PCI_DMA_FROMDEVICE);
  2402. skb = np->get_rx_ctx->skb;
  2403. np->get_rx_ctx->skb = NULL;
  2404. {
  2405. int j;
  2406. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2407. for (j=0; j<64; j++) {
  2408. if ((j%16) == 0)
  2409. dprintk("\n%03x:", j);
  2410. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2411. }
  2412. dprintk("\n");
  2413. }
  2414. /* look at what we actually got: */
  2415. if (np->desc_ver == DESC_VER_1) {
  2416. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2417. len = flags & LEN_MASK_V1;
  2418. if (unlikely(flags & NV_RX_ERROR)) {
  2419. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2420. len = nv_getlen(dev, skb->data, len);
  2421. if (len < 0) {
  2422. dev->stats.rx_errors++;
  2423. dev_kfree_skb(skb);
  2424. goto next_pkt;
  2425. }
  2426. }
  2427. /* framing errors are soft errors */
  2428. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2429. if (flags & NV_RX_SUBSTRACT1) {
  2430. len--;
  2431. }
  2432. }
  2433. /* the rest are hard errors */
  2434. else {
  2435. if (flags & NV_RX_MISSEDFRAME)
  2436. dev->stats.rx_missed_errors++;
  2437. if (flags & NV_RX_CRCERR)
  2438. dev->stats.rx_crc_errors++;
  2439. if (flags & NV_RX_OVERFLOW)
  2440. dev->stats.rx_over_errors++;
  2441. dev->stats.rx_errors++;
  2442. dev_kfree_skb(skb);
  2443. goto next_pkt;
  2444. }
  2445. }
  2446. } else {
  2447. dev_kfree_skb(skb);
  2448. goto next_pkt;
  2449. }
  2450. } else {
  2451. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2452. len = flags & LEN_MASK_V2;
  2453. if (unlikely(flags & NV_RX2_ERROR)) {
  2454. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2455. len = nv_getlen(dev, skb->data, len);
  2456. if (len < 0) {
  2457. dev->stats.rx_errors++;
  2458. dev_kfree_skb(skb);
  2459. goto next_pkt;
  2460. }
  2461. }
  2462. /* framing errors are soft errors */
  2463. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2464. if (flags & NV_RX2_SUBSTRACT1) {
  2465. len--;
  2466. }
  2467. }
  2468. /* the rest are hard errors */
  2469. else {
  2470. if (flags & NV_RX2_CRCERR)
  2471. dev->stats.rx_crc_errors++;
  2472. if (flags & NV_RX2_OVERFLOW)
  2473. dev->stats.rx_over_errors++;
  2474. dev->stats.rx_errors++;
  2475. dev_kfree_skb(skb);
  2476. goto next_pkt;
  2477. }
  2478. }
  2479. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2480. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2481. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2482. } else {
  2483. dev_kfree_skb(skb);
  2484. goto next_pkt;
  2485. }
  2486. }
  2487. /* got a valid packet - forward it to the network core */
  2488. skb_put(skb, len);
  2489. skb->protocol = eth_type_trans(skb, dev);
  2490. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2491. dev->name, len, skb->protocol);
  2492. napi_gro_receive(&np->napi, skb);
  2493. dev->stats.rx_packets++;
  2494. dev->stats.rx_bytes += len;
  2495. next_pkt:
  2496. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2497. np->get_rx.orig = np->first_rx.orig;
  2498. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2499. np->get_rx_ctx = np->first_rx_ctx;
  2500. rx_work++;
  2501. }
  2502. return rx_work;
  2503. }
  2504. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2505. {
  2506. struct fe_priv *np = netdev_priv(dev);
  2507. u32 flags;
  2508. u32 vlanflags = 0;
  2509. int rx_work = 0;
  2510. struct sk_buff *skb;
  2511. int len;
  2512. while((np->get_rx.ex != np->put_rx.ex) &&
  2513. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2514. (rx_work < limit)) {
  2515. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2516. dev->name, flags);
  2517. /*
  2518. * the packet is for us - immediately tear down the pci mapping.
  2519. * TODO: check if a prefetch of the first cacheline improves
  2520. * the performance.
  2521. */
  2522. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2523. np->get_rx_ctx->dma_len,
  2524. PCI_DMA_FROMDEVICE);
  2525. skb = np->get_rx_ctx->skb;
  2526. np->get_rx_ctx->skb = NULL;
  2527. {
  2528. int j;
  2529. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2530. for (j=0; j<64; j++) {
  2531. if ((j%16) == 0)
  2532. dprintk("\n%03x:", j);
  2533. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2534. }
  2535. dprintk("\n");
  2536. }
  2537. /* look at what we actually got: */
  2538. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2539. len = flags & LEN_MASK_V2;
  2540. if (unlikely(flags & NV_RX2_ERROR)) {
  2541. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2542. len = nv_getlen(dev, skb->data, len);
  2543. if (len < 0) {
  2544. dev_kfree_skb(skb);
  2545. goto next_pkt;
  2546. }
  2547. }
  2548. /* framing errors are soft errors */
  2549. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2550. if (flags & NV_RX2_SUBSTRACT1) {
  2551. len--;
  2552. }
  2553. }
  2554. /* the rest are hard errors */
  2555. else {
  2556. dev_kfree_skb(skb);
  2557. goto next_pkt;
  2558. }
  2559. }
  2560. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2561. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2562. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2563. /* got a valid packet - forward it to the network core */
  2564. skb_put(skb, len);
  2565. skb->protocol = eth_type_trans(skb, dev);
  2566. prefetch(skb->data);
  2567. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2568. dev->name, len, skb->protocol);
  2569. if (likely(!np->vlangrp)) {
  2570. napi_gro_receive(&np->napi, skb);
  2571. } else {
  2572. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2573. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2574. vlan_gro_receive(&np->napi, np->vlangrp,
  2575. vlanflags & NV_RX3_VLAN_TAG_MASK, skb);
  2576. } else {
  2577. napi_gro_receive(&np->napi, skb);
  2578. }
  2579. }
  2580. dev->stats.rx_packets++;
  2581. dev->stats.rx_bytes += len;
  2582. } else {
  2583. dev_kfree_skb(skb);
  2584. }
  2585. next_pkt:
  2586. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2587. np->get_rx.ex = np->first_rx.ex;
  2588. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2589. np->get_rx_ctx = np->first_rx_ctx;
  2590. rx_work++;
  2591. }
  2592. return rx_work;
  2593. }
  2594. static void set_bufsize(struct net_device *dev)
  2595. {
  2596. struct fe_priv *np = netdev_priv(dev);
  2597. if (dev->mtu <= ETH_DATA_LEN)
  2598. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2599. else
  2600. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2601. }
  2602. /*
  2603. * nv_change_mtu: dev->change_mtu function
  2604. * Called with dev_base_lock held for read.
  2605. */
  2606. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2607. {
  2608. struct fe_priv *np = netdev_priv(dev);
  2609. int old_mtu;
  2610. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2611. return -EINVAL;
  2612. old_mtu = dev->mtu;
  2613. dev->mtu = new_mtu;
  2614. /* return early if the buffer sizes will not change */
  2615. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2616. return 0;
  2617. if (old_mtu == new_mtu)
  2618. return 0;
  2619. /* synchronized against open : rtnl_lock() held by caller */
  2620. if (netif_running(dev)) {
  2621. u8 __iomem *base = get_hwbase(dev);
  2622. /*
  2623. * It seems that the nic preloads valid ring entries into an
  2624. * internal buffer. The procedure for flushing everything is
  2625. * guessed, there is probably a simpler approach.
  2626. * Changing the MTU is a rare event, it shouldn't matter.
  2627. */
  2628. nv_disable_irq(dev);
  2629. nv_napi_disable(dev);
  2630. netif_tx_lock_bh(dev);
  2631. netif_addr_lock(dev);
  2632. spin_lock(&np->lock);
  2633. /* stop engines */
  2634. nv_stop_rxtx(dev);
  2635. nv_txrx_reset(dev);
  2636. /* drain rx queue */
  2637. nv_drain_rxtx(dev);
  2638. /* reinit driver view of the rx queue */
  2639. set_bufsize(dev);
  2640. if (nv_init_ring(dev)) {
  2641. if (!np->in_shutdown)
  2642. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2643. }
  2644. /* reinit nic view of the rx queue */
  2645. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2646. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2647. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2648. base + NvRegRingSizes);
  2649. pci_push(base);
  2650. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2651. pci_push(base);
  2652. /* restart rx engine */
  2653. nv_start_rxtx(dev);
  2654. spin_unlock(&np->lock);
  2655. netif_addr_unlock(dev);
  2656. netif_tx_unlock_bh(dev);
  2657. nv_napi_enable(dev);
  2658. nv_enable_irq(dev);
  2659. }
  2660. return 0;
  2661. }
  2662. static void nv_copy_mac_to_hw(struct net_device *dev)
  2663. {
  2664. u8 __iomem *base = get_hwbase(dev);
  2665. u32 mac[2];
  2666. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2667. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2668. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2669. writel(mac[0], base + NvRegMacAddrA);
  2670. writel(mac[1], base + NvRegMacAddrB);
  2671. }
  2672. /*
  2673. * nv_set_mac_address: dev->set_mac_address function
  2674. * Called with rtnl_lock() held.
  2675. */
  2676. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2677. {
  2678. struct fe_priv *np = netdev_priv(dev);
  2679. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2680. if (!is_valid_ether_addr(macaddr->sa_data))
  2681. return -EADDRNOTAVAIL;
  2682. /* synchronized against open : rtnl_lock() held by caller */
  2683. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2684. if (netif_running(dev)) {
  2685. netif_tx_lock_bh(dev);
  2686. netif_addr_lock(dev);
  2687. spin_lock_irq(&np->lock);
  2688. /* stop rx engine */
  2689. nv_stop_rx(dev);
  2690. /* set mac address */
  2691. nv_copy_mac_to_hw(dev);
  2692. /* restart rx engine */
  2693. nv_start_rx(dev);
  2694. spin_unlock_irq(&np->lock);
  2695. netif_addr_unlock(dev);
  2696. netif_tx_unlock_bh(dev);
  2697. } else {
  2698. nv_copy_mac_to_hw(dev);
  2699. }
  2700. return 0;
  2701. }
  2702. /*
  2703. * nv_set_multicast: dev->set_multicast function
  2704. * Called with netif_tx_lock held.
  2705. */
  2706. static void nv_set_multicast(struct net_device *dev)
  2707. {
  2708. struct fe_priv *np = netdev_priv(dev);
  2709. u8 __iomem *base = get_hwbase(dev);
  2710. u32 addr[2];
  2711. u32 mask[2];
  2712. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2713. memset(addr, 0, sizeof(addr));
  2714. memset(mask, 0, sizeof(mask));
  2715. if (dev->flags & IFF_PROMISC) {
  2716. pff |= NVREG_PFF_PROMISC;
  2717. } else {
  2718. pff |= NVREG_PFF_MYADDR;
  2719. if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
  2720. u32 alwaysOff[2];
  2721. u32 alwaysOn[2];
  2722. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2723. if (dev->flags & IFF_ALLMULTI) {
  2724. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2725. } else {
  2726. struct netdev_hw_addr *ha;
  2727. netdev_for_each_mc_addr(ha, dev) {
  2728. unsigned char *addr = ha->addr;
  2729. u32 a, b;
  2730. a = le32_to_cpu(*(__le32 *) addr);
  2731. b = le16_to_cpu(*(__le16 *) (&addr[4]));
  2732. alwaysOn[0] &= a;
  2733. alwaysOff[0] &= ~a;
  2734. alwaysOn[1] &= b;
  2735. alwaysOff[1] &= ~b;
  2736. }
  2737. }
  2738. addr[0] = alwaysOn[0];
  2739. addr[1] = alwaysOn[1];
  2740. mask[0] = alwaysOn[0] | alwaysOff[0];
  2741. mask[1] = alwaysOn[1] | alwaysOff[1];
  2742. } else {
  2743. mask[0] = NVREG_MCASTMASKA_NONE;
  2744. mask[1] = NVREG_MCASTMASKB_NONE;
  2745. }
  2746. }
  2747. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2748. pff |= NVREG_PFF_ALWAYS;
  2749. spin_lock_irq(&np->lock);
  2750. nv_stop_rx(dev);
  2751. writel(addr[0], base + NvRegMulticastAddrA);
  2752. writel(addr[1], base + NvRegMulticastAddrB);
  2753. writel(mask[0], base + NvRegMulticastMaskA);
  2754. writel(mask[1], base + NvRegMulticastMaskB);
  2755. writel(pff, base + NvRegPacketFilterFlags);
  2756. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2757. dev->name);
  2758. nv_start_rx(dev);
  2759. spin_unlock_irq(&np->lock);
  2760. }
  2761. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2762. {
  2763. struct fe_priv *np = netdev_priv(dev);
  2764. u8 __iomem *base = get_hwbase(dev);
  2765. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2766. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2767. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2768. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2769. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2770. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2771. } else {
  2772. writel(pff, base + NvRegPacketFilterFlags);
  2773. }
  2774. }
  2775. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2776. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2777. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2778. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2779. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2780. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2781. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2782. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2783. /* limit the number of tx pause frames to a default of 8 */
  2784. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2785. }
  2786. writel(pause_enable, base + NvRegTxPauseFrame);
  2787. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2788. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2789. } else {
  2790. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2791. writel(regmisc, base + NvRegMisc1);
  2792. }
  2793. }
  2794. }
  2795. /**
  2796. * nv_update_linkspeed: Setup the MAC according to the link partner
  2797. * @dev: Network device to be configured
  2798. *
  2799. * The function queries the PHY and checks if there is a link partner.
  2800. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2801. * set to 10 MBit HD.
  2802. *
  2803. * The function returns 0 if there is no link partner and 1 if there is
  2804. * a good link partner.
  2805. */
  2806. static int nv_update_linkspeed(struct net_device *dev)
  2807. {
  2808. struct fe_priv *np = netdev_priv(dev);
  2809. u8 __iomem *base = get_hwbase(dev);
  2810. int adv = 0;
  2811. int lpa = 0;
  2812. int adv_lpa, adv_pause, lpa_pause;
  2813. int newls = np->linkspeed;
  2814. int newdup = np->duplex;
  2815. int mii_status;
  2816. int retval = 0;
  2817. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2818. u32 txrxFlags = 0;
  2819. u32 phy_exp;
  2820. /* BMSR_LSTATUS is latched, read it twice:
  2821. * we want the current value.
  2822. */
  2823. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2824. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2825. if (!(mii_status & BMSR_LSTATUS)) {
  2826. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2827. dev->name);
  2828. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2829. newdup = 0;
  2830. retval = 0;
  2831. goto set_speed;
  2832. }
  2833. if (np->autoneg == 0) {
  2834. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2835. dev->name, np->fixed_mode);
  2836. if (np->fixed_mode & LPA_100FULL) {
  2837. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2838. newdup = 1;
  2839. } else if (np->fixed_mode & LPA_100HALF) {
  2840. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2841. newdup = 0;
  2842. } else if (np->fixed_mode & LPA_10FULL) {
  2843. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2844. newdup = 1;
  2845. } else {
  2846. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2847. newdup = 0;
  2848. }
  2849. retval = 1;
  2850. goto set_speed;
  2851. }
  2852. /* check auto negotiation is complete */
  2853. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2854. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2855. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2856. newdup = 0;
  2857. retval = 0;
  2858. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2859. goto set_speed;
  2860. }
  2861. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2862. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2863. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2864. dev->name, adv, lpa);
  2865. retval = 1;
  2866. if (np->gigabit == PHY_GIGABIT) {
  2867. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2868. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2869. if ((control_1000 & ADVERTISE_1000FULL) &&
  2870. (status_1000 & LPA_1000FULL)) {
  2871. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2872. dev->name);
  2873. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2874. newdup = 1;
  2875. goto set_speed;
  2876. }
  2877. }
  2878. /* FIXME: handle parallel detection properly */
  2879. adv_lpa = lpa & adv;
  2880. if (adv_lpa & LPA_100FULL) {
  2881. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2882. newdup = 1;
  2883. } else if (adv_lpa & LPA_100HALF) {
  2884. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2885. newdup = 0;
  2886. } else if (adv_lpa & LPA_10FULL) {
  2887. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2888. newdup = 1;
  2889. } else if (adv_lpa & LPA_10HALF) {
  2890. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2891. newdup = 0;
  2892. } else {
  2893. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2894. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2895. newdup = 0;
  2896. }
  2897. set_speed:
  2898. if (np->duplex == newdup && np->linkspeed == newls)
  2899. return retval;
  2900. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2901. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2902. np->duplex = newdup;
  2903. np->linkspeed = newls;
  2904. /* The transmitter and receiver must be restarted for safe update */
  2905. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2906. txrxFlags |= NV_RESTART_TX;
  2907. nv_stop_tx(dev);
  2908. }
  2909. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2910. txrxFlags |= NV_RESTART_RX;
  2911. nv_stop_rx(dev);
  2912. }
  2913. if (np->gigabit == PHY_GIGABIT) {
  2914. phyreg = readl(base + NvRegSlotTime);
  2915. phyreg &= ~(0x3FF00);
  2916. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2917. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2918. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2919. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2920. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2921. writel(phyreg, base + NvRegSlotTime);
  2922. }
  2923. phyreg = readl(base + NvRegPhyInterface);
  2924. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2925. if (np->duplex == 0)
  2926. phyreg |= PHY_HALF;
  2927. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2928. phyreg |= PHY_100;
  2929. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2930. phyreg |= PHY_1000;
  2931. writel(phyreg, base + NvRegPhyInterface);
  2932. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2933. if (phyreg & PHY_RGMII) {
  2934. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2935. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2936. } else {
  2937. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2938. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2939. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2940. else
  2941. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2942. } else {
  2943. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2944. }
  2945. }
  2946. } else {
  2947. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2948. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2949. else
  2950. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2951. }
  2952. writel(txreg, base + NvRegTxDeferral);
  2953. if (np->desc_ver == DESC_VER_1) {
  2954. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2955. } else {
  2956. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2957. txreg = NVREG_TX_WM_DESC2_3_1000;
  2958. else
  2959. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2960. }
  2961. writel(txreg, base + NvRegTxWatermark);
  2962. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2963. base + NvRegMisc1);
  2964. pci_push(base);
  2965. writel(np->linkspeed, base + NvRegLinkSpeed);
  2966. pci_push(base);
  2967. pause_flags = 0;
  2968. /* setup pause frame */
  2969. if (np->duplex != 0) {
  2970. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2971. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2972. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2973. switch (adv_pause) {
  2974. case ADVERTISE_PAUSE_CAP:
  2975. if (lpa_pause & LPA_PAUSE_CAP) {
  2976. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2977. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2978. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2979. }
  2980. break;
  2981. case ADVERTISE_PAUSE_ASYM:
  2982. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2983. {
  2984. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2985. }
  2986. break;
  2987. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2988. if (lpa_pause & LPA_PAUSE_CAP)
  2989. {
  2990. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2991. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2992. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2993. }
  2994. if (lpa_pause == LPA_PAUSE_ASYM)
  2995. {
  2996. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2997. }
  2998. break;
  2999. }
  3000. } else {
  3001. pause_flags = np->pause_flags;
  3002. }
  3003. }
  3004. nv_update_pause(dev, pause_flags);
  3005. if (txrxFlags & NV_RESTART_TX)
  3006. nv_start_tx(dev);
  3007. if (txrxFlags & NV_RESTART_RX)
  3008. nv_start_rx(dev);
  3009. return retval;
  3010. }
  3011. static void nv_linkchange(struct net_device *dev)
  3012. {
  3013. if (nv_update_linkspeed(dev)) {
  3014. if (!netif_carrier_ok(dev)) {
  3015. netif_carrier_on(dev);
  3016. printk(KERN_INFO "%s: link up.\n", dev->name);
  3017. nv_txrx_gate(dev, false);
  3018. nv_start_rx(dev);
  3019. }
  3020. } else {
  3021. if (netif_carrier_ok(dev)) {
  3022. netif_carrier_off(dev);
  3023. printk(KERN_INFO "%s: link down.\n", dev->name);
  3024. nv_txrx_gate(dev, true);
  3025. nv_stop_rx(dev);
  3026. }
  3027. }
  3028. }
  3029. static void nv_link_irq(struct net_device *dev)
  3030. {
  3031. u8 __iomem *base = get_hwbase(dev);
  3032. u32 miistat;
  3033. miistat = readl(base + NvRegMIIStatus);
  3034. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3035. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3036. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3037. nv_linkchange(dev);
  3038. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3039. }
  3040. static void nv_msi_workaround(struct fe_priv *np)
  3041. {
  3042. /* Need to toggle the msi irq mask within the ethernet device,
  3043. * otherwise, future interrupts will not be detected.
  3044. */
  3045. if (np->msi_flags & NV_MSI_ENABLED) {
  3046. u8 __iomem *base = np->base;
  3047. writel(0, base + NvRegMSIIrqMask);
  3048. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3049. }
  3050. }
  3051. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  3052. {
  3053. struct fe_priv *np = netdev_priv(dev);
  3054. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3055. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3056. /* transition to poll based interrupts */
  3057. np->quiet_count = 0;
  3058. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3059. np->irqmask = NVREG_IRQMASK_CPU;
  3060. return 1;
  3061. }
  3062. } else {
  3063. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3064. np->quiet_count++;
  3065. } else {
  3066. /* reached a period of low activity, switch
  3067. to per tx/rx packet interrupts */
  3068. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3069. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3070. return 1;
  3071. }
  3072. }
  3073. }
  3074. }
  3075. return 0;
  3076. }
  3077. static irqreturn_t nv_nic_irq(int foo, void *data)
  3078. {
  3079. struct net_device *dev = (struct net_device *) data;
  3080. struct fe_priv *np = netdev_priv(dev);
  3081. u8 __iomem *base = get_hwbase(dev);
  3082. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3083. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3084. np->events = readl(base + NvRegIrqStatus);
  3085. writel(np->events, base + NvRegIrqStatus);
  3086. } else {
  3087. np->events = readl(base + NvRegMSIXIrqStatus);
  3088. writel(np->events, base + NvRegMSIXIrqStatus);
  3089. }
  3090. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3091. if (!(np->events & np->irqmask))
  3092. return IRQ_NONE;
  3093. nv_msi_workaround(np);
  3094. if (napi_schedule_prep(&np->napi)) {
  3095. /*
  3096. * Disable further irq's (msix not enabled with napi)
  3097. */
  3098. writel(0, base + NvRegIrqMask);
  3099. __napi_schedule(&np->napi);
  3100. }
  3101. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3102. return IRQ_HANDLED;
  3103. }
  3104. /**
  3105. * All _optimized functions are used to help increase performance
  3106. * (reduce CPU and increase throughput). They use descripter version 3,
  3107. * compiler directives, and reduce memory accesses.
  3108. */
  3109. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3110. {
  3111. struct net_device *dev = (struct net_device *) data;
  3112. struct fe_priv *np = netdev_priv(dev);
  3113. u8 __iomem *base = get_hwbase(dev);
  3114. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3115. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3116. np->events = readl(base + NvRegIrqStatus);
  3117. writel(np->events, base + NvRegIrqStatus);
  3118. } else {
  3119. np->events = readl(base + NvRegMSIXIrqStatus);
  3120. writel(np->events, base + NvRegMSIXIrqStatus);
  3121. }
  3122. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3123. if (!(np->events & np->irqmask))
  3124. return IRQ_NONE;
  3125. nv_msi_workaround(np);
  3126. if (napi_schedule_prep(&np->napi)) {
  3127. /*
  3128. * Disable further irq's (msix not enabled with napi)
  3129. */
  3130. writel(0, base + NvRegIrqMask);
  3131. __napi_schedule(&np->napi);
  3132. }
  3133. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3134. return IRQ_HANDLED;
  3135. }
  3136. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3137. {
  3138. struct net_device *dev = (struct net_device *) data;
  3139. struct fe_priv *np = netdev_priv(dev);
  3140. u8 __iomem *base = get_hwbase(dev);
  3141. u32 events;
  3142. int i;
  3143. unsigned long flags;
  3144. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3145. for (i=0; ; i++) {
  3146. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3147. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3148. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3149. if (!(events & np->irqmask))
  3150. break;
  3151. spin_lock_irqsave(&np->lock, flags);
  3152. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3153. spin_unlock_irqrestore(&np->lock, flags);
  3154. if (unlikely(i > max_interrupt_work)) {
  3155. spin_lock_irqsave(&np->lock, flags);
  3156. /* disable interrupts on the nic */
  3157. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3158. pci_push(base);
  3159. if (!np->in_shutdown) {
  3160. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3161. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3162. }
  3163. spin_unlock_irqrestore(&np->lock, flags);
  3164. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3165. break;
  3166. }
  3167. }
  3168. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3169. return IRQ_RETVAL(i);
  3170. }
  3171. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3172. {
  3173. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3174. struct net_device *dev = np->dev;
  3175. u8 __iomem *base = get_hwbase(dev);
  3176. unsigned long flags;
  3177. int retcode;
  3178. int rx_count, tx_work=0, rx_work=0;
  3179. do {
  3180. if (!nv_optimized(np)) {
  3181. spin_lock_irqsave(&np->lock, flags);
  3182. tx_work += nv_tx_done(dev, np->tx_ring_size);
  3183. spin_unlock_irqrestore(&np->lock, flags);
  3184. rx_count = nv_rx_process(dev, budget - rx_work);
  3185. retcode = nv_alloc_rx(dev);
  3186. } else {
  3187. spin_lock_irqsave(&np->lock, flags);
  3188. tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
  3189. spin_unlock_irqrestore(&np->lock, flags);
  3190. rx_count = nv_rx_process_optimized(dev,
  3191. budget - rx_work);
  3192. retcode = nv_alloc_rx_optimized(dev);
  3193. }
  3194. } while (retcode == 0 &&
  3195. rx_count > 0 && (rx_work += rx_count) < budget);
  3196. if (retcode) {
  3197. spin_lock_irqsave(&np->lock, flags);
  3198. if (!np->in_shutdown)
  3199. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3200. spin_unlock_irqrestore(&np->lock, flags);
  3201. }
  3202. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3203. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3204. spin_lock_irqsave(&np->lock, flags);
  3205. nv_link_irq(dev);
  3206. spin_unlock_irqrestore(&np->lock, flags);
  3207. }
  3208. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3209. spin_lock_irqsave(&np->lock, flags);
  3210. nv_linkchange(dev);
  3211. spin_unlock_irqrestore(&np->lock, flags);
  3212. np->link_timeout = jiffies + LINK_TIMEOUT;
  3213. }
  3214. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3215. spin_lock_irqsave(&np->lock, flags);
  3216. if (!np->in_shutdown) {
  3217. np->nic_poll_irq = np->irqmask;
  3218. np->recover_error = 1;
  3219. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3220. }
  3221. spin_unlock_irqrestore(&np->lock, flags);
  3222. napi_complete(napi);
  3223. return rx_work;
  3224. }
  3225. if (rx_work < budget) {
  3226. /* re-enable interrupts
  3227. (msix not enabled in napi) */
  3228. napi_complete(napi);
  3229. writel(np->irqmask, base + NvRegIrqMask);
  3230. }
  3231. return rx_work;
  3232. }
  3233. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3234. {
  3235. struct net_device *dev = (struct net_device *) data;
  3236. struct fe_priv *np = netdev_priv(dev);
  3237. u8 __iomem *base = get_hwbase(dev);
  3238. u32 events;
  3239. int i;
  3240. unsigned long flags;
  3241. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3242. for (i=0; ; i++) {
  3243. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3244. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3245. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3246. if (!(events & np->irqmask))
  3247. break;
  3248. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3249. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3250. spin_lock_irqsave(&np->lock, flags);
  3251. if (!np->in_shutdown)
  3252. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3253. spin_unlock_irqrestore(&np->lock, flags);
  3254. }
  3255. }
  3256. if (unlikely(i > max_interrupt_work)) {
  3257. spin_lock_irqsave(&np->lock, flags);
  3258. /* disable interrupts on the nic */
  3259. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3260. pci_push(base);
  3261. if (!np->in_shutdown) {
  3262. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3263. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3264. }
  3265. spin_unlock_irqrestore(&np->lock, flags);
  3266. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3267. break;
  3268. }
  3269. }
  3270. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3271. return IRQ_RETVAL(i);
  3272. }
  3273. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3274. {
  3275. struct net_device *dev = (struct net_device *) data;
  3276. struct fe_priv *np = netdev_priv(dev);
  3277. u8 __iomem *base = get_hwbase(dev);
  3278. u32 events;
  3279. int i;
  3280. unsigned long flags;
  3281. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3282. for (i=0; ; i++) {
  3283. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3284. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3285. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3286. if (!(events & np->irqmask))
  3287. break;
  3288. /* check tx in case we reached max loop limit in tx isr */
  3289. spin_lock_irqsave(&np->lock, flags);
  3290. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3291. spin_unlock_irqrestore(&np->lock, flags);
  3292. if (events & NVREG_IRQ_LINK) {
  3293. spin_lock_irqsave(&np->lock, flags);
  3294. nv_link_irq(dev);
  3295. spin_unlock_irqrestore(&np->lock, flags);
  3296. }
  3297. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3298. spin_lock_irqsave(&np->lock, flags);
  3299. nv_linkchange(dev);
  3300. spin_unlock_irqrestore(&np->lock, flags);
  3301. np->link_timeout = jiffies + LINK_TIMEOUT;
  3302. }
  3303. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3304. spin_lock_irq(&np->lock);
  3305. /* disable interrupts on the nic */
  3306. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3307. pci_push(base);
  3308. if (!np->in_shutdown) {
  3309. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3310. np->recover_error = 1;
  3311. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3312. }
  3313. spin_unlock_irq(&np->lock);
  3314. break;
  3315. }
  3316. if (unlikely(i > max_interrupt_work)) {
  3317. spin_lock_irqsave(&np->lock, flags);
  3318. /* disable interrupts on the nic */
  3319. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3320. pci_push(base);
  3321. if (!np->in_shutdown) {
  3322. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3323. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3324. }
  3325. spin_unlock_irqrestore(&np->lock, flags);
  3326. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3327. break;
  3328. }
  3329. }
  3330. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3331. return IRQ_RETVAL(i);
  3332. }
  3333. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3334. {
  3335. struct net_device *dev = (struct net_device *) data;
  3336. struct fe_priv *np = netdev_priv(dev);
  3337. u8 __iomem *base = get_hwbase(dev);
  3338. u32 events;
  3339. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3340. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3341. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3342. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3343. } else {
  3344. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3345. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3346. }
  3347. pci_push(base);
  3348. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3349. if (!(events & NVREG_IRQ_TIMER))
  3350. return IRQ_RETVAL(0);
  3351. nv_msi_workaround(np);
  3352. spin_lock(&np->lock);
  3353. np->intr_test = 1;
  3354. spin_unlock(&np->lock);
  3355. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3356. return IRQ_RETVAL(1);
  3357. }
  3358. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3359. {
  3360. u8 __iomem *base = get_hwbase(dev);
  3361. int i;
  3362. u32 msixmap = 0;
  3363. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3364. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3365. * the remaining 8 interrupts.
  3366. */
  3367. for (i = 0; i < 8; i++) {
  3368. if ((irqmask >> i) & 0x1) {
  3369. msixmap |= vector << (i << 2);
  3370. }
  3371. }
  3372. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3373. msixmap = 0;
  3374. for (i = 0; i < 8; i++) {
  3375. if ((irqmask >> (i + 8)) & 0x1) {
  3376. msixmap |= vector << (i << 2);
  3377. }
  3378. }
  3379. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3380. }
  3381. static int nv_request_irq(struct net_device *dev, int intr_test)
  3382. {
  3383. struct fe_priv *np = get_nvpriv(dev);
  3384. u8 __iomem *base = get_hwbase(dev);
  3385. int ret = 1;
  3386. int i;
  3387. irqreturn_t (*handler)(int foo, void *data);
  3388. if (intr_test) {
  3389. handler = nv_nic_irq_test;
  3390. } else {
  3391. if (nv_optimized(np))
  3392. handler = nv_nic_irq_optimized;
  3393. else
  3394. handler = nv_nic_irq;
  3395. }
  3396. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3397. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3398. np->msi_x_entry[i].entry = i;
  3399. }
  3400. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3401. np->msi_flags |= NV_MSI_X_ENABLED;
  3402. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3403. /* Request irq for rx handling */
  3404. sprintf(np->name_rx, "%s-rx", dev->name);
  3405. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3406. nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3407. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3408. pci_disable_msix(np->pci_dev);
  3409. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3410. goto out_err;
  3411. }
  3412. /* Request irq for tx handling */
  3413. sprintf(np->name_tx, "%s-tx", dev->name);
  3414. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3415. nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3416. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3417. pci_disable_msix(np->pci_dev);
  3418. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3419. goto out_free_rx;
  3420. }
  3421. /* Request irq for link and timer handling */
  3422. sprintf(np->name_other, "%s-other", dev->name);
  3423. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3424. nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3425. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3426. pci_disable_msix(np->pci_dev);
  3427. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3428. goto out_free_tx;
  3429. }
  3430. /* map interrupts to their respective vector */
  3431. writel(0, base + NvRegMSIXMap0);
  3432. writel(0, base + NvRegMSIXMap1);
  3433. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3434. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3435. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3436. } else {
  3437. /* Request irq for all interrupts */
  3438. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3439. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3440. pci_disable_msix(np->pci_dev);
  3441. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3442. goto out_err;
  3443. }
  3444. /* map interrupts to vector 0 */
  3445. writel(0, base + NvRegMSIXMap0);
  3446. writel(0, base + NvRegMSIXMap1);
  3447. }
  3448. }
  3449. }
  3450. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3451. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3452. np->msi_flags |= NV_MSI_ENABLED;
  3453. dev->irq = np->pci_dev->irq;
  3454. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3455. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3456. pci_disable_msi(np->pci_dev);
  3457. np->msi_flags &= ~NV_MSI_ENABLED;
  3458. dev->irq = np->pci_dev->irq;
  3459. goto out_err;
  3460. }
  3461. /* map interrupts to vector 0 */
  3462. writel(0, base + NvRegMSIMap0);
  3463. writel(0, base + NvRegMSIMap1);
  3464. /* enable msi vector 0 */
  3465. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3466. }
  3467. }
  3468. if (ret != 0) {
  3469. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3470. goto out_err;
  3471. }
  3472. return 0;
  3473. out_free_tx:
  3474. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3475. out_free_rx:
  3476. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3477. out_err:
  3478. return 1;
  3479. }
  3480. static void nv_free_irq(struct net_device *dev)
  3481. {
  3482. struct fe_priv *np = get_nvpriv(dev);
  3483. int i;
  3484. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3485. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3486. free_irq(np->msi_x_entry[i].vector, dev);
  3487. }
  3488. pci_disable_msix(np->pci_dev);
  3489. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3490. } else {
  3491. free_irq(np->pci_dev->irq, dev);
  3492. if (np->msi_flags & NV_MSI_ENABLED) {
  3493. pci_disable_msi(np->pci_dev);
  3494. np->msi_flags &= ~NV_MSI_ENABLED;
  3495. }
  3496. }
  3497. }
  3498. static void nv_do_nic_poll(unsigned long data)
  3499. {
  3500. struct net_device *dev = (struct net_device *) data;
  3501. struct fe_priv *np = netdev_priv(dev);
  3502. u8 __iomem *base = get_hwbase(dev);
  3503. u32 mask = 0;
  3504. /*
  3505. * First disable irq(s) and then
  3506. * reenable interrupts on the nic, we have to do this before calling
  3507. * nv_nic_irq because that may decide to do otherwise
  3508. */
  3509. if (!using_multi_irqs(dev)) {
  3510. if (np->msi_flags & NV_MSI_X_ENABLED)
  3511. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3512. else
  3513. disable_irq_lockdep(np->pci_dev->irq);
  3514. mask = np->irqmask;
  3515. } else {
  3516. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3517. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3518. mask |= NVREG_IRQ_RX_ALL;
  3519. }
  3520. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3521. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3522. mask |= NVREG_IRQ_TX_ALL;
  3523. }
  3524. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3525. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3526. mask |= NVREG_IRQ_OTHER;
  3527. }
  3528. }
  3529. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3530. if (np->recover_error) {
  3531. np->recover_error = 0;
  3532. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3533. if (netif_running(dev)) {
  3534. netif_tx_lock_bh(dev);
  3535. netif_addr_lock(dev);
  3536. spin_lock(&np->lock);
  3537. /* stop engines */
  3538. nv_stop_rxtx(dev);
  3539. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3540. nv_mac_reset(dev);
  3541. nv_txrx_reset(dev);
  3542. /* drain rx queue */
  3543. nv_drain_rxtx(dev);
  3544. /* reinit driver view of the rx queue */
  3545. set_bufsize(dev);
  3546. if (nv_init_ring(dev)) {
  3547. if (!np->in_shutdown)
  3548. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3549. }
  3550. /* reinit nic view of the rx queue */
  3551. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3552. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3553. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3554. base + NvRegRingSizes);
  3555. pci_push(base);
  3556. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3557. pci_push(base);
  3558. /* clear interrupts */
  3559. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3560. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3561. else
  3562. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3563. /* restart rx engine */
  3564. nv_start_rxtx(dev);
  3565. spin_unlock(&np->lock);
  3566. netif_addr_unlock(dev);
  3567. netif_tx_unlock_bh(dev);
  3568. }
  3569. }
  3570. writel(mask, base + NvRegIrqMask);
  3571. pci_push(base);
  3572. if (!using_multi_irqs(dev)) {
  3573. np->nic_poll_irq = 0;
  3574. if (nv_optimized(np))
  3575. nv_nic_irq_optimized(0, dev);
  3576. else
  3577. nv_nic_irq(0, dev);
  3578. if (np->msi_flags & NV_MSI_X_ENABLED)
  3579. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3580. else
  3581. enable_irq_lockdep(np->pci_dev->irq);
  3582. } else {
  3583. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3584. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3585. nv_nic_irq_rx(0, dev);
  3586. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3587. }
  3588. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3589. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3590. nv_nic_irq_tx(0, dev);
  3591. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3592. }
  3593. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3594. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3595. nv_nic_irq_other(0, dev);
  3596. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3597. }
  3598. }
  3599. }
  3600. #ifdef CONFIG_NET_POLL_CONTROLLER
  3601. static void nv_poll_controller(struct net_device *dev)
  3602. {
  3603. nv_do_nic_poll((unsigned long) dev);
  3604. }
  3605. #endif
  3606. static void nv_do_stats_poll(unsigned long data)
  3607. {
  3608. struct net_device *dev = (struct net_device *) data;
  3609. struct fe_priv *np = netdev_priv(dev);
  3610. nv_get_hw_stats(dev);
  3611. if (!np->in_shutdown)
  3612. mod_timer(&np->stats_poll,
  3613. round_jiffies(jiffies + STATS_INTERVAL));
  3614. }
  3615. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3616. {
  3617. struct fe_priv *np = netdev_priv(dev);
  3618. strcpy(info->driver, DRV_NAME);
  3619. strcpy(info->version, FORCEDETH_VERSION);
  3620. strcpy(info->bus_info, pci_name(np->pci_dev));
  3621. }
  3622. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3623. {
  3624. struct fe_priv *np = netdev_priv(dev);
  3625. wolinfo->supported = WAKE_MAGIC;
  3626. spin_lock_irq(&np->lock);
  3627. if (np->wolenabled)
  3628. wolinfo->wolopts = WAKE_MAGIC;
  3629. spin_unlock_irq(&np->lock);
  3630. }
  3631. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3632. {
  3633. struct fe_priv *np = netdev_priv(dev);
  3634. u8 __iomem *base = get_hwbase(dev);
  3635. u32 flags = 0;
  3636. if (wolinfo->wolopts == 0) {
  3637. np->wolenabled = 0;
  3638. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3639. np->wolenabled = 1;
  3640. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3641. }
  3642. if (netif_running(dev)) {
  3643. spin_lock_irq(&np->lock);
  3644. writel(flags, base + NvRegWakeUpFlags);
  3645. spin_unlock_irq(&np->lock);
  3646. }
  3647. return 0;
  3648. }
  3649. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3650. {
  3651. struct fe_priv *np = netdev_priv(dev);
  3652. int adv;
  3653. spin_lock_irq(&np->lock);
  3654. ecmd->port = PORT_MII;
  3655. if (!netif_running(dev)) {
  3656. /* We do not track link speed / duplex setting if the
  3657. * interface is disabled. Force a link check */
  3658. if (nv_update_linkspeed(dev)) {
  3659. if (!netif_carrier_ok(dev))
  3660. netif_carrier_on(dev);
  3661. } else {
  3662. if (netif_carrier_ok(dev))
  3663. netif_carrier_off(dev);
  3664. }
  3665. }
  3666. if (netif_carrier_ok(dev)) {
  3667. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3668. case NVREG_LINKSPEED_10:
  3669. ecmd->speed = SPEED_10;
  3670. break;
  3671. case NVREG_LINKSPEED_100:
  3672. ecmd->speed = SPEED_100;
  3673. break;
  3674. case NVREG_LINKSPEED_1000:
  3675. ecmd->speed = SPEED_1000;
  3676. break;
  3677. }
  3678. ecmd->duplex = DUPLEX_HALF;
  3679. if (np->duplex)
  3680. ecmd->duplex = DUPLEX_FULL;
  3681. } else {
  3682. ecmd->speed = -1;
  3683. ecmd->duplex = -1;
  3684. }
  3685. ecmd->autoneg = np->autoneg;
  3686. ecmd->advertising = ADVERTISED_MII;
  3687. if (np->autoneg) {
  3688. ecmd->advertising |= ADVERTISED_Autoneg;
  3689. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3690. if (adv & ADVERTISE_10HALF)
  3691. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3692. if (adv & ADVERTISE_10FULL)
  3693. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3694. if (adv & ADVERTISE_100HALF)
  3695. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3696. if (adv & ADVERTISE_100FULL)
  3697. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3698. if (np->gigabit == PHY_GIGABIT) {
  3699. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3700. if (adv & ADVERTISE_1000FULL)
  3701. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3702. }
  3703. }
  3704. ecmd->supported = (SUPPORTED_Autoneg |
  3705. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3706. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3707. SUPPORTED_MII);
  3708. if (np->gigabit == PHY_GIGABIT)
  3709. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3710. ecmd->phy_address = np->phyaddr;
  3711. ecmd->transceiver = XCVR_EXTERNAL;
  3712. /* ignore maxtxpkt, maxrxpkt for now */
  3713. spin_unlock_irq(&np->lock);
  3714. return 0;
  3715. }
  3716. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3717. {
  3718. struct fe_priv *np = netdev_priv(dev);
  3719. if (ecmd->port != PORT_MII)
  3720. return -EINVAL;
  3721. if (ecmd->transceiver != XCVR_EXTERNAL)
  3722. return -EINVAL;
  3723. if (ecmd->phy_address != np->phyaddr) {
  3724. /* TODO: support switching between multiple phys. Should be
  3725. * trivial, but not enabled due to lack of test hardware. */
  3726. return -EINVAL;
  3727. }
  3728. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3729. u32 mask;
  3730. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3731. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3732. if (np->gigabit == PHY_GIGABIT)
  3733. mask |= ADVERTISED_1000baseT_Full;
  3734. if ((ecmd->advertising & mask) == 0)
  3735. return -EINVAL;
  3736. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3737. /* Note: autonegotiation disable, speed 1000 intentionally
  3738. * forbidden - noone should need that. */
  3739. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3740. return -EINVAL;
  3741. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3742. return -EINVAL;
  3743. } else {
  3744. return -EINVAL;
  3745. }
  3746. netif_carrier_off(dev);
  3747. if (netif_running(dev)) {
  3748. unsigned long flags;
  3749. nv_disable_irq(dev);
  3750. netif_tx_lock_bh(dev);
  3751. netif_addr_lock(dev);
  3752. /* with plain spinlock lockdep complains */
  3753. spin_lock_irqsave(&np->lock, flags);
  3754. /* stop engines */
  3755. /* FIXME:
  3756. * this can take some time, and interrupts are disabled
  3757. * due to spin_lock_irqsave, but let's hope no daemon
  3758. * is going to change the settings very often...
  3759. * Worst case:
  3760. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3761. * + some minor delays, which is up to a second approximately
  3762. */
  3763. nv_stop_rxtx(dev);
  3764. spin_unlock_irqrestore(&np->lock, flags);
  3765. netif_addr_unlock(dev);
  3766. netif_tx_unlock_bh(dev);
  3767. }
  3768. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3769. int adv, bmcr;
  3770. np->autoneg = 1;
  3771. /* advertise only what has been requested */
  3772. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3773. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3774. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3775. adv |= ADVERTISE_10HALF;
  3776. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3777. adv |= ADVERTISE_10FULL;
  3778. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3779. adv |= ADVERTISE_100HALF;
  3780. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3781. adv |= ADVERTISE_100FULL;
  3782. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3783. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3784. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3785. adv |= ADVERTISE_PAUSE_ASYM;
  3786. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3787. if (np->gigabit == PHY_GIGABIT) {
  3788. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3789. adv &= ~ADVERTISE_1000FULL;
  3790. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3791. adv |= ADVERTISE_1000FULL;
  3792. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3793. }
  3794. if (netif_running(dev))
  3795. printk(KERN_INFO "%s: link down.\n", dev->name);
  3796. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3797. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3798. bmcr |= BMCR_ANENABLE;
  3799. /* reset the phy in order for settings to stick,
  3800. * and cause autoneg to start */
  3801. if (phy_reset(dev, bmcr)) {
  3802. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3803. return -EINVAL;
  3804. }
  3805. } else {
  3806. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3807. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3808. }
  3809. } else {
  3810. int adv, bmcr;
  3811. np->autoneg = 0;
  3812. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3813. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3814. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3815. adv |= ADVERTISE_10HALF;
  3816. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3817. adv |= ADVERTISE_10FULL;
  3818. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3819. adv |= ADVERTISE_100HALF;
  3820. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3821. adv |= ADVERTISE_100FULL;
  3822. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3823. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3824. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3825. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3826. }
  3827. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3828. adv |= ADVERTISE_PAUSE_ASYM;
  3829. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3830. }
  3831. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3832. np->fixed_mode = adv;
  3833. if (np->gigabit == PHY_GIGABIT) {
  3834. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3835. adv &= ~ADVERTISE_1000FULL;
  3836. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3837. }
  3838. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3839. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3840. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3841. bmcr |= BMCR_FULLDPLX;
  3842. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3843. bmcr |= BMCR_SPEED100;
  3844. if (np->phy_oui == PHY_OUI_MARVELL) {
  3845. /* reset the phy in order for forced mode settings to stick */
  3846. if (phy_reset(dev, bmcr)) {
  3847. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3848. return -EINVAL;
  3849. }
  3850. } else {
  3851. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3852. if (netif_running(dev)) {
  3853. /* Wait a bit and then reconfigure the nic. */
  3854. udelay(10);
  3855. nv_linkchange(dev);
  3856. }
  3857. }
  3858. }
  3859. if (netif_running(dev)) {
  3860. nv_start_rxtx(dev);
  3861. nv_enable_irq(dev);
  3862. }
  3863. return 0;
  3864. }
  3865. #define FORCEDETH_REGS_VER 1
  3866. static int nv_get_regs_len(struct net_device *dev)
  3867. {
  3868. struct fe_priv *np = netdev_priv(dev);
  3869. return np->register_size;
  3870. }
  3871. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3872. {
  3873. struct fe_priv *np = netdev_priv(dev);
  3874. u8 __iomem *base = get_hwbase(dev);
  3875. u32 *rbuf = buf;
  3876. int i;
  3877. regs->version = FORCEDETH_REGS_VER;
  3878. spin_lock_irq(&np->lock);
  3879. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3880. rbuf[i] = readl(base + i*sizeof(u32));
  3881. spin_unlock_irq(&np->lock);
  3882. }
  3883. static int nv_nway_reset(struct net_device *dev)
  3884. {
  3885. struct fe_priv *np = netdev_priv(dev);
  3886. int ret;
  3887. if (np->autoneg) {
  3888. int bmcr;
  3889. netif_carrier_off(dev);
  3890. if (netif_running(dev)) {
  3891. nv_disable_irq(dev);
  3892. netif_tx_lock_bh(dev);
  3893. netif_addr_lock(dev);
  3894. spin_lock(&np->lock);
  3895. /* stop engines */
  3896. nv_stop_rxtx(dev);
  3897. spin_unlock(&np->lock);
  3898. netif_addr_unlock(dev);
  3899. netif_tx_unlock_bh(dev);
  3900. printk(KERN_INFO "%s: link down.\n", dev->name);
  3901. }
  3902. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3903. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3904. bmcr |= BMCR_ANENABLE;
  3905. /* reset the phy in order for settings to stick*/
  3906. if (phy_reset(dev, bmcr)) {
  3907. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3908. return -EINVAL;
  3909. }
  3910. } else {
  3911. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3912. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3913. }
  3914. if (netif_running(dev)) {
  3915. nv_start_rxtx(dev);
  3916. nv_enable_irq(dev);
  3917. }
  3918. ret = 0;
  3919. } else {
  3920. ret = -EINVAL;
  3921. }
  3922. return ret;
  3923. }
  3924. static int nv_set_tso(struct net_device *dev, u32 value)
  3925. {
  3926. struct fe_priv *np = netdev_priv(dev);
  3927. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3928. return ethtool_op_set_tso(dev, value);
  3929. else
  3930. return -EOPNOTSUPP;
  3931. }
  3932. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3933. {
  3934. struct fe_priv *np = netdev_priv(dev);
  3935. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3936. ring->rx_mini_max_pending = 0;
  3937. ring->rx_jumbo_max_pending = 0;
  3938. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3939. ring->rx_pending = np->rx_ring_size;
  3940. ring->rx_mini_pending = 0;
  3941. ring->rx_jumbo_pending = 0;
  3942. ring->tx_pending = np->tx_ring_size;
  3943. }
  3944. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3945. {
  3946. struct fe_priv *np = netdev_priv(dev);
  3947. u8 __iomem *base = get_hwbase(dev);
  3948. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3949. dma_addr_t ring_addr;
  3950. if (ring->rx_pending < RX_RING_MIN ||
  3951. ring->tx_pending < TX_RING_MIN ||
  3952. ring->rx_mini_pending != 0 ||
  3953. ring->rx_jumbo_pending != 0 ||
  3954. (np->desc_ver == DESC_VER_1 &&
  3955. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3956. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3957. (np->desc_ver != DESC_VER_1 &&
  3958. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3959. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3960. return -EINVAL;
  3961. }
  3962. /* allocate new rings */
  3963. if (!nv_optimized(np)) {
  3964. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3965. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3966. &ring_addr);
  3967. } else {
  3968. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3969. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3970. &ring_addr);
  3971. }
  3972. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3973. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3974. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3975. /* fall back to old rings */
  3976. if (!nv_optimized(np)) {
  3977. if (rxtx_ring)
  3978. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3979. rxtx_ring, ring_addr);
  3980. } else {
  3981. if (rxtx_ring)
  3982. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3983. rxtx_ring, ring_addr);
  3984. }
  3985. if (rx_skbuff)
  3986. kfree(rx_skbuff);
  3987. if (tx_skbuff)
  3988. kfree(tx_skbuff);
  3989. goto exit;
  3990. }
  3991. if (netif_running(dev)) {
  3992. nv_disable_irq(dev);
  3993. nv_napi_disable(dev);
  3994. netif_tx_lock_bh(dev);
  3995. netif_addr_lock(dev);
  3996. spin_lock(&np->lock);
  3997. /* stop engines */
  3998. nv_stop_rxtx(dev);
  3999. nv_txrx_reset(dev);
  4000. /* drain queues */
  4001. nv_drain_rxtx(dev);
  4002. /* delete queues */
  4003. free_rings(dev);
  4004. }
  4005. /* set new values */
  4006. np->rx_ring_size = ring->rx_pending;
  4007. np->tx_ring_size = ring->tx_pending;
  4008. if (!nv_optimized(np)) {
  4009. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4010. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4011. } else {
  4012. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4013. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4014. }
  4015. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4016. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4017. np->ring_addr = ring_addr;
  4018. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4019. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4020. if (netif_running(dev)) {
  4021. /* reinit driver view of the queues */
  4022. set_bufsize(dev);
  4023. if (nv_init_ring(dev)) {
  4024. if (!np->in_shutdown)
  4025. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4026. }
  4027. /* reinit nic view of the queues */
  4028. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4029. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4030. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4031. base + NvRegRingSizes);
  4032. pci_push(base);
  4033. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4034. pci_push(base);
  4035. /* restart engines */
  4036. nv_start_rxtx(dev);
  4037. spin_unlock(&np->lock);
  4038. netif_addr_unlock(dev);
  4039. netif_tx_unlock_bh(dev);
  4040. nv_napi_enable(dev);
  4041. nv_enable_irq(dev);
  4042. }
  4043. return 0;
  4044. exit:
  4045. return -ENOMEM;
  4046. }
  4047. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4048. {
  4049. struct fe_priv *np = netdev_priv(dev);
  4050. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4051. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4052. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4053. }
  4054. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4055. {
  4056. struct fe_priv *np = netdev_priv(dev);
  4057. int adv, bmcr;
  4058. if ((!np->autoneg && np->duplex == 0) ||
  4059. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4060. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4061. dev->name);
  4062. return -EINVAL;
  4063. }
  4064. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4065. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4066. return -EINVAL;
  4067. }
  4068. netif_carrier_off(dev);
  4069. if (netif_running(dev)) {
  4070. nv_disable_irq(dev);
  4071. netif_tx_lock_bh(dev);
  4072. netif_addr_lock(dev);
  4073. spin_lock(&np->lock);
  4074. /* stop engines */
  4075. nv_stop_rxtx(dev);
  4076. spin_unlock(&np->lock);
  4077. netif_addr_unlock(dev);
  4078. netif_tx_unlock_bh(dev);
  4079. }
  4080. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4081. if (pause->rx_pause)
  4082. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4083. if (pause->tx_pause)
  4084. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4085. if (np->autoneg && pause->autoneg) {
  4086. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4087. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4088. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4089. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4090. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4091. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4092. adv |= ADVERTISE_PAUSE_ASYM;
  4093. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4094. if (netif_running(dev))
  4095. printk(KERN_INFO "%s: link down.\n", dev->name);
  4096. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4097. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4098. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4099. } else {
  4100. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4101. if (pause->rx_pause)
  4102. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4103. if (pause->tx_pause)
  4104. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4105. if (!netif_running(dev))
  4106. nv_update_linkspeed(dev);
  4107. else
  4108. nv_update_pause(dev, np->pause_flags);
  4109. }
  4110. if (netif_running(dev)) {
  4111. nv_start_rxtx(dev);
  4112. nv_enable_irq(dev);
  4113. }
  4114. return 0;
  4115. }
  4116. static u32 nv_get_rx_csum(struct net_device *dev)
  4117. {
  4118. struct fe_priv *np = netdev_priv(dev);
  4119. return (np->rx_csum) != 0;
  4120. }
  4121. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4122. {
  4123. struct fe_priv *np = netdev_priv(dev);
  4124. u8 __iomem *base = get_hwbase(dev);
  4125. int retcode = 0;
  4126. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4127. if (data) {
  4128. np->rx_csum = 1;
  4129. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4130. } else {
  4131. np->rx_csum = 0;
  4132. /* vlan is dependent on rx checksum offload */
  4133. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4134. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4135. }
  4136. if (netif_running(dev)) {
  4137. spin_lock_irq(&np->lock);
  4138. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4139. spin_unlock_irq(&np->lock);
  4140. }
  4141. } else {
  4142. return -EINVAL;
  4143. }
  4144. return retcode;
  4145. }
  4146. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4147. {
  4148. struct fe_priv *np = netdev_priv(dev);
  4149. if (np->driver_data & DEV_HAS_CHECKSUM)
  4150. return ethtool_op_set_tx_csum(dev, data);
  4151. else
  4152. return -EOPNOTSUPP;
  4153. }
  4154. static int nv_set_sg(struct net_device *dev, u32 data)
  4155. {
  4156. struct fe_priv *np = netdev_priv(dev);
  4157. if (np->driver_data & DEV_HAS_CHECKSUM)
  4158. return ethtool_op_set_sg(dev, data);
  4159. else
  4160. return -EOPNOTSUPP;
  4161. }
  4162. static int nv_get_sset_count(struct net_device *dev, int sset)
  4163. {
  4164. struct fe_priv *np = netdev_priv(dev);
  4165. switch (sset) {
  4166. case ETH_SS_TEST:
  4167. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4168. return NV_TEST_COUNT_EXTENDED;
  4169. else
  4170. return NV_TEST_COUNT_BASE;
  4171. case ETH_SS_STATS:
  4172. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4173. return NV_DEV_STATISTICS_V3_COUNT;
  4174. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4175. return NV_DEV_STATISTICS_V2_COUNT;
  4176. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4177. return NV_DEV_STATISTICS_V1_COUNT;
  4178. else
  4179. return 0;
  4180. default:
  4181. return -EOPNOTSUPP;
  4182. }
  4183. }
  4184. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4185. {
  4186. struct fe_priv *np = netdev_priv(dev);
  4187. /* update stats */
  4188. nv_do_stats_poll((unsigned long)dev);
  4189. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4190. }
  4191. static int nv_link_test(struct net_device *dev)
  4192. {
  4193. struct fe_priv *np = netdev_priv(dev);
  4194. int mii_status;
  4195. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4196. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4197. /* check phy link status */
  4198. if (!(mii_status & BMSR_LSTATUS))
  4199. return 0;
  4200. else
  4201. return 1;
  4202. }
  4203. static int nv_register_test(struct net_device *dev)
  4204. {
  4205. u8 __iomem *base = get_hwbase(dev);
  4206. int i = 0;
  4207. u32 orig_read, new_read;
  4208. do {
  4209. orig_read = readl(base + nv_registers_test[i].reg);
  4210. /* xor with mask to toggle bits */
  4211. orig_read ^= nv_registers_test[i].mask;
  4212. writel(orig_read, base + nv_registers_test[i].reg);
  4213. new_read = readl(base + nv_registers_test[i].reg);
  4214. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4215. return 0;
  4216. /* restore original value */
  4217. orig_read ^= nv_registers_test[i].mask;
  4218. writel(orig_read, base + nv_registers_test[i].reg);
  4219. } while (nv_registers_test[++i].reg != 0);
  4220. return 1;
  4221. }
  4222. static int nv_interrupt_test(struct net_device *dev)
  4223. {
  4224. struct fe_priv *np = netdev_priv(dev);
  4225. u8 __iomem *base = get_hwbase(dev);
  4226. int ret = 1;
  4227. int testcnt;
  4228. u32 save_msi_flags, save_poll_interval = 0;
  4229. if (netif_running(dev)) {
  4230. /* free current irq */
  4231. nv_free_irq(dev);
  4232. save_poll_interval = readl(base+NvRegPollingInterval);
  4233. }
  4234. /* flag to test interrupt handler */
  4235. np->intr_test = 0;
  4236. /* setup test irq */
  4237. save_msi_flags = np->msi_flags;
  4238. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4239. np->msi_flags |= 0x001; /* setup 1 vector */
  4240. if (nv_request_irq(dev, 1))
  4241. return 0;
  4242. /* setup timer interrupt */
  4243. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4244. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4245. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4246. /* wait for at least one interrupt */
  4247. msleep(100);
  4248. spin_lock_irq(&np->lock);
  4249. /* flag should be set within ISR */
  4250. testcnt = np->intr_test;
  4251. if (!testcnt)
  4252. ret = 2;
  4253. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4254. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4255. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4256. else
  4257. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4258. spin_unlock_irq(&np->lock);
  4259. nv_free_irq(dev);
  4260. np->msi_flags = save_msi_flags;
  4261. if (netif_running(dev)) {
  4262. writel(save_poll_interval, base + NvRegPollingInterval);
  4263. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4264. /* restore original irq */
  4265. if (nv_request_irq(dev, 0))
  4266. return 0;
  4267. }
  4268. return ret;
  4269. }
  4270. static int nv_loopback_test(struct net_device *dev)
  4271. {
  4272. struct fe_priv *np = netdev_priv(dev);
  4273. u8 __iomem *base = get_hwbase(dev);
  4274. struct sk_buff *tx_skb, *rx_skb;
  4275. dma_addr_t test_dma_addr;
  4276. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4277. u32 flags;
  4278. int len, i, pkt_len;
  4279. u8 *pkt_data;
  4280. u32 filter_flags = 0;
  4281. u32 misc1_flags = 0;
  4282. int ret = 1;
  4283. if (netif_running(dev)) {
  4284. nv_disable_irq(dev);
  4285. filter_flags = readl(base + NvRegPacketFilterFlags);
  4286. misc1_flags = readl(base + NvRegMisc1);
  4287. } else {
  4288. nv_txrx_reset(dev);
  4289. }
  4290. /* reinit driver view of the rx queue */
  4291. set_bufsize(dev);
  4292. nv_init_ring(dev);
  4293. /* setup hardware for loopback */
  4294. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4295. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4296. /* reinit nic view of the rx queue */
  4297. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4298. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4299. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4300. base + NvRegRingSizes);
  4301. pci_push(base);
  4302. /* restart rx engine */
  4303. nv_start_rxtx(dev);
  4304. /* setup packet for tx */
  4305. pkt_len = ETH_DATA_LEN;
  4306. tx_skb = dev_alloc_skb(pkt_len);
  4307. if (!tx_skb) {
  4308. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4309. " of %s\n", dev->name);
  4310. ret = 0;
  4311. goto out;
  4312. }
  4313. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4314. skb_tailroom(tx_skb),
  4315. PCI_DMA_FROMDEVICE);
  4316. pkt_data = skb_put(tx_skb, pkt_len);
  4317. for (i = 0; i < pkt_len; i++)
  4318. pkt_data[i] = (u8)(i & 0xff);
  4319. if (!nv_optimized(np)) {
  4320. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4321. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4322. } else {
  4323. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4324. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4325. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4326. }
  4327. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4328. pci_push(get_hwbase(dev));
  4329. msleep(500);
  4330. /* check for rx of the packet */
  4331. if (!nv_optimized(np)) {
  4332. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4333. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4334. } else {
  4335. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4336. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4337. }
  4338. if (flags & NV_RX_AVAIL) {
  4339. ret = 0;
  4340. } else if (np->desc_ver == DESC_VER_1) {
  4341. if (flags & NV_RX_ERROR)
  4342. ret = 0;
  4343. } else {
  4344. if (flags & NV_RX2_ERROR) {
  4345. ret = 0;
  4346. }
  4347. }
  4348. if (ret) {
  4349. if (len != pkt_len) {
  4350. ret = 0;
  4351. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4352. dev->name, len, pkt_len);
  4353. } else {
  4354. rx_skb = np->rx_skb[0].skb;
  4355. for (i = 0; i < pkt_len; i++) {
  4356. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4357. ret = 0;
  4358. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4359. dev->name, i);
  4360. break;
  4361. }
  4362. }
  4363. }
  4364. } else {
  4365. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4366. }
  4367. pci_unmap_single(np->pci_dev, test_dma_addr,
  4368. (skb_end_pointer(tx_skb) - tx_skb->data),
  4369. PCI_DMA_TODEVICE);
  4370. dev_kfree_skb_any(tx_skb);
  4371. out:
  4372. /* stop engines */
  4373. nv_stop_rxtx(dev);
  4374. nv_txrx_reset(dev);
  4375. /* drain rx queue */
  4376. nv_drain_rxtx(dev);
  4377. if (netif_running(dev)) {
  4378. writel(misc1_flags, base + NvRegMisc1);
  4379. writel(filter_flags, base + NvRegPacketFilterFlags);
  4380. nv_enable_irq(dev);
  4381. }
  4382. return ret;
  4383. }
  4384. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4385. {
  4386. struct fe_priv *np = netdev_priv(dev);
  4387. u8 __iomem *base = get_hwbase(dev);
  4388. int result;
  4389. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4390. if (!nv_link_test(dev)) {
  4391. test->flags |= ETH_TEST_FL_FAILED;
  4392. buffer[0] = 1;
  4393. }
  4394. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4395. if (netif_running(dev)) {
  4396. netif_stop_queue(dev);
  4397. nv_napi_disable(dev);
  4398. netif_tx_lock_bh(dev);
  4399. netif_addr_lock(dev);
  4400. spin_lock_irq(&np->lock);
  4401. nv_disable_hw_interrupts(dev, np->irqmask);
  4402. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4403. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4404. } else {
  4405. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4406. }
  4407. /* stop engines */
  4408. nv_stop_rxtx(dev);
  4409. nv_txrx_reset(dev);
  4410. /* drain rx queue */
  4411. nv_drain_rxtx(dev);
  4412. spin_unlock_irq(&np->lock);
  4413. netif_addr_unlock(dev);
  4414. netif_tx_unlock_bh(dev);
  4415. }
  4416. if (!nv_register_test(dev)) {
  4417. test->flags |= ETH_TEST_FL_FAILED;
  4418. buffer[1] = 1;
  4419. }
  4420. result = nv_interrupt_test(dev);
  4421. if (result != 1) {
  4422. test->flags |= ETH_TEST_FL_FAILED;
  4423. buffer[2] = 1;
  4424. }
  4425. if (result == 0) {
  4426. /* bail out */
  4427. return;
  4428. }
  4429. if (!nv_loopback_test(dev)) {
  4430. test->flags |= ETH_TEST_FL_FAILED;
  4431. buffer[3] = 1;
  4432. }
  4433. if (netif_running(dev)) {
  4434. /* reinit driver view of the rx queue */
  4435. set_bufsize(dev);
  4436. if (nv_init_ring(dev)) {
  4437. if (!np->in_shutdown)
  4438. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4439. }
  4440. /* reinit nic view of the rx queue */
  4441. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4442. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4443. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4444. base + NvRegRingSizes);
  4445. pci_push(base);
  4446. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4447. pci_push(base);
  4448. /* restart rx engine */
  4449. nv_start_rxtx(dev);
  4450. netif_start_queue(dev);
  4451. nv_napi_enable(dev);
  4452. nv_enable_hw_interrupts(dev, np->irqmask);
  4453. }
  4454. }
  4455. }
  4456. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4457. {
  4458. switch (stringset) {
  4459. case ETH_SS_STATS:
  4460. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4461. break;
  4462. case ETH_SS_TEST:
  4463. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4464. break;
  4465. }
  4466. }
  4467. static const struct ethtool_ops ops = {
  4468. .get_drvinfo = nv_get_drvinfo,
  4469. .get_link = ethtool_op_get_link,
  4470. .get_wol = nv_get_wol,
  4471. .set_wol = nv_set_wol,
  4472. .get_settings = nv_get_settings,
  4473. .set_settings = nv_set_settings,
  4474. .get_regs_len = nv_get_regs_len,
  4475. .get_regs = nv_get_regs,
  4476. .nway_reset = nv_nway_reset,
  4477. .set_tso = nv_set_tso,
  4478. .get_ringparam = nv_get_ringparam,
  4479. .set_ringparam = nv_set_ringparam,
  4480. .get_pauseparam = nv_get_pauseparam,
  4481. .set_pauseparam = nv_set_pauseparam,
  4482. .get_rx_csum = nv_get_rx_csum,
  4483. .set_rx_csum = nv_set_rx_csum,
  4484. .set_tx_csum = nv_set_tx_csum,
  4485. .set_sg = nv_set_sg,
  4486. .get_strings = nv_get_strings,
  4487. .get_ethtool_stats = nv_get_ethtool_stats,
  4488. .get_sset_count = nv_get_sset_count,
  4489. .self_test = nv_self_test,
  4490. };
  4491. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4492. {
  4493. struct fe_priv *np = get_nvpriv(dev);
  4494. spin_lock_irq(&np->lock);
  4495. /* save vlan group */
  4496. np->vlangrp = grp;
  4497. if (grp) {
  4498. /* enable vlan on MAC */
  4499. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4500. } else {
  4501. /* disable vlan on MAC */
  4502. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4503. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4504. }
  4505. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4506. spin_unlock_irq(&np->lock);
  4507. }
  4508. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4509. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4510. {
  4511. struct fe_priv *np = netdev_priv(dev);
  4512. u8 __iomem *base = get_hwbase(dev);
  4513. int i;
  4514. u32 tx_ctrl, mgmt_sema;
  4515. for (i = 0; i < 10; i++) {
  4516. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4517. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4518. break;
  4519. msleep(500);
  4520. }
  4521. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4522. return 0;
  4523. for (i = 0; i < 2; i++) {
  4524. tx_ctrl = readl(base + NvRegTransmitterControl);
  4525. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4526. writel(tx_ctrl, base + NvRegTransmitterControl);
  4527. /* verify that semaphore was acquired */
  4528. tx_ctrl = readl(base + NvRegTransmitterControl);
  4529. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4530. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4531. np->mgmt_sema = 1;
  4532. return 1;
  4533. }
  4534. else
  4535. udelay(50);
  4536. }
  4537. return 0;
  4538. }
  4539. static void nv_mgmt_release_sema(struct net_device *dev)
  4540. {
  4541. struct fe_priv *np = netdev_priv(dev);
  4542. u8 __iomem *base = get_hwbase(dev);
  4543. u32 tx_ctrl;
  4544. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4545. if (np->mgmt_sema) {
  4546. tx_ctrl = readl(base + NvRegTransmitterControl);
  4547. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4548. writel(tx_ctrl, base + NvRegTransmitterControl);
  4549. }
  4550. }
  4551. }
  4552. static int nv_mgmt_get_version(struct net_device *dev)
  4553. {
  4554. struct fe_priv *np = netdev_priv(dev);
  4555. u8 __iomem *base = get_hwbase(dev);
  4556. u32 data_ready = readl(base + NvRegTransmitterControl);
  4557. u32 data_ready2 = 0;
  4558. unsigned long start;
  4559. int ready = 0;
  4560. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4561. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4562. start = jiffies;
  4563. while (time_before(jiffies, start + 5*HZ)) {
  4564. data_ready2 = readl(base + NvRegTransmitterControl);
  4565. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4566. ready = 1;
  4567. break;
  4568. }
  4569. schedule_timeout_uninterruptible(1);
  4570. }
  4571. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4572. return 0;
  4573. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4574. return 1;
  4575. }
  4576. static int nv_open(struct net_device *dev)
  4577. {
  4578. struct fe_priv *np = netdev_priv(dev);
  4579. u8 __iomem *base = get_hwbase(dev);
  4580. int ret = 1;
  4581. int oom, i;
  4582. u32 low;
  4583. dprintk(KERN_DEBUG "nv_open: begin\n");
  4584. /* power up phy */
  4585. mii_rw(dev, np->phyaddr, MII_BMCR,
  4586. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4587. nv_txrx_gate(dev, false);
  4588. /* erase previous misconfiguration */
  4589. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4590. nv_mac_reset(dev);
  4591. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4592. writel(0, base + NvRegMulticastAddrB);
  4593. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4594. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4595. writel(0, base + NvRegPacketFilterFlags);
  4596. writel(0, base + NvRegTransmitterControl);
  4597. writel(0, base + NvRegReceiverControl);
  4598. writel(0, base + NvRegAdapterControl);
  4599. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4600. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4601. /* initialize descriptor rings */
  4602. set_bufsize(dev);
  4603. oom = nv_init_ring(dev);
  4604. writel(0, base + NvRegLinkSpeed);
  4605. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4606. nv_txrx_reset(dev);
  4607. writel(0, base + NvRegUnknownSetupReg6);
  4608. np->in_shutdown = 0;
  4609. /* give hw rings */
  4610. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4611. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4612. base + NvRegRingSizes);
  4613. writel(np->linkspeed, base + NvRegLinkSpeed);
  4614. if (np->desc_ver == DESC_VER_1)
  4615. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4616. else
  4617. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4618. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4619. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4620. pci_push(base);
  4621. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4622. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4623. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4624. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4625. writel(0, base + NvRegMIIMask);
  4626. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4627. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4628. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4629. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4630. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4631. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4632. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4633. get_random_bytes(&low, sizeof(low));
  4634. low &= NVREG_SLOTTIME_MASK;
  4635. if (np->desc_ver == DESC_VER_1) {
  4636. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4637. } else {
  4638. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4639. /* setup legacy backoff */
  4640. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4641. } else {
  4642. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4643. nv_gear_backoff_reseed(dev);
  4644. }
  4645. }
  4646. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4647. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4648. if (poll_interval == -1) {
  4649. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4650. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4651. else
  4652. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4653. }
  4654. else
  4655. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4656. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4657. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4658. base + NvRegAdapterControl);
  4659. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4660. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4661. if (np->wolenabled)
  4662. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4663. i = readl(base + NvRegPowerState);
  4664. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4665. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4666. pci_push(base);
  4667. udelay(10);
  4668. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4669. nv_disable_hw_interrupts(dev, np->irqmask);
  4670. pci_push(base);
  4671. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4672. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4673. pci_push(base);
  4674. if (nv_request_irq(dev, 0)) {
  4675. goto out_drain;
  4676. }
  4677. /* ask for interrupts */
  4678. nv_enable_hw_interrupts(dev, np->irqmask);
  4679. spin_lock_irq(&np->lock);
  4680. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4681. writel(0, base + NvRegMulticastAddrB);
  4682. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4683. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4684. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4685. /* One manual link speed update: Interrupts are enabled, future link
  4686. * speed changes cause interrupts and are handled by nv_link_irq().
  4687. */
  4688. {
  4689. u32 miistat;
  4690. miistat = readl(base + NvRegMIIStatus);
  4691. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4692. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4693. }
  4694. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4695. * to init hw */
  4696. np->linkspeed = 0;
  4697. ret = nv_update_linkspeed(dev);
  4698. nv_start_rxtx(dev);
  4699. netif_start_queue(dev);
  4700. nv_napi_enable(dev);
  4701. if (ret) {
  4702. netif_carrier_on(dev);
  4703. } else {
  4704. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4705. netif_carrier_off(dev);
  4706. }
  4707. if (oom)
  4708. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4709. /* start statistics timer */
  4710. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4711. mod_timer(&np->stats_poll,
  4712. round_jiffies(jiffies + STATS_INTERVAL));
  4713. spin_unlock_irq(&np->lock);
  4714. return 0;
  4715. out_drain:
  4716. nv_drain_rxtx(dev);
  4717. return ret;
  4718. }
  4719. static int nv_close(struct net_device *dev)
  4720. {
  4721. struct fe_priv *np = netdev_priv(dev);
  4722. u8 __iomem *base;
  4723. spin_lock_irq(&np->lock);
  4724. np->in_shutdown = 1;
  4725. spin_unlock_irq(&np->lock);
  4726. nv_napi_disable(dev);
  4727. synchronize_irq(np->pci_dev->irq);
  4728. del_timer_sync(&np->oom_kick);
  4729. del_timer_sync(&np->nic_poll);
  4730. del_timer_sync(&np->stats_poll);
  4731. netif_stop_queue(dev);
  4732. spin_lock_irq(&np->lock);
  4733. nv_stop_rxtx(dev);
  4734. nv_txrx_reset(dev);
  4735. /* disable interrupts on the nic or we will lock up */
  4736. base = get_hwbase(dev);
  4737. nv_disable_hw_interrupts(dev, np->irqmask);
  4738. pci_push(base);
  4739. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4740. spin_unlock_irq(&np->lock);
  4741. nv_free_irq(dev);
  4742. nv_drain_rxtx(dev);
  4743. if (np->wolenabled || !phy_power_down) {
  4744. nv_txrx_gate(dev, false);
  4745. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4746. nv_start_rx(dev);
  4747. } else {
  4748. /* power down phy */
  4749. mii_rw(dev, np->phyaddr, MII_BMCR,
  4750. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4751. nv_txrx_gate(dev, true);
  4752. }
  4753. /* FIXME: power down nic */
  4754. return 0;
  4755. }
  4756. static const struct net_device_ops nv_netdev_ops = {
  4757. .ndo_open = nv_open,
  4758. .ndo_stop = nv_close,
  4759. .ndo_get_stats = nv_get_stats,
  4760. .ndo_start_xmit = nv_start_xmit,
  4761. .ndo_tx_timeout = nv_tx_timeout,
  4762. .ndo_change_mtu = nv_change_mtu,
  4763. .ndo_validate_addr = eth_validate_addr,
  4764. .ndo_set_mac_address = nv_set_mac_address,
  4765. .ndo_set_multicast_list = nv_set_multicast,
  4766. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4767. #ifdef CONFIG_NET_POLL_CONTROLLER
  4768. .ndo_poll_controller = nv_poll_controller,
  4769. #endif
  4770. };
  4771. static const struct net_device_ops nv_netdev_ops_optimized = {
  4772. .ndo_open = nv_open,
  4773. .ndo_stop = nv_close,
  4774. .ndo_get_stats = nv_get_stats,
  4775. .ndo_start_xmit = nv_start_xmit_optimized,
  4776. .ndo_tx_timeout = nv_tx_timeout,
  4777. .ndo_change_mtu = nv_change_mtu,
  4778. .ndo_validate_addr = eth_validate_addr,
  4779. .ndo_set_mac_address = nv_set_mac_address,
  4780. .ndo_set_multicast_list = nv_set_multicast,
  4781. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4782. #ifdef CONFIG_NET_POLL_CONTROLLER
  4783. .ndo_poll_controller = nv_poll_controller,
  4784. #endif
  4785. };
  4786. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4787. {
  4788. struct net_device *dev;
  4789. struct fe_priv *np;
  4790. unsigned long addr;
  4791. u8 __iomem *base;
  4792. int err, i;
  4793. u32 powerstate, txreg;
  4794. u32 phystate_orig = 0, phystate;
  4795. int phyinitialized = 0;
  4796. static int printed_version;
  4797. if (!printed_version++)
  4798. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4799. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4800. dev = alloc_etherdev(sizeof(struct fe_priv));
  4801. err = -ENOMEM;
  4802. if (!dev)
  4803. goto out;
  4804. np = netdev_priv(dev);
  4805. np->dev = dev;
  4806. np->pci_dev = pci_dev;
  4807. spin_lock_init(&np->lock);
  4808. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4809. init_timer(&np->oom_kick);
  4810. np->oom_kick.data = (unsigned long) dev;
  4811. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4812. init_timer(&np->nic_poll);
  4813. np->nic_poll.data = (unsigned long) dev;
  4814. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4815. init_timer(&np->stats_poll);
  4816. np->stats_poll.data = (unsigned long) dev;
  4817. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4818. err = pci_enable_device(pci_dev);
  4819. if (err)
  4820. goto out_free;
  4821. pci_set_master(pci_dev);
  4822. err = pci_request_regions(pci_dev, DRV_NAME);
  4823. if (err < 0)
  4824. goto out_disable;
  4825. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4826. np->register_size = NV_PCI_REGSZ_VER3;
  4827. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4828. np->register_size = NV_PCI_REGSZ_VER2;
  4829. else
  4830. np->register_size = NV_PCI_REGSZ_VER1;
  4831. err = -EINVAL;
  4832. addr = 0;
  4833. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4834. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4835. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4836. pci_resource_len(pci_dev, i),
  4837. pci_resource_flags(pci_dev, i));
  4838. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4839. pci_resource_len(pci_dev, i) >= np->register_size) {
  4840. addr = pci_resource_start(pci_dev, i);
  4841. break;
  4842. }
  4843. }
  4844. if (i == DEVICE_COUNT_RESOURCE) {
  4845. dev_printk(KERN_INFO, &pci_dev->dev,
  4846. "Couldn't find register window\n");
  4847. goto out_relreg;
  4848. }
  4849. /* copy of driver data */
  4850. np->driver_data = id->driver_data;
  4851. /* copy of device id */
  4852. np->device_id = id->device;
  4853. /* handle different descriptor versions */
  4854. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4855. /* packet format 3: supports 40-bit addressing */
  4856. np->desc_ver = DESC_VER_3;
  4857. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4858. if (dma_64bit) {
  4859. if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
  4860. dev_printk(KERN_INFO, &pci_dev->dev,
  4861. "64-bit DMA failed, using 32-bit addressing\n");
  4862. else
  4863. dev->features |= NETIF_F_HIGHDMA;
  4864. if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
  4865. dev_printk(KERN_INFO, &pci_dev->dev,
  4866. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4867. }
  4868. }
  4869. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4870. /* packet format 2: supports jumbo frames */
  4871. np->desc_ver = DESC_VER_2;
  4872. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4873. } else {
  4874. /* original packet format */
  4875. np->desc_ver = DESC_VER_1;
  4876. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4877. }
  4878. np->pkt_limit = NV_PKTLIMIT_1;
  4879. if (id->driver_data & DEV_HAS_LARGEDESC)
  4880. np->pkt_limit = NV_PKTLIMIT_2;
  4881. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4882. np->rx_csum = 1;
  4883. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4884. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  4885. dev->features |= NETIF_F_TSO;
  4886. dev->features |= NETIF_F_GRO;
  4887. }
  4888. np->vlanctl_bits = 0;
  4889. if (id->driver_data & DEV_HAS_VLAN) {
  4890. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4891. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4892. }
  4893. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4894. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4895. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4896. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4897. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4898. }
  4899. err = -ENOMEM;
  4900. np->base = ioremap(addr, np->register_size);
  4901. if (!np->base)
  4902. goto out_relreg;
  4903. dev->base_addr = (unsigned long)np->base;
  4904. dev->irq = pci_dev->irq;
  4905. np->rx_ring_size = RX_RING_DEFAULT;
  4906. np->tx_ring_size = TX_RING_DEFAULT;
  4907. if (!nv_optimized(np)) {
  4908. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4909. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4910. &np->ring_addr);
  4911. if (!np->rx_ring.orig)
  4912. goto out_unmap;
  4913. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4914. } else {
  4915. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4916. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4917. &np->ring_addr);
  4918. if (!np->rx_ring.ex)
  4919. goto out_unmap;
  4920. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4921. }
  4922. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4923. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4924. if (!np->rx_skb || !np->tx_skb)
  4925. goto out_freering;
  4926. if (!nv_optimized(np))
  4927. dev->netdev_ops = &nv_netdev_ops;
  4928. else
  4929. dev->netdev_ops = &nv_netdev_ops_optimized;
  4930. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4931. SET_ETHTOOL_OPS(dev, &ops);
  4932. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4933. pci_set_drvdata(pci_dev, dev);
  4934. /* read the mac address */
  4935. base = get_hwbase(dev);
  4936. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4937. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4938. /* check the workaround bit for correct mac address order */
  4939. txreg = readl(base + NvRegTransmitPoll);
  4940. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  4941. /* mac address is already in correct order */
  4942. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4943. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4944. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4945. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4946. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4947. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4948. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  4949. /* mac address is already in correct order */
  4950. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4951. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4952. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4953. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4954. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4955. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4956. /*
  4957. * Set orig mac address back to the reversed version.
  4958. * This flag will be cleared during low power transition.
  4959. * Therefore, we should always put back the reversed address.
  4960. */
  4961. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  4962. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  4963. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  4964. } else {
  4965. /* need to reverse mac address to correct order */
  4966. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4967. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4968. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4969. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4970. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4971. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4972. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4973. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  4974. }
  4975. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4976. if (!is_valid_ether_addr(dev->perm_addr)) {
  4977. /*
  4978. * Bad mac address. At least one bios sets the mac address
  4979. * to 01:23:45:67:89:ab
  4980. */
  4981. dev_printk(KERN_ERR, &pci_dev->dev,
  4982. "Invalid Mac address detected: %pM\n",
  4983. dev->dev_addr);
  4984. dev_printk(KERN_ERR, &pci_dev->dev,
  4985. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4986. random_ether_addr(dev->dev_addr);
  4987. }
  4988. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  4989. pci_name(pci_dev), dev->dev_addr);
  4990. /* set mac address */
  4991. nv_copy_mac_to_hw(dev);
  4992. /* Workaround current PCI init glitch: wakeup bits aren't
  4993. * being set from PCI PM capability.
  4994. */
  4995. device_init_wakeup(&pci_dev->dev, 1);
  4996. /* disable WOL */
  4997. writel(0, base + NvRegWakeUpFlags);
  4998. np->wolenabled = 0;
  4999. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5000. /* take phy and nic out of low power mode */
  5001. powerstate = readl(base + NvRegPowerState2);
  5002. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5003. if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
  5004. pci_dev->revision >= 0xA3)
  5005. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5006. writel(powerstate, base + NvRegPowerState2);
  5007. }
  5008. if (np->desc_ver == DESC_VER_1) {
  5009. np->tx_flags = NV_TX_VALID;
  5010. } else {
  5011. np->tx_flags = NV_TX2_VALID;
  5012. }
  5013. np->msi_flags = 0;
  5014. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  5015. np->msi_flags |= NV_MSI_CAPABLE;
  5016. }
  5017. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5018. /* msix has had reported issues when modifying irqmask
  5019. as in the case of napi, therefore, disable for now
  5020. */
  5021. #if 0
  5022. np->msi_flags |= NV_MSI_X_CAPABLE;
  5023. #endif
  5024. }
  5025. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  5026. np->irqmask = NVREG_IRQMASK_CPU;
  5027. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5028. np->msi_flags |= 0x0001;
  5029. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  5030. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  5031. /* start off in throughput mode */
  5032. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5033. /* remove support for msix mode */
  5034. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  5035. } else {
  5036. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  5037. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5038. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5039. np->msi_flags |= 0x0003;
  5040. }
  5041. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5042. np->irqmask |= NVREG_IRQ_TIMER;
  5043. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5044. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5045. np->need_linktimer = 1;
  5046. np->link_timeout = jiffies + LINK_TIMEOUT;
  5047. } else {
  5048. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5049. np->need_linktimer = 0;
  5050. }
  5051. /* Limit the number of tx's outstanding for hw bug */
  5052. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5053. np->tx_limit = 1;
  5054. if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) &&
  5055. pci_dev->revision >= 0xA2)
  5056. np->tx_limit = 0;
  5057. }
  5058. /* clear phy state and temporarily halt phy interrupts */
  5059. writel(0, base + NvRegMIIMask);
  5060. phystate = readl(base + NvRegAdapterControl);
  5061. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5062. phystate_orig = 1;
  5063. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5064. writel(phystate, base + NvRegAdapterControl);
  5065. }
  5066. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5067. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5068. /* management unit running on the mac? */
  5069. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5070. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5071. nv_mgmt_acquire_sema(dev) &&
  5072. nv_mgmt_get_version(dev)) {
  5073. np->mac_in_use = 1;
  5074. if (np->mgmt_version > 0) {
  5075. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5076. }
  5077. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
  5078. pci_name(pci_dev), np->mac_in_use);
  5079. /* management unit setup the phy already? */
  5080. if (np->mac_in_use &&
  5081. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5082. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5083. /* phy is inited by mgmt unit */
  5084. phyinitialized = 1;
  5085. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
  5086. pci_name(pci_dev));
  5087. } else {
  5088. /* we need to init the phy */
  5089. }
  5090. }
  5091. }
  5092. /* find a suitable phy */
  5093. for (i = 1; i <= 32; i++) {
  5094. int id1, id2;
  5095. int phyaddr = i & 0x1F;
  5096. spin_lock_irq(&np->lock);
  5097. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5098. spin_unlock_irq(&np->lock);
  5099. if (id1 < 0 || id1 == 0xffff)
  5100. continue;
  5101. spin_lock_irq(&np->lock);
  5102. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5103. spin_unlock_irq(&np->lock);
  5104. if (id2 < 0 || id2 == 0xffff)
  5105. continue;
  5106. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5107. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5108. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5109. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5110. pci_name(pci_dev), id1, id2, phyaddr);
  5111. np->phyaddr = phyaddr;
  5112. np->phy_oui = id1 | id2;
  5113. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5114. if (np->phy_oui == PHY_OUI_REALTEK2)
  5115. np->phy_oui = PHY_OUI_REALTEK;
  5116. /* Setup phy revision for Realtek */
  5117. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5118. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5119. break;
  5120. }
  5121. if (i == 33) {
  5122. dev_printk(KERN_INFO, &pci_dev->dev,
  5123. "open: Could not find a valid PHY.\n");
  5124. goto out_error;
  5125. }
  5126. if (!phyinitialized) {
  5127. /* reset it */
  5128. phy_init(dev);
  5129. } else {
  5130. /* see if it is a gigabit phy */
  5131. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5132. if (mii_status & PHY_GIGABIT) {
  5133. np->gigabit = PHY_GIGABIT;
  5134. }
  5135. }
  5136. /* set default link speed settings */
  5137. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5138. np->duplex = 0;
  5139. np->autoneg = 1;
  5140. err = register_netdev(dev);
  5141. if (err) {
  5142. dev_printk(KERN_INFO, &pci_dev->dev,
  5143. "unable to register netdev: %d\n", err);
  5144. goto out_error;
  5145. }
  5146. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5147. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5148. dev->name,
  5149. np->phy_oui,
  5150. np->phyaddr,
  5151. dev->dev_addr[0],
  5152. dev->dev_addr[1],
  5153. dev->dev_addr[2],
  5154. dev->dev_addr[3],
  5155. dev->dev_addr[4],
  5156. dev->dev_addr[5]);
  5157. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5158. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5159. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5160. "csum " : "",
  5161. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5162. "vlan " : "",
  5163. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5164. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5165. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5166. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5167. np->need_linktimer ? "lnktim " : "",
  5168. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5169. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5170. np->desc_ver);
  5171. return 0;
  5172. out_error:
  5173. if (phystate_orig)
  5174. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5175. pci_set_drvdata(pci_dev, NULL);
  5176. out_freering:
  5177. free_rings(dev);
  5178. out_unmap:
  5179. iounmap(get_hwbase(dev));
  5180. out_relreg:
  5181. pci_release_regions(pci_dev);
  5182. out_disable:
  5183. pci_disable_device(pci_dev);
  5184. out_free:
  5185. free_netdev(dev);
  5186. out:
  5187. return err;
  5188. }
  5189. static void nv_restore_phy(struct net_device *dev)
  5190. {
  5191. struct fe_priv *np = netdev_priv(dev);
  5192. u16 phy_reserved, mii_control;
  5193. if (np->phy_oui == PHY_OUI_REALTEK &&
  5194. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5195. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5196. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5197. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5198. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5199. phy_reserved |= PHY_REALTEK_INIT8;
  5200. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5201. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5202. /* restart auto negotiation */
  5203. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5204. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5205. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5206. }
  5207. }
  5208. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5209. {
  5210. struct net_device *dev = pci_get_drvdata(pci_dev);
  5211. struct fe_priv *np = netdev_priv(dev);
  5212. u8 __iomem *base = get_hwbase(dev);
  5213. /* special op: write back the misordered MAC address - otherwise
  5214. * the next nv_probe would see a wrong address.
  5215. */
  5216. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5217. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5218. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5219. base + NvRegTransmitPoll);
  5220. }
  5221. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5222. {
  5223. struct net_device *dev = pci_get_drvdata(pci_dev);
  5224. unregister_netdev(dev);
  5225. nv_restore_mac_addr(pci_dev);
  5226. /* restore any phy related changes */
  5227. nv_restore_phy(dev);
  5228. nv_mgmt_release_sema(dev);
  5229. /* free all structures */
  5230. free_rings(dev);
  5231. iounmap(get_hwbase(dev));
  5232. pci_release_regions(pci_dev);
  5233. pci_disable_device(pci_dev);
  5234. free_netdev(dev);
  5235. pci_set_drvdata(pci_dev, NULL);
  5236. }
  5237. #ifdef CONFIG_PM
  5238. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5239. {
  5240. struct net_device *dev = pci_get_drvdata(pdev);
  5241. struct fe_priv *np = netdev_priv(dev);
  5242. u8 __iomem *base = get_hwbase(dev);
  5243. int i;
  5244. if (netif_running(dev)) {
  5245. // Gross.
  5246. nv_close(dev);
  5247. }
  5248. netif_device_detach(dev);
  5249. /* save non-pci configuration space */
  5250. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5251. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5252. pci_save_state(pdev);
  5253. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5254. pci_disable_device(pdev);
  5255. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5256. return 0;
  5257. }
  5258. static int nv_resume(struct pci_dev *pdev)
  5259. {
  5260. struct net_device *dev = pci_get_drvdata(pdev);
  5261. struct fe_priv *np = netdev_priv(dev);
  5262. u8 __iomem *base = get_hwbase(dev);
  5263. int i, rc = 0;
  5264. pci_set_power_state(pdev, PCI_D0);
  5265. pci_restore_state(pdev);
  5266. /* ack any pending wake events, disable PME */
  5267. pci_enable_wake(pdev, PCI_D0, 0);
  5268. /* restore non-pci configuration space */
  5269. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5270. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5271. if (np->driver_data & DEV_NEED_MSI_FIX)
  5272. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5273. /* restore phy state, including autoneg */
  5274. phy_init(dev);
  5275. netif_device_attach(dev);
  5276. if (netif_running(dev)) {
  5277. rc = nv_open(dev);
  5278. nv_set_multicast(dev);
  5279. }
  5280. return rc;
  5281. }
  5282. static void nv_shutdown(struct pci_dev *pdev)
  5283. {
  5284. struct net_device *dev = pci_get_drvdata(pdev);
  5285. struct fe_priv *np = netdev_priv(dev);
  5286. if (netif_running(dev))
  5287. nv_close(dev);
  5288. /*
  5289. * Restore the MAC so a kernel started by kexec won't get confused.
  5290. * If we really go for poweroff, we must not restore the MAC,
  5291. * otherwise the MAC for WOL will be reversed at least on some boards.
  5292. */
  5293. if (system_state != SYSTEM_POWER_OFF) {
  5294. nv_restore_mac_addr(pdev);
  5295. }
  5296. pci_disable_device(pdev);
  5297. /*
  5298. * Apparently it is not possible to reinitialise from D3 hot,
  5299. * only put the device into D3 if we really go for poweroff.
  5300. */
  5301. if (system_state == SYSTEM_POWER_OFF) {
  5302. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5303. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5304. pci_set_power_state(pdev, PCI_D3hot);
  5305. }
  5306. }
  5307. #else
  5308. #define nv_suspend NULL
  5309. #define nv_shutdown NULL
  5310. #define nv_resume NULL
  5311. #endif /* CONFIG_PM */
  5312. static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = {
  5313. { /* nForce Ethernet Controller */
  5314. PCI_DEVICE(0x10DE, 0x01C3),
  5315. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5316. },
  5317. { /* nForce2 Ethernet Controller */
  5318. PCI_DEVICE(0x10DE, 0x0066),
  5319. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5320. },
  5321. { /* nForce3 Ethernet Controller */
  5322. PCI_DEVICE(0x10DE, 0x00D6),
  5323. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5324. },
  5325. { /* nForce3 Ethernet Controller */
  5326. PCI_DEVICE(0x10DE, 0x0086),
  5327. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5328. },
  5329. { /* nForce3 Ethernet Controller */
  5330. PCI_DEVICE(0x10DE, 0x008C),
  5331. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5332. },
  5333. { /* nForce3 Ethernet Controller */
  5334. PCI_DEVICE(0x10DE, 0x00E6),
  5335. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5336. },
  5337. { /* nForce3 Ethernet Controller */
  5338. PCI_DEVICE(0x10DE, 0x00DF),
  5339. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5340. },
  5341. { /* CK804 Ethernet Controller */
  5342. PCI_DEVICE(0x10DE, 0x0056),
  5343. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5344. },
  5345. { /* CK804 Ethernet Controller */
  5346. PCI_DEVICE(0x10DE, 0x0057),
  5347. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5348. },
  5349. { /* MCP04 Ethernet Controller */
  5350. PCI_DEVICE(0x10DE, 0x0037),
  5351. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5352. },
  5353. { /* MCP04 Ethernet Controller */
  5354. PCI_DEVICE(0x10DE, 0x0038),
  5355. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5356. },
  5357. { /* MCP51 Ethernet Controller */
  5358. PCI_DEVICE(0x10DE, 0x0268),
  5359. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5360. },
  5361. { /* MCP51 Ethernet Controller */
  5362. PCI_DEVICE(0x10DE, 0x0269),
  5363. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5364. },
  5365. { /* MCP55 Ethernet Controller */
  5366. PCI_DEVICE(0x10DE, 0x0372),
  5367. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5368. },
  5369. { /* MCP55 Ethernet Controller */
  5370. PCI_DEVICE(0x10DE, 0x0373),
  5371. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5372. },
  5373. { /* MCP61 Ethernet Controller */
  5374. PCI_DEVICE(0x10DE, 0x03E5),
  5375. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5376. },
  5377. { /* MCP61 Ethernet Controller */
  5378. PCI_DEVICE(0x10DE, 0x03E6),
  5379. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5380. },
  5381. { /* MCP61 Ethernet Controller */
  5382. PCI_DEVICE(0x10DE, 0x03EE),
  5383. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5384. },
  5385. { /* MCP61 Ethernet Controller */
  5386. PCI_DEVICE(0x10DE, 0x03EF),
  5387. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5388. },
  5389. { /* MCP65 Ethernet Controller */
  5390. PCI_DEVICE(0x10DE, 0x0450),
  5391. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5392. },
  5393. { /* MCP65 Ethernet Controller */
  5394. PCI_DEVICE(0x10DE, 0x0451),
  5395. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5396. },
  5397. { /* MCP65 Ethernet Controller */
  5398. PCI_DEVICE(0x10DE, 0x0452),
  5399. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5400. },
  5401. { /* MCP65 Ethernet Controller */
  5402. PCI_DEVICE(0x10DE, 0x0453),
  5403. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5404. },
  5405. { /* MCP67 Ethernet Controller */
  5406. PCI_DEVICE(0x10DE, 0x054C),
  5407. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5408. },
  5409. { /* MCP67 Ethernet Controller */
  5410. PCI_DEVICE(0x10DE, 0x054D),
  5411. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5412. },
  5413. { /* MCP67 Ethernet Controller */
  5414. PCI_DEVICE(0x10DE, 0x054E),
  5415. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5416. },
  5417. { /* MCP67 Ethernet Controller */
  5418. PCI_DEVICE(0x10DE, 0x054F),
  5419. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5420. },
  5421. { /* MCP73 Ethernet Controller */
  5422. PCI_DEVICE(0x10DE, 0x07DC),
  5423. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5424. },
  5425. { /* MCP73 Ethernet Controller */
  5426. PCI_DEVICE(0x10DE, 0x07DD),
  5427. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5428. },
  5429. { /* MCP73 Ethernet Controller */
  5430. PCI_DEVICE(0x10DE, 0x07DE),
  5431. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5432. },
  5433. { /* MCP73 Ethernet Controller */
  5434. PCI_DEVICE(0x10DE, 0x07DF),
  5435. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5436. },
  5437. { /* MCP77 Ethernet Controller */
  5438. PCI_DEVICE(0x10DE, 0x0760),
  5439. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5440. },
  5441. { /* MCP77 Ethernet Controller */
  5442. PCI_DEVICE(0x10DE, 0x0761),
  5443. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5444. },
  5445. { /* MCP77 Ethernet Controller */
  5446. PCI_DEVICE(0x10DE, 0x0762),
  5447. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5448. },
  5449. { /* MCP77 Ethernet Controller */
  5450. PCI_DEVICE(0x10DE, 0x0763),
  5451. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5452. },
  5453. { /* MCP79 Ethernet Controller */
  5454. PCI_DEVICE(0x10DE, 0x0AB0),
  5455. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5456. },
  5457. { /* MCP79 Ethernet Controller */
  5458. PCI_DEVICE(0x10DE, 0x0AB1),
  5459. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5460. },
  5461. { /* MCP79 Ethernet Controller */
  5462. PCI_DEVICE(0x10DE, 0x0AB2),
  5463. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5464. },
  5465. { /* MCP79 Ethernet Controller */
  5466. PCI_DEVICE(0x10DE, 0x0AB3),
  5467. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5468. },
  5469. { /* MCP89 Ethernet Controller */
  5470. PCI_DEVICE(0x10DE, 0x0D7D),
  5471. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
  5472. },
  5473. {0,},
  5474. };
  5475. static struct pci_driver driver = {
  5476. .name = DRV_NAME,
  5477. .id_table = pci_tbl,
  5478. .probe = nv_probe,
  5479. .remove = __devexit_p(nv_remove),
  5480. .suspend = nv_suspend,
  5481. .resume = nv_resume,
  5482. .shutdown = nv_shutdown,
  5483. };
  5484. static int __init init_nic(void)
  5485. {
  5486. return pci_register_driver(&driver);
  5487. }
  5488. static void __exit exit_nic(void)
  5489. {
  5490. pci_unregister_driver(&driver);
  5491. }
  5492. module_param(max_interrupt_work, int, 0);
  5493. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5494. module_param(optimization_mode, int, 0);
  5495. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5496. module_param(poll_interval, int, 0);
  5497. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5498. module_param(msi, int, 0);
  5499. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5500. module_param(msix, int, 0);
  5501. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5502. module_param(dma_64bit, int, 0);
  5503. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5504. module_param(phy_cross, int, 0);
  5505. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5506. module_param(phy_power_down, int, 0);
  5507. MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
  5508. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5509. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5510. MODULE_LICENSE("GPL");
  5511. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5512. module_init(init_nic);
  5513. module_exit(exit_nic);