memcontrol.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. */
  19. #include <linux/res_counter.h>
  20. #include <linux/memcontrol.h>
  21. #include <linux/cgroup.h>
  22. #include <linux/mm.h>
  23. #include <linux/smp.h>
  24. #include <linux/page-flags.h>
  25. #include <linux/backing-dev.h>
  26. #include <linux/bit_spinlock.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/slab.h>
  29. #include <linux/swap.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/fs.h>
  32. #include <linux/seq_file.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/mm_inline.h>
  35. #include <linux/page_cgroup.h>
  36. #include <asm/uaccess.h>
  37. struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  38. #define MEM_CGROUP_RECLAIM_RETRIES 5
  39. /*
  40. * Statistics for memory cgroup.
  41. */
  42. enum mem_cgroup_stat_index {
  43. /*
  44. * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  45. */
  46. MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
  47. MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
  48. MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
  49. MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
  50. MEM_CGROUP_STAT_NSTATS,
  51. };
  52. struct mem_cgroup_stat_cpu {
  53. s64 count[MEM_CGROUP_STAT_NSTATS];
  54. } ____cacheline_aligned_in_smp;
  55. struct mem_cgroup_stat {
  56. struct mem_cgroup_stat_cpu cpustat[0];
  57. };
  58. /*
  59. * For accounting under irq disable, no need for increment preempt count.
  60. */
  61. static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
  62. enum mem_cgroup_stat_index idx, int val)
  63. {
  64. stat->count[idx] += val;
  65. }
  66. static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
  67. enum mem_cgroup_stat_index idx)
  68. {
  69. int cpu;
  70. s64 ret = 0;
  71. for_each_possible_cpu(cpu)
  72. ret += stat->cpustat[cpu].count[idx];
  73. return ret;
  74. }
  75. /*
  76. * per-zone information in memory controller.
  77. */
  78. struct mem_cgroup_per_zone {
  79. /*
  80. * spin_lock to protect the per cgroup LRU
  81. */
  82. spinlock_t lru_lock;
  83. struct list_head lists[NR_LRU_LISTS];
  84. unsigned long count[NR_LRU_LISTS];
  85. };
  86. /* Macro for accessing counter */
  87. #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
  88. struct mem_cgroup_per_node {
  89. struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
  90. };
  91. struct mem_cgroup_lru_info {
  92. struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
  93. };
  94. /*
  95. * The memory controller data structure. The memory controller controls both
  96. * page cache and RSS per cgroup. We would eventually like to provide
  97. * statistics based on the statistics developed by Rik Van Riel for clock-pro,
  98. * to help the administrator determine what knobs to tune.
  99. *
  100. * TODO: Add a water mark for the memory controller. Reclaim will begin when
  101. * we hit the water mark. May be even add a low water mark, such that
  102. * no reclaim occurs from a cgroup at it's low water mark, this is
  103. * a feature that will be implemented much later in the future.
  104. */
  105. struct mem_cgroup {
  106. struct cgroup_subsys_state css;
  107. /*
  108. * the counter to account for memory usage
  109. */
  110. struct res_counter res;
  111. /*
  112. * Per cgroup active and inactive list, similar to the
  113. * per zone LRU lists.
  114. */
  115. struct mem_cgroup_lru_info info;
  116. int prev_priority; /* for recording reclaim priority */
  117. /*
  118. * statistics. This must be placed at the end of memcg.
  119. */
  120. struct mem_cgroup_stat stat;
  121. };
  122. enum charge_type {
  123. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  124. MEM_CGROUP_CHARGE_TYPE_MAPPED,
  125. MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
  126. MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
  127. NR_CHARGE_TYPE,
  128. };
  129. /* only for here (for easy reading.) */
  130. #define PCGF_CACHE (1UL << PCG_CACHE)
  131. #define PCGF_USED (1UL << PCG_USED)
  132. #define PCGF_ACTIVE (1UL << PCG_ACTIVE)
  133. #define PCGF_LOCK (1UL << PCG_LOCK)
  134. #define PCGF_FILE (1UL << PCG_FILE)
  135. static const unsigned long
  136. pcg_default_flags[NR_CHARGE_TYPE] = {
  137. PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */
  138. PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */
  139. PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
  140. 0, /* FORCE */
  141. };
  142. /*
  143. * Always modified under lru lock. Then, not necessary to preempt_disable()
  144. */
  145. static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
  146. struct page_cgroup *pc,
  147. bool charge)
  148. {
  149. int val = (charge)? 1 : -1;
  150. struct mem_cgroup_stat *stat = &mem->stat;
  151. struct mem_cgroup_stat_cpu *cpustat;
  152. VM_BUG_ON(!irqs_disabled());
  153. cpustat = &stat->cpustat[smp_processor_id()];
  154. if (PageCgroupCache(pc))
  155. __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
  156. else
  157. __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
  158. if (charge)
  159. __mem_cgroup_stat_add_safe(cpustat,
  160. MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
  161. else
  162. __mem_cgroup_stat_add_safe(cpustat,
  163. MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
  164. }
  165. static struct mem_cgroup_per_zone *
  166. mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
  167. {
  168. return &mem->info.nodeinfo[nid]->zoneinfo[zid];
  169. }
  170. static struct mem_cgroup_per_zone *
  171. page_cgroup_zoneinfo(struct page_cgroup *pc)
  172. {
  173. struct mem_cgroup *mem = pc->mem_cgroup;
  174. int nid = page_cgroup_nid(pc);
  175. int zid = page_cgroup_zid(pc);
  176. return mem_cgroup_zoneinfo(mem, nid, zid);
  177. }
  178. static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
  179. enum lru_list idx)
  180. {
  181. int nid, zid;
  182. struct mem_cgroup_per_zone *mz;
  183. u64 total = 0;
  184. for_each_online_node(nid)
  185. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  186. mz = mem_cgroup_zoneinfo(mem, nid, zid);
  187. total += MEM_CGROUP_ZSTAT(mz, idx);
  188. }
  189. return total;
  190. }
  191. static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
  192. {
  193. return container_of(cgroup_subsys_state(cont,
  194. mem_cgroup_subsys_id), struct mem_cgroup,
  195. css);
  196. }
  197. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  198. {
  199. /*
  200. * mm_update_next_owner() may clear mm->owner to NULL
  201. * if it races with swapoff, page migration, etc.
  202. * So this can be called with p == NULL.
  203. */
  204. if (unlikely(!p))
  205. return NULL;
  206. return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
  207. struct mem_cgroup, css);
  208. }
  209. static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
  210. struct page_cgroup *pc)
  211. {
  212. int lru = LRU_BASE;
  213. if (PageCgroupUnevictable(pc))
  214. lru = LRU_UNEVICTABLE;
  215. else {
  216. if (PageCgroupActive(pc))
  217. lru += LRU_ACTIVE;
  218. if (PageCgroupFile(pc))
  219. lru += LRU_FILE;
  220. }
  221. MEM_CGROUP_ZSTAT(mz, lru) -= 1;
  222. mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false);
  223. list_del(&pc->lru);
  224. }
  225. static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
  226. struct page_cgroup *pc, bool hot)
  227. {
  228. int lru = LRU_BASE;
  229. if (PageCgroupUnevictable(pc))
  230. lru = LRU_UNEVICTABLE;
  231. else {
  232. if (PageCgroupActive(pc))
  233. lru += LRU_ACTIVE;
  234. if (PageCgroupFile(pc))
  235. lru += LRU_FILE;
  236. }
  237. MEM_CGROUP_ZSTAT(mz, lru) += 1;
  238. if (hot)
  239. list_add(&pc->lru, &mz->lists[lru]);
  240. else
  241. list_add_tail(&pc->lru, &mz->lists[lru]);
  242. mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true);
  243. }
  244. static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru)
  245. {
  246. struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
  247. int active = PageCgroupActive(pc);
  248. int file = PageCgroupFile(pc);
  249. int unevictable = PageCgroupUnevictable(pc);
  250. enum lru_list from = unevictable ? LRU_UNEVICTABLE :
  251. (LRU_FILE * !!file + !!active);
  252. if (lru == from)
  253. return;
  254. MEM_CGROUP_ZSTAT(mz, from) -= 1;
  255. /*
  256. * However this is done under mz->lru_lock, another flags, which
  257. * are not related to LRU, will be modified from out-of-lock.
  258. * We have to use atomic set/clear flags.
  259. */
  260. if (is_unevictable_lru(lru)) {
  261. ClearPageCgroupActive(pc);
  262. SetPageCgroupUnevictable(pc);
  263. } else {
  264. if (is_active_lru(lru))
  265. SetPageCgroupActive(pc);
  266. else
  267. ClearPageCgroupActive(pc);
  268. ClearPageCgroupUnevictable(pc);
  269. }
  270. MEM_CGROUP_ZSTAT(mz, lru) += 1;
  271. list_move(&pc->lru, &mz->lists[lru]);
  272. }
  273. int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
  274. {
  275. int ret;
  276. task_lock(task);
  277. ret = task->mm && mm_match_cgroup(task->mm, mem);
  278. task_unlock(task);
  279. return ret;
  280. }
  281. /*
  282. * This routine assumes that the appropriate zone's lru lock is already held
  283. */
  284. void mem_cgroup_move_lists(struct page *page, enum lru_list lru)
  285. {
  286. struct page_cgroup *pc;
  287. struct mem_cgroup_per_zone *mz;
  288. unsigned long flags;
  289. if (mem_cgroup_subsys.disabled)
  290. return;
  291. /*
  292. * We cannot lock_page_cgroup while holding zone's lru_lock,
  293. * because other holders of lock_page_cgroup can be interrupted
  294. * with an attempt to rotate_reclaimable_page. But we cannot
  295. * safely get to page_cgroup without it, so just try_lock it:
  296. * mem_cgroup_isolate_pages allows for page left on wrong list.
  297. */
  298. pc = lookup_page_cgroup(page);
  299. if (!trylock_page_cgroup(pc))
  300. return;
  301. if (pc && PageCgroupUsed(pc)) {
  302. mz = page_cgroup_zoneinfo(pc);
  303. spin_lock_irqsave(&mz->lru_lock, flags);
  304. __mem_cgroup_move_lists(pc, lru);
  305. spin_unlock_irqrestore(&mz->lru_lock, flags);
  306. }
  307. unlock_page_cgroup(pc);
  308. }
  309. /*
  310. * Calculate mapped_ratio under memory controller. This will be used in
  311. * vmscan.c for deteremining we have to reclaim mapped pages.
  312. */
  313. int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
  314. {
  315. long total, rss;
  316. /*
  317. * usage is recorded in bytes. But, here, we assume the number of
  318. * physical pages can be represented by "long" on any arch.
  319. */
  320. total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
  321. rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
  322. return (int)((rss * 100L) / total);
  323. }
  324. /*
  325. * prev_priority control...this will be used in memory reclaim path.
  326. */
  327. int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
  328. {
  329. return mem->prev_priority;
  330. }
  331. void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
  332. {
  333. if (priority < mem->prev_priority)
  334. mem->prev_priority = priority;
  335. }
  336. void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
  337. {
  338. mem->prev_priority = priority;
  339. }
  340. /*
  341. * Calculate # of pages to be scanned in this priority/zone.
  342. * See also vmscan.c
  343. *
  344. * priority starts from "DEF_PRIORITY" and decremented in each loop.
  345. * (see include/linux/mmzone.h)
  346. */
  347. long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
  348. int priority, enum lru_list lru)
  349. {
  350. long nr_pages;
  351. int nid = zone->zone_pgdat->node_id;
  352. int zid = zone_idx(zone);
  353. struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
  354. nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
  355. return (nr_pages >> priority);
  356. }
  357. unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
  358. struct list_head *dst,
  359. unsigned long *scanned, int order,
  360. int mode, struct zone *z,
  361. struct mem_cgroup *mem_cont,
  362. int active, int file)
  363. {
  364. unsigned long nr_taken = 0;
  365. struct page *page;
  366. unsigned long scan;
  367. LIST_HEAD(pc_list);
  368. struct list_head *src;
  369. struct page_cgroup *pc, *tmp;
  370. int nid = z->zone_pgdat->node_id;
  371. int zid = zone_idx(z);
  372. struct mem_cgroup_per_zone *mz;
  373. int lru = LRU_FILE * !!file + !!active;
  374. BUG_ON(!mem_cont);
  375. mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
  376. src = &mz->lists[lru];
  377. spin_lock(&mz->lru_lock);
  378. scan = 0;
  379. list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
  380. if (scan >= nr_to_scan)
  381. break;
  382. if (unlikely(!PageCgroupUsed(pc)))
  383. continue;
  384. page = pc->page;
  385. if (unlikely(!PageLRU(page)))
  386. continue;
  387. /*
  388. * TODO: play better with lumpy reclaim, grabbing anything.
  389. */
  390. if (PageUnevictable(page) ||
  391. (PageActive(page) && !active) ||
  392. (!PageActive(page) && active)) {
  393. __mem_cgroup_move_lists(pc, page_lru(page));
  394. continue;
  395. }
  396. scan++;
  397. list_move(&pc->lru, &pc_list);
  398. if (__isolate_lru_page(page, mode, file) == 0) {
  399. list_move(&page->lru, dst);
  400. nr_taken++;
  401. }
  402. }
  403. list_splice(&pc_list, src);
  404. spin_unlock(&mz->lru_lock);
  405. *scanned = scan;
  406. return nr_taken;
  407. }
  408. /*
  409. * Unlike exported interface, "oom" parameter is added. if oom==true,
  410. * oom-killer can be invoked.
  411. */
  412. static int __mem_cgroup_try_charge(struct mm_struct *mm,
  413. gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
  414. {
  415. struct mem_cgroup *mem;
  416. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  417. /*
  418. * We always charge the cgroup the mm_struct belongs to.
  419. * The mm_struct's mem_cgroup changes on task migration if the
  420. * thread group leader migrates. It's possible that mm is not
  421. * set, if so charge the init_mm (happens for pagecache usage).
  422. */
  423. if (likely(!*memcg)) {
  424. rcu_read_lock();
  425. mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
  426. if (unlikely(!mem)) {
  427. rcu_read_unlock();
  428. return 0;
  429. }
  430. /*
  431. * For every charge from the cgroup, increment reference count
  432. */
  433. css_get(&mem->css);
  434. *memcg = mem;
  435. rcu_read_unlock();
  436. } else {
  437. mem = *memcg;
  438. css_get(&mem->css);
  439. }
  440. while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) {
  441. if (!(gfp_mask & __GFP_WAIT))
  442. goto nomem;
  443. if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
  444. continue;
  445. /*
  446. * try_to_free_mem_cgroup_pages() might not give us a full
  447. * picture of reclaim. Some pages are reclaimed and might be
  448. * moved to swap cache or just unmapped from the cgroup.
  449. * Check the limit again to see if the reclaim reduced the
  450. * current usage of the cgroup before giving up
  451. */
  452. if (res_counter_check_under_limit(&mem->res))
  453. continue;
  454. if (!nr_retries--) {
  455. if (oom)
  456. mem_cgroup_out_of_memory(mem, gfp_mask);
  457. goto nomem;
  458. }
  459. }
  460. return 0;
  461. nomem:
  462. css_put(&mem->css);
  463. return -ENOMEM;
  464. }
  465. /**
  466. * mem_cgroup_try_charge - get charge of PAGE_SIZE.
  467. * @mm: an mm_struct which is charged against. (when *memcg is NULL)
  468. * @gfp_mask: gfp_mask for reclaim.
  469. * @memcg: a pointer to memory cgroup which is charged against.
  470. *
  471. * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
  472. * memory cgroup from @mm is got and stored in *memcg.
  473. *
  474. * Returns 0 if success. -ENOMEM at failure.
  475. * This call can invoke OOM-Killer.
  476. */
  477. int mem_cgroup_try_charge(struct mm_struct *mm,
  478. gfp_t mask, struct mem_cgroup **memcg)
  479. {
  480. return __mem_cgroup_try_charge(mm, mask, memcg, true);
  481. }
  482. /*
  483. * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
  484. * USED state. If already USED, uncharge and return.
  485. */
  486. static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
  487. struct page_cgroup *pc,
  488. enum charge_type ctype)
  489. {
  490. struct mem_cgroup_per_zone *mz;
  491. unsigned long flags;
  492. /* try_charge() can return NULL to *memcg, taking care of it. */
  493. if (!mem)
  494. return;
  495. lock_page_cgroup(pc);
  496. if (unlikely(PageCgroupUsed(pc))) {
  497. unlock_page_cgroup(pc);
  498. res_counter_uncharge(&mem->res, PAGE_SIZE);
  499. css_put(&mem->css);
  500. return;
  501. }
  502. pc->mem_cgroup = mem;
  503. /*
  504. * If a page is accounted as a page cache, insert to inactive list.
  505. * If anon, insert to active list.
  506. */
  507. pc->flags = pcg_default_flags[ctype];
  508. mz = page_cgroup_zoneinfo(pc);
  509. spin_lock_irqsave(&mz->lru_lock, flags);
  510. __mem_cgroup_add_list(mz, pc, true);
  511. spin_unlock_irqrestore(&mz->lru_lock, flags);
  512. unlock_page_cgroup(pc);
  513. }
  514. /**
  515. * mem_cgroup_move_account - move account of the page
  516. * @pc: page_cgroup of the page.
  517. * @from: mem_cgroup which the page is moved from.
  518. * @to: mem_cgroup which the page is moved to. @from != @to.
  519. *
  520. * The caller must confirm following.
  521. * 1. disable irq.
  522. * 2. lru_lock of old mem_cgroup(@from) should be held.
  523. *
  524. * returns 0 at success,
  525. * returns -EBUSY when lock is busy or "pc" is unstable.
  526. *
  527. * This function does "uncharge" from old cgroup but doesn't do "charge" to
  528. * new cgroup. It should be done by a caller.
  529. */
  530. static int mem_cgroup_move_account(struct page_cgroup *pc,
  531. struct mem_cgroup *from, struct mem_cgroup *to)
  532. {
  533. struct mem_cgroup_per_zone *from_mz, *to_mz;
  534. int nid, zid;
  535. int ret = -EBUSY;
  536. VM_BUG_ON(!irqs_disabled());
  537. VM_BUG_ON(from == to);
  538. nid = page_cgroup_nid(pc);
  539. zid = page_cgroup_zid(pc);
  540. from_mz = mem_cgroup_zoneinfo(from, nid, zid);
  541. to_mz = mem_cgroup_zoneinfo(to, nid, zid);
  542. if (!trylock_page_cgroup(pc))
  543. return ret;
  544. if (!PageCgroupUsed(pc))
  545. goto out;
  546. if (pc->mem_cgroup != from)
  547. goto out;
  548. if (spin_trylock(&to_mz->lru_lock)) {
  549. __mem_cgroup_remove_list(from_mz, pc);
  550. css_put(&from->css);
  551. res_counter_uncharge(&from->res, PAGE_SIZE);
  552. pc->mem_cgroup = to;
  553. css_get(&to->css);
  554. __mem_cgroup_add_list(to_mz, pc, false);
  555. ret = 0;
  556. spin_unlock(&to_mz->lru_lock);
  557. }
  558. out:
  559. unlock_page_cgroup(pc);
  560. return ret;
  561. }
  562. /*
  563. * move charges to its parent.
  564. */
  565. static int mem_cgroup_move_parent(struct page_cgroup *pc,
  566. struct mem_cgroup *child,
  567. gfp_t gfp_mask)
  568. {
  569. struct cgroup *cg = child->css.cgroup;
  570. struct cgroup *pcg = cg->parent;
  571. struct mem_cgroup *parent;
  572. struct mem_cgroup_per_zone *mz;
  573. unsigned long flags;
  574. int ret;
  575. /* Is ROOT ? */
  576. if (!pcg)
  577. return -EINVAL;
  578. parent = mem_cgroup_from_cont(pcg);
  579. ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
  580. if (ret)
  581. return ret;
  582. mz = mem_cgroup_zoneinfo(child,
  583. page_cgroup_nid(pc), page_cgroup_zid(pc));
  584. spin_lock_irqsave(&mz->lru_lock, flags);
  585. ret = mem_cgroup_move_account(pc, child, parent);
  586. spin_unlock_irqrestore(&mz->lru_lock, flags);
  587. /* drop extra refcnt */
  588. css_put(&parent->css);
  589. /* uncharge if move fails */
  590. if (ret)
  591. res_counter_uncharge(&parent->res, PAGE_SIZE);
  592. return ret;
  593. }
  594. /*
  595. * Charge the memory controller for page usage.
  596. * Return
  597. * 0 if the charge was successful
  598. * < 0 if the cgroup is over its limit
  599. */
  600. static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
  601. gfp_t gfp_mask, enum charge_type ctype,
  602. struct mem_cgroup *memcg)
  603. {
  604. struct mem_cgroup *mem;
  605. struct page_cgroup *pc;
  606. int ret;
  607. pc = lookup_page_cgroup(page);
  608. /* can happen at boot */
  609. if (unlikely(!pc))
  610. return 0;
  611. prefetchw(pc);
  612. mem = memcg;
  613. ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
  614. if (ret)
  615. return ret;
  616. __mem_cgroup_commit_charge(mem, pc, ctype);
  617. return 0;
  618. }
  619. int mem_cgroup_newpage_charge(struct page *page,
  620. struct mm_struct *mm, gfp_t gfp_mask)
  621. {
  622. if (mem_cgroup_subsys.disabled)
  623. return 0;
  624. if (PageCompound(page))
  625. return 0;
  626. /*
  627. * If already mapped, we don't have to account.
  628. * If page cache, page->mapping has address_space.
  629. * But page->mapping may have out-of-use anon_vma pointer,
  630. * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
  631. * is NULL.
  632. */
  633. if (page_mapped(page) || (page->mapping && !PageAnon(page)))
  634. return 0;
  635. if (unlikely(!mm))
  636. mm = &init_mm;
  637. return mem_cgroup_charge_common(page, mm, gfp_mask,
  638. MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
  639. }
  640. int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
  641. gfp_t gfp_mask)
  642. {
  643. if (mem_cgroup_subsys.disabled)
  644. return 0;
  645. if (PageCompound(page))
  646. return 0;
  647. /*
  648. * Corner case handling. This is called from add_to_page_cache()
  649. * in usual. But some FS (shmem) precharges this page before calling it
  650. * and call add_to_page_cache() with GFP_NOWAIT.
  651. *
  652. * For GFP_NOWAIT case, the page may be pre-charged before calling
  653. * add_to_page_cache(). (See shmem.c) check it here and avoid to call
  654. * charge twice. (It works but has to pay a bit larger cost.)
  655. */
  656. if (!(gfp_mask & __GFP_WAIT)) {
  657. struct page_cgroup *pc;
  658. pc = lookup_page_cgroup(page);
  659. if (!pc)
  660. return 0;
  661. lock_page_cgroup(pc);
  662. if (PageCgroupUsed(pc)) {
  663. unlock_page_cgroup(pc);
  664. return 0;
  665. }
  666. unlock_page_cgroup(pc);
  667. }
  668. if (unlikely(!mm))
  669. mm = &init_mm;
  670. if (page_is_file_cache(page))
  671. return mem_cgroup_charge_common(page, mm, gfp_mask,
  672. MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
  673. else
  674. return mem_cgroup_charge_common(page, mm, gfp_mask,
  675. MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
  676. }
  677. void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
  678. {
  679. struct page_cgroup *pc;
  680. if (mem_cgroup_subsys.disabled)
  681. return;
  682. if (!ptr)
  683. return;
  684. pc = lookup_page_cgroup(page);
  685. __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
  686. }
  687. void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
  688. {
  689. if (mem_cgroup_subsys.disabled)
  690. return;
  691. if (!mem)
  692. return;
  693. res_counter_uncharge(&mem->res, PAGE_SIZE);
  694. css_put(&mem->css);
  695. }
  696. /*
  697. * uncharge if !page_mapped(page)
  698. */
  699. static void
  700. __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
  701. {
  702. struct page_cgroup *pc;
  703. struct mem_cgroup *mem;
  704. struct mem_cgroup_per_zone *mz;
  705. unsigned long flags;
  706. if (mem_cgroup_subsys.disabled)
  707. return;
  708. /*
  709. * Check if our page_cgroup is valid
  710. */
  711. pc = lookup_page_cgroup(page);
  712. if (unlikely(!pc || !PageCgroupUsed(pc)))
  713. return;
  714. lock_page_cgroup(pc);
  715. if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page))
  716. || !PageCgroupUsed(pc)) {
  717. /* This happens at race in zap_pte_range() and do_swap_page()*/
  718. unlock_page_cgroup(pc);
  719. return;
  720. }
  721. ClearPageCgroupUsed(pc);
  722. mem = pc->mem_cgroup;
  723. mz = page_cgroup_zoneinfo(pc);
  724. spin_lock_irqsave(&mz->lru_lock, flags);
  725. __mem_cgroup_remove_list(mz, pc);
  726. spin_unlock_irqrestore(&mz->lru_lock, flags);
  727. unlock_page_cgroup(pc);
  728. res_counter_uncharge(&mem->res, PAGE_SIZE);
  729. css_put(&mem->css);
  730. return;
  731. }
  732. void mem_cgroup_uncharge_page(struct page *page)
  733. {
  734. /* early check. */
  735. if (page_mapped(page))
  736. return;
  737. if (page->mapping && !PageAnon(page))
  738. return;
  739. __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
  740. }
  741. void mem_cgroup_uncharge_cache_page(struct page *page)
  742. {
  743. VM_BUG_ON(page_mapped(page));
  744. VM_BUG_ON(page->mapping);
  745. __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
  746. }
  747. /*
  748. * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
  749. * page belongs to.
  750. */
  751. int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
  752. {
  753. struct page_cgroup *pc;
  754. struct mem_cgroup *mem = NULL;
  755. int ret = 0;
  756. if (mem_cgroup_subsys.disabled)
  757. return 0;
  758. pc = lookup_page_cgroup(page);
  759. lock_page_cgroup(pc);
  760. if (PageCgroupUsed(pc)) {
  761. mem = pc->mem_cgroup;
  762. css_get(&mem->css);
  763. }
  764. unlock_page_cgroup(pc);
  765. if (mem) {
  766. ret = mem_cgroup_try_charge(NULL, GFP_HIGHUSER_MOVABLE, &mem);
  767. css_put(&mem->css);
  768. }
  769. *ptr = mem;
  770. return ret;
  771. }
  772. /* remove redundant charge if migration failed*/
  773. void mem_cgroup_end_migration(struct mem_cgroup *mem,
  774. struct page *oldpage, struct page *newpage)
  775. {
  776. struct page *target, *unused;
  777. struct page_cgroup *pc;
  778. enum charge_type ctype;
  779. if (!mem)
  780. return;
  781. /* at migration success, oldpage->mapping is NULL. */
  782. if (oldpage->mapping) {
  783. target = oldpage;
  784. unused = NULL;
  785. } else {
  786. target = newpage;
  787. unused = oldpage;
  788. }
  789. if (PageAnon(target))
  790. ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
  791. else if (page_is_file_cache(target))
  792. ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
  793. else
  794. ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
  795. /* unused page is not on radix-tree now. */
  796. if (unused && ctype != MEM_CGROUP_CHARGE_TYPE_MAPPED)
  797. __mem_cgroup_uncharge_common(unused, ctype);
  798. pc = lookup_page_cgroup(target);
  799. /*
  800. * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
  801. * So, double-counting is effectively avoided.
  802. */
  803. __mem_cgroup_commit_charge(mem, pc, ctype);
  804. /*
  805. * Both of oldpage and newpage are still under lock_page().
  806. * Then, we don't have to care about race in radix-tree.
  807. * But we have to be careful that this page is unmapped or not.
  808. *
  809. * There is a case for !page_mapped(). At the start of
  810. * migration, oldpage was mapped. But now, it's zapped.
  811. * But we know *target* page is not freed/reused under us.
  812. * mem_cgroup_uncharge_page() does all necessary checks.
  813. */
  814. if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
  815. mem_cgroup_uncharge_page(target);
  816. }
  817. /*
  818. * A call to try to shrink memory usage under specified resource controller.
  819. * This is typically used for page reclaiming for shmem for reducing side
  820. * effect of page allocation from shmem, which is used by some mem_cgroup.
  821. */
  822. int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
  823. {
  824. struct mem_cgroup *mem;
  825. int progress = 0;
  826. int retry = MEM_CGROUP_RECLAIM_RETRIES;
  827. if (mem_cgroup_subsys.disabled)
  828. return 0;
  829. if (!mm)
  830. return 0;
  831. rcu_read_lock();
  832. mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
  833. if (unlikely(!mem)) {
  834. rcu_read_unlock();
  835. return 0;
  836. }
  837. css_get(&mem->css);
  838. rcu_read_unlock();
  839. do {
  840. progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
  841. progress += res_counter_check_under_limit(&mem->res);
  842. } while (!progress && --retry);
  843. css_put(&mem->css);
  844. if (!retry)
  845. return -ENOMEM;
  846. return 0;
  847. }
  848. static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
  849. unsigned long long val)
  850. {
  851. int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
  852. int progress;
  853. int ret = 0;
  854. while (res_counter_set_limit(&memcg->res, val)) {
  855. if (signal_pending(current)) {
  856. ret = -EINTR;
  857. break;
  858. }
  859. if (!retry_count) {
  860. ret = -EBUSY;
  861. break;
  862. }
  863. progress = try_to_free_mem_cgroup_pages(memcg,
  864. GFP_HIGHUSER_MOVABLE);
  865. if (!progress)
  866. retry_count--;
  867. }
  868. return ret;
  869. }
  870. /*
  871. * This routine traverse page_cgroup in given list and drop them all.
  872. * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
  873. */
  874. static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
  875. struct mem_cgroup_per_zone *mz,
  876. enum lru_list lru)
  877. {
  878. struct page_cgroup *pc, *busy;
  879. unsigned long flags;
  880. unsigned long loop;
  881. struct list_head *list;
  882. int ret = 0;
  883. list = &mz->lists[lru];
  884. loop = MEM_CGROUP_ZSTAT(mz, lru);
  885. /* give some margin against EBUSY etc...*/
  886. loop += 256;
  887. busy = NULL;
  888. while (loop--) {
  889. ret = 0;
  890. spin_lock_irqsave(&mz->lru_lock, flags);
  891. if (list_empty(list)) {
  892. spin_unlock_irqrestore(&mz->lru_lock, flags);
  893. break;
  894. }
  895. pc = list_entry(list->prev, struct page_cgroup, lru);
  896. if (busy == pc) {
  897. list_move(&pc->lru, list);
  898. busy = 0;
  899. spin_unlock_irqrestore(&mz->lru_lock, flags);
  900. continue;
  901. }
  902. spin_unlock_irqrestore(&mz->lru_lock, flags);
  903. ret = mem_cgroup_move_parent(pc, mem, GFP_HIGHUSER_MOVABLE);
  904. if (ret == -ENOMEM)
  905. break;
  906. if (ret == -EBUSY || ret == -EINVAL) {
  907. /* found lock contention or "pc" is obsolete. */
  908. busy = pc;
  909. cond_resched();
  910. } else
  911. busy = NULL;
  912. }
  913. if (!ret && !list_empty(list))
  914. return -EBUSY;
  915. return ret;
  916. }
  917. /*
  918. * make mem_cgroup's charge to be 0 if there is no task.
  919. * This enables deleting this mem_cgroup.
  920. */
  921. static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
  922. {
  923. int ret;
  924. int node, zid, shrink;
  925. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  926. struct cgroup *cgrp = mem->css.cgroup;
  927. css_get(&mem->css);
  928. shrink = 0;
  929. /* should free all ? */
  930. if (free_all)
  931. goto try_to_free;
  932. move_account:
  933. while (mem->res.usage > 0) {
  934. ret = -EBUSY;
  935. if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
  936. goto out;
  937. ret = -EINTR;
  938. if (signal_pending(current))
  939. goto out;
  940. /* This is for making all *used* pages to be on LRU. */
  941. lru_add_drain_all();
  942. ret = 0;
  943. for_each_node_state(node, N_POSSIBLE) {
  944. for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
  945. struct mem_cgroup_per_zone *mz;
  946. enum lru_list l;
  947. mz = mem_cgroup_zoneinfo(mem, node, zid);
  948. for_each_lru(l) {
  949. ret = mem_cgroup_force_empty_list(mem,
  950. mz, l);
  951. if (ret)
  952. break;
  953. }
  954. }
  955. if (ret)
  956. break;
  957. }
  958. /* it seems parent cgroup doesn't have enough mem */
  959. if (ret == -ENOMEM)
  960. goto try_to_free;
  961. cond_resched();
  962. }
  963. ret = 0;
  964. out:
  965. css_put(&mem->css);
  966. return ret;
  967. try_to_free:
  968. /* returns EBUSY if there is a task or if we come here twice. */
  969. if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
  970. ret = -EBUSY;
  971. goto out;
  972. }
  973. /* we call try-to-free pages for make this cgroup empty */
  974. lru_add_drain_all();
  975. /* try to free all pages in this cgroup */
  976. shrink = 1;
  977. while (nr_retries && mem->res.usage > 0) {
  978. int progress;
  979. if (signal_pending(current)) {
  980. ret = -EINTR;
  981. goto out;
  982. }
  983. progress = try_to_free_mem_cgroup_pages(mem,
  984. GFP_HIGHUSER_MOVABLE);
  985. if (!progress) {
  986. nr_retries--;
  987. /* maybe some writeback is necessary */
  988. congestion_wait(WRITE, HZ/10);
  989. }
  990. }
  991. /* try move_account...there may be some *locked* pages. */
  992. if (mem->res.usage)
  993. goto move_account;
  994. ret = 0;
  995. goto out;
  996. }
  997. int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
  998. {
  999. return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
  1000. }
  1001. static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
  1002. {
  1003. return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
  1004. cft->private);
  1005. }
  1006. /*
  1007. * The user of this function is...
  1008. * RES_LIMIT.
  1009. */
  1010. static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
  1011. const char *buffer)
  1012. {
  1013. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  1014. unsigned long long val;
  1015. int ret;
  1016. switch (cft->private) {
  1017. case RES_LIMIT:
  1018. /* This function does all necessary parse...reuse it */
  1019. ret = res_counter_memparse_write_strategy(buffer, &val);
  1020. if (!ret)
  1021. ret = mem_cgroup_resize_limit(memcg, val);
  1022. break;
  1023. default:
  1024. ret = -EINVAL; /* should be BUG() ? */
  1025. break;
  1026. }
  1027. return ret;
  1028. }
  1029. static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
  1030. {
  1031. struct mem_cgroup *mem;
  1032. mem = mem_cgroup_from_cont(cont);
  1033. switch (event) {
  1034. case RES_MAX_USAGE:
  1035. res_counter_reset_max(&mem->res);
  1036. break;
  1037. case RES_FAILCNT:
  1038. res_counter_reset_failcnt(&mem->res);
  1039. break;
  1040. }
  1041. return 0;
  1042. }
  1043. static const struct mem_cgroup_stat_desc {
  1044. const char *msg;
  1045. u64 unit;
  1046. } mem_cgroup_stat_desc[] = {
  1047. [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
  1048. [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
  1049. [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
  1050. [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
  1051. };
  1052. static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
  1053. struct cgroup_map_cb *cb)
  1054. {
  1055. struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
  1056. struct mem_cgroup_stat *stat = &mem_cont->stat;
  1057. int i;
  1058. for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
  1059. s64 val;
  1060. val = mem_cgroup_read_stat(stat, i);
  1061. val *= mem_cgroup_stat_desc[i].unit;
  1062. cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
  1063. }
  1064. /* showing # of active pages */
  1065. {
  1066. unsigned long active_anon, inactive_anon;
  1067. unsigned long active_file, inactive_file;
  1068. unsigned long unevictable;
  1069. inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
  1070. LRU_INACTIVE_ANON);
  1071. active_anon = mem_cgroup_get_all_zonestat(mem_cont,
  1072. LRU_ACTIVE_ANON);
  1073. inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
  1074. LRU_INACTIVE_FILE);
  1075. active_file = mem_cgroup_get_all_zonestat(mem_cont,
  1076. LRU_ACTIVE_FILE);
  1077. unevictable = mem_cgroup_get_all_zonestat(mem_cont,
  1078. LRU_UNEVICTABLE);
  1079. cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
  1080. cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
  1081. cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
  1082. cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
  1083. cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
  1084. }
  1085. return 0;
  1086. }
  1087. static struct cftype mem_cgroup_files[] = {
  1088. {
  1089. .name = "usage_in_bytes",
  1090. .private = RES_USAGE,
  1091. .read_u64 = mem_cgroup_read,
  1092. },
  1093. {
  1094. .name = "max_usage_in_bytes",
  1095. .private = RES_MAX_USAGE,
  1096. .trigger = mem_cgroup_reset,
  1097. .read_u64 = mem_cgroup_read,
  1098. },
  1099. {
  1100. .name = "limit_in_bytes",
  1101. .private = RES_LIMIT,
  1102. .write_string = mem_cgroup_write,
  1103. .read_u64 = mem_cgroup_read,
  1104. },
  1105. {
  1106. .name = "failcnt",
  1107. .private = RES_FAILCNT,
  1108. .trigger = mem_cgroup_reset,
  1109. .read_u64 = mem_cgroup_read,
  1110. },
  1111. {
  1112. .name = "stat",
  1113. .read_map = mem_control_stat_show,
  1114. },
  1115. {
  1116. .name = "force_empty",
  1117. .trigger = mem_cgroup_force_empty_write,
  1118. },
  1119. };
  1120. static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
  1121. {
  1122. struct mem_cgroup_per_node *pn;
  1123. struct mem_cgroup_per_zone *mz;
  1124. enum lru_list l;
  1125. int zone, tmp = node;
  1126. /*
  1127. * This routine is called against possible nodes.
  1128. * But it's BUG to call kmalloc() against offline node.
  1129. *
  1130. * TODO: this routine can waste much memory for nodes which will
  1131. * never be onlined. It's better to use memory hotplug callback
  1132. * function.
  1133. */
  1134. if (!node_state(node, N_NORMAL_MEMORY))
  1135. tmp = -1;
  1136. pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  1137. if (!pn)
  1138. return 1;
  1139. mem->info.nodeinfo[node] = pn;
  1140. memset(pn, 0, sizeof(*pn));
  1141. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  1142. mz = &pn->zoneinfo[zone];
  1143. spin_lock_init(&mz->lru_lock);
  1144. for_each_lru(l)
  1145. INIT_LIST_HEAD(&mz->lists[l]);
  1146. }
  1147. return 0;
  1148. }
  1149. static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
  1150. {
  1151. kfree(mem->info.nodeinfo[node]);
  1152. }
  1153. static int mem_cgroup_size(void)
  1154. {
  1155. int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
  1156. return sizeof(struct mem_cgroup) + cpustat_size;
  1157. }
  1158. static struct mem_cgroup *mem_cgroup_alloc(void)
  1159. {
  1160. struct mem_cgroup *mem;
  1161. int size = mem_cgroup_size();
  1162. if (size < PAGE_SIZE)
  1163. mem = kmalloc(size, GFP_KERNEL);
  1164. else
  1165. mem = vmalloc(size);
  1166. if (mem)
  1167. memset(mem, 0, size);
  1168. return mem;
  1169. }
  1170. static void mem_cgroup_free(struct mem_cgroup *mem)
  1171. {
  1172. if (mem_cgroup_size() < PAGE_SIZE)
  1173. kfree(mem);
  1174. else
  1175. vfree(mem);
  1176. }
  1177. static struct cgroup_subsys_state *
  1178. mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
  1179. {
  1180. struct mem_cgroup *mem;
  1181. int node;
  1182. mem = mem_cgroup_alloc();
  1183. if (!mem)
  1184. return ERR_PTR(-ENOMEM);
  1185. res_counter_init(&mem->res);
  1186. for_each_node_state(node, N_POSSIBLE)
  1187. if (alloc_mem_cgroup_per_zone_info(mem, node))
  1188. goto free_out;
  1189. return &mem->css;
  1190. free_out:
  1191. for_each_node_state(node, N_POSSIBLE)
  1192. free_mem_cgroup_per_zone_info(mem, node);
  1193. mem_cgroup_free(mem);
  1194. return ERR_PTR(-ENOMEM);
  1195. }
  1196. static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
  1197. struct cgroup *cont)
  1198. {
  1199. struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
  1200. mem_cgroup_force_empty(mem, false);
  1201. }
  1202. static void mem_cgroup_destroy(struct cgroup_subsys *ss,
  1203. struct cgroup *cont)
  1204. {
  1205. int node;
  1206. struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
  1207. for_each_node_state(node, N_POSSIBLE)
  1208. free_mem_cgroup_per_zone_info(mem, node);
  1209. mem_cgroup_free(mem_cgroup_from_cont(cont));
  1210. }
  1211. static int mem_cgroup_populate(struct cgroup_subsys *ss,
  1212. struct cgroup *cont)
  1213. {
  1214. return cgroup_add_files(cont, ss, mem_cgroup_files,
  1215. ARRAY_SIZE(mem_cgroup_files));
  1216. }
  1217. static void mem_cgroup_move_task(struct cgroup_subsys *ss,
  1218. struct cgroup *cont,
  1219. struct cgroup *old_cont,
  1220. struct task_struct *p)
  1221. {
  1222. struct mm_struct *mm;
  1223. struct mem_cgroup *mem, *old_mem;
  1224. mm = get_task_mm(p);
  1225. if (mm == NULL)
  1226. return;
  1227. mem = mem_cgroup_from_cont(cont);
  1228. old_mem = mem_cgroup_from_cont(old_cont);
  1229. /*
  1230. * Only thread group leaders are allowed to migrate, the mm_struct is
  1231. * in effect owned by the leader
  1232. */
  1233. if (!thread_group_leader(p))
  1234. goto out;
  1235. out:
  1236. mmput(mm);
  1237. }
  1238. struct cgroup_subsys mem_cgroup_subsys = {
  1239. .name = "memory",
  1240. .subsys_id = mem_cgroup_subsys_id,
  1241. .create = mem_cgroup_create,
  1242. .pre_destroy = mem_cgroup_pre_destroy,
  1243. .destroy = mem_cgroup_destroy,
  1244. .populate = mem_cgroup_populate,
  1245. .attach = mem_cgroup_move_task,
  1246. .early_init = 0,
  1247. };