disk-io.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <linux/semaphore.h>
  34. #include <asm/unaligned.h>
  35. #include "compat.h"
  36. #include "ctree.h"
  37. #include "disk-io.h"
  38. #include "transaction.h"
  39. #include "btrfs_inode.h"
  40. #include "volumes.h"
  41. #include "print-tree.h"
  42. #include "async-thread.h"
  43. #include "locking.h"
  44. #include "tree-log.h"
  45. #include "free-space-cache.h"
  46. #include "inode-map.h"
  47. #include "check-integrity.h"
  48. #include "rcu-string.h"
  49. #include "dev-replace.h"
  50. #include "raid56.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  60. struct btrfs_root *root);
  61. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  62. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  63. struct btrfs_root *root);
  64. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  65. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  66. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  67. struct extent_io_tree *dirty_pages,
  68. int mark);
  69. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  70. struct extent_io_tree *pinned_extents);
  71. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  72. static void btrfs_error_commit_super(struct btrfs_root *root);
  73. /*
  74. * end_io_wq structs are used to do processing in task context when an IO is
  75. * complete. This is used during reads to verify checksums, and it is used
  76. * by writes to insert metadata for new file extents after IO is complete.
  77. */
  78. struct end_io_wq {
  79. struct bio *bio;
  80. bio_end_io_t *end_io;
  81. void *private;
  82. struct btrfs_fs_info *info;
  83. int error;
  84. int metadata;
  85. struct list_head list;
  86. struct btrfs_work work;
  87. };
  88. /*
  89. * async submit bios are used to offload expensive checksumming
  90. * onto the worker threads. They checksum file and metadata bios
  91. * just before they are sent down the IO stack.
  92. */
  93. struct async_submit_bio {
  94. struct inode *inode;
  95. struct bio *bio;
  96. struct list_head list;
  97. extent_submit_bio_hook_t *submit_bio_start;
  98. extent_submit_bio_hook_t *submit_bio_done;
  99. int rw;
  100. int mirror_num;
  101. unsigned long bio_flags;
  102. /*
  103. * bio_offset is optional, can be used if the pages in the bio
  104. * can't tell us where in the file the bio should go
  105. */
  106. u64 bio_offset;
  107. struct btrfs_work work;
  108. int error;
  109. };
  110. /*
  111. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  112. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  113. * the level the eb occupies in the tree.
  114. *
  115. * Different roots are used for different purposes and may nest inside each
  116. * other and they require separate keysets. As lockdep keys should be
  117. * static, assign keysets according to the purpose of the root as indicated
  118. * by btrfs_root->objectid. This ensures that all special purpose roots
  119. * have separate keysets.
  120. *
  121. * Lock-nesting across peer nodes is always done with the immediate parent
  122. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  123. * subclass to avoid triggering lockdep warning in such cases.
  124. *
  125. * The key is set by the readpage_end_io_hook after the buffer has passed
  126. * csum validation but before the pages are unlocked. It is also set by
  127. * btrfs_init_new_buffer on freshly allocated blocks.
  128. *
  129. * We also add a check to make sure the highest level of the tree is the
  130. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  131. * needs update as well.
  132. */
  133. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  134. # if BTRFS_MAX_LEVEL != 8
  135. # error
  136. # endif
  137. static struct btrfs_lockdep_keyset {
  138. u64 id; /* root objectid */
  139. const char *name_stem; /* lock name stem */
  140. char names[BTRFS_MAX_LEVEL + 1][20];
  141. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  142. } btrfs_lockdep_keysets[] = {
  143. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  144. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  145. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  146. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  147. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  148. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  149. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  150. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  151. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  152. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  153. { .id = 0, .name_stem = "tree" },
  154. };
  155. void __init btrfs_init_lockdep(void)
  156. {
  157. int i, j;
  158. /* initialize lockdep class names */
  159. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  160. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  161. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  162. snprintf(ks->names[j], sizeof(ks->names[j]),
  163. "btrfs-%s-%02d", ks->name_stem, j);
  164. }
  165. }
  166. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  167. int level)
  168. {
  169. struct btrfs_lockdep_keyset *ks;
  170. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  171. /* find the matching keyset, id 0 is the default entry */
  172. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  173. if (ks->id == objectid)
  174. break;
  175. lockdep_set_class_and_name(&eb->lock,
  176. &ks->keys[level], ks->names[level]);
  177. }
  178. #endif
  179. /*
  180. * extents on the btree inode are pretty simple, there's one extent
  181. * that covers the entire device
  182. */
  183. static struct extent_map *btree_get_extent(struct inode *inode,
  184. struct page *page, size_t pg_offset, u64 start, u64 len,
  185. int create)
  186. {
  187. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  188. struct extent_map *em;
  189. int ret;
  190. read_lock(&em_tree->lock);
  191. em = lookup_extent_mapping(em_tree, start, len);
  192. if (em) {
  193. em->bdev =
  194. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  195. read_unlock(&em_tree->lock);
  196. goto out;
  197. }
  198. read_unlock(&em_tree->lock);
  199. em = alloc_extent_map();
  200. if (!em) {
  201. em = ERR_PTR(-ENOMEM);
  202. goto out;
  203. }
  204. em->start = 0;
  205. em->len = (u64)-1;
  206. em->block_len = (u64)-1;
  207. em->block_start = 0;
  208. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  209. write_lock(&em_tree->lock);
  210. ret = add_extent_mapping(em_tree, em, 0);
  211. if (ret == -EEXIST) {
  212. free_extent_map(em);
  213. em = lookup_extent_mapping(em_tree, start, len);
  214. if (!em)
  215. em = ERR_PTR(-EIO);
  216. } else if (ret) {
  217. free_extent_map(em);
  218. em = ERR_PTR(ret);
  219. }
  220. write_unlock(&em_tree->lock);
  221. out:
  222. return em;
  223. }
  224. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  225. {
  226. return crc32c(seed, data, len);
  227. }
  228. void btrfs_csum_final(u32 crc, char *result)
  229. {
  230. put_unaligned_le32(~crc, result);
  231. }
  232. /*
  233. * compute the csum for a btree block, and either verify it or write it
  234. * into the csum field of the block.
  235. */
  236. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  237. int verify)
  238. {
  239. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  240. char *result = NULL;
  241. unsigned long len;
  242. unsigned long cur_len;
  243. unsigned long offset = BTRFS_CSUM_SIZE;
  244. char *kaddr;
  245. unsigned long map_start;
  246. unsigned long map_len;
  247. int err;
  248. u32 crc = ~(u32)0;
  249. unsigned long inline_result;
  250. len = buf->len - offset;
  251. while (len > 0) {
  252. err = map_private_extent_buffer(buf, offset, 32,
  253. &kaddr, &map_start, &map_len);
  254. if (err)
  255. return 1;
  256. cur_len = min(len, map_len - (offset - map_start));
  257. crc = btrfs_csum_data(kaddr + offset - map_start,
  258. crc, cur_len);
  259. len -= cur_len;
  260. offset += cur_len;
  261. }
  262. if (csum_size > sizeof(inline_result)) {
  263. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  264. if (!result)
  265. return 1;
  266. } else {
  267. result = (char *)&inline_result;
  268. }
  269. btrfs_csum_final(crc, result);
  270. if (verify) {
  271. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  272. u32 val;
  273. u32 found = 0;
  274. memcpy(&found, result, csum_size);
  275. read_extent_buffer(buf, &val, 0, csum_size);
  276. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  277. "failed on %llu wanted %X found %X "
  278. "level %d\n",
  279. root->fs_info->sb->s_id, buf->start,
  280. val, found, btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. eb->start, parent_transid, btrfs_header_generation(eb));
  318. ret = 1;
  319. clear_extent_buffer_uptodate(eb);
  320. out:
  321. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  322. &cached_state, GFP_NOFS);
  323. return ret;
  324. }
  325. /*
  326. * Return 0 if the superblock checksum type matches the checksum value of that
  327. * algorithm. Pass the raw disk superblock data.
  328. */
  329. static int btrfs_check_super_csum(char *raw_disk_sb)
  330. {
  331. struct btrfs_super_block *disk_sb =
  332. (struct btrfs_super_block *)raw_disk_sb;
  333. u16 csum_type = btrfs_super_csum_type(disk_sb);
  334. int ret = 0;
  335. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  336. u32 crc = ~(u32)0;
  337. const int csum_size = sizeof(crc);
  338. char result[csum_size];
  339. /*
  340. * The super_block structure does not span the whole
  341. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  342. * is filled with zeros and is included in the checkum.
  343. */
  344. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  345. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  346. btrfs_csum_final(crc, result);
  347. if (memcmp(raw_disk_sb, result, csum_size))
  348. ret = 1;
  349. if (ret && btrfs_super_generation(disk_sb) < 10) {
  350. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  351. ret = 0;
  352. }
  353. }
  354. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  355. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  356. csum_type);
  357. ret = 1;
  358. }
  359. return ret;
  360. }
  361. /*
  362. * helper to read a given tree block, doing retries as required when
  363. * the checksums don't match and we have alternate mirrors to try.
  364. */
  365. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  366. struct extent_buffer *eb,
  367. u64 start, u64 parent_transid)
  368. {
  369. struct extent_io_tree *io_tree;
  370. int failed = 0;
  371. int ret;
  372. int num_copies = 0;
  373. int mirror_num = 0;
  374. int failed_mirror = 0;
  375. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  376. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  377. while (1) {
  378. ret = read_extent_buffer_pages(io_tree, eb, start,
  379. WAIT_COMPLETE,
  380. btree_get_extent, mirror_num);
  381. if (!ret) {
  382. if (!verify_parent_transid(io_tree, eb,
  383. parent_transid, 0))
  384. break;
  385. else
  386. ret = -EIO;
  387. }
  388. /*
  389. * This buffer's crc is fine, but its contents are corrupted, so
  390. * there is no reason to read the other copies, they won't be
  391. * any less wrong.
  392. */
  393. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  394. break;
  395. num_copies = btrfs_num_copies(root->fs_info,
  396. eb->start, eb->len);
  397. if (num_copies == 1)
  398. break;
  399. if (!failed_mirror) {
  400. failed = 1;
  401. failed_mirror = eb->read_mirror;
  402. }
  403. mirror_num++;
  404. if (mirror_num == failed_mirror)
  405. mirror_num++;
  406. if (mirror_num > num_copies)
  407. break;
  408. }
  409. if (failed && !ret && failed_mirror)
  410. repair_eb_io_failure(root, eb, failed_mirror);
  411. return ret;
  412. }
  413. /*
  414. * checksum a dirty tree block before IO. This has extra checks to make sure
  415. * we only fill in the checksum field in the first page of a multi-page block
  416. */
  417. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  418. {
  419. struct extent_io_tree *tree;
  420. u64 start = page_offset(page);
  421. u64 found_start;
  422. struct extent_buffer *eb;
  423. tree = &BTRFS_I(page->mapping->host)->io_tree;
  424. eb = (struct extent_buffer *)page->private;
  425. if (page != eb->pages[0])
  426. return 0;
  427. found_start = btrfs_header_bytenr(eb);
  428. if (found_start != start) {
  429. WARN_ON(1);
  430. return 0;
  431. }
  432. if (!PageUptodate(page)) {
  433. WARN_ON(1);
  434. return 0;
  435. }
  436. csum_tree_block(root, eb, 0);
  437. return 0;
  438. }
  439. static int check_tree_block_fsid(struct btrfs_root *root,
  440. struct extent_buffer *eb)
  441. {
  442. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  443. u8 fsid[BTRFS_UUID_SIZE];
  444. int ret = 1;
  445. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  446. BTRFS_FSID_SIZE);
  447. while (fs_devices) {
  448. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  449. ret = 0;
  450. break;
  451. }
  452. fs_devices = fs_devices->seed;
  453. }
  454. return ret;
  455. }
  456. #define CORRUPT(reason, eb, root, slot) \
  457. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  458. "root=%llu, slot=%d\n", reason, \
  459. btrfs_header_bytenr(eb), root->objectid, slot)
  460. static noinline int check_leaf(struct btrfs_root *root,
  461. struct extent_buffer *leaf)
  462. {
  463. struct btrfs_key key;
  464. struct btrfs_key leaf_key;
  465. u32 nritems = btrfs_header_nritems(leaf);
  466. int slot;
  467. if (nritems == 0)
  468. return 0;
  469. /* Check the 0 item */
  470. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  471. BTRFS_LEAF_DATA_SIZE(root)) {
  472. CORRUPT("invalid item offset size pair", leaf, root, 0);
  473. return -EIO;
  474. }
  475. /*
  476. * Check to make sure each items keys are in the correct order and their
  477. * offsets make sense. We only have to loop through nritems-1 because
  478. * we check the current slot against the next slot, which verifies the
  479. * next slot's offset+size makes sense and that the current's slot
  480. * offset is correct.
  481. */
  482. for (slot = 0; slot < nritems - 1; slot++) {
  483. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  484. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  485. /* Make sure the keys are in the right order */
  486. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  487. CORRUPT("bad key order", leaf, root, slot);
  488. return -EIO;
  489. }
  490. /*
  491. * Make sure the offset and ends are right, remember that the
  492. * item data starts at the end of the leaf and grows towards the
  493. * front.
  494. */
  495. if (btrfs_item_offset_nr(leaf, slot) !=
  496. btrfs_item_end_nr(leaf, slot + 1)) {
  497. CORRUPT("slot offset bad", leaf, root, slot);
  498. return -EIO;
  499. }
  500. /*
  501. * Check to make sure that we don't point outside of the leaf,
  502. * just incase all the items are consistent to eachother, but
  503. * all point outside of the leaf.
  504. */
  505. if (btrfs_item_end_nr(leaf, slot) >
  506. BTRFS_LEAF_DATA_SIZE(root)) {
  507. CORRUPT("slot end outside of leaf", leaf, root, slot);
  508. return -EIO;
  509. }
  510. }
  511. return 0;
  512. }
  513. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  514. u64 phy_offset, struct page *page,
  515. u64 start, u64 end, int mirror)
  516. {
  517. struct extent_io_tree *tree;
  518. u64 found_start;
  519. int found_level;
  520. struct extent_buffer *eb;
  521. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  522. int ret = 0;
  523. int reads_done;
  524. if (!page->private)
  525. goto out;
  526. tree = &BTRFS_I(page->mapping->host)->io_tree;
  527. eb = (struct extent_buffer *)page->private;
  528. /* the pending IO might have been the only thing that kept this buffer
  529. * in memory. Make sure we have a ref for all this other checks
  530. */
  531. extent_buffer_get(eb);
  532. reads_done = atomic_dec_and_test(&eb->io_pages);
  533. if (!reads_done)
  534. goto err;
  535. eb->read_mirror = mirror;
  536. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  537. ret = -EIO;
  538. goto err;
  539. }
  540. found_start = btrfs_header_bytenr(eb);
  541. if (found_start != eb->start) {
  542. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  543. "%llu %llu\n",
  544. found_start, eb->start);
  545. ret = -EIO;
  546. goto err;
  547. }
  548. if (check_tree_block_fsid(root, eb)) {
  549. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  550. eb->start);
  551. ret = -EIO;
  552. goto err;
  553. }
  554. found_level = btrfs_header_level(eb);
  555. if (found_level >= BTRFS_MAX_LEVEL) {
  556. btrfs_info(root->fs_info, "bad tree block level %d\n",
  557. (int)btrfs_header_level(eb));
  558. ret = -EIO;
  559. goto err;
  560. }
  561. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  562. eb, found_level);
  563. ret = csum_tree_block(root, eb, 1);
  564. if (ret) {
  565. ret = -EIO;
  566. goto err;
  567. }
  568. /*
  569. * If this is a leaf block and it is corrupt, set the corrupt bit so
  570. * that we don't try and read the other copies of this block, just
  571. * return -EIO.
  572. */
  573. if (found_level == 0 && check_leaf(root, eb)) {
  574. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  575. ret = -EIO;
  576. }
  577. if (!ret)
  578. set_extent_buffer_uptodate(eb);
  579. err:
  580. if (reads_done &&
  581. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  582. btree_readahead_hook(root, eb, eb->start, ret);
  583. if (ret) {
  584. /*
  585. * our io error hook is going to dec the io pages
  586. * again, we have to make sure it has something
  587. * to decrement
  588. */
  589. atomic_inc(&eb->io_pages);
  590. clear_extent_buffer_uptodate(eb);
  591. }
  592. free_extent_buffer(eb);
  593. out:
  594. return ret;
  595. }
  596. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  597. {
  598. struct extent_buffer *eb;
  599. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  600. eb = (struct extent_buffer *)page->private;
  601. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  602. eb->read_mirror = failed_mirror;
  603. atomic_dec(&eb->io_pages);
  604. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  605. btree_readahead_hook(root, eb, eb->start, -EIO);
  606. return -EIO; /* we fixed nothing */
  607. }
  608. static void end_workqueue_bio(struct bio *bio, int err)
  609. {
  610. struct end_io_wq *end_io_wq = bio->bi_private;
  611. struct btrfs_fs_info *fs_info;
  612. fs_info = end_io_wq->info;
  613. end_io_wq->error = err;
  614. end_io_wq->work.func = end_workqueue_fn;
  615. end_io_wq->work.flags = 0;
  616. if (bio->bi_rw & REQ_WRITE) {
  617. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  618. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  619. &end_io_wq->work);
  620. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  621. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  622. &end_io_wq->work);
  623. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  624. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  625. &end_io_wq->work);
  626. else
  627. btrfs_queue_worker(&fs_info->endio_write_workers,
  628. &end_io_wq->work);
  629. } else {
  630. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  631. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  632. &end_io_wq->work);
  633. else if (end_io_wq->metadata)
  634. btrfs_queue_worker(&fs_info->endio_meta_workers,
  635. &end_io_wq->work);
  636. else
  637. btrfs_queue_worker(&fs_info->endio_workers,
  638. &end_io_wq->work);
  639. }
  640. }
  641. /*
  642. * For the metadata arg you want
  643. *
  644. * 0 - if data
  645. * 1 - if normal metadta
  646. * 2 - if writing to the free space cache area
  647. * 3 - raid parity work
  648. */
  649. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  650. int metadata)
  651. {
  652. struct end_io_wq *end_io_wq;
  653. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  654. if (!end_io_wq)
  655. return -ENOMEM;
  656. end_io_wq->private = bio->bi_private;
  657. end_io_wq->end_io = bio->bi_end_io;
  658. end_io_wq->info = info;
  659. end_io_wq->error = 0;
  660. end_io_wq->bio = bio;
  661. end_io_wq->metadata = metadata;
  662. bio->bi_private = end_io_wq;
  663. bio->bi_end_io = end_workqueue_bio;
  664. return 0;
  665. }
  666. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  667. {
  668. unsigned long limit = min_t(unsigned long,
  669. info->workers.max_workers,
  670. info->fs_devices->open_devices);
  671. return 256 * limit;
  672. }
  673. static void run_one_async_start(struct btrfs_work *work)
  674. {
  675. struct async_submit_bio *async;
  676. int ret;
  677. async = container_of(work, struct async_submit_bio, work);
  678. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  679. async->mirror_num, async->bio_flags,
  680. async->bio_offset);
  681. if (ret)
  682. async->error = ret;
  683. }
  684. static void run_one_async_done(struct btrfs_work *work)
  685. {
  686. struct btrfs_fs_info *fs_info;
  687. struct async_submit_bio *async;
  688. int limit;
  689. async = container_of(work, struct async_submit_bio, work);
  690. fs_info = BTRFS_I(async->inode)->root->fs_info;
  691. limit = btrfs_async_submit_limit(fs_info);
  692. limit = limit * 2 / 3;
  693. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  694. waitqueue_active(&fs_info->async_submit_wait))
  695. wake_up(&fs_info->async_submit_wait);
  696. /* If an error occured we just want to clean up the bio and move on */
  697. if (async->error) {
  698. bio_endio(async->bio, async->error);
  699. return;
  700. }
  701. async->submit_bio_done(async->inode, async->rw, async->bio,
  702. async->mirror_num, async->bio_flags,
  703. async->bio_offset);
  704. }
  705. static void run_one_async_free(struct btrfs_work *work)
  706. {
  707. struct async_submit_bio *async;
  708. async = container_of(work, struct async_submit_bio, work);
  709. kfree(async);
  710. }
  711. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  712. int rw, struct bio *bio, int mirror_num,
  713. unsigned long bio_flags,
  714. u64 bio_offset,
  715. extent_submit_bio_hook_t *submit_bio_start,
  716. extent_submit_bio_hook_t *submit_bio_done)
  717. {
  718. struct async_submit_bio *async;
  719. async = kmalloc(sizeof(*async), GFP_NOFS);
  720. if (!async)
  721. return -ENOMEM;
  722. async->inode = inode;
  723. async->rw = rw;
  724. async->bio = bio;
  725. async->mirror_num = mirror_num;
  726. async->submit_bio_start = submit_bio_start;
  727. async->submit_bio_done = submit_bio_done;
  728. async->work.func = run_one_async_start;
  729. async->work.ordered_func = run_one_async_done;
  730. async->work.ordered_free = run_one_async_free;
  731. async->work.flags = 0;
  732. async->bio_flags = bio_flags;
  733. async->bio_offset = bio_offset;
  734. async->error = 0;
  735. atomic_inc(&fs_info->nr_async_submits);
  736. if (rw & REQ_SYNC)
  737. btrfs_set_work_high_prio(&async->work);
  738. btrfs_queue_worker(&fs_info->workers, &async->work);
  739. while (atomic_read(&fs_info->async_submit_draining) &&
  740. atomic_read(&fs_info->nr_async_submits)) {
  741. wait_event(fs_info->async_submit_wait,
  742. (atomic_read(&fs_info->nr_async_submits) == 0));
  743. }
  744. return 0;
  745. }
  746. static int btree_csum_one_bio(struct bio *bio)
  747. {
  748. struct bio_vec *bvec = bio->bi_io_vec;
  749. int bio_index = 0;
  750. struct btrfs_root *root;
  751. int ret = 0;
  752. WARN_ON(bio->bi_vcnt <= 0);
  753. while (bio_index < bio->bi_vcnt) {
  754. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  755. ret = csum_dirty_buffer(root, bvec->bv_page);
  756. if (ret)
  757. break;
  758. bio_index++;
  759. bvec++;
  760. }
  761. return ret;
  762. }
  763. static int __btree_submit_bio_start(struct inode *inode, int rw,
  764. struct bio *bio, int mirror_num,
  765. unsigned long bio_flags,
  766. u64 bio_offset)
  767. {
  768. /*
  769. * when we're called for a write, we're already in the async
  770. * submission context. Just jump into btrfs_map_bio
  771. */
  772. return btree_csum_one_bio(bio);
  773. }
  774. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  775. int mirror_num, unsigned long bio_flags,
  776. u64 bio_offset)
  777. {
  778. int ret;
  779. /*
  780. * when we're called for a write, we're already in the async
  781. * submission context. Just jump into btrfs_map_bio
  782. */
  783. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  784. if (ret)
  785. bio_endio(bio, ret);
  786. return ret;
  787. }
  788. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  789. {
  790. if (bio_flags & EXTENT_BIO_TREE_LOG)
  791. return 0;
  792. #ifdef CONFIG_X86
  793. if (cpu_has_xmm4_2)
  794. return 0;
  795. #endif
  796. return 1;
  797. }
  798. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  799. int mirror_num, unsigned long bio_flags,
  800. u64 bio_offset)
  801. {
  802. int async = check_async_write(inode, bio_flags);
  803. int ret;
  804. if (!(rw & REQ_WRITE)) {
  805. /*
  806. * called for a read, do the setup so that checksum validation
  807. * can happen in the async kernel threads
  808. */
  809. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  810. bio, 1);
  811. if (ret)
  812. goto out_w_error;
  813. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  814. mirror_num, 0);
  815. } else if (!async) {
  816. ret = btree_csum_one_bio(bio);
  817. if (ret)
  818. goto out_w_error;
  819. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  820. mirror_num, 0);
  821. } else {
  822. /*
  823. * kthread helpers are used to submit writes so that
  824. * checksumming can happen in parallel across all CPUs
  825. */
  826. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  827. inode, rw, bio, mirror_num, 0,
  828. bio_offset,
  829. __btree_submit_bio_start,
  830. __btree_submit_bio_done);
  831. }
  832. if (ret) {
  833. out_w_error:
  834. bio_endio(bio, ret);
  835. }
  836. return ret;
  837. }
  838. #ifdef CONFIG_MIGRATION
  839. static int btree_migratepage(struct address_space *mapping,
  840. struct page *newpage, struct page *page,
  841. enum migrate_mode mode)
  842. {
  843. /*
  844. * we can't safely write a btree page from here,
  845. * we haven't done the locking hook
  846. */
  847. if (PageDirty(page))
  848. return -EAGAIN;
  849. /*
  850. * Buffers may be managed in a filesystem specific way.
  851. * We must have no buffers or drop them.
  852. */
  853. if (page_has_private(page) &&
  854. !try_to_release_page(page, GFP_KERNEL))
  855. return -EAGAIN;
  856. return migrate_page(mapping, newpage, page, mode);
  857. }
  858. #endif
  859. static int btree_writepages(struct address_space *mapping,
  860. struct writeback_control *wbc)
  861. {
  862. struct extent_io_tree *tree;
  863. struct btrfs_fs_info *fs_info;
  864. int ret;
  865. tree = &BTRFS_I(mapping->host)->io_tree;
  866. if (wbc->sync_mode == WB_SYNC_NONE) {
  867. if (wbc->for_kupdate)
  868. return 0;
  869. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  870. /* this is a bit racy, but that's ok */
  871. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  872. BTRFS_DIRTY_METADATA_THRESH);
  873. if (ret < 0)
  874. return 0;
  875. }
  876. return btree_write_cache_pages(mapping, wbc);
  877. }
  878. static int btree_readpage(struct file *file, struct page *page)
  879. {
  880. struct extent_io_tree *tree;
  881. tree = &BTRFS_I(page->mapping->host)->io_tree;
  882. return extent_read_full_page(tree, page, btree_get_extent, 0);
  883. }
  884. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  885. {
  886. if (PageWriteback(page) || PageDirty(page))
  887. return 0;
  888. return try_release_extent_buffer(page);
  889. }
  890. static void btree_invalidatepage(struct page *page, unsigned int offset,
  891. unsigned int length)
  892. {
  893. struct extent_io_tree *tree;
  894. tree = &BTRFS_I(page->mapping->host)->io_tree;
  895. extent_invalidatepage(tree, page, offset);
  896. btree_releasepage(page, GFP_NOFS);
  897. if (PagePrivate(page)) {
  898. printk(KERN_WARNING "btrfs warning page private not zero "
  899. "on page %llu\n", (unsigned long long)page_offset(page));
  900. ClearPagePrivate(page);
  901. set_page_private(page, 0);
  902. page_cache_release(page);
  903. }
  904. }
  905. static int btree_set_page_dirty(struct page *page)
  906. {
  907. #ifdef DEBUG
  908. struct extent_buffer *eb;
  909. BUG_ON(!PagePrivate(page));
  910. eb = (struct extent_buffer *)page->private;
  911. BUG_ON(!eb);
  912. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  913. BUG_ON(!atomic_read(&eb->refs));
  914. btrfs_assert_tree_locked(eb);
  915. #endif
  916. return __set_page_dirty_nobuffers(page);
  917. }
  918. static const struct address_space_operations btree_aops = {
  919. .readpage = btree_readpage,
  920. .writepages = btree_writepages,
  921. .releasepage = btree_releasepage,
  922. .invalidatepage = btree_invalidatepage,
  923. #ifdef CONFIG_MIGRATION
  924. .migratepage = btree_migratepage,
  925. #endif
  926. .set_page_dirty = btree_set_page_dirty,
  927. };
  928. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  929. u64 parent_transid)
  930. {
  931. struct extent_buffer *buf = NULL;
  932. struct inode *btree_inode = root->fs_info->btree_inode;
  933. int ret = 0;
  934. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  935. if (!buf)
  936. return 0;
  937. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  938. buf, 0, WAIT_NONE, btree_get_extent, 0);
  939. free_extent_buffer(buf);
  940. return ret;
  941. }
  942. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  943. int mirror_num, struct extent_buffer **eb)
  944. {
  945. struct extent_buffer *buf = NULL;
  946. struct inode *btree_inode = root->fs_info->btree_inode;
  947. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  948. int ret;
  949. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  950. if (!buf)
  951. return 0;
  952. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  953. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  954. btree_get_extent, mirror_num);
  955. if (ret) {
  956. free_extent_buffer(buf);
  957. return ret;
  958. }
  959. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  960. free_extent_buffer(buf);
  961. return -EIO;
  962. } else if (extent_buffer_uptodate(buf)) {
  963. *eb = buf;
  964. } else {
  965. free_extent_buffer(buf);
  966. }
  967. return 0;
  968. }
  969. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  970. u64 bytenr, u32 blocksize)
  971. {
  972. struct inode *btree_inode = root->fs_info->btree_inode;
  973. struct extent_buffer *eb;
  974. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  975. bytenr, blocksize);
  976. return eb;
  977. }
  978. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  979. u64 bytenr, u32 blocksize)
  980. {
  981. struct inode *btree_inode = root->fs_info->btree_inode;
  982. struct extent_buffer *eb;
  983. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  984. bytenr, blocksize);
  985. return eb;
  986. }
  987. int btrfs_write_tree_block(struct extent_buffer *buf)
  988. {
  989. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  990. buf->start + buf->len - 1);
  991. }
  992. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  993. {
  994. return filemap_fdatawait_range(buf->pages[0]->mapping,
  995. buf->start, buf->start + buf->len - 1);
  996. }
  997. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  998. u32 blocksize, u64 parent_transid)
  999. {
  1000. struct extent_buffer *buf = NULL;
  1001. int ret;
  1002. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1003. if (!buf)
  1004. return NULL;
  1005. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1006. if (ret) {
  1007. free_extent_buffer(buf);
  1008. return NULL;
  1009. }
  1010. return buf;
  1011. }
  1012. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1013. struct extent_buffer *buf)
  1014. {
  1015. struct btrfs_fs_info *fs_info = root->fs_info;
  1016. if (btrfs_header_generation(buf) ==
  1017. fs_info->running_transaction->transid) {
  1018. btrfs_assert_tree_locked(buf);
  1019. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1020. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1021. -buf->len,
  1022. fs_info->dirty_metadata_batch);
  1023. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1024. btrfs_set_lock_blocking(buf);
  1025. clear_extent_buffer_dirty(buf);
  1026. }
  1027. }
  1028. }
  1029. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1030. u32 stripesize, struct btrfs_root *root,
  1031. struct btrfs_fs_info *fs_info,
  1032. u64 objectid)
  1033. {
  1034. root->node = NULL;
  1035. root->commit_root = NULL;
  1036. root->sectorsize = sectorsize;
  1037. root->nodesize = nodesize;
  1038. root->leafsize = leafsize;
  1039. root->stripesize = stripesize;
  1040. root->ref_cows = 0;
  1041. root->track_dirty = 0;
  1042. root->in_radix = 0;
  1043. root->orphan_item_inserted = 0;
  1044. root->orphan_cleanup_state = 0;
  1045. root->objectid = objectid;
  1046. root->last_trans = 0;
  1047. root->highest_objectid = 0;
  1048. root->nr_delalloc_inodes = 0;
  1049. root->nr_ordered_extents = 0;
  1050. root->name = NULL;
  1051. root->inode_tree = RB_ROOT;
  1052. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1053. root->block_rsv = NULL;
  1054. root->orphan_block_rsv = NULL;
  1055. INIT_LIST_HEAD(&root->dirty_list);
  1056. INIT_LIST_HEAD(&root->root_list);
  1057. INIT_LIST_HEAD(&root->delalloc_inodes);
  1058. INIT_LIST_HEAD(&root->delalloc_root);
  1059. INIT_LIST_HEAD(&root->ordered_extents);
  1060. INIT_LIST_HEAD(&root->ordered_root);
  1061. INIT_LIST_HEAD(&root->logged_list[0]);
  1062. INIT_LIST_HEAD(&root->logged_list[1]);
  1063. spin_lock_init(&root->orphan_lock);
  1064. spin_lock_init(&root->inode_lock);
  1065. spin_lock_init(&root->delalloc_lock);
  1066. spin_lock_init(&root->ordered_extent_lock);
  1067. spin_lock_init(&root->accounting_lock);
  1068. spin_lock_init(&root->log_extents_lock[0]);
  1069. spin_lock_init(&root->log_extents_lock[1]);
  1070. mutex_init(&root->objectid_mutex);
  1071. mutex_init(&root->log_mutex);
  1072. init_waitqueue_head(&root->log_writer_wait);
  1073. init_waitqueue_head(&root->log_commit_wait[0]);
  1074. init_waitqueue_head(&root->log_commit_wait[1]);
  1075. atomic_set(&root->log_commit[0], 0);
  1076. atomic_set(&root->log_commit[1], 0);
  1077. atomic_set(&root->log_writers, 0);
  1078. atomic_set(&root->log_batch, 0);
  1079. atomic_set(&root->orphan_inodes, 0);
  1080. atomic_set(&root->refs, 1);
  1081. root->log_transid = 0;
  1082. root->last_log_commit = 0;
  1083. extent_io_tree_init(&root->dirty_log_pages,
  1084. fs_info->btree_inode->i_mapping);
  1085. memset(&root->root_key, 0, sizeof(root->root_key));
  1086. memset(&root->root_item, 0, sizeof(root->root_item));
  1087. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1088. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1089. root->defrag_trans_start = fs_info->generation;
  1090. init_completion(&root->kobj_unregister);
  1091. root->defrag_running = 0;
  1092. root->root_key.objectid = objectid;
  1093. root->anon_dev = 0;
  1094. spin_lock_init(&root->root_item_lock);
  1095. }
  1096. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1097. {
  1098. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1099. if (root)
  1100. root->fs_info = fs_info;
  1101. return root;
  1102. }
  1103. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1104. struct btrfs_fs_info *fs_info,
  1105. u64 objectid)
  1106. {
  1107. struct extent_buffer *leaf;
  1108. struct btrfs_root *tree_root = fs_info->tree_root;
  1109. struct btrfs_root *root;
  1110. struct btrfs_key key;
  1111. int ret = 0;
  1112. u64 bytenr;
  1113. uuid_le uuid;
  1114. root = btrfs_alloc_root(fs_info);
  1115. if (!root)
  1116. return ERR_PTR(-ENOMEM);
  1117. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1118. tree_root->sectorsize, tree_root->stripesize,
  1119. root, fs_info, objectid);
  1120. root->root_key.objectid = objectid;
  1121. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1122. root->root_key.offset = 0;
  1123. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1124. 0, objectid, NULL, 0, 0, 0);
  1125. if (IS_ERR(leaf)) {
  1126. ret = PTR_ERR(leaf);
  1127. leaf = NULL;
  1128. goto fail;
  1129. }
  1130. bytenr = leaf->start;
  1131. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1132. btrfs_set_header_bytenr(leaf, leaf->start);
  1133. btrfs_set_header_generation(leaf, trans->transid);
  1134. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1135. btrfs_set_header_owner(leaf, objectid);
  1136. root->node = leaf;
  1137. write_extent_buffer(leaf, fs_info->fsid,
  1138. (unsigned long)btrfs_header_fsid(leaf),
  1139. BTRFS_FSID_SIZE);
  1140. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1141. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1142. BTRFS_UUID_SIZE);
  1143. btrfs_mark_buffer_dirty(leaf);
  1144. root->commit_root = btrfs_root_node(root);
  1145. root->track_dirty = 1;
  1146. root->root_item.flags = 0;
  1147. root->root_item.byte_limit = 0;
  1148. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1149. btrfs_set_root_generation(&root->root_item, trans->transid);
  1150. btrfs_set_root_level(&root->root_item, 0);
  1151. btrfs_set_root_refs(&root->root_item, 1);
  1152. btrfs_set_root_used(&root->root_item, leaf->len);
  1153. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1154. btrfs_set_root_dirid(&root->root_item, 0);
  1155. uuid_le_gen(&uuid);
  1156. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1157. root->root_item.drop_level = 0;
  1158. key.objectid = objectid;
  1159. key.type = BTRFS_ROOT_ITEM_KEY;
  1160. key.offset = 0;
  1161. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1162. if (ret)
  1163. goto fail;
  1164. btrfs_tree_unlock(leaf);
  1165. return root;
  1166. fail:
  1167. if (leaf) {
  1168. btrfs_tree_unlock(leaf);
  1169. free_extent_buffer(leaf);
  1170. }
  1171. kfree(root);
  1172. return ERR_PTR(ret);
  1173. }
  1174. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1175. struct btrfs_fs_info *fs_info)
  1176. {
  1177. struct btrfs_root *root;
  1178. struct btrfs_root *tree_root = fs_info->tree_root;
  1179. struct extent_buffer *leaf;
  1180. root = btrfs_alloc_root(fs_info);
  1181. if (!root)
  1182. return ERR_PTR(-ENOMEM);
  1183. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1184. tree_root->sectorsize, tree_root->stripesize,
  1185. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1186. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1187. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1188. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1189. /*
  1190. * log trees do not get reference counted because they go away
  1191. * before a real commit is actually done. They do store pointers
  1192. * to file data extents, and those reference counts still get
  1193. * updated (along with back refs to the log tree).
  1194. */
  1195. root->ref_cows = 0;
  1196. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1197. BTRFS_TREE_LOG_OBJECTID, NULL,
  1198. 0, 0, 0);
  1199. if (IS_ERR(leaf)) {
  1200. kfree(root);
  1201. return ERR_CAST(leaf);
  1202. }
  1203. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1204. btrfs_set_header_bytenr(leaf, leaf->start);
  1205. btrfs_set_header_generation(leaf, trans->transid);
  1206. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1207. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1208. root->node = leaf;
  1209. write_extent_buffer(root->node, root->fs_info->fsid,
  1210. (unsigned long)btrfs_header_fsid(root->node),
  1211. BTRFS_FSID_SIZE);
  1212. btrfs_mark_buffer_dirty(root->node);
  1213. btrfs_tree_unlock(root->node);
  1214. return root;
  1215. }
  1216. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1217. struct btrfs_fs_info *fs_info)
  1218. {
  1219. struct btrfs_root *log_root;
  1220. log_root = alloc_log_tree(trans, fs_info);
  1221. if (IS_ERR(log_root))
  1222. return PTR_ERR(log_root);
  1223. WARN_ON(fs_info->log_root_tree);
  1224. fs_info->log_root_tree = log_root;
  1225. return 0;
  1226. }
  1227. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1228. struct btrfs_root *root)
  1229. {
  1230. struct btrfs_root *log_root;
  1231. struct btrfs_inode_item *inode_item;
  1232. log_root = alloc_log_tree(trans, root->fs_info);
  1233. if (IS_ERR(log_root))
  1234. return PTR_ERR(log_root);
  1235. log_root->last_trans = trans->transid;
  1236. log_root->root_key.offset = root->root_key.objectid;
  1237. inode_item = &log_root->root_item.inode;
  1238. btrfs_set_stack_inode_generation(inode_item, 1);
  1239. btrfs_set_stack_inode_size(inode_item, 3);
  1240. btrfs_set_stack_inode_nlink(inode_item, 1);
  1241. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1242. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1243. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1244. WARN_ON(root->log_root);
  1245. root->log_root = log_root;
  1246. root->log_transid = 0;
  1247. root->last_log_commit = 0;
  1248. return 0;
  1249. }
  1250. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1251. struct btrfs_key *key)
  1252. {
  1253. struct btrfs_root *root;
  1254. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1255. struct btrfs_path *path;
  1256. u64 generation;
  1257. u32 blocksize;
  1258. int ret;
  1259. path = btrfs_alloc_path();
  1260. if (!path)
  1261. return ERR_PTR(-ENOMEM);
  1262. root = btrfs_alloc_root(fs_info);
  1263. if (!root) {
  1264. ret = -ENOMEM;
  1265. goto alloc_fail;
  1266. }
  1267. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1268. tree_root->sectorsize, tree_root->stripesize,
  1269. root, fs_info, key->objectid);
  1270. ret = btrfs_find_root(tree_root, key, path,
  1271. &root->root_item, &root->root_key);
  1272. if (ret) {
  1273. if (ret > 0)
  1274. ret = -ENOENT;
  1275. goto find_fail;
  1276. }
  1277. generation = btrfs_root_generation(&root->root_item);
  1278. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1279. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1280. blocksize, generation);
  1281. if (!root->node) {
  1282. ret = -ENOMEM;
  1283. goto find_fail;
  1284. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1285. ret = -EIO;
  1286. goto read_fail;
  1287. }
  1288. root->commit_root = btrfs_root_node(root);
  1289. out:
  1290. btrfs_free_path(path);
  1291. return root;
  1292. read_fail:
  1293. free_extent_buffer(root->node);
  1294. find_fail:
  1295. kfree(root);
  1296. alloc_fail:
  1297. root = ERR_PTR(ret);
  1298. goto out;
  1299. }
  1300. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1301. struct btrfs_key *location)
  1302. {
  1303. struct btrfs_root *root;
  1304. root = btrfs_read_tree_root(tree_root, location);
  1305. if (IS_ERR(root))
  1306. return root;
  1307. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1308. root->ref_cows = 1;
  1309. btrfs_check_and_init_root_item(&root->root_item);
  1310. }
  1311. return root;
  1312. }
  1313. int btrfs_init_fs_root(struct btrfs_root *root)
  1314. {
  1315. int ret;
  1316. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1317. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1318. GFP_NOFS);
  1319. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1320. ret = -ENOMEM;
  1321. goto fail;
  1322. }
  1323. btrfs_init_free_ino_ctl(root);
  1324. mutex_init(&root->fs_commit_mutex);
  1325. spin_lock_init(&root->cache_lock);
  1326. init_waitqueue_head(&root->cache_wait);
  1327. ret = get_anon_bdev(&root->anon_dev);
  1328. if (ret)
  1329. goto fail;
  1330. return 0;
  1331. fail:
  1332. kfree(root->free_ino_ctl);
  1333. kfree(root->free_ino_pinned);
  1334. return ret;
  1335. }
  1336. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1337. u64 root_id)
  1338. {
  1339. struct btrfs_root *root;
  1340. spin_lock(&fs_info->fs_roots_radix_lock);
  1341. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1342. (unsigned long)root_id);
  1343. spin_unlock(&fs_info->fs_roots_radix_lock);
  1344. return root;
  1345. }
  1346. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1347. struct btrfs_root *root)
  1348. {
  1349. int ret;
  1350. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1351. if (ret)
  1352. return ret;
  1353. spin_lock(&fs_info->fs_roots_radix_lock);
  1354. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1355. (unsigned long)root->root_key.objectid,
  1356. root);
  1357. if (ret == 0)
  1358. root->in_radix = 1;
  1359. spin_unlock(&fs_info->fs_roots_radix_lock);
  1360. radix_tree_preload_end();
  1361. return ret;
  1362. }
  1363. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1364. struct btrfs_key *location)
  1365. {
  1366. struct btrfs_root *root;
  1367. int ret;
  1368. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1369. return fs_info->tree_root;
  1370. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1371. return fs_info->extent_root;
  1372. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1373. return fs_info->chunk_root;
  1374. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1375. return fs_info->dev_root;
  1376. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1377. return fs_info->csum_root;
  1378. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1379. return fs_info->quota_root ? fs_info->quota_root :
  1380. ERR_PTR(-ENOENT);
  1381. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1382. return fs_info->uuid_root ? fs_info->uuid_root :
  1383. ERR_PTR(-ENOENT);
  1384. again:
  1385. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1386. if (root)
  1387. return root;
  1388. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1389. if (IS_ERR(root))
  1390. return root;
  1391. if (btrfs_root_refs(&root->root_item) == 0) {
  1392. ret = -ENOENT;
  1393. goto fail;
  1394. }
  1395. ret = btrfs_init_fs_root(root);
  1396. if (ret)
  1397. goto fail;
  1398. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1399. if (ret < 0)
  1400. goto fail;
  1401. if (ret == 0)
  1402. root->orphan_item_inserted = 1;
  1403. ret = btrfs_insert_fs_root(fs_info, root);
  1404. if (ret) {
  1405. if (ret == -EEXIST) {
  1406. free_fs_root(root);
  1407. goto again;
  1408. }
  1409. goto fail;
  1410. }
  1411. return root;
  1412. fail:
  1413. free_fs_root(root);
  1414. return ERR_PTR(ret);
  1415. }
  1416. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1417. {
  1418. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1419. int ret = 0;
  1420. struct btrfs_device *device;
  1421. struct backing_dev_info *bdi;
  1422. rcu_read_lock();
  1423. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1424. if (!device->bdev)
  1425. continue;
  1426. bdi = blk_get_backing_dev_info(device->bdev);
  1427. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1428. ret = 1;
  1429. break;
  1430. }
  1431. }
  1432. rcu_read_unlock();
  1433. return ret;
  1434. }
  1435. /*
  1436. * If this fails, caller must call bdi_destroy() to get rid of the
  1437. * bdi again.
  1438. */
  1439. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1440. {
  1441. int err;
  1442. bdi->capabilities = BDI_CAP_MAP_COPY;
  1443. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1444. if (err)
  1445. return err;
  1446. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1447. bdi->congested_fn = btrfs_congested_fn;
  1448. bdi->congested_data = info;
  1449. return 0;
  1450. }
  1451. /*
  1452. * called by the kthread helper functions to finally call the bio end_io
  1453. * functions. This is where read checksum verification actually happens
  1454. */
  1455. static void end_workqueue_fn(struct btrfs_work *work)
  1456. {
  1457. struct bio *bio;
  1458. struct end_io_wq *end_io_wq;
  1459. struct btrfs_fs_info *fs_info;
  1460. int error;
  1461. end_io_wq = container_of(work, struct end_io_wq, work);
  1462. bio = end_io_wq->bio;
  1463. fs_info = end_io_wq->info;
  1464. error = end_io_wq->error;
  1465. bio->bi_private = end_io_wq->private;
  1466. bio->bi_end_io = end_io_wq->end_io;
  1467. kfree(end_io_wq);
  1468. bio_endio(bio, error);
  1469. }
  1470. static int cleaner_kthread(void *arg)
  1471. {
  1472. struct btrfs_root *root = arg;
  1473. int again;
  1474. do {
  1475. again = 0;
  1476. /* Make the cleaner go to sleep early. */
  1477. if (btrfs_need_cleaner_sleep(root))
  1478. goto sleep;
  1479. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1480. goto sleep;
  1481. /*
  1482. * Avoid the problem that we change the status of the fs
  1483. * during the above check and trylock.
  1484. */
  1485. if (btrfs_need_cleaner_sleep(root)) {
  1486. mutex_unlock(&root->fs_info->cleaner_mutex);
  1487. goto sleep;
  1488. }
  1489. btrfs_run_delayed_iputs(root);
  1490. again = btrfs_clean_one_deleted_snapshot(root);
  1491. mutex_unlock(&root->fs_info->cleaner_mutex);
  1492. /*
  1493. * The defragger has dealt with the R/O remount and umount,
  1494. * needn't do anything special here.
  1495. */
  1496. btrfs_run_defrag_inodes(root->fs_info);
  1497. sleep:
  1498. if (!try_to_freeze() && !again) {
  1499. set_current_state(TASK_INTERRUPTIBLE);
  1500. if (!kthread_should_stop())
  1501. schedule();
  1502. __set_current_state(TASK_RUNNING);
  1503. }
  1504. } while (!kthread_should_stop());
  1505. return 0;
  1506. }
  1507. static int transaction_kthread(void *arg)
  1508. {
  1509. struct btrfs_root *root = arg;
  1510. struct btrfs_trans_handle *trans;
  1511. struct btrfs_transaction *cur;
  1512. u64 transid;
  1513. unsigned long now;
  1514. unsigned long delay;
  1515. bool cannot_commit;
  1516. do {
  1517. cannot_commit = false;
  1518. delay = HZ * root->fs_info->commit_interval;
  1519. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1520. spin_lock(&root->fs_info->trans_lock);
  1521. cur = root->fs_info->running_transaction;
  1522. if (!cur) {
  1523. spin_unlock(&root->fs_info->trans_lock);
  1524. goto sleep;
  1525. }
  1526. now = get_seconds();
  1527. if (cur->state < TRANS_STATE_BLOCKED &&
  1528. (now < cur->start_time ||
  1529. now - cur->start_time < root->fs_info->commit_interval)) {
  1530. spin_unlock(&root->fs_info->trans_lock);
  1531. delay = HZ * 5;
  1532. goto sleep;
  1533. }
  1534. transid = cur->transid;
  1535. spin_unlock(&root->fs_info->trans_lock);
  1536. /* If the file system is aborted, this will always fail. */
  1537. trans = btrfs_attach_transaction(root);
  1538. if (IS_ERR(trans)) {
  1539. if (PTR_ERR(trans) != -ENOENT)
  1540. cannot_commit = true;
  1541. goto sleep;
  1542. }
  1543. if (transid == trans->transid) {
  1544. btrfs_commit_transaction(trans, root);
  1545. } else {
  1546. btrfs_end_transaction(trans, root);
  1547. }
  1548. sleep:
  1549. wake_up_process(root->fs_info->cleaner_kthread);
  1550. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1551. if (!try_to_freeze()) {
  1552. set_current_state(TASK_INTERRUPTIBLE);
  1553. if (!kthread_should_stop() &&
  1554. (!btrfs_transaction_blocked(root->fs_info) ||
  1555. cannot_commit))
  1556. schedule_timeout(delay);
  1557. __set_current_state(TASK_RUNNING);
  1558. }
  1559. } while (!kthread_should_stop());
  1560. return 0;
  1561. }
  1562. /*
  1563. * this will find the highest generation in the array of
  1564. * root backups. The index of the highest array is returned,
  1565. * or -1 if we can't find anything.
  1566. *
  1567. * We check to make sure the array is valid by comparing the
  1568. * generation of the latest root in the array with the generation
  1569. * in the super block. If they don't match we pitch it.
  1570. */
  1571. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1572. {
  1573. u64 cur;
  1574. int newest_index = -1;
  1575. struct btrfs_root_backup *root_backup;
  1576. int i;
  1577. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1578. root_backup = info->super_copy->super_roots + i;
  1579. cur = btrfs_backup_tree_root_gen(root_backup);
  1580. if (cur == newest_gen)
  1581. newest_index = i;
  1582. }
  1583. /* check to see if we actually wrapped around */
  1584. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1585. root_backup = info->super_copy->super_roots;
  1586. cur = btrfs_backup_tree_root_gen(root_backup);
  1587. if (cur == newest_gen)
  1588. newest_index = 0;
  1589. }
  1590. return newest_index;
  1591. }
  1592. /*
  1593. * find the oldest backup so we know where to store new entries
  1594. * in the backup array. This will set the backup_root_index
  1595. * field in the fs_info struct
  1596. */
  1597. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1598. u64 newest_gen)
  1599. {
  1600. int newest_index = -1;
  1601. newest_index = find_newest_super_backup(info, newest_gen);
  1602. /* if there was garbage in there, just move along */
  1603. if (newest_index == -1) {
  1604. info->backup_root_index = 0;
  1605. } else {
  1606. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1607. }
  1608. }
  1609. /*
  1610. * copy all the root pointers into the super backup array.
  1611. * this will bump the backup pointer by one when it is
  1612. * done
  1613. */
  1614. static void backup_super_roots(struct btrfs_fs_info *info)
  1615. {
  1616. int next_backup;
  1617. struct btrfs_root_backup *root_backup;
  1618. int last_backup;
  1619. next_backup = info->backup_root_index;
  1620. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1621. BTRFS_NUM_BACKUP_ROOTS;
  1622. /*
  1623. * just overwrite the last backup if we're at the same generation
  1624. * this happens only at umount
  1625. */
  1626. root_backup = info->super_for_commit->super_roots + last_backup;
  1627. if (btrfs_backup_tree_root_gen(root_backup) ==
  1628. btrfs_header_generation(info->tree_root->node))
  1629. next_backup = last_backup;
  1630. root_backup = info->super_for_commit->super_roots + next_backup;
  1631. /*
  1632. * make sure all of our padding and empty slots get zero filled
  1633. * regardless of which ones we use today
  1634. */
  1635. memset(root_backup, 0, sizeof(*root_backup));
  1636. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1637. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1638. btrfs_set_backup_tree_root_gen(root_backup,
  1639. btrfs_header_generation(info->tree_root->node));
  1640. btrfs_set_backup_tree_root_level(root_backup,
  1641. btrfs_header_level(info->tree_root->node));
  1642. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1643. btrfs_set_backup_chunk_root_gen(root_backup,
  1644. btrfs_header_generation(info->chunk_root->node));
  1645. btrfs_set_backup_chunk_root_level(root_backup,
  1646. btrfs_header_level(info->chunk_root->node));
  1647. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1648. btrfs_set_backup_extent_root_gen(root_backup,
  1649. btrfs_header_generation(info->extent_root->node));
  1650. btrfs_set_backup_extent_root_level(root_backup,
  1651. btrfs_header_level(info->extent_root->node));
  1652. /*
  1653. * we might commit during log recovery, which happens before we set
  1654. * the fs_root. Make sure it is valid before we fill it in.
  1655. */
  1656. if (info->fs_root && info->fs_root->node) {
  1657. btrfs_set_backup_fs_root(root_backup,
  1658. info->fs_root->node->start);
  1659. btrfs_set_backup_fs_root_gen(root_backup,
  1660. btrfs_header_generation(info->fs_root->node));
  1661. btrfs_set_backup_fs_root_level(root_backup,
  1662. btrfs_header_level(info->fs_root->node));
  1663. }
  1664. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1665. btrfs_set_backup_dev_root_gen(root_backup,
  1666. btrfs_header_generation(info->dev_root->node));
  1667. btrfs_set_backup_dev_root_level(root_backup,
  1668. btrfs_header_level(info->dev_root->node));
  1669. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1670. btrfs_set_backup_csum_root_gen(root_backup,
  1671. btrfs_header_generation(info->csum_root->node));
  1672. btrfs_set_backup_csum_root_level(root_backup,
  1673. btrfs_header_level(info->csum_root->node));
  1674. btrfs_set_backup_total_bytes(root_backup,
  1675. btrfs_super_total_bytes(info->super_copy));
  1676. btrfs_set_backup_bytes_used(root_backup,
  1677. btrfs_super_bytes_used(info->super_copy));
  1678. btrfs_set_backup_num_devices(root_backup,
  1679. btrfs_super_num_devices(info->super_copy));
  1680. /*
  1681. * if we don't copy this out to the super_copy, it won't get remembered
  1682. * for the next commit
  1683. */
  1684. memcpy(&info->super_copy->super_roots,
  1685. &info->super_for_commit->super_roots,
  1686. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1687. }
  1688. /*
  1689. * this copies info out of the root backup array and back into
  1690. * the in-memory super block. It is meant to help iterate through
  1691. * the array, so you send it the number of backups you've already
  1692. * tried and the last backup index you used.
  1693. *
  1694. * this returns -1 when it has tried all the backups
  1695. */
  1696. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1697. struct btrfs_super_block *super,
  1698. int *num_backups_tried, int *backup_index)
  1699. {
  1700. struct btrfs_root_backup *root_backup;
  1701. int newest = *backup_index;
  1702. if (*num_backups_tried == 0) {
  1703. u64 gen = btrfs_super_generation(super);
  1704. newest = find_newest_super_backup(info, gen);
  1705. if (newest == -1)
  1706. return -1;
  1707. *backup_index = newest;
  1708. *num_backups_tried = 1;
  1709. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1710. /* we've tried all the backups, all done */
  1711. return -1;
  1712. } else {
  1713. /* jump to the next oldest backup */
  1714. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1715. BTRFS_NUM_BACKUP_ROOTS;
  1716. *backup_index = newest;
  1717. *num_backups_tried += 1;
  1718. }
  1719. root_backup = super->super_roots + newest;
  1720. btrfs_set_super_generation(super,
  1721. btrfs_backup_tree_root_gen(root_backup));
  1722. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1723. btrfs_set_super_root_level(super,
  1724. btrfs_backup_tree_root_level(root_backup));
  1725. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1726. /*
  1727. * fixme: the total bytes and num_devices need to match or we should
  1728. * need a fsck
  1729. */
  1730. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1731. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1732. return 0;
  1733. }
  1734. /* helper to cleanup workers */
  1735. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1736. {
  1737. btrfs_stop_workers(&fs_info->generic_worker);
  1738. btrfs_stop_workers(&fs_info->fixup_workers);
  1739. btrfs_stop_workers(&fs_info->delalloc_workers);
  1740. btrfs_stop_workers(&fs_info->workers);
  1741. btrfs_stop_workers(&fs_info->endio_workers);
  1742. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1743. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1744. btrfs_stop_workers(&fs_info->rmw_workers);
  1745. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1746. btrfs_stop_workers(&fs_info->endio_write_workers);
  1747. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1748. btrfs_stop_workers(&fs_info->submit_workers);
  1749. btrfs_stop_workers(&fs_info->delayed_workers);
  1750. btrfs_stop_workers(&fs_info->caching_workers);
  1751. btrfs_stop_workers(&fs_info->readahead_workers);
  1752. btrfs_stop_workers(&fs_info->flush_workers);
  1753. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1754. }
  1755. /* helper to cleanup tree roots */
  1756. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1757. {
  1758. free_extent_buffer(info->tree_root->node);
  1759. free_extent_buffer(info->tree_root->commit_root);
  1760. info->tree_root->node = NULL;
  1761. info->tree_root->commit_root = NULL;
  1762. if (info->dev_root) {
  1763. free_extent_buffer(info->dev_root->node);
  1764. free_extent_buffer(info->dev_root->commit_root);
  1765. info->dev_root->node = NULL;
  1766. info->dev_root->commit_root = NULL;
  1767. }
  1768. if (info->extent_root) {
  1769. free_extent_buffer(info->extent_root->node);
  1770. free_extent_buffer(info->extent_root->commit_root);
  1771. info->extent_root->node = NULL;
  1772. info->extent_root->commit_root = NULL;
  1773. }
  1774. if (info->csum_root) {
  1775. free_extent_buffer(info->csum_root->node);
  1776. free_extent_buffer(info->csum_root->commit_root);
  1777. info->csum_root->node = NULL;
  1778. info->csum_root->commit_root = NULL;
  1779. }
  1780. if (info->quota_root) {
  1781. free_extent_buffer(info->quota_root->node);
  1782. free_extent_buffer(info->quota_root->commit_root);
  1783. info->quota_root->node = NULL;
  1784. info->quota_root->commit_root = NULL;
  1785. }
  1786. if (info->uuid_root) {
  1787. free_extent_buffer(info->uuid_root->node);
  1788. free_extent_buffer(info->uuid_root->commit_root);
  1789. info->uuid_root->node = NULL;
  1790. info->uuid_root->commit_root = NULL;
  1791. }
  1792. if (chunk_root) {
  1793. free_extent_buffer(info->chunk_root->node);
  1794. free_extent_buffer(info->chunk_root->commit_root);
  1795. info->chunk_root->node = NULL;
  1796. info->chunk_root->commit_root = NULL;
  1797. }
  1798. }
  1799. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1800. {
  1801. int ret;
  1802. struct btrfs_root *gang[8];
  1803. int i;
  1804. while (!list_empty(&fs_info->dead_roots)) {
  1805. gang[0] = list_entry(fs_info->dead_roots.next,
  1806. struct btrfs_root, root_list);
  1807. list_del(&gang[0]->root_list);
  1808. if (gang[0]->in_radix) {
  1809. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1810. } else {
  1811. free_extent_buffer(gang[0]->node);
  1812. free_extent_buffer(gang[0]->commit_root);
  1813. btrfs_put_fs_root(gang[0]);
  1814. }
  1815. }
  1816. while (1) {
  1817. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1818. (void **)gang, 0,
  1819. ARRAY_SIZE(gang));
  1820. if (!ret)
  1821. break;
  1822. for (i = 0; i < ret; i++)
  1823. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1824. }
  1825. }
  1826. int open_ctree(struct super_block *sb,
  1827. struct btrfs_fs_devices *fs_devices,
  1828. char *options)
  1829. {
  1830. u32 sectorsize;
  1831. u32 nodesize;
  1832. u32 leafsize;
  1833. u32 blocksize;
  1834. u32 stripesize;
  1835. u64 generation;
  1836. u64 features;
  1837. struct btrfs_key location;
  1838. struct buffer_head *bh;
  1839. struct btrfs_super_block *disk_super;
  1840. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1841. struct btrfs_root *tree_root;
  1842. struct btrfs_root *extent_root;
  1843. struct btrfs_root *csum_root;
  1844. struct btrfs_root *chunk_root;
  1845. struct btrfs_root *dev_root;
  1846. struct btrfs_root *quota_root;
  1847. struct btrfs_root *uuid_root;
  1848. struct btrfs_root *log_tree_root;
  1849. int ret;
  1850. int err = -EINVAL;
  1851. int num_backups_tried = 0;
  1852. int backup_index = 0;
  1853. bool create_uuid_tree;
  1854. bool check_uuid_tree;
  1855. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1856. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1857. if (!tree_root || !chunk_root) {
  1858. err = -ENOMEM;
  1859. goto fail;
  1860. }
  1861. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1862. if (ret) {
  1863. err = ret;
  1864. goto fail;
  1865. }
  1866. ret = setup_bdi(fs_info, &fs_info->bdi);
  1867. if (ret) {
  1868. err = ret;
  1869. goto fail_srcu;
  1870. }
  1871. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1872. if (ret) {
  1873. err = ret;
  1874. goto fail_bdi;
  1875. }
  1876. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1877. (1 + ilog2(nr_cpu_ids));
  1878. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1879. if (ret) {
  1880. err = ret;
  1881. goto fail_dirty_metadata_bytes;
  1882. }
  1883. fs_info->btree_inode = new_inode(sb);
  1884. if (!fs_info->btree_inode) {
  1885. err = -ENOMEM;
  1886. goto fail_delalloc_bytes;
  1887. }
  1888. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1889. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1890. INIT_LIST_HEAD(&fs_info->trans_list);
  1891. INIT_LIST_HEAD(&fs_info->dead_roots);
  1892. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1893. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1894. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1895. spin_lock_init(&fs_info->delalloc_root_lock);
  1896. spin_lock_init(&fs_info->trans_lock);
  1897. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1898. spin_lock_init(&fs_info->delayed_iput_lock);
  1899. spin_lock_init(&fs_info->defrag_inodes_lock);
  1900. spin_lock_init(&fs_info->free_chunk_lock);
  1901. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1902. spin_lock_init(&fs_info->super_lock);
  1903. rwlock_init(&fs_info->tree_mod_log_lock);
  1904. mutex_init(&fs_info->reloc_mutex);
  1905. seqlock_init(&fs_info->profiles_lock);
  1906. init_completion(&fs_info->kobj_unregister);
  1907. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1908. INIT_LIST_HEAD(&fs_info->space_info);
  1909. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1910. btrfs_mapping_init(&fs_info->mapping_tree);
  1911. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1912. BTRFS_BLOCK_RSV_GLOBAL);
  1913. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1914. BTRFS_BLOCK_RSV_DELALLOC);
  1915. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1916. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1917. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1918. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1919. BTRFS_BLOCK_RSV_DELOPS);
  1920. atomic_set(&fs_info->nr_async_submits, 0);
  1921. atomic_set(&fs_info->async_delalloc_pages, 0);
  1922. atomic_set(&fs_info->async_submit_draining, 0);
  1923. atomic_set(&fs_info->nr_async_bios, 0);
  1924. atomic_set(&fs_info->defrag_running, 0);
  1925. atomic64_set(&fs_info->tree_mod_seq, 0);
  1926. fs_info->sb = sb;
  1927. fs_info->max_inline = 8192 * 1024;
  1928. fs_info->metadata_ratio = 0;
  1929. fs_info->defrag_inodes = RB_ROOT;
  1930. fs_info->free_chunk_space = 0;
  1931. fs_info->tree_mod_log = RB_ROOT;
  1932. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1933. /* readahead state */
  1934. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1935. spin_lock_init(&fs_info->reada_lock);
  1936. fs_info->thread_pool_size = min_t(unsigned long,
  1937. num_online_cpus() + 2, 8);
  1938. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1939. spin_lock_init(&fs_info->ordered_root_lock);
  1940. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1941. GFP_NOFS);
  1942. if (!fs_info->delayed_root) {
  1943. err = -ENOMEM;
  1944. goto fail_iput;
  1945. }
  1946. btrfs_init_delayed_root(fs_info->delayed_root);
  1947. mutex_init(&fs_info->scrub_lock);
  1948. atomic_set(&fs_info->scrubs_running, 0);
  1949. atomic_set(&fs_info->scrub_pause_req, 0);
  1950. atomic_set(&fs_info->scrubs_paused, 0);
  1951. atomic_set(&fs_info->scrub_cancel_req, 0);
  1952. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1953. init_rwsem(&fs_info->scrub_super_lock);
  1954. fs_info->scrub_workers_refcnt = 0;
  1955. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1956. fs_info->check_integrity_print_mask = 0;
  1957. #endif
  1958. spin_lock_init(&fs_info->balance_lock);
  1959. mutex_init(&fs_info->balance_mutex);
  1960. atomic_set(&fs_info->balance_running, 0);
  1961. atomic_set(&fs_info->balance_pause_req, 0);
  1962. atomic_set(&fs_info->balance_cancel_req, 0);
  1963. fs_info->balance_ctl = NULL;
  1964. init_waitqueue_head(&fs_info->balance_wait_q);
  1965. sb->s_blocksize = 4096;
  1966. sb->s_blocksize_bits = blksize_bits(4096);
  1967. sb->s_bdi = &fs_info->bdi;
  1968. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1969. set_nlink(fs_info->btree_inode, 1);
  1970. /*
  1971. * we set the i_size on the btree inode to the max possible int.
  1972. * the real end of the address space is determined by all of
  1973. * the devices in the system
  1974. */
  1975. fs_info->btree_inode->i_size = OFFSET_MAX;
  1976. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1977. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1978. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1979. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1980. fs_info->btree_inode->i_mapping);
  1981. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1982. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1983. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1984. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1985. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1986. sizeof(struct btrfs_key));
  1987. set_bit(BTRFS_INODE_DUMMY,
  1988. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1989. insert_inode_hash(fs_info->btree_inode);
  1990. spin_lock_init(&fs_info->block_group_cache_lock);
  1991. fs_info->block_group_cache_tree = RB_ROOT;
  1992. fs_info->first_logical_byte = (u64)-1;
  1993. extent_io_tree_init(&fs_info->freed_extents[0],
  1994. fs_info->btree_inode->i_mapping);
  1995. extent_io_tree_init(&fs_info->freed_extents[1],
  1996. fs_info->btree_inode->i_mapping);
  1997. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1998. fs_info->do_barriers = 1;
  1999. mutex_init(&fs_info->ordered_operations_mutex);
  2000. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2001. mutex_init(&fs_info->tree_log_mutex);
  2002. mutex_init(&fs_info->chunk_mutex);
  2003. mutex_init(&fs_info->transaction_kthread_mutex);
  2004. mutex_init(&fs_info->cleaner_mutex);
  2005. mutex_init(&fs_info->volume_mutex);
  2006. init_rwsem(&fs_info->extent_commit_sem);
  2007. init_rwsem(&fs_info->cleanup_work_sem);
  2008. init_rwsem(&fs_info->subvol_sem);
  2009. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2010. fs_info->dev_replace.lock_owner = 0;
  2011. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2012. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2013. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2014. mutex_init(&fs_info->dev_replace.lock);
  2015. spin_lock_init(&fs_info->qgroup_lock);
  2016. mutex_init(&fs_info->qgroup_ioctl_lock);
  2017. fs_info->qgroup_tree = RB_ROOT;
  2018. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2019. fs_info->qgroup_seq = 1;
  2020. fs_info->quota_enabled = 0;
  2021. fs_info->pending_quota_state = 0;
  2022. fs_info->qgroup_ulist = NULL;
  2023. mutex_init(&fs_info->qgroup_rescan_lock);
  2024. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2025. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2026. init_waitqueue_head(&fs_info->transaction_throttle);
  2027. init_waitqueue_head(&fs_info->transaction_wait);
  2028. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2029. init_waitqueue_head(&fs_info->async_submit_wait);
  2030. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2031. if (ret) {
  2032. err = ret;
  2033. goto fail_alloc;
  2034. }
  2035. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2036. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2037. invalidate_bdev(fs_devices->latest_bdev);
  2038. /*
  2039. * Read super block and check the signature bytes only
  2040. */
  2041. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2042. if (!bh) {
  2043. err = -EINVAL;
  2044. goto fail_alloc;
  2045. }
  2046. /*
  2047. * We want to check superblock checksum, the type is stored inside.
  2048. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2049. */
  2050. if (btrfs_check_super_csum(bh->b_data)) {
  2051. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2052. err = -EINVAL;
  2053. goto fail_alloc;
  2054. }
  2055. /*
  2056. * super_copy is zeroed at allocation time and we never touch the
  2057. * following bytes up to INFO_SIZE, the checksum is calculated from
  2058. * the whole block of INFO_SIZE
  2059. */
  2060. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2061. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2062. sizeof(*fs_info->super_for_commit));
  2063. brelse(bh);
  2064. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2065. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2066. if (ret) {
  2067. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2068. err = -EINVAL;
  2069. goto fail_alloc;
  2070. }
  2071. disk_super = fs_info->super_copy;
  2072. if (!btrfs_super_root(disk_super))
  2073. goto fail_alloc;
  2074. /* check FS state, whether FS is broken. */
  2075. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2076. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2077. /*
  2078. * run through our array of backup supers and setup
  2079. * our ring pointer to the oldest one
  2080. */
  2081. generation = btrfs_super_generation(disk_super);
  2082. find_oldest_super_backup(fs_info, generation);
  2083. /*
  2084. * In the long term, we'll store the compression type in the super
  2085. * block, and it'll be used for per file compression control.
  2086. */
  2087. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2088. ret = btrfs_parse_options(tree_root, options);
  2089. if (ret) {
  2090. err = ret;
  2091. goto fail_alloc;
  2092. }
  2093. features = btrfs_super_incompat_flags(disk_super) &
  2094. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2095. if (features) {
  2096. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2097. "unsupported optional features (%Lx).\n",
  2098. features);
  2099. err = -EINVAL;
  2100. goto fail_alloc;
  2101. }
  2102. if (btrfs_super_leafsize(disk_super) !=
  2103. btrfs_super_nodesize(disk_super)) {
  2104. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2105. "blocksizes don't match. node %d leaf %d\n",
  2106. btrfs_super_nodesize(disk_super),
  2107. btrfs_super_leafsize(disk_super));
  2108. err = -EINVAL;
  2109. goto fail_alloc;
  2110. }
  2111. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2112. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2113. "blocksize (%d) was too large\n",
  2114. btrfs_super_leafsize(disk_super));
  2115. err = -EINVAL;
  2116. goto fail_alloc;
  2117. }
  2118. features = btrfs_super_incompat_flags(disk_super);
  2119. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2120. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2121. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2122. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2123. printk(KERN_ERR "btrfs: has skinny extents\n");
  2124. /*
  2125. * flag our filesystem as having big metadata blocks if
  2126. * they are bigger than the page size
  2127. */
  2128. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2129. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2130. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2131. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2132. }
  2133. nodesize = btrfs_super_nodesize(disk_super);
  2134. leafsize = btrfs_super_leafsize(disk_super);
  2135. sectorsize = btrfs_super_sectorsize(disk_super);
  2136. stripesize = btrfs_super_stripesize(disk_super);
  2137. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2138. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2139. /*
  2140. * mixed block groups end up with duplicate but slightly offset
  2141. * extent buffers for the same range. It leads to corruptions
  2142. */
  2143. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2144. (sectorsize != leafsize)) {
  2145. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2146. "are not allowed for mixed block groups on %s\n",
  2147. sb->s_id);
  2148. goto fail_alloc;
  2149. }
  2150. /*
  2151. * Needn't use the lock because there is no other task which will
  2152. * update the flag.
  2153. */
  2154. btrfs_set_super_incompat_flags(disk_super, features);
  2155. features = btrfs_super_compat_ro_flags(disk_super) &
  2156. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2157. if (!(sb->s_flags & MS_RDONLY) && features) {
  2158. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2159. "unsupported option features (%Lx).\n",
  2160. features);
  2161. err = -EINVAL;
  2162. goto fail_alloc;
  2163. }
  2164. btrfs_init_workers(&fs_info->generic_worker,
  2165. "genwork", 1, NULL);
  2166. btrfs_init_workers(&fs_info->workers, "worker",
  2167. fs_info->thread_pool_size,
  2168. &fs_info->generic_worker);
  2169. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2170. fs_info->thread_pool_size,
  2171. &fs_info->generic_worker);
  2172. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2173. fs_info->thread_pool_size,
  2174. &fs_info->generic_worker);
  2175. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2176. min_t(u64, fs_devices->num_devices,
  2177. fs_info->thread_pool_size),
  2178. &fs_info->generic_worker);
  2179. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2180. 2, &fs_info->generic_worker);
  2181. /* a higher idle thresh on the submit workers makes it much more
  2182. * likely that bios will be send down in a sane order to the
  2183. * devices
  2184. */
  2185. fs_info->submit_workers.idle_thresh = 64;
  2186. fs_info->workers.idle_thresh = 16;
  2187. fs_info->workers.ordered = 1;
  2188. fs_info->delalloc_workers.idle_thresh = 2;
  2189. fs_info->delalloc_workers.ordered = 1;
  2190. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2191. &fs_info->generic_worker);
  2192. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2193. fs_info->thread_pool_size,
  2194. &fs_info->generic_worker);
  2195. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2196. fs_info->thread_pool_size,
  2197. &fs_info->generic_worker);
  2198. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2199. "endio-meta-write", fs_info->thread_pool_size,
  2200. &fs_info->generic_worker);
  2201. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2202. "endio-raid56", fs_info->thread_pool_size,
  2203. &fs_info->generic_worker);
  2204. btrfs_init_workers(&fs_info->rmw_workers,
  2205. "rmw", fs_info->thread_pool_size,
  2206. &fs_info->generic_worker);
  2207. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2208. fs_info->thread_pool_size,
  2209. &fs_info->generic_worker);
  2210. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2211. 1, &fs_info->generic_worker);
  2212. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2213. fs_info->thread_pool_size,
  2214. &fs_info->generic_worker);
  2215. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2216. fs_info->thread_pool_size,
  2217. &fs_info->generic_worker);
  2218. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2219. &fs_info->generic_worker);
  2220. /*
  2221. * endios are largely parallel and should have a very
  2222. * low idle thresh
  2223. */
  2224. fs_info->endio_workers.idle_thresh = 4;
  2225. fs_info->endio_meta_workers.idle_thresh = 4;
  2226. fs_info->endio_raid56_workers.idle_thresh = 4;
  2227. fs_info->rmw_workers.idle_thresh = 2;
  2228. fs_info->endio_write_workers.idle_thresh = 2;
  2229. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2230. fs_info->readahead_workers.idle_thresh = 2;
  2231. /*
  2232. * btrfs_start_workers can really only fail because of ENOMEM so just
  2233. * return -ENOMEM if any of these fail.
  2234. */
  2235. ret = btrfs_start_workers(&fs_info->workers);
  2236. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2237. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2238. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2239. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2240. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2241. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2242. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2243. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2244. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2245. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2246. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2247. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2248. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2249. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2250. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2251. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2252. if (ret) {
  2253. err = -ENOMEM;
  2254. goto fail_sb_buffer;
  2255. }
  2256. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2257. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2258. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2259. tree_root->nodesize = nodesize;
  2260. tree_root->leafsize = leafsize;
  2261. tree_root->sectorsize = sectorsize;
  2262. tree_root->stripesize = stripesize;
  2263. sb->s_blocksize = sectorsize;
  2264. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2265. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2266. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2267. goto fail_sb_buffer;
  2268. }
  2269. if (sectorsize != PAGE_SIZE) {
  2270. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2271. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2272. goto fail_sb_buffer;
  2273. }
  2274. mutex_lock(&fs_info->chunk_mutex);
  2275. ret = btrfs_read_sys_array(tree_root);
  2276. mutex_unlock(&fs_info->chunk_mutex);
  2277. if (ret) {
  2278. printk(KERN_WARNING "btrfs: failed to read the system "
  2279. "array on %s\n", sb->s_id);
  2280. goto fail_sb_buffer;
  2281. }
  2282. blocksize = btrfs_level_size(tree_root,
  2283. btrfs_super_chunk_root_level(disk_super));
  2284. generation = btrfs_super_chunk_root_generation(disk_super);
  2285. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2286. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2287. chunk_root->node = read_tree_block(chunk_root,
  2288. btrfs_super_chunk_root(disk_super),
  2289. blocksize, generation);
  2290. if (!chunk_root->node ||
  2291. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2292. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2293. sb->s_id);
  2294. goto fail_tree_roots;
  2295. }
  2296. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2297. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2298. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2299. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2300. BTRFS_UUID_SIZE);
  2301. ret = btrfs_read_chunk_tree(chunk_root);
  2302. if (ret) {
  2303. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2304. sb->s_id);
  2305. goto fail_tree_roots;
  2306. }
  2307. /*
  2308. * keep the device that is marked to be the target device for the
  2309. * dev_replace procedure
  2310. */
  2311. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2312. if (!fs_devices->latest_bdev) {
  2313. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2314. sb->s_id);
  2315. goto fail_tree_roots;
  2316. }
  2317. retry_root_backup:
  2318. blocksize = btrfs_level_size(tree_root,
  2319. btrfs_super_root_level(disk_super));
  2320. generation = btrfs_super_generation(disk_super);
  2321. tree_root->node = read_tree_block(tree_root,
  2322. btrfs_super_root(disk_super),
  2323. blocksize, generation);
  2324. if (!tree_root->node ||
  2325. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2326. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2327. sb->s_id);
  2328. goto recovery_tree_root;
  2329. }
  2330. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2331. tree_root->commit_root = btrfs_root_node(tree_root);
  2332. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2333. location.type = BTRFS_ROOT_ITEM_KEY;
  2334. location.offset = 0;
  2335. extent_root = btrfs_read_tree_root(tree_root, &location);
  2336. if (IS_ERR(extent_root)) {
  2337. ret = PTR_ERR(extent_root);
  2338. goto recovery_tree_root;
  2339. }
  2340. extent_root->track_dirty = 1;
  2341. fs_info->extent_root = extent_root;
  2342. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2343. dev_root = btrfs_read_tree_root(tree_root, &location);
  2344. if (IS_ERR(dev_root)) {
  2345. ret = PTR_ERR(dev_root);
  2346. goto recovery_tree_root;
  2347. }
  2348. dev_root->track_dirty = 1;
  2349. fs_info->dev_root = dev_root;
  2350. btrfs_init_devices_late(fs_info);
  2351. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2352. csum_root = btrfs_read_tree_root(tree_root, &location);
  2353. if (IS_ERR(csum_root)) {
  2354. ret = PTR_ERR(csum_root);
  2355. goto recovery_tree_root;
  2356. }
  2357. csum_root->track_dirty = 1;
  2358. fs_info->csum_root = csum_root;
  2359. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2360. quota_root = btrfs_read_tree_root(tree_root, &location);
  2361. if (!IS_ERR(quota_root)) {
  2362. quota_root->track_dirty = 1;
  2363. fs_info->quota_enabled = 1;
  2364. fs_info->pending_quota_state = 1;
  2365. fs_info->quota_root = quota_root;
  2366. }
  2367. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2368. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2369. if (IS_ERR(uuid_root)) {
  2370. ret = PTR_ERR(uuid_root);
  2371. if (ret != -ENOENT)
  2372. goto recovery_tree_root;
  2373. create_uuid_tree = true;
  2374. check_uuid_tree = false;
  2375. } else {
  2376. uuid_root->track_dirty = 1;
  2377. fs_info->uuid_root = uuid_root;
  2378. create_uuid_tree = false;
  2379. check_uuid_tree =
  2380. generation != btrfs_super_uuid_tree_generation(disk_super);
  2381. }
  2382. fs_info->generation = generation;
  2383. fs_info->last_trans_committed = generation;
  2384. ret = btrfs_recover_balance(fs_info);
  2385. if (ret) {
  2386. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2387. goto fail_block_groups;
  2388. }
  2389. ret = btrfs_init_dev_stats(fs_info);
  2390. if (ret) {
  2391. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2392. ret);
  2393. goto fail_block_groups;
  2394. }
  2395. ret = btrfs_init_dev_replace(fs_info);
  2396. if (ret) {
  2397. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2398. goto fail_block_groups;
  2399. }
  2400. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2401. ret = btrfs_init_space_info(fs_info);
  2402. if (ret) {
  2403. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2404. goto fail_block_groups;
  2405. }
  2406. ret = btrfs_read_block_groups(extent_root);
  2407. if (ret) {
  2408. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2409. goto fail_block_groups;
  2410. }
  2411. fs_info->num_tolerated_disk_barrier_failures =
  2412. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2413. if (fs_info->fs_devices->missing_devices >
  2414. fs_info->num_tolerated_disk_barrier_failures &&
  2415. !(sb->s_flags & MS_RDONLY)) {
  2416. printk(KERN_WARNING
  2417. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2418. goto fail_block_groups;
  2419. }
  2420. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2421. "btrfs-cleaner");
  2422. if (IS_ERR(fs_info->cleaner_kthread))
  2423. goto fail_block_groups;
  2424. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2425. tree_root,
  2426. "btrfs-transaction");
  2427. if (IS_ERR(fs_info->transaction_kthread))
  2428. goto fail_cleaner;
  2429. if (!btrfs_test_opt(tree_root, SSD) &&
  2430. !btrfs_test_opt(tree_root, NOSSD) &&
  2431. !fs_info->fs_devices->rotating) {
  2432. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2433. "mode\n");
  2434. btrfs_set_opt(fs_info->mount_opt, SSD);
  2435. }
  2436. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2437. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2438. ret = btrfsic_mount(tree_root, fs_devices,
  2439. btrfs_test_opt(tree_root,
  2440. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2441. 1 : 0,
  2442. fs_info->check_integrity_print_mask);
  2443. if (ret)
  2444. printk(KERN_WARNING "btrfs: failed to initialize"
  2445. " integrity check module %s\n", sb->s_id);
  2446. }
  2447. #endif
  2448. ret = btrfs_read_qgroup_config(fs_info);
  2449. if (ret)
  2450. goto fail_trans_kthread;
  2451. /* do not make disk changes in broken FS */
  2452. if (btrfs_super_log_root(disk_super) != 0) {
  2453. u64 bytenr = btrfs_super_log_root(disk_super);
  2454. if (fs_devices->rw_devices == 0) {
  2455. printk(KERN_WARNING "Btrfs log replay required "
  2456. "on RO media\n");
  2457. err = -EIO;
  2458. goto fail_qgroup;
  2459. }
  2460. blocksize =
  2461. btrfs_level_size(tree_root,
  2462. btrfs_super_log_root_level(disk_super));
  2463. log_tree_root = btrfs_alloc_root(fs_info);
  2464. if (!log_tree_root) {
  2465. err = -ENOMEM;
  2466. goto fail_qgroup;
  2467. }
  2468. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2469. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2470. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2471. blocksize,
  2472. generation + 1);
  2473. if (!log_tree_root->node ||
  2474. !extent_buffer_uptodate(log_tree_root->node)) {
  2475. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2476. free_extent_buffer(log_tree_root->node);
  2477. kfree(log_tree_root);
  2478. goto fail_trans_kthread;
  2479. }
  2480. /* returns with log_tree_root freed on success */
  2481. ret = btrfs_recover_log_trees(log_tree_root);
  2482. if (ret) {
  2483. btrfs_error(tree_root->fs_info, ret,
  2484. "Failed to recover log tree");
  2485. free_extent_buffer(log_tree_root->node);
  2486. kfree(log_tree_root);
  2487. goto fail_trans_kthread;
  2488. }
  2489. if (sb->s_flags & MS_RDONLY) {
  2490. ret = btrfs_commit_super(tree_root);
  2491. if (ret)
  2492. goto fail_trans_kthread;
  2493. }
  2494. }
  2495. ret = btrfs_find_orphan_roots(tree_root);
  2496. if (ret)
  2497. goto fail_trans_kthread;
  2498. if (!(sb->s_flags & MS_RDONLY)) {
  2499. ret = btrfs_cleanup_fs_roots(fs_info);
  2500. if (ret)
  2501. goto fail_trans_kthread;
  2502. ret = btrfs_recover_relocation(tree_root);
  2503. if (ret < 0) {
  2504. printk(KERN_WARNING
  2505. "btrfs: failed to recover relocation\n");
  2506. err = -EINVAL;
  2507. goto fail_qgroup;
  2508. }
  2509. }
  2510. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2511. location.type = BTRFS_ROOT_ITEM_KEY;
  2512. location.offset = 0;
  2513. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2514. if (IS_ERR(fs_info->fs_root)) {
  2515. err = PTR_ERR(fs_info->fs_root);
  2516. goto fail_qgroup;
  2517. }
  2518. if (sb->s_flags & MS_RDONLY)
  2519. return 0;
  2520. down_read(&fs_info->cleanup_work_sem);
  2521. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2522. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2523. up_read(&fs_info->cleanup_work_sem);
  2524. close_ctree(tree_root);
  2525. return ret;
  2526. }
  2527. up_read(&fs_info->cleanup_work_sem);
  2528. ret = btrfs_resume_balance_async(fs_info);
  2529. if (ret) {
  2530. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2531. close_ctree(tree_root);
  2532. return ret;
  2533. }
  2534. ret = btrfs_resume_dev_replace_async(fs_info);
  2535. if (ret) {
  2536. pr_warn("btrfs: failed to resume dev_replace\n");
  2537. close_ctree(tree_root);
  2538. return ret;
  2539. }
  2540. btrfs_qgroup_rescan_resume(fs_info);
  2541. if (create_uuid_tree) {
  2542. pr_info("btrfs: creating UUID tree\n");
  2543. ret = btrfs_create_uuid_tree(fs_info);
  2544. if (ret) {
  2545. pr_warn("btrfs: failed to create the UUID tree %d\n",
  2546. ret);
  2547. close_ctree(tree_root);
  2548. return ret;
  2549. }
  2550. } else if (check_uuid_tree ||
  2551. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2552. pr_info("btrfs: checking UUID tree\n");
  2553. ret = btrfs_check_uuid_tree(fs_info);
  2554. if (ret) {
  2555. pr_warn("btrfs: failed to check the UUID tree %d\n",
  2556. ret);
  2557. close_ctree(tree_root);
  2558. return ret;
  2559. }
  2560. } else {
  2561. fs_info->update_uuid_tree_gen = 1;
  2562. }
  2563. return 0;
  2564. fail_qgroup:
  2565. btrfs_free_qgroup_config(fs_info);
  2566. fail_trans_kthread:
  2567. kthread_stop(fs_info->transaction_kthread);
  2568. btrfs_cleanup_transaction(fs_info->tree_root);
  2569. del_fs_roots(fs_info);
  2570. fail_cleaner:
  2571. kthread_stop(fs_info->cleaner_kthread);
  2572. /*
  2573. * make sure we're done with the btree inode before we stop our
  2574. * kthreads
  2575. */
  2576. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2577. fail_block_groups:
  2578. btrfs_put_block_group_cache(fs_info);
  2579. btrfs_free_block_groups(fs_info);
  2580. fail_tree_roots:
  2581. free_root_pointers(fs_info, 1);
  2582. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2583. fail_sb_buffer:
  2584. btrfs_stop_all_workers(fs_info);
  2585. fail_alloc:
  2586. fail_iput:
  2587. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2588. iput(fs_info->btree_inode);
  2589. fail_delalloc_bytes:
  2590. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2591. fail_dirty_metadata_bytes:
  2592. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2593. fail_bdi:
  2594. bdi_destroy(&fs_info->bdi);
  2595. fail_srcu:
  2596. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2597. fail:
  2598. btrfs_free_stripe_hash_table(fs_info);
  2599. btrfs_close_devices(fs_info->fs_devices);
  2600. return err;
  2601. recovery_tree_root:
  2602. if (!btrfs_test_opt(tree_root, RECOVERY))
  2603. goto fail_tree_roots;
  2604. free_root_pointers(fs_info, 0);
  2605. /* don't use the log in recovery mode, it won't be valid */
  2606. btrfs_set_super_log_root(disk_super, 0);
  2607. /* we can't trust the free space cache either */
  2608. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2609. ret = next_root_backup(fs_info, fs_info->super_copy,
  2610. &num_backups_tried, &backup_index);
  2611. if (ret == -1)
  2612. goto fail_block_groups;
  2613. goto retry_root_backup;
  2614. }
  2615. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2616. {
  2617. if (uptodate) {
  2618. set_buffer_uptodate(bh);
  2619. } else {
  2620. struct btrfs_device *device = (struct btrfs_device *)
  2621. bh->b_private;
  2622. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2623. "I/O error on %s\n",
  2624. rcu_str_deref(device->name));
  2625. /* note, we dont' set_buffer_write_io_error because we have
  2626. * our own ways of dealing with the IO errors
  2627. */
  2628. clear_buffer_uptodate(bh);
  2629. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2630. }
  2631. unlock_buffer(bh);
  2632. put_bh(bh);
  2633. }
  2634. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2635. {
  2636. struct buffer_head *bh;
  2637. struct buffer_head *latest = NULL;
  2638. struct btrfs_super_block *super;
  2639. int i;
  2640. u64 transid = 0;
  2641. u64 bytenr;
  2642. /* we would like to check all the supers, but that would make
  2643. * a btrfs mount succeed after a mkfs from a different FS.
  2644. * So, we need to add a special mount option to scan for
  2645. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2646. */
  2647. for (i = 0; i < 1; i++) {
  2648. bytenr = btrfs_sb_offset(i);
  2649. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2650. i_size_read(bdev->bd_inode))
  2651. break;
  2652. bh = __bread(bdev, bytenr / 4096,
  2653. BTRFS_SUPER_INFO_SIZE);
  2654. if (!bh)
  2655. continue;
  2656. super = (struct btrfs_super_block *)bh->b_data;
  2657. if (btrfs_super_bytenr(super) != bytenr ||
  2658. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2659. brelse(bh);
  2660. continue;
  2661. }
  2662. if (!latest || btrfs_super_generation(super) > transid) {
  2663. brelse(latest);
  2664. latest = bh;
  2665. transid = btrfs_super_generation(super);
  2666. } else {
  2667. brelse(bh);
  2668. }
  2669. }
  2670. return latest;
  2671. }
  2672. /*
  2673. * this should be called twice, once with wait == 0 and
  2674. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2675. * we write are pinned.
  2676. *
  2677. * They are released when wait == 1 is done.
  2678. * max_mirrors must be the same for both runs, and it indicates how
  2679. * many supers on this one device should be written.
  2680. *
  2681. * max_mirrors == 0 means to write them all.
  2682. */
  2683. static int write_dev_supers(struct btrfs_device *device,
  2684. struct btrfs_super_block *sb,
  2685. int do_barriers, int wait, int max_mirrors)
  2686. {
  2687. struct buffer_head *bh;
  2688. int i;
  2689. int ret;
  2690. int errors = 0;
  2691. u32 crc;
  2692. u64 bytenr;
  2693. if (max_mirrors == 0)
  2694. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2695. for (i = 0; i < max_mirrors; i++) {
  2696. bytenr = btrfs_sb_offset(i);
  2697. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2698. break;
  2699. if (wait) {
  2700. bh = __find_get_block(device->bdev, bytenr / 4096,
  2701. BTRFS_SUPER_INFO_SIZE);
  2702. if (!bh) {
  2703. errors++;
  2704. continue;
  2705. }
  2706. wait_on_buffer(bh);
  2707. if (!buffer_uptodate(bh))
  2708. errors++;
  2709. /* drop our reference */
  2710. brelse(bh);
  2711. /* drop the reference from the wait == 0 run */
  2712. brelse(bh);
  2713. continue;
  2714. } else {
  2715. btrfs_set_super_bytenr(sb, bytenr);
  2716. crc = ~(u32)0;
  2717. crc = btrfs_csum_data((char *)sb +
  2718. BTRFS_CSUM_SIZE, crc,
  2719. BTRFS_SUPER_INFO_SIZE -
  2720. BTRFS_CSUM_SIZE);
  2721. btrfs_csum_final(crc, sb->csum);
  2722. /*
  2723. * one reference for us, and we leave it for the
  2724. * caller
  2725. */
  2726. bh = __getblk(device->bdev, bytenr / 4096,
  2727. BTRFS_SUPER_INFO_SIZE);
  2728. if (!bh) {
  2729. printk(KERN_ERR "btrfs: couldn't get super "
  2730. "buffer head for bytenr %Lu\n", bytenr);
  2731. errors++;
  2732. continue;
  2733. }
  2734. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2735. /* one reference for submit_bh */
  2736. get_bh(bh);
  2737. set_buffer_uptodate(bh);
  2738. lock_buffer(bh);
  2739. bh->b_end_io = btrfs_end_buffer_write_sync;
  2740. bh->b_private = device;
  2741. }
  2742. /*
  2743. * we fua the first super. The others we allow
  2744. * to go down lazy.
  2745. */
  2746. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2747. if (ret)
  2748. errors++;
  2749. }
  2750. return errors < i ? 0 : -1;
  2751. }
  2752. /*
  2753. * endio for the write_dev_flush, this will wake anyone waiting
  2754. * for the barrier when it is done
  2755. */
  2756. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2757. {
  2758. if (err) {
  2759. if (err == -EOPNOTSUPP)
  2760. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2761. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2762. }
  2763. if (bio->bi_private)
  2764. complete(bio->bi_private);
  2765. bio_put(bio);
  2766. }
  2767. /*
  2768. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2769. * sent down. With wait == 1, it waits for the previous flush.
  2770. *
  2771. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2772. * capable
  2773. */
  2774. static int write_dev_flush(struct btrfs_device *device, int wait)
  2775. {
  2776. struct bio *bio;
  2777. int ret = 0;
  2778. if (device->nobarriers)
  2779. return 0;
  2780. if (wait) {
  2781. bio = device->flush_bio;
  2782. if (!bio)
  2783. return 0;
  2784. wait_for_completion(&device->flush_wait);
  2785. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2786. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2787. rcu_str_deref(device->name));
  2788. device->nobarriers = 1;
  2789. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2790. ret = -EIO;
  2791. btrfs_dev_stat_inc_and_print(device,
  2792. BTRFS_DEV_STAT_FLUSH_ERRS);
  2793. }
  2794. /* drop the reference from the wait == 0 run */
  2795. bio_put(bio);
  2796. device->flush_bio = NULL;
  2797. return ret;
  2798. }
  2799. /*
  2800. * one reference for us, and we leave it for the
  2801. * caller
  2802. */
  2803. device->flush_bio = NULL;
  2804. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2805. if (!bio)
  2806. return -ENOMEM;
  2807. bio->bi_end_io = btrfs_end_empty_barrier;
  2808. bio->bi_bdev = device->bdev;
  2809. init_completion(&device->flush_wait);
  2810. bio->bi_private = &device->flush_wait;
  2811. device->flush_bio = bio;
  2812. bio_get(bio);
  2813. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2814. return 0;
  2815. }
  2816. /*
  2817. * send an empty flush down to each device in parallel,
  2818. * then wait for them
  2819. */
  2820. static int barrier_all_devices(struct btrfs_fs_info *info)
  2821. {
  2822. struct list_head *head;
  2823. struct btrfs_device *dev;
  2824. int errors_send = 0;
  2825. int errors_wait = 0;
  2826. int ret;
  2827. /* send down all the barriers */
  2828. head = &info->fs_devices->devices;
  2829. list_for_each_entry_rcu(dev, head, dev_list) {
  2830. if (!dev->bdev) {
  2831. errors_send++;
  2832. continue;
  2833. }
  2834. if (!dev->in_fs_metadata || !dev->writeable)
  2835. continue;
  2836. ret = write_dev_flush(dev, 0);
  2837. if (ret)
  2838. errors_send++;
  2839. }
  2840. /* wait for all the barriers */
  2841. list_for_each_entry_rcu(dev, head, dev_list) {
  2842. if (!dev->bdev) {
  2843. errors_wait++;
  2844. continue;
  2845. }
  2846. if (!dev->in_fs_metadata || !dev->writeable)
  2847. continue;
  2848. ret = write_dev_flush(dev, 1);
  2849. if (ret)
  2850. errors_wait++;
  2851. }
  2852. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2853. errors_wait > info->num_tolerated_disk_barrier_failures)
  2854. return -EIO;
  2855. return 0;
  2856. }
  2857. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2858. struct btrfs_fs_info *fs_info)
  2859. {
  2860. struct btrfs_ioctl_space_info space;
  2861. struct btrfs_space_info *sinfo;
  2862. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2863. BTRFS_BLOCK_GROUP_SYSTEM,
  2864. BTRFS_BLOCK_GROUP_METADATA,
  2865. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2866. int num_types = 4;
  2867. int i;
  2868. int c;
  2869. int num_tolerated_disk_barrier_failures =
  2870. (int)fs_info->fs_devices->num_devices;
  2871. for (i = 0; i < num_types; i++) {
  2872. struct btrfs_space_info *tmp;
  2873. sinfo = NULL;
  2874. rcu_read_lock();
  2875. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2876. if (tmp->flags == types[i]) {
  2877. sinfo = tmp;
  2878. break;
  2879. }
  2880. }
  2881. rcu_read_unlock();
  2882. if (!sinfo)
  2883. continue;
  2884. down_read(&sinfo->groups_sem);
  2885. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2886. if (!list_empty(&sinfo->block_groups[c])) {
  2887. u64 flags;
  2888. btrfs_get_block_group_info(
  2889. &sinfo->block_groups[c], &space);
  2890. if (space.total_bytes == 0 ||
  2891. space.used_bytes == 0)
  2892. continue;
  2893. flags = space.flags;
  2894. /*
  2895. * return
  2896. * 0: if dup, single or RAID0 is configured for
  2897. * any of metadata, system or data, else
  2898. * 1: if RAID5 is configured, or if RAID1 or
  2899. * RAID10 is configured and only two mirrors
  2900. * are used, else
  2901. * 2: if RAID6 is configured, else
  2902. * num_mirrors - 1: if RAID1 or RAID10 is
  2903. * configured and more than
  2904. * 2 mirrors are used.
  2905. */
  2906. if (num_tolerated_disk_barrier_failures > 0 &&
  2907. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2908. BTRFS_BLOCK_GROUP_RAID0)) ||
  2909. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2910. == 0)))
  2911. num_tolerated_disk_barrier_failures = 0;
  2912. else if (num_tolerated_disk_barrier_failures > 1) {
  2913. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2914. BTRFS_BLOCK_GROUP_RAID5 |
  2915. BTRFS_BLOCK_GROUP_RAID10)) {
  2916. num_tolerated_disk_barrier_failures = 1;
  2917. } else if (flags &
  2918. BTRFS_BLOCK_GROUP_RAID6) {
  2919. num_tolerated_disk_barrier_failures = 2;
  2920. }
  2921. }
  2922. }
  2923. }
  2924. up_read(&sinfo->groups_sem);
  2925. }
  2926. return num_tolerated_disk_barrier_failures;
  2927. }
  2928. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2929. {
  2930. struct list_head *head;
  2931. struct btrfs_device *dev;
  2932. struct btrfs_super_block *sb;
  2933. struct btrfs_dev_item *dev_item;
  2934. int ret;
  2935. int do_barriers;
  2936. int max_errors;
  2937. int total_errors = 0;
  2938. u64 flags;
  2939. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2940. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2941. backup_super_roots(root->fs_info);
  2942. sb = root->fs_info->super_for_commit;
  2943. dev_item = &sb->dev_item;
  2944. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2945. head = &root->fs_info->fs_devices->devices;
  2946. if (do_barriers) {
  2947. ret = barrier_all_devices(root->fs_info);
  2948. if (ret) {
  2949. mutex_unlock(
  2950. &root->fs_info->fs_devices->device_list_mutex);
  2951. btrfs_error(root->fs_info, ret,
  2952. "errors while submitting device barriers.");
  2953. return ret;
  2954. }
  2955. }
  2956. list_for_each_entry_rcu(dev, head, dev_list) {
  2957. if (!dev->bdev) {
  2958. total_errors++;
  2959. continue;
  2960. }
  2961. if (!dev->in_fs_metadata || !dev->writeable)
  2962. continue;
  2963. btrfs_set_stack_device_generation(dev_item, 0);
  2964. btrfs_set_stack_device_type(dev_item, dev->type);
  2965. btrfs_set_stack_device_id(dev_item, dev->devid);
  2966. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2967. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2968. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2969. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2970. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2971. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2972. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2973. flags = btrfs_super_flags(sb);
  2974. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2975. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2976. if (ret)
  2977. total_errors++;
  2978. }
  2979. if (total_errors > max_errors) {
  2980. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2981. total_errors);
  2982. /* This shouldn't happen. FUA is masked off if unsupported */
  2983. BUG();
  2984. }
  2985. total_errors = 0;
  2986. list_for_each_entry_rcu(dev, head, dev_list) {
  2987. if (!dev->bdev)
  2988. continue;
  2989. if (!dev->in_fs_metadata || !dev->writeable)
  2990. continue;
  2991. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2992. if (ret)
  2993. total_errors++;
  2994. }
  2995. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2996. if (total_errors > max_errors) {
  2997. btrfs_error(root->fs_info, -EIO,
  2998. "%d errors while writing supers", total_errors);
  2999. return -EIO;
  3000. }
  3001. return 0;
  3002. }
  3003. int write_ctree_super(struct btrfs_trans_handle *trans,
  3004. struct btrfs_root *root, int max_mirrors)
  3005. {
  3006. int ret;
  3007. ret = write_all_supers(root, max_mirrors);
  3008. return ret;
  3009. }
  3010. /* Drop a fs root from the radix tree and free it. */
  3011. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3012. struct btrfs_root *root)
  3013. {
  3014. spin_lock(&fs_info->fs_roots_radix_lock);
  3015. radix_tree_delete(&fs_info->fs_roots_radix,
  3016. (unsigned long)root->root_key.objectid);
  3017. spin_unlock(&fs_info->fs_roots_radix_lock);
  3018. if (btrfs_root_refs(&root->root_item) == 0)
  3019. synchronize_srcu(&fs_info->subvol_srcu);
  3020. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3021. btrfs_free_log(NULL, root);
  3022. btrfs_free_log_root_tree(NULL, fs_info);
  3023. }
  3024. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3025. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3026. free_fs_root(root);
  3027. }
  3028. static void free_fs_root(struct btrfs_root *root)
  3029. {
  3030. iput(root->cache_inode);
  3031. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3032. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3033. root->orphan_block_rsv = NULL;
  3034. if (root->anon_dev)
  3035. free_anon_bdev(root->anon_dev);
  3036. free_extent_buffer(root->node);
  3037. free_extent_buffer(root->commit_root);
  3038. kfree(root->free_ino_ctl);
  3039. kfree(root->free_ino_pinned);
  3040. kfree(root->name);
  3041. btrfs_put_fs_root(root);
  3042. }
  3043. void btrfs_free_fs_root(struct btrfs_root *root)
  3044. {
  3045. free_fs_root(root);
  3046. }
  3047. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3048. {
  3049. u64 root_objectid = 0;
  3050. struct btrfs_root *gang[8];
  3051. int i;
  3052. int ret;
  3053. while (1) {
  3054. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3055. (void **)gang, root_objectid,
  3056. ARRAY_SIZE(gang));
  3057. if (!ret)
  3058. break;
  3059. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3060. for (i = 0; i < ret; i++) {
  3061. int err;
  3062. root_objectid = gang[i]->root_key.objectid;
  3063. err = btrfs_orphan_cleanup(gang[i]);
  3064. if (err)
  3065. return err;
  3066. }
  3067. root_objectid++;
  3068. }
  3069. return 0;
  3070. }
  3071. int btrfs_commit_super(struct btrfs_root *root)
  3072. {
  3073. struct btrfs_trans_handle *trans;
  3074. int ret;
  3075. mutex_lock(&root->fs_info->cleaner_mutex);
  3076. btrfs_run_delayed_iputs(root);
  3077. mutex_unlock(&root->fs_info->cleaner_mutex);
  3078. wake_up_process(root->fs_info->cleaner_kthread);
  3079. /* wait until ongoing cleanup work done */
  3080. down_write(&root->fs_info->cleanup_work_sem);
  3081. up_write(&root->fs_info->cleanup_work_sem);
  3082. trans = btrfs_join_transaction(root);
  3083. if (IS_ERR(trans))
  3084. return PTR_ERR(trans);
  3085. ret = btrfs_commit_transaction(trans, root);
  3086. if (ret)
  3087. return ret;
  3088. /* run commit again to drop the original snapshot */
  3089. trans = btrfs_join_transaction(root);
  3090. if (IS_ERR(trans))
  3091. return PTR_ERR(trans);
  3092. ret = btrfs_commit_transaction(trans, root);
  3093. if (ret)
  3094. return ret;
  3095. ret = btrfs_write_and_wait_transaction(NULL, root);
  3096. if (ret) {
  3097. btrfs_error(root->fs_info, ret,
  3098. "Failed to sync btree inode to disk.");
  3099. return ret;
  3100. }
  3101. ret = write_ctree_super(NULL, root, 0);
  3102. return ret;
  3103. }
  3104. int close_ctree(struct btrfs_root *root)
  3105. {
  3106. struct btrfs_fs_info *fs_info = root->fs_info;
  3107. int ret;
  3108. fs_info->closing = 1;
  3109. smp_mb();
  3110. /* wait for the uuid_scan task to finish */
  3111. down(&fs_info->uuid_tree_rescan_sem);
  3112. /* avoid complains from lockdep et al., set sem back to initial state */
  3113. up(&fs_info->uuid_tree_rescan_sem);
  3114. /* pause restriper - we want to resume on mount */
  3115. btrfs_pause_balance(fs_info);
  3116. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3117. btrfs_scrub_cancel(fs_info);
  3118. /* wait for any defraggers to finish */
  3119. wait_event(fs_info->transaction_wait,
  3120. (atomic_read(&fs_info->defrag_running) == 0));
  3121. /* clear out the rbtree of defraggable inodes */
  3122. btrfs_cleanup_defrag_inodes(fs_info);
  3123. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3124. ret = btrfs_commit_super(root);
  3125. if (ret)
  3126. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3127. }
  3128. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3129. btrfs_error_commit_super(root);
  3130. btrfs_put_block_group_cache(fs_info);
  3131. kthread_stop(fs_info->transaction_kthread);
  3132. kthread_stop(fs_info->cleaner_kthread);
  3133. fs_info->closing = 2;
  3134. smp_mb();
  3135. btrfs_free_qgroup_config(root->fs_info);
  3136. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3137. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3138. percpu_counter_sum(&fs_info->delalloc_bytes));
  3139. }
  3140. btrfs_free_block_groups(fs_info);
  3141. btrfs_stop_all_workers(fs_info);
  3142. del_fs_roots(fs_info);
  3143. free_root_pointers(fs_info, 1);
  3144. iput(fs_info->btree_inode);
  3145. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3146. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3147. btrfsic_unmount(root, fs_info->fs_devices);
  3148. #endif
  3149. btrfs_close_devices(fs_info->fs_devices);
  3150. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3151. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3152. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3153. bdi_destroy(&fs_info->bdi);
  3154. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3155. btrfs_free_stripe_hash_table(fs_info);
  3156. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3157. root->orphan_block_rsv = NULL;
  3158. return 0;
  3159. }
  3160. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3161. int atomic)
  3162. {
  3163. int ret;
  3164. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3165. ret = extent_buffer_uptodate(buf);
  3166. if (!ret)
  3167. return ret;
  3168. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3169. parent_transid, atomic);
  3170. if (ret == -EAGAIN)
  3171. return ret;
  3172. return !ret;
  3173. }
  3174. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3175. {
  3176. return set_extent_buffer_uptodate(buf);
  3177. }
  3178. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3179. {
  3180. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3181. u64 transid = btrfs_header_generation(buf);
  3182. int was_dirty;
  3183. btrfs_assert_tree_locked(buf);
  3184. if (transid != root->fs_info->generation)
  3185. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3186. "found %llu running %llu\n",
  3187. buf->start, transid, root->fs_info->generation);
  3188. was_dirty = set_extent_buffer_dirty(buf);
  3189. if (!was_dirty)
  3190. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3191. buf->len,
  3192. root->fs_info->dirty_metadata_batch);
  3193. }
  3194. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3195. int flush_delayed)
  3196. {
  3197. /*
  3198. * looks as though older kernels can get into trouble with
  3199. * this code, they end up stuck in balance_dirty_pages forever
  3200. */
  3201. int ret;
  3202. if (current->flags & PF_MEMALLOC)
  3203. return;
  3204. if (flush_delayed)
  3205. btrfs_balance_delayed_items(root);
  3206. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3207. BTRFS_DIRTY_METADATA_THRESH);
  3208. if (ret > 0) {
  3209. balance_dirty_pages_ratelimited(
  3210. root->fs_info->btree_inode->i_mapping);
  3211. }
  3212. return;
  3213. }
  3214. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3215. {
  3216. __btrfs_btree_balance_dirty(root, 1);
  3217. }
  3218. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3219. {
  3220. __btrfs_btree_balance_dirty(root, 0);
  3221. }
  3222. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3223. {
  3224. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3225. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3226. }
  3227. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3228. int read_only)
  3229. {
  3230. /*
  3231. * Placeholder for checks
  3232. */
  3233. return 0;
  3234. }
  3235. static void btrfs_error_commit_super(struct btrfs_root *root)
  3236. {
  3237. mutex_lock(&root->fs_info->cleaner_mutex);
  3238. btrfs_run_delayed_iputs(root);
  3239. mutex_unlock(&root->fs_info->cleaner_mutex);
  3240. down_write(&root->fs_info->cleanup_work_sem);
  3241. up_write(&root->fs_info->cleanup_work_sem);
  3242. /* cleanup FS via transaction */
  3243. btrfs_cleanup_transaction(root);
  3244. }
  3245. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3246. struct btrfs_root *root)
  3247. {
  3248. struct btrfs_inode *btrfs_inode;
  3249. struct list_head splice;
  3250. INIT_LIST_HEAD(&splice);
  3251. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3252. spin_lock(&root->fs_info->ordered_root_lock);
  3253. list_splice_init(&t->ordered_operations, &splice);
  3254. while (!list_empty(&splice)) {
  3255. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3256. ordered_operations);
  3257. list_del_init(&btrfs_inode->ordered_operations);
  3258. spin_unlock(&root->fs_info->ordered_root_lock);
  3259. btrfs_invalidate_inodes(btrfs_inode->root);
  3260. spin_lock(&root->fs_info->ordered_root_lock);
  3261. }
  3262. spin_unlock(&root->fs_info->ordered_root_lock);
  3263. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3264. }
  3265. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3266. {
  3267. struct btrfs_ordered_extent *ordered;
  3268. spin_lock(&root->ordered_extent_lock);
  3269. /*
  3270. * This will just short circuit the ordered completion stuff which will
  3271. * make sure the ordered extent gets properly cleaned up.
  3272. */
  3273. list_for_each_entry(ordered, &root->ordered_extents,
  3274. root_extent_list)
  3275. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3276. spin_unlock(&root->ordered_extent_lock);
  3277. }
  3278. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3279. {
  3280. struct btrfs_root *root;
  3281. struct list_head splice;
  3282. INIT_LIST_HEAD(&splice);
  3283. spin_lock(&fs_info->ordered_root_lock);
  3284. list_splice_init(&fs_info->ordered_roots, &splice);
  3285. while (!list_empty(&splice)) {
  3286. root = list_first_entry(&splice, struct btrfs_root,
  3287. ordered_root);
  3288. list_del_init(&root->ordered_root);
  3289. btrfs_destroy_ordered_extents(root);
  3290. cond_resched_lock(&fs_info->ordered_root_lock);
  3291. }
  3292. spin_unlock(&fs_info->ordered_root_lock);
  3293. }
  3294. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3295. struct btrfs_root *root)
  3296. {
  3297. struct rb_node *node;
  3298. struct btrfs_delayed_ref_root *delayed_refs;
  3299. struct btrfs_delayed_ref_node *ref;
  3300. int ret = 0;
  3301. delayed_refs = &trans->delayed_refs;
  3302. spin_lock(&delayed_refs->lock);
  3303. if (delayed_refs->num_entries == 0) {
  3304. spin_unlock(&delayed_refs->lock);
  3305. printk(KERN_INFO "delayed_refs has NO entry\n");
  3306. return ret;
  3307. }
  3308. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3309. struct btrfs_delayed_ref_head *head = NULL;
  3310. bool pin_bytes = false;
  3311. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3312. atomic_set(&ref->refs, 1);
  3313. if (btrfs_delayed_ref_is_head(ref)) {
  3314. head = btrfs_delayed_node_to_head(ref);
  3315. if (!mutex_trylock(&head->mutex)) {
  3316. atomic_inc(&ref->refs);
  3317. spin_unlock(&delayed_refs->lock);
  3318. /* Need to wait for the delayed ref to run */
  3319. mutex_lock(&head->mutex);
  3320. mutex_unlock(&head->mutex);
  3321. btrfs_put_delayed_ref(ref);
  3322. spin_lock(&delayed_refs->lock);
  3323. continue;
  3324. }
  3325. if (head->must_insert_reserved)
  3326. pin_bytes = true;
  3327. btrfs_free_delayed_extent_op(head->extent_op);
  3328. delayed_refs->num_heads--;
  3329. if (list_empty(&head->cluster))
  3330. delayed_refs->num_heads_ready--;
  3331. list_del_init(&head->cluster);
  3332. }
  3333. ref->in_tree = 0;
  3334. rb_erase(&ref->rb_node, &delayed_refs->root);
  3335. delayed_refs->num_entries--;
  3336. spin_unlock(&delayed_refs->lock);
  3337. if (head) {
  3338. if (pin_bytes)
  3339. btrfs_pin_extent(root, ref->bytenr,
  3340. ref->num_bytes, 1);
  3341. mutex_unlock(&head->mutex);
  3342. }
  3343. btrfs_put_delayed_ref(ref);
  3344. cond_resched();
  3345. spin_lock(&delayed_refs->lock);
  3346. }
  3347. spin_unlock(&delayed_refs->lock);
  3348. return ret;
  3349. }
  3350. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3351. {
  3352. struct btrfs_pending_snapshot *snapshot;
  3353. struct list_head splice;
  3354. INIT_LIST_HEAD(&splice);
  3355. list_splice_init(&t->pending_snapshots, &splice);
  3356. while (!list_empty(&splice)) {
  3357. snapshot = list_entry(splice.next,
  3358. struct btrfs_pending_snapshot,
  3359. list);
  3360. snapshot->error = -ECANCELED;
  3361. list_del_init(&snapshot->list);
  3362. }
  3363. }
  3364. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3365. {
  3366. struct btrfs_inode *btrfs_inode;
  3367. struct list_head splice;
  3368. INIT_LIST_HEAD(&splice);
  3369. spin_lock(&root->delalloc_lock);
  3370. list_splice_init(&root->delalloc_inodes, &splice);
  3371. while (!list_empty(&splice)) {
  3372. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3373. delalloc_inodes);
  3374. list_del_init(&btrfs_inode->delalloc_inodes);
  3375. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3376. &btrfs_inode->runtime_flags);
  3377. spin_unlock(&root->delalloc_lock);
  3378. btrfs_invalidate_inodes(btrfs_inode->root);
  3379. spin_lock(&root->delalloc_lock);
  3380. }
  3381. spin_unlock(&root->delalloc_lock);
  3382. }
  3383. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3384. {
  3385. struct btrfs_root *root;
  3386. struct list_head splice;
  3387. INIT_LIST_HEAD(&splice);
  3388. spin_lock(&fs_info->delalloc_root_lock);
  3389. list_splice_init(&fs_info->delalloc_roots, &splice);
  3390. while (!list_empty(&splice)) {
  3391. root = list_first_entry(&splice, struct btrfs_root,
  3392. delalloc_root);
  3393. list_del_init(&root->delalloc_root);
  3394. root = btrfs_grab_fs_root(root);
  3395. BUG_ON(!root);
  3396. spin_unlock(&fs_info->delalloc_root_lock);
  3397. btrfs_destroy_delalloc_inodes(root);
  3398. btrfs_put_fs_root(root);
  3399. spin_lock(&fs_info->delalloc_root_lock);
  3400. }
  3401. spin_unlock(&fs_info->delalloc_root_lock);
  3402. }
  3403. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3404. struct extent_io_tree *dirty_pages,
  3405. int mark)
  3406. {
  3407. int ret;
  3408. struct extent_buffer *eb;
  3409. u64 start = 0;
  3410. u64 end;
  3411. while (1) {
  3412. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3413. mark, NULL);
  3414. if (ret)
  3415. break;
  3416. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3417. while (start <= end) {
  3418. eb = btrfs_find_tree_block(root, start,
  3419. root->leafsize);
  3420. start += root->leafsize;
  3421. if (!eb)
  3422. continue;
  3423. wait_on_extent_buffer_writeback(eb);
  3424. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3425. &eb->bflags))
  3426. clear_extent_buffer_dirty(eb);
  3427. free_extent_buffer_stale(eb);
  3428. }
  3429. }
  3430. return ret;
  3431. }
  3432. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3433. struct extent_io_tree *pinned_extents)
  3434. {
  3435. struct extent_io_tree *unpin;
  3436. u64 start;
  3437. u64 end;
  3438. int ret;
  3439. bool loop = true;
  3440. unpin = pinned_extents;
  3441. again:
  3442. while (1) {
  3443. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3444. EXTENT_DIRTY, NULL);
  3445. if (ret)
  3446. break;
  3447. /* opt_discard */
  3448. if (btrfs_test_opt(root, DISCARD))
  3449. ret = btrfs_error_discard_extent(root, start,
  3450. end + 1 - start,
  3451. NULL);
  3452. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3453. btrfs_error_unpin_extent_range(root, start, end);
  3454. cond_resched();
  3455. }
  3456. if (loop) {
  3457. if (unpin == &root->fs_info->freed_extents[0])
  3458. unpin = &root->fs_info->freed_extents[1];
  3459. else
  3460. unpin = &root->fs_info->freed_extents[0];
  3461. loop = false;
  3462. goto again;
  3463. }
  3464. return 0;
  3465. }
  3466. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3467. struct btrfs_root *root)
  3468. {
  3469. btrfs_destroy_delayed_refs(cur_trans, root);
  3470. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3471. cur_trans->dirty_pages.dirty_bytes);
  3472. cur_trans->state = TRANS_STATE_COMMIT_START;
  3473. wake_up(&root->fs_info->transaction_blocked_wait);
  3474. btrfs_evict_pending_snapshots(cur_trans);
  3475. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3476. wake_up(&root->fs_info->transaction_wait);
  3477. btrfs_destroy_delayed_inodes(root);
  3478. btrfs_assert_delayed_root_empty(root);
  3479. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3480. EXTENT_DIRTY);
  3481. btrfs_destroy_pinned_extent(root,
  3482. root->fs_info->pinned_extents);
  3483. cur_trans->state =TRANS_STATE_COMPLETED;
  3484. wake_up(&cur_trans->commit_wait);
  3485. /*
  3486. memset(cur_trans, 0, sizeof(*cur_trans));
  3487. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3488. */
  3489. }
  3490. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3491. {
  3492. struct btrfs_transaction *t;
  3493. LIST_HEAD(list);
  3494. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3495. spin_lock(&root->fs_info->trans_lock);
  3496. list_splice_init(&root->fs_info->trans_list, &list);
  3497. root->fs_info->running_transaction = NULL;
  3498. spin_unlock(&root->fs_info->trans_lock);
  3499. while (!list_empty(&list)) {
  3500. t = list_entry(list.next, struct btrfs_transaction, list);
  3501. btrfs_destroy_ordered_operations(t, root);
  3502. btrfs_destroy_all_ordered_extents(root->fs_info);
  3503. btrfs_destroy_delayed_refs(t, root);
  3504. /*
  3505. * FIXME: cleanup wait for commit
  3506. * We needn't acquire the lock here, because we are during
  3507. * the umount, there is no other task which will change it.
  3508. */
  3509. t->state = TRANS_STATE_COMMIT_START;
  3510. smp_mb();
  3511. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3512. wake_up(&root->fs_info->transaction_blocked_wait);
  3513. btrfs_evict_pending_snapshots(t);
  3514. t->state = TRANS_STATE_UNBLOCKED;
  3515. smp_mb();
  3516. if (waitqueue_active(&root->fs_info->transaction_wait))
  3517. wake_up(&root->fs_info->transaction_wait);
  3518. btrfs_destroy_delayed_inodes(root);
  3519. btrfs_assert_delayed_root_empty(root);
  3520. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3521. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3522. EXTENT_DIRTY);
  3523. btrfs_destroy_pinned_extent(root,
  3524. root->fs_info->pinned_extents);
  3525. t->state = TRANS_STATE_COMPLETED;
  3526. smp_mb();
  3527. if (waitqueue_active(&t->commit_wait))
  3528. wake_up(&t->commit_wait);
  3529. atomic_set(&t->use_count, 0);
  3530. list_del_init(&t->list);
  3531. memset(t, 0, sizeof(*t));
  3532. kmem_cache_free(btrfs_transaction_cachep, t);
  3533. }
  3534. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3535. return 0;
  3536. }
  3537. static struct extent_io_ops btree_extent_io_ops = {
  3538. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3539. .readpage_io_failed_hook = btree_io_failed_hook,
  3540. .submit_bio_hook = btree_submit_bio_hook,
  3541. /* note we're sharing with inode.c for the merge bio hook */
  3542. .merge_bio_hook = btrfs_merge_bio_hook,
  3543. };