t3_hw.c 118 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970
  1. /*
  2. * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. /**
  37. * t3_wait_op_done_val - wait until an operation is completed
  38. * @adapter: the adapter performing the operation
  39. * @reg: the register to check for completion
  40. * @mask: a single-bit field within @reg that indicates completion
  41. * @polarity: the value of the field when the operation is completed
  42. * @attempts: number of check iterations
  43. * @delay: delay in usecs between iterations
  44. * @valp: where to store the value of the register at completion time
  45. *
  46. * Wait until an operation is completed by checking a bit in a register
  47. * up to @attempts times. If @valp is not NULL the value of the register
  48. * at the time it indicated completion is stored there. Returns 0 if the
  49. * operation completes and -EAGAIN otherwise.
  50. */
  51. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  52. int polarity, int attempts, int delay, u32 *valp)
  53. {
  54. while (1) {
  55. u32 val = t3_read_reg(adapter, reg);
  56. if (!!(val & mask) == polarity) {
  57. if (valp)
  58. *valp = val;
  59. return 0;
  60. }
  61. if (--attempts == 0)
  62. return -EAGAIN;
  63. if (delay)
  64. udelay(delay);
  65. }
  66. }
  67. /**
  68. * t3_write_regs - write a bunch of registers
  69. * @adapter: the adapter to program
  70. * @p: an array of register address/register value pairs
  71. * @n: the number of address/value pairs
  72. * @offset: register address offset
  73. *
  74. * Takes an array of register address/register value pairs and writes each
  75. * value to the corresponding register. Register addresses are adjusted
  76. * by the supplied offset.
  77. */
  78. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  79. int n, unsigned int offset)
  80. {
  81. while (n--) {
  82. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  83. p++;
  84. }
  85. }
  86. /**
  87. * t3_set_reg_field - set a register field to a value
  88. * @adapter: the adapter to program
  89. * @addr: the register address
  90. * @mask: specifies the portion of the register to modify
  91. * @val: the new value for the register field
  92. *
  93. * Sets a register field specified by the supplied mask to the
  94. * given value.
  95. */
  96. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  97. u32 val)
  98. {
  99. u32 v = t3_read_reg(adapter, addr) & ~mask;
  100. t3_write_reg(adapter, addr, v | val);
  101. t3_read_reg(adapter, addr); /* flush */
  102. }
  103. /**
  104. * t3_read_indirect - read indirectly addressed registers
  105. * @adap: the adapter
  106. * @addr_reg: register holding the indirect address
  107. * @data_reg: register holding the value of the indirect register
  108. * @vals: where the read register values are stored
  109. * @start_idx: index of first indirect register to read
  110. * @nregs: how many indirect registers to read
  111. *
  112. * Reads registers that are accessed indirectly through an address/data
  113. * register pair.
  114. */
  115. static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  116. unsigned int data_reg, u32 *vals,
  117. unsigned int nregs, unsigned int start_idx)
  118. {
  119. while (nregs--) {
  120. t3_write_reg(adap, addr_reg, start_idx);
  121. *vals++ = t3_read_reg(adap, data_reg);
  122. start_idx++;
  123. }
  124. }
  125. /**
  126. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  127. * @mc7: identifies MC7 to read from
  128. * @start: index of first 64-bit word to read
  129. * @n: number of 64-bit words to read
  130. * @buf: where to store the read result
  131. *
  132. * Read n 64-bit words from MC7 starting at word start, using backdoor
  133. * accesses.
  134. */
  135. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  136. u64 *buf)
  137. {
  138. static const int shift[] = { 0, 0, 16, 24 };
  139. static const int step[] = { 0, 32, 16, 8 };
  140. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  141. struct adapter *adap = mc7->adapter;
  142. if (start >= size64 || start + n > size64)
  143. return -EINVAL;
  144. start *= (8 << mc7->width);
  145. while (n--) {
  146. int i;
  147. u64 val64 = 0;
  148. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  149. int attempts = 10;
  150. u32 val;
  151. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  153. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  154. while ((val & F_BUSY) && attempts--)
  155. val = t3_read_reg(adap,
  156. mc7->offset + A_MC7_BD_OP);
  157. if (val & F_BUSY)
  158. return -EIO;
  159. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  160. if (mc7->width == 0) {
  161. val64 = t3_read_reg(adap,
  162. mc7->offset +
  163. A_MC7_BD_DATA0);
  164. val64 |= (u64) val << 32;
  165. } else {
  166. if (mc7->width > 1)
  167. val >>= shift[mc7->width];
  168. val64 |= (u64) val << (step[mc7->width] * i);
  169. }
  170. start += 8;
  171. }
  172. *buf++ = val64;
  173. }
  174. return 0;
  175. }
  176. /*
  177. * Initialize MI1.
  178. */
  179. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  180. {
  181. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  182. u32 val = F_PREEN | V_CLKDIV(clkdiv);
  183. t3_write_reg(adap, A_MI1_CFG, val);
  184. }
  185. #define MDIO_ATTEMPTS 20
  186. /*
  187. * MI1 read/write operations for clause 22 PHYs.
  188. */
  189. static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr,
  190. u16 reg_addr)
  191. {
  192. struct port_info *pi = netdev_priv(dev);
  193. struct adapter *adapter = pi->adapter;
  194. int ret;
  195. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  196. mutex_lock(&adapter->mdio_lock);
  197. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  198. t3_write_reg(adapter, A_MI1_ADDR, addr);
  199. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  200. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  201. if (!ret)
  202. ret = t3_read_reg(adapter, A_MI1_DATA);
  203. mutex_unlock(&adapter->mdio_lock);
  204. return ret;
  205. }
  206. static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr,
  207. u16 reg_addr, u16 val)
  208. {
  209. struct port_info *pi = netdev_priv(dev);
  210. struct adapter *adapter = pi->adapter;
  211. int ret;
  212. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  213. mutex_lock(&adapter->mdio_lock);
  214. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  215. t3_write_reg(adapter, A_MI1_ADDR, addr);
  216. t3_write_reg(adapter, A_MI1_DATA, val);
  217. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  218. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  219. mutex_unlock(&adapter->mdio_lock);
  220. return ret;
  221. }
  222. static const struct mdio_ops mi1_mdio_ops = {
  223. .read = t3_mi1_read,
  224. .write = t3_mi1_write,
  225. .mode_support = MDIO_SUPPORTS_C22
  226. };
  227. /*
  228. * Performs the address cycle for clause 45 PHYs.
  229. * Must be called with the MDIO_LOCK held.
  230. */
  231. static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
  232. int reg_addr)
  233. {
  234. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  235. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
  236. t3_write_reg(adapter, A_MI1_ADDR, addr);
  237. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  238. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  239. return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  240. MDIO_ATTEMPTS, 10);
  241. }
  242. /*
  243. * MI1 read/write operations for indirect-addressed PHYs.
  244. */
  245. static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
  246. u16 reg_addr)
  247. {
  248. struct port_info *pi = netdev_priv(dev);
  249. struct adapter *adapter = pi->adapter;
  250. int ret;
  251. mutex_lock(&adapter->mdio_lock);
  252. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  253. if (!ret) {
  254. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  255. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  256. MDIO_ATTEMPTS, 10);
  257. if (!ret)
  258. ret = t3_read_reg(adapter, A_MI1_DATA);
  259. }
  260. mutex_unlock(&adapter->mdio_lock);
  261. return ret;
  262. }
  263. static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr,
  264. u16 reg_addr, u16 val)
  265. {
  266. struct port_info *pi = netdev_priv(dev);
  267. struct adapter *adapter = pi->adapter;
  268. int ret;
  269. mutex_lock(&adapter->mdio_lock);
  270. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  271. if (!ret) {
  272. t3_write_reg(adapter, A_MI1_DATA, val);
  273. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  274. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  275. MDIO_ATTEMPTS, 10);
  276. }
  277. mutex_unlock(&adapter->mdio_lock);
  278. return ret;
  279. }
  280. static const struct mdio_ops mi1_mdio_ext_ops = {
  281. .read = mi1_ext_read,
  282. .write = mi1_ext_write,
  283. .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
  284. };
  285. /**
  286. * t3_mdio_change_bits - modify the value of a PHY register
  287. * @phy: the PHY to operate on
  288. * @mmd: the device address
  289. * @reg: the register address
  290. * @clear: what part of the register value to mask off
  291. * @set: what part of the register value to set
  292. *
  293. * Changes the value of a PHY register by applying a mask to its current
  294. * value and ORing the result with a new value.
  295. */
  296. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  297. unsigned int set)
  298. {
  299. int ret;
  300. unsigned int val;
  301. ret = t3_mdio_read(phy, mmd, reg, &val);
  302. if (!ret) {
  303. val &= ~clear;
  304. ret = t3_mdio_write(phy, mmd, reg, val | set);
  305. }
  306. return ret;
  307. }
  308. /**
  309. * t3_phy_reset - reset a PHY block
  310. * @phy: the PHY to operate on
  311. * @mmd: the device address of the PHY block to reset
  312. * @wait: how long to wait for the reset to complete in 1ms increments
  313. *
  314. * Resets a PHY block and optionally waits for the reset to complete.
  315. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  316. * for 10G PHYs.
  317. */
  318. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  319. {
  320. int err;
  321. unsigned int ctl;
  322. err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER,
  323. MDIO_CTRL1_RESET);
  324. if (err || !wait)
  325. return err;
  326. do {
  327. err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl);
  328. if (err)
  329. return err;
  330. ctl &= MDIO_CTRL1_RESET;
  331. if (ctl)
  332. msleep(1);
  333. } while (ctl && --wait);
  334. return ctl ? -1 : 0;
  335. }
  336. /**
  337. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  338. * @phy: the PHY to operate on
  339. * @advert: bitmap of capabilities the PHY should advertise
  340. *
  341. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  342. * requested capabilities.
  343. */
  344. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  345. {
  346. int err;
  347. unsigned int val = 0;
  348. err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val);
  349. if (err)
  350. return err;
  351. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  352. if (advert & ADVERTISED_1000baseT_Half)
  353. val |= ADVERTISE_1000HALF;
  354. if (advert & ADVERTISED_1000baseT_Full)
  355. val |= ADVERTISE_1000FULL;
  356. err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val);
  357. if (err)
  358. return err;
  359. val = 1;
  360. if (advert & ADVERTISED_10baseT_Half)
  361. val |= ADVERTISE_10HALF;
  362. if (advert & ADVERTISED_10baseT_Full)
  363. val |= ADVERTISE_10FULL;
  364. if (advert & ADVERTISED_100baseT_Half)
  365. val |= ADVERTISE_100HALF;
  366. if (advert & ADVERTISED_100baseT_Full)
  367. val |= ADVERTISE_100FULL;
  368. if (advert & ADVERTISED_Pause)
  369. val |= ADVERTISE_PAUSE_CAP;
  370. if (advert & ADVERTISED_Asym_Pause)
  371. val |= ADVERTISE_PAUSE_ASYM;
  372. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
  373. }
  374. /**
  375. * t3_phy_advertise_fiber - set fiber PHY advertisement register
  376. * @phy: the PHY to operate on
  377. * @advert: bitmap of capabilities the PHY should advertise
  378. *
  379. * Sets a fiber PHY's advertisement register to advertise the
  380. * requested capabilities.
  381. */
  382. int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
  383. {
  384. unsigned int val = 0;
  385. if (advert & ADVERTISED_1000baseT_Half)
  386. val |= ADVERTISE_1000XHALF;
  387. if (advert & ADVERTISED_1000baseT_Full)
  388. val |= ADVERTISE_1000XFULL;
  389. if (advert & ADVERTISED_Pause)
  390. val |= ADVERTISE_1000XPAUSE;
  391. if (advert & ADVERTISED_Asym_Pause)
  392. val |= ADVERTISE_1000XPSE_ASYM;
  393. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
  394. }
  395. /**
  396. * t3_set_phy_speed_duplex - force PHY speed and duplex
  397. * @phy: the PHY to operate on
  398. * @speed: requested PHY speed
  399. * @duplex: requested PHY duplex
  400. *
  401. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  402. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  403. */
  404. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  405. {
  406. int err;
  407. unsigned int ctl;
  408. err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl);
  409. if (err)
  410. return err;
  411. if (speed >= 0) {
  412. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  413. if (speed == SPEED_100)
  414. ctl |= BMCR_SPEED100;
  415. else if (speed == SPEED_1000)
  416. ctl |= BMCR_SPEED1000;
  417. }
  418. if (duplex >= 0) {
  419. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  420. if (duplex == DUPLEX_FULL)
  421. ctl |= BMCR_FULLDPLX;
  422. }
  423. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  424. ctl |= BMCR_ANENABLE;
  425. return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl);
  426. }
  427. int t3_phy_lasi_intr_enable(struct cphy *phy)
  428. {
  429. return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
  430. MDIO_PMA_LASI_LSALARM);
  431. }
  432. int t3_phy_lasi_intr_disable(struct cphy *phy)
  433. {
  434. return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0);
  435. }
  436. int t3_phy_lasi_intr_clear(struct cphy *phy)
  437. {
  438. u32 val;
  439. return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val);
  440. }
  441. int t3_phy_lasi_intr_handler(struct cphy *phy)
  442. {
  443. unsigned int status;
  444. int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT,
  445. &status);
  446. if (err)
  447. return err;
  448. return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0;
  449. }
  450. static const struct adapter_info t3_adap_info[] = {
  451. {1, 1, 0,
  452. F_GPIO2_OEN | F_GPIO4_OEN |
  453. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  454. &mi1_mdio_ops, "Chelsio PE9000"},
  455. {1, 1, 0,
  456. F_GPIO2_OEN | F_GPIO4_OEN |
  457. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  458. &mi1_mdio_ops, "Chelsio T302"},
  459. {1, 0, 0,
  460. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  461. F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  462. { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  463. &mi1_mdio_ext_ops, "Chelsio T310"},
  464. {1, 1, 0,
  465. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  466. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  467. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  468. { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  469. &mi1_mdio_ext_ops, "Chelsio T320"},
  470. {},
  471. {},
  472. {1, 0, 0,
  473. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
  474. F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  475. { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  476. &mi1_mdio_ext_ops, "Chelsio T310" },
  477. {1, 0, 0,
  478. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
  479. F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL,
  480. { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  481. &mi1_mdio_ext_ops, "Chelsio N320E-G2" },
  482. };
  483. /*
  484. * Return the adapter_info structure with a given index. Out-of-range indices
  485. * return NULL.
  486. */
  487. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  488. {
  489. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  490. }
  491. struct port_type_info {
  492. int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
  493. int phy_addr, const struct mdio_ops *ops);
  494. };
  495. static const struct port_type_info port_types[] = {
  496. { NULL },
  497. { t3_ael1002_phy_prep },
  498. { t3_vsc8211_phy_prep },
  499. { NULL},
  500. { t3_xaui_direct_phy_prep },
  501. { t3_ael2005_phy_prep },
  502. { t3_qt2045_phy_prep },
  503. { t3_ael1006_phy_prep },
  504. { NULL },
  505. { t3_aq100x_phy_prep },
  506. { t3_ael2020_phy_prep },
  507. };
  508. #define VPD_ENTRY(name, len) \
  509. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  510. /*
  511. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  512. * VPD-R sections.
  513. */
  514. struct t3_vpd {
  515. u8 id_tag;
  516. u8 id_len[2];
  517. u8 id_data[16];
  518. u8 vpdr_tag;
  519. u8 vpdr_len[2];
  520. VPD_ENTRY(pn, 16); /* part number */
  521. VPD_ENTRY(ec, 16); /* EC level */
  522. VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
  523. VPD_ENTRY(na, 12); /* MAC address base */
  524. VPD_ENTRY(cclk, 6); /* core clock */
  525. VPD_ENTRY(mclk, 6); /* mem clock */
  526. VPD_ENTRY(uclk, 6); /* uP clk */
  527. VPD_ENTRY(mdc, 6); /* MDIO clk */
  528. VPD_ENTRY(mt, 2); /* mem timing */
  529. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  530. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  531. VPD_ENTRY(port0, 2); /* PHY0 complex */
  532. VPD_ENTRY(port1, 2); /* PHY1 complex */
  533. VPD_ENTRY(port2, 2); /* PHY2 complex */
  534. VPD_ENTRY(port3, 2); /* PHY3 complex */
  535. VPD_ENTRY(rv, 1); /* csum */
  536. u32 pad; /* for multiple-of-4 sizing and alignment */
  537. };
  538. #define EEPROM_MAX_POLL 40
  539. #define EEPROM_STAT_ADDR 0x4000
  540. #define VPD_BASE 0xc00
  541. /**
  542. * t3_seeprom_read - read a VPD EEPROM location
  543. * @adapter: adapter to read
  544. * @addr: EEPROM address
  545. * @data: where to store the read data
  546. *
  547. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  548. * VPD ROM capability. A zero is written to the flag bit when the
  549. * addres is written to the control register. The hardware device will
  550. * set the flag to 1 when 4 bytes have been read into the data register.
  551. */
  552. int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
  553. {
  554. u16 val;
  555. int attempts = EEPROM_MAX_POLL;
  556. u32 v;
  557. unsigned int base = adapter->params.pci.vpd_cap_addr;
  558. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  559. return -EINVAL;
  560. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  561. do {
  562. udelay(10);
  563. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  564. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  565. if (!(val & PCI_VPD_ADDR_F)) {
  566. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  567. return -EIO;
  568. }
  569. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
  570. *data = cpu_to_le32(v);
  571. return 0;
  572. }
  573. /**
  574. * t3_seeprom_write - write a VPD EEPROM location
  575. * @adapter: adapter to write
  576. * @addr: EEPROM address
  577. * @data: value to write
  578. *
  579. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  580. * VPD ROM capability.
  581. */
  582. int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
  583. {
  584. u16 val;
  585. int attempts = EEPROM_MAX_POLL;
  586. unsigned int base = adapter->params.pci.vpd_cap_addr;
  587. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  588. return -EINVAL;
  589. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  590. le32_to_cpu(data));
  591. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  592. addr | PCI_VPD_ADDR_F);
  593. do {
  594. msleep(1);
  595. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  596. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  597. if (val & PCI_VPD_ADDR_F) {
  598. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  599. return -EIO;
  600. }
  601. return 0;
  602. }
  603. /**
  604. * t3_seeprom_wp - enable/disable EEPROM write protection
  605. * @adapter: the adapter
  606. * @enable: 1 to enable write protection, 0 to disable it
  607. *
  608. * Enables or disables write protection on the serial EEPROM.
  609. */
  610. int t3_seeprom_wp(struct adapter *adapter, int enable)
  611. {
  612. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  613. }
  614. /*
  615. * Convert a character holding a hex digit to a number.
  616. */
  617. static unsigned int hex2int(unsigned char c)
  618. {
  619. return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
  620. }
  621. /**
  622. * get_vpd_params - read VPD parameters from VPD EEPROM
  623. * @adapter: adapter to read
  624. * @p: where to store the parameters
  625. *
  626. * Reads card parameters stored in VPD EEPROM.
  627. */
  628. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  629. {
  630. int i, addr, ret;
  631. struct t3_vpd vpd;
  632. /*
  633. * Card information is normally at VPD_BASE but some early cards had
  634. * it at 0.
  635. */
  636. ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
  637. if (ret)
  638. return ret;
  639. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  640. for (i = 0; i < sizeof(vpd); i += 4) {
  641. ret = t3_seeprom_read(adapter, addr + i,
  642. (__le32 *)((u8 *)&vpd + i));
  643. if (ret)
  644. return ret;
  645. }
  646. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  647. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  648. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  649. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  650. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  651. memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
  652. /* Old eeproms didn't have port information */
  653. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  654. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  655. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  656. } else {
  657. p->port_type[0] = hex2int(vpd.port0_data[0]);
  658. p->port_type[1] = hex2int(vpd.port1_data[0]);
  659. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  660. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  661. }
  662. for (i = 0; i < 6; i++)
  663. p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
  664. hex2int(vpd.na_data[2 * i + 1]);
  665. return 0;
  666. }
  667. /* serial flash and firmware constants */
  668. enum {
  669. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  670. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  671. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  672. /* flash command opcodes */
  673. SF_PROG_PAGE = 2, /* program page */
  674. SF_WR_DISABLE = 4, /* disable writes */
  675. SF_RD_STATUS = 5, /* read status register */
  676. SF_WR_ENABLE = 6, /* enable writes */
  677. SF_RD_DATA_FAST = 0xb, /* read flash */
  678. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  679. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  680. FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
  681. FW_MIN_SIZE = 8 /* at least version and csum */
  682. };
  683. /**
  684. * sf1_read - read data from the serial flash
  685. * @adapter: the adapter
  686. * @byte_cnt: number of bytes to read
  687. * @cont: whether another operation will be chained
  688. * @valp: where to store the read data
  689. *
  690. * Reads up to 4 bytes of data from the serial flash. The location of
  691. * the read needs to be specified prior to calling this by issuing the
  692. * appropriate commands to the serial flash.
  693. */
  694. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  695. u32 *valp)
  696. {
  697. int ret;
  698. if (!byte_cnt || byte_cnt > 4)
  699. return -EINVAL;
  700. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  701. return -EBUSY;
  702. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  703. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  704. if (!ret)
  705. *valp = t3_read_reg(adapter, A_SF_DATA);
  706. return ret;
  707. }
  708. /**
  709. * sf1_write - write data to the serial flash
  710. * @adapter: the adapter
  711. * @byte_cnt: number of bytes to write
  712. * @cont: whether another operation will be chained
  713. * @val: value to write
  714. *
  715. * Writes up to 4 bytes of data to the serial flash. The location of
  716. * the write needs to be specified prior to calling this by issuing the
  717. * appropriate commands to the serial flash.
  718. */
  719. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  720. u32 val)
  721. {
  722. if (!byte_cnt || byte_cnt > 4)
  723. return -EINVAL;
  724. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  725. return -EBUSY;
  726. t3_write_reg(adapter, A_SF_DATA, val);
  727. t3_write_reg(adapter, A_SF_OP,
  728. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  729. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  730. }
  731. /**
  732. * flash_wait_op - wait for a flash operation to complete
  733. * @adapter: the adapter
  734. * @attempts: max number of polls of the status register
  735. * @delay: delay between polls in ms
  736. *
  737. * Wait for a flash operation to complete by polling the status register.
  738. */
  739. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  740. {
  741. int ret;
  742. u32 status;
  743. while (1) {
  744. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  745. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  746. return ret;
  747. if (!(status & 1))
  748. return 0;
  749. if (--attempts == 0)
  750. return -EAGAIN;
  751. if (delay)
  752. msleep(delay);
  753. }
  754. }
  755. /**
  756. * t3_read_flash - read words from serial flash
  757. * @adapter: the adapter
  758. * @addr: the start address for the read
  759. * @nwords: how many 32-bit words to read
  760. * @data: where to store the read data
  761. * @byte_oriented: whether to store data as bytes or as words
  762. *
  763. * Read the specified number of 32-bit words from the serial flash.
  764. * If @byte_oriented is set the read data is stored as a byte array
  765. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  766. * natural endianess.
  767. */
  768. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  769. unsigned int nwords, u32 *data, int byte_oriented)
  770. {
  771. int ret;
  772. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  773. return -EINVAL;
  774. addr = swab32(addr) | SF_RD_DATA_FAST;
  775. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  776. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  777. return ret;
  778. for (; nwords; nwords--, data++) {
  779. ret = sf1_read(adapter, 4, nwords > 1, data);
  780. if (ret)
  781. return ret;
  782. if (byte_oriented)
  783. *data = htonl(*data);
  784. }
  785. return 0;
  786. }
  787. /**
  788. * t3_write_flash - write up to a page of data to the serial flash
  789. * @adapter: the adapter
  790. * @addr: the start address to write
  791. * @n: length of data to write
  792. * @data: the data to write
  793. *
  794. * Writes up to a page of data (256 bytes) to the serial flash starting
  795. * at the given address.
  796. */
  797. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  798. unsigned int n, const u8 *data)
  799. {
  800. int ret;
  801. u32 buf[64];
  802. unsigned int i, c, left, val, offset = addr & 0xff;
  803. if (addr + n > SF_SIZE || offset + n > 256)
  804. return -EINVAL;
  805. val = swab32(addr) | SF_PROG_PAGE;
  806. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  807. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  808. return ret;
  809. for (left = n; left; left -= c) {
  810. c = min(left, 4U);
  811. for (val = 0, i = 0; i < c; ++i)
  812. val = (val << 8) + *data++;
  813. ret = sf1_write(adapter, c, c != left, val);
  814. if (ret)
  815. return ret;
  816. }
  817. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  818. return ret;
  819. /* Read the page to verify the write succeeded */
  820. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  821. if (ret)
  822. return ret;
  823. if (memcmp(data - n, (u8 *) buf + offset, n))
  824. return -EIO;
  825. return 0;
  826. }
  827. /**
  828. * t3_get_tp_version - read the tp sram version
  829. * @adapter: the adapter
  830. * @vers: where to place the version
  831. *
  832. * Reads the protocol sram version from sram.
  833. */
  834. int t3_get_tp_version(struct adapter *adapter, u32 *vers)
  835. {
  836. int ret;
  837. /* Get version loaded in SRAM */
  838. t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
  839. ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
  840. 1, 1, 5, 1);
  841. if (ret)
  842. return ret;
  843. *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
  844. return 0;
  845. }
  846. /**
  847. * t3_check_tpsram_version - read the tp sram version
  848. * @adapter: the adapter
  849. *
  850. * Reads the protocol sram version from flash.
  851. */
  852. int t3_check_tpsram_version(struct adapter *adapter)
  853. {
  854. int ret;
  855. u32 vers;
  856. unsigned int major, minor;
  857. if (adapter->params.rev == T3_REV_A)
  858. return 0;
  859. ret = t3_get_tp_version(adapter, &vers);
  860. if (ret)
  861. return ret;
  862. major = G_TP_VERSION_MAJOR(vers);
  863. minor = G_TP_VERSION_MINOR(vers);
  864. if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
  865. return 0;
  866. else {
  867. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  868. "driver compiled for version %d.%d\n", major, minor,
  869. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  870. }
  871. return -EINVAL;
  872. }
  873. /**
  874. * t3_check_tpsram - check if provided protocol SRAM
  875. * is compatible with this driver
  876. * @adapter: the adapter
  877. * @tp_sram: the firmware image to write
  878. * @size: image size
  879. *
  880. * Checks if an adapter's tp sram is compatible with the driver.
  881. * Returns 0 if the versions are compatible, a negative error otherwise.
  882. */
  883. int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
  884. unsigned int size)
  885. {
  886. u32 csum;
  887. unsigned int i;
  888. const __be32 *p = (const __be32 *)tp_sram;
  889. /* Verify checksum */
  890. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  891. csum += ntohl(p[i]);
  892. if (csum != 0xffffffff) {
  893. CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
  894. csum);
  895. return -EINVAL;
  896. }
  897. return 0;
  898. }
  899. enum fw_version_type {
  900. FW_VERSION_N3,
  901. FW_VERSION_T3
  902. };
  903. /**
  904. * t3_get_fw_version - read the firmware version
  905. * @adapter: the adapter
  906. * @vers: where to place the version
  907. *
  908. * Reads the FW version from flash.
  909. */
  910. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  911. {
  912. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  913. }
  914. /**
  915. * t3_check_fw_version - check if the FW is compatible with this driver
  916. * @adapter: the adapter
  917. *
  918. * Checks if an adapter's FW is compatible with the driver. Returns 0
  919. * if the versions are compatible, a negative error otherwise.
  920. */
  921. int t3_check_fw_version(struct adapter *adapter)
  922. {
  923. int ret;
  924. u32 vers;
  925. unsigned int type, major, minor;
  926. ret = t3_get_fw_version(adapter, &vers);
  927. if (ret)
  928. return ret;
  929. type = G_FW_VERSION_TYPE(vers);
  930. major = G_FW_VERSION_MAJOR(vers);
  931. minor = G_FW_VERSION_MINOR(vers);
  932. if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
  933. minor == FW_VERSION_MINOR)
  934. return 0;
  935. else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
  936. CH_WARN(adapter, "found old FW minor version(%u.%u), "
  937. "driver compiled for version %u.%u\n", major, minor,
  938. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  939. else {
  940. CH_WARN(adapter, "found newer FW version(%u.%u), "
  941. "driver compiled for version %u.%u\n", major, minor,
  942. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  943. return 0;
  944. }
  945. return -EINVAL;
  946. }
  947. /**
  948. * t3_flash_erase_sectors - erase a range of flash sectors
  949. * @adapter: the adapter
  950. * @start: the first sector to erase
  951. * @end: the last sector to erase
  952. *
  953. * Erases the sectors in the given range.
  954. */
  955. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  956. {
  957. while (start <= end) {
  958. int ret;
  959. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  960. (ret = sf1_write(adapter, 4, 0,
  961. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  962. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  963. return ret;
  964. start++;
  965. }
  966. return 0;
  967. }
  968. /*
  969. * t3_load_fw - download firmware
  970. * @adapter: the adapter
  971. * @fw_data: the firmware image to write
  972. * @size: image size
  973. *
  974. * Write the supplied firmware image to the card's serial flash.
  975. * The FW image has the following sections: @size - 8 bytes of code and
  976. * data, followed by 4 bytes of FW version, followed by the 32-bit
  977. * 1's complement checksum of the whole image.
  978. */
  979. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  980. {
  981. u32 csum;
  982. unsigned int i;
  983. const __be32 *p = (const __be32 *)fw_data;
  984. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  985. if ((size & 3) || size < FW_MIN_SIZE)
  986. return -EINVAL;
  987. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  988. return -EFBIG;
  989. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  990. csum += ntohl(p[i]);
  991. if (csum != 0xffffffff) {
  992. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  993. csum);
  994. return -EINVAL;
  995. }
  996. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  997. if (ret)
  998. goto out;
  999. size -= 8; /* trim off version and checksum */
  1000. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  1001. unsigned int chunk_size = min(size, 256U);
  1002. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  1003. if (ret)
  1004. goto out;
  1005. addr += chunk_size;
  1006. fw_data += chunk_size;
  1007. size -= chunk_size;
  1008. }
  1009. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  1010. out:
  1011. if (ret)
  1012. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  1013. return ret;
  1014. }
  1015. #define CIM_CTL_BASE 0x2000
  1016. /**
  1017. * t3_cim_ctl_blk_read - read a block from CIM control region
  1018. *
  1019. * @adap: the adapter
  1020. * @addr: the start address within the CIM control region
  1021. * @n: number of words to read
  1022. * @valp: where to store the result
  1023. *
  1024. * Reads a block of 4-byte words from the CIM control region.
  1025. */
  1026. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  1027. unsigned int n, unsigned int *valp)
  1028. {
  1029. int ret = 0;
  1030. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  1031. return -EBUSY;
  1032. for ( ; !ret && n--; addr += 4) {
  1033. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  1034. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  1035. 0, 5, 2);
  1036. if (!ret)
  1037. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  1038. }
  1039. return ret;
  1040. }
  1041. static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
  1042. u32 *rx_hash_high, u32 *rx_hash_low)
  1043. {
  1044. /* stop Rx unicast traffic */
  1045. t3_mac_disable_exact_filters(mac);
  1046. /* stop broadcast, multicast, promiscuous mode traffic */
  1047. *rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
  1048. t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
  1049. F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
  1050. F_DISBCAST);
  1051. *rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
  1052. t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
  1053. *rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
  1054. t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
  1055. /* Leave time to drain max RX fifo */
  1056. msleep(1);
  1057. }
  1058. static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
  1059. u32 rx_hash_high, u32 rx_hash_low)
  1060. {
  1061. t3_mac_enable_exact_filters(mac);
  1062. t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
  1063. F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
  1064. rx_cfg);
  1065. t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
  1066. t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
  1067. }
  1068. /**
  1069. * t3_link_changed - handle interface link changes
  1070. * @adapter: the adapter
  1071. * @port_id: the port index that changed link state
  1072. *
  1073. * Called when a port's link settings change to propagate the new values
  1074. * to the associated PHY and MAC. After performing the common tasks it
  1075. * invokes an OS-specific handler.
  1076. */
  1077. void t3_link_changed(struct adapter *adapter, int port_id)
  1078. {
  1079. int link_ok, speed, duplex, fc;
  1080. struct port_info *pi = adap2pinfo(adapter, port_id);
  1081. struct cphy *phy = &pi->phy;
  1082. struct cmac *mac = &pi->mac;
  1083. struct link_config *lc = &pi->link_config;
  1084. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1085. if (!lc->link_ok && link_ok) {
  1086. u32 rx_cfg, rx_hash_high, rx_hash_low;
  1087. u32 status;
  1088. t3_xgm_intr_enable(adapter, port_id);
  1089. t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
  1090. t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
  1091. t3_mac_enable(mac, MAC_DIRECTION_RX);
  1092. status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
  1093. if (status & F_LINKFAULTCHANGE) {
  1094. mac->stats.link_faults++;
  1095. pi->link_fault = 1;
  1096. }
  1097. t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
  1098. }
  1099. if (lc->requested_fc & PAUSE_AUTONEG)
  1100. fc &= lc->requested_fc;
  1101. else
  1102. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1103. if (link_ok == lc->link_ok && speed == lc->speed &&
  1104. duplex == lc->duplex && fc == lc->fc)
  1105. return; /* nothing changed */
  1106. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  1107. uses_xaui(adapter)) {
  1108. if (link_ok)
  1109. t3b_pcs_reset(mac);
  1110. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1111. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  1112. }
  1113. lc->link_ok = link_ok;
  1114. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1115. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1116. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  1117. /* Set MAC speed, duplex, and flow control to match PHY. */
  1118. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  1119. lc->fc = fc;
  1120. }
  1121. t3_os_link_changed(adapter, port_id, link_ok && !pi->link_fault,
  1122. speed, duplex, fc);
  1123. }
  1124. void t3_link_fault(struct adapter *adapter, int port_id)
  1125. {
  1126. struct port_info *pi = adap2pinfo(adapter, port_id);
  1127. struct cmac *mac = &pi->mac;
  1128. struct cphy *phy = &pi->phy;
  1129. struct link_config *lc = &pi->link_config;
  1130. int link_ok, speed, duplex, fc, link_fault;
  1131. u32 rx_cfg, rx_hash_high, rx_hash_low;
  1132. t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
  1133. if (adapter->params.rev > 0 && uses_xaui(adapter))
  1134. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
  1135. t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
  1136. t3_mac_enable(mac, MAC_DIRECTION_RX);
  1137. t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
  1138. link_fault = t3_read_reg(adapter,
  1139. A_XGM_INT_STATUS + mac->offset);
  1140. link_fault &= F_LINKFAULTCHANGE;
  1141. link_ok = lc->link_ok;
  1142. speed = lc->speed;
  1143. duplex = lc->duplex;
  1144. fc = lc->fc;
  1145. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1146. if (link_fault) {
  1147. lc->link_ok = 0;
  1148. lc->speed = SPEED_INVALID;
  1149. lc->duplex = DUPLEX_INVALID;
  1150. t3_os_link_fault(adapter, port_id, 0);
  1151. /* Account link faults only when the phy reports a link up */
  1152. if (link_ok)
  1153. mac->stats.link_faults++;
  1154. } else {
  1155. if (link_ok)
  1156. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1157. F_TXACTENABLE | F_RXEN);
  1158. pi->link_fault = 0;
  1159. lc->link_ok = (unsigned char)link_ok;
  1160. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1161. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1162. t3_os_link_fault(adapter, port_id, link_ok);
  1163. }
  1164. }
  1165. /**
  1166. * t3_link_start - apply link configuration to MAC/PHY
  1167. * @phy: the PHY to setup
  1168. * @mac: the MAC to setup
  1169. * @lc: the requested link configuration
  1170. *
  1171. * Set up a port's MAC and PHY according to a desired link configuration.
  1172. * - If the PHY can auto-negotiate first decide what to advertise, then
  1173. * enable/disable auto-negotiation as desired, and reset.
  1174. * - If the PHY does not auto-negotiate just reset it.
  1175. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1176. * otherwise do it later based on the outcome of auto-negotiation.
  1177. */
  1178. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  1179. {
  1180. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1181. lc->link_ok = 0;
  1182. if (lc->supported & SUPPORTED_Autoneg) {
  1183. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  1184. if (fc) {
  1185. lc->advertising |= ADVERTISED_Asym_Pause;
  1186. if (fc & PAUSE_RX)
  1187. lc->advertising |= ADVERTISED_Pause;
  1188. }
  1189. phy->ops->advertise(phy, lc->advertising);
  1190. if (lc->autoneg == AUTONEG_DISABLE) {
  1191. lc->speed = lc->requested_speed;
  1192. lc->duplex = lc->requested_duplex;
  1193. lc->fc = (unsigned char)fc;
  1194. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  1195. fc);
  1196. /* Also disables autoneg */
  1197. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  1198. } else
  1199. phy->ops->autoneg_enable(phy);
  1200. } else {
  1201. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  1202. lc->fc = (unsigned char)fc;
  1203. phy->ops->reset(phy, 0);
  1204. }
  1205. return 0;
  1206. }
  1207. /**
  1208. * t3_set_vlan_accel - control HW VLAN extraction
  1209. * @adapter: the adapter
  1210. * @ports: bitmap of adapter ports to operate on
  1211. * @on: enable (1) or disable (0) HW VLAN extraction
  1212. *
  1213. * Enables or disables HW extraction of VLAN tags for the given port.
  1214. */
  1215. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  1216. {
  1217. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  1218. ports << S_VLANEXTRACTIONENABLE,
  1219. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  1220. }
  1221. struct intr_info {
  1222. unsigned int mask; /* bits to check in interrupt status */
  1223. const char *msg; /* message to print or NULL */
  1224. short stat_idx; /* stat counter to increment or -1 */
  1225. unsigned short fatal; /* whether the condition reported is fatal */
  1226. };
  1227. /**
  1228. * t3_handle_intr_status - table driven interrupt handler
  1229. * @adapter: the adapter that generated the interrupt
  1230. * @reg: the interrupt status register to process
  1231. * @mask: a mask to apply to the interrupt status
  1232. * @acts: table of interrupt actions
  1233. * @stats: statistics counters tracking interrupt occurences
  1234. *
  1235. * A table driven interrupt handler that applies a set of masks to an
  1236. * interrupt status word and performs the corresponding actions if the
  1237. * interrupts described by the mask have occured. The actions include
  1238. * optionally printing a warning or alert message, and optionally
  1239. * incrementing a stat counter. The table is terminated by an entry
  1240. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1241. */
  1242. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1243. unsigned int mask,
  1244. const struct intr_info *acts,
  1245. unsigned long *stats)
  1246. {
  1247. int fatal = 0;
  1248. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1249. for (; acts->mask; ++acts) {
  1250. if (!(status & acts->mask))
  1251. continue;
  1252. if (acts->fatal) {
  1253. fatal++;
  1254. CH_ALERT(adapter, "%s (0x%x)\n",
  1255. acts->msg, status & acts->mask);
  1256. } else if (acts->msg)
  1257. CH_WARN(adapter, "%s (0x%x)\n",
  1258. acts->msg, status & acts->mask);
  1259. if (acts->stat_idx >= 0)
  1260. stats[acts->stat_idx]++;
  1261. }
  1262. if (status) /* clear processed interrupts */
  1263. t3_write_reg(adapter, reg, status);
  1264. return fatal;
  1265. }
  1266. #define SGE_INTR_MASK (F_RSPQDISABLED | \
  1267. F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
  1268. F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
  1269. F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
  1270. V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
  1271. F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
  1272. F_HIRCQPARITYERROR | F_LOPRIORITYDBFULL | \
  1273. F_HIPRIORITYDBFULL | F_LOPRIORITYDBEMPTY | \
  1274. F_HIPRIORITYDBEMPTY | F_HIPIODRBDROPERR | \
  1275. F_LOPIODRBDROPERR)
  1276. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1277. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1278. F_NFASRCHFAIL)
  1279. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1280. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1281. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1282. F_TXFIFO_UNDERRUN)
  1283. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1284. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1285. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1286. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1287. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1288. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1289. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1290. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1291. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1292. F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
  1293. F_TXPARERR | V_BISTERR(M_BISTERR))
  1294. #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
  1295. F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
  1296. F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
  1297. #define ULPTX_INTR_MASK 0xfc
  1298. #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
  1299. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1300. F_ZERO_SWITCH_ERROR)
  1301. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1302. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1303. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1304. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
  1305. F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
  1306. F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
  1307. F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
  1308. F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
  1309. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1310. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1311. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1312. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1313. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1314. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1315. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1316. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1317. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1318. V_MCAPARERRENB(M_MCAPARERRENB))
  1319. #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
  1320. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1321. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1322. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1323. F_MPS0 | F_CPL_SWITCH)
  1324. /*
  1325. * Interrupt handler for the PCIX1 module.
  1326. */
  1327. static void pci_intr_handler(struct adapter *adapter)
  1328. {
  1329. static const struct intr_info pcix1_intr_info[] = {
  1330. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1331. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1332. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1333. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1334. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1335. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1336. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1337. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1338. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1339. 1},
  1340. {F_DETCORECCERR, "PCI correctable ECC error",
  1341. STAT_PCI_CORR_ECC, 0},
  1342. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1343. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1344. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1345. 1},
  1346. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1347. 1},
  1348. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1349. 1},
  1350. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1351. "error", -1, 1},
  1352. {0}
  1353. };
  1354. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1355. pcix1_intr_info, adapter->irq_stats))
  1356. t3_fatal_err(adapter);
  1357. }
  1358. /*
  1359. * Interrupt handler for the PCIE module.
  1360. */
  1361. static void pcie_intr_handler(struct adapter *adapter)
  1362. {
  1363. static const struct intr_info pcie_intr_info[] = {
  1364. {F_PEXERR, "PCI PEX error", -1, 1},
  1365. {F_UNXSPLCPLERRR,
  1366. "PCI unexpected split completion DMA read error", -1, 1},
  1367. {F_UNXSPLCPLERRC,
  1368. "PCI unexpected split completion DMA command error", -1, 1},
  1369. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1370. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1371. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1372. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1373. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1374. "PCI MSI-X table/PBA parity error", -1, 1},
  1375. {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
  1376. {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
  1377. {F_RXPARERR, "PCI Rx parity error", -1, 1},
  1378. {F_TXPARERR, "PCI Tx parity error", -1, 1},
  1379. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1380. {0}
  1381. };
  1382. if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
  1383. CH_ALERT(adapter, "PEX error code 0x%x\n",
  1384. t3_read_reg(adapter, A_PCIE_PEX_ERR));
  1385. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1386. pcie_intr_info, adapter->irq_stats))
  1387. t3_fatal_err(adapter);
  1388. }
  1389. /*
  1390. * TP interrupt handler.
  1391. */
  1392. static void tp_intr_handler(struct adapter *adapter)
  1393. {
  1394. static const struct intr_info tp_intr_info[] = {
  1395. {0xffffff, "TP parity error", -1, 1},
  1396. {0x1000000, "TP out of Rx pages", -1, 1},
  1397. {0x2000000, "TP out of Tx pages", -1, 1},
  1398. {0}
  1399. };
  1400. static struct intr_info tp_intr_info_t3c[] = {
  1401. {0x1fffffff, "TP parity error", -1, 1},
  1402. {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
  1403. {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
  1404. {0}
  1405. };
  1406. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1407. adapter->params.rev < T3_REV_C ?
  1408. tp_intr_info : tp_intr_info_t3c, NULL))
  1409. t3_fatal_err(adapter);
  1410. }
  1411. /*
  1412. * CIM interrupt handler.
  1413. */
  1414. static void cim_intr_handler(struct adapter *adapter)
  1415. {
  1416. static const struct intr_info cim_intr_info[] = {
  1417. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1418. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1419. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1420. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1421. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1422. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1423. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1424. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1425. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1426. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1427. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1428. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1429. {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
  1430. {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
  1431. {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
  1432. {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
  1433. {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
  1434. {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
  1435. {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
  1436. {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
  1437. {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
  1438. {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
  1439. {F_ITAGPARERR, "CIM itag parity error", -1, 1},
  1440. {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
  1441. {0}
  1442. };
  1443. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1444. cim_intr_info, NULL))
  1445. t3_fatal_err(adapter);
  1446. }
  1447. /*
  1448. * ULP RX interrupt handler.
  1449. */
  1450. static void ulprx_intr_handler(struct adapter *adapter)
  1451. {
  1452. static const struct intr_info ulprx_intr_info[] = {
  1453. {F_PARERRDATA, "ULP RX data parity error", -1, 1},
  1454. {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
  1455. {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
  1456. {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
  1457. {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
  1458. {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
  1459. {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
  1460. {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
  1461. {0}
  1462. };
  1463. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1464. ulprx_intr_info, NULL))
  1465. t3_fatal_err(adapter);
  1466. }
  1467. /*
  1468. * ULP TX interrupt handler.
  1469. */
  1470. static void ulptx_intr_handler(struct adapter *adapter)
  1471. {
  1472. static const struct intr_info ulptx_intr_info[] = {
  1473. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1474. STAT_ULP_CH0_PBL_OOB, 0},
  1475. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1476. STAT_ULP_CH1_PBL_OOB, 0},
  1477. {0xfc, "ULP TX parity error", -1, 1},
  1478. {0}
  1479. };
  1480. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1481. ulptx_intr_info, adapter->irq_stats))
  1482. t3_fatal_err(adapter);
  1483. }
  1484. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1485. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1486. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1487. F_ICSPI1_TX_FRAMING_ERROR)
  1488. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1489. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1490. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1491. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1492. /*
  1493. * PM TX interrupt handler.
  1494. */
  1495. static void pmtx_intr_handler(struct adapter *adapter)
  1496. {
  1497. static const struct intr_info pmtx_intr_info[] = {
  1498. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1499. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1500. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1501. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1502. "PMTX ispi parity error", -1, 1},
  1503. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1504. "PMTX ospi parity error", -1, 1},
  1505. {0}
  1506. };
  1507. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1508. pmtx_intr_info, NULL))
  1509. t3_fatal_err(adapter);
  1510. }
  1511. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1512. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1513. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1514. F_IESPI1_TX_FRAMING_ERROR)
  1515. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1516. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1517. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1518. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1519. /*
  1520. * PM RX interrupt handler.
  1521. */
  1522. static void pmrx_intr_handler(struct adapter *adapter)
  1523. {
  1524. static const struct intr_info pmrx_intr_info[] = {
  1525. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1526. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1527. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1528. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1529. "PMRX ispi parity error", -1, 1},
  1530. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1531. "PMRX ospi parity error", -1, 1},
  1532. {0}
  1533. };
  1534. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1535. pmrx_intr_info, NULL))
  1536. t3_fatal_err(adapter);
  1537. }
  1538. /*
  1539. * CPL switch interrupt handler.
  1540. */
  1541. static void cplsw_intr_handler(struct adapter *adapter)
  1542. {
  1543. static const struct intr_info cplsw_intr_info[] = {
  1544. {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
  1545. {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
  1546. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1547. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1548. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1549. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1550. {0}
  1551. };
  1552. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1553. cplsw_intr_info, NULL))
  1554. t3_fatal_err(adapter);
  1555. }
  1556. /*
  1557. * MPS interrupt handler.
  1558. */
  1559. static void mps_intr_handler(struct adapter *adapter)
  1560. {
  1561. static const struct intr_info mps_intr_info[] = {
  1562. {0x1ff, "MPS parity error", -1, 1},
  1563. {0}
  1564. };
  1565. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1566. mps_intr_info, NULL))
  1567. t3_fatal_err(adapter);
  1568. }
  1569. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1570. /*
  1571. * MC7 interrupt handler.
  1572. */
  1573. static void mc7_intr_handler(struct mc7 *mc7)
  1574. {
  1575. struct adapter *adapter = mc7->adapter;
  1576. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1577. if (cause & F_CE) {
  1578. mc7->stats.corr_err++;
  1579. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1580. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1581. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1582. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1583. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1584. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1585. }
  1586. if (cause & F_UE) {
  1587. mc7->stats.uncorr_err++;
  1588. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1589. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1590. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1591. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1592. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1593. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1594. }
  1595. if (G_PE(cause)) {
  1596. mc7->stats.parity_err++;
  1597. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1598. mc7->name, G_PE(cause));
  1599. }
  1600. if (cause & F_AE) {
  1601. u32 addr = 0;
  1602. if (adapter->params.rev > 0)
  1603. addr = t3_read_reg(adapter,
  1604. mc7->offset + A_MC7_ERR_ADDR);
  1605. mc7->stats.addr_err++;
  1606. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1607. mc7->name, addr);
  1608. }
  1609. if (cause & MC7_INTR_FATAL)
  1610. t3_fatal_err(adapter);
  1611. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1612. }
  1613. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1614. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1615. /*
  1616. * XGMAC interrupt handler.
  1617. */
  1618. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1619. {
  1620. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1621. /*
  1622. * We mask out interrupt causes for which we're not taking interrupts.
  1623. * This allows us to use polling logic to monitor some of the other
  1624. * conditions when taking interrupts would impose too much load on the
  1625. * system.
  1626. */
  1627. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
  1628. ~F_RXFIFO_OVERFLOW;
  1629. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1630. mac->stats.tx_fifo_parity_err++;
  1631. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1632. }
  1633. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1634. mac->stats.rx_fifo_parity_err++;
  1635. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1636. }
  1637. if (cause & F_TXFIFO_UNDERRUN)
  1638. mac->stats.tx_fifo_urun++;
  1639. if (cause & F_RXFIFO_OVERFLOW)
  1640. mac->stats.rx_fifo_ovfl++;
  1641. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1642. mac->stats.serdes_signal_loss++;
  1643. if (cause & F_XAUIPCSCTCERR)
  1644. mac->stats.xaui_pcs_ctc_err++;
  1645. if (cause & F_XAUIPCSALIGNCHANGE)
  1646. mac->stats.xaui_pcs_align_change++;
  1647. if (cause & F_XGM_INT) {
  1648. t3_set_reg_field(adap,
  1649. A_XGM_INT_ENABLE + mac->offset,
  1650. F_XGM_INT, 0);
  1651. mac->stats.link_faults++;
  1652. t3_os_link_fault_handler(adap, idx);
  1653. }
  1654. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1655. if (cause & XGM_INTR_FATAL)
  1656. t3_fatal_err(adap);
  1657. return cause != 0;
  1658. }
  1659. /*
  1660. * Interrupt handler for PHY events.
  1661. */
  1662. int t3_phy_intr_handler(struct adapter *adapter)
  1663. {
  1664. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1665. for_each_port(adapter, i) {
  1666. struct port_info *p = adap2pinfo(adapter, i);
  1667. if (!(p->phy.caps & SUPPORTED_IRQ))
  1668. continue;
  1669. if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
  1670. int phy_cause = p->phy.ops->intr_handler(&p->phy);
  1671. if (phy_cause & cphy_cause_link_change)
  1672. t3_link_changed(adapter, i);
  1673. if (phy_cause & cphy_cause_fifo_error)
  1674. p->phy.fifo_errors++;
  1675. if (phy_cause & cphy_cause_module_change)
  1676. t3_os_phymod_changed(adapter, i);
  1677. }
  1678. }
  1679. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1680. return 0;
  1681. }
  1682. /*
  1683. * T3 slow path (non-data) interrupt handler.
  1684. */
  1685. int t3_slow_intr_handler(struct adapter *adapter)
  1686. {
  1687. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1688. cause &= adapter->slow_intr_mask;
  1689. if (!cause)
  1690. return 0;
  1691. if (cause & F_PCIM0) {
  1692. if (is_pcie(adapter))
  1693. pcie_intr_handler(adapter);
  1694. else
  1695. pci_intr_handler(adapter);
  1696. }
  1697. if (cause & F_SGE3)
  1698. t3_sge_err_intr_handler(adapter);
  1699. if (cause & F_MC7_PMRX)
  1700. mc7_intr_handler(&adapter->pmrx);
  1701. if (cause & F_MC7_PMTX)
  1702. mc7_intr_handler(&adapter->pmtx);
  1703. if (cause & F_MC7_CM)
  1704. mc7_intr_handler(&adapter->cm);
  1705. if (cause & F_CIM)
  1706. cim_intr_handler(adapter);
  1707. if (cause & F_TP1)
  1708. tp_intr_handler(adapter);
  1709. if (cause & F_ULP2_RX)
  1710. ulprx_intr_handler(adapter);
  1711. if (cause & F_ULP2_TX)
  1712. ulptx_intr_handler(adapter);
  1713. if (cause & F_PM1_RX)
  1714. pmrx_intr_handler(adapter);
  1715. if (cause & F_PM1_TX)
  1716. pmtx_intr_handler(adapter);
  1717. if (cause & F_CPL_SWITCH)
  1718. cplsw_intr_handler(adapter);
  1719. if (cause & F_MPS0)
  1720. mps_intr_handler(adapter);
  1721. if (cause & F_MC5A)
  1722. t3_mc5_intr_handler(&adapter->mc5);
  1723. if (cause & F_XGMAC0_0)
  1724. mac_intr_handler(adapter, 0);
  1725. if (cause & F_XGMAC0_1)
  1726. mac_intr_handler(adapter, 1);
  1727. if (cause & F_T3DBG)
  1728. t3_os_ext_intr_handler(adapter);
  1729. /* Clear the interrupts just processed. */
  1730. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1731. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1732. return 1;
  1733. }
  1734. static unsigned int calc_gpio_intr(struct adapter *adap)
  1735. {
  1736. unsigned int i, gpi_intr = 0;
  1737. for_each_port(adap, i)
  1738. if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
  1739. adapter_info(adap)->gpio_intr[i])
  1740. gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
  1741. return gpi_intr;
  1742. }
  1743. /**
  1744. * t3_intr_enable - enable interrupts
  1745. * @adapter: the adapter whose interrupts should be enabled
  1746. *
  1747. * Enable interrupts by setting the interrupt enable registers of the
  1748. * various HW modules and then enabling the top-level interrupt
  1749. * concentrator.
  1750. */
  1751. void t3_intr_enable(struct adapter *adapter)
  1752. {
  1753. static const struct addr_val_pair intr_en_avp[] = {
  1754. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1755. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1756. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1757. MC7_INTR_MASK},
  1758. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1759. MC7_INTR_MASK},
  1760. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1761. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1762. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1763. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1764. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1765. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1766. };
  1767. adapter->slow_intr_mask = PL_INTR_MASK;
  1768. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1769. t3_write_reg(adapter, A_TP_INT_ENABLE,
  1770. adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
  1771. if (adapter->params.rev > 0) {
  1772. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1773. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1774. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1775. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1776. F_PBL_BOUND_ERR_CH1);
  1777. } else {
  1778. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1779. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1780. }
  1781. t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
  1782. if (is_pcie(adapter))
  1783. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1784. else
  1785. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1786. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1787. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1788. }
  1789. /**
  1790. * t3_intr_disable - disable a card's interrupts
  1791. * @adapter: the adapter whose interrupts should be disabled
  1792. *
  1793. * Disable interrupts. We only disable the top-level interrupt
  1794. * concentrator and the SGE data interrupts.
  1795. */
  1796. void t3_intr_disable(struct adapter *adapter)
  1797. {
  1798. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1799. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1800. adapter->slow_intr_mask = 0;
  1801. }
  1802. /**
  1803. * t3_intr_clear - clear all interrupts
  1804. * @adapter: the adapter whose interrupts should be cleared
  1805. *
  1806. * Clears all interrupts.
  1807. */
  1808. void t3_intr_clear(struct adapter *adapter)
  1809. {
  1810. static const unsigned int cause_reg_addr[] = {
  1811. A_SG_INT_CAUSE,
  1812. A_SG_RSPQ_FL_STATUS,
  1813. A_PCIX_INT_CAUSE,
  1814. A_MC7_INT_CAUSE,
  1815. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1816. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1817. A_CIM_HOST_INT_CAUSE,
  1818. A_TP_INT_CAUSE,
  1819. A_MC5_DB_INT_CAUSE,
  1820. A_ULPRX_INT_CAUSE,
  1821. A_ULPTX_INT_CAUSE,
  1822. A_CPL_INTR_CAUSE,
  1823. A_PM1_TX_INT_CAUSE,
  1824. A_PM1_RX_INT_CAUSE,
  1825. A_MPS_INT_CAUSE,
  1826. A_T3DBG_INT_CAUSE,
  1827. };
  1828. unsigned int i;
  1829. /* Clear PHY and MAC interrupts for each port. */
  1830. for_each_port(adapter, i)
  1831. t3_port_intr_clear(adapter, i);
  1832. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1833. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1834. if (is_pcie(adapter))
  1835. t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
  1836. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1837. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1838. }
  1839. void t3_xgm_intr_enable(struct adapter *adapter, int idx)
  1840. {
  1841. struct port_info *pi = adap2pinfo(adapter, idx);
  1842. t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
  1843. XGM_EXTRA_INTR_MASK);
  1844. }
  1845. void t3_xgm_intr_disable(struct adapter *adapter, int idx)
  1846. {
  1847. struct port_info *pi = adap2pinfo(adapter, idx);
  1848. t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
  1849. 0x7ff);
  1850. }
  1851. /**
  1852. * t3_port_intr_enable - enable port-specific interrupts
  1853. * @adapter: associated adapter
  1854. * @idx: index of port whose interrupts should be enabled
  1855. *
  1856. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1857. * adapter port.
  1858. */
  1859. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1860. {
  1861. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1862. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1863. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1864. phy->ops->intr_enable(phy);
  1865. }
  1866. /**
  1867. * t3_port_intr_disable - disable port-specific interrupts
  1868. * @adapter: associated adapter
  1869. * @idx: index of port whose interrupts should be disabled
  1870. *
  1871. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1872. * adapter port.
  1873. */
  1874. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1875. {
  1876. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1877. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1878. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1879. phy->ops->intr_disable(phy);
  1880. }
  1881. /**
  1882. * t3_port_intr_clear - clear port-specific interrupts
  1883. * @adapter: associated adapter
  1884. * @idx: index of port whose interrupts to clear
  1885. *
  1886. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1887. * adapter port.
  1888. */
  1889. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1890. {
  1891. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1892. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1893. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1894. phy->ops->intr_clear(phy);
  1895. }
  1896. #define SG_CONTEXT_CMD_ATTEMPTS 100
  1897. /**
  1898. * t3_sge_write_context - write an SGE context
  1899. * @adapter: the adapter
  1900. * @id: the context id
  1901. * @type: the context type
  1902. *
  1903. * Program an SGE context with the values already loaded in the
  1904. * CONTEXT_DATA? registers.
  1905. */
  1906. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1907. unsigned int type)
  1908. {
  1909. if (type == F_RESPONSEQ) {
  1910. /*
  1911. * Can't write the Response Queue Context bits for
  1912. * Interrupt Armed or the Reserve bits after the chip
  1913. * has been initialized out of reset. Writing to these
  1914. * bits can confuse the hardware.
  1915. */
  1916. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1917. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1918. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
  1919. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1920. } else {
  1921. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1922. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1923. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1924. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1925. }
  1926. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1927. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1928. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1929. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1930. }
  1931. /**
  1932. * clear_sge_ctxt - completely clear an SGE context
  1933. * @adapter: the adapter
  1934. * @id: the context id
  1935. * @type: the context type
  1936. *
  1937. * Completely clear an SGE context. Used predominantly at post-reset
  1938. * initialization. Note in particular that we don't skip writing to any
  1939. * "sensitive bits" in the contexts the way that t3_sge_write_context()
  1940. * does ...
  1941. */
  1942. static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
  1943. unsigned int type)
  1944. {
  1945. t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
  1946. t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
  1947. t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
  1948. t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
  1949. t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
  1950. t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
  1951. t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
  1952. t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
  1953. t3_write_reg(adap, A_SG_CONTEXT_CMD,
  1954. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1955. return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1956. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1957. }
  1958. /**
  1959. * t3_sge_init_ecntxt - initialize an SGE egress context
  1960. * @adapter: the adapter to configure
  1961. * @id: the context id
  1962. * @gts_enable: whether to enable GTS for the context
  1963. * @type: the egress context type
  1964. * @respq: associated response queue
  1965. * @base_addr: base address of queue
  1966. * @size: number of queue entries
  1967. * @token: uP token
  1968. * @gen: initial generation value for the context
  1969. * @cidx: consumer pointer
  1970. *
  1971. * Initialize an SGE egress context and make it ready for use. If the
  1972. * platform allows concurrent context operations, the caller is
  1973. * responsible for appropriate locking.
  1974. */
  1975. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1976. enum sge_context_type type, int respq, u64 base_addr,
  1977. unsigned int size, unsigned int token, int gen,
  1978. unsigned int cidx)
  1979. {
  1980. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1981. if (base_addr & 0xfff) /* must be 4K aligned */
  1982. return -EINVAL;
  1983. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1984. return -EBUSY;
  1985. base_addr >>= 12;
  1986. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1987. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1988. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1989. V_EC_BASE_LO(base_addr & 0xffff));
  1990. base_addr >>= 16;
  1991. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1992. base_addr >>= 32;
  1993. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1994. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1995. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1996. F_EC_VALID);
  1997. return t3_sge_write_context(adapter, id, F_EGRESS);
  1998. }
  1999. /**
  2000. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  2001. * @adapter: the adapter to configure
  2002. * @id: the context id
  2003. * @gts_enable: whether to enable GTS for the context
  2004. * @base_addr: base address of queue
  2005. * @size: number of queue entries
  2006. * @bsize: size of each buffer for this queue
  2007. * @cong_thres: threshold to signal congestion to upstream producers
  2008. * @gen: initial generation value for the context
  2009. * @cidx: consumer pointer
  2010. *
  2011. * Initialize an SGE free list context and make it ready for use. The
  2012. * caller is responsible for ensuring only one context operation occurs
  2013. * at a time.
  2014. */
  2015. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  2016. int gts_enable, u64 base_addr, unsigned int size,
  2017. unsigned int bsize, unsigned int cong_thres, int gen,
  2018. unsigned int cidx)
  2019. {
  2020. if (base_addr & 0xfff) /* must be 4K aligned */
  2021. return -EINVAL;
  2022. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2023. return -EBUSY;
  2024. base_addr >>= 12;
  2025. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  2026. base_addr >>= 32;
  2027. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  2028. V_FL_BASE_HI((u32) base_addr) |
  2029. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  2030. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  2031. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  2032. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  2033. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  2034. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  2035. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  2036. return t3_sge_write_context(adapter, id, F_FREELIST);
  2037. }
  2038. /**
  2039. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  2040. * @adapter: the adapter to configure
  2041. * @id: the context id
  2042. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  2043. * @base_addr: base address of queue
  2044. * @size: number of queue entries
  2045. * @fl_thres: threshold for selecting the normal or jumbo free list
  2046. * @gen: initial generation value for the context
  2047. * @cidx: consumer pointer
  2048. *
  2049. * Initialize an SGE response queue context and make it ready for use.
  2050. * The caller is responsible for ensuring only one context operation
  2051. * occurs at a time.
  2052. */
  2053. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  2054. int irq_vec_idx, u64 base_addr, unsigned int size,
  2055. unsigned int fl_thres, int gen, unsigned int cidx)
  2056. {
  2057. unsigned int intr = 0;
  2058. if (base_addr & 0xfff) /* must be 4K aligned */
  2059. return -EINVAL;
  2060. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2061. return -EBUSY;
  2062. base_addr >>= 12;
  2063. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  2064. V_CQ_INDEX(cidx));
  2065. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  2066. base_addr >>= 32;
  2067. if (irq_vec_idx >= 0)
  2068. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  2069. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  2070. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  2071. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  2072. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  2073. }
  2074. /**
  2075. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  2076. * @adapter: the adapter to configure
  2077. * @id: the context id
  2078. * @base_addr: base address of queue
  2079. * @size: number of queue entries
  2080. * @rspq: response queue for async notifications
  2081. * @ovfl_mode: CQ overflow mode
  2082. * @credits: completion queue credits
  2083. * @credit_thres: the credit threshold
  2084. *
  2085. * Initialize an SGE completion queue context and make it ready for use.
  2086. * The caller is responsible for ensuring only one context operation
  2087. * occurs at a time.
  2088. */
  2089. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  2090. unsigned int size, int rspq, int ovfl_mode,
  2091. unsigned int credits, unsigned int credit_thres)
  2092. {
  2093. if (base_addr & 0xfff) /* must be 4K aligned */
  2094. return -EINVAL;
  2095. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2096. return -EBUSY;
  2097. base_addr >>= 12;
  2098. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  2099. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  2100. base_addr >>= 32;
  2101. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  2102. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  2103. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
  2104. V_CQ_ERR(ovfl_mode));
  2105. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  2106. V_CQ_CREDIT_THRES(credit_thres));
  2107. return t3_sge_write_context(adapter, id, F_CQ);
  2108. }
  2109. /**
  2110. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  2111. * @adapter: the adapter
  2112. * @id: the egress context id
  2113. * @enable: enable (1) or disable (0) the context
  2114. *
  2115. * Enable or disable an SGE egress context. The caller is responsible for
  2116. * ensuring only one context operation occurs at a time.
  2117. */
  2118. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  2119. {
  2120. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2121. return -EBUSY;
  2122. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  2123. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2124. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2125. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  2126. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  2127. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2128. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  2129. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2130. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2131. }
  2132. /**
  2133. * t3_sge_disable_fl - disable an SGE free-buffer list
  2134. * @adapter: the adapter
  2135. * @id: the free list context id
  2136. *
  2137. * Disable an SGE free-buffer list. The caller is responsible for
  2138. * ensuring only one context operation occurs at a time.
  2139. */
  2140. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  2141. {
  2142. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2143. return -EBUSY;
  2144. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  2145. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2146. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  2147. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2148. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  2149. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2150. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  2151. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2152. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2153. }
  2154. /**
  2155. * t3_sge_disable_rspcntxt - disable an SGE response queue
  2156. * @adapter: the adapter
  2157. * @id: the response queue context id
  2158. *
  2159. * Disable an SGE response queue. The caller is responsible for
  2160. * ensuring only one context operation occurs at a time.
  2161. */
  2162. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  2163. {
  2164. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2165. return -EBUSY;
  2166. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2167. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2168. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2169. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2170. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2171. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2172. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  2173. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2174. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2175. }
  2176. /**
  2177. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  2178. * @adapter: the adapter
  2179. * @id: the completion queue context id
  2180. *
  2181. * Disable an SGE completion queue. The caller is responsible for
  2182. * ensuring only one context operation occurs at a time.
  2183. */
  2184. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  2185. {
  2186. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2187. return -EBUSY;
  2188. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2189. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2190. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2191. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2192. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2193. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2194. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  2195. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2196. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2197. }
  2198. /**
  2199. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  2200. * @adapter: the adapter
  2201. * @id: the context id
  2202. * @op: the operation to perform
  2203. *
  2204. * Perform the selected operation on an SGE completion queue context.
  2205. * The caller is responsible for ensuring only one context operation
  2206. * occurs at a time.
  2207. */
  2208. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  2209. unsigned int credits)
  2210. {
  2211. u32 val;
  2212. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2213. return -EBUSY;
  2214. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  2215. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  2216. V_CONTEXT(id) | F_CQ);
  2217. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2218. 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
  2219. return -EIO;
  2220. if (op >= 2 && op < 7) {
  2221. if (adapter->params.rev > 0)
  2222. return G_CQ_INDEX(val);
  2223. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2224. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  2225. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  2226. F_CONTEXT_CMD_BUSY, 0,
  2227. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2228. return -EIO;
  2229. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  2230. }
  2231. return 0;
  2232. }
  2233. /**
  2234. * t3_sge_read_context - read an SGE context
  2235. * @type: the context type
  2236. * @adapter: the adapter
  2237. * @id: the context id
  2238. * @data: holds the retrieved context
  2239. *
  2240. * Read an SGE egress context. The caller is responsible for ensuring
  2241. * only one context operation occurs at a time.
  2242. */
  2243. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  2244. unsigned int id, u32 data[4])
  2245. {
  2246. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2247. return -EBUSY;
  2248. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2249. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  2250. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  2251. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2252. return -EIO;
  2253. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  2254. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  2255. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  2256. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  2257. return 0;
  2258. }
  2259. /**
  2260. * t3_sge_read_ecntxt - read an SGE egress context
  2261. * @adapter: the adapter
  2262. * @id: the context id
  2263. * @data: holds the retrieved context
  2264. *
  2265. * Read an SGE egress context. The caller is responsible for ensuring
  2266. * only one context operation occurs at a time.
  2267. */
  2268. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  2269. {
  2270. if (id >= 65536)
  2271. return -EINVAL;
  2272. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  2273. }
  2274. /**
  2275. * t3_sge_read_cq - read an SGE CQ context
  2276. * @adapter: the adapter
  2277. * @id: the context id
  2278. * @data: holds the retrieved context
  2279. *
  2280. * Read an SGE CQ context. The caller is responsible for ensuring
  2281. * only one context operation occurs at a time.
  2282. */
  2283. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  2284. {
  2285. if (id >= 65536)
  2286. return -EINVAL;
  2287. return t3_sge_read_context(F_CQ, adapter, id, data);
  2288. }
  2289. /**
  2290. * t3_sge_read_fl - read an SGE free-list context
  2291. * @adapter: the adapter
  2292. * @id: the context id
  2293. * @data: holds the retrieved context
  2294. *
  2295. * Read an SGE free-list context. The caller is responsible for ensuring
  2296. * only one context operation occurs at a time.
  2297. */
  2298. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  2299. {
  2300. if (id >= SGE_QSETS * 2)
  2301. return -EINVAL;
  2302. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  2303. }
  2304. /**
  2305. * t3_sge_read_rspq - read an SGE response queue context
  2306. * @adapter: the adapter
  2307. * @id: the context id
  2308. * @data: holds the retrieved context
  2309. *
  2310. * Read an SGE response queue context. The caller is responsible for
  2311. * ensuring only one context operation occurs at a time.
  2312. */
  2313. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  2314. {
  2315. if (id >= SGE_QSETS)
  2316. return -EINVAL;
  2317. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  2318. }
  2319. /**
  2320. * t3_config_rss - configure Rx packet steering
  2321. * @adapter: the adapter
  2322. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  2323. * @cpus: values for the CPU lookup table (0xff terminated)
  2324. * @rspq: values for the response queue lookup table (0xffff terminated)
  2325. *
  2326. * Programs the receive packet steering logic. @cpus and @rspq provide
  2327. * the values for the CPU and response queue lookup tables. If they
  2328. * provide fewer values than the size of the tables the supplied values
  2329. * are used repeatedly until the tables are fully populated.
  2330. */
  2331. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  2332. const u8 * cpus, const u16 *rspq)
  2333. {
  2334. int i, j, cpu_idx = 0, q_idx = 0;
  2335. if (cpus)
  2336. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2337. u32 val = i << 16;
  2338. for (j = 0; j < 2; ++j) {
  2339. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  2340. if (cpus[cpu_idx] == 0xff)
  2341. cpu_idx = 0;
  2342. }
  2343. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  2344. }
  2345. if (rspq)
  2346. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2347. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2348. (i << 16) | rspq[q_idx++]);
  2349. if (rspq[q_idx] == 0xffff)
  2350. q_idx = 0;
  2351. }
  2352. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  2353. }
  2354. /**
  2355. * t3_read_rss - read the contents of the RSS tables
  2356. * @adapter: the adapter
  2357. * @lkup: holds the contents of the RSS lookup table
  2358. * @map: holds the contents of the RSS map table
  2359. *
  2360. * Reads the contents of the receive packet steering tables.
  2361. */
  2362. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  2363. {
  2364. int i;
  2365. u32 val;
  2366. if (lkup)
  2367. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2368. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  2369. 0xffff0000 | i);
  2370. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  2371. if (!(val & 0x80000000))
  2372. return -EAGAIN;
  2373. *lkup++ = val;
  2374. *lkup++ = (val >> 8);
  2375. }
  2376. if (map)
  2377. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2378. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2379. 0xffff0000 | i);
  2380. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  2381. if (!(val & 0x80000000))
  2382. return -EAGAIN;
  2383. *map++ = val;
  2384. }
  2385. return 0;
  2386. }
  2387. /**
  2388. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2389. * @adap: the adapter
  2390. * @enable: 1 to select offload mode, 0 for regular NIC
  2391. *
  2392. * Switches TP to NIC/offload mode.
  2393. */
  2394. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2395. {
  2396. if (is_offload(adap) || !enable)
  2397. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2398. V_NICMODE(!enable));
  2399. }
  2400. /**
  2401. * pm_num_pages - calculate the number of pages of the payload memory
  2402. * @mem_size: the size of the payload memory
  2403. * @pg_size: the size of each payload memory page
  2404. *
  2405. * Calculate the number of pages, each of the given size, that fit in a
  2406. * memory of the specified size, respecting the HW requirement that the
  2407. * number of pages must be a multiple of 24.
  2408. */
  2409. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2410. unsigned int pg_size)
  2411. {
  2412. unsigned int n = mem_size / pg_size;
  2413. return n - n % 24;
  2414. }
  2415. #define mem_region(adap, start, size, reg) \
  2416. t3_write_reg((adap), A_ ## reg, (start)); \
  2417. start += size
  2418. /**
  2419. * partition_mem - partition memory and configure TP memory settings
  2420. * @adap: the adapter
  2421. * @p: the TP parameters
  2422. *
  2423. * Partitions context and payload memory and configures TP's memory
  2424. * registers.
  2425. */
  2426. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2427. {
  2428. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2429. unsigned int timers = 0, timers_shift = 22;
  2430. if (adap->params.rev > 0) {
  2431. if (tids <= 16 * 1024) {
  2432. timers = 1;
  2433. timers_shift = 16;
  2434. } else if (tids <= 64 * 1024) {
  2435. timers = 2;
  2436. timers_shift = 18;
  2437. } else if (tids <= 256 * 1024) {
  2438. timers = 3;
  2439. timers_shift = 20;
  2440. }
  2441. }
  2442. t3_write_reg(adap, A_TP_PMM_SIZE,
  2443. p->chan_rx_size | (p->chan_tx_size >> 16));
  2444. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2445. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2446. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2447. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2448. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2449. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2450. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2451. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2452. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2453. /* Add a bit of headroom and make multiple of 24 */
  2454. pstructs += 48;
  2455. pstructs -= pstructs % 24;
  2456. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2457. m = tids * TCB_SIZE;
  2458. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2459. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2460. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2461. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2462. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2463. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2464. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2465. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2466. m = (m + 4095) & ~0xfff;
  2467. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2468. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2469. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2470. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2471. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2472. if (tids < m)
  2473. adap->params.mc5.nservers += m - tids;
  2474. }
  2475. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2476. u32 val)
  2477. {
  2478. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2479. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2480. }
  2481. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2482. {
  2483. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2484. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2485. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2486. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2487. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2488. V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
  2489. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2490. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2491. V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
  2492. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2493. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
  2494. F_IPV6ENABLE | F_NICMODE);
  2495. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2496. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2497. t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
  2498. adap->params.rev > 0 ? F_ENABLEESND :
  2499. F_T3A_ENABLEESND);
  2500. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2501. F_ENABLEEPCMDAFULL,
  2502. F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
  2503. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2504. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
  2505. F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
  2506. F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
  2507. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
  2508. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
  2509. if (adap->params.rev > 0) {
  2510. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2511. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2512. F_TXPACEAUTO);
  2513. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2514. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2515. } else
  2516. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2517. if (adap->params.rev == T3_REV_C)
  2518. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2519. V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
  2520. V_TABLELATENCYDELTA(4));
  2521. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
  2522. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
  2523. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
  2524. t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
  2525. }
  2526. /* Desired TP timer resolution in usec */
  2527. #define TP_TMR_RES 50
  2528. /* TCP timer values in ms */
  2529. #define TP_DACK_TIMER 50
  2530. #define TP_RTO_MIN 250
  2531. /**
  2532. * tp_set_timers - set TP timing parameters
  2533. * @adap: the adapter to set
  2534. * @core_clk: the core clock frequency in Hz
  2535. *
  2536. * Set TP's timing parameters, such as the various timer resolutions and
  2537. * the TCP timer values.
  2538. */
  2539. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2540. {
  2541. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2542. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2543. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2544. unsigned int tps = core_clk >> tre;
  2545. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2546. V_DELAYEDACKRESOLUTION(dack_re) |
  2547. V_TIMESTAMPRESOLUTION(tstamp_re));
  2548. t3_write_reg(adap, A_TP_DACK_TIMER,
  2549. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2550. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2551. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2552. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2553. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2554. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2555. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2556. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2557. V_KEEPALIVEMAX(9));
  2558. #define SECONDS * tps
  2559. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2560. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2561. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2562. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2563. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2564. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2565. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2566. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2567. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2568. #undef SECONDS
  2569. }
  2570. /**
  2571. * t3_tp_set_coalescing_size - set receive coalescing size
  2572. * @adap: the adapter
  2573. * @size: the receive coalescing size
  2574. * @psh: whether a set PSH bit should deliver coalesced data
  2575. *
  2576. * Set the receive coalescing size and PSH bit handling.
  2577. */
  2578. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2579. {
  2580. u32 val;
  2581. if (size > MAX_RX_COALESCING_LEN)
  2582. return -EINVAL;
  2583. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2584. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2585. if (size) {
  2586. val |= F_RXCOALESCEENABLE;
  2587. if (psh)
  2588. val |= F_RXCOALESCEPSHEN;
  2589. size = min(MAX_RX_COALESCING_LEN, size);
  2590. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2591. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2592. }
  2593. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2594. return 0;
  2595. }
  2596. /**
  2597. * t3_tp_set_max_rxsize - set the max receive size
  2598. * @adap: the adapter
  2599. * @size: the max receive size
  2600. *
  2601. * Set TP's max receive size. This is the limit that applies when
  2602. * receive coalescing is disabled.
  2603. */
  2604. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2605. {
  2606. t3_write_reg(adap, A_TP_PARA_REG7,
  2607. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2608. }
  2609. static void init_mtus(unsigned short mtus[])
  2610. {
  2611. /*
  2612. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2613. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2614. * are enabled and still have at least 8 bytes of payload.
  2615. */
  2616. mtus[0] = 88;
  2617. mtus[1] = 88;
  2618. mtus[2] = 256;
  2619. mtus[3] = 512;
  2620. mtus[4] = 576;
  2621. mtus[5] = 1024;
  2622. mtus[6] = 1280;
  2623. mtus[7] = 1492;
  2624. mtus[8] = 1500;
  2625. mtus[9] = 2002;
  2626. mtus[10] = 2048;
  2627. mtus[11] = 4096;
  2628. mtus[12] = 4352;
  2629. mtus[13] = 8192;
  2630. mtus[14] = 9000;
  2631. mtus[15] = 9600;
  2632. }
  2633. /*
  2634. * Initial congestion control parameters.
  2635. */
  2636. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  2637. {
  2638. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2639. a[9] = 2;
  2640. a[10] = 3;
  2641. a[11] = 4;
  2642. a[12] = 5;
  2643. a[13] = 6;
  2644. a[14] = 7;
  2645. a[15] = 8;
  2646. a[16] = 9;
  2647. a[17] = 10;
  2648. a[18] = 14;
  2649. a[19] = 17;
  2650. a[20] = 21;
  2651. a[21] = 25;
  2652. a[22] = 30;
  2653. a[23] = 35;
  2654. a[24] = 45;
  2655. a[25] = 60;
  2656. a[26] = 80;
  2657. a[27] = 100;
  2658. a[28] = 200;
  2659. a[29] = 300;
  2660. a[30] = 400;
  2661. a[31] = 500;
  2662. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2663. b[9] = b[10] = 1;
  2664. b[11] = b[12] = 2;
  2665. b[13] = b[14] = b[15] = b[16] = 3;
  2666. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2667. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2668. b[28] = b[29] = 6;
  2669. b[30] = b[31] = 7;
  2670. }
  2671. /* The minimum additive increment value for the congestion control table */
  2672. #define CC_MIN_INCR 2U
  2673. /**
  2674. * t3_load_mtus - write the MTU and congestion control HW tables
  2675. * @adap: the adapter
  2676. * @mtus: the unrestricted values for the MTU table
  2677. * @alphs: the values for the congestion control alpha parameter
  2678. * @beta: the values for the congestion control beta parameter
  2679. * @mtu_cap: the maximum permitted effective MTU
  2680. *
  2681. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2682. * Update the high-speed congestion control table with the supplied alpha,
  2683. * beta, and MTUs.
  2684. */
  2685. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2686. unsigned short alpha[NCCTRL_WIN],
  2687. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2688. {
  2689. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2690. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2691. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2692. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2693. };
  2694. unsigned int i, w;
  2695. for (i = 0; i < NMTUS; ++i) {
  2696. unsigned int mtu = min(mtus[i], mtu_cap);
  2697. unsigned int log2 = fls(mtu);
  2698. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2699. log2--;
  2700. t3_write_reg(adap, A_TP_MTU_TABLE,
  2701. (i << 24) | (log2 << 16) | mtu);
  2702. for (w = 0; w < NCCTRL_WIN; ++w) {
  2703. unsigned int inc;
  2704. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2705. CC_MIN_INCR);
  2706. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2707. (w << 16) | (beta[w] << 13) | inc);
  2708. }
  2709. }
  2710. }
  2711. /**
  2712. * t3_read_hw_mtus - returns the values in the HW MTU table
  2713. * @adap: the adapter
  2714. * @mtus: where to store the HW MTU values
  2715. *
  2716. * Reads the HW MTU table.
  2717. */
  2718. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2719. {
  2720. int i;
  2721. for (i = 0; i < NMTUS; ++i) {
  2722. unsigned int val;
  2723. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2724. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2725. mtus[i] = val & 0x3fff;
  2726. }
  2727. }
  2728. /**
  2729. * t3_get_cong_cntl_tab - reads the congestion control table
  2730. * @adap: the adapter
  2731. * @incr: where to store the alpha values
  2732. *
  2733. * Reads the additive increments programmed into the HW congestion
  2734. * control table.
  2735. */
  2736. void t3_get_cong_cntl_tab(struct adapter *adap,
  2737. unsigned short incr[NMTUS][NCCTRL_WIN])
  2738. {
  2739. unsigned int mtu, w;
  2740. for (mtu = 0; mtu < NMTUS; ++mtu)
  2741. for (w = 0; w < NCCTRL_WIN; ++w) {
  2742. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2743. 0xffff0000 | (mtu << 5) | w);
  2744. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2745. 0x1fff;
  2746. }
  2747. }
  2748. /**
  2749. * t3_tp_get_mib_stats - read TP's MIB counters
  2750. * @adap: the adapter
  2751. * @tps: holds the returned counter values
  2752. *
  2753. * Returns the values of TP's MIB counters.
  2754. */
  2755. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2756. {
  2757. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2758. sizeof(*tps) / sizeof(u32), 0);
  2759. }
  2760. #define ulp_region(adap, name, start, len) \
  2761. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2762. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2763. (start) + (len) - 1); \
  2764. start += len
  2765. #define ulptx_region(adap, name, start, len) \
  2766. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2767. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2768. (start) + (len) - 1)
  2769. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2770. {
  2771. unsigned int m = p->chan_rx_size;
  2772. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2773. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2774. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2775. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2776. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2777. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2778. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2779. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2780. }
  2781. /**
  2782. * t3_set_proto_sram - set the contents of the protocol sram
  2783. * @adapter: the adapter
  2784. * @data: the protocol image
  2785. *
  2786. * Write the contents of the protocol SRAM.
  2787. */
  2788. int t3_set_proto_sram(struct adapter *adap, const u8 *data)
  2789. {
  2790. int i;
  2791. const __be32 *buf = (const __be32 *)data;
  2792. for (i = 0; i < PROTO_SRAM_LINES; i++) {
  2793. t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
  2794. t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
  2795. t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
  2796. t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
  2797. t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
  2798. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
  2799. if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
  2800. return -EIO;
  2801. }
  2802. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
  2803. return 0;
  2804. }
  2805. void t3_config_trace_filter(struct adapter *adapter,
  2806. const struct trace_params *tp, int filter_index,
  2807. int invert, int enable)
  2808. {
  2809. u32 addr, key[4], mask[4];
  2810. key[0] = tp->sport | (tp->sip << 16);
  2811. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2812. key[2] = tp->dip;
  2813. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2814. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2815. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2816. mask[2] = tp->dip_mask;
  2817. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2818. if (invert)
  2819. key[3] |= (1 << 29);
  2820. if (enable)
  2821. key[3] |= (1 << 28);
  2822. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2823. tp_wr_indirect(adapter, addr++, key[0]);
  2824. tp_wr_indirect(adapter, addr++, mask[0]);
  2825. tp_wr_indirect(adapter, addr++, key[1]);
  2826. tp_wr_indirect(adapter, addr++, mask[1]);
  2827. tp_wr_indirect(adapter, addr++, key[2]);
  2828. tp_wr_indirect(adapter, addr++, mask[2]);
  2829. tp_wr_indirect(adapter, addr++, key[3]);
  2830. tp_wr_indirect(adapter, addr, mask[3]);
  2831. t3_read_reg(adapter, A_TP_PIO_DATA);
  2832. }
  2833. /**
  2834. * t3_config_sched - configure a HW traffic scheduler
  2835. * @adap: the adapter
  2836. * @kbps: target rate in Kbps
  2837. * @sched: the scheduler index
  2838. *
  2839. * Configure a HW scheduler for the target rate
  2840. */
  2841. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2842. {
  2843. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2844. unsigned int clk = adap->params.vpd.cclk * 1000;
  2845. unsigned int selected_cpt = 0, selected_bpt = 0;
  2846. if (kbps > 0) {
  2847. kbps *= 125; /* -> bytes */
  2848. for (cpt = 1; cpt <= 255; cpt++) {
  2849. tps = clk / cpt;
  2850. bpt = (kbps + tps / 2) / tps;
  2851. if (bpt > 0 && bpt <= 255) {
  2852. v = bpt * tps;
  2853. delta = v >= kbps ? v - kbps : kbps - v;
  2854. if (delta <= mindelta) {
  2855. mindelta = delta;
  2856. selected_cpt = cpt;
  2857. selected_bpt = bpt;
  2858. }
  2859. } else if (selected_cpt)
  2860. break;
  2861. }
  2862. if (!selected_cpt)
  2863. return -EINVAL;
  2864. }
  2865. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2866. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2867. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2868. if (sched & 1)
  2869. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2870. else
  2871. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2872. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2873. return 0;
  2874. }
  2875. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2876. {
  2877. int busy = 0;
  2878. tp_config(adap, p);
  2879. t3_set_vlan_accel(adap, 3, 0);
  2880. if (is_offload(adap)) {
  2881. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2882. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2883. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2884. 0, 1000, 5);
  2885. if (busy)
  2886. CH_ERR(adap, "TP initialization timed out\n");
  2887. }
  2888. if (!busy)
  2889. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2890. return busy;
  2891. }
  2892. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2893. {
  2894. if (port_mask & ~((1 << adap->params.nports) - 1))
  2895. return -EINVAL;
  2896. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2897. port_mask << S_PORT0ACTIVE);
  2898. return 0;
  2899. }
  2900. /*
  2901. * Perform the bits of HW initialization that are dependent on the Tx
  2902. * channels being used.
  2903. */
  2904. static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
  2905. {
  2906. int i;
  2907. if (chan_map != 3) { /* one channel */
  2908. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2909. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2910. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
  2911. (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
  2912. F_TPTXPORT1EN | F_PORT1ACTIVE));
  2913. t3_write_reg(adap, A_PM1_TX_CFG,
  2914. chan_map == 1 ? 0xffffffff : 0);
  2915. } else { /* two channels */
  2916. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2917. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2918. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2919. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2920. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2921. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2922. F_ENFORCEPKT);
  2923. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2924. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2925. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2926. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2927. for (i = 0; i < 16; i++)
  2928. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2929. (i << 16) | 0x1010);
  2930. }
  2931. }
  2932. static int calibrate_xgm(struct adapter *adapter)
  2933. {
  2934. if (uses_xaui(adapter)) {
  2935. unsigned int v, i;
  2936. for (i = 0; i < 5; ++i) {
  2937. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2938. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2939. msleep(1);
  2940. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2941. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2942. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2943. V_XAUIIMP(G_CALIMP(v) >> 2));
  2944. return 0;
  2945. }
  2946. }
  2947. CH_ERR(adapter, "MAC calibration failed\n");
  2948. return -1;
  2949. } else {
  2950. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2951. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2952. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2953. F_XGM_IMPSETUPDATE);
  2954. }
  2955. return 0;
  2956. }
  2957. static void calibrate_xgm_t3b(struct adapter *adapter)
  2958. {
  2959. if (!uses_xaui(adapter)) {
  2960. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2961. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2962. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2963. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2964. F_XGM_IMPSETUPDATE);
  2965. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2966. 0);
  2967. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2968. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2969. }
  2970. }
  2971. struct mc7_timing_params {
  2972. unsigned char ActToPreDly;
  2973. unsigned char ActToRdWrDly;
  2974. unsigned char PreCyc;
  2975. unsigned char RefCyc[5];
  2976. unsigned char BkCyc;
  2977. unsigned char WrToRdDly;
  2978. unsigned char RdToWrDly;
  2979. };
  2980. /*
  2981. * Write a value to a register and check that the write completed. These
  2982. * writes normally complete in a cycle or two, so one read should suffice.
  2983. * The very first read exists to flush the posted write to the device.
  2984. */
  2985. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2986. {
  2987. t3_write_reg(adapter, addr, val);
  2988. t3_read_reg(adapter, addr); /* flush */
  2989. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2990. return 0;
  2991. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2992. return -EIO;
  2993. }
  2994. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2995. {
  2996. static const unsigned int mc7_mode[] = {
  2997. 0x632, 0x642, 0x652, 0x432, 0x442
  2998. };
  2999. static const struct mc7_timing_params mc7_timings[] = {
  3000. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  3001. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  3002. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  3003. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  3004. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  3005. };
  3006. u32 val;
  3007. unsigned int width, density, slow, attempts;
  3008. struct adapter *adapter = mc7->adapter;
  3009. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  3010. if (!mc7->size)
  3011. return 0;
  3012. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3013. slow = val & F_SLOW;
  3014. width = G_WIDTH(val);
  3015. density = G_DEN(val);
  3016. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  3017. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  3018. msleep(1);
  3019. if (!slow) {
  3020. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  3021. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  3022. msleep(1);
  3023. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  3024. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  3025. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  3026. mc7->name);
  3027. goto out_fail;
  3028. }
  3029. }
  3030. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  3031. V_ACTTOPREDLY(p->ActToPreDly) |
  3032. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  3033. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  3034. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  3035. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  3036. val | F_CLKEN | F_TERM150);
  3037. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  3038. if (!slow)
  3039. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  3040. F_DLLENB);
  3041. udelay(1);
  3042. val = slow ? 3 : 6;
  3043. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  3044. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  3045. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  3046. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  3047. goto out_fail;
  3048. if (!slow) {
  3049. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  3050. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  3051. udelay(5);
  3052. }
  3053. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  3054. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  3055. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  3056. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  3057. mc7_mode[mem_type]) ||
  3058. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  3059. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  3060. goto out_fail;
  3061. /* clock value is in KHz */
  3062. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  3063. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  3064. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  3065. F_PERREFEN | V_PREREFDIV(mc7_clock));
  3066. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  3067. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  3068. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  3069. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  3070. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  3071. (mc7->size << width) - 1);
  3072. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  3073. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  3074. attempts = 50;
  3075. do {
  3076. msleep(250);
  3077. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  3078. } while ((val & F_BUSY) && --attempts);
  3079. if (val & F_BUSY) {
  3080. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  3081. goto out_fail;
  3082. }
  3083. /* Enable normal memory accesses. */
  3084. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  3085. return 0;
  3086. out_fail:
  3087. return -1;
  3088. }
  3089. static void config_pcie(struct adapter *adap)
  3090. {
  3091. static const u16 ack_lat[4][6] = {
  3092. {237, 416, 559, 1071, 2095, 4143},
  3093. {128, 217, 289, 545, 1057, 2081},
  3094. {73, 118, 154, 282, 538, 1050},
  3095. {67, 107, 86, 150, 278, 534}
  3096. };
  3097. static const u16 rpl_tmr[4][6] = {
  3098. {711, 1248, 1677, 3213, 6285, 12429},
  3099. {384, 651, 867, 1635, 3171, 6243},
  3100. {219, 354, 462, 846, 1614, 3150},
  3101. {201, 321, 258, 450, 834, 1602}
  3102. };
  3103. u16 val, devid;
  3104. unsigned int log2_width, pldsize;
  3105. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  3106. pci_read_config_word(adap->pdev,
  3107. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  3108. &val);
  3109. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  3110. pci_read_config_word(adap->pdev, 0x2, &devid);
  3111. if (devid == 0x37) {
  3112. pci_write_config_word(adap->pdev,
  3113. adap->params.pci.pcie_cap_addr +
  3114. PCI_EXP_DEVCTL,
  3115. val & ~PCI_EXP_DEVCTL_READRQ &
  3116. ~PCI_EXP_DEVCTL_PAYLOAD);
  3117. pldsize = 0;
  3118. }
  3119. pci_read_config_word(adap->pdev,
  3120. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  3121. &val);
  3122. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  3123. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  3124. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  3125. log2_width = fls(adap->params.pci.width) - 1;
  3126. acklat = ack_lat[log2_width][pldsize];
  3127. if (val & 1) /* check LOsEnable */
  3128. acklat += fst_trn_tx * 4;
  3129. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  3130. if (adap->params.rev == 0)
  3131. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  3132. V_T3A_ACKLAT(M_T3A_ACKLAT),
  3133. V_T3A_ACKLAT(acklat));
  3134. else
  3135. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  3136. V_ACKLAT(acklat));
  3137. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  3138. V_REPLAYLMT(rpllmt));
  3139. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  3140. t3_set_reg_field(adap, A_PCIE_CFG, 0,
  3141. F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
  3142. F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
  3143. }
  3144. /*
  3145. * Initialize and configure T3 HW modules. This performs the
  3146. * initialization steps that need to be done once after a card is reset.
  3147. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  3148. *
  3149. * fw_params are passed to FW and their value is platform dependent. Only the
  3150. * top 8 bits are available for use, the rest must be 0.
  3151. */
  3152. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  3153. {
  3154. int err = -EIO, attempts, i;
  3155. const struct vpd_params *vpd = &adapter->params.vpd;
  3156. if (adapter->params.rev > 0)
  3157. calibrate_xgm_t3b(adapter);
  3158. else if (calibrate_xgm(adapter))
  3159. goto out_err;
  3160. if (vpd->mclk) {
  3161. partition_mem(adapter, &adapter->params.tp);
  3162. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  3163. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  3164. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  3165. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  3166. adapter->params.mc5.nfilters,
  3167. adapter->params.mc5.nroutes))
  3168. goto out_err;
  3169. for (i = 0; i < 32; i++)
  3170. if (clear_sge_ctxt(adapter, i, F_CQ))
  3171. goto out_err;
  3172. }
  3173. if (tp_init(adapter, &adapter->params.tp))
  3174. goto out_err;
  3175. t3_tp_set_coalescing_size(adapter,
  3176. min(adapter->params.sge.max_pkt_size,
  3177. MAX_RX_COALESCING_LEN), 1);
  3178. t3_tp_set_max_rxsize(adapter,
  3179. min(adapter->params.sge.max_pkt_size, 16384U));
  3180. ulp_config(adapter, &adapter->params.tp);
  3181. if (is_pcie(adapter))
  3182. config_pcie(adapter);
  3183. else
  3184. t3_set_reg_field(adapter, A_PCIX_CFG, 0,
  3185. F_DMASTOPEN | F_CLIDECEN);
  3186. if (adapter->params.rev == T3_REV_C)
  3187. t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
  3188. F_CFG_CQE_SOP_MASK);
  3189. t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
  3190. t3_write_reg(adapter, A_PM1_RX_MODE, 0);
  3191. t3_write_reg(adapter, A_PM1_TX_MODE, 0);
  3192. chan_init_hw(adapter, adapter->params.chan_map);
  3193. t3_sge_init(adapter, &adapter->params.sge);
  3194. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
  3195. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  3196. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  3197. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  3198. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  3199. attempts = 100;
  3200. do { /* wait for uP to initialize */
  3201. msleep(20);
  3202. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  3203. if (!attempts) {
  3204. CH_ERR(adapter, "uP initialization timed out\n");
  3205. goto out_err;
  3206. }
  3207. err = 0;
  3208. out_err:
  3209. return err;
  3210. }
  3211. /**
  3212. * get_pci_mode - determine a card's PCI mode
  3213. * @adapter: the adapter
  3214. * @p: where to store the PCI settings
  3215. *
  3216. * Determines a card's PCI mode and associated parameters, such as speed
  3217. * and width.
  3218. */
  3219. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3220. {
  3221. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  3222. u32 pci_mode, pcie_cap;
  3223. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  3224. if (pcie_cap) {
  3225. u16 val;
  3226. p->variant = PCI_VARIANT_PCIE;
  3227. p->pcie_cap_addr = pcie_cap;
  3228. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  3229. &val);
  3230. p->width = (val >> 4) & 0x3f;
  3231. return;
  3232. }
  3233. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  3234. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  3235. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  3236. pci_mode = G_PCIXINITPAT(pci_mode);
  3237. if (pci_mode == 0)
  3238. p->variant = PCI_VARIANT_PCI;
  3239. else if (pci_mode < 4)
  3240. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  3241. else if (pci_mode < 8)
  3242. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  3243. else
  3244. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  3245. }
  3246. /**
  3247. * init_link_config - initialize a link's SW state
  3248. * @lc: structure holding the link state
  3249. * @ai: information about the current card
  3250. *
  3251. * Initializes the SW state maintained for each link, including the link's
  3252. * capabilities and default speed/duplex/flow-control/autonegotiation
  3253. * settings.
  3254. */
  3255. static void init_link_config(struct link_config *lc, unsigned int caps)
  3256. {
  3257. lc->supported = caps;
  3258. lc->requested_speed = lc->speed = SPEED_INVALID;
  3259. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  3260. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3261. if (lc->supported & SUPPORTED_Autoneg) {
  3262. lc->advertising = lc->supported;
  3263. lc->autoneg = AUTONEG_ENABLE;
  3264. lc->requested_fc |= PAUSE_AUTONEG;
  3265. } else {
  3266. lc->advertising = 0;
  3267. lc->autoneg = AUTONEG_DISABLE;
  3268. }
  3269. }
  3270. /**
  3271. * mc7_calc_size - calculate MC7 memory size
  3272. * @cfg: the MC7 configuration
  3273. *
  3274. * Calculates the size of an MC7 memory in bytes from the value of its
  3275. * configuration register.
  3276. */
  3277. static unsigned int mc7_calc_size(u32 cfg)
  3278. {
  3279. unsigned int width = G_WIDTH(cfg);
  3280. unsigned int banks = !!(cfg & F_BKS) + 1;
  3281. unsigned int org = !!(cfg & F_ORG) + 1;
  3282. unsigned int density = G_DEN(cfg);
  3283. unsigned int MBs = ((256 << density) * banks) / (org << width);
  3284. return MBs << 20;
  3285. }
  3286. static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  3287. unsigned int base_addr, const char *name)
  3288. {
  3289. u32 cfg;
  3290. mc7->adapter = adapter;
  3291. mc7->name = name;
  3292. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  3293. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3294. mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
  3295. mc7->width = G_WIDTH(cfg);
  3296. }
  3297. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  3298. {
  3299. u16 devid;
  3300. mac->adapter = adapter;
  3301. pci_read_config_word(adapter->pdev, 0x2, &devid);
  3302. if (devid == 0x37 && !adapter->params.vpd.xauicfg[1])
  3303. index = 0;
  3304. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  3305. mac->nucast = 1;
  3306. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  3307. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  3308. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  3309. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  3310. F_ENRGMII, 0);
  3311. }
  3312. }
  3313. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  3314. {
  3315. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  3316. mi1_init(adapter, ai);
  3317. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  3318. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  3319. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  3320. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  3321. t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
  3322. t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
  3323. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  3324. val |= F_ENRGMII;
  3325. /* Enable MAC clocks so we can access the registers */
  3326. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3327. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3328. val |= F_CLKDIVRESET_;
  3329. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3330. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3331. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  3332. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3333. }
  3334. /*
  3335. * Reset the adapter.
  3336. * Older PCIe cards lose their config space during reset, PCI-X
  3337. * ones don't.
  3338. */
  3339. int t3_reset_adapter(struct adapter *adapter)
  3340. {
  3341. int i, save_and_restore_pcie =
  3342. adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
  3343. uint16_t devid = 0;
  3344. if (save_and_restore_pcie)
  3345. pci_save_state(adapter->pdev);
  3346. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  3347. /*
  3348. * Delay. Give Some time to device to reset fully.
  3349. * XXX The delay time should be modified.
  3350. */
  3351. for (i = 0; i < 10; i++) {
  3352. msleep(50);
  3353. pci_read_config_word(adapter->pdev, 0x00, &devid);
  3354. if (devid == 0x1425)
  3355. break;
  3356. }
  3357. if (devid != 0x1425)
  3358. return -1;
  3359. if (save_and_restore_pcie)
  3360. pci_restore_state(adapter->pdev);
  3361. return 0;
  3362. }
  3363. static int init_parity(struct adapter *adap)
  3364. {
  3365. int i, err, addr;
  3366. if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  3367. return -EBUSY;
  3368. for (err = i = 0; !err && i < 16; i++)
  3369. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3370. for (i = 0xfff0; !err && i <= 0xffff; i++)
  3371. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3372. for (i = 0; !err && i < SGE_QSETS; i++)
  3373. err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
  3374. if (err)
  3375. return err;
  3376. t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
  3377. for (i = 0; i < 4; i++)
  3378. for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
  3379. t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
  3380. F_IBQDBGWR | V_IBQDBGQID(i) |
  3381. V_IBQDBGADDR(addr));
  3382. err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
  3383. F_IBQDBGBUSY, 0, 2, 1);
  3384. if (err)
  3385. return err;
  3386. }
  3387. return 0;
  3388. }
  3389. /*
  3390. * Initialize adapter SW state for the various HW modules, set initial values
  3391. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  3392. * interface.
  3393. */
  3394. int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
  3395. int reset)
  3396. {
  3397. int ret;
  3398. unsigned int i, j = -1;
  3399. get_pci_mode(adapter, &adapter->params.pci);
  3400. adapter->params.info = ai;
  3401. adapter->params.nports = ai->nports0 + ai->nports1;
  3402. adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1);
  3403. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  3404. /*
  3405. * We used to only run the "adapter check task" once a second if
  3406. * we had PHYs which didn't support interrupts (we would check
  3407. * their link status once a second). Now we check other conditions
  3408. * in that routine which could potentially impose a very high
  3409. * interrupt load on the system. As such, we now always scan the
  3410. * adapter state once a second ...
  3411. */
  3412. adapter->params.linkpoll_period = 10;
  3413. adapter->params.stats_update_period = is_10G(adapter) ?
  3414. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  3415. adapter->params.pci.vpd_cap_addr =
  3416. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  3417. ret = get_vpd_params(adapter, &adapter->params.vpd);
  3418. if (ret < 0)
  3419. return ret;
  3420. if (reset && t3_reset_adapter(adapter))
  3421. return -1;
  3422. t3_sge_prep(adapter, &adapter->params.sge);
  3423. if (adapter->params.vpd.mclk) {
  3424. struct tp_params *p = &adapter->params.tp;
  3425. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  3426. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  3427. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  3428. p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
  3429. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  3430. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  3431. p->cm_size = t3_mc7_size(&adapter->cm);
  3432. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  3433. p->chan_tx_size = p->pmtx_size / p->nchan;
  3434. p->rx_pg_size = 64 * 1024;
  3435. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  3436. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  3437. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  3438. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  3439. adapter->params.rev > 0 ? 12 : 6;
  3440. }
  3441. adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
  3442. t3_mc7_size(&adapter->pmtx) &&
  3443. t3_mc7_size(&adapter->cm);
  3444. if (is_offload(adapter)) {
  3445. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  3446. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  3447. DEFAULT_NFILTERS : 0;
  3448. adapter->params.mc5.nroutes = 0;
  3449. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  3450. init_mtus(adapter->params.mtus);
  3451. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3452. }
  3453. early_hw_init(adapter, ai);
  3454. ret = init_parity(adapter);
  3455. if (ret)
  3456. return ret;
  3457. for_each_port(adapter, i) {
  3458. u8 hw_addr[6];
  3459. const struct port_type_info *pti;
  3460. struct port_info *p = adap2pinfo(adapter, i);
  3461. while (!adapter->params.vpd.port_type[++j])
  3462. ;
  3463. pti = &port_types[adapter->params.vpd.port_type[j]];
  3464. if (!pti->phy_prep) {
  3465. CH_ALERT(adapter, "Invalid port type index %d\n",
  3466. adapter->params.vpd.port_type[j]);
  3467. return -EINVAL;
  3468. }
  3469. p->phy.mdio.dev = adapter->port[i];
  3470. ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3471. ai->mdio_ops);
  3472. if (ret)
  3473. return ret;
  3474. mac_prep(&p->mac, adapter, j);
  3475. /*
  3476. * The VPD EEPROM stores the base Ethernet address for the
  3477. * card. A port's address is derived from the base by adding
  3478. * the port's index to the base's low octet.
  3479. */
  3480. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  3481. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  3482. memcpy(adapter->port[i]->dev_addr, hw_addr,
  3483. ETH_ALEN);
  3484. memcpy(adapter->port[i]->perm_addr, hw_addr,
  3485. ETH_ALEN);
  3486. init_link_config(&p->link_config, p->phy.caps);
  3487. p->phy.ops->power_down(&p->phy, 1);
  3488. /*
  3489. * If the PHY doesn't support interrupts for link status
  3490. * changes, schedule a scan of the adapter links at least
  3491. * once a second.
  3492. */
  3493. if (!(p->phy.caps & SUPPORTED_IRQ) &&
  3494. adapter->params.linkpoll_period > 10)
  3495. adapter->params.linkpoll_period = 10;
  3496. }
  3497. return 0;
  3498. }
  3499. void t3_led_ready(struct adapter *adapter)
  3500. {
  3501. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3502. F_GPIO0_OUT_VAL);
  3503. }
  3504. int t3_replay_prep_adapter(struct adapter *adapter)
  3505. {
  3506. const struct adapter_info *ai = adapter->params.info;
  3507. unsigned int i, j = -1;
  3508. int ret;
  3509. early_hw_init(adapter, ai);
  3510. ret = init_parity(adapter);
  3511. if (ret)
  3512. return ret;
  3513. for_each_port(adapter, i) {
  3514. const struct port_type_info *pti;
  3515. struct port_info *p = adap2pinfo(adapter, i);
  3516. while (!adapter->params.vpd.port_type[++j])
  3517. ;
  3518. pti = &port_types[adapter->params.vpd.port_type[j]];
  3519. ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL);
  3520. if (ret)
  3521. return ret;
  3522. p->phy.ops->power_down(&p->phy, 1);
  3523. }
  3524. return 0;
  3525. }