ixp4xx_eth.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298
  1. /*
  2. * Intel IXP4xx Ethernet driver for Linux
  3. *
  4. * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation.
  9. *
  10. * Ethernet port config (0x00 is not present on IXP42X):
  11. *
  12. * logical port 0x00 0x10 0x20
  13. * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
  14. * physical PortId 2 0 1
  15. * TX queue 23 24 25
  16. * RX-free queue 26 27 28
  17. * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
  18. *
  19. *
  20. * Queue entries:
  21. * bits 0 -> 1 - NPE ID (RX and TX-done)
  22. * bits 0 -> 2 - priority (TX, per 802.1D)
  23. * bits 3 -> 4 - port ID (user-set?)
  24. * bits 5 -> 31 - physical descriptor address
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/dmapool.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/io.h>
  31. #include <linux/kernel.h>
  32. #include <linux/phy.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/slab.h>
  35. #include <mach/npe.h>
  36. #include <mach/qmgr.h>
  37. #define DEBUG_DESC 0
  38. #define DEBUG_RX 0
  39. #define DEBUG_TX 0
  40. #define DEBUG_PKT_BYTES 0
  41. #define DEBUG_MDIO 0
  42. #define DEBUG_CLOSE 0
  43. #define DRV_NAME "ixp4xx_eth"
  44. #define MAX_NPES 3
  45. #define RX_DESCS 64 /* also length of all RX queues */
  46. #define TX_DESCS 16 /* also length of all TX queues */
  47. #define TXDONE_QUEUE_LEN 64 /* dwords */
  48. #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
  49. #define REGS_SIZE 0x1000
  50. #define MAX_MRU 1536 /* 0x600 */
  51. #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
  52. #define NAPI_WEIGHT 16
  53. #define MDIO_INTERVAL (3 * HZ)
  54. #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
  55. #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
  56. #define NPE_ID(port_id) ((port_id) >> 4)
  57. #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
  58. #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
  59. #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
  60. #define TXDONE_QUEUE 31
  61. /* TX Control Registers */
  62. #define TX_CNTRL0_TX_EN 0x01
  63. #define TX_CNTRL0_HALFDUPLEX 0x02
  64. #define TX_CNTRL0_RETRY 0x04
  65. #define TX_CNTRL0_PAD_EN 0x08
  66. #define TX_CNTRL0_APPEND_FCS 0x10
  67. #define TX_CNTRL0_2DEFER 0x20
  68. #define TX_CNTRL0_RMII 0x40 /* reduced MII */
  69. #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
  70. /* RX Control Registers */
  71. #define RX_CNTRL0_RX_EN 0x01
  72. #define RX_CNTRL0_PADSTRIP_EN 0x02
  73. #define RX_CNTRL0_SEND_FCS 0x04
  74. #define RX_CNTRL0_PAUSE_EN 0x08
  75. #define RX_CNTRL0_LOOP_EN 0x10
  76. #define RX_CNTRL0_ADDR_FLTR_EN 0x20
  77. #define RX_CNTRL0_RX_RUNT_EN 0x40
  78. #define RX_CNTRL0_BCAST_DIS 0x80
  79. #define RX_CNTRL1_DEFER_EN 0x01
  80. /* Core Control Register */
  81. #define CORE_RESET 0x01
  82. #define CORE_RX_FIFO_FLUSH 0x02
  83. #define CORE_TX_FIFO_FLUSH 0x04
  84. #define CORE_SEND_JAM 0x08
  85. #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
  86. #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
  87. TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
  88. TX_CNTRL0_2DEFER)
  89. #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
  90. #define DEFAULT_CORE_CNTRL CORE_MDC_EN
  91. /* NPE message codes */
  92. #define NPE_GETSTATUS 0x00
  93. #define NPE_EDB_SETPORTADDRESS 0x01
  94. #define NPE_EDB_GETMACADDRESSDATABASE 0x02
  95. #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
  96. #define NPE_GETSTATS 0x04
  97. #define NPE_RESETSTATS 0x05
  98. #define NPE_SETMAXFRAMELENGTHS 0x06
  99. #define NPE_VLAN_SETRXTAGMODE 0x07
  100. #define NPE_VLAN_SETDEFAULTRXVID 0x08
  101. #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
  102. #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
  103. #define NPE_VLAN_SETRXQOSENTRY 0x0B
  104. #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
  105. #define NPE_STP_SETBLOCKINGSTATE 0x0D
  106. #define NPE_FW_SETFIREWALLMODE 0x0E
  107. #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
  108. #define NPE_PC_SETAPMACTABLE 0x11
  109. #define NPE_SETLOOPBACK_MODE 0x12
  110. #define NPE_PC_SETBSSIDTABLE 0x13
  111. #define NPE_ADDRESS_FILTER_CONFIG 0x14
  112. #define NPE_APPENDFCSCONFIG 0x15
  113. #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
  114. #define NPE_MAC_RECOVERY_START 0x17
  115. #ifdef __ARMEB__
  116. typedef struct sk_buff buffer_t;
  117. #define free_buffer dev_kfree_skb
  118. #define free_buffer_irq dev_kfree_skb_irq
  119. #else
  120. typedef void buffer_t;
  121. #define free_buffer kfree
  122. #define free_buffer_irq kfree
  123. #endif
  124. struct eth_regs {
  125. u32 tx_control[2], __res1[2]; /* 000 */
  126. u32 rx_control[2], __res2[2]; /* 010 */
  127. u32 random_seed, __res3[3]; /* 020 */
  128. u32 partial_empty_threshold, __res4; /* 030 */
  129. u32 partial_full_threshold, __res5; /* 038 */
  130. u32 tx_start_bytes, __res6[3]; /* 040 */
  131. u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
  132. u32 tx_2part_deferral[2], __res8[2]; /* 060 */
  133. u32 slot_time, __res9[3]; /* 070 */
  134. u32 mdio_command[4]; /* 080 */
  135. u32 mdio_status[4]; /* 090 */
  136. u32 mcast_mask[6], __res10[2]; /* 0A0 */
  137. u32 mcast_addr[6], __res11[2]; /* 0C0 */
  138. u32 int_clock_threshold, __res12[3]; /* 0E0 */
  139. u32 hw_addr[6], __res13[61]; /* 0F0 */
  140. u32 core_control; /* 1FC */
  141. };
  142. struct port {
  143. struct resource *mem_res;
  144. struct eth_regs __iomem *regs;
  145. struct npe *npe;
  146. struct net_device *netdev;
  147. struct napi_struct napi;
  148. struct phy_device *phydev;
  149. struct eth_plat_info *plat;
  150. buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
  151. struct desc *desc_tab; /* coherent */
  152. u32 desc_tab_phys;
  153. int id; /* logical port ID */
  154. int speed, duplex;
  155. u8 firmware[4];
  156. };
  157. /* NPE message structure */
  158. struct msg {
  159. #ifdef __ARMEB__
  160. u8 cmd, eth_id, byte2, byte3;
  161. u8 byte4, byte5, byte6, byte7;
  162. #else
  163. u8 byte3, byte2, eth_id, cmd;
  164. u8 byte7, byte6, byte5, byte4;
  165. #endif
  166. };
  167. /* Ethernet packet descriptor */
  168. struct desc {
  169. u32 next; /* pointer to next buffer, unused */
  170. #ifdef __ARMEB__
  171. u16 buf_len; /* buffer length */
  172. u16 pkt_len; /* packet length */
  173. u32 data; /* pointer to data buffer in RAM */
  174. u8 dest_id;
  175. u8 src_id;
  176. u16 flags;
  177. u8 qos;
  178. u8 padlen;
  179. u16 vlan_tci;
  180. #else
  181. u16 pkt_len; /* packet length */
  182. u16 buf_len; /* buffer length */
  183. u32 data; /* pointer to data buffer in RAM */
  184. u16 flags;
  185. u8 src_id;
  186. u8 dest_id;
  187. u16 vlan_tci;
  188. u8 padlen;
  189. u8 qos;
  190. #endif
  191. #ifdef __ARMEB__
  192. u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
  193. u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
  194. u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
  195. #else
  196. u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
  197. u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
  198. u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
  199. #endif
  200. };
  201. #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
  202. (n) * sizeof(struct desc))
  203. #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
  204. #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
  205. ((n) + RX_DESCS) * sizeof(struct desc))
  206. #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
  207. #ifndef __ARMEB__
  208. static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
  209. {
  210. int i;
  211. for (i = 0; i < cnt; i++)
  212. dest[i] = swab32(src[i]);
  213. }
  214. #endif
  215. static spinlock_t mdio_lock;
  216. static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
  217. struct mii_bus *mdio_bus;
  218. static int ports_open;
  219. static struct port *npe_port_tab[MAX_NPES];
  220. static struct dma_pool *dma_pool;
  221. static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
  222. int write, u16 cmd)
  223. {
  224. int cycles = 0;
  225. if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
  226. printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
  227. return -1;
  228. }
  229. if (write) {
  230. __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
  231. __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
  232. }
  233. __raw_writel(((phy_id << 5) | location) & 0xFF,
  234. &mdio_regs->mdio_command[2]);
  235. __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
  236. &mdio_regs->mdio_command[3]);
  237. while ((cycles < MAX_MDIO_RETRIES) &&
  238. (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
  239. udelay(1);
  240. cycles++;
  241. }
  242. if (cycles == MAX_MDIO_RETRIES) {
  243. printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
  244. phy_id);
  245. return -1;
  246. }
  247. #if DEBUG_MDIO
  248. printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
  249. phy_id, write ? "write" : "read", cycles);
  250. #endif
  251. if (write)
  252. return 0;
  253. if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
  254. #if DEBUG_MDIO
  255. printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
  256. phy_id);
  257. #endif
  258. return 0xFFFF; /* don't return error */
  259. }
  260. return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
  261. ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
  262. }
  263. static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
  264. {
  265. unsigned long flags;
  266. int ret;
  267. spin_lock_irqsave(&mdio_lock, flags);
  268. ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
  269. spin_unlock_irqrestore(&mdio_lock, flags);
  270. #if DEBUG_MDIO
  271. printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
  272. phy_id, location, ret);
  273. #endif
  274. return ret;
  275. }
  276. static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
  277. u16 val)
  278. {
  279. unsigned long flags;
  280. int ret;
  281. spin_lock_irqsave(&mdio_lock, flags);
  282. ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
  283. spin_unlock_irqrestore(&mdio_lock, flags);
  284. #if DEBUG_MDIO
  285. printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
  286. bus->name, phy_id, location, val, ret);
  287. #endif
  288. return ret;
  289. }
  290. static int ixp4xx_mdio_register(void)
  291. {
  292. int err;
  293. if (!(mdio_bus = mdiobus_alloc()))
  294. return -ENOMEM;
  295. if (cpu_is_ixp43x()) {
  296. /* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
  297. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
  298. return -ENODEV;
  299. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  300. } else {
  301. /* All MII PHY accesses use NPE-B Ethernet registers */
  302. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
  303. return -ENODEV;
  304. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  305. }
  306. __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
  307. spin_lock_init(&mdio_lock);
  308. mdio_bus->name = "IXP4xx MII Bus";
  309. mdio_bus->read = &ixp4xx_mdio_read;
  310. mdio_bus->write = &ixp4xx_mdio_write;
  311. strcpy(mdio_bus->id, "0");
  312. if ((err = mdiobus_register(mdio_bus)))
  313. mdiobus_free(mdio_bus);
  314. return err;
  315. }
  316. static void ixp4xx_mdio_remove(void)
  317. {
  318. mdiobus_unregister(mdio_bus);
  319. mdiobus_free(mdio_bus);
  320. }
  321. static void ixp4xx_adjust_link(struct net_device *dev)
  322. {
  323. struct port *port = netdev_priv(dev);
  324. struct phy_device *phydev = port->phydev;
  325. if (!phydev->link) {
  326. if (port->speed) {
  327. port->speed = 0;
  328. printk(KERN_INFO "%s: link down\n", dev->name);
  329. }
  330. return;
  331. }
  332. if (port->speed == phydev->speed && port->duplex == phydev->duplex)
  333. return;
  334. port->speed = phydev->speed;
  335. port->duplex = phydev->duplex;
  336. if (port->duplex)
  337. __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
  338. &port->regs->tx_control[0]);
  339. else
  340. __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
  341. &port->regs->tx_control[0]);
  342. printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
  343. dev->name, port->speed, port->duplex ? "full" : "half");
  344. }
  345. static inline void debug_pkt(struct net_device *dev, const char *func,
  346. u8 *data, int len)
  347. {
  348. #if DEBUG_PKT_BYTES
  349. int i;
  350. printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
  351. for (i = 0; i < len; i++) {
  352. if (i >= DEBUG_PKT_BYTES)
  353. break;
  354. printk("%s%02X",
  355. ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
  356. data[i]);
  357. }
  358. printk("\n");
  359. #endif
  360. }
  361. static inline void debug_desc(u32 phys, struct desc *desc)
  362. {
  363. #if DEBUG_DESC
  364. printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
  365. " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
  366. phys, desc->next, desc->buf_len, desc->pkt_len,
  367. desc->data, desc->dest_id, desc->src_id, desc->flags,
  368. desc->qos, desc->padlen, desc->vlan_tci,
  369. desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
  370. desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
  371. desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
  372. desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
  373. #endif
  374. }
  375. static inline int queue_get_desc(unsigned int queue, struct port *port,
  376. int is_tx)
  377. {
  378. u32 phys, tab_phys, n_desc;
  379. struct desc *tab;
  380. if (!(phys = qmgr_get_entry(queue)))
  381. return -1;
  382. phys &= ~0x1F; /* mask out non-address bits */
  383. tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
  384. tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
  385. n_desc = (phys - tab_phys) / sizeof(struct desc);
  386. BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
  387. debug_desc(phys, &tab[n_desc]);
  388. BUG_ON(tab[n_desc].next);
  389. return n_desc;
  390. }
  391. static inline void queue_put_desc(unsigned int queue, u32 phys,
  392. struct desc *desc)
  393. {
  394. debug_desc(phys, desc);
  395. BUG_ON(phys & 0x1F);
  396. qmgr_put_entry(queue, phys);
  397. /* Don't check for queue overflow here, we've allocated sufficient
  398. length and queues >= 32 don't support this check anyway. */
  399. }
  400. static inline void dma_unmap_tx(struct port *port, struct desc *desc)
  401. {
  402. #ifdef __ARMEB__
  403. dma_unmap_single(&port->netdev->dev, desc->data,
  404. desc->buf_len, DMA_TO_DEVICE);
  405. #else
  406. dma_unmap_single(&port->netdev->dev, desc->data & ~3,
  407. ALIGN((desc->data & 3) + desc->buf_len, 4),
  408. DMA_TO_DEVICE);
  409. #endif
  410. }
  411. static void eth_rx_irq(void *pdev)
  412. {
  413. struct net_device *dev = pdev;
  414. struct port *port = netdev_priv(dev);
  415. #if DEBUG_RX
  416. printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
  417. #endif
  418. qmgr_disable_irq(port->plat->rxq);
  419. napi_schedule(&port->napi);
  420. }
  421. static int eth_poll(struct napi_struct *napi, int budget)
  422. {
  423. struct port *port = container_of(napi, struct port, napi);
  424. struct net_device *dev = port->netdev;
  425. unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
  426. int received = 0;
  427. #if DEBUG_RX
  428. printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
  429. #endif
  430. while (received < budget) {
  431. struct sk_buff *skb;
  432. struct desc *desc;
  433. int n;
  434. #ifdef __ARMEB__
  435. struct sk_buff *temp;
  436. u32 phys;
  437. #endif
  438. if ((n = queue_get_desc(rxq, port, 0)) < 0) {
  439. #if DEBUG_RX
  440. printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
  441. dev->name);
  442. #endif
  443. napi_complete(napi);
  444. qmgr_enable_irq(rxq);
  445. if (!qmgr_stat_below_low_watermark(rxq) &&
  446. napi_reschedule(napi)) { /* not empty again */
  447. #if DEBUG_RX
  448. printk(KERN_DEBUG "%s: eth_poll"
  449. " napi_reschedule successed\n",
  450. dev->name);
  451. #endif
  452. qmgr_disable_irq(rxq);
  453. continue;
  454. }
  455. #if DEBUG_RX
  456. printk(KERN_DEBUG "%s: eth_poll all done\n",
  457. dev->name);
  458. #endif
  459. return received; /* all work done */
  460. }
  461. desc = rx_desc_ptr(port, n);
  462. #ifdef __ARMEB__
  463. if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
  464. phys = dma_map_single(&dev->dev, skb->data,
  465. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  466. if (dma_mapping_error(&dev->dev, phys)) {
  467. dev_kfree_skb(skb);
  468. skb = NULL;
  469. }
  470. }
  471. #else
  472. skb = netdev_alloc_skb(dev,
  473. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
  474. #endif
  475. if (!skb) {
  476. dev->stats.rx_dropped++;
  477. /* put the desc back on RX-ready queue */
  478. desc->buf_len = MAX_MRU;
  479. desc->pkt_len = 0;
  480. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  481. continue;
  482. }
  483. /* process received frame */
  484. #ifdef __ARMEB__
  485. temp = skb;
  486. skb = port->rx_buff_tab[n];
  487. dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
  488. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  489. #else
  490. dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
  491. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  492. memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
  493. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
  494. #endif
  495. skb_reserve(skb, NET_IP_ALIGN);
  496. skb_put(skb, desc->pkt_len);
  497. debug_pkt(dev, "eth_poll", skb->data, skb->len);
  498. skb->protocol = eth_type_trans(skb, dev);
  499. dev->stats.rx_packets++;
  500. dev->stats.rx_bytes += skb->len;
  501. netif_receive_skb(skb);
  502. /* put the new buffer on RX-free queue */
  503. #ifdef __ARMEB__
  504. port->rx_buff_tab[n] = temp;
  505. desc->data = phys + NET_IP_ALIGN;
  506. #endif
  507. desc->buf_len = MAX_MRU;
  508. desc->pkt_len = 0;
  509. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  510. received++;
  511. }
  512. #if DEBUG_RX
  513. printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
  514. #endif
  515. return received; /* not all work done */
  516. }
  517. static void eth_txdone_irq(void *unused)
  518. {
  519. u32 phys;
  520. #if DEBUG_TX
  521. printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
  522. #endif
  523. while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
  524. u32 npe_id, n_desc;
  525. struct port *port;
  526. struct desc *desc;
  527. int start;
  528. npe_id = phys & 3;
  529. BUG_ON(npe_id >= MAX_NPES);
  530. port = npe_port_tab[npe_id];
  531. BUG_ON(!port);
  532. phys &= ~0x1F; /* mask out non-address bits */
  533. n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
  534. BUG_ON(n_desc >= TX_DESCS);
  535. desc = tx_desc_ptr(port, n_desc);
  536. debug_desc(phys, desc);
  537. if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
  538. port->netdev->stats.tx_packets++;
  539. port->netdev->stats.tx_bytes += desc->pkt_len;
  540. dma_unmap_tx(port, desc);
  541. #if DEBUG_TX
  542. printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
  543. port->netdev->name, port->tx_buff_tab[n_desc]);
  544. #endif
  545. free_buffer_irq(port->tx_buff_tab[n_desc]);
  546. port->tx_buff_tab[n_desc] = NULL;
  547. }
  548. start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
  549. queue_put_desc(port->plat->txreadyq, phys, desc);
  550. if (start) { /* TX-ready queue was empty */
  551. #if DEBUG_TX
  552. printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
  553. port->netdev->name);
  554. #endif
  555. netif_wake_queue(port->netdev);
  556. }
  557. }
  558. }
  559. static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
  560. {
  561. struct port *port = netdev_priv(dev);
  562. unsigned int txreadyq = port->plat->txreadyq;
  563. int len, offset, bytes, n;
  564. void *mem;
  565. u32 phys;
  566. struct desc *desc;
  567. #if DEBUG_TX
  568. printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
  569. #endif
  570. if (unlikely(skb->len > MAX_MRU)) {
  571. dev_kfree_skb(skb);
  572. dev->stats.tx_errors++;
  573. return NETDEV_TX_OK;
  574. }
  575. debug_pkt(dev, "eth_xmit", skb->data, skb->len);
  576. len = skb->len;
  577. #ifdef __ARMEB__
  578. offset = 0; /* no need to keep alignment */
  579. bytes = len;
  580. mem = skb->data;
  581. #else
  582. offset = (int)skb->data & 3; /* keep 32-bit alignment */
  583. bytes = ALIGN(offset + len, 4);
  584. if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
  585. dev_kfree_skb(skb);
  586. dev->stats.tx_dropped++;
  587. return NETDEV_TX_OK;
  588. }
  589. memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
  590. dev_kfree_skb(skb);
  591. #endif
  592. phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
  593. if (dma_mapping_error(&dev->dev, phys)) {
  594. #ifdef __ARMEB__
  595. dev_kfree_skb(skb);
  596. #else
  597. kfree(mem);
  598. #endif
  599. dev->stats.tx_dropped++;
  600. return NETDEV_TX_OK;
  601. }
  602. n = queue_get_desc(txreadyq, port, 1);
  603. BUG_ON(n < 0);
  604. desc = tx_desc_ptr(port, n);
  605. #ifdef __ARMEB__
  606. port->tx_buff_tab[n] = skb;
  607. #else
  608. port->tx_buff_tab[n] = mem;
  609. #endif
  610. desc->data = phys + offset;
  611. desc->buf_len = desc->pkt_len = len;
  612. /* NPE firmware pads short frames with zeros internally */
  613. wmb();
  614. queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
  615. if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
  616. #if DEBUG_TX
  617. printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
  618. #endif
  619. netif_stop_queue(dev);
  620. /* we could miss TX ready interrupt */
  621. /* really empty in fact */
  622. if (!qmgr_stat_below_low_watermark(txreadyq)) {
  623. #if DEBUG_TX
  624. printk(KERN_DEBUG "%s: eth_xmit ready again\n",
  625. dev->name);
  626. #endif
  627. netif_wake_queue(dev);
  628. }
  629. }
  630. #if DEBUG_TX
  631. printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
  632. #endif
  633. return NETDEV_TX_OK;
  634. }
  635. static void eth_set_mcast_list(struct net_device *dev)
  636. {
  637. struct port *port = netdev_priv(dev);
  638. struct netdev_hw_addr *ha;
  639. u8 diffs[ETH_ALEN], *addr;
  640. int i;
  641. static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
  642. if (dev->flags & IFF_ALLMULTI) {
  643. for (i = 0; i < ETH_ALEN; i++) {
  644. __raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
  645. __raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
  646. }
  647. __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
  648. &port->regs->rx_control[0]);
  649. return;
  650. }
  651. if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
  652. __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
  653. &port->regs->rx_control[0]);
  654. return;
  655. }
  656. memset(diffs, 0, ETH_ALEN);
  657. addr = NULL;
  658. netdev_for_each_mc_addr(ha, dev) {
  659. if (!addr)
  660. addr = ha->addr; /* first MAC address */
  661. for (i = 0; i < ETH_ALEN; i++)
  662. diffs[i] |= addr[i] ^ ha->addr[i];
  663. }
  664. for (i = 0; i < ETH_ALEN; i++) {
  665. __raw_writel(addr[i], &port->regs->mcast_addr[i]);
  666. __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
  667. }
  668. __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
  669. &port->regs->rx_control[0]);
  670. }
  671. static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  672. {
  673. struct port *port = netdev_priv(dev);
  674. if (!netif_running(dev))
  675. return -EINVAL;
  676. return phy_mii_ioctl(port->phydev, req, cmd);
  677. }
  678. /* ethtool support */
  679. static void ixp4xx_get_drvinfo(struct net_device *dev,
  680. struct ethtool_drvinfo *info)
  681. {
  682. struct port *port = netdev_priv(dev);
  683. strcpy(info->driver, DRV_NAME);
  684. snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
  685. port->firmware[0], port->firmware[1],
  686. port->firmware[2], port->firmware[3]);
  687. strcpy(info->bus_info, "internal");
  688. }
  689. static int ixp4xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  690. {
  691. struct port *port = netdev_priv(dev);
  692. return phy_ethtool_gset(port->phydev, cmd);
  693. }
  694. static int ixp4xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  695. {
  696. struct port *port = netdev_priv(dev);
  697. return phy_ethtool_sset(port->phydev, cmd);
  698. }
  699. static int ixp4xx_nway_reset(struct net_device *dev)
  700. {
  701. struct port *port = netdev_priv(dev);
  702. return phy_start_aneg(port->phydev);
  703. }
  704. static const struct ethtool_ops ixp4xx_ethtool_ops = {
  705. .get_drvinfo = ixp4xx_get_drvinfo,
  706. .get_settings = ixp4xx_get_settings,
  707. .set_settings = ixp4xx_set_settings,
  708. .nway_reset = ixp4xx_nway_reset,
  709. .get_link = ethtool_op_get_link,
  710. };
  711. static int request_queues(struct port *port)
  712. {
  713. int err;
  714. err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
  715. "%s:RX-free", port->netdev->name);
  716. if (err)
  717. return err;
  718. err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
  719. "%s:RX", port->netdev->name);
  720. if (err)
  721. goto rel_rxfree;
  722. err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
  723. "%s:TX", port->netdev->name);
  724. if (err)
  725. goto rel_rx;
  726. err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
  727. "%s:TX-ready", port->netdev->name);
  728. if (err)
  729. goto rel_tx;
  730. /* TX-done queue handles skbs sent out by the NPEs */
  731. if (!ports_open) {
  732. err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
  733. "%s:TX-done", DRV_NAME);
  734. if (err)
  735. goto rel_txready;
  736. }
  737. return 0;
  738. rel_txready:
  739. qmgr_release_queue(port->plat->txreadyq);
  740. rel_tx:
  741. qmgr_release_queue(TX_QUEUE(port->id));
  742. rel_rx:
  743. qmgr_release_queue(port->plat->rxq);
  744. rel_rxfree:
  745. qmgr_release_queue(RXFREE_QUEUE(port->id));
  746. printk(KERN_DEBUG "%s: unable to request hardware queues\n",
  747. port->netdev->name);
  748. return err;
  749. }
  750. static void release_queues(struct port *port)
  751. {
  752. qmgr_release_queue(RXFREE_QUEUE(port->id));
  753. qmgr_release_queue(port->plat->rxq);
  754. qmgr_release_queue(TX_QUEUE(port->id));
  755. qmgr_release_queue(port->plat->txreadyq);
  756. if (!ports_open)
  757. qmgr_release_queue(TXDONE_QUEUE);
  758. }
  759. static int init_queues(struct port *port)
  760. {
  761. int i;
  762. if (!ports_open)
  763. if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
  764. POOL_ALLOC_SIZE, 32, 0)))
  765. return -ENOMEM;
  766. if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
  767. &port->desc_tab_phys)))
  768. return -ENOMEM;
  769. memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
  770. memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
  771. memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
  772. /* Setup RX buffers */
  773. for (i = 0; i < RX_DESCS; i++) {
  774. struct desc *desc = rx_desc_ptr(port, i);
  775. buffer_t *buff; /* skb or kmalloc()ated memory */
  776. void *data;
  777. #ifdef __ARMEB__
  778. if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
  779. return -ENOMEM;
  780. data = buff->data;
  781. #else
  782. if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
  783. return -ENOMEM;
  784. data = buff;
  785. #endif
  786. desc->buf_len = MAX_MRU;
  787. desc->data = dma_map_single(&port->netdev->dev, data,
  788. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  789. if (dma_mapping_error(&port->netdev->dev, desc->data)) {
  790. free_buffer(buff);
  791. return -EIO;
  792. }
  793. desc->data += NET_IP_ALIGN;
  794. port->rx_buff_tab[i] = buff;
  795. }
  796. return 0;
  797. }
  798. static void destroy_queues(struct port *port)
  799. {
  800. int i;
  801. if (port->desc_tab) {
  802. for (i = 0; i < RX_DESCS; i++) {
  803. struct desc *desc = rx_desc_ptr(port, i);
  804. buffer_t *buff = port->rx_buff_tab[i];
  805. if (buff) {
  806. dma_unmap_single(&port->netdev->dev,
  807. desc->data - NET_IP_ALIGN,
  808. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  809. free_buffer(buff);
  810. }
  811. }
  812. for (i = 0; i < TX_DESCS; i++) {
  813. struct desc *desc = tx_desc_ptr(port, i);
  814. buffer_t *buff = port->tx_buff_tab[i];
  815. if (buff) {
  816. dma_unmap_tx(port, desc);
  817. free_buffer(buff);
  818. }
  819. }
  820. dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
  821. port->desc_tab = NULL;
  822. }
  823. if (!ports_open && dma_pool) {
  824. dma_pool_destroy(dma_pool);
  825. dma_pool = NULL;
  826. }
  827. }
  828. static int eth_open(struct net_device *dev)
  829. {
  830. struct port *port = netdev_priv(dev);
  831. struct npe *npe = port->npe;
  832. struct msg msg;
  833. int i, err;
  834. if (!npe_running(npe)) {
  835. err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
  836. if (err)
  837. return err;
  838. if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
  839. printk(KERN_ERR "%s: %s not responding\n", dev->name,
  840. npe_name(npe));
  841. return -EIO;
  842. }
  843. port->firmware[0] = msg.byte4;
  844. port->firmware[1] = msg.byte5;
  845. port->firmware[2] = msg.byte6;
  846. port->firmware[3] = msg.byte7;
  847. }
  848. memset(&msg, 0, sizeof(msg));
  849. msg.cmd = NPE_VLAN_SETRXQOSENTRY;
  850. msg.eth_id = port->id;
  851. msg.byte5 = port->plat->rxq | 0x80;
  852. msg.byte7 = port->plat->rxq << 4;
  853. for (i = 0; i < 8; i++) {
  854. msg.byte3 = i;
  855. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
  856. return -EIO;
  857. }
  858. msg.cmd = NPE_EDB_SETPORTADDRESS;
  859. msg.eth_id = PHYSICAL_ID(port->id);
  860. msg.byte2 = dev->dev_addr[0];
  861. msg.byte3 = dev->dev_addr[1];
  862. msg.byte4 = dev->dev_addr[2];
  863. msg.byte5 = dev->dev_addr[3];
  864. msg.byte6 = dev->dev_addr[4];
  865. msg.byte7 = dev->dev_addr[5];
  866. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
  867. return -EIO;
  868. memset(&msg, 0, sizeof(msg));
  869. msg.cmd = NPE_FW_SETFIREWALLMODE;
  870. msg.eth_id = port->id;
  871. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
  872. return -EIO;
  873. if ((err = request_queues(port)) != 0)
  874. return err;
  875. if ((err = init_queues(port)) != 0) {
  876. destroy_queues(port);
  877. release_queues(port);
  878. return err;
  879. }
  880. port->speed = 0; /* force "link up" message */
  881. phy_start(port->phydev);
  882. for (i = 0; i < ETH_ALEN; i++)
  883. __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
  884. __raw_writel(0x08, &port->regs->random_seed);
  885. __raw_writel(0x12, &port->regs->partial_empty_threshold);
  886. __raw_writel(0x30, &port->regs->partial_full_threshold);
  887. __raw_writel(0x08, &port->regs->tx_start_bytes);
  888. __raw_writel(0x15, &port->regs->tx_deferral);
  889. __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
  890. __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
  891. __raw_writel(0x80, &port->regs->slot_time);
  892. __raw_writel(0x01, &port->regs->int_clock_threshold);
  893. /* Populate queues with buffers, no failure after this point */
  894. for (i = 0; i < TX_DESCS; i++)
  895. queue_put_desc(port->plat->txreadyq,
  896. tx_desc_phys(port, i), tx_desc_ptr(port, i));
  897. for (i = 0; i < RX_DESCS; i++)
  898. queue_put_desc(RXFREE_QUEUE(port->id),
  899. rx_desc_phys(port, i), rx_desc_ptr(port, i));
  900. __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
  901. __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
  902. __raw_writel(0, &port->regs->rx_control[1]);
  903. __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
  904. napi_enable(&port->napi);
  905. eth_set_mcast_list(dev);
  906. netif_start_queue(dev);
  907. qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
  908. eth_rx_irq, dev);
  909. if (!ports_open) {
  910. qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
  911. eth_txdone_irq, NULL);
  912. qmgr_enable_irq(TXDONE_QUEUE);
  913. }
  914. ports_open++;
  915. /* we may already have RX data, enables IRQ */
  916. napi_schedule(&port->napi);
  917. return 0;
  918. }
  919. static int eth_close(struct net_device *dev)
  920. {
  921. struct port *port = netdev_priv(dev);
  922. struct msg msg;
  923. int buffs = RX_DESCS; /* allocated RX buffers */
  924. int i;
  925. ports_open--;
  926. qmgr_disable_irq(port->plat->rxq);
  927. napi_disable(&port->napi);
  928. netif_stop_queue(dev);
  929. while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
  930. buffs--;
  931. memset(&msg, 0, sizeof(msg));
  932. msg.cmd = NPE_SETLOOPBACK_MODE;
  933. msg.eth_id = port->id;
  934. msg.byte3 = 1;
  935. if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
  936. printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
  937. i = 0;
  938. do { /* drain RX buffers */
  939. while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
  940. buffs--;
  941. if (!buffs)
  942. break;
  943. if (qmgr_stat_empty(TX_QUEUE(port->id))) {
  944. /* we have to inject some packet */
  945. struct desc *desc;
  946. u32 phys;
  947. int n = queue_get_desc(port->plat->txreadyq, port, 1);
  948. BUG_ON(n < 0);
  949. desc = tx_desc_ptr(port, n);
  950. phys = tx_desc_phys(port, n);
  951. desc->buf_len = desc->pkt_len = 1;
  952. wmb();
  953. queue_put_desc(TX_QUEUE(port->id), phys, desc);
  954. }
  955. udelay(1);
  956. } while (++i < MAX_CLOSE_WAIT);
  957. if (buffs)
  958. printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
  959. " left in NPE\n", dev->name, buffs);
  960. #if DEBUG_CLOSE
  961. if (!buffs)
  962. printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
  963. #endif
  964. buffs = TX_DESCS;
  965. while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
  966. buffs--; /* cancel TX */
  967. i = 0;
  968. do {
  969. while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
  970. buffs--;
  971. if (!buffs)
  972. break;
  973. } while (++i < MAX_CLOSE_WAIT);
  974. if (buffs)
  975. printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
  976. "left in NPE\n", dev->name, buffs);
  977. #if DEBUG_CLOSE
  978. if (!buffs)
  979. printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
  980. #endif
  981. msg.byte3 = 0;
  982. if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
  983. printk(KERN_CRIT "%s: unable to disable loopback\n",
  984. dev->name);
  985. phy_stop(port->phydev);
  986. if (!ports_open)
  987. qmgr_disable_irq(TXDONE_QUEUE);
  988. destroy_queues(port);
  989. release_queues(port);
  990. return 0;
  991. }
  992. static const struct net_device_ops ixp4xx_netdev_ops = {
  993. .ndo_open = eth_open,
  994. .ndo_stop = eth_close,
  995. .ndo_start_xmit = eth_xmit,
  996. .ndo_set_multicast_list = eth_set_mcast_list,
  997. .ndo_do_ioctl = eth_ioctl,
  998. .ndo_change_mtu = eth_change_mtu,
  999. .ndo_set_mac_address = eth_mac_addr,
  1000. .ndo_validate_addr = eth_validate_addr,
  1001. };
  1002. static int __devinit eth_init_one(struct platform_device *pdev)
  1003. {
  1004. struct port *port;
  1005. struct net_device *dev;
  1006. struct eth_plat_info *plat = pdev->dev.platform_data;
  1007. u32 regs_phys;
  1008. char phy_id[MII_BUS_ID_SIZE + 3];
  1009. int err;
  1010. if (!(dev = alloc_etherdev(sizeof(struct port))))
  1011. return -ENOMEM;
  1012. SET_NETDEV_DEV(dev, &pdev->dev);
  1013. port = netdev_priv(dev);
  1014. port->netdev = dev;
  1015. port->id = pdev->id;
  1016. switch (port->id) {
  1017. case IXP4XX_ETH_NPEA:
  1018. port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
  1019. regs_phys = IXP4XX_EthA_BASE_PHYS;
  1020. break;
  1021. case IXP4XX_ETH_NPEB:
  1022. port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  1023. regs_phys = IXP4XX_EthB_BASE_PHYS;
  1024. break;
  1025. case IXP4XX_ETH_NPEC:
  1026. port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  1027. regs_phys = IXP4XX_EthC_BASE_PHYS;
  1028. break;
  1029. default:
  1030. err = -ENODEV;
  1031. goto err_free;
  1032. }
  1033. dev->netdev_ops = &ixp4xx_netdev_ops;
  1034. dev->ethtool_ops = &ixp4xx_ethtool_ops;
  1035. dev->tx_queue_len = 100;
  1036. netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
  1037. if (!(port->npe = npe_request(NPE_ID(port->id)))) {
  1038. err = -EIO;
  1039. goto err_free;
  1040. }
  1041. port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
  1042. if (!port->mem_res) {
  1043. err = -EBUSY;
  1044. goto err_npe_rel;
  1045. }
  1046. port->plat = plat;
  1047. npe_port_tab[NPE_ID(port->id)] = port;
  1048. memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
  1049. platform_set_drvdata(pdev, dev);
  1050. __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
  1051. &port->regs->core_control);
  1052. udelay(50);
  1053. __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
  1054. udelay(50);
  1055. snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy);
  1056. port->phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link, 0,
  1057. PHY_INTERFACE_MODE_MII);
  1058. if ((err = IS_ERR(port->phydev)))
  1059. goto err_free_mem;
  1060. port->phydev->irq = PHY_POLL;
  1061. if ((err = register_netdev(dev)))
  1062. goto err_phy_dis;
  1063. printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
  1064. npe_name(port->npe));
  1065. return 0;
  1066. err_phy_dis:
  1067. phy_disconnect(port->phydev);
  1068. err_free_mem:
  1069. npe_port_tab[NPE_ID(port->id)] = NULL;
  1070. platform_set_drvdata(pdev, NULL);
  1071. release_resource(port->mem_res);
  1072. err_npe_rel:
  1073. npe_release(port->npe);
  1074. err_free:
  1075. free_netdev(dev);
  1076. return err;
  1077. }
  1078. static int __devexit eth_remove_one(struct platform_device *pdev)
  1079. {
  1080. struct net_device *dev = platform_get_drvdata(pdev);
  1081. struct port *port = netdev_priv(dev);
  1082. unregister_netdev(dev);
  1083. phy_disconnect(port->phydev);
  1084. npe_port_tab[NPE_ID(port->id)] = NULL;
  1085. platform_set_drvdata(pdev, NULL);
  1086. npe_release(port->npe);
  1087. release_resource(port->mem_res);
  1088. free_netdev(dev);
  1089. return 0;
  1090. }
  1091. static struct platform_driver ixp4xx_eth_driver = {
  1092. .driver.name = DRV_NAME,
  1093. .probe = eth_init_one,
  1094. .remove = eth_remove_one,
  1095. };
  1096. static int __init eth_init_module(void)
  1097. {
  1098. int err;
  1099. if ((err = ixp4xx_mdio_register()))
  1100. return err;
  1101. return platform_driver_register(&ixp4xx_eth_driver);
  1102. }
  1103. static void __exit eth_cleanup_module(void)
  1104. {
  1105. platform_driver_unregister(&ixp4xx_eth_driver);
  1106. ixp4xx_mdio_remove();
  1107. }
  1108. MODULE_AUTHOR("Krzysztof Halasa");
  1109. MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
  1110. MODULE_LICENSE("GPL v2");
  1111. MODULE_ALIAS("platform:ixp4xx_eth");
  1112. module_init(eth_init_module);
  1113. module_exit(eth_cleanup_module);