slub.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemcheck.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpuset.h>
  22. #include <linux/mempolicy.h>
  23. #include <linux/ctype.h>
  24. #include <linux/debugobjects.h>
  25. #include <linux/kallsyms.h>
  26. #include <linux/memory.h>
  27. #include <linux/math64.h>
  28. #include <linux/fault-inject.h>
  29. /*
  30. * Lock order:
  31. * 1. slab_lock(page)
  32. * 2. slab->list_lock
  33. *
  34. * The slab_lock protects operations on the object of a particular
  35. * slab and its metadata in the page struct. If the slab lock
  36. * has been taken then no allocations nor frees can be performed
  37. * on the objects in the slab nor can the slab be added or removed
  38. * from the partial or full lists since this would mean modifying
  39. * the page_struct of the slab.
  40. *
  41. * The list_lock protects the partial and full list on each node and
  42. * the partial slab counter. If taken then no new slabs may be added or
  43. * removed from the lists nor make the number of partial slabs be modified.
  44. * (Note that the total number of slabs is an atomic value that may be
  45. * modified without taking the list lock).
  46. *
  47. * The list_lock is a centralized lock and thus we avoid taking it as
  48. * much as possible. As long as SLUB does not have to handle partial
  49. * slabs, operations can continue without any centralized lock. F.e.
  50. * allocating a long series of objects that fill up slabs does not require
  51. * the list lock.
  52. *
  53. * The lock order is sometimes inverted when we are trying to get a slab
  54. * off a list. We take the list_lock and then look for a page on the list
  55. * to use. While we do that objects in the slabs may be freed. We can
  56. * only operate on the slab if we have also taken the slab_lock. So we use
  57. * a slab_trylock() on the slab. If trylock was successful then no frees
  58. * can occur anymore and we can use the slab for allocations etc. If the
  59. * slab_trylock() does not succeed then frees are in progress in the slab and
  60. * we must stay away from it for a while since we may cause a bouncing
  61. * cacheline if we try to acquire the lock. So go onto the next slab.
  62. * If all pages are busy then we may allocate a new slab instead of reusing
  63. * a partial slab. A new slab has noone operating on it and thus there is
  64. * no danger of cacheline contention.
  65. *
  66. * Interrupts are disabled during allocation and deallocation in order to
  67. * make the slab allocator safe to use in the context of an irq. In addition
  68. * interrupts are disabled to ensure that the processor does not change
  69. * while handling per_cpu slabs, due to kernel preemption.
  70. *
  71. * SLUB assigns one slab for allocation to each processor.
  72. * Allocations only occur from these slabs called cpu slabs.
  73. *
  74. * Slabs with free elements are kept on a partial list and during regular
  75. * operations no list for full slabs is used. If an object in a full slab is
  76. * freed then the slab will show up again on the partial lists.
  77. * We track full slabs for debugging purposes though because otherwise we
  78. * cannot scan all objects.
  79. *
  80. * Slabs are freed when they become empty. Teardown and setup is
  81. * minimal so we rely on the page allocators per cpu caches for
  82. * fast frees and allocs.
  83. *
  84. * Overloading of page flags that are otherwise used for LRU management.
  85. *
  86. * PageActive The slab is frozen and exempt from list processing.
  87. * This means that the slab is dedicated to a purpose
  88. * such as satisfying allocations for a specific
  89. * processor. Objects may be freed in the slab while
  90. * it is frozen but slab_free will then skip the usual
  91. * list operations. It is up to the processor holding
  92. * the slab to integrate the slab into the slab lists
  93. * when the slab is no longer needed.
  94. *
  95. * One use of this flag is to mark slabs that are
  96. * used for allocations. Then such a slab becomes a cpu
  97. * slab. The cpu slab may be equipped with an additional
  98. * freelist that allows lockless access to
  99. * free objects in addition to the regular freelist
  100. * that requires the slab lock.
  101. *
  102. * PageError Slab requires special handling due to debug
  103. * options set. This moves slab handling out of
  104. * the fast path and disables lockless freelists.
  105. */
  106. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  107. SLAB_TRACE | SLAB_DEBUG_FREE)
  108. static inline int kmem_cache_debug(struct kmem_cache *s)
  109. {
  110. #ifdef CONFIG_SLUB_DEBUG
  111. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  112. #else
  113. return 0;
  114. #endif
  115. }
  116. /*
  117. * Issues still to be resolved:
  118. *
  119. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  120. *
  121. * - Variable sizing of the per node arrays
  122. */
  123. /* Enable to test recovery from slab corruption on boot */
  124. #undef SLUB_RESILIENCY_TEST
  125. /*
  126. * Mininum number of partial slabs. These will be left on the partial
  127. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  128. */
  129. #define MIN_PARTIAL 5
  130. /*
  131. * Maximum number of desirable partial slabs.
  132. * The existence of more partial slabs makes kmem_cache_shrink
  133. * sort the partial list by the number of objects in the.
  134. */
  135. #define MAX_PARTIAL 10
  136. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  137. SLAB_POISON | SLAB_STORE_USER)
  138. /*
  139. * Debugging flags that require metadata to be stored in the slab. These get
  140. * disabled when slub_debug=O is used and a cache's min order increases with
  141. * metadata.
  142. */
  143. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  144. /*
  145. * Set of flags that will prevent slab merging
  146. */
  147. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  148. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  149. SLAB_FAILSLAB)
  150. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  151. SLAB_CACHE_DMA | SLAB_NOTRACK)
  152. #define OO_SHIFT 16
  153. #define OO_MASK ((1 << OO_SHIFT) - 1)
  154. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  155. /* Internal SLUB flags */
  156. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  157. static int kmem_size = sizeof(struct kmem_cache);
  158. #ifdef CONFIG_SMP
  159. static struct notifier_block slab_notifier;
  160. #endif
  161. static enum {
  162. DOWN, /* No slab functionality available */
  163. PARTIAL, /* Kmem_cache_node works */
  164. UP, /* Everything works but does not show up in sysfs */
  165. SYSFS /* Sysfs up */
  166. } slab_state = DOWN;
  167. /* A list of all slab caches on the system */
  168. static DECLARE_RWSEM(slub_lock);
  169. static LIST_HEAD(slab_caches);
  170. /*
  171. * Tracking user of a slab.
  172. */
  173. struct track {
  174. unsigned long addr; /* Called from address */
  175. int cpu; /* Was running on cpu */
  176. int pid; /* Pid context */
  177. unsigned long when; /* When did the operation occur */
  178. };
  179. enum track_item { TRACK_ALLOC, TRACK_FREE };
  180. #ifdef CONFIG_SLUB_DEBUG
  181. static int sysfs_slab_add(struct kmem_cache *);
  182. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  183. static void sysfs_slab_remove(struct kmem_cache *);
  184. #else
  185. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  186. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  187. { return 0; }
  188. static inline void sysfs_slab_remove(struct kmem_cache *s)
  189. {
  190. kfree(s);
  191. }
  192. #endif
  193. static inline void stat(struct kmem_cache *s, enum stat_item si)
  194. {
  195. #ifdef CONFIG_SLUB_STATS
  196. __this_cpu_inc(s->cpu_slab->stat[si]);
  197. #endif
  198. }
  199. /********************************************************************
  200. * Core slab cache functions
  201. *******************************************************************/
  202. int slab_is_available(void)
  203. {
  204. return slab_state >= UP;
  205. }
  206. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  207. {
  208. #ifdef CONFIG_NUMA
  209. return s->node[node];
  210. #else
  211. return &s->local_node;
  212. #endif
  213. }
  214. /* Verify that a pointer has an address that is valid within a slab page */
  215. static inline int check_valid_pointer(struct kmem_cache *s,
  216. struct page *page, const void *object)
  217. {
  218. void *base;
  219. if (!object)
  220. return 1;
  221. base = page_address(page);
  222. if (object < base || object >= base + page->objects * s->size ||
  223. (object - base) % s->size) {
  224. return 0;
  225. }
  226. return 1;
  227. }
  228. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  229. {
  230. return *(void **)(object + s->offset);
  231. }
  232. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  233. {
  234. *(void **)(object + s->offset) = fp;
  235. }
  236. /* Loop over all objects in a slab */
  237. #define for_each_object(__p, __s, __addr, __objects) \
  238. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  239. __p += (__s)->size)
  240. /* Scan freelist */
  241. #define for_each_free_object(__p, __s, __free) \
  242. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  243. /* Determine object index from a given position */
  244. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  245. {
  246. return (p - addr) / s->size;
  247. }
  248. static inline struct kmem_cache_order_objects oo_make(int order,
  249. unsigned long size)
  250. {
  251. struct kmem_cache_order_objects x = {
  252. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  253. };
  254. return x;
  255. }
  256. static inline int oo_order(struct kmem_cache_order_objects x)
  257. {
  258. return x.x >> OO_SHIFT;
  259. }
  260. static inline int oo_objects(struct kmem_cache_order_objects x)
  261. {
  262. return x.x & OO_MASK;
  263. }
  264. #ifdef CONFIG_SLUB_DEBUG
  265. /*
  266. * Debug settings:
  267. */
  268. #ifdef CONFIG_SLUB_DEBUG_ON
  269. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  270. #else
  271. static int slub_debug;
  272. #endif
  273. static char *slub_debug_slabs;
  274. static int disable_higher_order_debug;
  275. /*
  276. * Object debugging
  277. */
  278. static void print_section(char *text, u8 *addr, unsigned int length)
  279. {
  280. int i, offset;
  281. int newline = 1;
  282. char ascii[17];
  283. ascii[16] = 0;
  284. for (i = 0; i < length; i++) {
  285. if (newline) {
  286. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  287. newline = 0;
  288. }
  289. printk(KERN_CONT " %02x", addr[i]);
  290. offset = i % 16;
  291. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  292. if (offset == 15) {
  293. printk(KERN_CONT " %s\n", ascii);
  294. newline = 1;
  295. }
  296. }
  297. if (!newline) {
  298. i %= 16;
  299. while (i < 16) {
  300. printk(KERN_CONT " ");
  301. ascii[i] = ' ';
  302. i++;
  303. }
  304. printk(KERN_CONT " %s\n", ascii);
  305. }
  306. }
  307. static struct track *get_track(struct kmem_cache *s, void *object,
  308. enum track_item alloc)
  309. {
  310. struct track *p;
  311. if (s->offset)
  312. p = object + s->offset + sizeof(void *);
  313. else
  314. p = object + s->inuse;
  315. return p + alloc;
  316. }
  317. static void set_track(struct kmem_cache *s, void *object,
  318. enum track_item alloc, unsigned long addr)
  319. {
  320. struct track *p = get_track(s, object, alloc);
  321. if (addr) {
  322. p->addr = addr;
  323. p->cpu = smp_processor_id();
  324. p->pid = current->pid;
  325. p->when = jiffies;
  326. } else
  327. memset(p, 0, sizeof(struct track));
  328. }
  329. static void init_tracking(struct kmem_cache *s, void *object)
  330. {
  331. if (!(s->flags & SLAB_STORE_USER))
  332. return;
  333. set_track(s, object, TRACK_FREE, 0UL);
  334. set_track(s, object, TRACK_ALLOC, 0UL);
  335. }
  336. static void print_track(const char *s, struct track *t)
  337. {
  338. if (!t->addr)
  339. return;
  340. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  341. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  342. }
  343. static void print_tracking(struct kmem_cache *s, void *object)
  344. {
  345. if (!(s->flags & SLAB_STORE_USER))
  346. return;
  347. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  348. print_track("Freed", get_track(s, object, TRACK_FREE));
  349. }
  350. static void print_page_info(struct page *page)
  351. {
  352. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  353. page, page->objects, page->inuse, page->freelist, page->flags);
  354. }
  355. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  356. {
  357. va_list args;
  358. char buf[100];
  359. va_start(args, fmt);
  360. vsnprintf(buf, sizeof(buf), fmt, args);
  361. va_end(args);
  362. printk(KERN_ERR "========================================"
  363. "=====================================\n");
  364. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  365. printk(KERN_ERR "----------------------------------------"
  366. "-------------------------------------\n\n");
  367. }
  368. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  369. {
  370. va_list args;
  371. char buf[100];
  372. va_start(args, fmt);
  373. vsnprintf(buf, sizeof(buf), fmt, args);
  374. va_end(args);
  375. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  376. }
  377. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  378. {
  379. unsigned int off; /* Offset of last byte */
  380. u8 *addr = page_address(page);
  381. print_tracking(s, p);
  382. print_page_info(page);
  383. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  384. p, p - addr, get_freepointer(s, p));
  385. if (p > addr + 16)
  386. print_section("Bytes b4", p - 16, 16);
  387. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  388. if (s->flags & SLAB_RED_ZONE)
  389. print_section("Redzone", p + s->objsize,
  390. s->inuse - s->objsize);
  391. if (s->offset)
  392. off = s->offset + sizeof(void *);
  393. else
  394. off = s->inuse;
  395. if (s->flags & SLAB_STORE_USER)
  396. off += 2 * sizeof(struct track);
  397. if (off != s->size)
  398. /* Beginning of the filler is the free pointer */
  399. print_section("Padding", p + off, s->size - off);
  400. dump_stack();
  401. }
  402. static void object_err(struct kmem_cache *s, struct page *page,
  403. u8 *object, char *reason)
  404. {
  405. slab_bug(s, "%s", reason);
  406. print_trailer(s, page, object);
  407. }
  408. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  409. {
  410. va_list args;
  411. char buf[100];
  412. va_start(args, fmt);
  413. vsnprintf(buf, sizeof(buf), fmt, args);
  414. va_end(args);
  415. slab_bug(s, "%s", buf);
  416. print_page_info(page);
  417. dump_stack();
  418. }
  419. static void init_object(struct kmem_cache *s, void *object, int active)
  420. {
  421. u8 *p = object;
  422. if (s->flags & __OBJECT_POISON) {
  423. memset(p, POISON_FREE, s->objsize - 1);
  424. p[s->objsize - 1] = POISON_END;
  425. }
  426. if (s->flags & SLAB_RED_ZONE)
  427. memset(p + s->objsize,
  428. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  429. s->inuse - s->objsize);
  430. }
  431. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  432. {
  433. while (bytes) {
  434. if (*start != (u8)value)
  435. return start;
  436. start++;
  437. bytes--;
  438. }
  439. return NULL;
  440. }
  441. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  442. void *from, void *to)
  443. {
  444. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  445. memset(from, data, to - from);
  446. }
  447. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  448. u8 *object, char *what,
  449. u8 *start, unsigned int value, unsigned int bytes)
  450. {
  451. u8 *fault;
  452. u8 *end;
  453. fault = check_bytes(start, value, bytes);
  454. if (!fault)
  455. return 1;
  456. end = start + bytes;
  457. while (end > fault && end[-1] == value)
  458. end--;
  459. slab_bug(s, "%s overwritten", what);
  460. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  461. fault, end - 1, fault[0], value);
  462. print_trailer(s, page, object);
  463. restore_bytes(s, what, value, fault, end);
  464. return 0;
  465. }
  466. /*
  467. * Object layout:
  468. *
  469. * object address
  470. * Bytes of the object to be managed.
  471. * If the freepointer may overlay the object then the free
  472. * pointer is the first word of the object.
  473. *
  474. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  475. * 0xa5 (POISON_END)
  476. *
  477. * object + s->objsize
  478. * Padding to reach word boundary. This is also used for Redzoning.
  479. * Padding is extended by another word if Redzoning is enabled and
  480. * objsize == inuse.
  481. *
  482. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  483. * 0xcc (RED_ACTIVE) for objects in use.
  484. *
  485. * object + s->inuse
  486. * Meta data starts here.
  487. *
  488. * A. Free pointer (if we cannot overwrite object on free)
  489. * B. Tracking data for SLAB_STORE_USER
  490. * C. Padding to reach required alignment boundary or at mininum
  491. * one word if debugging is on to be able to detect writes
  492. * before the word boundary.
  493. *
  494. * Padding is done using 0x5a (POISON_INUSE)
  495. *
  496. * object + s->size
  497. * Nothing is used beyond s->size.
  498. *
  499. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  500. * ignored. And therefore no slab options that rely on these boundaries
  501. * may be used with merged slabcaches.
  502. */
  503. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  504. {
  505. unsigned long off = s->inuse; /* The end of info */
  506. if (s->offset)
  507. /* Freepointer is placed after the object. */
  508. off += sizeof(void *);
  509. if (s->flags & SLAB_STORE_USER)
  510. /* We also have user information there */
  511. off += 2 * sizeof(struct track);
  512. if (s->size == off)
  513. return 1;
  514. return check_bytes_and_report(s, page, p, "Object padding",
  515. p + off, POISON_INUSE, s->size - off);
  516. }
  517. /* Check the pad bytes at the end of a slab page */
  518. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  519. {
  520. u8 *start;
  521. u8 *fault;
  522. u8 *end;
  523. int length;
  524. int remainder;
  525. if (!(s->flags & SLAB_POISON))
  526. return 1;
  527. start = page_address(page);
  528. length = (PAGE_SIZE << compound_order(page));
  529. end = start + length;
  530. remainder = length % s->size;
  531. if (!remainder)
  532. return 1;
  533. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  534. if (!fault)
  535. return 1;
  536. while (end > fault && end[-1] == POISON_INUSE)
  537. end--;
  538. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  539. print_section("Padding", end - remainder, remainder);
  540. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  541. return 0;
  542. }
  543. static int check_object(struct kmem_cache *s, struct page *page,
  544. void *object, int active)
  545. {
  546. u8 *p = object;
  547. u8 *endobject = object + s->objsize;
  548. if (s->flags & SLAB_RED_ZONE) {
  549. unsigned int red =
  550. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  551. if (!check_bytes_and_report(s, page, object, "Redzone",
  552. endobject, red, s->inuse - s->objsize))
  553. return 0;
  554. } else {
  555. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  556. check_bytes_and_report(s, page, p, "Alignment padding",
  557. endobject, POISON_INUSE, s->inuse - s->objsize);
  558. }
  559. }
  560. if (s->flags & SLAB_POISON) {
  561. if (!active && (s->flags & __OBJECT_POISON) &&
  562. (!check_bytes_and_report(s, page, p, "Poison", p,
  563. POISON_FREE, s->objsize - 1) ||
  564. !check_bytes_and_report(s, page, p, "Poison",
  565. p + s->objsize - 1, POISON_END, 1)))
  566. return 0;
  567. /*
  568. * check_pad_bytes cleans up on its own.
  569. */
  570. check_pad_bytes(s, page, p);
  571. }
  572. if (!s->offset && active)
  573. /*
  574. * Object and freepointer overlap. Cannot check
  575. * freepointer while object is allocated.
  576. */
  577. return 1;
  578. /* Check free pointer validity */
  579. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  580. object_err(s, page, p, "Freepointer corrupt");
  581. /*
  582. * No choice but to zap it and thus lose the remainder
  583. * of the free objects in this slab. May cause
  584. * another error because the object count is now wrong.
  585. */
  586. set_freepointer(s, p, NULL);
  587. return 0;
  588. }
  589. return 1;
  590. }
  591. static int check_slab(struct kmem_cache *s, struct page *page)
  592. {
  593. int maxobj;
  594. VM_BUG_ON(!irqs_disabled());
  595. if (!PageSlab(page)) {
  596. slab_err(s, page, "Not a valid slab page");
  597. return 0;
  598. }
  599. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  600. if (page->objects > maxobj) {
  601. slab_err(s, page, "objects %u > max %u",
  602. s->name, page->objects, maxobj);
  603. return 0;
  604. }
  605. if (page->inuse > page->objects) {
  606. slab_err(s, page, "inuse %u > max %u",
  607. s->name, page->inuse, page->objects);
  608. return 0;
  609. }
  610. /* Slab_pad_check fixes things up after itself */
  611. slab_pad_check(s, page);
  612. return 1;
  613. }
  614. /*
  615. * Determine if a certain object on a page is on the freelist. Must hold the
  616. * slab lock to guarantee that the chains are in a consistent state.
  617. */
  618. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  619. {
  620. int nr = 0;
  621. void *fp = page->freelist;
  622. void *object = NULL;
  623. unsigned long max_objects;
  624. while (fp && nr <= page->objects) {
  625. if (fp == search)
  626. return 1;
  627. if (!check_valid_pointer(s, page, fp)) {
  628. if (object) {
  629. object_err(s, page, object,
  630. "Freechain corrupt");
  631. set_freepointer(s, object, NULL);
  632. break;
  633. } else {
  634. slab_err(s, page, "Freepointer corrupt");
  635. page->freelist = NULL;
  636. page->inuse = page->objects;
  637. slab_fix(s, "Freelist cleared");
  638. return 0;
  639. }
  640. break;
  641. }
  642. object = fp;
  643. fp = get_freepointer(s, object);
  644. nr++;
  645. }
  646. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  647. if (max_objects > MAX_OBJS_PER_PAGE)
  648. max_objects = MAX_OBJS_PER_PAGE;
  649. if (page->objects != max_objects) {
  650. slab_err(s, page, "Wrong number of objects. Found %d but "
  651. "should be %d", page->objects, max_objects);
  652. page->objects = max_objects;
  653. slab_fix(s, "Number of objects adjusted.");
  654. }
  655. if (page->inuse != page->objects - nr) {
  656. slab_err(s, page, "Wrong object count. Counter is %d but "
  657. "counted were %d", page->inuse, page->objects - nr);
  658. page->inuse = page->objects - nr;
  659. slab_fix(s, "Object count adjusted.");
  660. }
  661. return search == NULL;
  662. }
  663. static void trace(struct kmem_cache *s, struct page *page, void *object,
  664. int alloc)
  665. {
  666. if (s->flags & SLAB_TRACE) {
  667. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  668. s->name,
  669. alloc ? "alloc" : "free",
  670. object, page->inuse,
  671. page->freelist);
  672. if (!alloc)
  673. print_section("Object", (void *)object, s->objsize);
  674. dump_stack();
  675. }
  676. }
  677. /*
  678. * Hooks for other subsystems that check memory allocations. In a typical
  679. * production configuration these hooks all should produce no code at all.
  680. */
  681. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  682. {
  683. flags &= gfp_allowed_mask;
  684. lockdep_trace_alloc(flags);
  685. might_sleep_if(flags & __GFP_WAIT);
  686. return should_failslab(s->objsize, flags, s->flags);
  687. }
  688. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  689. {
  690. flags &= gfp_allowed_mask;
  691. kmemcheck_slab_alloc(s, flags, object, s->objsize);
  692. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  693. }
  694. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  695. {
  696. kmemleak_free_recursive(x, s->flags);
  697. }
  698. static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
  699. {
  700. kmemcheck_slab_free(s, object, s->objsize);
  701. debug_check_no_locks_freed(object, s->objsize);
  702. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  703. debug_check_no_obj_freed(object, s->objsize);
  704. }
  705. /*
  706. * Tracking of fully allocated slabs for debugging purposes.
  707. */
  708. static void add_full(struct kmem_cache_node *n, struct page *page)
  709. {
  710. spin_lock(&n->list_lock);
  711. list_add(&page->lru, &n->full);
  712. spin_unlock(&n->list_lock);
  713. }
  714. static void remove_full(struct kmem_cache *s, struct page *page)
  715. {
  716. struct kmem_cache_node *n;
  717. if (!(s->flags & SLAB_STORE_USER))
  718. return;
  719. n = get_node(s, page_to_nid(page));
  720. spin_lock(&n->list_lock);
  721. list_del(&page->lru);
  722. spin_unlock(&n->list_lock);
  723. }
  724. /* Tracking of the number of slabs for debugging purposes */
  725. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  726. {
  727. struct kmem_cache_node *n = get_node(s, node);
  728. return atomic_long_read(&n->nr_slabs);
  729. }
  730. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  731. {
  732. return atomic_long_read(&n->nr_slabs);
  733. }
  734. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  735. {
  736. struct kmem_cache_node *n = get_node(s, node);
  737. /*
  738. * May be called early in order to allocate a slab for the
  739. * kmem_cache_node structure. Solve the chicken-egg
  740. * dilemma by deferring the increment of the count during
  741. * bootstrap (see early_kmem_cache_node_alloc).
  742. */
  743. if (!NUMA_BUILD || n) {
  744. atomic_long_inc(&n->nr_slabs);
  745. atomic_long_add(objects, &n->total_objects);
  746. }
  747. }
  748. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  749. {
  750. struct kmem_cache_node *n = get_node(s, node);
  751. atomic_long_dec(&n->nr_slabs);
  752. atomic_long_sub(objects, &n->total_objects);
  753. }
  754. /* Object debug checks for alloc/free paths */
  755. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  756. void *object)
  757. {
  758. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  759. return;
  760. init_object(s, object, 0);
  761. init_tracking(s, object);
  762. }
  763. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  764. void *object, unsigned long addr)
  765. {
  766. if (!check_slab(s, page))
  767. goto bad;
  768. if (!on_freelist(s, page, object)) {
  769. object_err(s, page, object, "Object already allocated");
  770. goto bad;
  771. }
  772. if (!check_valid_pointer(s, page, object)) {
  773. object_err(s, page, object, "Freelist Pointer check fails");
  774. goto bad;
  775. }
  776. if (!check_object(s, page, object, 0))
  777. goto bad;
  778. /* Success perform special debug activities for allocs */
  779. if (s->flags & SLAB_STORE_USER)
  780. set_track(s, object, TRACK_ALLOC, addr);
  781. trace(s, page, object, 1);
  782. init_object(s, object, 1);
  783. return 1;
  784. bad:
  785. if (PageSlab(page)) {
  786. /*
  787. * If this is a slab page then lets do the best we can
  788. * to avoid issues in the future. Marking all objects
  789. * as used avoids touching the remaining objects.
  790. */
  791. slab_fix(s, "Marking all objects used");
  792. page->inuse = page->objects;
  793. page->freelist = NULL;
  794. }
  795. return 0;
  796. }
  797. static noinline int free_debug_processing(struct kmem_cache *s,
  798. struct page *page, void *object, unsigned long addr)
  799. {
  800. if (!check_slab(s, page))
  801. goto fail;
  802. if (!check_valid_pointer(s, page, object)) {
  803. slab_err(s, page, "Invalid object pointer 0x%p", object);
  804. goto fail;
  805. }
  806. if (on_freelist(s, page, object)) {
  807. object_err(s, page, object, "Object already free");
  808. goto fail;
  809. }
  810. if (!check_object(s, page, object, 1))
  811. return 0;
  812. if (unlikely(s != page->slab)) {
  813. if (!PageSlab(page)) {
  814. slab_err(s, page, "Attempt to free object(0x%p) "
  815. "outside of slab", object);
  816. } else if (!page->slab) {
  817. printk(KERN_ERR
  818. "SLUB <none>: no slab for object 0x%p.\n",
  819. object);
  820. dump_stack();
  821. } else
  822. object_err(s, page, object,
  823. "page slab pointer corrupt.");
  824. goto fail;
  825. }
  826. /* Special debug activities for freeing objects */
  827. if (!PageSlubFrozen(page) && !page->freelist)
  828. remove_full(s, page);
  829. if (s->flags & SLAB_STORE_USER)
  830. set_track(s, object, TRACK_FREE, addr);
  831. trace(s, page, object, 0);
  832. init_object(s, object, 0);
  833. return 1;
  834. fail:
  835. slab_fix(s, "Object at 0x%p not freed", object);
  836. return 0;
  837. }
  838. static int __init setup_slub_debug(char *str)
  839. {
  840. slub_debug = DEBUG_DEFAULT_FLAGS;
  841. if (*str++ != '=' || !*str)
  842. /*
  843. * No options specified. Switch on full debugging.
  844. */
  845. goto out;
  846. if (*str == ',')
  847. /*
  848. * No options but restriction on slabs. This means full
  849. * debugging for slabs matching a pattern.
  850. */
  851. goto check_slabs;
  852. if (tolower(*str) == 'o') {
  853. /*
  854. * Avoid enabling debugging on caches if its minimum order
  855. * would increase as a result.
  856. */
  857. disable_higher_order_debug = 1;
  858. goto out;
  859. }
  860. slub_debug = 0;
  861. if (*str == '-')
  862. /*
  863. * Switch off all debugging measures.
  864. */
  865. goto out;
  866. /*
  867. * Determine which debug features should be switched on
  868. */
  869. for (; *str && *str != ','; str++) {
  870. switch (tolower(*str)) {
  871. case 'f':
  872. slub_debug |= SLAB_DEBUG_FREE;
  873. break;
  874. case 'z':
  875. slub_debug |= SLAB_RED_ZONE;
  876. break;
  877. case 'p':
  878. slub_debug |= SLAB_POISON;
  879. break;
  880. case 'u':
  881. slub_debug |= SLAB_STORE_USER;
  882. break;
  883. case 't':
  884. slub_debug |= SLAB_TRACE;
  885. break;
  886. case 'a':
  887. slub_debug |= SLAB_FAILSLAB;
  888. break;
  889. default:
  890. printk(KERN_ERR "slub_debug option '%c' "
  891. "unknown. skipped\n", *str);
  892. }
  893. }
  894. check_slabs:
  895. if (*str == ',')
  896. slub_debug_slabs = str + 1;
  897. out:
  898. return 1;
  899. }
  900. __setup("slub_debug", setup_slub_debug);
  901. static unsigned long kmem_cache_flags(unsigned long objsize,
  902. unsigned long flags, const char *name,
  903. void (*ctor)(void *))
  904. {
  905. /*
  906. * Enable debugging if selected on the kernel commandline.
  907. */
  908. if (slub_debug && (!slub_debug_slabs ||
  909. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  910. flags |= slub_debug;
  911. return flags;
  912. }
  913. #else
  914. static inline void setup_object_debug(struct kmem_cache *s,
  915. struct page *page, void *object) {}
  916. static inline int alloc_debug_processing(struct kmem_cache *s,
  917. struct page *page, void *object, unsigned long addr) { return 0; }
  918. static inline int free_debug_processing(struct kmem_cache *s,
  919. struct page *page, void *object, unsigned long addr) { return 0; }
  920. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  921. { return 1; }
  922. static inline int check_object(struct kmem_cache *s, struct page *page,
  923. void *object, int active) { return 1; }
  924. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  925. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  926. unsigned long flags, const char *name,
  927. void (*ctor)(void *))
  928. {
  929. return flags;
  930. }
  931. #define slub_debug 0
  932. #define disable_higher_order_debug 0
  933. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  934. { return 0; }
  935. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  936. { return 0; }
  937. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  938. int objects) {}
  939. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  940. int objects) {}
  941. #endif
  942. /*
  943. * Slab allocation and freeing
  944. */
  945. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  946. struct kmem_cache_order_objects oo)
  947. {
  948. int order = oo_order(oo);
  949. flags |= __GFP_NOTRACK;
  950. if (node == NUMA_NO_NODE)
  951. return alloc_pages(flags, order);
  952. else
  953. return alloc_pages_exact_node(node, flags, order);
  954. }
  955. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  956. {
  957. struct page *page;
  958. struct kmem_cache_order_objects oo = s->oo;
  959. gfp_t alloc_gfp;
  960. flags |= s->allocflags;
  961. /*
  962. * Let the initial higher-order allocation fail under memory pressure
  963. * so we fall-back to the minimum order allocation.
  964. */
  965. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  966. page = alloc_slab_page(alloc_gfp, node, oo);
  967. if (unlikely(!page)) {
  968. oo = s->min;
  969. /*
  970. * Allocation may have failed due to fragmentation.
  971. * Try a lower order alloc if possible
  972. */
  973. page = alloc_slab_page(flags, node, oo);
  974. if (!page)
  975. return NULL;
  976. stat(s, ORDER_FALLBACK);
  977. }
  978. if (kmemcheck_enabled
  979. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  980. int pages = 1 << oo_order(oo);
  981. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  982. /*
  983. * Objects from caches that have a constructor don't get
  984. * cleared when they're allocated, so we need to do it here.
  985. */
  986. if (s->ctor)
  987. kmemcheck_mark_uninitialized_pages(page, pages);
  988. else
  989. kmemcheck_mark_unallocated_pages(page, pages);
  990. }
  991. page->objects = oo_objects(oo);
  992. mod_zone_page_state(page_zone(page),
  993. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  994. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  995. 1 << oo_order(oo));
  996. return page;
  997. }
  998. static void setup_object(struct kmem_cache *s, struct page *page,
  999. void *object)
  1000. {
  1001. setup_object_debug(s, page, object);
  1002. if (unlikely(s->ctor))
  1003. s->ctor(object);
  1004. }
  1005. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1006. {
  1007. struct page *page;
  1008. void *start;
  1009. void *last;
  1010. void *p;
  1011. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1012. page = allocate_slab(s,
  1013. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1014. if (!page)
  1015. goto out;
  1016. inc_slabs_node(s, page_to_nid(page), page->objects);
  1017. page->slab = s;
  1018. page->flags |= 1 << PG_slab;
  1019. start = page_address(page);
  1020. if (unlikely(s->flags & SLAB_POISON))
  1021. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1022. last = start;
  1023. for_each_object(p, s, start, page->objects) {
  1024. setup_object(s, page, last);
  1025. set_freepointer(s, last, p);
  1026. last = p;
  1027. }
  1028. setup_object(s, page, last);
  1029. set_freepointer(s, last, NULL);
  1030. page->freelist = start;
  1031. page->inuse = 0;
  1032. out:
  1033. return page;
  1034. }
  1035. static void __free_slab(struct kmem_cache *s, struct page *page)
  1036. {
  1037. int order = compound_order(page);
  1038. int pages = 1 << order;
  1039. if (kmem_cache_debug(s)) {
  1040. void *p;
  1041. slab_pad_check(s, page);
  1042. for_each_object(p, s, page_address(page),
  1043. page->objects)
  1044. check_object(s, page, p, 0);
  1045. }
  1046. kmemcheck_free_shadow(page, compound_order(page));
  1047. mod_zone_page_state(page_zone(page),
  1048. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1049. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1050. -pages);
  1051. __ClearPageSlab(page);
  1052. reset_page_mapcount(page);
  1053. if (current->reclaim_state)
  1054. current->reclaim_state->reclaimed_slab += pages;
  1055. __free_pages(page, order);
  1056. }
  1057. static void rcu_free_slab(struct rcu_head *h)
  1058. {
  1059. struct page *page;
  1060. page = container_of((struct list_head *)h, struct page, lru);
  1061. __free_slab(page->slab, page);
  1062. }
  1063. static void free_slab(struct kmem_cache *s, struct page *page)
  1064. {
  1065. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1066. /*
  1067. * RCU free overloads the RCU head over the LRU
  1068. */
  1069. struct rcu_head *head = (void *)&page->lru;
  1070. call_rcu(head, rcu_free_slab);
  1071. } else
  1072. __free_slab(s, page);
  1073. }
  1074. static void discard_slab(struct kmem_cache *s, struct page *page)
  1075. {
  1076. dec_slabs_node(s, page_to_nid(page), page->objects);
  1077. free_slab(s, page);
  1078. }
  1079. /*
  1080. * Per slab locking using the pagelock
  1081. */
  1082. static __always_inline void slab_lock(struct page *page)
  1083. {
  1084. bit_spin_lock(PG_locked, &page->flags);
  1085. }
  1086. static __always_inline void slab_unlock(struct page *page)
  1087. {
  1088. __bit_spin_unlock(PG_locked, &page->flags);
  1089. }
  1090. static __always_inline int slab_trylock(struct page *page)
  1091. {
  1092. int rc = 1;
  1093. rc = bit_spin_trylock(PG_locked, &page->flags);
  1094. return rc;
  1095. }
  1096. /*
  1097. * Management of partially allocated slabs
  1098. */
  1099. static void add_partial(struct kmem_cache_node *n,
  1100. struct page *page, int tail)
  1101. {
  1102. spin_lock(&n->list_lock);
  1103. n->nr_partial++;
  1104. if (tail)
  1105. list_add_tail(&page->lru, &n->partial);
  1106. else
  1107. list_add(&page->lru, &n->partial);
  1108. spin_unlock(&n->list_lock);
  1109. }
  1110. static void remove_partial(struct kmem_cache *s, struct page *page)
  1111. {
  1112. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1113. spin_lock(&n->list_lock);
  1114. list_del(&page->lru);
  1115. n->nr_partial--;
  1116. spin_unlock(&n->list_lock);
  1117. }
  1118. /*
  1119. * Lock slab and remove from the partial list.
  1120. *
  1121. * Must hold list_lock.
  1122. */
  1123. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1124. struct page *page)
  1125. {
  1126. if (slab_trylock(page)) {
  1127. list_del(&page->lru);
  1128. n->nr_partial--;
  1129. __SetPageSlubFrozen(page);
  1130. return 1;
  1131. }
  1132. return 0;
  1133. }
  1134. /*
  1135. * Try to allocate a partial slab from a specific node.
  1136. */
  1137. static struct page *get_partial_node(struct kmem_cache_node *n)
  1138. {
  1139. struct page *page;
  1140. /*
  1141. * Racy check. If we mistakenly see no partial slabs then we
  1142. * just allocate an empty slab. If we mistakenly try to get a
  1143. * partial slab and there is none available then get_partials()
  1144. * will return NULL.
  1145. */
  1146. if (!n || !n->nr_partial)
  1147. return NULL;
  1148. spin_lock(&n->list_lock);
  1149. list_for_each_entry(page, &n->partial, lru)
  1150. if (lock_and_freeze_slab(n, page))
  1151. goto out;
  1152. page = NULL;
  1153. out:
  1154. spin_unlock(&n->list_lock);
  1155. return page;
  1156. }
  1157. /*
  1158. * Get a page from somewhere. Search in increasing NUMA distances.
  1159. */
  1160. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1161. {
  1162. #ifdef CONFIG_NUMA
  1163. struct zonelist *zonelist;
  1164. struct zoneref *z;
  1165. struct zone *zone;
  1166. enum zone_type high_zoneidx = gfp_zone(flags);
  1167. struct page *page;
  1168. /*
  1169. * The defrag ratio allows a configuration of the tradeoffs between
  1170. * inter node defragmentation and node local allocations. A lower
  1171. * defrag_ratio increases the tendency to do local allocations
  1172. * instead of attempting to obtain partial slabs from other nodes.
  1173. *
  1174. * If the defrag_ratio is set to 0 then kmalloc() always
  1175. * returns node local objects. If the ratio is higher then kmalloc()
  1176. * may return off node objects because partial slabs are obtained
  1177. * from other nodes and filled up.
  1178. *
  1179. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1180. * defrag_ratio = 1000) then every (well almost) allocation will
  1181. * first attempt to defrag slab caches on other nodes. This means
  1182. * scanning over all nodes to look for partial slabs which may be
  1183. * expensive if we do it every time we are trying to find a slab
  1184. * with available objects.
  1185. */
  1186. if (!s->remote_node_defrag_ratio ||
  1187. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1188. return NULL;
  1189. get_mems_allowed();
  1190. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1191. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1192. struct kmem_cache_node *n;
  1193. n = get_node(s, zone_to_nid(zone));
  1194. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1195. n->nr_partial > s->min_partial) {
  1196. page = get_partial_node(n);
  1197. if (page) {
  1198. put_mems_allowed();
  1199. return page;
  1200. }
  1201. }
  1202. }
  1203. put_mems_allowed();
  1204. #endif
  1205. return NULL;
  1206. }
  1207. /*
  1208. * Get a partial page, lock it and return it.
  1209. */
  1210. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1211. {
  1212. struct page *page;
  1213. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1214. page = get_partial_node(get_node(s, searchnode));
  1215. if (page || node != -1)
  1216. return page;
  1217. return get_any_partial(s, flags);
  1218. }
  1219. /*
  1220. * Move a page back to the lists.
  1221. *
  1222. * Must be called with the slab lock held.
  1223. *
  1224. * On exit the slab lock will have been dropped.
  1225. */
  1226. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1227. {
  1228. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1229. __ClearPageSlubFrozen(page);
  1230. if (page->inuse) {
  1231. if (page->freelist) {
  1232. add_partial(n, page, tail);
  1233. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1234. } else {
  1235. stat(s, DEACTIVATE_FULL);
  1236. if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
  1237. add_full(n, page);
  1238. }
  1239. slab_unlock(page);
  1240. } else {
  1241. stat(s, DEACTIVATE_EMPTY);
  1242. if (n->nr_partial < s->min_partial) {
  1243. /*
  1244. * Adding an empty slab to the partial slabs in order
  1245. * to avoid page allocator overhead. This slab needs
  1246. * to come after the other slabs with objects in
  1247. * so that the others get filled first. That way the
  1248. * size of the partial list stays small.
  1249. *
  1250. * kmem_cache_shrink can reclaim any empty slabs from
  1251. * the partial list.
  1252. */
  1253. add_partial(n, page, 1);
  1254. slab_unlock(page);
  1255. } else {
  1256. slab_unlock(page);
  1257. stat(s, FREE_SLAB);
  1258. discard_slab(s, page);
  1259. }
  1260. }
  1261. }
  1262. /*
  1263. * Remove the cpu slab
  1264. */
  1265. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1266. {
  1267. struct page *page = c->page;
  1268. int tail = 1;
  1269. if (page->freelist)
  1270. stat(s, DEACTIVATE_REMOTE_FREES);
  1271. /*
  1272. * Merge cpu freelist into slab freelist. Typically we get here
  1273. * because both freelists are empty. So this is unlikely
  1274. * to occur.
  1275. */
  1276. while (unlikely(c->freelist)) {
  1277. void **object;
  1278. tail = 0; /* Hot objects. Put the slab first */
  1279. /* Retrieve object from cpu_freelist */
  1280. object = c->freelist;
  1281. c->freelist = get_freepointer(s, c->freelist);
  1282. /* And put onto the regular freelist */
  1283. set_freepointer(s, object, page->freelist);
  1284. page->freelist = object;
  1285. page->inuse--;
  1286. }
  1287. c->page = NULL;
  1288. unfreeze_slab(s, page, tail);
  1289. }
  1290. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1291. {
  1292. stat(s, CPUSLAB_FLUSH);
  1293. slab_lock(c->page);
  1294. deactivate_slab(s, c);
  1295. }
  1296. /*
  1297. * Flush cpu slab.
  1298. *
  1299. * Called from IPI handler with interrupts disabled.
  1300. */
  1301. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1302. {
  1303. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1304. if (likely(c && c->page))
  1305. flush_slab(s, c);
  1306. }
  1307. static void flush_cpu_slab(void *d)
  1308. {
  1309. struct kmem_cache *s = d;
  1310. __flush_cpu_slab(s, smp_processor_id());
  1311. }
  1312. static void flush_all(struct kmem_cache *s)
  1313. {
  1314. on_each_cpu(flush_cpu_slab, s, 1);
  1315. }
  1316. /*
  1317. * Check if the objects in a per cpu structure fit numa
  1318. * locality expectations.
  1319. */
  1320. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1321. {
  1322. #ifdef CONFIG_NUMA
  1323. if (node != NUMA_NO_NODE && c->node != node)
  1324. return 0;
  1325. #endif
  1326. return 1;
  1327. }
  1328. static int count_free(struct page *page)
  1329. {
  1330. return page->objects - page->inuse;
  1331. }
  1332. static unsigned long count_partial(struct kmem_cache_node *n,
  1333. int (*get_count)(struct page *))
  1334. {
  1335. unsigned long flags;
  1336. unsigned long x = 0;
  1337. struct page *page;
  1338. spin_lock_irqsave(&n->list_lock, flags);
  1339. list_for_each_entry(page, &n->partial, lru)
  1340. x += get_count(page);
  1341. spin_unlock_irqrestore(&n->list_lock, flags);
  1342. return x;
  1343. }
  1344. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1345. {
  1346. #ifdef CONFIG_SLUB_DEBUG
  1347. return atomic_long_read(&n->total_objects);
  1348. #else
  1349. return 0;
  1350. #endif
  1351. }
  1352. static noinline void
  1353. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1354. {
  1355. int node;
  1356. printk(KERN_WARNING
  1357. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1358. nid, gfpflags);
  1359. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1360. "default order: %d, min order: %d\n", s->name, s->objsize,
  1361. s->size, oo_order(s->oo), oo_order(s->min));
  1362. if (oo_order(s->min) > get_order(s->objsize))
  1363. printk(KERN_WARNING " %s debugging increased min order, use "
  1364. "slub_debug=O to disable.\n", s->name);
  1365. for_each_online_node(node) {
  1366. struct kmem_cache_node *n = get_node(s, node);
  1367. unsigned long nr_slabs;
  1368. unsigned long nr_objs;
  1369. unsigned long nr_free;
  1370. if (!n)
  1371. continue;
  1372. nr_free = count_partial(n, count_free);
  1373. nr_slabs = node_nr_slabs(n);
  1374. nr_objs = node_nr_objs(n);
  1375. printk(KERN_WARNING
  1376. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1377. node, nr_slabs, nr_objs, nr_free);
  1378. }
  1379. }
  1380. /*
  1381. * Slow path. The lockless freelist is empty or we need to perform
  1382. * debugging duties.
  1383. *
  1384. * Interrupts are disabled.
  1385. *
  1386. * Processing is still very fast if new objects have been freed to the
  1387. * regular freelist. In that case we simply take over the regular freelist
  1388. * as the lockless freelist and zap the regular freelist.
  1389. *
  1390. * If that is not working then we fall back to the partial lists. We take the
  1391. * first element of the freelist as the object to allocate now and move the
  1392. * rest of the freelist to the lockless freelist.
  1393. *
  1394. * And if we were unable to get a new slab from the partial slab lists then
  1395. * we need to allocate a new slab. This is the slowest path since it involves
  1396. * a call to the page allocator and the setup of a new slab.
  1397. */
  1398. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1399. unsigned long addr, struct kmem_cache_cpu *c)
  1400. {
  1401. void **object;
  1402. struct page *new;
  1403. /* We handle __GFP_ZERO in the caller */
  1404. gfpflags &= ~__GFP_ZERO;
  1405. if (!c->page)
  1406. goto new_slab;
  1407. slab_lock(c->page);
  1408. if (unlikely(!node_match(c, node)))
  1409. goto another_slab;
  1410. stat(s, ALLOC_REFILL);
  1411. load_freelist:
  1412. object = c->page->freelist;
  1413. if (unlikely(!object))
  1414. goto another_slab;
  1415. if (kmem_cache_debug(s))
  1416. goto debug;
  1417. c->freelist = get_freepointer(s, object);
  1418. c->page->inuse = c->page->objects;
  1419. c->page->freelist = NULL;
  1420. c->node = page_to_nid(c->page);
  1421. unlock_out:
  1422. slab_unlock(c->page);
  1423. stat(s, ALLOC_SLOWPATH);
  1424. return object;
  1425. another_slab:
  1426. deactivate_slab(s, c);
  1427. new_slab:
  1428. new = get_partial(s, gfpflags, node);
  1429. if (new) {
  1430. c->page = new;
  1431. stat(s, ALLOC_FROM_PARTIAL);
  1432. goto load_freelist;
  1433. }
  1434. gfpflags &= gfp_allowed_mask;
  1435. if (gfpflags & __GFP_WAIT)
  1436. local_irq_enable();
  1437. new = new_slab(s, gfpflags, node);
  1438. if (gfpflags & __GFP_WAIT)
  1439. local_irq_disable();
  1440. if (new) {
  1441. c = __this_cpu_ptr(s->cpu_slab);
  1442. stat(s, ALLOC_SLAB);
  1443. if (c->page)
  1444. flush_slab(s, c);
  1445. slab_lock(new);
  1446. __SetPageSlubFrozen(new);
  1447. c->page = new;
  1448. goto load_freelist;
  1449. }
  1450. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1451. slab_out_of_memory(s, gfpflags, node);
  1452. return NULL;
  1453. debug:
  1454. if (!alloc_debug_processing(s, c->page, object, addr))
  1455. goto another_slab;
  1456. c->page->inuse++;
  1457. c->page->freelist = get_freepointer(s, object);
  1458. c->node = -1;
  1459. goto unlock_out;
  1460. }
  1461. /*
  1462. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1463. * have the fastpath folded into their functions. So no function call
  1464. * overhead for requests that can be satisfied on the fastpath.
  1465. *
  1466. * The fastpath works by first checking if the lockless freelist can be used.
  1467. * If not then __slab_alloc is called for slow processing.
  1468. *
  1469. * Otherwise we can simply pick the next object from the lockless free list.
  1470. */
  1471. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1472. gfp_t gfpflags, int node, unsigned long addr)
  1473. {
  1474. void **object;
  1475. struct kmem_cache_cpu *c;
  1476. unsigned long flags;
  1477. if (slab_pre_alloc_hook(s, gfpflags))
  1478. return NULL;
  1479. local_irq_save(flags);
  1480. c = __this_cpu_ptr(s->cpu_slab);
  1481. object = c->freelist;
  1482. if (unlikely(!object || !node_match(c, node)))
  1483. object = __slab_alloc(s, gfpflags, node, addr, c);
  1484. else {
  1485. c->freelist = get_freepointer(s, object);
  1486. stat(s, ALLOC_FASTPATH);
  1487. }
  1488. local_irq_restore(flags);
  1489. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1490. memset(object, 0, s->objsize);
  1491. slab_post_alloc_hook(s, gfpflags, object);
  1492. return object;
  1493. }
  1494. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1495. {
  1496. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1497. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1498. return ret;
  1499. }
  1500. EXPORT_SYMBOL(kmem_cache_alloc);
  1501. #ifdef CONFIG_TRACING
  1502. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1503. {
  1504. return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1505. }
  1506. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1507. #endif
  1508. #ifdef CONFIG_NUMA
  1509. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1510. {
  1511. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1512. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1513. s->objsize, s->size, gfpflags, node);
  1514. return ret;
  1515. }
  1516. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1517. #endif
  1518. #ifdef CONFIG_TRACING
  1519. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1520. gfp_t gfpflags,
  1521. int node)
  1522. {
  1523. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1524. }
  1525. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1526. #endif
  1527. /*
  1528. * Slow patch handling. This may still be called frequently since objects
  1529. * have a longer lifetime than the cpu slabs in most processing loads.
  1530. *
  1531. * So we still attempt to reduce cache line usage. Just take the slab
  1532. * lock and free the item. If there is no additional partial page
  1533. * handling required then we can return immediately.
  1534. */
  1535. static void __slab_free(struct kmem_cache *s, struct page *page,
  1536. void *x, unsigned long addr)
  1537. {
  1538. void *prior;
  1539. void **object = (void *)x;
  1540. stat(s, FREE_SLOWPATH);
  1541. slab_lock(page);
  1542. if (kmem_cache_debug(s))
  1543. goto debug;
  1544. checks_ok:
  1545. prior = page->freelist;
  1546. set_freepointer(s, object, prior);
  1547. page->freelist = object;
  1548. page->inuse--;
  1549. if (unlikely(PageSlubFrozen(page))) {
  1550. stat(s, FREE_FROZEN);
  1551. goto out_unlock;
  1552. }
  1553. if (unlikely(!page->inuse))
  1554. goto slab_empty;
  1555. /*
  1556. * Objects left in the slab. If it was not on the partial list before
  1557. * then add it.
  1558. */
  1559. if (unlikely(!prior)) {
  1560. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1561. stat(s, FREE_ADD_PARTIAL);
  1562. }
  1563. out_unlock:
  1564. slab_unlock(page);
  1565. return;
  1566. slab_empty:
  1567. if (prior) {
  1568. /*
  1569. * Slab still on the partial list.
  1570. */
  1571. remove_partial(s, page);
  1572. stat(s, FREE_REMOVE_PARTIAL);
  1573. }
  1574. slab_unlock(page);
  1575. stat(s, FREE_SLAB);
  1576. discard_slab(s, page);
  1577. return;
  1578. debug:
  1579. if (!free_debug_processing(s, page, x, addr))
  1580. goto out_unlock;
  1581. goto checks_ok;
  1582. }
  1583. /*
  1584. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1585. * can perform fastpath freeing without additional function calls.
  1586. *
  1587. * The fastpath is only possible if we are freeing to the current cpu slab
  1588. * of this processor. This typically the case if we have just allocated
  1589. * the item before.
  1590. *
  1591. * If fastpath is not possible then fall back to __slab_free where we deal
  1592. * with all sorts of special processing.
  1593. */
  1594. static __always_inline void slab_free(struct kmem_cache *s,
  1595. struct page *page, void *x, unsigned long addr)
  1596. {
  1597. void **object = (void *)x;
  1598. struct kmem_cache_cpu *c;
  1599. unsigned long flags;
  1600. slab_free_hook(s, x);
  1601. local_irq_save(flags);
  1602. c = __this_cpu_ptr(s->cpu_slab);
  1603. slab_free_hook_irq(s, x);
  1604. if (likely(page == c->page && c->node >= 0)) {
  1605. set_freepointer(s, object, c->freelist);
  1606. c->freelist = object;
  1607. stat(s, FREE_FASTPATH);
  1608. } else
  1609. __slab_free(s, page, x, addr);
  1610. local_irq_restore(flags);
  1611. }
  1612. void kmem_cache_free(struct kmem_cache *s, void *x)
  1613. {
  1614. struct page *page;
  1615. page = virt_to_head_page(x);
  1616. slab_free(s, page, x, _RET_IP_);
  1617. trace_kmem_cache_free(_RET_IP_, x);
  1618. }
  1619. EXPORT_SYMBOL(kmem_cache_free);
  1620. /* Figure out on which slab page the object resides */
  1621. static struct page *get_object_page(const void *x)
  1622. {
  1623. struct page *page = virt_to_head_page(x);
  1624. if (!PageSlab(page))
  1625. return NULL;
  1626. return page;
  1627. }
  1628. /*
  1629. * Object placement in a slab is made very easy because we always start at
  1630. * offset 0. If we tune the size of the object to the alignment then we can
  1631. * get the required alignment by putting one properly sized object after
  1632. * another.
  1633. *
  1634. * Notice that the allocation order determines the sizes of the per cpu
  1635. * caches. Each processor has always one slab available for allocations.
  1636. * Increasing the allocation order reduces the number of times that slabs
  1637. * must be moved on and off the partial lists and is therefore a factor in
  1638. * locking overhead.
  1639. */
  1640. /*
  1641. * Mininum / Maximum order of slab pages. This influences locking overhead
  1642. * and slab fragmentation. A higher order reduces the number of partial slabs
  1643. * and increases the number of allocations possible without having to
  1644. * take the list_lock.
  1645. */
  1646. static int slub_min_order;
  1647. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1648. static int slub_min_objects;
  1649. /*
  1650. * Merge control. If this is set then no merging of slab caches will occur.
  1651. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1652. */
  1653. static int slub_nomerge;
  1654. /*
  1655. * Calculate the order of allocation given an slab object size.
  1656. *
  1657. * The order of allocation has significant impact on performance and other
  1658. * system components. Generally order 0 allocations should be preferred since
  1659. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1660. * be problematic to put into order 0 slabs because there may be too much
  1661. * unused space left. We go to a higher order if more than 1/16th of the slab
  1662. * would be wasted.
  1663. *
  1664. * In order to reach satisfactory performance we must ensure that a minimum
  1665. * number of objects is in one slab. Otherwise we may generate too much
  1666. * activity on the partial lists which requires taking the list_lock. This is
  1667. * less a concern for large slabs though which are rarely used.
  1668. *
  1669. * slub_max_order specifies the order where we begin to stop considering the
  1670. * number of objects in a slab as critical. If we reach slub_max_order then
  1671. * we try to keep the page order as low as possible. So we accept more waste
  1672. * of space in favor of a small page order.
  1673. *
  1674. * Higher order allocations also allow the placement of more objects in a
  1675. * slab and thereby reduce object handling overhead. If the user has
  1676. * requested a higher mininum order then we start with that one instead of
  1677. * the smallest order which will fit the object.
  1678. */
  1679. static inline int slab_order(int size, int min_objects,
  1680. int max_order, int fract_leftover)
  1681. {
  1682. int order;
  1683. int rem;
  1684. int min_order = slub_min_order;
  1685. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1686. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1687. for (order = max(min_order,
  1688. fls(min_objects * size - 1) - PAGE_SHIFT);
  1689. order <= max_order; order++) {
  1690. unsigned long slab_size = PAGE_SIZE << order;
  1691. if (slab_size < min_objects * size)
  1692. continue;
  1693. rem = slab_size % size;
  1694. if (rem <= slab_size / fract_leftover)
  1695. break;
  1696. }
  1697. return order;
  1698. }
  1699. static inline int calculate_order(int size)
  1700. {
  1701. int order;
  1702. int min_objects;
  1703. int fraction;
  1704. int max_objects;
  1705. /*
  1706. * Attempt to find best configuration for a slab. This
  1707. * works by first attempting to generate a layout with
  1708. * the best configuration and backing off gradually.
  1709. *
  1710. * First we reduce the acceptable waste in a slab. Then
  1711. * we reduce the minimum objects required in a slab.
  1712. */
  1713. min_objects = slub_min_objects;
  1714. if (!min_objects)
  1715. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1716. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1717. min_objects = min(min_objects, max_objects);
  1718. while (min_objects > 1) {
  1719. fraction = 16;
  1720. while (fraction >= 4) {
  1721. order = slab_order(size, min_objects,
  1722. slub_max_order, fraction);
  1723. if (order <= slub_max_order)
  1724. return order;
  1725. fraction /= 2;
  1726. }
  1727. min_objects--;
  1728. }
  1729. /*
  1730. * We were unable to place multiple objects in a slab. Now
  1731. * lets see if we can place a single object there.
  1732. */
  1733. order = slab_order(size, 1, slub_max_order, 1);
  1734. if (order <= slub_max_order)
  1735. return order;
  1736. /*
  1737. * Doh this slab cannot be placed using slub_max_order.
  1738. */
  1739. order = slab_order(size, 1, MAX_ORDER, 1);
  1740. if (order < MAX_ORDER)
  1741. return order;
  1742. return -ENOSYS;
  1743. }
  1744. /*
  1745. * Figure out what the alignment of the objects will be.
  1746. */
  1747. static unsigned long calculate_alignment(unsigned long flags,
  1748. unsigned long align, unsigned long size)
  1749. {
  1750. /*
  1751. * If the user wants hardware cache aligned objects then follow that
  1752. * suggestion if the object is sufficiently large.
  1753. *
  1754. * The hardware cache alignment cannot override the specified
  1755. * alignment though. If that is greater then use it.
  1756. */
  1757. if (flags & SLAB_HWCACHE_ALIGN) {
  1758. unsigned long ralign = cache_line_size();
  1759. while (size <= ralign / 2)
  1760. ralign /= 2;
  1761. align = max(align, ralign);
  1762. }
  1763. if (align < ARCH_SLAB_MINALIGN)
  1764. align = ARCH_SLAB_MINALIGN;
  1765. return ALIGN(align, sizeof(void *));
  1766. }
  1767. static void
  1768. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1769. {
  1770. n->nr_partial = 0;
  1771. spin_lock_init(&n->list_lock);
  1772. INIT_LIST_HEAD(&n->partial);
  1773. #ifdef CONFIG_SLUB_DEBUG
  1774. atomic_long_set(&n->nr_slabs, 0);
  1775. atomic_long_set(&n->total_objects, 0);
  1776. INIT_LIST_HEAD(&n->full);
  1777. #endif
  1778. }
  1779. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  1780. {
  1781. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  1782. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  1783. s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
  1784. return s->cpu_slab != NULL;
  1785. }
  1786. #ifdef CONFIG_NUMA
  1787. static struct kmem_cache *kmem_cache_node;
  1788. /*
  1789. * No kmalloc_node yet so do it by hand. We know that this is the first
  1790. * slab on the node for this slabcache. There are no concurrent accesses
  1791. * possible.
  1792. *
  1793. * Note that this function only works on the kmalloc_node_cache
  1794. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1795. * memory on a fresh node that has no slab structures yet.
  1796. */
  1797. static void early_kmem_cache_node_alloc(int node)
  1798. {
  1799. struct page *page;
  1800. struct kmem_cache_node *n;
  1801. unsigned long flags;
  1802. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  1803. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  1804. BUG_ON(!page);
  1805. if (page_to_nid(page) != node) {
  1806. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1807. "node %d\n", node);
  1808. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1809. "in order to be able to continue\n");
  1810. }
  1811. n = page->freelist;
  1812. BUG_ON(!n);
  1813. page->freelist = get_freepointer(kmem_cache_node, n);
  1814. page->inuse++;
  1815. kmem_cache_node->node[node] = n;
  1816. #ifdef CONFIG_SLUB_DEBUG
  1817. init_object(kmem_cache_node, n, 1);
  1818. init_tracking(kmem_cache_node, n);
  1819. #endif
  1820. init_kmem_cache_node(n, kmem_cache_node);
  1821. inc_slabs_node(kmem_cache_node, node, page->objects);
  1822. /*
  1823. * lockdep requires consistent irq usage for each lock
  1824. * so even though there cannot be a race this early in
  1825. * the boot sequence, we still disable irqs.
  1826. */
  1827. local_irq_save(flags);
  1828. add_partial(n, page, 0);
  1829. local_irq_restore(flags);
  1830. }
  1831. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1832. {
  1833. int node;
  1834. for_each_node_state(node, N_NORMAL_MEMORY) {
  1835. struct kmem_cache_node *n = s->node[node];
  1836. if (n)
  1837. kmem_cache_free(kmem_cache_node, n);
  1838. s->node[node] = NULL;
  1839. }
  1840. }
  1841. static int init_kmem_cache_nodes(struct kmem_cache *s)
  1842. {
  1843. int node;
  1844. for_each_node_state(node, N_NORMAL_MEMORY) {
  1845. struct kmem_cache_node *n;
  1846. if (slab_state == DOWN) {
  1847. early_kmem_cache_node_alloc(node);
  1848. continue;
  1849. }
  1850. n = kmem_cache_alloc_node(kmem_cache_node,
  1851. GFP_KERNEL, node);
  1852. if (!n) {
  1853. free_kmem_cache_nodes(s);
  1854. return 0;
  1855. }
  1856. s->node[node] = n;
  1857. init_kmem_cache_node(n, s);
  1858. }
  1859. return 1;
  1860. }
  1861. #else
  1862. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1863. {
  1864. }
  1865. static int init_kmem_cache_nodes(struct kmem_cache *s)
  1866. {
  1867. init_kmem_cache_node(&s->local_node, s);
  1868. return 1;
  1869. }
  1870. #endif
  1871. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1872. {
  1873. if (min < MIN_PARTIAL)
  1874. min = MIN_PARTIAL;
  1875. else if (min > MAX_PARTIAL)
  1876. min = MAX_PARTIAL;
  1877. s->min_partial = min;
  1878. }
  1879. /*
  1880. * calculate_sizes() determines the order and the distribution of data within
  1881. * a slab object.
  1882. */
  1883. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1884. {
  1885. unsigned long flags = s->flags;
  1886. unsigned long size = s->objsize;
  1887. unsigned long align = s->align;
  1888. int order;
  1889. /*
  1890. * Round up object size to the next word boundary. We can only
  1891. * place the free pointer at word boundaries and this determines
  1892. * the possible location of the free pointer.
  1893. */
  1894. size = ALIGN(size, sizeof(void *));
  1895. #ifdef CONFIG_SLUB_DEBUG
  1896. /*
  1897. * Determine if we can poison the object itself. If the user of
  1898. * the slab may touch the object after free or before allocation
  1899. * then we should never poison the object itself.
  1900. */
  1901. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1902. !s->ctor)
  1903. s->flags |= __OBJECT_POISON;
  1904. else
  1905. s->flags &= ~__OBJECT_POISON;
  1906. /*
  1907. * If we are Redzoning then check if there is some space between the
  1908. * end of the object and the free pointer. If not then add an
  1909. * additional word to have some bytes to store Redzone information.
  1910. */
  1911. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1912. size += sizeof(void *);
  1913. #endif
  1914. /*
  1915. * With that we have determined the number of bytes in actual use
  1916. * by the object. This is the potential offset to the free pointer.
  1917. */
  1918. s->inuse = size;
  1919. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1920. s->ctor)) {
  1921. /*
  1922. * Relocate free pointer after the object if it is not
  1923. * permitted to overwrite the first word of the object on
  1924. * kmem_cache_free.
  1925. *
  1926. * This is the case if we do RCU, have a constructor or
  1927. * destructor or are poisoning the objects.
  1928. */
  1929. s->offset = size;
  1930. size += sizeof(void *);
  1931. }
  1932. #ifdef CONFIG_SLUB_DEBUG
  1933. if (flags & SLAB_STORE_USER)
  1934. /*
  1935. * Need to store information about allocs and frees after
  1936. * the object.
  1937. */
  1938. size += 2 * sizeof(struct track);
  1939. if (flags & SLAB_RED_ZONE)
  1940. /*
  1941. * Add some empty padding so that we can catch
  1942. * overwrites from earlier objects rather than let
  1943. * tracking information or the free pointer be
  1944. * corrupted if a user writes before the start
  1945. * of the object.
  1946. */
  1947. size += sizeof(void *);
  1948. #endif
  1949. /*
  1950. * Determine the alignment based on various parameters that the
  1951. * user specified and the dynamic determination of cache line size
  1952. * on bootup.
  1953. */
  1954. align = calculate_alignment(flags, align, s->objsize);
  1955. s->align = align;
  1956. /*
  1957. * SLUB stores one object immediately after another beginning from
  1958. * offset 0. In order to align the objects we have to simply size
  1959. * each object to conform to the alignment.
  1960. */
  1961. size = ALIGN(size, align);
  1962. s->size = size;
  1963. if (forced_order >= 0)
  1964. order = forced_order;
  1965. else
  1966. order = calculate_order(size);
  1967. if (order < 0)
  1968. return 0;
  1969. s->allocflags = 0;
  1970. if (order)
  1971. s->allocflags |= __GFP_COMP;
  1972. if (s->flags & SLAB_CACHE_DMA)
  1973. s->allocflags |= SLUB_DMA;
  1974. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1975. s->allocflags |= __GFP_RECLAIMABLE;
  1976. /*
  1977. * Determine the number of objects per slab
  1978. */
  1979. s->oo = oo_make(order, size);
  1980. s->min = oo_make(get_order(size), size);
  1981. if (oo_objects(s->oo) > oo_objects(s->max))
  1982. s->max = s->oo;
  1983. return !!oo_objects(s->oo);
  1984. }
  1985. static int kmem_cache_open(struct kmem_cache *s,
  1986. const char *name, size_t size,
  1987. size_t align, unsigned long flags,
  1988. void (*ctor)(void *))
  1989. {
  1990. memset(s, 0, kmem_size);
  1991. s->name = name;
  1992. s->ctor = ctor;
  1993. s->objsize = size;
  1994. s->align = align;
  1995. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1996. if (!calculate_sizes(s, -1))
  1997. goto error;
  1998. if (disable_higher_order_debug) {
  1999. /*
  2000. * Disable debugging flags that store metadata if the min slab
  2001. * order increased.
  2002. */
  2003. if (get_order(s->size) > get_order(s->objsize)) {
  2004. s->flags &= ~DEBUG_METADATA_FLAGS;
  2005. s->offset = 0;
  2006. if (!calculate_sizes(s, -1))
  2007. goto error;
  2008. }
  2009. }
  2010. /*
  2011. * The larger the object size is, the more pages we want on the partial
  2012. * list to avoid pounding the page allocator excessively.
  2013. */
  2014. set_min_partial(s, ilog2(s->size));
  2015. s->refcount = 1;
  2016. #ifdef CONFIG_NUMA
  2017. s->remote_node_defrag_ratio = 1000;
  2018. #endif
  2019. if (!init_kmem_cache_nodes(s))
  2020. goto error;
  2021. if (alloc_kmem_cache_cpus(s))
  2022. return 1;
  2023. free_kmem_cache_nodes(s);
  2024. error:
  2025. if (flags & SLAB_PANIC)
  2026. panic("Cannot create slab %s size=%lu realsize=%u "
  2027. "order=%u offset=%u flags=%lx\n",
  2028. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2029. s->offset, flags);
  2030. return 0;
  2031. }
  2032. /*
  2033. * Check if a given pointer is valid
  2034. */
  2035. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2036. {
  2037. struct page *page;
  2038. if (!kern_ptr_validate(object, s->size))
  2039. return 0;
  2040. page = get_object_page(object);
  2041. if (!page || s != page->slab)
  2042. /* No slab or wrong slab */
  2043. return 0;
  2044. if (!check_valid_pointer(s, page, object))
  2045. return 0;
  2046. /*
  2047. * We could also check if the object is on the slabs freelist.
  2048. * But this would be too expensive and it seems that the main
  2049. * purpose of kmem_ptr_valid() is to check if the object belongs
  2050. * to a certain slab.
  2051. */
  2052. return 1;
  2053. }
  2054. EXPORT_SYMBOL(kmem_ptr_validate);
  2055. /*
  2056. * Determine the size of a slab object
  2057. */
  2058. unsigned int kmem_cache_size(struct kmem_cache *s)
  2059. {
  2060. return s->objsize;
  2061. }
  2062. EXPORT_SYMBOL(kmem_cache_size);
  2063. const char *kmem_cache_name(struct kmem_cache *s)
  2064. {
  2065. return s->name;
  2066. }
  2067. EXPORT_SYMBOL(kmem_cache_name);
  2068. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2069. const char *text)
  2070. {
  2071. #ifdef CONFIG_SLUB_DEBUG
  2072. void *addr = page_address(page);
  2073. void *p;
  2074. long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
  2075. GFP_ATOMIC);
  2076. if (!map)
  2077. return;
  2078. slab_err(s, page, "%s", text);
  2079. slab_lock(page);
  2080. for_each_free_object(p, s, page->freelist)
  2081. set_bit(slab_index(p, s, addr), map);
  2082. for_each_object(p, s, addr, page->objects) {
  2083. if (!test_bit(slab_index(p, s, addr), map)) {
  2084. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2085. p, p - addr);
  2086. print_tracking(s, p);
  2087. }
  2088. }
  2089. slab_unlock(page);
  2090. kfree(map);
  2091. #endif
  2092. }
  2093. /*
  2094. * Attempt to free all partial slabs on a node.
  2095. */
  2096. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2097. {
  2098. unsigned long flags;
  2099. struct page *page, *h;
  2100. spin_lock_irqsave(&n->list_lock, flags);
  2101. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2102. if (!page->inuse) {
  2103. list_del(&page->lru);
  2104. discard_slab(s, page);
  2105. n->nr_partial--;
  2106. } else {
  2107. list_slab_objects(s, page,
  2108. "Objects remaining on kmem_cache_close()");
  2109. }
  2110. }
  2111. spin_unlock_irqrestore(&n->list_lock, flags);
  2112. }
  2113. /*
  2114. * Release all resources used by a slab cache.
  2115. */
  2116. static inline int kmem_cache_close(struct kmem_cache *s)
  2117. {
  2118. int node;
  2119. flush_all(s);
  2120. free_percpu(s->cpu_slab);
  2121. /* Attempt to free all objects */
  2122. for_each_node_state(node, N_NORMAL_MEMORY) {
  2123. struct kmem_cache_node *n = get_node(s, node);
  2124. free_partial(s, n);
  2125. if (n->nr_partial || slabs_node(s, node))
  2126. return 1;
  2127. }
  2128. free_kmem_cache_nodes(s);
  2129. return 0;
  2130. }
  2131. /*
  2132. * Close a cache and release the kmem_cache structure
  2133. * (must be used for caches created using kmem_cache_create)
  2134. */
  2135. void kmem_cache_destroy(struct kmem_cache *s)
  2136. {
  2137. down_write(&slub_lock);
  2138. s->refcount--;
  2139. if (!s->refcount) {
  2140. list_del(&s->list);
  2141. if (kmem_cache_close(s)) {
  2142. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2143. "still has objects.\n", s->name, __func__);
  2144. dump_stack();
  2145. }
  2146. if (s->flags & SLAB_DESTROY_BY_RCU)
  2147. rcu_barrier();
  2148. sysfs_slab_remove(s);
  2149. }
  2150. up_write(&slub_lock);
  2151. }
  2152. EXPORT_SYMBOL(kmem_cache_destroy);
  2153. /********************************************************************
  2154. * Kmalloc subsystem
  2155. *******************************************************************/
  2156. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2157. EXPORT_SYMBOL(kmalloc_caches);
  2158. static struct kmem_cache *kmem_cache;
  2159. #ifdef CONFIG_ZONE_DMA
  2160. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2161. #endif
  2162. static int __init setup_slub_min_order(char *str)
  2163. {
  2164. get_option(&str, &slub_min_order);
  2165. return 1;
  2166. }
  2167. __setup("slub_min_order=", setup_slub_min_order);
  2168. static int __init setup_slub_max_order(char *str)
  2169. {
  2170. get_option(&str, &slub_max_order);
  2171. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2172. return 1;
  2173. }
  2174. __setup("slub_max_order=", setup_slub_max_order);
  2175. static int __init setup_slub_min_objects(char *str)
  2176. {
  2177. get_option(&str, &slub_min_objects);
  2178. return 1;
  2179. }
  2180. __setup("slub_min_objects=", setup_slub_min_objects);
  2181. static int __init setup_slub_nomerge(char *str)
  2182. {
  2183. slub_nomerge = 1;
  2184. return 1;
  2185. }
  2186. __setup("slub_nomerge", setup_slub_nomerge);
  2187. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2188. int size, unsigned int flags)
  2189. {
  2190. struct kmem_cache *s;
  2191. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2192. /*
  2193. * This function is called with IRQs disabled during early-boot on
  2194. * single CPU so there's no need to take slub_lock here.
  2195. */
  2196. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2197. flags, NULL))
  2198. goto panic;
  2199. list_add(&s->list, &slab_caches);
  2200. return s;
  2201. panic:
  2202. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2203. return NULL;
  2204. }
  2205. /*
  2206. * Conversion table for small slabs sizes / 8 to the index in the
  2207. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2208. * of two cache sizes there. The size of larger slabs can be determined using
  2209. * fls.
  2210. */
  2211. static s8 size_index[24] = {
  2212. 3, /* 8 */
  2213. 4, /* 16 */
  2214. 5, /* 24 */
  2215. 5, /* 32 */
  2216. 6, /* 40 */
  2217. 6, /* 48 */
  2218. 6, /* 56 */
  2219. 6, /* 64 */
  2220. 1, /* 72 */
  2221. 1, /* 80 */
  2222. 1, /* 88 */
  2223. 1, /* 96 */
  2224. 7, /* 104 */
  2225. 7, /* 112 */
  2226. 7, /* 120 */
  2227. 7, /* 128 */
  2228. 2, /* 136 */
  2229. 2, /* 144 */
  2230. 2, /* 152 */
  2231. 2, /* 160 */
  2232. 2, /* 168 */
  2233. 2, /* 176 */
  2234. 2, /* 184 */
  2235. 2 /* 192 */
  2236. };
  2237. static inline int size_index_elem(size_t bytes)
  2238. {
  2239. return (bytes - 1) / 8;
  2240. }
  2241. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2242. {
  2243. int index;
  2244. if (size <= 192) {
  2245. if (!size)
  2246. return ZERO_SIZE_PTR;
  2247. index = size_index[size_index_elem(size)];
  2248. } else
  2249. index = fls(size - 1);
  2250. #ifdef CONFIG_ZONE_DMA
  2251. if (unlikely((flags & SLUB_DMA)))
  2252. return kmalloc_dma_caches[index];
  2253. #endif
  2254. return kmalloc_caches[index];
  2255. }
  2256. void *__kmalloc(size_t size, gfp_t flags)
  2257. {
  2258. struct kmem_cache *s;
  2259. void *ret;
  2260. if (unlikely(size > SLUB_MAX_SIZE))
  2261. return kmalloc_large(size, flags);
  2262. s = get_slab(size, flags);
  2263. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2264. return s;
  2265. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2266. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2267. return ret;
  2268. }
  2269. EXPORT_SYMBOL(__kmalloc);
  2270. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2271. {
  2272. struct page *page;
  2273. void *ptr = NULL;
  2274. flags |= __GFP_COMP | __GFP_NOTRACK;
  2275. page = alloc_pages_node(node, flags, get_order(size));
  2276. if (page)
  2277. ptr = page_address(page);
  2278. kmemleak_alloc(ptr, size, 1, flags);
  2279. return ptr;
  2280. }
  2281. #ifdef CONFIG_NUMA
  2282. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2283. {
  2284. struct kmem_cache *s;
  2285. void *ret;
  2286. if (unlikely(size > SLUB_MAX_SIZE)) {
  2287. ret = kmalloc_large_node(size, flags, node);
  2288. trace_kmalloc_node(_RET_IP_, ret,
  2289. size, PAGE_SIZE << get_order(size),
  2290. flags, node);
  2291. return ret;
  2292. }
  2293. s = get_slab(size, flags);
  2294. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2295. return s;
  2296. ret = slab_alloc(s, flags, node, _RET_IP_);
  2297. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2298. return ret;
  2299. }
  2300. EXPORT_SYMBOL(__kmalloc_node);
  2301. #endif
  2302. size_t ksize(const void *object)
  2303. {
  2304. struct page *page;
  2305. struct kmem_cache *s;
  2306. if (unlikely(object == ZERO_SIZE_PTR))
  2307. return 0;
  2308. page = virt_to_head_page(object);
  2309. if (unlikely(!PageSlab(page))) {
  2310. WARN_ON(!PageCompound(page));
  2311. return PAGE_SIZE << compound_order(page);
  2312. }
  2313. s = page->slab;
  2314. #ifdef CONFIG_SLUB_DEBUG
  2315. /*
  2316. * Debugging requires use of the padding between object
  2317. * and whatever may come after it.
  2318. */
  2319. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2320. return s->objsize;
  2321. #endif
  2322. /*
  2323. * If we have the need to store the freelist pointer
  2324. * back there or track user information then we can
  2325. * only use the space before that information.
  2326. */
  2327. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2328. return s->inuse;
  2329. /*
  2330. * Else we can use all the padding etc for the allocation
  2331. */
  2332. return s->size;
  2333. }
  2334. EXPORT_SYMBOL(ksize);
  2335. void kfree(const void *x)
  2336. {
  2337. struct page *page;
  2338. void *object = (void *)x;
  2339. trace_kfree(_RET_IP_, x);
  2340. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2341. return;
  2342. page = virt_to_head_page(x);
  2343. if (unlikely(!PageSlab(page))) {
  2344. BUG_ON(!PageCompound(page));
  2345. kmemleak_free(x);
  2346. put_page(page);
  2347. return;
  2348. }
  2349. slab_free(page->slab, page, object, _RET_IP_);
  2350. }
  2351. EXPORT_SYMBOL(kfree);
  2352. /*
  2353. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2354. * the remaining slabs by the number of items in use. The slabs with the
  2355. * most items in use come first. New allocations will then fill those up
  2356. * and thus they can be removed from the partial lists.
  2357. *
  2358. * The slabs with the least items are placed last. This results in them
  2359. * being allocated from last increasing the chance that the last objects
  2360. * are freed in them.
  2361. */
  2362. int kmem_cache_shrink(struct kmem_cache *s)
  2363. {
  2364. int node;
  2365. int i;
  2366. struct kmem_cache_node *n;
  2367. struct page *page;
  2368. struct page *t;
  2369. int objects = oo_objects(s->max);
  2370. struct list_head *slabs_by_inuse =
  2371. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2372. unsigned long flags;
  2373. if (!slabs_by_inuse)
  2374. return -ENOMEM;
  2375. flush_all(s);
  2376. for_each_node_state(node, N_NORMAL_MEMORY) {
  2377. n = get_node(s, node);
  2378. if (!n->nr_partial)
  2379. continue;
  2380. for (i = 0; i < objects; i++)
  2381. INIT_LIST_HEAD(slabs_by_inuse + i);
  2382. spin_lock_irqsave(&n->list_lock, flags);
  2383. /*
  2384. * Build lists indexed by the items in use in each slab.
  2385. *
  2386. * Note that concurrent frees may occur while we hold the
  2387. * list_lock. page->inuse here is the upper limit.
  2388. */
  2389. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2390. if (!page->inuse && slab_trylock(page)) {
  2391. /*
  2392. * Must hold slab lock here because slab_free
  2393. * may have freed the last object and be
  2394. * waiting to release the slab.
  2395. */
  2396. list_del(&page->lru);
  2397. n->nr_partial--;
  2398. slab_unlock(page);
  2399. discard_slab(s, page);
  2400. } else {
  2401. list_move(&page->lru,
  2402. slabs_by_inuse + page->inuse);
  2403. }
  2404. }
  2405. /*
  2406. * Rebuild the partial list with the slabs filled up most
  2407. * first and the least used slabs at the end.
  2408. */
  2409. for (i = objects - 1; i >= 0; i--)
  2410. list_splice(slabs_by_inuse + i, n->partial.prev);
  2411. spin_unlock_irqrestore(&n->list_lock, flags);
  2412. }
  2413. kfree(slabs_by_inuse);
  2414. return 0;
  2415. }
  2416. EXPORT_SYMBOL(kmem_cache_shrink);
  2417. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2418. static int slab_mem_going_offline_callback(void *arg)
  2419. {
  2420. struct kmem_cache *s;
  2421. down_read(&slub_lock);
  2422. list_for_each_entry(s, &slab_caches, list)
  2423. kmem_cache_shrink(s);
  2424. up_read(&slub_lock);
  2425. return 0;
  2426. }
  2427. static void slab_mem_offline_callback(void *arg)
  2428. {
  2429. struct kmem_cache_node *n;
  2430. struct kmem_cache *s;
  2431. struct memory_notify *marg = arg;
  2432. int offline_node;
  2433. offline_node = marg->status_change_nid;
  2434. /*
  2435. * If the node still has available memory. we need kmem_cache_node
  2436. * for it yet.
  2437. */
  2438. if (offline_node < 0)
  2439. return;
  2440. down_read(&slub_lock);
  2441. list_for_each_entry(s, &slab_caches, list) {
  2442. n = get_node(s, offline_node);
  2443. if (n) {
  2444. /*
  2445. * if n->nr_slabs > 0, slabs still exist on the node
  2446. * that is going down. We were unable to free them,
  2447. * and offline_pages() function shouldn't call this
  2448. * callback. So, we must fail.
  2449. */
  2450. BUG_ON(slabs_node(s, offline_node));
  2451. s->node[offline_node] = NULL;
  2452. kmem_cache_free(kmalloc_caches, n);
  2453. }
  2454. }
  2455. up_read(&slub_lock);
  2456. }
  2457. static int slab_mem_going_online_callback(void *arg)
  2458. {
  2459. struct kmem_cache_node *n;
  2460. struct kmem_cache *s;
  2461. struct memory_notify *marg = arg;
  2462. int nid = marg->status_change_nid;
  2463. int ret = 0;
  2464. /*
  2465. * If the node's memory is already available, then kmem_cache_node is
  2466. * already created. Nothing to do.
  2467. */
  2468. if (nid < 0)
  2469. return 0;
  2470. /*
  2471. * We are bringing a node online. No memory is available yet. We must
  2472. * allocate a kmem_cache_node structure in order to bring the node
  2473. * online.
  2474. */
  2475. down_read(&slub_lock);
  2476. list_for_each_entry(s, &slab_caches, list) {
  2477. /*
  2478. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2479. * since memory is not yet available from the node that
  2480. * is brought up.
  2481. */
  2482. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2483. if (!n) {
  2484. ret = -ENOMEM;
  2485. goto out;
  2486. }
  2487. init_kmem_cache_node(n, s);
  2488. s->node[nid] = n;
  2489. }
  2490. out:
  2491. up_read(&slub_lock);
  2492. return ret;
  2493. }
  2494. static int slab_memory_callback(struct notifier_block *self,
  2495. unsigned long action, void *arg)
  2496. {
  2497. int ret = 0;
  2498. switch (action) {
  2499. case MEM_GOING_ONLINE:
  2500. ret = slab_mem_going_online_callback(arg);
  2501. break;
  2502. case MEM_GOING_OFFLINE:
  2503. ret = slab_mem_going_offline_callback(arg);
  2504. break;
  2505. case MEM_OFFLINE:
  2506. case MEM_CANCEL_ONLINE:
  2507. slab_mem_offline_callback(arg);
  2508. break;
  2509. case MEM_ONLINE:
  2510. case MEM_CANCEL_OFFLINE:
  2511. break;
  2512. }
  2513. if (ret)
  2514. ret = notifier_from_errno(ret);
  2515. else
  2516. ret = NOTIFY_OK;
  2517. return ret;
  2518. }
  2519. #endif /* CONFIG_MEMORY_HOTPLUG */
  2520. /********************************************************************
  2521. * Basic setup of slabs
  2522. *******************************************************************/
  2523. /*
  2524. * Used for early kmem_cache structures that were allocated using
  2525. * the page allocator
  2526. */
  2527. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  2528. {
  2529. int node;
  2530. list_add(&s->list, &slab_caches);
  2531. s->refcount = -1;
  2532. for_each_node_state(node, N_NORMAL_MEMORY) {
  2533. struct kmem_cache_node *n = get_node(s, node);
  2534. struct page *p;
  2535. if (n) {
  2536. list_for_each_entry(p, &n->partial, lru)
  2537. p->slab = s;
  2538. #ifdef CONFIG_SLAB_DEBUG
  2539. list_for_each_entry(p, &n->full, lru)
  2540. p->slab = s;
  2541. #endif
  2542. }
  2543. }
  2544. }
  2545. void __init kmem_cache_init(void)
  2546. {
  2547. int i;
  2548. int caches = 0;
  2549. struct kmem_cache *temp_kmem_cache;
  2550. int order;
  2551. #ifdef CONFIG_NUMA
  2552. struct kmem_cache *temp_kmem_cache_node;
  2553. unsigned long kmalloc_size;
  2554. kmem_size = offsetof(struct kmem_cache, node) +
  2555. nr_node_ids * sizeof(struct kmem_cache_node *);
  2556. /* Allocate two kmem_caches from the page allocator */
  2557. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  2558. order = get_order(2 * kmalloc_size);
  2559. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2560. /*
  2561. * Must first have the slab cache available for the allocations of the
  2562. * struct kmem_cache_node's. There is special bootstrap code in
  2563. * kmem_cache_open for slab_state == DOWN.
  2564. */
  2565. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  2566. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  2567. sizeof(struct kmem_cache_node),
  2568. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2569. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2570. #else
  2571. /* Allocate a single kmem_cache from the page allocator */
  2572. kmem_size = sizeof(struct kmem_cache);
  2573. order = get_order(kmem_size);
  2574. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2575. #endif
  2576. /* Able to allocate the per node structures */
  2577. slab_state = PARTIAL;
  2578. temp_kmem_cache = kmem_cache;
  2579. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  2580. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2581. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2582. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  2583. #ifdef CONFIG_NUMA
  2584. /*
  2585. * Allocate kmem_cache_node properly from the kmem_cache slab.
  2586. * kmem_cache_node is separately allocated so no need to
  2587. * update any list pointers.
  2588. */
  2589. temp_kmem_cache_node = kmem_cache_node;
  2590. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2591. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  2592. kmem_cache_bootstrap_fixup(kmem_cache_node);
  2593. caches++;
  2594. #else
  2595. /*
  2596. * kmem_cache has kmem_cache_node embedded and we moved it!
  2597. * Update the list heads
  2598. */
  2599. INIT_LIST_HEAD(&kmem_cache->local_node.partial);
  2600. list_splice(&temp_kmem_cache->local_node.partial, &kmem_cache->local_node.partial);
  2601. #ifdef CONFIG_SLUB_DEBUG
  2602. INIT_LIST_HEAD(&kmem_cache->local_node.full);
  2603. list_splice(&temp_kmem_cache->local_node.full, &kmem_cache->local_node.full);
  2604. #endif
  2605. #endif
  2606. kmem_cache_bootstrap_fixup(kmem_cache);
  2607. caches++;
  2608. /* Free temporary boot structure */
  2609. free_pages((unsigned long)temp_kmem_cache, order);
  2610. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  2611. /*
  2612. * Patch up the size_index table if we have strange large alignment
  2613. * requirements for the kmalloc array. This is only the case for
  2614. * MIPS it seems. The standard arches will not generate any code here.
  2615. *
  2616. * Largest permitted alignment is 256 bytes due to the way we
  2617. * handle the index determination for the smaller caches.
  2618. *
  2619. * Make sure that nothing crazy happens if someone starts tinkering
  2620. * around with ARCH_KMALLOC_MINALIGN
  2621. */
  2622. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2623. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2624. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2625. int elem = size_index_elem(i);
  2626. if (elem >= ARRAY_SIZE(size_index))
  2627. break;
  2628. size_index[elem] = KMALLOC_SHIFT_LOW;
  2629. }
  2630. if (KMALLOC_MIN_SIZE == 64) {
  2631. /*
  2632. * The 96 byte size cache is not used if the alignment
  2633. * is 64 byte.
  2634. */
  2635. for (i = 64 + 8; i <= 96; i += 8)
  2636. size_index[size_index_elem(i)] = 7;
  2637. } else if (KMALLOC_MIN_SIZE == 128) {
  2638. /*
  2639. * The 192 byte sized cache is not used if the alignment
  2640. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2641. * instead.
  2642. */
  2643. for (i = 128 + 8; i <= 192; i += 8)
  2644. size_index[size_index_elem(i)] = 8;
  2645. }
  2646. /* Caches that are not of the two-to-the-power-of size */
  2647. if (KMALLOC_MIN_SIZE <= 32) {
  2648. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  2649. caches++;
  2650. }
  2651. if (KMALLOC_MIN_SIZE <= 64) {
  2652. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  2653. caches++;
  2654. }
  2655. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2656. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  2657. caches++;
  2658. }
  2659. slab_state = UP;
  2660. /* Provide the correct kmalloc names now that the caches are up */
  2661. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2662. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2663. BUG_ON(!s);
  2664. kmalloc_caches[i]->name = s;
  2665. }
  2666. #ifdef CONFIG_SMP
  2667. register_cpu_notifier(&slab_notifier);
  2668. #endif
  2669. #ifdef CONFIG_ZONE_DMA
  2670. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  2671. struct kmem_cache *s = kmalloc_caches[i];
  2672. if (s && s->size) {
  2673. char *name = kasprintf(GFP_NOWAIT,
  2674. "dma-kmalloc-%d", s->objsize);
  2675. BUG_ON(!name);
  2676. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  2677. s->objsize, SLAB_CACHE_DMA);
  2678. }
  2679. }
  2680. #endif
  2681. printk(KERN_INFO
  2682. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2683. " CPUs=%d, Nodes=%d\n",
  2684. caches, cache_line_size(),
  2685. slub_min_order, slub_max_order, slub_min_objects,
  2686. nr_cpu_ids, nr_node_ids);
  2687. }
  2688. void __init kmem_cache_init_late(void)
  2689. {
  2690. }
  2691. /*
  2692. * Find a mergeable slab cache
  2693. */
  2694. static int slab_unmergeable(struct kmem_cache *s)
  2695. {
  2696. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2697. return 1;
  2698. if (s->ctor)
  2699. return 1;
  2700. /*
  2701. * We may have set a slab to be unmergeable during bootstrap.
  2702. */
  2703. if (s->refcount < 0)
  2704. return 1;
  2705. return 0;
  2706. }
  2707. static struct kmem_cache *find_mergeable(size_t size,
  2708. size_t align, unsigned long flags, const char *name,
  2709. void (*ctor)(void *))
  2710. {
  2711. struct kmem_cache *s;
  2712. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2713. return NULL;
  2714. if (ctor)
  2715. return NULL;
  2716. size = ALIGN(size, sizeof(void *));
  2717. align = calculate_alignment(flags, align, size);
  2718. size = ALIGN(size, align);
  2719. flags = kmem_cache_flags(size, flags, name, NULL);
  2720. list_for_each_entry(s, &slab_caches, list) {
  2721. if (slab_unmergeable(s))
  2722. continue;
  2723. if (size > s->size)
  2724. continue;
  2725. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2726. continue;
  2727. /*
  2728. * Check if alignment is compatible.
  2729. * Courtesy of Adrian Drzewiecki
  2730. */
  2731. if ((s->size & ~(align - 1)) != s->size)
  2732. continue;
  2733. if (s->size - size >= sizeof(void *))
  2734. continue;
  2735. return s;
  2736. }
  2737. return NULL;
  2738. }
  2739. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2740. size_t align, unsigned long flags, void (*ctor)(void *))
  2741. {
  2742. struct kmem_cache *s;
  2743. if (WARN_ON(!name))
  2744. return NULL;
  2745. down_write(&slub_lock);
  2746. s = find_mergeable(size, align, flags, name, ctor);
  2747. if (s) {
  2748. s->refcount++;
  2749. /*
  2750. * Adjust the object sizes so that we clear
  2751. * the complete object on kzalloc.
  2752. */
  2753. s->objsize = max(s->objsize, (int)size);
  2754. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2755. if (sysfs_slab_alias(s, name)) {
  2756. s->refcount--;
  2757. goto err;
  2758. }
  2759. up_write(&slub_lock);
  2760. return s;
  2761. }
  2762. s = kmalloc(kmem_size, GFP_KERNEL);
  2763. if (s) {
  2764. if (kmem_cache_open(s, name,
  2765. size, align, flags, ctor)) {
  2766. list_add(&s->list, &slab_caches);
  2767. if (sysfs_slab_add(s)) {
  2768. list_del(&s->list);
  2769. kfree(s);
  2770. goto err;
  2771. }
  2772. up_write(&slub_lock);
  2773. return s;
  2774. }
  2775. kfree(s);
  2776. }
  2777. up_write(&slub_lock);
  2778. err:
  2779. if (flags & SLAB_PANIC)
  2780. panic("Cannot create slabcache %s\n", name);
  2781. else
  2782. s = NULL;
  2783. return s;
  2784. }
  2785. EXPORT_SYMBOL(kmem_cache_create);
  2786. #ifdef CONFIG_SMP
  2787. /*
  2788. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2789. * necessary.
  2790. */
  2791. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2792. unsigned long action, void *hcpu)
  2793. {
  2794. long cpu = (long)hcpu;
  2795. struct kmem_cache *s;
  2796. unsigned long flags;
  2797. switch (action) {
  2798. case CPU_UP_CANCELED:
  2799. case CPU_UP_CANCELED_FROZEN:
  2800. case CPU_DEAD:
  2801. case CPU_DEAD_FROZEN:
  2802. down_read(&slub_lock);
  2803. list_for_each_entry(s, &slab_caches, list) {
  2804. local_irq_save(flags);
  2805. __flush_cpu_slab(s, cpu);
  2806. local_irq_restore(flags);
  2807. }
  2808. up_read(&slub_lock);
  2809. break;
  2810. default:
  2811. break;
  2812. }
  2813. return NOTIFY_OK;
  2814. }
  2815. static struct notifier_block __cpuinitdata slab_notifier = {
  2816. .notifier_call = slab_cpuup_callback
  2817. };
  2818. #endif
  2819. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2820. {
  2821. struct kmem_cache *s;
  2822. void *ret;
  2823. if (unlikely(size > SLUB_MAX_SIZE))
  2824. return kmalloc_large(size, gfpflags);
  2825. s = get_slab(size, gfpflags);
  2826. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2827. return s;
  2828. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  2829. /* Honor the call site pointer we recieved. */
  2830. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2831. return ret;
  2832. }
  2833. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2834. int node, unsigned long caller)
  2835. {
  2836. struct kmem_cache *s;
  2837. void *ret;
  2838. if (unlikely(size > SLUB_MAX_SIZE)) {
  2839. ret = kmalloc_large_node(size, gfpflags, node);
  2840. trace_kmalloc_node(caller, ret,
  2841. size, PAGE_SIZE << get_order(size),
  2842. gfpflags, node);
  2843. return ret;
  2844. }
  2845. s = get_slab(size, gfpflags);
  2846. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2847. return s;
  2848. ret = slab_alloc(s, gfpflags, node, caller);
  2849. /* Honor the call site pointer we recieved. */
  2850. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2851. return ret;
  2852. }
  2853. #ifdef CONFIG_SLUB_DEBUG
  2854. static int count_inuse(struct page *page)
  2855. {
  2856. return page->inuse;
  2857. }
  2858. static int count_total(struct page *page)
  2859. {
  2860. return page->objects;
  2861. }
  2862. static int validate_slab(struct kmem_cache *s, struct page *page,
  2863. unsigned long *map)
  2864. {
  2865. void *p;
  2866. void *addr = page_address(page);
  2867. if (!check_slab(s, page) ||
  2868. !on_freelist(s, page, NULL))
  2869. return 0;
  2870. /* Now we know that a valid freelist exists */
  2871. bitmap_zero(map, page->objects);
  2872. for_each_free_object(p, s, page->freelist) {
  2873. set_bit(slab_index(p, s, addr), map);
  2874. if (!check_object(s, page, p, 0))
  2875. return 0;
  2876. }
  2877. for_each_object(p, s, addr, page->objects)
  2878. if (!test_bit(slab_index(p, s, addr), map))
  2879. if (!check_object(s, page, p, 1))
  2880. return 0;
  2881. return 1;
  2882. }
  2883. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2884. unsigned long *map)
  2885. {
  2886. if (slab_trylock(page)) {
  2887. validate_slab(s, page, map);
  2888. slab_unlock(page);
  2889. } else
  2890. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2891. s->name, page);
  2892. }
  2893. static int validate_slab_node(struct kmem_cache *s,
  2894. struct kmem_cache_node *n, unsigned long *map)
  2895. {
  2896. unsigned long count = 0;
  2897. struct page *page;
  2898. unsigned long flags;
  2899. spin_lock_irqsave(&n->list_lock, flags);
  2900. list_for_each_entry(page, &n->partial, lru) {
  2901. validate_slab_slab(s, page, map);
  2902. count++;
  2903. }
  2904. if (count != n->nr_partial)
  2905. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2906. "counter=%ld\n", s->name, count, n->nr_partial);
  2907. if (!(s->flags & SLAB_STORE_USER))
  2908. goto out;
  2909. list_for_each_entry(page, &n->full, lru) {
  2910. validate_slab_slab(s, page, map);
  2911. count++;
  2912. }
  2913. if (count != atomic_long_read(&n->nr_slabs))
  2914. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2915. "counter=%ld\n", s->name, count,
  2916. atomic_long_read(&n->nr_slabs));
  2917. out:
  2918. spin_unlock_irqrestore(&n->list_lock, flags);
  2919. return count;
  2920. }
  2921. static long validate_slab_cache(struct kmem_cache *s)
  2922. {
  2923. int node;
  2924. unsigned long count = 0;
  2925. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2926. sizeof(unsigned long), GFP_KERNEL);
  2927. if (!map)
  2928. return -ENOMEM;
  2929. flush_all(s);
  2930. for_each_node_state(node, N_NORMAL_MEMORY) {
  2931. struct kmem_cache_node *n = get_node(s, node);
  2932. count += validate_slab_node(s, n, map);
  2933. }
  2934. kfree(map);
  2935. return count;
  2936. }
  2937. #ifdef SLUB_RESILIENCY_TEST
  2938. static void resiliency_test(void)
  2939. {
  2940. u8 *p;
  2941. printk(KERN_ERR "SLUB resiliency testing\n");
  2942. printk(KERN_ERR "-----------------------\n");
  2943. printk(KERN_ERR "A. Corruption after allocation\n");
  2944. p = kzalloc(16, GFP_KERNEL);
  2945. p[16] = 0x12;
  2946. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2947. " 0x12->0x%p\n\n", p + 16);
  2948. validate_slab_cache(kmalloc_caches + 4);
  2949. /* Hmmm... The next two are dangerous */
  2950. p = kzalloc(32, GFP_KERNEL);
  2951. p[32 + sizeof(void *)] = 0x34;
  2952. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2953. " 0x34 -> -0x%p\n", p);
  2954. printk(KERN_ERR
  2955. "If allocated object is overwritten then not detectable\n\n");
  2956. validate_slab_cache(kmalloc_caches + 5);
  2957. p = kzalloc(64, GFP_KERNEL);
  2958. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2959. *p = 0x56;
  2960. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2961. p);
  2962. printk(KERN_ERR
  2963. "If allocated object is overwritten then not detectable\n\n");
  2964. validate_slab_cache(kmalloc_caches + 6);
  2965. printk(KERN_ERR "\nB. Corruption after free\n");
  2966. p = kzalloc(128, GFP_KERNEL);
  2967. kfree(p);
  2968. *p = 0x78;
  2969. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2970. validate_slab_cache(kmalloc_caches + 7);
  2971. p = kzalloc(256, GFP_KERNEL);
  2972. kfree(p);
  2973. p[50] = 0x9a;
  2974. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2975. p);
  2976. validate_slab_cache(kmalloc_caches + 8);
  2977. p = kzalloc(512, GFP_KERNEL);
  2978. kfree(p);
  2979. p[512] = 0xab;
  2980. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2981. validate_slab_cache(kmalloc_caches + 9);
  2982. }
  2983. #else
  2984. static void resiliency_test(void) {};
  2985. #endif
  2986. /*
  2987. * Generate lists of code addresses where slabcache objects are allocated
  2988. * and freed.
  2989. */
  2990. struct location {
  2991. unsigned long count;
  2992. unsigned long addr;
  2993. long long sum_time;
  2994. long min_time;
  2995. long max_time;
  2996. long min_pid;
  2997. long max_pid;
  2998. DECLARE_BITMAP(cpus, NR_CPUS);
  2999. nodemask_t nodes;
  3000. };
  3001. struct loc_track {
  3002. unsigned long max;
  3003. unsigned long count;
  3004. struct location *loc;
  3005. };
  3006. static void free_loc_track(struct loc_track *t)
  3007. {
  3008. if (t->max)
  3009. free_pages((unsigned long)t->loc,
  3010. get_order(sizeof(struct location) * t->max));
  3011. }
  3012. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3013. {
  3014. struct location *l;
  3015. int order;
  3016. order = get_order(sizeof(struct location) * max);
  3017. l = (void *)__get_free_pages(flags, order);
  3018. if (!l)
  3019. return 0;
  3020. if (t->count) {
  3021. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3022. free_loc_track(t);
  3023. }
  3024. t->max = max;
  3025. t->loc = l;
  3026. return 1;
  3027. }
  3028. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3029. const struct track *track)
  3030. {
  3031. long start, end, pos;
  3032. struct location *l;
  3033. unsigned long caddr;
  3034. unsigned long age = jiffies - track->when;
  3035. start = -1;
  3036. end = t->count;
  3037. for ( ; ; ) {
  3038. pos = start + (end - start + 1) / 2;
  3039. /*
  3040. * There is nothing at "end". If we end up there
  3041. * we need to add something to before end.
  3042. */
  3043. if (pos == end)
  3044. break;
  3045. caddr = t->loc[pos].addr;
  3046. if (track->addr == caddr) {
  3047. l = &t->loc[pos];
  3048. l->count++;
  3049. if (track->when) {
  3050. l->sum_time += age;
  3051. if (age < l->min_time)
  3052. l->min_time = age;
  3053. if (age > l->max_time)
  3054. l->max_time = age;
  3055. if (track->pid < l->min_pid)
  3056. l->min_pid = track->pid;
  3057. if (track->pid > l->max_pid)
  3058. l->max_pid = track->pid;
  3059. cpumask_set_cpu(track->cpu,
  3060. to_cpumask(l->cpus));
  3061. }
  3062. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3063. return 1;
  3064. }
  3065. if (track->addr < caddr)
  3066. end = pos;
  3067. else
  3068. start = pos;
  3069. }
  3070. /*
  3071. * Not found. Insert new tracking element.
  3072. */
  3073. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3074. return 0;
  3075. l = t->loc + pos;
  3076. if (pos < t->count)
  3077. memmove(l + 1, l,
  3078. (t->count - pos) * sizeof(struct location));
  3079. t->count++;
  3080. l->count = 1;
  3081. l->addr = track->addr;
  3082. l->sum_time = age;
  3083. l->min_time = age;
  3084. l->max_time = age;
  3085. l->min_pid = track->pid;
  3086. l->max_pid = track->pid;
  3087. cpumask_clear(to_cpumask(l->cpus));
  3088. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3089. nodes_clear(l->nodes);
  3090. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3091. return 1;
  3092. }
  3093. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3094. struct page *page, enum track_item alloc,
  3095. long *map)
  3096. {
  3097. void *addr = page_address(page);
  3098. void *p;
  3099. bitmap_zero(map, page->objects);
  3100. for_each_free_object(p, s, page->freelist)
  3101. set_bit(slab_index(p, s, addr), map);
  3102. for_each_object(p, s, addr, page->objects)
  3103. if (!test_bit(slab_index(p, s, addr), map))
  3104. add_location(t, s, get_track(s, p, alloc));
  3105. }
  3106. static int list_locations(struct kmem_cache *s, char *buf,
  3107. enum track_item alloc)
  3108. {
  3109. int len = 0;
  3110. unsigned long i;
  3111. struct loc_track t = { 0, 0, NULL };
  3112. int node;
  3113. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3114. sizeof(unsigned long), GFP_KERNEL);
  3115. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3116. GFP_TEMPORARY)) {
  3117. kfree(map);
  3118. return sprintf(buf, "Out of memory\n");
  3119. }
  3120. /* Push back cpu slabs */
  3121. flush_all(s);
  3122. for_each_node_state(node, N_NORMAL_MEMORY) {
  3123. struct kmem_cache_node *n = get_node(s, node);
  3124. unsigned long flags;
  3125. struct page *page;
  3126. if (!atomic_long_read(&n->nr_slabs))
  3127. continue;
  3128. spin_lock_irqsave(&n->list_lock, flags);
  3129. list_for_each_entry(page, &n->partial, lru)
  3130. process_slab(&t, s, page, alloc, map);
  3131. list_for_each_entry(page, &n->full, lru)
  3132. process_slab(&t, s, page, alloc, map);
  3133. spin_unlock_irqrestore(&n->list_lock, flags);
  3134. }
  3135. for (i = 0; i < t.count; i++) {
  3136. struct location *l = &t.loc[i];
  3137. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3138. break;
  3139. len += sprintf(buf + len, "%7ld ", l->count);
  3140. if (l->addr)
  3141. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3142. else
  3143. len += sprintf(buf + len, "<not-available>");
  3144. if (l->sum_time != l->min_time) {
  3145. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3146. l->min_time,
  3147. (long)div_u64(l->sum_time, l->count),
  3148. l->max_time);
  3149. } else
  3150. len += sprintf(buf + len, " age=%ld",
  3151. l->min_time);
  3152. if (l->min_pid != l->max_pid)
  3153. len += sprintf(buf + len, " pid=%ld-%ld",
  3154. l->min_pid, l->max_pid);
  3155. else
  3156. len += sprintf(buf + len, " pid=%ld",
  3157. l->min_pid);
  3158. if (num_online_cpus() > 1 &&
  3159. !cpumask_empty(to_cpumask(l->cpus)) &&
  3160. len < PAGE_SIZE - 60) {
  3161. len += sprintf(buf + len, " cpus=");
  3162. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3163. to_cpumask(l->cpus));
  3164. }
  3165. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3166. len < PAGE_SIZE - 60) {
  3167. len += sprintf(buf + len, " nodes=");
  3168. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3169. l->nodes);
  3170. }
  3171. len += sprintf(buf + len, "\n");
  3172. }
  3173. free_loc_track(&t);
  3174. kfree(map);
  3175. if (!t.count)
  3176. len += sprintf(buf, "No data\n");
  3177. return len;
  3178. }
  3179. enum slab_stat_type {
  3180. SL_ALL, /* All slabs */
  3181. SL_PARTIAL, /* Only partially allocated slabs */
  3182. SL_CPU, /* Only slabs used for cpu caches */
  3183. SL_OBJECTS, /* Determine allocated objects not slabs */
  3184. SL_TOTAL /* Determine object capacity not slabs */
  3185. };
  3186. #define SO_ALL (1 << SL_ALL)
  3187. #define SO_PARTIAL (1 << SL_PARTIAL)
  3188. #define SO_CPU (1 << SL_CPU)
  3189. #define SO_OBJECTS (1 << SL_OBJECTS)
  3190. #define SO_TOTAL (1 << SL_TOTAL)
  3191. static ssize_t show_slab_objects(struct kmem_cache *s,
  3192. char *buf, unsigned long flags)
  3193. {
  3194. unsigned long total = 0;
  3195. int node;
  3196. int x;
  3197. unsigned long *nodes;
  3198. unsigned long *per_cpu;
  3199. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3200. if (!nodes)
  3201. return -ENOMEM;
  3202. per_cpu = nodes + nr_node_ids;
  3203. if (flags & SO_CPU) {
  3204. int cpu;
  3205. for_each_possible_cpu(cpu) {
  3206. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3207. if (!c || c->node < 0)
  3208. continue;
  3209. if (c->page) {
  3210. if (flags & SO_TOTAL)
  3211. x = c->page->objects;
  3212. else if (flags & SO_OBJECTS)
  3213. x = c->page->inuse;
  3214. else
  3215. x = 1;
  3216. total += x;
  3217. nodes[c->node] += x;
  3218. }
  3219. per_cpu[c->node]++;
  3220. }
  3221. }
  3222. if (flags & SO_ALL) {
  3223. for_each_node_state(node, N_NORMAL_MEMORY) {
  3224. struct kmem_cache_node *n = get_node(s, node);
  3225. if (flags & SO_TOTAL)
  3226. x = atomic_long_read(&n->total_objects);
  3227. else if (flags & SO_OBJECTS)
  3228. x = atomic_long_read(&n->total_objects) -
  3229. count_partial(n, count_free);
  3230. else
  3231. x = atomic_long_read(&n->nr_slabs);
  3232. total += x;
  3233. nodes[node] += x;
  3234. }
  3235. } else if (flags & SO_PARTIAL) {
  3236. for_each_node_state(node, N_NORMAL_MEMORY) {
  3237. struct kmem_cache_node *n = get_node(s, node);
  3238. if (flags & SO_TOTAL)
  3239. x = count_partial(n, count_total);
  3240. else if (flags & SO_OBJECTS)
  3241. x = count_partial(n, count_inuse);
  3242. else
  3243. x = n->nr_partial;
  3244. total += x;
  3245. nodes[node] += x;
  3246. }
  3247. }
  3248. x = sprintf(buf, "%lu", total);
  3249. #ifdef CONFIG_NUMA
  3250. for_each_node_state(node, N_NORMAL_MEMORY)
  3251. if (nodes[node])
  3252. x += sprintf(buf + x, " N%d=%lu",
  3253. node, nodes[node]);
  3254. #endif
  3255. kfree(nodes);
  3256. return x + sprintf(buf + x, "\n");
  3257. }
  3258. static int any_slab_objects(struct kmem_cache *s)
  3259. {
  3260. int node;
  3261. for_each_online_node(node) {
  3262. struct kmem_cache_node *n = get_node(s, node);
  3263. if (!n)
  3264. continue;
  3265. if (atomic_long_read(&n->total_objects))
  3266. return 1;
  3267. }
  3268. return 0;
  3269. }
  3270. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3271. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3272. struct slab_attribute {
  3273. struct attribute attr;
  3274. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3275. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3276. };
  3277. #define SLAB_ATTR_RO(_name) \
  3278. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3279. #define SLAB_ATTR(_name) \
  3280. static struct slab_attribute _name##_attr = \
  3281. __ATTR(_name, 0644, _name##_show, _name##_store)
  3282. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3283. {
  3284. return sprintf(buf, "%d\n", s->size);
  3285. }
  3286. SLAB_ATTR_RO(slab_size);
  3287. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3288. {
  3289. return sprintf(buf, "%d\n", s->align);
  3290. }
  3291. SLAB_ATTR_RO(align);
  3292. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3293. {
  3294. return sprintf(buf, "%d\n", s->objsize);
  3295. }
  3296. SLAB_ATTR_RO(object_size);
  3297. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3298. {
  3299. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3300. }
  3301. SLAB_ATTR_RO(objs_per_slab);
  3302. static ssize_t order_store(struct kmem_cache *s,
  3303. const char *buf, size_t length)
  3304. {
  3305. unsigned long order;
  3306. int err;
  3307. err = strict_strtoul(buf, 10, &order);
  3308. if (err)
  3309. return err;
  3310. if (order > slub_max_order || order < slub_min_order)
  3311. return -EINVAL;
  3312. calculate_sizes(s, order);
  3313. return length;
  3314. }
  3315. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3316. {
  3317. return sprintf(buf, "%d\n", oo_order(s->oo));
  3318. }
  3319. SLAB_ATTR(order);
  3320. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3321. {
  3322. return sprintf(buf, "%lu\n", s->min_partial);
  3323. }
  3324. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3325. size_t length)
  3326. {
  3327. unsigned long min;
  3328. int err;
  3329. err = strict_strtoul(buf, 10, &min);
  3330. if (err)
  3331. return err;
  3332. set_min_partial(s, min);
  3333. return length;
  3334. }
  3335. SLAB_ATTR(min_partial);
  3336. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3337. {
  3338. if (s->ctor) {
  3339. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3340. return n + sprintf(buf + n, "\n");
  3341. }
  3342. return 0;
  3343. }
  3344. SLAB_ATTR_RO(ctor);
  3345. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3346. {
  3347. return sprintf(buf, "%d\n", s->refcount - 1);
  3348. }
  3349. SLAB_ATTR_RO(aliases);
  3350. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3351. {
  3352. return show_slab_objects(s, buf, SO_ALL);
  3353. }
  3354. SLAB_ATTR_RO(slabs);
  3355. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3356. {
  3357. return show_slab_objects(s, buf, SO_PARTIAL);
  3358. }
  3359. SLAB_ATTR_RO(partial);
  3360. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3361. {
  3362. return show_slab_objects(s, buf, SO_CPU);
  3363. }
  3364. SLAB_ATTR_RO(cpu_slabs);
  3365. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3366. {
  3367. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3368. }
  3369. SLAB_ATTR_RO(objects);
  3370. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3371. {
  3372. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3373. }
  3374. SLAB_ATTR_RO(objects_partial);
  3375. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3376. {
  3377. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3378. }
  3379. SLAB_ATTR_RO(total_objects);
  3380. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3381. {
  3382. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3383. }
  3384. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3385. const char *buf, size_t length)
  3386. {
  3387. s->flags &= ~SLAB_DEBUG_FREE;
  3388. if (buf[0] == '1')
  3389. s->flags |= SLAB_DEBUG_FREE;
  3390. return length;
  3391. }
  3392. SLAB_ATTR(sanity_checks);
  3393. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3394. {
  3395. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3396. }
  3397. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3398. size_t length)
  3399. {
  3400. s->flags &= ~SLAB_TRACE;
  3401. if (buf[0] == '1')
  3402. s->flags |= SLAB_TRACE;
  3403. return length;
  3404. }
  3405. SLAB_ATTR(trace);
  3406. #ifdef CONFIG_FAILSLAB
  3407. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3408. {
  3409. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3410. }
  3411. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3412. size_t length)
  3413. {
  3414. s->flags &= ~SLAB_FAILSLAB;
  3415. if (buf[0] == '1')
  3416. s->flags |= SLAB_FAILSLAB;
  3417. return length;
  3418. }
  3419. SLAB_ATTR(failslab);
  3420. #endif
  3421. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3422. {
  3423. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3424. }
  3425. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3426. const char *buf, size_t length)
  3427. {
  3428. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3429. if (buf[0] == '1')
  3430. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3431. return length;
  3432. }
  3433. SLAB_ATTR(reclaim_account);
  3434. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3435. {
  3436. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3437. }
  3438. SLAB_ATTR_RO(hwcache_align);
  3439. #ifdef CONFIG_ZONE_DMA
  3440. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3441. {
  3442. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3443. }
  3444. SLAB_ATTR_RO(cache_dma);
  3445. #endif
  3446. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3447. {
  3448. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3449. }
  3450. SLAB_ATTR_RO(destroy_by_rcu);
  3451. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3452. {
  3453. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3454. }
  3455. static ssize_t red_zone_store(struct kmem_cache *s,
  3456. const char *buf, size_t length)
  3457. {
  3458. if (any_slab_objects(s))
  3459. return -EBUSY;
  3460. s->flags &= ~SLAB_RED_ZONE;
  3461. if (buf[0] == '1')
  3462. s->flags |= SLAB_RED_ZONE;
  3463. calculate_sizes(s, -1);
  3464. return length;
  3465. }
  3466. SLAB_ATTR(red_zone);
  3467. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3468. {
  3469. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3470. }
  3471. static ssize_t poison_store(struct kmem_cache *s,
  3472. const char *buf, size_t length)
  3473. {
  3474. if (any_slab_objects(s))
  3475. return -EBUSY;
  3476. s->flags &= ~SLAB_POISON;
  3477. if (buf[0] == '1')
  3478. s->flags |= SLAB_POISON;
  3479. calculate_sizes(s, -1);
  3480. return length;
  3481. }
  3482. SLAB_ATTR(poison);
  3483. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3484. {
  3485. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3486. }
  3487. static ssize_t store_user_store(struct kmem_cache *s,
  3488. const char *buf, size_t length)
  3489. {
  3490. if (any_slab_objects(s))
  3491. return -EBUSY;
  3492. s->flags &= ~SLAB_STORE_USER;
  3493. if (buf[0] == '1')
  3494. s->flags |= SLAB_STORE_USER;
  3495. calculate_sizes(s, -1);
  3496. return length;
  3497. }
  3498. SLAB_ATTR(store_user);
  3499. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3500. {
  3501. return 0;
  3502. }
  3503. static ssize_t validate_store(struct kmem_cache *s,
  3504. const char *buf, size_t length)
  3505. {
  3506. int ret = -EINVAL;
  3507. if (buf[0] == '1') {
  3508. ret = validate_slab_cache(s);
  3509. if (ret >= 0)
  3510. ret = length;
  3511. }
  3512. return ret;
  3513. }
  3514. SLAB_ATTR(validate);
  3515. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3516. {
  3517. return 0;
  3518. }
  3519. static ssize_t shrink_store(struct kmem_cache *s,
  3520. const char *buf, size_t length)
  3521. {
  3522. if (buf[0] == '1') {
  3523. int rc = kmem_cache_shrink(s);
  3524. if (rc)
  3525. return rc;
  3526. } else
  3527. return -EINVAL;
  3528. return length;
  3529. }
  3530. SLAB_ATTR(shrink);
  3531. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3532. {
  3533. if (!(s->flags & SLAB_STORE_USER))
  3534. return -ENOSYS;
  3535. return list_locations(s, buf, TRACK_ALLOC);
  3536. }
  3537. SLAB_ATTR_RO(alloc_calls);
  3538. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3539. {
  3540. if (!(s->flags & SLAB_STORE_USER))
  3541. return -ENOSYS;
  3542. return list_locations(s, buf, TRACK_FREE);
  3543. }
  3544. SLAB_ATTR_RO(free_calls);
  3545. #ifdef CONFIG_NUMA
  3546. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3547. {
  3548. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3549. }
  3550. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3551. const char *buf, size_t length)
  3552. {
  3553. unsigned long ratio;
  3554. int err;
  3555. err = strict_strtoul(buf, 10, &ratio);
  3556. if (err)
  3557. return err;
  3558. if (ratio <= 100)
  3559. s->remote_node_defrag_ratio = ratio * 10;
  3560. return length;
  3561. }
  3562. SLAB_ATTR(remote_node_defrag_ratio);
  3563. #endif
  3564. #ifdef CONFIG_SLUB_STATS
  3565. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3566. {
  3567. unsigned long sum = 0;
  3568. int cpu;
  3569. int len;
  3570. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3571. if (!data)
  3572. return -ENOMEM;
  3573. for_each_online_cpu(cpu) {
  3574. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3575. data[cpu] = x;
  3576. sum += x;
  3577. }
  3578. len = sprintf(buf, "%lu", sum);
  3579. #ifdef CONFIG_SMP
  3580. for_each_online_cpu(cpu) {
  3581. if (data[cpu] && len < PAGE_SIZE - 20)
  3582. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3583. }
  3584. #endif
  3585. kfree(data);
  3586. return len + sprintf(buf + len, "\n");
  3587. }
  3588. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3589. {
  3590. int cpu;
  3591. for_each_online_cpu(cpu)
  3592. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3593. }
  3594. #define STAT_ATTR(si, text) \
  3595. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3596. { \
  3597. return show_stat(s, buf, si); \
  3598. } \
  3599. static ssize_t text##_store(struct kmem_cache *s, \
  3600. const char *buf, size_t length) \
  3601. { \
  3602. if (buf[0] != '0') \
  3603. return -EINVAL; \
  3604. clear_stat(s, si); \
  3605. return length; \
  3606. } \
  3607. SLAB_ATTR(text); \
  3608. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3609. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3610. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3611. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3612. STAT_ATTR(FREE_FROZEN, free_frozen);
  3613. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3614. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3615. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3616. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3617. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3618. STAT_ATTR(FREE_SLAB, free_slab);
  3619. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3620. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3621. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3622. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3623. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3624. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3625. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3626. #endif
  3627. static struct attribute *slab_attrs[] = {
  3628. &slab_size_attr.attr,
  3629. &object_size_attr.attr,
  3630. &objs_per_slab_attr.attr,
  3631. &order_attr.attr,
  3632. &min_partial_attr.attr,
  3633. &objects_attr.attr,
  3634. &objects_partial_attr.attr,
  3635. &total_objects_attr.attr,
  3636. &slabs_attr.attr,
  3637. &partial_attr.attr,
  3638. &cpu_slabs_attr.attr,
  3639. &ctor_attr.attr,
  3640. &aliases_attr.attr,
  3641. &align_attr.attr,
  3642. &sanity_checks_attr.attr,
  3643. &trace_attr.attr,
  3644. &hwcache_align_attr.attr,
  3645. &reclaim_account_attr.attr,
  3646. &destroy_by_rcu_attr.attr,
  3647. &red_zone_attr.attr,
  3648. &poison_attr.attr,
  3649. &store_user_attr.attr,
  3650. &validate_attr.attr,
  3651. &shrink_attr.attr,
  3652. &alloc_calls_attr.attr,
  3653. &free_calls_attr.attr,
  3654. #ifdef CONFIG_ZONE_DMA
  3655. &cache_dma_attr.attr,
  3656. #endif
  3657. #ifdef CONFIG_NUMA
  3658. &remote_node_defrag_ratio_attr.attr,
  3659. #endif
  3660. #ifdef CONFIG_SLUB_STATS
  3661. &alloc_fastpath_attr.attr,
  3662. &alloc_slowpath_attr.attr,
  3663. &free_fastpath_attr.attr,
  3664. &free_slowpath_attr.attr,
  3665. &free_frozen_attr.attr,
  3666. &free_add_partial_attr.attr,
  3667. &free_remove_partial_attr.attr,
  3668. &alloc_from_partial_attr.attr,
  3669. &alloc_slab_attr.attr,
  3670. &alloc_refill_attr.attr,
  3671. &free_slab_attr.attr,
  3672. &cpuslab_flush_attr.attr,
  3673. &deactivate_full_attr.attr,
  3674. &deactivate_empty_attr.attr,
  3675. &deactivate_to_head_attr.attr,
  3676. &deactivate_to_tail_attr.attr,
  3677. &deactivate_remote_frees_attr.attr,
  3678. &order_fallback_attr.attr,
  3679. #endif
  3680. #ifdef CONFIG_FAILSLAB
  3681. &failslab_attr.attr,
  3682. #endif
  3683. NULL
  3684. };
  3685. static struct attribute_group slab_attr_group = {
  3686. .attrs = slab_attrs,
  3687. };
  3688. static ssize_t slab_attr_show(struct kobject *kobj,
  3689. struct attribute *attr,
  3690. char *buf)
  3691. {
  3692. struct slab_attribute *attribute;
  3693. struct kmem_cache *s;
  3694. int err;
  3695. attribute = to_slab_attr(attr);
  3696. s = to_slab(kobj);
  3697. if (!attribute->show)
  3698. return -EIO;
  3699. err = attribute->show(s, buf);
  3700. return err;
  3701. }
  3702. static ssize_t slab_attr_store(struct kobject *kobj,
  3703. struct attribute *attr,
  3704. const char *buf, size_t len)
  3705. {
  3706. struct slab_attribute *attribute;
  3707. struct kmem_cache *s;
  3708. int err;
  3709. attribute = to_slab_attr(attr);
  3710. s = to_slab(kobj);
  3711. if (!attribute->store)
  3712. return -EIO;
  3713. err = attribute->store(s, buf, len);
  3714. return err;
  3715. }
  3716. static void kmem_cache_release(struct kobject *kobj)
  3717. {
  3718. struct kmem_cache *s = to_slab(kobj);
  3719. kfree(s);
  3720. }
  3721. static const struct sysfs_ops slab_sysfs_ops = {
  3722. .show = slab_attr_show,
  3723. .store = slab_attr_store,
  3724. };
  3725. static struct kobj_type slab_ktype = {
  3726. .sysfs_ops = &slab_sysfs_ops,
  3727. .release = kmem_cache_release
  3728. };
  3729. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3730. {
  3731. struct kobj_type *ktype = get_ktype(kobj);
  3732. if (ktype == &slab_ktype)
  3733. return 1;
  3734. return 0;
  3735. }
  3736. static const struct kset_uevent_ops slab_uevent_ops = {
  3737. .filter = uevent_filter,
  3738. };
  3739. static struct kset *slab_kset;
  3740. #define ID_STR_LENGTH 64
  3741. /* Create a unique string id for a slab cache:
  3742. *
  3743. * Format :[flags-]size
  3744. */
  3745. static char *create_unique_id(struct kmem_cache *s)
  3746. {
  3747. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3748. char *p = name;
  3749. BUG_ON(!name);
  3750. *p++ = ':';
  3751. /*
  3752. * First flags affecting slabcache operations. We will only
  3753. * get here for aliasable slabs so we do not need to support
  3754. * too many flags. The flags here must cover all flags that
  3755. * are matched during merging to guarantee that the id is
  3756. * unique.
  3757. */
  3758. if (s->flags & SLAB_CACHE_DMA)
  3759. *p++ = 'd';
  3760. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3761. *p++ = 'a';
  3762. if (s->flags & SLAB_DEBUG_FREE)
  3763. *p++ = 'F';
  3764. if (!(s->flags & SLAB_NOTRACK))
  3765. *p++ = 't';
  3766. if (p != name + 1)
  3767. *p++ = '-';
  3768. p += sprintf(p, "%07d", s->size);
  3769. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3770. return name;
  3771. }
  3772. static int sysfs_slab_add(struct kmem_cache *s)
  3773. {
  3774. int err;
  3775. const char *name;
  3776. int unmergeable;
  3777. if (slab_state < SYSFS)
  3778. /* Defer until later */
  3779. return 0;
  3780. unmergeable = slab_unmergeable(s);
  3781. if (unmergeable) {
  3782. /*
  3783. * Slabcache can never be merged so we can use the name proper.
  3784. * This is typically the case for debug situations. In that
  3785. * case we can catch duplicate names easily.
  3786. */
  3787. sysfs_remove_link(&slab_kset->kobj, s->name);
  3788. name = s->name;
  3789. } else {
  3790. /*
  3791. * Create a unique name for the slab as a target
  3792. * for the symlinks.
  3793. */
  3794. name = create_unique_id(s);
  3795. }
  3796. s->kobj.kset = slab_kset;
  3797. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3798. if (err) {
  3799. kobject_put(&s->kobj);
  3800. return err;
  3801. }
  3802. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3803. if (err) {
  3804. kobject_del(&s->kobj);
  3805. kobject_put(&s->kobj);
  3806. return err;
  3807. }
  3808. kobject_uevent(&s->kobj, KOBJ_ADD);
  3809. if (!unmergeable) {
  3810. /* Setup first alias */
  3811. sysfs_slab_alias(s, s->name);
  3812. kfree(name);
  3813. }
  3814. return 0;
  3815. }
  3816. static void sysfs_slab_remove(struct kmem_cache *s)
  3817. {
  3818. if (slab_state < SYSFS)
  3819. /*
  3820. * Sysfs has not been setup yet so no need to remove the
  3821. * cache from sysfs.
  3822. */
  3823. return;
  3824. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3825. kobject_del(&s->kobj);
  3826. kobject_put(&s->kobj);
  3827. }
  3828. /*
  3829. * Need to buffer aliases during bootup until sysfs becomes
  3830. * available lest we lose that information.
  3831. */
  3832. struct saved_alias {
  3833. struct kmem_cache *s;
  3834. const char *name;
  3835. struct saved_alias *next;
  3836. };
  3837. static struct saved_alias *alias_list;
  3838. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3839. {
  3840. struct saved_alias *al;
  3841. if (slab_state == SYSFS) {
  3842. /*
  3843. * If we have a leftover link then remove it.
  3844. */
  3845. sysfs_remove_link(&slab_kset->kobj, name);
  3846. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3847. }
  3848. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3849. if (!al)
  3850. return -ENOMEM;
  3851. al->s = s;
  3852. al->name = name;
  3853. al->next = alias_list;
  3854. alias_list = al;
  3855. return 0;
  3856. }
  3857. static int __init slab_sysfs_init(void)
  3858. {
  3859. struct kmem_cache *s;
  3860. int err;
  3861. down_write(&slub_lock);
  3862. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3863. if (!slab_kset) {
  3864. up_write(&slub_lock);
  3865. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3866. return -ENOSYS;
  3867. }
  3868. slab_state = SYSFS;
  3869. list_for_each_entry(s, &slab_caches, list) {
  3870. err = sysfs_slab_add(s);
  3871. if (err)
  3872. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3873. " to sysfs\n", s->name);
  3874. }
  3875. while (alias_list) {
  3876. struct saved_alias *al = alias_list;
  3877. alias_list = alias_list->next;
  3878. err = sysfs_slab_alias(al->s, al->name);
  3879. if (err)
  3880. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3881. " %s to sysfs\n", s->name);
  3882. kfree(al);
  3883. }
  3884. up_write(&slub_lock);
  3885. resiliency_test();
  3886. return 0;
  3887. }
  3888. __initcall(slab_sysfs_init);
  3889. #endif
  3890. /*
  3891. * The /proc/slabinfo ABI
  3892. */
  3893. #ifdef CONFIG_SLABINFO
  3894. static void print_slabinfo_header(struct seq_file *m)
  3895. {
  3896. seq_puts(m, "slabinfo - version: 2.1\n");
  3897. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3898. "<objperslab> <pagesperslab>");
  3899. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3900. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3901. seq_putc(m, '\n');
  3902. }
  3903. static void *s_start(struct seq_file *m, loff_t *pos)
  3904. {
  3905. loff_t n = *pos;
  3906. down_read(&slub_lock);
  3907. if (!n)
  3908. print_slabinfo_header(m);
  3909. return seq_list_start(&slab_caches, *pos);
  3910. }
  3911. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3912. {
  3913. return seq_list_next(p, &slab_caches, pos);
  3914. }
  3915. static void s_stop(struct seq_file *m, void *p)
  3916. {
  3917. up_read(&slub_lock);
  3918. }
  3919. static int s_show(struct seq_file *m, void *p)
  3920. {
  3921. unsigned long nr_partials = 0;
  3922. unsigned long nr_slabs = 0;
  3923. unsigned long nr_inuse = 0;
  3924. unsigned long nr_objs = 0;
  3925. unsigned long nr_free = 0;
  3926. struct kmem_cache *s;
  3927. int node;
  3928. s = list_entry(p, struct kmem_cache, list);
  3929. for_each_online_node(node) {
  3930. struct kmem_cache_node *n = get_node(s, node);
  3931. if (!n)
  3932. continue;
  3933. nr_partials += n->nr_partial;
  3934. nr_slabs += atomic_long_read(&n->nr_slabs);
  3935. nr_objs += atomic_long_read(&n->total_objects);
  3936. nr_free += count_partial(n, count_free);
  3937. }
  3938. nr_inuse = nr_objs - nr_free;
  3939. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3940. nr_objs, s->size, oo_objects(s->oo),
  3941. (1 << oo_order(s->oo)));
  3942. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3943. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3944. 0UL);
  3945. seq_putc(m, '\n');
  3946. return 0;
  3947. }
  3948. static const struct seq_operations slabinfo_op = {
  3949. .start = s_start,
  3950. .next = s_next,
  3951. .stop = s_stop,
  3952. .show = s_show,
  3953. };
  3954. static int slabinfo_open(struct inode *inode, struct file *file)
  3955. {
  3956. return seq_open(file, &slabinfo_op);
  3957. }
  3958. static const struct file_operations proc_slabinfo_operations = {
  3959. .open = slabinfo_open,
  3960. .read = seq_read,
  3961. .llseek = seq_lseek,
  3962. .release = seq_release,
  3963. };
  3964. static int __init slab_proc_init(void)
  3965. {
  3966. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  3967. return 0;
  3968. }
  3969. module_init(slab_proc_init);
  3970. #endif /* CONFIG_SLABINFO */