t4_hw.c 97 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include "cxgb4.h"
  37. #include "t4_regs.h"
  38. #include "t4fw_api.h"
  39. /**
  40. * t4_wait_op_done_val - wait until an operation is completed
  41. * @adapter: the adapter performing the operation
  42. * @reg: the register to check for completion
  43. * @mask: a single-bit field within @reg that indicates completion
  44. * @polarity: the value of the field when the operation is completed
  45. * @attempts: number of check iterations
  46. * @delay: delay in usecs between iterations
  47. * @valp: where to store the value of the register at completion time
  48. *
  49. * Wait until an operation is completed by checking a bit in a register
  50. * up to @attempts times. If @valp is not NULL the value of the register
  51. * at the time it indicated completion is stored there. Returns 0 if the
  52. * operation completes and -EAGAIN otherwise.
  53. */
  54. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  55. int polarity, int attempts, int delay, u32 *valp)
  56. {
  57. while (1) {
  58. u32 val = t4_read_reg(adapter, reg);
  59. if (!!(val & mask) == polarity) {
  60. if (valp)
  61. *valp = val;
  62. return 0;
  63. }
  64. if (--attempts == 0)
  65. return -EAGAIN;
  66. if (delay)
  67. udelay(delay);
  68. }
  69. }
  70. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  71. int polarity, int attempts, int delay)
  72. {
  73. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  74. delay, NULL);
  75. }
  76. /**
  77. * t4_set_reg_field - set a register field to a value
  78. * @adapter: the adapter to program
  79. * @addr: the register address
  80. * @mask: specifies the portion of the register to modify
  81. * @val: the new value for the register field
  82. *
  83. * Sets a register field specified by the supplied mask to the
  84. * given value.
  85. */
  86. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  87. u32 val)
  88. {
  89. u32 v = t4_read_reg(adapter, addr) & ~mask;
  90. t4_write_reg(adapter, addr, v | val);
  91. (void) t4_read_reg(adapter, addr); /* flush */
  92. }
  93. /**
  94. * t4_read_indirect - read indirectly addressed registers
  95. * @adap: the adapter
  96. * @addr_reg: register holding the indirect address
  97. * @data_reg: register holding the value of the indirect register
  98. * @vals: where the read register values are stored
  99. * @nregs: how many indirect registers to read
  100. * @start_idx: index of first indirect register to read
  101. *
  102. * Reads registers that are accessed indirectly through an address/data
  103. * register pair.
  104. */
  105. static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  106. unsigned int data_reg, u32 *vals,
  107. unsigned int nregs, unsigned int start_idx)
  108. {
  109. while (nregs--) {
  110. t4_write_reg(adap, addr_reg, start_idx);
  111. *vals++ = t4_read_reg(adap, data_reg);
  112. start_idx++;
  113. }
  114. }
  115. #if 0
  116. /**
  117. * t4_write_indirect - write indirectly addressed registers
  118. * @adap: the adapter
  119. * @addr_reg: register holding the indirect addresses
  120. * @data_reg: register holding the value for the indirect registers
  121. * @vals: values to write
  122. * @nregs: how many indirect registers to write
  123. * @start_idx: address of first indirect register to write
  124. *
  125. * Writes a sequential block of registers that are accessed indirectly
  126. * through an address/data register pair.
  127. */
  128. static void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
  129. unsigned int data_reg, const u32 *vals,
  130. unsigned int nregs, unsigned int start_idx)
  131. {
  132. while (nregs--) {
  133. t4_write_reg(adap, addr_reg, start_idx++);
  134. t4_write_reg(adap, data_reg, *vals++);
  135. }
  136. }
  137. #endif
  138. /*
  139. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  140. */
  141. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  142. u32 mbox_addr)
  143. {
  144. for ( ; nflit; nflit--, mbox_addr += 8)
  145. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  146. }
  147. /*
  148. * Handle a FW assertion reported in a mailbox.
  149. */
  150. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  151. {
  152. struct fw_debug_cmd asrt;
  153. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  154. dev_alert(adap->pdev_dev,
  155. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  156. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  157. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  158. }
  159. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  160. {
  161. dev_err(adap->pdev_dev,
  162. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  163. (unsigned long long)t4_read_reg64(adap, data_reg),
  164. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  165. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  166. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  167. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  168. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  169. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  170. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  171. }
  172. /**
  173. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  174. * @adap: the adapter
  175. * @mbox: index of the mailbox to use
  176. * @cmd: the command to write
  177. * @size: command length in bytes
  178. * @rpl: where to optionally store the reply
  179. * @sleep_ok: if true we may sleep while awaiting command completion
  180. *
  181. * Sends the given command to FW through the selected mailbox and waits
  182. * for the FW to execute the command. If @rpl is not %NULL it is used to
  183. * store the FW's reply to the command. The command and its optional
  184. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  185. * to respond. @sleep_ok determines whether we may sleep while awaiting
  186. * the response. If sleeping is allowed we use progressive backoff
  187. * otherwise we spin.
  188. *
  189. * The return value is 0 on success or a negative errno on failure. A
  190. * failure can happen either because we are not able to execute the
  191. * command or FW executes it but signals an error. In the latter case
  192. * the return value is the error code indicated by FW (negated).
  193. */
  194. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  195. void *rpl, bool sleep_ok)
  196. {
  197. static int delay[] = {
  198. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  199. };
  200. u32 v;
  201. u64 res;
  202. int i, ms, delay_idx;
  203. const __be64 *p = cmd;
  204. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
  205. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
  206. if ((size & 15) || size > MBOX_LEN)
  207. return -EINVAL;
  208. /*
  209. * If the device is off-line, as in EEH, commands will time out.
  210. * Fail them early so we don't waste time waiting.
  211. */
  212. if (adap->pdev->error_state != pci_channel_io_normal)
  213. return -EIO;
  214. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  215. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  216. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  217. if (v != MBOX_OWNER_DRV)
  218. return v ? -EBUSY : -ETIMEDOUT;
  219. for (i = 0; i < size; i += 8)
  220. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  221. t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
  222. t4_read_reg(adap, ctl_reg); /* flush write */
  223. delay_idx = 0;
  224. ms = delay[0];
  225. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  226. if (sleep_ok) {
  227. ms = delay[delay_idx]; /* last element may repeat */
  228. if (delay_idx < ARRAY_SIZE(delay) - 1)
  229. delay_idx++;
  230. msleep(ms);
  231. } else
  232. mdelay(ms);
  233. v = t4_read_reg(adap, ctl_reg);
  234. if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
  235. if (!(v & MBMSGVALID)) {
  236. t4_write_reg(adap, ctl_reg, 0);
  237. continue;
  238. }
  239. res = t4_read_reg64(adap, data_reg);
  240. if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
  241. fw_asrt(adap, data_reg);
  242. res = FW_CMD_RETVAL(EIO);
  243. } else if (rpl)
  244. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  245. if (FW_CMD_RETVAL_GET((int)res))
  246. dump_mbox(adap, mbox, data_reg);
  247. t4_write_reg(adap, ctl_reg, 0);
  248. return -FW_CMD_RETVAL_GET((int)res);
  249. }
  250. }
  251. dump_mbox(adap, mbox, data_reg);
  252. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  253. *(const u8 *)cmd, mbox);
  254. return -ETIMEDOUT;
  255. }
  256. /**
  257. * t4_mc_read - read from MC through backdoor accesses
  258. * @adap: the adapter
  259. * @addr: address of first byte requested
  260. * @data: 64 bytes of data containing the requested address
  261. * @ecc: where to store the corresponding 64-bit ECC word
  262. *
  263. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  264. * that covers the requested address @addr. If @parity is not %NULL it
  265. * is assigned the 64-bit ECC word for the read data.
  266. */
  267. int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
  268. {
  269. int i;
  270. if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST)
  271. return -EBUSY;
  272. t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU);
  273. t4_write_reg(adap, MC_BIST_CMD_LEN, 64);
  274. t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc);
  275. t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST |
  276. BIST_CMD_GAP(1));
  277. i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1);
  278. if (i)
  279. return i;
  280. #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
  281. for (i = 15; i >= 0; i--)
  282. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  283. if (ecc)
  284. *ecc = t4_read_reg64(adap, MC_DATA(16));
  285. #undef MC_DATA
  286. return 0;
  287. }
  288. /**
  289. * t4_edc_read - read from EDC through backdoor accesses
  290. * @adap: the adapter
  291. * @idx: which EDC to access
  292. * @addr: address of first byte requested
  293. * @data: 64 bytes of data containing the requested address
  294. * @ecc: where to store the corresponding 64-bit ECC word
  295. *
  296. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  297. * that covers the requested address @addr. If @parity is not %NULL it
  298. * is assigned the 64-bit ECC word for the read data.
  299. */
  300. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  301. {
  302. int i;
  303. idx *= EDC_STRIDE;
  304. if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST)
  305. return -EBUSY;
  306. t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
  307. t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64);
  308. t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc);
  309. t4_write_reg(adap, EDC_BIST_CMD + idx,
  310. BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
  311. i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1);
  312. if (i)
  313. return i;
  314. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
  315. for (i = 15; i >= 0; i--)
  316. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  317. if (ecc)
  318. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  319. #undef EDC_DATA
  320. return 0;
  321. }
  322. /*
  323. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  324. * VPD-R header.
  325. */
  326. struct t4_vpd_hdr {
  327. u8 id_tag;
  328. u8 id_len[2];
  329. u8 id_data[ID_LEN];
  330. u8 vpdr_tag;
  331. u8 vpdr_len[2];
  332. };
  333. #define EEPROM_STAT_ADDR 0x7bfc
  334. #define VPD_BASE 0
  335. #define VPD_LEN 512
  336. /**
  337. * t4_seeprom_wp - enable/disable EEPROM write protection
  338. * @adapter: the adapter
  339. * @enable: whether to enable or disable write protection
  340. *
  341. * Enables or disables write protection on the serial EEPROM.
  342. */
  343. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  344. {
  345. unsigned int v = enable ? 0xc : 0;
  346. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  347. return ret < 0 ? ret : 0;
  348. }
  349. /**
  350. * get_vpd_params - read VPD parameters from VPD EEPROM
  351. * @adapter: adapter to read
  352. * @p: where to store the parameters
  353. *
  354. * Reads card parameters stored in VPD EEPROM.
  355. */
  356. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  357. {
  358. int i, ret;
  359. int ec, sn, v2;
  360. u8 vpd[VPD_LEN], csum;
  361. unsigned int vpdr_len;
  362. const struct t4_vpd_hdr *v;
  363. ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(vpd), vpd);
  364. if (ret < 0)
  365. return ret;
  366. v = (const struct t4_vpd_hdr *)vpd;
  367. vpdr_len = pci_vpd_lrdt_size(&v->vpdr_tag);
  368. if (vpdr_len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
  369. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  370. return -EINVAL;
  371. }
  372. #define FIND_VPD_KW(var, name) do { \
  373. var = pci_vpd_find_info_keyword(&v->id_tag, sizeof(struct t4_vpd_hdr), \
  374. vpdr_len, name); \
  375. if (var < 0) { \
  376. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  377. return -EINVAL; \
  378. } \
  379. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  380. } while (0)
  381. FIND_VPD_KW(i, "RV");
  382. for (csum = 0; i >= 0; i--)
  383. csum += vpd[i];
  384. if (csum) {
  385. dev_err(adapter->pdev_dev,
  386. "corrupted VPD EEPROM, actual csum %u\n", csum);
  387. return -EINVAL;
  388. }
  389. FIND_VPD_KW(ec, "EC");
  390. FIND_VPD_KW(sn, "SN");
  391. FIND_VPD_KW(v2, "V2");
  392. #undef FIND_VPD_KW
  393. p->cclk = simple_strtoul(vpd + v2, NULL, 10);
  394. memcpy(p->id, v->id_data, ID_LEN);
  395. strim(p->id);
  396. memcpy(p->ec, vpd + ec, EC_LEN);
  397. strim(p->ec);
  398. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  399. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  400. strim(p->sn);
  401. return 0;
  402. }
  403. /* serial flash and firmware constants */
  404. enum {
  405. SF_ATTEMPTS = 10, /* max retries for SF operations */
  406. /* flash command opcodes */
  407. SF_PROG_PAGE = 2, /* program page */
  408. SF_WR_DISABLE = 4, /* disable writes */
  409. SF_RD_STATUS = 5, /* read status register */
  410. SF_WR_ENABLE = 6, /* enable writes */
  411. SF_RD_DATA_FAST = 0xb, /* read flash */
  412. SF_RD_ID = 0x9f, /* read ID */
  413. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  414. FW_MAX_SIZE = 512 * 1024,
  415. };
  416. /**
  417. * sf1_read - read data from the serial flash
  418. * @adapter: the adapter
  419. * @byte_cnt: number of bytes to read
  420. * @cont: whether another operation will be chained
  421. * @lock: whether to lock SF for PL access only
  422. * @valp: where to store the read data
  423. *
  424. * Reads up to 4 bytes of data from the serial flash. The location of
  425. * the read needs to be specified prior to calling this by issuing the
  426. * appropriate commands to the serial flash.
  427. */
  428. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  429. int lock, u32 *valp)
  430. {
  431. int ret;
  432. if (!byte_cnt || byte_cnt > 4)
  433. return -EINVAL;
  434. if (t4_read_reg(adapter, SF_OP) & BUSY)
  435. return -EBUSY;
  436. cont = cont ? SF_CONT : 0;
  437. lock = lock ? SF_LOCK : 0;
  438. t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
  439. ret = t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
  440. if (!ret)
  441. *valp = t4_read_reg(adapter, SF_DATA);
  442. return ret;
  443. }
  444. /**
  445. * sf1_write - write data to the serial flash
  446. * @adapter: the adapter
  447. * @byte_cnt: number of bytes to write
  448. * @cont: whether another operation will be chained
  449. * @lock: whether to lock SF for PL access only
  450. * @val: value to write
  451. *
  452. * Writes up to 4 bytes of data to the serial flash. The location of
  453. * the write needs to be specified prior to calling this by issuing the
  454. * appropriate commands to the serial flash.
  455. */
  456. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  457. int lock, u32 val)
  458. {
  459. if (!byte_cnt || byte_cnt > 4)
  460. return -EINVAL;
  461. if (t4_read_reg(adapter, SF_OP) & BUSY)
  462. return -EBUSY;
  463. cont = cont ? SF_CONT : 0;
  464. lock = lock ? SF_LOCK : 0;
  465. t4_write_reg(adapter, SF_DATA, val);
  466. t4_write_reg(adapter, SF_OP, lock |
  467. cont | BYTECNT(byte_cnt - 1) | OP_WR);
  468. return t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
  469. }
  470. /**
  471. * flash_wait_op - wait for a flash operation to complete
  472. * @adapter: the adapter
  473. * @attempts: max number of polls of the status register
  474. * @delay: delay between polls in ms
  475. *
  476. * Wait for a flash operation to complete by polling the status register.
  477. */
  478. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  479. {
  480. int ret;
  481. u32 status;
  482. while (1) {
  483. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  484. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  485. return ret;
  486. if (!(status & 1))
  487. return 0;
  488. if (--attempts == 0)
  489. return -EAGAIN;
  490. if (delay)
  491. msleep(delay);
  492. }
  493. }
  494. /**
  495. * t4_read_flash - read words from serial flash
  496. * @adapter: the adapter
  497. * @addr: the start address for the read
  498. * @nwords: how many 32-bit words to read
  499. * @data: where to store the read data
  500. * @byte_oriented: whether to store data as bytes or as words
  501. *
  502. * Read the specified number of 32-bit words from the serial flash.
  503. * If @byte_oriented is set the read data is stored as a byte array
  504. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  505. * natural endianess.
  506. */
  507. static int t4_read_flash(struct adapter *adapter, unsigned int addr,
  508. unsigned int nwords, u32 *data, int byte_oriented)
  509. {
  510. int ret;
  511. if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
  512. return -EINVAL;
  513. addr = swab32(addr) | SF_RD_DATA_FAST;
  514. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  515. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  516. return ret;
  517. for ( ; nwords; nwords--, data++) {
  518. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  519. if (nwords == 1)
  520. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  521. if (ret)
  522. return ret;
  523. if (byte_oriented)
  524. *data = htonl(*data);
  525. }
  526. return 0;
  527. }
  528. /**
  529. * t4_write_flash - write up to a page of data to the serial flash
  530. * @adapter: the adapter
  531. * @addr: the start address to write
  532. * @n: length of data to write in bytes
  533. * @data: the data to write
  534. *
  535. * Writes up to a page of data (256 bytes) to the serial flash starting
  536. * at the given address. All the data must be written to the same page.
  537. */
  538. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  539. unsigned int n, const u8 *data)
  540. {
  541. int ret;
  542. u32 buf[64];
  543. unsigned int i, c, left, val, offset = addr & 0xff;
  544. if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
  545. return -EINVAL;
  546. val = swab32(addr) | SF_PROG_PAGE;
  547. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  548. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  549. goto unlock;
  550. for (left = n; left; left -= c) {
  551. c = min(left, 4U);
  552. for (val = 0, i = 0; i < c; ++i)
  553. val = (val << 8) + *data++;
  554. ret = sf1_write(adapter, c, c != left, 1, val);
  555. if (ret)
  556. goto unlock;
  557. }
  558. ret = flash_wait_op(adapter, 8, 1);
  559. if (ret)
  560. goto unlock;
  561. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  562. /* Read the page to verify the write succeeded */
  563. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  564. if (ret)
  565. return ret;
  566. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  567. dev_err(adapter->pdev_dev,
  568. "failed to correctly write the flash page at %#x\n",
  569. addr);
  570. return -EIO;
  571. }
  572. return 0;
  573. unlock:
  574. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  575. return ret;
  576. }
  577. /**
  578. * get_fw_version - read the firmware version
  579. * @adapter: the adapter
  580. * @vers: where to place the version
  581. *
  582. * Reads the FW version from flash.
  583. */
  584. static int get_fw_version(struct adapter *adapter, u32 *vers)
  585. {
  586. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  587. offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
  588. }
  589. /**
  590. * get_tp_version - read the TP microcode version
  591. * @adapter: the adapter
  592. * @vers: where to place the version
  593. *
  594. * Reads the TP microcode version from flash.
  595. */
  596. static int get_tp_version(struct adapter *adapter, u32 *vers)
  597. {
  598. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  599. offsetof(struct fw_hdr, tp_microcode_ver),
  600. 1, vers, 0);
  601. }
  602. /**
  603. * t4_check_fw_version - check if the FW is compatible with this driver
  604. * @adapter: the adapter
  605. *
  606. * Checks if an adapter's FW is compatible with the driver. Returns 0
  607. * if there's exact match, a negative error if the version could not be
  608. * read or there's a major version mismatch, and a positive value if the
  609. * expected major version is found but there's a minor version mismatch.
  610. */
  611. int t4_check_fw_version(struct adapter *adapter)
  612. {
  613. u32 api_vers[2];
  614. int ret, major, minor, micro;
  615. ret = get_fw_version(adapter, &adapter->params.fw_vers);
  616. if (!ret)
  617. ret = get_tp_version(adapter, &adapter->params.tp_vers);
  618. if (!ret)
  619. ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
  620. offsetof(struct fw_hdr, intfver_nic),
  621. 2, api_vers, 1);
  622. if (ret)
  623. return ret;
  624. major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
  625. minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
  626. micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
  627. memcpy(adapter->params.api_vers, api_vers,
  628. sizeof(adapter->params.api_vers));
  629. if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */
  630. dev_err(adapter->pdev_dev,
  631. "card FW has major version %u, driver wants %u\n",
  632. major, FW_VERSION_MAJOR);
  633. return -EINVAL;
  634. }
  635. if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
  636. return 0; /* perfect match */
  637. /* Minor/micro version mismatch. Report it but often it's OK. */
  638. return 1;
  639. }
  640. /**
  641. * t4_flash_erase_sectors - erase a range of flash sectors
  642. * @adapter: the adapter
  643. * @start: the first sector to erase
  644. * @end: the last sector to erase
  645. *
  646. * Erases the sectors in the given inclusive range.
  647. */
  648. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  649. {
  650. int ret = 0;
  651. while (start <= end) {
  652. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  653. (ret = sf1_write(adapter, 4, 0, 1,
  654. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  655. (ret = flash_wait_op(adapter, 14, 500)) != 0) {
  656. dev_err(adapter->pdev_dev,
  657. "erase of flash sector %d failed, error %d\n",
  658. start, ret);
  659. break;
  660. }
  661. start++;
  662. }
  663. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  664. return ret;
  665. }
  666. /**
  667. * t4_load_fw - download firmware
  668. * @adap: the adapter
  669. * @fw_data: the firmware image to write
  670. * @size: image size
  671. *
  672. * Write the supplied firmware image to the card's serial flash.
  673. */
  674. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  675. {
  676. u32 csum;
  677. int ret, addr;
  678. unsigned int i;
  679. u8 first_page[SF_PAGE_SIZE];
  680. const u32 *p = (const u32 *)fw_data;
  681. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  682. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  683. unsigned int fw_img_start = adap->params.sf_fw_start;
  684. unsigned int fw_start_sec = fw_img_start / sf_sec_size;
  685. if (!size) {
  686. dev_err(adap->pdev_dev, "FW image has no data\n");
  687. return -EINVAL;
  688. }
  689. if (size & 511) {
  690. dev_err(adap->pdev_dev,
  691. "FW image size not multiple of 512 bytes\n");
  692. return -EINVAL;
  693. }
  694. if (ntohs(hdr->len512) * 512 != size) {
  695. dev_err(adap->pdev_dev,
  696. "FW image size differs from size in FW header\n");
  697. return -EINVAL;
  698. }
  699. if (size > FW_MAX_SIZE) {
  700. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  701. FW_MAX_SIZE);
  702. return -EFBIG;
  703. }
  704. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  705. csum += ntohl(p[i]);
  706. if (csum != 0xffffffff) {
  707. dev_err(adap->pdev_dev,
  708. "corrupted firmware image, checksum %#x\n", csum);
  709. return -EINVAL;
  710. }
  711. i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
  712. ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
  713. if (ret)
  714. goto out;
  715. /*
  716. * We write the correct version at the end so the driver can see a bad
  717. * version if the FW write fails. Start by writing a copy of the
  718. * first page with a bad version.
  719. */
  720. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  721. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  722. ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
  723. if (ret)
  724. goto out;
  725. addr = fw_img_start;
  726. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  727. addr += SF_PAGE_SIZE;
  728. fw_data += SF_PAGE_SIZE;
  729. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  730. if (ret)
  731. goto out;
  732. }
  733. ret = t4_write_flash(adap,
  734. fw_img_start + offsetof(struct fw_hdr, fw_ver),
  735. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  736. out:
  737. if (ret)
  738. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  739. ret);
  740. return ret;
  741. }
  742. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  743. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
  744. /**
  745. * t4_link_start - apply link configuration to MAC/PHY
  746. * @phy: the PHY to setup
  747. * @mac: the MAC to setup
  748. * @lc: the requested link configuration
  749. *
  750. * Set up a port's MAC and PHY according to a desired link configuration.
  751. * - If the PHY can auto-negotiate first decide what to advertise, then
  752. * enable/disable auto-negotiation as desired, and reset.
  753. * - If the PHY does not auto-negotiate just reset it.
  754. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  755. * otherwise do it later based on the outcome of auto-negotiation.
  756. */
  757. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  758. struct link_config *lc)
  759. {
  760. struct fw_port_cmd c;
  761. unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
  762. lc->link_ok = 0;
  763. if (lc->requested_fc & PAUSE_RX)
  764. fc |= FW_PORT_CAP_FC_RX;
  765. if (lc->requested_fc & PAUSE_TX)
  766. fc |= FW_PORT_CAP_FC_TX;
  767. memset(&c, 0, sizeof(c));
  768. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  769. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  770. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  771. FW_LEN16(c));
  772. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  773. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  774. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  775. } else if (lc->autoneg == AUTONEG_DISABLE) {
  776. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  777. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  778. } else
  779. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  780. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  781. }
  782. /**
  783. * t4_restart_aneg - restart autonegotiation
  784. * @adap: the adapter
  785. * @mbox: mbox to use for the FW command
  786. * @port: the port id
  787. *
  788. * Restarts autonegotiation for the selected port.
  789. */
  790. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  791. {
  792. struct fw_port_cmd c;
  793. memset(&c, 0, sizeof(c));
  794. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  795. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  796. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  797. FW_LEN16(c));
  798. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  799. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  800. }
  801. struct intr_info {
  802. unsigned int mask; /* bits to check in interrupt status */
  803. const char *msg; /* message to print or NULL */
  804. short stat_idx; /* stat counter to increment or -1 */
  805. unsigned short fatal; /* whether the condition reported is fatal */
  806. };
  807. /**
  808. * t4_handle_intr_status - table driven interrupt handler
  809. * @adapter: the adapter that generated the interrupt
  810. * @reg: the interrupt status register to process
  811. * @acts: table of interrupt actions
  812. *
  813. * A table driven interrupt handler that applies a set of masks to an
  814. * interrupt status word and performs the corresponding actions if the
  815. * interrupts described by the mask have occured. The actions include
  816. * optionally emitting a warning or alert message. The table is terminated
  817. * by an entry specifying mask 0. Returns the number of fatal interrupt
  818. * conditions.
  819. */
  820. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  821. const struct intr_info *acts)
  822. {
  823. int fatal = 0;
  824. unsigned int mask = 0;
  825. unsigned int status = t4_read_reg(adapter, reg);
  826. for ( ; acts->mask; ++acts) {
  827. if (!(status & acts->mask))
  828. continue;
  829. if (acts->fatal) {
  830. fatal++;
  831. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  832. status & acts->mask);
  833. } else if (acts->msg && printk_ratelimit())
  834. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  835. status & acts->mask);
  836. mask |= acts->mask;
  837. }
  838. status &= mask;
  839. if (status) /* clear processed interrupts */
  840. t4_write_reg(adapter, reg, status);
  841. return fatal;
  842. }
  843. /*
  844. * Interrupt handler for the PCIE module.
  845. */
  846. static void pcie_intr_handler(struct adapter *adapter)
  847. {
  848. static struct intr_info sysbus_intr_info[] = {
  849. { RNPP, "RXNP array parity error", -1, 1 },
  850. { RPCP, "RXPC array parity error", -1, 1 },
  851. { RCIP, "RXCIF array parity error", -1, 1 },
  852. { RCCP, "Rx completions control array parity error", -1, 1 },
  853. { RFTP, "RXFT array parity error", -1, 1 },
  854. { 0 }
  855. };
  856. static struct intr_info pcie_port_intr_info[] = {
  857. { TPCP, "TXPC array parity error", -1, 1 },
  858. { TNPP, "TXNP array parity error", -1, 1 },
  859. { TFTP, "TXFT array parity error", -1, 1 },
  860. { TCAP, "TXCA array parity error", -1, 1 },
  861. { TCIP, "TXCIF array parity error", -1, 1 },
  862. { RCAP, "RXCA array parity error", -1, 1 },
  863. { OTDD, "outbound request TLP discarded", -1, 1 },
  864. { RDPE, "Rx data parity error", -1, 1 },
  865. { TDUE, "Tx uncorrectable data error", -1, 1 },
  866. { 0 }
  867. };
  868. static struct intr_info pcie_intr_info[] = {
  869. { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
  870. { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
  871. { MSIDATAPERR, "MSI data parity error", -1, 1 },
  872. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  873. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  874. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  875. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  876. { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
  877. { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
  878. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  879. { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
  880. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  881. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  882. { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
  883. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  884. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  885. { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
  886. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  887. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  888. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  889. { FIDPERR, "PCI FID parity error", -1, 1 },
  890. { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
  891. { MATAGPERR, "PCI MA tag parity error", -1, 1 },
  892. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  893. { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
  894. { RXWRPERR, "PCI Rx write parity error", -1, 1 },
  895. { RPLPERR, "PCI replay buffer parity error", -1, 1 },
  896. { PCIESINT, "PCI core secondary fault", -1, 1 },
  897. { PCIEPINT, "PCI core primary fault", -1, 1 },
  898. { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
  899. { 0 }
  900. };
  901. int fat;
  902. fat = t4_handle_intr_status(adapter,
  903. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  904. sysbus_intr_info) +
  905. t4_handle_intr_status(adapter,
  906. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  907. pcie_port_intr_info) +
  908. t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info);
  909. if (fat)
  910. t4_fatal_err(adapter);
  911. }
  912. /*
  913. * TP interrupt handler.
  914. */
  915. static void tp_intr_handler(struct adapter *adapter)
  916. {
  917. static struct intr_info tp_intr_info[] = {
  918. { 0x3fffffff, "TP parity error", -1, 1 },
  919. { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
  920. { 0 }
  921. };
  922. if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
  923. t4_fatal_err(adapter);
  924. }
  925. /*
  926. * SGE interrupt handler.
  927. */
  928. static void sge_intr_handler(struct adapter *adapter)
  929. {
  930. u64 v;
  931. static struct intr_info sge_intr_info[] = {
  932. { ERR_CPL_EXCEED_IQE_SIZE,
  933. "SGE received CPL exceeding IQE size", -1, 1 },
  934. { ERR_INVALID_CIDX_INC,
  935. "SGE GTS CIDX increment too large", -1, 0 },
  936. { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
  937. { ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
  938. { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
  939. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  940. { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
  941. 0 },
  942. { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
  943. 0 },
  944. { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
  945. 0 },
  946. { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
  947. 0 },
  948. { ERR_ING_CTXT_PRIO,
  949. "SGE too many priority ingress contexts", -1, 0 },
  950. { ERR_EGR_CTXT_PRIO,
  951. "SGE too many priority egress contexts", -1, 0 },
  952. { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
  953. { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
  954. { 0 }
  955. };
  956. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
  957. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
  958. if (v) {
  959. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  960. (unsigned long long)v);
  961. t4_write_reg(adapter, SGE_INT_CAUSE1, v);
  962. t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
  963. }
  964. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
  965. v != 0)
  966. t4_fatal_err(adapter);
  967. }
  968. /*
  969. * CIM interrupt handler.
  970. */
  971. static void cim_intr_handler(struct adapter *adapter)
  972. {
  973. static struct intr_info cim_intr_info[] = {
  974. { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
  975. { OBQPARERR, "CIM OBQ parity error", -1, 1 },
  976. { IBQPARERR, "CIM IBQ parity error", -1, 1 },
  977. { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
  978. { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
  979. { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
  980. { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
  981. { 0 }
  982. };
  983. static struct intr_info cim_upintr_info[] = {
  984. { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
  985. { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
  986. { ILLWRINT, "CIM illegal write", -1, 1 },
  987. { ILLRDINT, "CIM illegal read", -1, 1 },
  988. { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
  989. { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
  990. { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
  991. { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
  992. { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
  993. { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
  994. { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
  995. { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
  996. { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
  997. { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
  998. { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
  999. { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
  1000. { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
  1001. { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
  1002. { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
  1003. { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
  1004. { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
  1005. { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
  1006. { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
  1007. { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
  1008. { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
  1009. { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
  1010. { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
  1011. { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
  1012. { 0 }
  1013. };
  1014. int fat;
  1015. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
  1016. cim_intr_info) +
  1017. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
  1018. cim_upintr_info);
  1019. if (fat)
  1020. t4_fatal_err(adapter);
  1021. }
  1022. /*
  1023. * ULP RX interrupt handler.
  1024. */
  1025. static void ulprx_intr_handler(struct adapter *adapter)
  1026. {
  1027. static struct intr_info ulprx_intr_info[] = {
  1028. { 0x1800000, "ULPRX context error", -1, 1 },
  1029. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1030. { 0 }
  1031. };
  1032. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
  1033. t4_fatal_err(adapter);
  1034. }
  1035. /*
  1036. * ULP TX interrupt handler.
  1037. */
  1038. static void ulptx_intr_handler(struct adapter *adapter)
  1039. {
  1040. static struct intr_info ulptx_intr_info[] = {
  1041. { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
  1042. 0 },
  1043. { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
  1044. 0 },
  1045. { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
  1046. 0 },
  1047. { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
  1048. 0 },
  1049. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1050. { 0 }
  1051. };
  1052. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
  1053. t4_fatal_err(adapter);
  1054. }
  1055. /*
  1056. * PM TX interrupt handler.
  1057. */
  1058. static void pmtx_intr_handler(struct adapter *adapter)
  1059. {
  1060. static struct intr_info pmtx_intr_info[] = {
  1061. { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
  1062. { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
  1063. { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
  1064. { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
  1065. { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
  1066. { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
  1067. { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
  1068. { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
  1069. { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
  1070. { 0 }
  1071. };
  1072. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
  1073. t4_fatal_err(adapter);
  1074. }
  1075. /*
  1076. * PM RX interrupt handler.
  1077. */
  1078. static void pmrx_intr_handler(struct adapter *adapter)
  1079. {
  1080. static struct intr_info pmrx_intr_info[] = {
  1081. { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
  1082. { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
  1083. { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
  1084. { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
  1085. { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
  1086. { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
  1087. { 0 }
  1088. };
  1089. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
  1090. t4_fatal_err(adapter);
  1091. }
  1092. /*
  1093. * CPL switch interrupt handler.
  1094. */
  1095. static void cplsw_intr_handler(struct adapter *adapter)
  1096. {
  1097. static struct intr_info cplsw_intr_info[] = {
  1098. { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
  1099. { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
  1100. { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
  1101. { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
  1102. { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
  1103. { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
  1104. { 0 }
  1105. };
  1106. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
  1107. t4_fatal_err(adapter);
  1108. }
  1109. /*
  1110. * LE interrupt handler.
  1111. */
  1112. static void le_intr_handler(struct adapter *adap)
  1113. {
  1114. static struct intr_info le_intr_info[] = {
  1115. { LIPMISS, "LE LIP miss", -1, 0 },
  1116. { LIP0, "LE 0 LIP error", -1, 0 },
  1117. { PARITYERR, "LE parity error", -1, 1 },
  1118. { UNKNOWNCMD, "LE unknown command", -1, 1 },
  1119. { REQQPARERR, "LE request queue parity error", -1, 1 },
  1120. { 0 }
  1121. };
  1122. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
  1123. t4_fatal_err(adap);
  1124. }
  1125. /*
  1126. * MPS interrupt handler.
  1127. */
  1128. static void mps_intr_handler(struct adapter *adapter)
  1129. {
  1130. static struct intr_info mps_rx_intr_info[] = {
  1131. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1132. { 0 }
  1133. };
  1134. static struct intr_info mps_tx_intr_info[] = {
  1135. { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
  1136. { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1137. { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
  1138. { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
  1139. { BUBBLE, "MPS Tx underflow", -1, 1 },
  1140. { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
  1141. { FRMERR, "MPS Tx framing error", -1, 1 },
  1142. { 0 }
  1143. };
  1144. static struct intr_info mps_trc_intr_info[] = {
  1145. { FILTMEM, "MPS TRC filter parity error", -1, 1 },
  1146. { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
  1147. { MISCPERR, "MPS TRC misc parity error", -1, 1 },
  1148. { 0 }
  1149. };
  1150. static struct intr_info mps_stat_sram_intr_info[] = {
  1151. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1152. { 0 }
  1153. };
  1154. static struct intr_info mps_stat_tx_intr_info[] = {
  1155. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1156. { 0 }
  1157. };
  1158. static struct intr_info mps_stat_rx_intr_info[] = {
  1159. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1160. { 0 }
  1161. };
  1162. static struct intr_info mps_cls_intr_info[] = {
  1163. { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
  1164. { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
  1165. { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
  1166. { 0 }
  1167. };
  1168. int fat;
  1169. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
  1170. mps_rx_intr_info) +
  1171. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
  1172. mps_tx_intr_info) +
  1173. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
  1174. mps_trc_intr_info) +
  1175. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
  1176. mps_stat_sram_intr_info) +
  1177. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
  1178. mps_stat_tx_intr_info) +
  1179. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
  1180. mps_stat_rx_intr_info) +
  1181. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
  1182. mps_cls_intr_info);
  1183. t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
  1184. RXINT | TXINT | STATINT);
  1185. t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
  1186. if (fat)
  1187. t4_fatal_err(adapter);
  1188. }
  1189. #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
  1190. /*
  1191. * EDC/MC interrupt handler.
  1192. */
  1193. static void mem_intr_handler(struct adapter *adapter, int idx)
  1194. {
  1195. static const char name[3][5] = { "EDC0", "EDC1", "MC" };
  1196. unsigned int addr, cnt_addr, v;
  1197. if (idx <= MEM_EDC1) {
  1198. addr = EDC_REG(EDC_INT_CAUSE, idx);
  1199. cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
  1200. } else {
  1201. addr = MC_INT_CAUSE;
  1202. cnt_addr = MC_ECC_STATUS;
  1203. }
  1204. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1205. if (v & PERR_INT_CAUSE)
  1206. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1207. name[idx]);
  1208. if (v & ECC_CE_INT_CAUSE) {
  1209. u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
  1210. t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
  1211. if (printk_ratelimit())
  1212. dev_warn(adapter->pdev_dev,
  1213. "%u %s correctable ECC data error%s\n",
  1214. cnt, name[idx], cnt > 1 ? "s" : "");
  1215. }
  1216. if (v & ECC_UE_INT_CAUSE)
  1217. dev_alert(adapter->pdev_dev,
  1218. "%s uncorrectable ECC data error\n", name[idx]);
  1219. t4_write_reg(adapter, addr, v);
  1220. if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
  1221. t4_fatal_err(adapter);
  1222. }
  1223. /*
  1224. * MA interrupt handler.
  1225. */
  1226. static void ma_intr_handler(struct adapter *adap)
  1227. {
  1228. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
  1229. if (status & MEM_PERR_INT_CAUSE)
  1230. dev_alert(adap->pdev_dev,
  1231. "MA parity error, parity status %#x\n",
  1232. t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
  1233. if (status & MEM_WRAP_INT_CAUSE) {
  1234. v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
  1235. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1236. "client %u to address %#x\n",
  1237. MEM_WRAP_CLIENT_NUM_GET(v),
  1238. MEM_WRAP_ADDRESS_GET(v) << 4);
  1239. }
  1240. t4_write_reg(adap, MA_INT_CAUSE, status);
  1241. t4_fatal_err(adap);
  1242. }
  1243. /*
  1244. * SMB interrupt handler.
  1245. */
  1246. static void smb_intr_handler(struct adapter *adap)
  1247. {
  1248. static struct intr_info smb_intr_info[] = {
  1249. { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
  1250. { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
  1251. { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
  1252. { 0 }
  1253. };
  1254. if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
  1255. t4_fatal_err(adap);
  1256. }
  1257. /*
  1258. * NC-SI interrupt handler.
  1259. */
  1260. static void ncsi_intr_handler(struct adapter *adap)
  1261. {
  1262. static struct intr_info ncsi_intr_info[] = {
  1263. { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
  1264. { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
  1265. { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
  1266. { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
  1267. { 0 }
  1268. };
  1269. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
  1270. t4_fatal_err(adap);
  1271. }
  1272. /*
  1273. * XGMAC interrupt handler.
  1274. */
  1275. static void xgmac_intr_handler(struct adapter *adap, int port)
  1276. {
  1277. u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
  1278. v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
  1279. if (!v)
  1280. return;
  1281. if (v & TXFIFO_PRTY_ERR)
  1282. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1283. port);
  1284. if (v & RXFIFO_PRTY_ERR)
  1285. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1286. port);
  1287. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
  1288. t4_fatal_err(adap);
  1289. }
  1290. /*
  1291. * PL interrupt handler.
  1292. */
  1293. static void pl_intr_handler(struct adapter *adap)
  1294. {
  1295. static struct intr_info pl_intr_info[] = {
  1296. { FATALPERR, "T4 fatal parity error", -1, 1 },
  1297. { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
  1298. { 0 }
  1299. };
  1300. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
  1301. t4_fatal_err(adap);
  1302. }
  1303. #define PF_INTR_MASK (PFSW | PFCIM)
  1304. #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
  1305. EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
  1306. CPL_SWITCH | SGE | ULP_TX)
  1307. /**
  1308. * t4_slow_intr_handler - control path interrupt handler
  1309. * @adapter: the adapter
  1310. *
  1311. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1312. * The designation 'slow' is because it involves register reads, while
  1313. * data interrupts typically don't involve any MMIOs.
  1314. */
  1315. int t4_slow_intr_handler(struct adapter *adapter)
  1316. {
  1317. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
  1318. if (!(cause & GLBL_INTR_MASK))
  1319. return 0;
  1320. if (cause & CIM)
  1321. cim_intr_handler(adapter);
  1322. if (cause & MPS)
  1323. mps_intr_handler(adapter);
  1324. if (cause & NCSI)
  1325. ncsi_intr_handler(adapter);
  1326. if (cause & PL)
  1327. pl_intr_handler(adapter);
  1328. if (cause & SMB)
  1329. smb_intr_handler(adapter);
  1330. if (cause & XGMAC0)
  1331. xgmac_intr_handler(adapter, 0);
  1332. if (cause & XGMAC1)
  1333. xgmac_intr_handler(adapter, 1);
  1334. if (cause & XGMAC_KR0)
  1335. xgmac_intr_handler(adapter, 2);
  1336. if (cause & XGMAC_KR1)
  1337. xgmac_intr_handler(adapter, 3);
  1338. if (cause & PCIE)
  1339. pcie_intr_handler(adapter);
  1340. if (cause & MC)
  1341. mem_intr_handler(adapter, MEM_MC);
  1342. if (cause & EDC0)
  1343. mem_intr_handler(adapter, MEM_EDC0);
  1344. if (cause & EDC1)
  1345. mem_intr_handler(adapter, MEM_EDC1);
  1346. if (cause & LE)
  1347. le_intr_handler(adapter);
  1348. if (cause & TP)
  1349. tp_intr_handler(adapter);
  1350. if (cause & MA)
  1351. ma_intr_handler(adapter);
  1352. if (cause & PM_TX)
  1353. pmtx_intr_handler(adapter);
  1354. if (cause & PM_RX)
  1355. pmrx_intr_handler(adapter);
  1356. if (cause & ULP_RX)
  1357. ulprx_intr_handler(adapter);
  1358. if (cause & CPL_SWITCH)
  1359. cplsw_intr_handler(adapter);
  1360. if (cause & SGE)
  1361. sge_intr_handler(adapter);
  1362. if (cause & ULP_TX)
  1363. ulptx_intr_handler(adapter);
  1364. /* Clear the interrupts just processed for which we are the master. */
  1365. t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
  1366. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1367. return 1;
  1368. }
  1369. /**
  1370. * t4_intr_enable - enable interrupts
  1371. * @adapter: the adapter whose interrupts should be enabled
  1372. *
  1373. * Enable PF-specific interrupts for the calling function and the top-level
  1374. * interrupt concentrator for global interrupts. Interrupts are already
  1375. * enabled at each module, here we just enable the roots of the interrupt
  1376. * hierarchies.
  1377. *
  1378. * Note: this function should be called only when the driver manages
  1379. * non PF-specific interrupts from the various HW modules. Only one PCI
  1380. * function at a time should be doing this.
  1381. */
  1382. void t4_intr_enable(struct adapter *adapter)
  1383. {
  1384. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1385. t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
  1386. ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
  1387. ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
  1388. ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
  1389. ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
  1390. ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
  1391. ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
  1392. EGRESS_SIZE_ERR);
  1393. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
  1394. t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
  1395. }
  1396. /**
  1397. * t4_intr_disable - disable interrupts
  1398. * @adapter: the adapter whose interrupts should be disabled
  1399. *
  1400. * Disable interrupts. We only disable the top-level interrupt
  1401. * concentrators. The caller must be a PCI function managing global
  1402. * interrupts.
  1403. */
  1404. void t4_intr_disable(struct adapter *adapter)
  1405. {
  1406. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1407. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
  1408. t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
  1409. }
  1410. /**
  1411. * t4_intr_clear - clear all interrupts
  1412. * @adapter: the adapter whose interrupts should be cleared
  1413. *
  1414. * Clears all interrupts. The caller must be a PCI function managing
  1415. * global interrupts.
  1416. */
  1417. void t4_intr_clear(struct adapter *adapter)
  1418. {
  1419. static const unsigned int cause_reg[] = {
  1420. SGE_INT_CAUSE1, SGE_INT_CAUSE2, SGE_INT_CAUSE3,
  1421. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  1422. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  1423. PCIE_NONFAT_ERR, PCIE_INT_CAUSE,
  1424. MC_INT_CAUSE,
  1425. MA_INT_WRAP_STATUS, MA_PARITY_ERROR_STATUS, MA_INT_CAUSE,
  1426. EDC_INT_CAUSE, EDC_REG(EDC_INT_CAUSE, 1),
  1427. CIM_HOST_INT_CAUSE, CIM_HOST_UPACC_INT_CAUSE,
  1428. MYPF_REG(CIM_PF_HOST_INT_CAUSE),
  1429. TP_INT_CAUSE,
  1430. ULP_RX_INT_CAUSE, ULP_TX_INT_CAUSE,
  1431. PM_RX_INT_CAUSE, PM_TX_INT_CAUSE,
  1432. MPS_RX_PERR_INT_CAUSE,
  1433. CPL_INTR_CAUSE,
  1434. MYPF_REG(PL_PF_INT_CAUSE),
  1435. PL_PL_INT_CAUSE,
  1436. LE_DB_INT_CAUSE,
  1437. };
  1438. unsigned int i;
  1439. for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
  1440. t4_write_reg(adapter, cause_reg[i], 0xffffffff);
  1441. t4_write_reg(adapter, PL_INT_CAUSE, GLBL_INTR_MASK);
  1442. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1443. }
  1444. /**
  1445. * hash_mac_addr - return the hash value of a MAC address
  1446. * @addr: the 48-bit Ethernet MAC address
  1447. *
  1448. * Hashes a MAC address according to the hash function used by HW inexact
  1449. * (hash) address matching.
  1450. */
  1451. static int hash_mac_addr(const u8 *addr)
  1452. {
  1453. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1454. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1455. a ^= b;
  1456. a ^= (a >> 12);
  1457. a ^= (a >> 6);
  1458. return a & 0x3f;
  1459. }
  1460. /**
  1461. * t4_config_rss_range - configure a portion of the RSS mapping table
  1462. * @adapter: the adapter
  1463. * @mbox: mbox to use for the FW command
  1464. * @viid: virtual interface whose RSS subtable is to be written
  1465. * @start: start entry in the table to write
  1466. * @n: how many table entries to write
  1467. * @rspq: values for the response queue lookup table
  1468. * @nrspq: number of values in @rspq
  1469. *
  1470. * Programs the selected part of the VI's RSS mapping table with the
  1471. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1472. * until the full table range is populated.
  1473. *
  1474. * The caller must ensure the values in @rspq are in the range allowed for
  1475. * @viid.
  1476. */
  1477. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1478. int start, int n, const u16 *rspq, unsigned int nrspq)
  1479. {
  1480. int ret;
  1481. const u16 *rsp = rspq;
  1482. const u16 *rsp_end = rspq + nrspq;
  1483. struct fw_rss_ind_tbl_cmd cmd;
  1484. memset(&cmd, 0, sizeof(cmd));
  1485. cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
  1486. FW_CMD_REQUEST | FW_CMD_WRITE |
  1487. FW_RSS_IND_TBL_CMD_VIID(viid));
  1488. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  1489. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  1490. while (n > 0) {
  1491. int nq = min(n, 32);
  1492. __be32 *qp = &cmd.iq0_to_iq2;
  1493. cmd.niqid = htons(nq);
  1494. cmd.startidx = htons(start);
  1495. start += nq;
  1496. n -= nq;
  1497. while (nq > 0) {
  1498. unsigned int v;
  1499. v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
  1500. if (++rsp >= rsp_end)
  1501. rsp = rspq;
  1502. v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
  1503. if (++rsp >= rsp_end)
  1504. rsp = rspq;
  1505. v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
  1506. if (++rsp >= rsp_end)
  1507. rsp = rspq;
  1508. *qp++ = htonl(v);
  1509. nq -= 3;
  1510. }
  1511. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  1512. if (ret)
  1513. return ret;
  1514. }
  1515. return 0;
  1516. }
  1517. /**
  1518. * t4_config_glbl_rss - configure the global RSS mode
  1519. * @adapter: the adapter
  1520. * @mbox: mbox to use for the FW command
  1521. * @mode: global RSS mode
  1522. * @flags: mode-specific flags
  1523. *
  1524. * Sets the global RSS mode.
  1525. */
  1526. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  1527. unsigned int flags)
  1528. {
  1529. struct fw_rss_glb_config_cmd c;
  1530. memset(&c, 0, sizeof(c));
  1531. c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
  1532. FW_CMD_REQUEST | FW_CMD_WRITE);
  1533. c.retval_len16 = htonl(FW_LEN16(c));
  1534. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  1535. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1536. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  1537. c.u.basicvirtual.mode_pkd =
  1538. htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1539. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  1540. } else
  1541. return -EINVAL;
  1542. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  1543. }
  1544. /* Read an RSS table row */
  1545. static int rd_rss_row(struct adapter *adap, int row, u32 *val)
  1546. {
  1547. t4_write_reg(adap, TP_RSS_LKP_TABLE, 0xfff00000 | row);
  1548. return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE, LKPTBLROWVLD, 1,
  1549. 5, 0, val);
  1550. }
  1551. /**
  1552. * t4_read_rss - read the contents of the RSS mapping table
  1553. * @adapter: the adapter
  1554. * @map: holds the contents of the RSS mapping table
  1555. *
  1556. * Reads the contents of the RSS hash->queue mapping table.
  1557. */
  1558. int t4_read_rss(struct adapter *adapter, u16 *map)
  1559. {
  1560. u32 val;
  1561. int i, ret;
  1562. for (i = 0; i < RSS_NENTRIES / 2; ++i) {
  1563. ret = rd_rss_row(adapter, i, &val);
  1564. if (ret)
  1565. return ret;
  1566. *map++ = LKPTBLQUEUE0_GET(val);
  1567. *map++ = LKPTBLQUEUE1_GET(val);
  1568. }
  1569. return 0;
  1570. }
  1571. /**
  1572. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  1573. * @adap: the adapter
  1574. * @v4: holds the TCP/IP counter values
  1575. * @v6: holds the TCP/IPv6 counter values
  1576. *
  1577. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  1578. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  1579. */
  1580. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  1581. struct tp_tcp_stats *v6)
  1582. {
  1583. u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
  1584. #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
  1585. #define STAT(x) val[STAT_IDX(x)]
  1586. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  1587. if (v4) {
  1588. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1589. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
  1590. v4->tcpOutRsts = STAT(OUT_RST);
  1591. v4->tcpInSegs = STAT64(IN_SEG);
  1592. v4->tcpOutSegs = STAT64(OUT_SEG);
  1593. v4->tcpRetransSegs = STAT64(RXT_SEG);
  1594. }
  1595. if (v6) {
  1596. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1597. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
  1598. v6->tcpOutRsts = STAT(OUT_RST);
  1599. v6->tcpInSegs = STAT64(IN_SEG);
  1600. v6->tcpOutSegs = STAT64(OUT_SEG);
  1601. v6->tcpRetransSegs = STAT64(RXT_SEG);
  1602. }
  1603. #undef STAT64
  1604. #undef STAT
  1605. #undef STAT_IDX
  1606. }
  1607. /**
  1608. * t4_tp_get_err_stats - read TP's error MIB counters
  1609. * @adap: the adapter
  1610. * @st: holds the counter values
  1611. *
  1612. * Returns the values of TP's error counters.
  1613. */
  1614. void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
  1615. {
  1616. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->macInErrs,
  1617. 12, TP_MIB_MAC_IN_ERR_0);
  1618. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->tnlCongDrops,
  1619. 8, TP_MIB_TNL_CNG_DROP_0);
  1620. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->tnlTxDrops,
  1621. 4, TP_MIB_TNL_DROP_0);
  1622. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->ofldVlanDrops,
  1623. 4, TP_MIB_OFD_VLN_DROP_0);
  1624. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->tcp6InErrs,
  1625. 4, TP_MIB_TCP_V6IN_ERR_0);
  1626. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, &st->ofldNoNeigh,
  1627. 2, TP_MIB_OFD_ARP_DROP);
  1628. }
  1629. /**
  1630. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  1631. * @adap: the adapter
  1632. * @mtus: where to store the MTU values
  1633. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  1634. *
  1635. * Reads the HW path MTU table.
  1636. */
  1637. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  1638. {
  1639. u32 v;
  1640. int i;
  1641. for (i = 0; i < NMTUS; ++i) {
  1642. t4_write_reg(adap, TP_MTU_TABLE,
  1643. MTUINDEX(0xff) | MTUVALUE(i));
  1644. v = t4_read_reg(adap, TP_MTU_TABLE);
  1645. mtus[i] = MTUVALUE_GET(v);
  1646. if (mtu_log)
  1647. mtu_log[i] = MTUWIDTH_GET(v);
  1648. }
  1649. }
  1650. /**
  1651. * init_cong_ctrl - initialize congestion control parameters
  1652. * @a: the alpha values for congestion control
  1653. * @b: the beta values for congestion control
  1654. *
  1655. * Initialize the congestion control parameters.
  1656. */
  1657. static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
  1658. {
  1659. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  1660. a[9] = 2;
  1661. a[10] = 3;
  1662. a[11] = 4;
  1663. a[12] = 5;
  1664. a[13] = 6;
  1665. a[14] = 7;
  1666. a[15] = 8;
  1667. a[16] = 9;
  1668. a[17] = 10;
  1669. a[18] = 14;
  1670. a[19] = 17;
  1671. a[20] = 21;
  1672. a[21] = 25;
  1673. a[22] = 30;
  1674. a[23] = 35;
  1675. a[24] = 45;
  1676. a[25] = 60;
  1677. a[26] = 80;
  1678. a[27] = 100;
  1679. a[28] = 200;
  1680. a[29] = 300;
  1681. a[30] = 400;
  1682. a[31] = 500;
  1683. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  1684. b[9] = b[10] = 1;
  1685. b[11] = b[12] = 2;
  1686. b[13] = b[14] = b[15] = b[16] = 3;
  1687. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  1688. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  1689. b[28] = b[29] = 6;
  1690. b[30] = b[31] = 7;
  1691. }
  1692. /* The minimum additive increment value for the congestion control table */
  1693. #define CC_MIN_INCR 2U
  1694. /**
  1695. * t4_load_mtus - write the MTU and congestion control HW tables
  1696. * @adap: the adapter
  1697. * @mtus: the values for the MTU table
  1698. * @alpha: the values for the congestion control alpha parameter
  1699. * @beta: the values for the congestion control beta parameter
  1700. *
  1701. * Write the HW MTU table with the supplied MTUs and the high-speed
  1702. * congestion control table with the supplied alpha, beta, and MTUs.
  1703. * We write the two tables together because the additive increments
  1704. * depend on the MTUs.
  1705. */
  1706. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  1707. const unsigned short *alpha, const unsigned short *beta)
  1708. {
  1709. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  1710. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  1711. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  1712. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  1713. };
  1714. unsigned int i, w;
  1715. for (i = 0; i < NMTUS; ++i) {
  1716. unsigned int mtu = mtus[i];
  1717. unsigned int log2 = fls(mtu);
  1718. if (!(mtu & ((1 << log2) >> 2))) /* round */
  1719. log2--;
  1720. t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
  1721. MTUWIDTH(log2) | MTUVALUE(mtu));
  1722. for (w = 0; w < NCCTRL_WIN; ++w) {
  1723. unsigned int inc;
  1724. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  1725. CC_MIN_INCR);
  1726. t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
  1727. (w << 16) | (beta[w] << 13) | inc);
  1728. }
  1729. }
  1730. }
  1731. /**
  1732. * t4_set_trace_filter - configure one of the tracing filters
  1733. * @adap: the adapter
  1734. * @tp: the desired trace filter parameters
  1735. * @idx: which filter to configure
  1736. * @enable: whether to enable or disable the filter
  1737. *
  1738. * Configures one of the tracing filters available in HW. If @enable is
  1739. * %0 @tp is not examined and may be %NULL.
  1740. */
  1741. int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
  1742. int idx, int enable)
  1743. {
  1744. int i, ofst = idx * 4;
  1745. u32 data_reg, mask_reg, cfg;
  1746. u32 multitrc = TRCMULTIFILTER;
  1747. if (!enable) {
  1748. t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + ofst, 0);
  1749. goto out;
  1750. }
  1751. if (tp->port > 11 || tp->invert > 1 || tp->skip_len > 0x1f ||
  1752. tp->skip_ofst > 0x1f || tp->min_len > 0x1ff ||
  1753. tp->snap_len > 9600 || (idx && tp->snap_len > 256))
  1754. return -EINVAL;
  1755. if (tp->snap_len > 256) { /* must be tracer 0 */
  1756. if ((t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + 4) |
  1757. t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + 8) |
  1758. t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + 12)) & TFEN)
  1759. return -EINVAL; /* other tracers are enabled */
  1760. multitrc = 0;
  1761. } else if (idx) {
  1762. i = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B);
  1763. if (TFCAPTUREMAX_GET(i) > 256 &&
  1764. (t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A) & TFEN))
  1765. return -EINVAL;
  1766. }
  1767. /* stop the tracer we'll be changing */
  1768. t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + ofst, 0);
  1769. /* disable tracing globally if running in the wrong single/multi mode */
  1770. cfg = t4_read_reg(adap, MPS_TRC_CFG);
  1771. if ((cfg & TRCEN) && multitrc != (cfg & TRCMULTIFILTER)) {
  1772. t4_write_reg(adap, MPS_TRC_CFG, cfg ^ TRCEN);
  1773. t4_read_reg(adap, MPS_TRC_CFG); /* flush */
  1774. msleep(1);
  1775. if (!(t4_read_reg(adap, MPS_TRC_CFG) & TRCFIFOEMPTY))
  1776. return -ETIMEDOUT;
  1777. }
  1778. /*
  1779. * At this point either the tracing is enabled and in the right mode or
  1780. * disabled.
  1781. */
  1782. idx *= (MPS_TRC_FILTER1_MATCH - MPS_TRC_FILTER0_MATCH);
  1783. data_reg = MPS_TRC_FILTER0_MATCH + idx;
  1784. mask_reg = MPS_TRC_FILTER0_DONT_CARE + idx;
  1785. for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
  1786. t4_write_reg(adap, data_reg, tp->data[i]);
  1787. t4_write_reg(adap, mask_reg, ~tp->mask[i]);
  1788. }
  1789. t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B + ofst,
  1790. TFCAPTUREMAX(tp->snap_len) |
  1791. TFMINPKTSIZE(tp->min_len));
  1792. t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + ofst,
  1793. TFOFFSET(tp->skip_ofst) | TFLENGTH(tp->skip_len) |
  1794. TFPORT(tp->port) | TFEN |
  1795. (tp->invert ? TFINVERTMATCH : 0));
  1796. cfg &= ~TRCMULTIFILTER;
  1797. t4_write_reg(adap, MPS_TRC_CFG, cfg | TRCEN | multitrc);
  1798. out: t4_read_reg(adap, MPS_TRC_CFG); /* flush */
  1799. return 0;
  1800. }
  1801. /**
  1802. * t4_get_trace_filter - query one of the tracing filters
  1803. * @adap: the adapter
  1804. * @tp: the current trace filter parameters
  1805. * @idx: which trace filter to query
  1806. * @enabled: non-zero if the filter is enabled
  1807. *
  1808. * Returns the current settings of one of the HW tracing filters.
  1809. */
  1810. void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
  1811. int *enabled)
  1812. {
  1813. u32 ctla, ctlb;
  1814. int i, ofst = idx * 4;
  1815. u32 data_reg, mask_reg;
  1816. ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + ofst);
  1817. ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B + ofst);
  1818. *enabled = !!(ctla & TFEN);
  1819. tp->snap_len = TFCAPTUREMAX_GET(ctlb);
  1820. tp->min_len = TFMINPKTSIZE_GET(ctlb);
  1821. tp->skip_ofst = TFOFFSET_GET(ctla);
  1822. tp->skip_len = TFLENGTH_GET(ctla);
  1823. tp->invert = !!(ctla & TFINVERTMATCH);
  1824. tp->port = TFPORT_GET(ctla);
  1825. ofst = (MPS_TRC_FILTER1_MATCH - MPS_TRC_FILTER0_MATCH) * idx;
  1826. data_reg = MPS_TRC_FILTER0_MATCH + ofst;
  1827. mask_reg = MPS_TRC_FILTER0_DONT_CARE + ofst;
  1828. for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
  1829. tp->mask[i] = ~t4_read_reg(adap, mask_reg);
  1830. tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
  1831. }
  1832. }
  1833. /**
  1834. * get_mps_bg_map - return the buffer groups associated with a port
  1835. * @adap: the adapter
  1836. * @idx: the port index
  1837. *
  1838. * Returns a bitmap indicating which MPS buffer groups are associated
  1839. * with the given port. Bit i is set if buffer group i is used by the
  1840. * port.
  1841. */
  1842. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  1843. {
  1844. u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
  1845. if (n == 0)
  1846. return idx == 0 ? 0xf : 0;
  1847. if (n == 1)
  1848. return idx < 2 ? (3 << (2 * idx)) : 0;
  1849. return 1 << idx;
  1850. }
  1851. /**
  1852. * t4_get_port_stats - collect port statistics
  1853. * @adap: the adapter
  1854. * @idx: the port index
  1855. * @p: the stats structure to fill
  1856. *
  1857. * Collect statistics related to the given port from HW.
  1858. */
  1859. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  1860. {
  1861. u32 bgmap = get_mps_bg_map(adap, idx);
  1862. #define GET_STAT(name) \
  1863. t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L))
  1864. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  1865. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  1866. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  1867. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  1868. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  1869. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  1870. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  1871. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  1872. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  1873. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  1874. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  1875. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  1876. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  1877. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  1878. p->tx_drop = GET_STAT(TX_PORT_DROP);
  1879. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  1880. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  1881. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  1882. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  1883. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  1884. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  1885. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  1886. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  1887. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  1888. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  1889. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  1890. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  1891. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  1892. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  1893. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  1894. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  1895. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  1896. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  1897. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  1898. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  1899. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  1900. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  1901. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  1902. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  1903. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  1904. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  1905. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  1906. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  1907. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  1908. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  1909. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  1910. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  1911. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  1912. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  1913. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  1914. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  1915. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  1916. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  1917. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  1918. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  1919. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  1920. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  1921. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  1922. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  1923. #undef GET_STAT
  1924. #undef GET_STAT_COM
  1925. }
  1926. /**
  1927. * t4_get_lb_stats - collect loopback port statistics
  1928. * @adap: the adapter
  1929. * @idx: the loopback port index
  1930. * @p: the stats structure to fill
  1931. *
  1932. * Return HW statistics for the given loopback port.
  1933. */
  1934. void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
  1935. {
  1936. u32 bgmap = get_mps_bg_map(adap, idx);
  1937. #define GET_STAT(name) \
  1938. t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))
  1939. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  1940. p->octets = GET_STAT(BYTES);
  1941. p->frames = GET_STAT(FRAMES);
  1942. p->bcast_frames = GET_STAT(BCAST);
  1943. p->mcast_frames = GET_STAT(MCAST);
  1944. p->ucast_frames = GET_STAT(UCAST);
  1945. p->error_frames = GET_STAT(ERROR);
  1946. p->frames_64 = GET_STAT(64B);
  1947. p->frames_65_127 = GET_STAT(65B_127B);
  1948. p->frames_128_255 = GET_STAT(128B_255B);
  1949. p->frames_256_511 = GET_STAT(256B_511B);
  1950. p->frames_512_1023 = GET_STAT(512B_1023B);
  1951. p->frames_1024_1518 = GET_STAT(1024B_1518B);
  1952. p->frames_1519_max = GET_STAT(1519B_MAX);
  1953. p->drop = t4_read_reg(adap, PORT_REG(idx,
  1954. MPS_PORT_STAT_LB_PORT_DROP_FRAMES));
  1955. p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
  1956. p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
  1957. p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
  1958. p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
  1959. p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
  1960. p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
  1961. p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
  1962. p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
  1963. #undef GET_STAT
  1964. #undef GET_STAT_COM
  1965. }
  1966. /**
  1967. * t4_wol_magic_enable - enable/disable magic packet WoL
  1968. * @adap: the adapter
  1969. * @port: the physical port index
  1970. * @addr: MAC address expected in magic packets, %NULL to disable
  1971. *
  1972. * Enables/disables magic packet wake-on-LAN for the selected port.
  1973. */
  1974. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  1975. const u8 *addr)
  1976. {
  1977. if (addr) {
  1978. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO),
  1979. (addr[2] << 24) | (addr[3] << 16) |
  1980. (addr[4] << 8) | addr[5]);
  1981. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI),
  1982. (addr[0] << 8) | addr[1]);
  1983. }
  1984. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN,
  1985. addr ? MAGICEN : 0);
  1986. }
  1987. /**
  1988. * t4_wol_pat_enable - enable/disable pattern-based WoL
  1989. * @adap: the adapter
  1990. * @port: the physical port index
  1991. * @map: bitmap of which HW pattern filters to set
  1992. * @mask0: byte mask for bytes 0-63 of a packet
  1993. * @mask1: byte mask for bytes 64-127 of a packet
  1994. * @crc: Ethernet CRC for selected bytes
  1995. * @enable: enable/disable switch
  1996. *
  1997. * Sets the pattern filters indicated in @map to mask out the bytes
  1998. * specified in @mask0/@mask1 in received packets and compare the CRC of
  1999. * the resulting packet against @crc. If @enable is %true pattern-based
  2000. * WoL is enabled, otherwise disabled.
  2001. */
  2002. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  2003. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  2004. {
  2005. int i;
  2006. if (!enable) {
  2007. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2),
  2008. PATEN, 0);
  2009. return 0;
  2010. }
  2011. if (map > 0xff)
  2012. return -EINVAL;
  2013. #define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name)
  2014. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  2015. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  2016. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  2017. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  2018. if (!(map & 1))
  2019. continue;
  2020. /* write byte masks */
  2021. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  2022. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
  2023. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2024. if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
  2025. return -ETIMEDOUT;
  2026. /* write CRC */
  2027. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  2028. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
  2029. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2030. if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
  2031. return -ETIMEDOUT;
  2032. }
  2033. #undef EPIO_REG
  2034. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
  2035. return 0;
  2036. }
  2037. #define INIT_CMD(var, cmd, rd_wr) do { \
  2038. (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
  2039. FW_CMD_REQUEST | FW_CMD_##rd_wr); \
  2040. (var).retval_len16 = htonl(FW_LEN16(var)); \
  2041. } while (0)
  2042. /**
  2043. * t4_mdio_rd - read a PHY register through MDIO
  2044. * @adap: the adapter
  2045. * @mbox: mailbox to use for the FW command
  2046. * @phy_addr: the PHY address
  2047. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2048. * @reg: the register to read
  2049. * @valp: where to store the value
  2050. *
  2051. * Issues a FW command through the given mailbox to read a PHY register.
  2052. */
  2053. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2054. unsigned int mmd, unsigned int reg, u16 *valp)
  2055. {
  2056. int ret;
  2057. struct fw_ldst_cmd c;
  2058. memset(&c, 0, sizeof(c));
  2059. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2060. FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2061. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2062. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2063. FW_LDST_CMD_MMD(mmd));
  2064. c.u.mdio.raddr = htons(reg);
  2065. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2066. if (ret == 0)
  2067. *valp = ntohs(c.u.mdio.rval);
  2068. return ret;
  2069. }
  2070. /**
  2071. * t4_mdio_wr - write a PHY register through MDIO
  2072. * @adap: the adapter
  2073. * @mbox: mailbox to use for the FW command
  2074. * @phy_addr: the PHY address
  2075. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2076. * @reg: the register to write
  2077. * @valp: value to write
  2078. *
  2079. * Issues a FW command through the given mailbox to write a PHY register.
  2080. */
  2081. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2082. unsigned int mmd, unsigned int reg, u16 val)
  2083. {
  2084. struct fw_ldst_cmd c;
  2085. memset(&c, 0, sizeof(c));
  2086. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2087. FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2088. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2089. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2090. FW_LDST_CMD_MMD(mmd));
  2091. c.u.mdio.raddr = htons(reg);
  2092. c.u.mdio.rval = htons(val);
  2093. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2094. }
  2095. /**
  2096. * t4_fw_hello - establish communication with FW
  2097. * @adap: the adapter
  2098. * @mbox: mailbox to use for the FW command
  2099. * @evt_mbox: mailbox to receive async FW events
  2100. * @master: specifies the caller's willingness to be the device master
  2101. * @state: returns the current device state
  2102. *
  2103. * Issues a command to establish communication with FW.
  2104. */
  2105. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  2106. enum dev_master master, enum dev_state *state)
  2107. {
  2108. int ret;
  2109. struct fw_hello_cmd c;
  2110. INIT_CMD(c, HELLO, WRITE);
  2111. c.err_to_mbasyncnot = htonl(
  2112. FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
  2113. FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
  2114. FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : 0xff) |
  2115. FW_HELLO_CMD_MBASYNCNOT(evt_mbox));
  2116. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2117. if (ret == 0 && state) {
  2118. u32 v = ntohl(c.err_to_mbasyncnot);
  2119. if (v & FW_HELLO_CMD_INIT)
  2120. *state = DEV_STATE_INIT;
  2121. else if (v & FW_HELLO_CMD_ERR)
  2122. *state = DEV_STATE_ERR;
  2123. else
  2124. *state = DEV_STATE_UNINIT;
  2125. }
  2126. return ret;
  2127. }
  2128. /**
  2129. * t4_fw_bye - end communication with FW
  2130. * @adap: the adapter
  2131. * @mbox: mailbox to use for the FW command
  2132. *
  2133. * Issues a command to terminate communication with FW.
  2134. */
  2135. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  2136. {
  2137. struct fw_bye_cmd c;
  2138. INIT_CMD(c, BYE, WRITE);
  2139. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2140. }
  2141. /**
  2142. * t4_init_cmd - ask FW to initialize the device
  2143. * @adap: the adapter
  2144. * @mbox: mailbox to use for the FW command
  2145. *
  2146. * Issues a command to FW to partially initialize the device. This
  2147. * performs initialization that generally doesn't depend on user input.
  2148. */
  2149. int t4_early_init(struct adapter *adap, unsigned int mbox)
  2150. {
  2151. struct fw_initialize_cmd c;
  2152. INIT_CMD(c, INITIALIZE, WRITE);
  2153. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2154. }
  2155. /**
  2156. * t4_fw_reset - issue a reset to FW
  2157. * @adap: the adapter
  2158. * @mbox: mailbox to use for the FW command
  2159. * @reset: specifies the type of reset to perform
  2160. *
  2161. * Issues a reset command of the specified type to FW.
  2162. */
  2163. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  2164. {
  2165. struct fw_reset_cmd c;
  2166. INIT_CMD(c, RESET, WRITE);
  2167. c.val = htonl(reset);
  2168. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2169. }
  2170. /**
  2171. * t4_query_params - query FW or device parameters
  2172. * @adap: the adapter
  2173. * @mbox: mailbox to use for the FW command
  2174. * @pf: the PF
  2175. * @vf: the VF
  2176. * @nparams: the number of parameters
  2177. * @params: the parameter names
  2178. * @val: the parameter values
  2179. *
  2180. * Reads the value of FW or device parameters. Up to 7 parameters can be
  2181. * queried at once.
  2182. */
  2183. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2184. unsigned int vf, unsigned int nparams, const u32 *params,
  2185. u32 *val)
  2186. {
  2187. int i, ret;
  2188. struct fw_params_cmd c;
  2189. __be32 *p = &c.param[0].mnem;
  2190. if (nparams > 7)
  2191. return -EINVAL;
  2192. memset(&c, 0, sizeof(c));
  2193. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2194. FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
  2195. FW_PARAMS_CMD_VFN(vf));
  2196. c.retval_len16 = htonl(FW_LEN16(c));
  2197. for (i = 0; i < nparams; i++, p += 2)
  2198. *p = htonl(*params++);
  2199. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2200. if (ret == 0)
  2201. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  2202. *val++ = ntohl(*p);
  2203. return ret;
  2204. }
  2205. /**
  2206. * t4_set_params - sets FW or device parameters
  2207. * @adap: the adapter
  2208. * @mbox: mailbox to use for the FW command
  2209. * @pf: the PF
  2210. * @vf: the VF
  2211. * @nparams: the number of parameters
  2212. * @params: the parameter names
  2213. * @val: the parameter values
  2214. *
  2215. * Sets the value of FW or device parameters. Up to 7 parameters can be
  2216. * specified at once.
  2217. */
  2218. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2219. unsigned int vf, unsigned int nparams, const u32 *params,
  2220. const u32 *val)
  2221. {
  2222. struct fw_params_cmd c;
  2223. __be32 *p = &c.param[0].mnem;
  2224. if (nparams > 7)
  2225. return -EINVAL;
  2226. memset(&c, 0, sizeof(c));
  2227. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2228. FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
  2229. FW_PARAMS_CMD_VFN(vf));
  2230. c.retval_len16 = htonl(FW_LEN16(c));
  2231. while (nparams--) {
  2232. *p++ = htonl(*params++);
  2233. *p++ = htonl(*val++);
  2234. }
  2235. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2236. }
  2237. /**
  2238. * t4_cfg_pfvf - configure PF/VF resource limits
  2239. * @adap: the adapter
  2240. * @mbox: mailbox to use for the FW command
  2241. * @pf: the PF being configured
  2242. * @vf: the VF being configured
  2243. * @txq: the max number of egress queues
  2244. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  2245. * @rxqi: the max number of interrupt-capable ingress queues
  2246. * @rxq: the max number of interruptless ingress queues
  2247. * @tc: the PCI traffic class
  2248. * @vi: the max number of virtual interfaces
  2249. * @cmask: the channel access rights mask for the PF/VF
  2250. * @pmask: the port access rights mask for the PF/VF
  2251. * @nexact: the maximum number of exact MPS filters
  2252. * @rcaps: read capabilities
  2253. * @wxcaps: write/execute capabilities
  2254. *
  2255. * Configures resource limits and capabilities for a physical or virtual
  2256. * function.
  2257. */
  2258. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2259. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  2260. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  2261. unsigned int vi, unsigned int cmask, unsigned int pmask,
  2262. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  2263. {
  2264. struct fw_pfvf_cmd c;
  2265. memset(&c, 0, sizeof(c));
  2266. c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
  2267. FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
  2268. FW_PFVF_CMD_VFN(vf));
  2269. c.retval_len16 = htonl(FW_LEN16(c));
  2270. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
  2271. FW_PFVF_CMD_NIQ(rxq));
  2272. c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
  2273. FW_PFVF_CMD_PMASK(pmask) |
  2274. FW_PFVF_CMD_NEQ(txq));
  2275. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
  2276. FW_PFVF_CMD_NEXACTF(nexact));
  2277. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
  2278. FW_PFVF_CMD_WX_CAPS(wxcaps) |
  2279. FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
  2280. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2281. }
  2282. /**
  2283. * t4_alloc_vi - allocate a virtual interface
  2284. * @adap: the adapter
  2285. * @mbox: mailbox to use for the FW command
  2286. * @port: physical port associated with the VI
  2287. * @pf: the PF owning the VI
  2288. * @vf: the VF owning the VI
  2289. * @nmac: number of MAC addresses needed (1 to 5)
  2290. * @mac: the MAC addresses of the VI
  2291. * @rss_size: size of RSS table slice associated with this VI
  2292. *
  2293. * Allocates a virtual interface for the given physical port. If @mac is
  2294. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  2295. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  2296. * stored consecutively so the space needed is @nmac * 6 bytes.
  2297. * Returns a negative error number or the non-negative VI id.
  2298. */
  2299. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  2300. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  2301. unsigned int *rss_size)
  2302. {
  2303. int ret;
  2304. struct fw_vi_cmd c;
  2305. memset(&c, 0, sizeof(c));
  2306. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2307. FW_CMD_WRITE | FW_CMD_EXEC |
  2308. FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
  2309. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
  2310. c.portid_pkd = FW_VI_CMD_PORTID(port);
  2311. c.nmac = nmac - 1;
  2312. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2313. if (ret)
  2314. return ret;
  2315. if (mac) {
  2316. memcpy(mac, c.mac, sizeof(c.mac));
  2317. switch (nmac) {
  2318. case 5:
  2319. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  2320. case 4:
  2321. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  2322. case 3:
  2323. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  2324. case 2:
  2325. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  2326. }
  2327. }
  2328. if (rss_size)
  2329. *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
  2330. return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
  2331. }
  2332. /**
  2333. * t4_free_vi - free a virtual interface
  2334. * @adap: the adapter
  2335. * @mbox: mailbox to use for the FW command
  2336. * @pf: the PF owning the VI
  2337. * @vf: the VF owning the VI
  2338. * @viid: virtual interface identifiler
  2339. *
  2340. * Free a previously allocated virtual interface.
  2341. */
  2342. int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2343. unsigned int vf, unsigned int viid)
  2344. {
  2345. struct fw_vi_cmd c;
  2346. memset(&c, 0, sizeof(c));
  2347. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2348. FW_CMD_EXEC | FW_VI_CMD_PFN(pf) |
  2349. FW_VI_CMD_VFN(vf));
  2350. c.alloc_to_len16 = htonl(FW_VI_CMD_FREE | FW_LEN16(c));
  2351. c.type_viid = htons(FW_VI_CMD_VIID(viid));
  2352. return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2353. }
  2354. /**
  2355. * t4_set_rxmode - set Rx properties of a virtual interface
  2356. * @adap: the adapter
  2357. * @mbox: mailbox to use for the FW command
  2358. * @viid: the VI id
  2359. * @mtu: the new MTU or -1
  2360. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  2361. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  2362. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  2363. * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
  2364. * @sleep_ok: if true we may sleep while awaiting command completion
  2365. *
  2366. * Sets Rx properties of a virtual interface.
  2367. */
  2368. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2369. int mtu, int promisc, int all_multi, int bcast, int vlanex,
  2370. bool sleep_ok)
  2371. {
  2372. struct fw_vi_rxmode_cmd c;
  2373. /* convert to FW values */
  2374. if (mtu < 0)
  2375. mtu = FW_RXMODE_MTU_NO_CHG;
  2376. if (promisc < 0)
  2377. promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
  2378. if (all_multi < 0)
  2379. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
  2380. if (bcast < 0)
  2381. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
  2382. if (vlanex < 0)
  2383. vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
  2384. memset(&c, 0, sizeof(c));
  2385. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
  2386. FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
  2387. c.retval_len16 = htonl(FW_LEN16(c));
  2388. c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
  2389. FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
  2390. FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
  2391. FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
  2392. FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
  2393. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2394. }
  2395. /**
  2396. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  2397. * @adap: the adapter
  2398. * @mbox: mailbox to use for the FW command
  2399. * @viid: the VI id
  2400. * @free: if true any existing filters for this VI id are first removed
  2401. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  2402. * @addr: the MAC address(es)
  2403. * @idx: where to store the index of each allocated filter
  2404. * @hash: pointer to hash address filter bitmap
  2405. * @sleep_ok: call is allowed to sleep
  2406. *
  2407. * Allocates an exact-match filter for each of the supplied addresses and
  2408. * sets it to the corresponding address. If @idx is not %NULL it should
  2409. * have at least @naddr entries, each of which will be set to the index of
  2410. * the filter allocated for the corresponding MAC address. If a filter
  2411. * could not be allocated for an address its index is set to 0xffff.
  2412. * If @hash is not %NULL addresses that fail to allocate an exact filter
  2413. * are hashed and update the hash filter bitmap pointed at by @hash.
  2414. *
  2415. * Returns a negative error number or the number of filters allocated.
  2416. */
  2417. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  2418. unsigned int viid, bool free, unsigned int naddr,
  2419. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  2420. {
  2421. int i, ret;
  2422. struct fw_vi_mac_cmd c;
  2423. struct fw_vi_mac_exact *p;
  2424. if (naddr > 7)
  2425. return -EINVAL;
  2426. memset(&c, 0, sizeof(c));
  2427. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2428. FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
  2429. FW_VI_MAC_CMD_VIID(viid));
  2430. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
  2431. FW_CMD_LEN16((naddr + 2) / 2));
  2432. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2433. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2434. FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
  2435. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  2436. }
  2437. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  2438. if (ret)
  2439. return ret;
  2440. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2441. u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2442. if (idx)
  2443. idx[i] = index >= NEXACT_MAC ? 0xffff : index;
  2444. if (index < NEXACT_MAC)
  2445. ret++;
  2446. else if (hash)
  2447. *hash |= (1 << hash_mac_addr(addr[i]));
  2448. }
  2449. return ret;
  2450. }
  2451. /**
  2452. * t4_change_mac - modifies the exact-match filter for a MAC address
  2453. * @adap: the adapter
  2454. * @mbox: mailbox to use for the FW command
  2455. * @viid: the VI id
  2456. * @idx: index of existing filter for old value of MAC address, or -1
  2457. * @addr: the new MAC address value
  2458. * @persist: whether a new MAC allocation should be persistent
  2459. * @add_smt: if true also add the address to the HW SMT
  2460. *
  2461. * Modifies an exact-match filter and sets it to the new MAC address.
  2462. * Note that in general it is not possible to modify the value of a given
  2463. * filter so the generic way to modify an address filter is to free the one
  2464. * being used by the old address value and allocate a new filter for the
  2465. * new address value. @idx can be -1 if the address is a new addition.
  2466. *
  2467. * Returns a negative error number or the index of the filter with the new
  2468. * MAC value.
  2469. */
  2470. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2471. int idx, const u8 *addr, bool persist, bool add_smt)
  2472. {
  2473. int ret, mode;
  2474. struct fw_vi_mac_cmd c;
  2475. struct fw_vi_mac_exact *p = c.u.exact;
  2476. if (idx < 0) /* new allocation */
  2477. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  2478. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  2479. memset(&c, 0, sizeof(c));
  2480. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2481. FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
  2482. c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
  2483. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2484. FW_VI_MAC_CMD_SMAC_RESULT(mode) |
  2485. FW_VI_MAC_CMD_IDX(idx));
  2486. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  2487. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2488. if (ret == 0) {
  2489. ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2490. if (ret >= NEXACT_MAC)
  2491. ret = -ENOMEM;
  2492. }
  2493. return ret;
  2494. }
  2495. /**
  2496. * t4_set_addr_hash - program the MAC inexact-match hash filter
  2497. * @adap: the adapter
  2498. * @mbox: mailbox to use for the FW command
  2499. * @viid: the VI id
  2500. * @ucast: whether the hash filter should also match unicast addresses
  2501. * @vec: the value to be written to the hash filter
  2502. * @sleep_ok: call is allowed to sleep
  2503. *
  2504. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  2505. */
  2506. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2507. bool ucast, u64 vec, bool sleep_ok)
  2508. {
  2509. struct fw_vi_mac_cmd c;
  2510. memset(&c, 0, sizeof(c));
  2511. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2512. FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
  2513. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
  2514. FW_VI_MAC_CMD_HASHUNIEN(ucast) |
  2515. FW_CMD_LEN16(1));
  2516. c.u.hash.hashvec = cpu_to_be64(vec);
  2517. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2518. }
  2519. /**
  2520. * t4_enable_vi - enable/disable a virtual interface
  2521. * @adap: the adapter
  2522. * @mbox: mailbox to use for the FW command
  2523. * @viid: the VI id
  2524. * @rx_en: 1=enable Rx, 0=disable Rx
  2525. * @tx_en: 1=enable Tx, 0=disable Tx
  2526. *
  2527. * Enables/disables a virtual interface.
  2528. */
  2529. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2530. bool rx_en, bool tx_en)
  2531. {
  2532. struct fw_vi_enable_cmd c;
  2533. memset(&c, 0, sizeof(c));
  2534. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2535. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2536. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
  2537. FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
  2538. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2539. }
  2540. /**
  2541. * t4_identify_port - identify a VI's port by blinking its LED
  2542. * @adap: the adapter
  2543. * @mbox: mailbox to use for the FW command
  2544. * @viid: the VI id
  2545. * @nblinks: how many times to blink LED at 2.5 Hz
  2546. *
  2547. * Identifies a VI's port by blinking its LED.
  2548. */
  2549. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2550. unsigned int nblinks)
  2551. {
  2552. struct fw_vi_enable_cmd c;
  2553. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2554. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2555. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
  2556. c.blinkdur = htons(nblinks);
  2557. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2558. }
  2559. /**
  2560. * t4_iq_start_stop - enable/disable an ingress queue and its FLs
  2561. * @adap: the adapter
  2562. * @mbox: mailbox to use for the FW command
  2563. * @start: %true to enable the queues, %false to disable them
  2564. * @pf: the PF owning the queues
  2565. * @vf: the VF owning the queues
  2566. * @iqid: ingress queue id
  2567. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  2568. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  2569. *
  2570. * Starts or stops an ingress queue and its associated FLs, if any.
  2571. */
  2572. int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
  2573. unsigned int pf, unsigned int vf, unsigned int iqid,
  2574. unsigned int fl0id, unsigned int fl1id)
  2575. {
  2576. struct fw_iq_cmd c;
  2577. memset(&c, 0, sizeof(c));
  2578. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  2579. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  2580. FW_IQ_CMD_VFN(vf));
  2581. c.alloc_to_len16 = htonl(FW_IQ_CMD_IQSTART(start) |
  2582. FW_IQ_CMD_IQSTOP(!start) | FW_LEN16(c));
  2583. c.iqid = htons(iqid);
  2584. c.fl0id = htons(fl0id);
  2585. c.fl1id = htons(fl1id);
  2586. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2587. }
  2588. /**
  2589. * t4_iq_free - free an ingress queue and its FLs
  2590. * @adap: the adapter
  2591. * @mbox: mailbox to use for the FW command
  2592. * @pf: the PF owning the queues
  2593. * @vf: the VF owning the queues
  2594. * @iqtype: the ingress queue type
  2595. * @iqid: ingress queue id
  2596. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  2597. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  2598. *
  2599. * Frees an ingress queue and its associated FLs, if any.
  2600. */
  2601. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2602. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  2603. unsigned int fl0id, unsigned int fl1id)
  2604. {
  2605. struct fw_iq_cmd c;
  2606. memset(&c, 0, sizeof(c));
  2607. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  2608. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  2609. FW_IQ_CMD_VFN(vf));
  2610. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
  2611. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
  2612. c.iqid = htons(iqid);
  2613. c.fl0id = htons(fl0id);
  2614. c.fl1id = htons(fl1id);
  2615. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2616. }
  2617. /**
  2618. * t4_eth_eq_free - free an Ethernet egress queue
  2619. * @adap: the adapter
  2620. * @mbox: mailbox to use for the FW command
  2621. * @pf: the PF owning the queue
  2622. * @vf: the VF owning the queue
  2623. * @eqid: egress queue id
  2624. *
  2625. * Frees an Ethernet egress queue.
  2626. */
  2627. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2628. unsigned int vf, unsigned int eqid)
  2629. {
  2630. struct fw_eq_eth_cmd c;
  2631. memset(&c, 0, sizeof(c));
  2632. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
  2633. FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
  2634. FW_EQ_ETH_CMD_VFN(vf));
  2635. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
  2636. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
  2637. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2638. }
  2639. /**
  2640. * t4_ctrl_eq_free - free a control egress queue
  2641. * @adap: the adapter
  2642. * @mbox: mailbox to use for the FW command
  2643. * @pf: the PF owning the queue
  2644. * @vf: the VF owning the queue
  2645. * @eqid: egress queue id
  2646. *
  2647. * Frees a control egress queue.
  2648. */
  2649. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2650. unsigned int vf, unsigned int eqid)
  2651. {
  2652. struct fw_eq_ctrl_cmd c;
  2653. memset(&c, 0, sizeof(c));
  2654. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
  2655. FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
  2656. FW_EQ_CTRL_CMD_VFN(vf));
  2657. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
  2658. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
  2659. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2660. }
  2661. /**
  2662. * t4_ofld_eq_free - free an offload egress queue
  2663. * @adap: the adapter
  2664. * @mbox: mailbox to use for the FW command
  2665. * @pf: the PF owning the queue
  2666. * @vf: the VF owning the queue
  2667. * @eqid: egress queue id
  2668. *
  2669. * Frees a control egress queue.
  2670. */
  2671. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2672. unsigned int vf, unsigned int eqid)
  2673. {
  2674. struct fw_eq_ofld_cmd c;
  2675. memset(&c, 0, sizeof(c));
  2676. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
  2677. FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
  2678. FW_EQ_OFLD_CMD_VFN(vf));
  2679. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
  2680. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
  2681. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2682. }
  2683. /**
  2684. * t4_handle_fw_rpl - process a FW reply message
  2685. * @adap: the adapter
  2686. * @rpl: start of the FW message
  2687. *
  2688. * Processes a FW message, such as link state change messages.
  2689. */
  2690. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  2691. {
  2692. u8 opcode = *(const u8 *)rpl;
  2693. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  2694. int speed = 0, fc = 0;
  2695. const struct fw_port_cmd *p = (void *)rpl;
  2696. int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
  2697. int port = adap->chan_map[chan];
  2698. struct port_info *pi = adap2pinfo(adap, port);
  2699. struct link_config *lc = &pi->link_cfg;
  2700. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  2701. int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
  2702. u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
  2703. if (stat & FW_PORT_CMD_RXPAUSE)
  2704. fc |= PAUSE_RX;
  2705. if (stat & FW_PORT_CMD_TXPAUSE)
  2706. fc |= PAUSE_TX;
  2707. if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
  2708. speed = SPEED_100;
  2709. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
  2710. speed = SPEED_1000;
  2711. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
  2712. speed = SPEED_10000;
  2713. if (link_ok != lc->link_ok || speed != lc->speed ||
  2714. fc != lc->fc) { /* something changed */
  2715. lc->link_ok = link_ok;
  2716. lc->speed = speed;
  2717. lc->fc = fc;
  2718. t4_os_link_changed(adap, port, link_ok);
  2719. }
  2720. if (mod != pi->mod_type) {
  2721. pi->mod_type = mod;
  2722. t4_os_portmod_changed(adap, port);
  2723. }
  2724. }
  2725. return 0;
  2726. }
  2727. static void __devinit get_pci_mode(struct adapter *adapter,
  2728. struct pci_params *p)
  2729. {
  2730. u16 val;
  2731. u32 pcie_cap = pci_pcie_cap(adapter->pdev);
  2732. if (pcie_cap) {
  2733. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  2734. &val);
  2735. p->speed = val & PCI_EXP_LNKSTA_CLS;
  2736. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  2737. }
  2738. }
  2739. /**
  2740. * init_link_config - initialize a link's SW state
  2741. * @lc: structure holding the link state
  2742. * @caps: link capabilities
  2743. *
  2744. * Initializes the SW state maintained for each link, including the link's
  2745. * capabilities and default speed/flow-control/autonegotiation settings.
  2746. */
  2747. static void __devinit init_link_config(struct link_config *lc,
  2748. unsigned int caps)
  2749. {
  2750. lc->supported = caps;
  2751. lc->requested_speed = 0;
  2752. lc->speed = 0;
  2753. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  2754. if (lc->supported & FW_PORT_CAP_ANEG) {
  2755. lc->advertising = lc->supported & ADVERT_MASK;
  2756. lc->autoneg = AUTONEG_ENABLE;
  2757. lc->requested_fc |= PAUSE_AUTONEG;
  2758. } else {
  2759. lc->advertising = 0;
  2760. lc->autoneg = AUTONEG_DISABLE;
  2761. }
  2762. }
  2763. int t4_wait_dev_ready(struct adapter *adap)
  2764. {
  2765. if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
  2766. return 0;
  2767. msleep(500);
  2768. return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
  2769. }
  2770. static int __devinit get_flash_params(struct adapter *adap)
  2771. {
  2772. int ret;
  2773. u32 info;
  2774. ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
  2775. if (!ret)
  2776. ret = sf1_read(adap, 3, 0, 1, &info);
  2777. t4_write_reg(adap, SF_OP, 0); /* unlock SF */
  2778. if (ret)
  2779. return ret;
  2780. if ((info & 0xff) != 0x20) /* not a Numonix flash */
  2781. return -EINVAL;
  2782. info >>= 16; /* log2 of size */
  2783. if (info >= 0x14 && info < 0x18)
  2784. adap->params.sf_nsec = 1 << (info - 16);
  2785. else if (info == 0x18)
  2786. adap->params.sf_nsec = 64;
  2787. else
  2788. return -EINVAL;
  2789. adap->params.sf_size = 1 << info;
  2790. adap->params.sf_fw_start =
  2791. t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
  2792. return 0;
  2793. }
  2794. /**
  2795. * t4_prep_adapter - prepare SW and HW for operation
  2796. * @adapter: the adapter
  2797. * @reset: if true perform a HW reset
  2798. *
  2799. * Initialize adapter SW state for the various HW modules, set initial
  2800. * values for some adapter tunables, take PHYs out of reset, and
  2801. * initialize the MDIO interface.
  2802. */
  2803. int __devinit t4_prep_adapter(struct adapter *adapter)
  2804. {
  2805. int ret;
  2806. ret = t4_wait_dev_ready(adapter);
  2807. if (ret < 0)
  2808. return ret;
  2809. get_pci_mode(adapter, &adapter->params.pci);
  2810. adapter->params.rev = t4_read_reg(adapter, PL_REV);
  2811. ret = get_flash_params(adapter);
  2812. if (ret < 0) {
  2813. dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
  2814. return ret;
  2815. }
  2816. ret = get_vpd_params(adapter, &adapter->params.vpd);
  2817. if (ret < 0)
  2818. return ret;
  2819. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  2820. /*
  2821. * Default port for debugging in case we can't reach FW.
  2822. */
  2823. adapter->params.nports = 1;
  2824. adapter->params.portvec = 1;
  2825. return 0;
  2826. }
  2827. int __devinit t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  2828. {
  2829. u8 addr[6];
  2830. int ret, i, j = 0;
  2831. struct fw_port_cmd c;
  2832. struct fw_rss_vi_config_cmd rvc;
  2833. memset(&c, 0, sizeof(c));
  2834. memset(&rvc, 0, sizeof(rvc));
  2835. for_each_port(adap, i) {
  2836. unsigned int rss_size;
  2837. struct port_info *p = adap2pinfo(adap, i);
  2838. while ((adap->params.portvec & (1 << j)) == 0)
  2839. j++;
  2840. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
  2841. FW_CMD_REQUEST | FW_CMD_READ |
  2842. FW_PORT_CMD_PORTID(j));
  2843. c.action_to_len16 = htonl(
  2844. FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
  2845. FW_LEN16(c));
  2846. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2847. if (ret)
  2848. return ret;
  2849. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  2850. if (ret < 0)
  2851. return ret;
  2852. p->viid = ret;
  2853. p->tx_chan = j;
  2854. p->lport = j;
  2855. p->rss_size = rss_size;
  2856. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  2857. memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN);
  2858. adap->port[i]->dev_id = j;
  2859. ret = ntohl(c.u.info.lstatus_to_modtype);
  2860. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
  2861. FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
  2862. p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
  2863. p->mod_type = FW_PORT_MOD_TYPE_NA;
  2864. rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
  2865. FW_CMD_REQUEST | FW_CMD_READ |
  2866. FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
  2867. rvc.retval_len16 = htonl(FW_LEN16(rvc));
  2868. ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
  2869. if (ret)
  2870. return ret;
  2871. p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
  2872. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  2873. j++;
  2874. }
  2875. return 0;
  2876. }