ctree.c 147 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/rbtree.h>
  21. #include "ctree.h"
  22. #include "disk-io.h"
  23. #include "transaction.h"
  24. #include "print-tree.h"
  25. #include "locking.h"
  26. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_path *path, int level);
  28. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  29. *root, struct btrfs_key *ins_key,
  30. struct btrfs_path *path, int data_size, int extend);
  31. static int push_node_left(struct btrfs_trans_handle *trans,
  32. struct btrfs_root *root, struct extent_buffer *dst,
  33. struct extent_buffer *src, int empty);
  34. static int balance_node_right(struct btrfs_trans_handle *trans,
  35. struct btrfs_root *root,
  36. struct extent_buffer *dst_buf,
  37. struct extent_buffer *src_buf);
  38. static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  39. int level, int slot);
  40. static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  41. struct extent_buffer *eb);
  42. static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
  43. struct btrfs_path *btrfs_alloc_path(void)
  44. {
  45. struct btrfs_path *path;
  46. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  47. return path;
  48. }
  49. /*
  50. * set all locked nodes in the path to blocking locks. This should
  51. * be done before scheduling
  52. */
  53. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  54. {
  55. int i;
  56. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  57. if (!p->nodes[i] || !p->locks[i])
  58. continue;
  59. btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  60. if (p->locks[i] == BTRFS_READ_LOCK)
  61. p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  62. else if (p->locks[i] == BTRFS_WRITE_LOCK)
  63. p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  64. }
  65. }
  66. /*
  67. * reset all the locked nodes in the patch to spinning locks.
  68. *
  69. * held is used to keep lockdep happy, when lockdep is enabled
  70. * we set held to a blocking lock before we go around and
  71. * retake all the spinlocks in the path. You can safely use NULL
  72. * for held
  73. */
  74. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  75. struct extent_buffer *held, int held_rw)
  76. {
  77. int i;
  78. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  79. /* lockdep really cares that we take all of these spinlocks
  80. * in the right order. If any of the locks in the path are not
  81. * currently blocking, it is going to complain. So, make really
  82. * really sure by forcing the path to blocking before we clear
  83. * the path blocking.
  84. */
  85. if (held) {
  86. btrfs_set_lock_blocking_rw(held, held_rw);
  87. if (held_rw == BTRFS_WRITE_LOCK)
  88. held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  89. else if (held_rw == BTRFS_READ_LOCK)
  90. held_rw = BTRFS_READ_LOCK_BLOCKING;
  91. }
  92. btrfs_set_path_blocking(p);
  93. #endif
  94. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  95. if (p->nodes[i] && p->locks[i]) {
  96. btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  97. if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  98. p->locks[i] = BTRFS_WRITE_LOCK;
  99. else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  100. p->locks[i] = BTRFS_READ_LOCK;
  101. }
  102. }
  103. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  104. if (held)
  105. btrfs_clear_lock_blocking_rw(held, held_rw);
  106. #endif
  107. }
  108. /* this also releases the path */
  109. void btrfs_free_path(struct btrfs_path *p)
  110. {
  111. if (!p)
  112. return;
  113. btrfs_release_path(p);
  114. kmem_cache_free(btrfs_path_cachep, p);
  115. }
  116. /*
  117. * path release drops references on the extent buffers in the path
  118. * and it drops any locks held by this path
  119. *
  120. * It is safe to call this on paths that no locks or extent buffers held.
  121. */
  122. noinline void btrfs_release_path(struct btrfs_path *p)
  123. {
  124. int i;
  125. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  126. p->slots[i] = 0;
  127. if (!p->nodes[i])
  128. continue;
  129. if (p->locks[i]) {
  130. btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
  131. p->locks[i] = 0;
  132. }
  133. free_extent_buffer(p->nodes[i]);
  134. p->nodes[i] = NULL;
  135. }
  136. }
  137. /*
  138. * safely gets a reference on the root node of a tree. A lock
  139. * is not taken, so a concurrent writer may put a different node
  140. * at the root of the tree. See btrfs_lock_root_node for the
  141. * looping required.
  142. *
  143. * The extent buffer returned by this has a reference taken, so
  144. * it won't disappear. It may stop being the root of the tree
  145. * at any time because there are no locks held.
  146. */
  147. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  148. {
  149. struct extent_buffer *eb;
  150. while (1) {
  151. rcu_read_lock();
  152. eb = rcu_dereference(root->node);
  153. /*
  154. * RCU really hurts here, we could free up the root node because
  155. * it was cow'ed but we may not get the new root node yet so do
  156. * the inc_not_zero dance and if it doesn't work then
  157. * synchronize_rcu and try again.
  158. */
  159. if (atomic_inc_not_zero(&eb->refs)) {
  160. rcu_read_unlock();
  161. break;
  162. }
  163. rcu_read_unlock();
  164. synchronize_rcu();
  165. }
  166. return eb;
  167. }
  168. /* loop around taking references on and locking the root node of the
  169. * tree until you end up with a lock on the root. A locked buffer
  170. * is returned, with a reference held.
  171. */
  172. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  173. {
  174. struct extent_buffer *eb;
  175. while (1) {
  176. eb = btrfs_root_node(root);
  177. btrfs_tree_lock(eb);
  178. if (eb == root->node)
  179. break;
  180. btrfs_tree_unlock(eb);
  181. free_extent_buffer(eb);
  182. }
  183. return eb;
  184. }
  185. /* loop around taking references on and locking the root node of the
  186. * tree until you end up with a lock on the root. A locked buffer
  187. * is returned, with a reference held.
  188. */
  189. static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
  190. {
  191. struct extent_buffer *eb;
  192. while (1) {
  193. eb = btrfs_root_node(root);
  194. btrfs_tree_read_lock(eb);
  195. if (eb == root->node)
  196. break;
  197. btrfs_tree_read_unlock(eb);
  198. free_extent_buffer(eb);
  199. }
  200. return eb;
  201. }
  202. /* cowonly root (everything not a reference counted cow subvolume), just get
  203. * put onto a simple dirty list. transaction.c walks this to make sure they
  204. * get properly updated on disk.
  205. */
  206. static void add_root_to_dirty_list(struct btrfs_root *root)
  207. {
  208. spin_lock(&root->fs_info->trans_lock);
  209. if (root->track_dirty && list_empty(&root->dirty_list)) {
  210. list_add(&root->dirty_list,
  211. &root->fs_info->dirty_cowonly_roots);
  212. }
  213. spin_unlock(&root->fs_info->trans_lock);
  214. }
  215. /*
  216. * used by snapshot creation to make a copy of a root for a tree with
  217. * a given objectid. The buffer with the new root node is returned in
  218. * cow_ret, and this func returns zero on success or a negative error code.
  219. */
  220. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  221. struct btrfs_root *root,
  222. struct extent_buffer *buf,
  223. struct extent_buffer **cow_ret, u64 new_root_objectid)
  224. {
  225. struct extent_buffer *cow;
  226. int ret = 0;
  227. int level;
  228. struct btrfs_disk_key disk_key;
  229. WARN_ON(root->ref_cows && trans->transid !=
  230. root->fs_info->running_transaction->transid);
  231. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  232. level = btrfs_header_level(buf);
  233. if (level == 0)
  234. btrfs_item_key(buf, &disk_key, 0);
  235. else
  236. btrfs_node_key(buf, &disk_key, 0);
  237. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  238. new_root_objectid, &disk_key, level,
  239. buf->start, 0);
  240. if (IS_ERR(cow))
  241. return PTR_ERR(cow);
  242. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  243. btrfs_set_header_bytenr(cow, cow->start);
  244. btrfs_set_header_generation(cow, trans->transid);
  245. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  246. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  247. BTRFS_HEADER_FLAG_RELOC);
  248. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  249. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  250. else
  251. btrfs_set_header_owner(cow, new_root_objectid);
  252. write_extent_buffer(cow, root->fs_info->fsid,
  253. (unsigned long)btrfs_header_fsid(cow),
  254. BTRFS_FSID_SIZE);
  255. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  256. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  257. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  258. else
  259. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  260. if (ret)
  261. return ret;
  262. btrfs_mark_buffer_dirty(cow);
  263. *cow_ret = cow;
  264. return 0;
  265. }
  266. enum mod_log_op {
  267. MOD_LOG_KEY_REPLACE,
  268. MOD_LOG_KEY_ADD,
  269. MOD_LOG_KEY_REMOVE,
  270. MOD_LOG_KEY_REMOVE_WHILE_FREEING,
  271. MOD_LOG_KEY_REMOVE_WHILE_MOVING,
  272. MOD_LOG_MOVE_KEYS,
  273. MOD_LOG_ROOT_REPLACE,
  274. };
  275. struct tree_mod_move {
  276. int dst_slot;
  277. int nr_items;
  278. };
  279. struct tree_mod_root {
  280. u64 logical;
  281. u8 level;
  282. };
  283. struct tree_mod_elem {
  284. struct rb_node node;
  285. u64 index; /* shifted logical */
  286. u64 seq;
  287. enum mod_log_op op;
  288. /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
  289. int slot;
  290. /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
  291. u64 generation;
  292. /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
  293. struct btrfs_disk_key key;
  294. u64 blockptr;
  295. /* this is used for op == MOD_LOG_MOVE_KEYS */
  296. struct tree_mod_move move;
  297. /* this is used for op == MOD_LOG_ROOT_REPLACE */
  298. struct tree_mod_root old_root;
  299. };
  300. static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
  301. {
  302. read_lock(&fs_info->tree_mod_log_lock);
  303. }
  304. static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
  305. {
  306. read_unlock(&fs_info->tree_mod_log_lock);
  307. }
  308. static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
  309. {
  310. write_lock(&fs_info->tree_mod_log_lock);
  311. }
  312. static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
  313. {
  314. write_unlock(&fs_info->tree_mod_log_lock);
  315. }
  316. /*
  317. * Increment the upper half of tree_mod_seq, set lower half zero.
  318. *
  319. * Must be called with fs_info->tree_mod_seq_lock held.
  320. */
  321. static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
  322. {
  323. u64 seq = atomic64_read(&fs_info->tree_mod_seq);
  324. seq &= 0xffffffff00000000ull;
  325. seq += 1ull << 32;
  326. atomic64_set(&fs_info->tree_mod_seq, seq);
  327. return seq;
  328. }
  329. /*
  330. * Increment the lower half of tree_mod_seq.
  331. *
  332. * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
  333. * are generated should not technically require a spin lock here. (Rationale:
  334. * incrementing the minor while incrementing the major seq number is between its
  335. * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
  336. * just returns a unique sequence number as usual.) We have decided to leave
  337. * that requirement in here and rethink it once we notice it really imposes a
  338. * problem on some workload.
  339. */
  340. static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
  341. {
  342. return atomic64_inc_return(&fs_info->tree_mod_seq);
  343. }
  344. /*
  345. * return the last minor in the previous major tree_mod_seq number
  346. */
  347. u64 btrfs_tree_mod_seq_prev(u64 seq)
  348. {
  349. return (seq & 0xffffffff00000000ull) - 1ull;
  350. }
  351. /*
  352. * This adds a new blocker to the tree mod log's blocker list if the @elem
  353. * passed does not already have a sequence number set. So when a caller expects
  354. * to record tree modifications, it should ensure to set elem->seq to zero
  355. * before calling btrfs_get_tree_mod_seq.
  356. * Returns a fresh, unused tree log modification sequence number, even if no new
  357. * blocker was added.
  358. */
  359. u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
  360. struct seq_list *elem)
  361. {
  362. u64 seq;
  363. tree_mod_log_write_lock(fs_info);
  364. spin_lock(&fs_info->tree_mod_seq_lock);
  365. if (!elem->seq) {
  366. elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
  367. list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
  368. }
  369. seq = btrfs_inc_tree_mod_seq_minor(fs_info);
  370. spin_unlock(&fs_info->tree_mod_seq_lock);
  371. tree_mod_log_write_unlock(fs_info);
  372. return seq;
  373. }
  374. void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
  375. struct seq_list *elem)
  376. {
  377. struct rb_root *tm_root;
  378. struct rb_node *node;
  379. struct rb_node *next;
  380. struct seq_list *cur_elem;
  381. struct tree_mod_elem *tm;
  382. u64 min_seq = (u64)-1;
  383. u64 seq_putting = elem->seq;
  384. if (!seq_putting)
  385. return;
  386. spin_lock(&fs_info->tree_mod_seq_lock);
  387. list_del(&elem->list);
  388. elem->seq = 0;
  389. list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
  390. if (cur_elem->seq < min_seq) {
  391. if (seq_putting > cur_elem->seq) {
  392. /*
  393. * blocker with lower sequence number exists, we
  394. * cannot remove anything from the log
  395. */
  396. spin_unlock(&fs_info->tree_mod_seq_lock);
  397. return;
  398. }
  399. min_seq = cur_elem->seq;
  400. }
  401. }
  402. spin_unlock(&fs_info->tree_mod_seq_lock);
  403. /*
  404. * anything that's lower than the lowest existing (read: blocked)
  405. * sequence number can be removed from the tree.
  406. */
  407. tree_mod_log_write_lock(fs_info);
  408. tm_root = &fs_info->tree_mod_log;
  409. for (node = rb_first(tm_root); node; node = next) {
  410. next = rb_next(node);
  411. tm = container_of(node, struct tree_mod_elem, node);
  412. if (tm->seq > min_seq)
  413. continue;
  414. rb_erase(node, tm_root);
  415. kfree(tm);
  416. }
  417. tree_mod_log_write_unlock(fs_info);
  418. }
  419. /*
  420. * key order of the log:
  421. * index -> sequence
  422. *
  423. * the index is the shifted logical of the *new* root node for root replace
  424. * operations, or the shifted logical of the affected block for all other
  425. * operations.
  426. */
  427. static noinline int
  428. __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
  429. {
  430. struct rb_root *tm_root;
  431. struct rb_node **new;
  432. struct rb_node *parent = NULL;
  433. struct tree_mod_elem *cur;
  434. int ret = 0;
  435. BUG_ON(!tm);
  436. tree_mod_log_write_lock(fs_info);
  437. if (list_empty(&fs_info->tree_mod_seq_list)) {
  438. tree_mod_log_write_unlock(fs_info);
  439. /*
  440. * Ok we no longer care about logging modifications, free up tm
  441. * and return 0. Any callers shouldn't be using tm after
  442. * calling tree_mod_log_insert, but if they do we can just
  443. * change this to return a special error code to let the callers
  444. * do their own thing.
  445. */
  446. kfree(tm);
  447. return 0;
  448. }
  449. spin_lock(&fs_info->tree_mod_seq_lock);
  450. tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
  451. spin_unlock(&fs_info->tree_mod_seq_lock);
  452. tm_root = &fs_info->tree_mod_log;
  453. new = &tm_root->rb_node;
  454. while (*new) {
  455. cur = container_of(*new, struct tree_mod_elem, node);
  456. parent = *new;
  457. if (cur->index < tm->index)
  458. new = &((*new)->rb_left);
  459. else if (cur->index > tm->index)
  460. new = &((*new)->rb_right);
  461. else if (cur->seq < tm->seq)
  462. new = &((*new)->rb_left);
  463. else if (cur->seq > tm->seq)
  464. new = &((*new)->rb_right);
  465. else {
  466. ret = -EEXIST;
  467. kfree(tm);
  468. goto out;
  469. }
  470. }
  471. rb_link_node(&tm->node, parent, new);
  472. rb_insert_color(&tm->node, tm_root);
  473. out:
  474. tree_mod_log_write_unlock(fs_info);
  475. return ret;
  476. }
  477. /*
  478. * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
  479. * returns zero with the tree_mod_log_lock acquired. The caller must hold
  480. * this until all tree mod log insertions are recorded in the rb tree and then
  481. * call tree_mod_log_write_unlock() to release.
  482. */
  483. static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
  484. struct extent_buffer *eb) {
  485. smp_mb();
  486. if (list_empty(&(fs_info)->tree_mod_seq_list))
  487. return 1;
  488. if (eb && btrfs_header_level(eb) == 0)
  489. return 1;
  490. return 0;
  491. }
  492. static inline int
  493. __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
  494. struct extent_buffer *eb, int slot,
  495. enum mod_log_op op, gfp_t flags)
  496. {
  497. struct tree_mod_elem *tm;
  498. tm = kzalloc(sizeof(*tm), flags);
  499. if (!tm)
  500. return -ENOMEM;
  501. tm->index = eb->start >> PAGE_CACHE_SHIFT;
  502. if (op != MOD_LOG_KEY_ADD) {
  503. btrfs_node_key(eb, &tm->key, slot);
  504. tm->blockptr = btrfs_node_blockptr(eb, slot);
  505. }
  506. tm->op = op;
  507. tm->slot = slot;
  508. tm->generation = btrfs_node_ptr_generation(eb, slot);
  509. return __tree_mod_log_insert(fs_info, tm);
  510. }
  511. static noinline int
  512. tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
  513. struct extent_buffer *eb, int slot,
  514. enum mod_log_op op, gfp_t flags)
  515. {
  516. if (tree_mod_dont_log(fs_info, eb))
  517. return 0;
  518. return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
  519. }
  520. static noinline int
  521. tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
  522. struct extent_buffer *eb, int dst_slot, int src_slot,
  523. int nr_items, gfp_t flags)
  524. {
  525. struct tree_mod_elem *tm;
  526. int ret;
  527. int i;
  528. if (tree_mod_dont_log(fs_info, eb))
  529. return 0;
  530. /*
  531. * When we override something during the move, we log these removals.
  532. * This can only happen when we move towards the beginning of the
  533. * buffer, i.e. dst_slot < src_slot.
  534. */
  535. for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
  536. ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
  537. MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
  538. BUG_ON(ret < 0);
  539. }
  540. tm = kzalloc(sizeof(*tm), flags);
  541. if (!tm)
  542. return -ENOMEM;
  543. tm->index = eb->start >> PAGE_CACHE_SHIFT;
  544. tm->slot = src_slot;
  545. tm->move.dst_slot = dst_slot;
  546. tm->move.nr_items = nr_items;
  547. tm->op = MOD_LOG_MOVE_KEYS;
  548. return __tree_mod_log_insert(fs_info, tm);
  549. }
  550. static inline void
  551. __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
  552. {
  553. int i;
  554. u32 nritems;
  555. int ret;
  556. if (btrfs_header_level(eb) == 0)
  557. return;
  558. nritems = btrfs_header_nritems(eb);
  559. for (i = nritems - 1; i >= 0; i--) {
  560. ret = __tree_mod_log_insert_key(fs_info, eb, i,
  561. MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
  562. BUG_ON(ret < 0);
  563. }
  564. }
  565. static noinline int
  566. tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
  567. struct extent_buffer *old_root,
  568. struct extent_buffer *new_root, gfp_t flags,
  569. int log_removal)
  570. {
  571. struct tree_mod_elem *tm;
  572. if (tree_mod_dont_log(fs_info, NULL))
  573. return 0;
  574. if (log_removal)
  575. __tree_mod_log_free_eb(fs_info, old_root);
  576. tm = kzalloc(sizeof(*tm), flags);
  577. if (!tm)
  578. return -ENOMEM;
  579. tm->index = new_root->start >> PAGE_CACHE_SHIFT;
  580. tm->old_root.logical = old_root->start;
  581. tm->old_root.level = btrfs_header_level(old_root);
  582. tm->generation = btrfs_header_generation(old_root);
  583. tm->op = MOD_LOG_ROOT_REPLACE;
  584. return __tree_mod_log_insert(fs_info, tm);
  585. }
  586. static struct tree_mod_elem *
  587. __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
  588. int smallest)
  589. {
  590. struct rb_root *tm_root;
  591. struct rb_node *node;
  592. struct tree_mod_elem *cur = NULL;
  593. struct tree_mod_elem *found = NULL;
  594. u64 index = start >> PAGE_CACHE_SHIFT;
  595. tree_mod_log_read_lock(fs_info);
  596. tm_root = &fs_info->tree_mod_log;
  597. node = tm_root->rb_node;
  598. while (node) {
  599. cur = container_of(node, struct tree_mod_elem, node);
  600. if (cur->index < index) {
  601. node = node->rb_left;
  602. } else if (cur->index > index) {
  603. node = node->rb_right;
  604. } else if (cur->seq < min_seq) {
  605. node = node->rb_left;
  606. } else if (!smallest) {
  607. /* we want the node with the highest seq */
  608. if (found)
  609. BUG_ON(found->seq > cur->seq);
  610. found = cur;
  611. node = node->rb_left;
  612. } else if (cur->seq > min_seq) {
  613. /* we want the node with the smallest seq */
  614. if (found)
  615. BUG_ON(found->seq < cur->seq);
  616. found = cur;
  617. node = node->rb_right;
  618. } else {
  619. found = cur;
  620. break;
  621. }
  622. }
  623. tree_mod_log_read_unlock(fs_info);
  624. return found;
  625. }
  626. /*
  627. * this returns the element from the log with the smallest time sequence
  628. * value that's in the log (the oldest log item). any element with a time
  629. * sequence lower than min_seq will be ignored.
  630. */
  631. static struct tree_mod_elem *
  632. tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
  633. u64 min_seq)
  634. {
  635. return __tree_mod_log_search(fs_info, start, min_seq, 1);
  636. }
  637. /*
  638. * this returns the element from the log with the largest time sequence
  639. * value that's in the log (the most recent log item). any element with
  640. * a time sequence lower than min_seq will be ignored.
  641. */
  642. static struct tree_mod_elem *
  643. tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
  644. {
  645. return __tree_mod_log_search(fs_info, start, min_seq, 0);
  646. }
  647. static noinline void
  648. tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
  649. struct extent_buffer *src, unsigned long dst_offset,
  650. unsigned long src_offset, int nr_items)
  651. {
  652. int ret;
  653. int i;
  654. if (tree_mod_dont_log(fs_info, NULL))
  655. return;
  656. if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
  657. return;
  658. for (i = 0; i < nr_items; i++) {
  659. ret = __tree_mod_log_insert_key(fs_info, src,
  660. i + src_offset,
  661. MOD_LOG_KEY_REMOVE, GFP_NOFS);
  662. BUG_ON(ret < 0);
  663. ret = __tree_mod_log_insert_key(fs_info, dst,
  664. i + dst_offset,
  665. MOD_LOG_KEY_ADD,
  666. GFP_NOFS);
  667. BUG_ON(ret < 0);
  668. }
  669. }
  670. static inline void
  671. tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
  672. int dst_offset, int src_offset, int nr_items)
  673. {
  674. int ret;
  675. ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
  676. nr_items, GFP_NOFS);
  677. BUG_ON(ret < 0);
  678. }
  679. static noinline void
  680. tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
  681. struct extent_buffer *eb, int slot, int atomic)
  682. {
  683. int ret;
  684. ret = __tree_mod_log_insert_key(fs_info, eb, slot,
  685. MOD_LOG_KEY_REPLACE,
  686. atomic ? GFP_ATOMIC : GFP_NOFS);
  687. BUG_ON(ret < 0);
  688. }
  689. static noinline void
  690. tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
  691. {
  692. if (tree_mod_dont_log(fs_info, eb))
  693. return;
  694. __tree_mod_log_free_eb(fs_info, eb);
  695. }
  696. static noinline void
  697. tree_mod_log_set_root_pointer(struct btrfs_root *root,
  698. struct extent_buffer *new_root_node,
  699. int log_removal)
  700. {
  701. int ret;
  702. ret = tree_mod_log_insert_root(root->fs_info, root->node,
  703. new_root_node, GFP_NOFS, log_removal);
  704. BUG_ON(ret < 0);
  705. }
  706. /*
  707. * check if the tree block can be shared by multiple trees
  708. */
  709. int btrfs_block_can_be_shared(struct btrfs_root *root,
  710. struct extent_buffer *buf)
  711. {
  712. /*
  713. * Tree blocks not in refernece counted trees and tree roots
  714. * are never shared. If a block was allocated after the last
  715. * snapshot and the block was not allocated by tree relocation,
  716. * we know the block is not shared.
  717. */
  718. if (root->ref_cows &&
  719. buf != root->node && buf != root->commit_root &&
  720. (btrfs_header_generation(buf) <=
  721. btrfs_root_last_snapshot(&root->root_item) ||
  722. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  723. return 1;
  724. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  725. if (root->ref_cows &&
  726. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  727. return 1;
  728. #endif
  729. return 0;
  730. }
  731. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  732. struct btrfs_root *root,
  733. struct extent_buffer *buf,
  734. struct extent_buffer *cow,
  735. int *last_ref)
  736. {
  737. u64 refs;
  738. u64 owner;
  739. u64 flags;
  740. u64 new_flags = 0;
  741. int ret;
  742. /*
  743. * Backrefs update rules:
  744. *
  745. * Always use full backrefs for extent pointers in tree block
  746. * allocated by tree relocation.
  747. *
  748. * If a shared tree block is no longer referenced by its owner
  749. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  750. * use full backrefs for extent pointers in tree block.
  751. *
  752. * If a tree block is been relocating
  753. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  754. * use full backrefs for extent pointers in tree block.
  755. * The reason for this is some operations (such as drop tree)
  756. * are only allowed for blocks use full backrefs.
  757. */
  758. if (btrfs_block_can_be_shared(root, buf)) {
  759. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  760. btrfs_header_level(buf), 1,
  761. &refs, &flags);
  762. if (ret)
  763. return ret;
  764. if (refs == 0) {
  765. ret = -EROFS;
  766. btrfs_std_error(root->fs_info, ret);
  767. return ret;
  768. }
  769. } else {
  770. refs = 1;
  771. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  772. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  773. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  774. else
  775. flags = 0;
  776. }
  777. owner = btrfs_header_owner(buf);
  778. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  779. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  780. if (refs > 1) {
  781. if ((owner == root->root_key.objectid ||
  782. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  783. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  784. ret = btrfs_inc_ref(trans, root, buf, 1, 1);
  785. BUG_ON(ret); /* -ENOMEM */
  786. if (root->root_key.objectid ==
  787. BTRFS_TREE_RELOC_OBJECTID) {
  788. ret = btrfs_dec_ref(trans, root, buf, 0, 1);
  789. BUG_ON(ret); /* -ENOMEM */
  790. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  791. BUG_ON(ret); /* -ENOMEM */
  792. }
  793. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  794. } else {
  795. if (root->root_key.objectid ==
  796. BTRFS_TREE_RELOC_OBJECTID)
  797. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  798. else
  799. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  800. BUG_ON(ret); /* -ENOMEM */
  801. }
  802. if (new_flags != 0) {
  803. int level = btrfs_header_level(buf);
  804. ret = btrfs_set_disk_extent_flags(trans, root,
  805. buf->start,
  806. buf->len,
  807. new_flags, level, 0);
  808. if (ret)
  809. return ret;
  810. }
  811. } else {
  812. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  813. if (root->root_key.objectid ==
  814. BTRFS_TREE_RELOC_OBJECTID)
  815. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  816. else
  817. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  818. BUG_ON(ret); /* -ENOMEM */
  819. ret = btrfs_dec_ref(trans, root, buf, 1, 1);
  820. BUG_ON(ret); /* -ENOMEM */
  821. }
  822. clean_tree_block(trans, root, buf);
  823. *last_ref = 1;
  824. }
  825. return 0;
  826. }
  827. /*
  828. * does the dirty work in cow of a single block. The parent block (if
  829. * supplied) is updated to point to the new cow copy. The new buffer is marked
  830. * dirty and returned locked. If you modify the block it needs to be marked
  831. * dirty again.
  832. *
  833. * search_start -- an allocation hint for the new block
  834. *
  835. * empty_size -- a hint that you plan on doing more cow. This is the size in
  836. * bytes the allocator should try to find free next to the block it returns.
  837. * This is just a hint and may be ignored by the allocator.
  838. */
  839. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  840. struct btrfs_root *root,
  841. struct extent_buffer *buf,
  842. struct extent_buffer *parent, int parent_slot,
  843. struct extent_buffer **cow_ret,
  844. u64 search_start, u64 empty_size)
  845. {
  846. struct btrfs_disk_key disk_key;
  847. struct extent_buffer *cow;
  848. int level, ret;
  849. int last_ref = 0;
  850. int unlock_orig = 0;
  851. u64 parent_start;
  852. if (*cow_ret == buf)
  853. unlock_orig = 1;
  854. btrfs_assert_tree_locked(buf);
  855. WARN_ON(root->ref_cows && trans->transid !=
  856. root->fs_info->running_transaction->transid);
  857. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  858. level = btrfs_header_level(buf);
  859. if (level == 0)
  860. btrfs_item_key(buf, &disk_key, 0);
  861. else
  862. btrfs_node_key(buf, &disk_key, 0);
  863. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  864. if (parent)
  865. parent_start = parent->start;
  866. else
  867. parent_start = 0;
  868. } else
  869. parent_start = 0;
  870. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  871. root->root_key.objectid, &disk_key,
  872. level, search_start, empty_size);
  873. if (IS_ERR(cow))
  874. return PTR_ERR(cow);
  875. /* cow is set to blocking by btrfs_init_new_buffer */
  876. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  877. btrfs_set_header_bytenr(cow, cow->start);
  878. btrfs_set_header_generation(cow, trans->transid);
  879. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  880. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  881. BTRFS_HEADER_FLAG_RELOC);
  882. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  883. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  884. else
  885. btrfs_set_header_owner(cow, root->root_key.objectid);
  886. write_extent_buffer(cow, root->fs_info->fsid,
  887. (unsigned long)btrfs_header_fsid(cow),
  888. BTRFS_FSID_SIZE);
  889. ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
  890. if (ret) {
  891. btrfs_abort_transaction(trans, root, ret);
  892. return ret;
  893. }
  894. if (root->ref_cows)
  895. btrfs_reloc_cow_block(trans, root, buf, cow);
  896. if (buf == root->node) {
  897. WARN_ON(parent && parent != buf);
  898. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  899. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  900. parent_start = buf->start;
  901. else
  902. parent_start = 0;
  903. extent_buffer_get(cow);
  904. tree_mod_log_set_root_pointer(root, cow, 1);
  905. rcu_assign_pointer(root->node, cow);
  906. btrfs_free_tree_block(trans, root, buf, parent_start,
  907. last_ref);
  908. free_extent_buffer(buf);
  909. add_root_to_dirty_list(root);
  910. } else {
  911. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  912. parent_start = parent->start;
  913. else
  914. parent_start = 0;
  915. WARN_ON(trans->transid != btrfs_header_generation(parent));
  916. tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
  917. MOD_LOG_KEY_REPLACE, GFP_NOFS);
  918. btrfs_set_node_blockptr(parent, parent_slot,
  919. cow->start);
  920. btrfs_set_node_ptr_generation(parent, parent_slot,
  921. trans->transid);
  922. btrfs_mark_buffer_dirty(parent);
  923. if (last_ref)
  924. tree_mod_log_free_eb(root->fs_info, buf);
  925. btrfs_free_tree_block(trans, root, buf, parent_start,
  926. last_ref);
  927. }
  928. if (unlock_orig)
  929. btrfs_tree_unlock(buf);
  930. free_extent_buffer_stale(buf);
  931. btrfs_mark_buffer_dirty(cow);
  932. *cow_ret = cow;
  933. return 0;
  934. }
  935. /*
  936. * returns the logical address of the oldest predecessor of the given root.
  937. * entries older than time_seq are ignored.
  938. */
  939. static struct tree_mod_elem *
  940. __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
  941. struct extent_buffer *eb_root, u64 time_seq)
  942. {
  943. struct tree_mod_elem *tm;
  944. struct tree_mod_elem *found = NULL;
  945. u64 root_logical = eb_root->start;
  946. int looped = 0;
  947. if (!time_seq)
  948. return NULL;
  949. /*
  950. * the very last operation that's logged for a root is the replacement
  951. * operation (if it is replaced at all). this has the index of the *new*
  952. * root, making it the very first operation that's logged for this root.
  953. */
  954. while (1) {
  955. tm = tree_mod_log_search_oldest(fs_info, root_logical,
  956. time_seq);
  957. if (!looped && !tm)
  958. return NULL;
  959. /*
  960. * if there are no tree operation for the oldest root, we simply
  961. * return it. this should only happen if that (old) root is at
  962. * level 0.
  963. */
  964. if (!tm)
  965. break;
  966. /*
  967. * if there's an operation that's not a root replacement, we
  968. * found the oldest version of our root. normally, we'll find a
  969. * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
  970. */
  971. if (tm->op != MOD_LOG_ROOT_REPLACE)
  972. break;
  973. found = tm;
  974. root_logical = tm->old_root.logical;
  975. looped = 1;
  976. }
  977. /* if there's no old root to return, return what we found instead */
  978. if (!found)
  979. found = tm;
  980. return found;
  981. }
  982. /*
  983. * tm is a pointer to the first operation to rewind within eb. then, all
  984. * previous operations will be rewinded (until we reach something older than
  985. * time_seq).
  986. */
  987. static void
  988. __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
  989. u64 time_seq, struct tree_mod_elem *first_tm)
  990. {
  991. u32 n;
  992. struct rb_node *next;
  993. struct tree_mod_elem *tm = first_tm;
  994. unsigned long o_dst;
  995. unsigned long o_src;
  996. unsigned long p_size = sizeof(struct btrfs_key_ptr);
  997. n = btrfs_header_nritems(eb);
  998. tree_mod_log_read_lock(fs_info);
  999. while (tm && tm->seq >= time_seq) {
  1000. /*
  1001. * all the operations are recorded with the operator used for
  1002. * the modification. as we're going backwards, we do the
  1003. * opposite of each operation here.
  1004. */
  1005. switch (tm->op) {
  1006. case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
  1007. BUG_ON(tm->slot < n);
  1008. /* Fallthrough */
  1009. case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
  1010. case MOD_LOG_KEY_REMOVE:
  1011. btrfs_set_node_key(eb, &tm->key, tm->slot);
  1012. btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
  1013. btrfs_set_node_ptr_generation(eb, tm->slot,
  1014. tm->generation);
  1015. n++;
  1016. break;
  1017. case MOD_LOG_KEY_REPLACE:
  1018. BUG_ON(tm->slot >= n);
  1019. btrfs_set_node_key(eb, &tm->key, tm->slot);
  1020. btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
  1021. btrfs_set_node_ptr_generation(eb, tm->slot,
  1022. tm->generation);
  1023. break;
  1024. case MOD_LOG_KEY_ADD:
  1025. /* if a move operation is needed it's in the log */
  1026. n--;
  1027. break;
  1028. case MOD_LOG_MOVE_KEYS:
  1029. o_dst = btrfs_node_key_ptr_offset(tm->slot);
  1030. o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
  1031. memmove_extent_buffer(eb, o_dst, o_src,
  1032. tm->move.nr_items * p_size);
  1033. break;
  1034. case MOD_LOG_ROOT_REPLACE:
  1035. /*
  1036. * this operation is special. for roots, this must be
  1037. * handled explicitly before rewinding.
  1038. * for non-roots, this operation may exist if the node
  1039. * was a root: root A -> child B; then A gets empty and
  1040. * B is promoted to the new root. in the mod log, we'll
  1041. * have a root-replace operation for B, a tree block
  1042. * that is no root. we simply ignore that operation.
  1043. */
  1044. break;
  1045. }
  1046. next = rb_next(&tm->node);
  1047. if (!next)
  1048. break;
  1049. tm = container_of(next, struct tree_mod_elem, node);
  1050. if (tm->index != first_tm->index)
  1051. break;
  1052. }
  1053. tree_mod_log_read_unlock(fs_info);
  1054. btrfs_set_header_nritems(eb, n);
  1055. }
  1056. /*
  1057. * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
  1058. * is returned. If rewind operations happen, a fresh buffer is returned. The
  1059. * returned buffer is always read-locked. If the returned buffer is not the
  1060. * input buffer, the lock on the input buffer is released and the input buffer
  1061. * is freed (its refcount is decremented).
  1062. */
  1063. static struct extent_buffer *
  1064. tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
  1065. struct extent_buffer *eb, u64 time_seq)
  1066. {
  1067. struct extent_buffer *eb_rewin;
  1068. struct tree_mod_elem *tm;
  1069. if (!time_seq)
  1070. return eb;
  1071. if (btrfs_header_level(eb) == 0)
  1072. return eb;
  1073. tm = tree_mod_log_search(fs_info, eb->start, time_seq);
  1074. if (!tm)
  1075. return eb;
  1076. btrfs_set_path_blocking(path);
  1077. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1078. if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
  1079. BUG_ON(tm->slot != 0);
  1080. eb_rewin = alloc_dummy_extent_buffer(eb->start,
  1081. fs_info->tree_root->nodesize);
  1082. if (!eb_rewin) {
  1083. btrfs_tree_read_unlock_blocking(eb);
  1084. free_extent_buffer(eb);
  1085. return NULL;
  1086. }
  1087. btrfs_set_header_bytenr(eb_rewin, eb->start);
  1088. btrfs_set_header_backref_rev(eb_rewin,
  1089. btrfs_header_backref_rev(eb));
  1090. btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
  1091. btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
  1092. } else {
  1093. eb_rewin = btrfs_clone_extent_buffer(eb);
  1094. if (!eb_rewin) {
  1095. btrfs_tree_read_unlock_blocking(eb);
  1096. free_extent_buffer(eb);
  1097. return NULL;
  1098. }
  1099. }
  1100. btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
  1101. btrfs_tree_read_unlock_blocking(eb);
  1102. free_extent_buffer(eb);
  1103. extent_buffer_get(eb_rewin);
  1104. btrfs_tree_read_lock(eb_rewin);
  1105. __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
  1106. WARN_ON(btrfs_header_nritems(eb_rewin) >
  1107. BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
  1108. return eb_rewin;
  1109. }
  1110. /*
  1111. * get_old_root() rewinds the state of @root's root node to the given @time_seq
  1112. * value. If there are no changes, the current root->root_node is returned. If
  1113. * anything changed in between, there's a fresh buffer allocated on which the
  1114. * rewind operations are done. In any case, the returned buffer is read locked.
  1115. * Returns NULL on error (with no locks held).
  1116. */
  1117. static inline struct extent_buffer *
  1118. get_old_root(struct btrfs_root *root, u64 time_seq)
  1119. {
  1120. struct tree_mod_elem *tm;
  1121. struct extent_buffer *eb = NULL;
  1122. struct extent_buffer *eb_root;
  1123. struct extent_buffer *old;
  1124. struct tree_mod_root *old_root = NULL;
  1125. u64 old_generation = 0;
  1126. u64 logical;
  1127. u32 blocksize;
  1128. eb_root = btrfs_read_lock_root_node(root);
  1129. tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
  1130. if (!tm)
  1131. return eb_root;
  1132. if (tm->op == MOD_LOG_ROOT_REPLACE) {
  1133. old_root = &tm->old_root;
  1134. old_generation = tm->generation;
  1135. logical = old_root->logical;
  1136. } else {
  1137. logical = eb_root->start;
  1138. }
  1139. tm = tree_mod_log_search(root->fs_info, logical, time_seq);
  1140. if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
  1141. btrfs_tree_read_unlock(eb_root);
  1142. free_extent_buffer(eb_root);
  1143. blocksize = btrfs_level_size(root, old_root->level);
  1144. old = read_tree_block(root, logical, blocksize, 0);
  1145. if (!old || !extent_buffer_uptodate(old)) {
  1146. free_extent_buffer(old);
  1147. pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
  1148. logical);
  1149. WARN_ON(1);
  1150. } else {
  1151. eb = btrfs_clone_extent_buffer(old);
  1152. free_extent_buffer(old);
  1153. }
  1154. } else if (old_root) {
  1155. btrfs_tree_read_unlock(eb_root);
  1156. free_extent_buffer(eb_root);
  1157. eb = alloc_dummy_extent_buffer(logical, root->nodesize);
  1158. } else {
  1159. btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
  1160. eb = btrfs_clone_extent_buffer(eb_root);
  1161. btrfs_tree_read_unlock_blocking(eb_root);
  1162. free_extent_buffer(eb_root);
  1163. }
  1164. if (!eb)
  1165. return NULL;
  1166. extent_buffer_get(eb);
  1167. btrfs_tree_read_lock(eb);
  1168. if (old_root) {
  1169. btrfs_set_header_bytenr(eb, eb->start);
  1170. btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
  1171. btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
  1172. btrfs_set_header_level(eb, old_root->level);
  1173. btrfs_set_header_generation(eb, old_generation);
  1174. }
  1175. if (tm)
  1176. __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
  1177. else
  1178. WARN_ON(btrfs_header_level(eb) != 0);
  1179. WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
  1180. return eb;
  1181. }
  1182. int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
  1183. {
  1184. struct tree_mod_elem *tm;
  1185. int level;
  1186. struct extent_buffer *eb_root = btrfs_root_node(root);
  1187. tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
  1188. if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
  1189. level = tm->old_root.level;
  1190. } else {
  1191. level = btrfs_header_level(eb_root);
  1192. }
  1193. free_extent_buffer(eb_root);
  1194. return level;
  1195. }
  1196. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  1197. struct btrfs_root *root,
  1198. struct extent_buffer *buf)
  1199. {
  1200. /* ensure we can see the force_cow */
  1201. smp_rmb();
  1202. /*
  1203. * We do not need to cow a block if
  1204. * 1) this block is not created or changed in this transaction;
  1205. * 2) this block does not belong to TREE_RELOC tree;
  1206. * 3) the root is not forced COW.
  1207. *
  1208. * What is forced COW:
  1209. * when we create snapshot during commiting the transaction,
  1210. * after we've finished coping src root, we must COW the shared
  1211. * block to ensure the metadata consistency.
  1212. */
  1213. if (btrfs_header_generation(buf) == trans->transid &&
  1214. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  1215. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  1216. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
  1217. !root->force_cow)
  1218. return 0;
  1219. return 1;
  1220. }
  1221. /*
  1222. * cows a single block, see __btrfs_cow_block for the real work.
  1223. * This version of it has extra checks so that a block isn't cow'd more than
  1224. * once per transaction, as long as it hasn't been written yet
  1225. */
  1226. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  1227. struct btrfs_root *root, struct extent_buffer *buf,
  1228. struct extent_buffer *parent, int parent_slot,
  1229. struct extent_buffer **cow_ret)
  1230. {
  1231. u64 search_start;
  1232. int ret;
  1233. if (trans->transaction != root->fs_info->running_transaction)
  1234. WARN(1, KERN_CRIT "trans %llu running %llu\n",
  1235. trans->transid,
  1236. root->fs_info->running_transaction->transid);
  1237. if (trans->transid != root->fs_info->generation)
  1238. WARN(1, KERN_CRIT "trans %llu running %llu\n",
  1239. trans->transid, root->fs_info->generation);
  1240. if (!should_cow_block(trans, root, buf)) {
  1241. *cow_ret = buf;
  1242. return 0;
  1243. }
  1244. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  1245. if (parent)
  1246. btrfs_set_lock_blocking(parent);
  1247. btrfs_set_lock_blocking(buf);
  1248. ret = __btrfs_cow_block(trans, root, buf, parent,
  1249. parent_slot, cow_ret, search_start, 0);
  1250. trace_btrfs_cow_block(root, buf, *cow_ret);
  1251. return ret;
  1252. }
  1253. /*
  1254. * helper function for defrag to decide if two blocks pointed to by a
  1255. * node are actually close by
  1256. */
  1257. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  1258. {
  1259. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  1260. return 1;
  1261. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  1262. return 1;
  1263. return 0;
  1264. }
  1265. /*
  1266. * compare two keys in a memcmp fashion
  1267. */
  1268. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  1269. {
  1270. struct btrfs_key k1;
  1271. btrfs_disk_key_to_cpu(&k1, disk);
  1272. return btrfs_comp_cpu_keys(&k1, k2);
  1273. }
  1274. /*
  1275. * same as comp_keys only with two btrfs_key's
  1276. */
  1277. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  1278. {
  1279. if (k1->objectid > k2->objectid)
  1280. return 1;
  1281. if (k1->objectid < k2->objectid)
  1282. return -1;
  1283. if (k1->type > k2->type)
  1284. return 1;
  1285. if (k1->type < k2->type)
  1286. return -1;
  1287. if (k1->offset > k2->offset)
  1288. return 1;
  1289. if (k1->offset < k2->offset)
  1290. return -1;
  1291. return 0;
  1292. }
  1293. /*
  1294. * this is used by the defrag code to go through all the
  1295. * leaves pointed to by a node and reallocate them so that
  1296. * disk order is close to key order
  1297. */
  1298. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  1299. struct btrfs_root *root, struct extent_buffer *parent,
  1300. int start_slot, u64 *last_ret,
  1301. struct btrfs_key *progress)
  1302. {
  1303. struct extent_buffer *cur;
  1304. u64 blocknr;
  1305. u64 gen;
  1306. u64 search_start = *last_ret;
  1307. u64 last_block = 0;
  1308. u64 other;
  1309. u32 parent_nritems;
  1310. int end_slot;
  1311. int i;
  1312. int err = 0;
  1313. int parent_level;
  1314. int uptodate;
  1315. u32 blocksize;
  1316. int progress_passed = 0;
  1317. struct btrfs_disk_key disk_key;
  1318. parent_level = btrfs_header_level(parent);
  1319. WARN_ON(trans->transaction != root->fs_info->running_transaction);
  1320. WARN_ON(trans->transid != root->fs_info->generation);
  1321. parent_nritems = btrfs_header_nritems(parent);
  1322. blocksize = btrfs_level_size(root, parent_level - 1);
  1323. end_slot = parent_nritems;
  1324. if (parent_nritems == 1)
  1325. return 0;
  1326. btrfs_set_lock_blocking(parent);
  1327. for (i = start_slot; i < end_slot; i++) {
  1328. int close = 1;
  1329. btrfs_node_key(parent, &disk_key, i);
  1330. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  1331. continue;
  1332. progress_passed = 1;
  1333. blocknr = btrfs_node_blockptr(parent, i);
  1334. gen = btrfs_node_ptr_generation(parent, i);
  1335. if (last_block == 0)
  1336. last_block = blocknr;
  1337. if (i > 0) {
  1338. other = btrfs_node_blockptr(parent, i - 1);
  1339. close = close_blocks(blocknr, other, blocksize);
  1340. }
  1341. if (!close && i < end_slot - 2) {
  1342. other = btrfs_node_blockptr(parent, i + 1);
  1343. close = close_blocks(blocknr, other, blocksize);
  1344. }
  1345. if (close) {
  1346. last_block = blocknr;
  1347. continue;
  1348. }
  1349. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  1350. if (cur)
  1351. uptodate = btrfs_buffer_uptodate(cur, gen, 0);
  1352. else
  1353. uptodate = 0;
  1354. if (!cur || !uptodate) {
  1355. if (!cur) {
  1356. cur = read_tree_block(root, blocknr,
  1357. blocksize, gen);
  1358. if (!cur || !extent_buffer_uptodate(cur)) {
  1359. free_extent_buffer(cur);
  1360. return -EIO;
  1361. }
  1362. } else if (!uptodate) {
  1363. err = btrfs_read_buffer(cur, gen);
  1364. if (err) {
  1365. free_extent_buffer(cur);
  1366. return err;
  1367. }
  1368. }
  1369. }
  1370. if (search_start == 0)
  1371. search_start = last_block;
  1372. btrfs_tree_lock(cur);
  1373. btrfs_set_lock_blocking(cur);
  1374. err = __btrfs_cow_block(trans, root, cur, parent, i,
  1375. &cur, search_start,
  1376. min(16 * blocksize,
  1377. (end_slot - i) * blocksize));
  1378. if (err) {
  1379. btrfs_tree_unlock(cur);
  1380. free_extent_buffer(cur);
  1381. break;
  1382. }
  1383. search_start = cur->start;
  1384. last_block = cur->start;
  1385. *last_ret = search_start;
  1386. btrfs_tree_unlock(cur);
  1387. free_extent_buffer(cur);
  1388. }
  1389. return err;
  1390. }
  1391. /*
  1392. * The leaf data grows from end-to-front in the node.
  1393. * this returns the address of the start of the last item,
  1394. * which is the stop of the leaf data stack
  1395. */
  1396. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  1397. struct extent_buffer *leaf)
  1398. {
  1399. u32 nr = btrfs_header_nritems(leaf);
  1400. if (nr == 0)
  1401. return BTRFS_LEAF_DATA_SIZE(root);
  1402. return btrfs_item_offset_nr(leaf, nr - 1);
  1403. }
  1404. /*
  1405. * search for key in the extent_buffer. The items start at offset p,
  1406. * and they are item_size apart. There are 'max' items in p.
  1407. *
  1408. * the slot in the array is returned via slot, and it points to
  1409. * the place where you would insert key if it is not found in
  1410. * the array.
  1411. *
  1412. * slot may point to max if the key is bigger than all of the keys
  1413. */
  1414. static noinline int generic_bin_search(struct extent_buffer *eb,
  1415. unsigned long p,
  1416. int item_size, struct btrfs_key *key,
  1417. int max, int *slot)
  1418. {
  1419. int low = 0;
  1420. int high = max;
  1421. int mid;
  1422. int ret;
  1423. struct btrfs_disk_key *tmp = NULL;
  1424. struct btrfs_disk_key unaligned;
  1425. unsigned long offset;
  1426. char *kaddr = NULL;
  1427. unsigned long map_start = 0;
  1428. unsigned long map_len = 0;
  1429. int err;
  1430. while (low < high) {
  1431. mid = (low + high) / 2;
  1432. offset = p + mid * item_size;
  1433. if (!kaddr || offset < map_start ||
  1434. (offset + sizeof(struct btrfs_disk_key)) >
  1435. map_start + map_len) {
  1436. err = map_private_extent_buffer(eb, offset,
  1437. sizeof(struct btrfs_disk_key),
  1438. &kaddr, &map_start, &map_len);
  1439. if (!err) {
  1440. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  1441. map_start);
  1442. } else {
  1443. read_extent_buffer(eb, &unaligned,
  1444. offset, sizeof(unaligned));
  1445. tmp = &unaligned;
  1446. }
  1447. } else {
  1448. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  1449. map_start);
  1450. }
  1451. ret = comp_keys(tmp, key);
  1452. if (ret < 0)
  1453. low = mid + 1;
  1454. else if (ret > 0)
  1455. high = mid;
  1456. else {
  1457. *slot = mid;
  1458. return 0;
  1459. }
  1460. }
  1461. *slot = low;
  1462. return 1;
  1463. }
  1464. /*
  1465. * simple bin_search frontend that does the right thing for
  1466. * leaves vs nodes
  1467. */
  1468. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  1469. int level, int *slot)
  1470. {
  1471. if (level == 0)
  1472. return generic_bin_search(eb,
  1473. offsetof(struct btrfs_leaf, items),
  1474. sizeof(struct btrfs_item),
  1475. key, btrfs_header_nritems(eb),
  1476. slot);
  1477. else
  1478. return generic_bin_search(eb,
  1479. offsetof(struct btrfs_node, ptrs),
  1480. sizeof(struct btrfs_key_ptr),
  1481. key, btrfs_header_nritems(eb),
  1482. slot);
  1483. }
  1484. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  1485. int level, int *slot)
  1486. {
  1487. return bin_search(eb, key, level, slot);
  1488. }
  1489. static void root_add_used(struct btrfs_root *root, u32 size)
  1490. {
  1491. spin_lock(&root->accounting_lock);
  1492. btrfs_set_root_used(&root->root_item,
  1493. btrfs_root_used(&root->root_item) + size);
  1494. spin_unlock(&root->accounting_lock);
  1495. }
  1496. static void root_sub_used(struct btrfs_root *root, u32 size)
  1497. {
  1498. spin_lock(&root->accounting_lock);
  1499. btrfs_set_root_used(&root->root_item,
  1500. btrfs_root_used(&root->root_item) - size);
  1501. spin_unlock(&root->accounting_lock);
  1502. }
  1503. /* given a node and slot number, this reads the blocks it points to. The
  1504. * extent buffer is returned with a reference taken (but unlocked).
  1505. * NULL is returned on error.
  1506. */
  1507. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  1508. struct extent_buffer *parent, int slot)
  1509. {
  1510. int level = btrfs_header_level(parent);
  1511. struct extent_buffer *eb;
  1512. if (slot < 0)
  1513. return NULL;
  1514. if (slot >= btrfs_header_nritems(parent))
  1515. return NULL;
  1516. BUG_ON(level == 0);
  1517. eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
  1518. btrfs_level_size(root, level - 1),
  1519. btrfs_node_ptr_generation(parent, slot));
  1520. if (eb && !extent_buffer_uptodate(eb)) {
  1521. free_extent_buffer(eb);
  1522. eb = NULL;
  1523. }
  1524. return eb;
  1525. }
  1526. /*
  1527. * node level balancing, used to make sure nodes are in proper order for
  1528. * item deletion. We balance from the top down, so we have to make sure
  1529. * that a deletion won't leave an node completely empty later on.
  1530. */
  1531. static noinline int balance_level(struct btrfs_trans_handle *trans,
  1532. struct btrfs_root *root,
  1533. struct btrfs_path *path, int level)
  1534. {
  1535. struct extent_buffer *right = NULL;
  1536. struct extent_buffer *mid;
  1537. struct extent_buffer *left = NULL;
  1538. struct extent_buffer *parent = NULL;
  1539. int ret = 0;
  1540. int wret;
  1541. int pslot;
  1542. int orig_slot = path->slots[level];
  1543. u64 orig_ptr;
  1544. if (level == 0)
  1545. return 0;
  1546. mid = path->nodes[level];
  1547. WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
  1548. path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
  1549. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1550. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1551. if (level < BTRFS_MAX_LEVEL - 1) {
  1552. parent = path->nodes[level + 1];
  1553. pslot = path->slots[level + 1];
  1554. }
  1555. /*
  1556. * deal with the case where there is only one pointer in the root
  1557. * by promoting the node below to a root
  1558. */
  1559. if (!parent) {
  1560. struct extent_buffer *child;
  1561. if (btrfs_header_nritems(mid) != 1)
  1562. return 0;
  1563. /* promote the child to a root */
  1564. child = read_node_slot(root, mid, 0);
  1565. if (!child) {
  1566. ret = -EROFS;
  1567. btrfs_std_error(root->fs_info, ret);
  1568. goto enospc;
  1569. }
  1570. btrfs_tree_lock(child);
  1571. btrfs_set_lock_blocking(child);
  1572. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  1573. if (ret) {
  1574. btrfs_tree_unlock(child);
  1575. free_extent_buffer(child);
  1576. goto enospc;
  1577. }
  1578. tree_mod_log_set_root_pointer(root, child, 1);
  1579. rcu_assign_pointer(root->node, child);
  1580. add_root_to_dirty_list(root);
  1581. btrfs_tree_unlock(child);
  1582. path->locks[level] = 0;
  1583. path->nodes[level] = NULL;
  1584. clean_tree_block(trans, root, mid);
  1585. btrfs_tree_unlock(mid);
  1586. /* once for the path */
  1587. free_extent_buffer(mid);
  1588. root_sub_used(root, mid->len);
  1589. btrfs_free_tree_block(trans, root, mid, 0, 1);
  1590. /* once for the root ptr */
  1591. free_extent_buffer_stale(mid);
  1592. return 0;
  1593. }
  1594. if (btrfs_header_nritems(mid) >
  1595. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  1596. return 0;
  1597. left = read_node_slot(root, parent, pslot - 1);
  1598. if (left) {
  1599. btrfs_tree_lock(left);
  1600. btrfs_set_lock_blocking(left);
  1601. wret = btrfs_cow_block(trans, root, left,
  1602. parent, pslot - 1, &left);
  1603. if (wret) {
  1604. ret = wret;
  1605. goto enospc;
  1606. }
  1607. }
  1608. right = read_node_slot(root, parent, pslot + 1);
  1609. if (right) {
  1610. btrfs_tree_lock(right);
  1611. btrfs_set_lock_blocking(right);
  1612. wret = btrfs_cow_block(trans, root, right,
  1613. parent, pslot + 1, &right);
  1614. if (wret) {
  1615. ret = wret;
  1616. goto enospc;
  1617. }
  1618. }
  1619. /* first, try to make some room in the middle buffer */
  1620. if (left) {
  1621. orig_slot += btrfs_header_nritems(left);
  1622. wret = push_node_left(trans, root, left, mid, 1);
  1623. if (wret < 0)
  1624. ret = wret;
  1625. }
  1626. /*
  1627. * then try to empty the right most buffer into the middle
  1628. */
  1629. if (right) {
  1630. wret = push_node_left(trans, root, mid, right, 1);
  1631. if (wret < 0 && wret != -ENOSPC)
  1632. ret = wret;
  1633. if (btrfs_header_nritems(right) == 0) {
  1634. clean_tree_block(trans, root, right);
  1635. btrfs_tree_unlock(right);
  1636. del_ptr(root, path, level + 1, pslot + 1);
  1637. root_sub_used(root, right->len);
  1638. btrfs_free_tree_block(trans, root, right, 0, 1);
  1639. free_extent_buffer_stale(right);
  1640. right = NULL;
  1641. } else {
  1642. struct btrfs_disk_key right_key;
  1643. btrfs_node_key(right, &right_key, 0);
  1644. tree_mod_log_set_node_key(root->fs_info, parent,
  1645. pslot + 1, 0);
  1646. btrfs_set_node_key(parent, &right_key, pslot + 1);
  1647. btrfs_mark_buffer_dirty(parent);
  1648. }
  1649. }
  1650. if (btrfs_header_nritems(mid) == 1) {
  1651. /*
  1652. * we're not allowed to leave a node with one item in the
  1653. * tree during a delete. A deletion from lower in the tree
  1654. * could try to delete the only pointer in this node.
  1655. * So, pull some keys from the left.
  1656. * There has to be a left pointer at this point because
  1657. * otherwise we would have pulled some pointers from the
  1658. * right
  1659. */
  1660. if (!left) {
  1661. ret = -EROFS;
  1662. btrfs_std_error(root->fs_info, ret);
  1663. goto enospc;
  1664. }
  1665. wret = balance_node_right(trans, root, mid, left);
  1666. if (wret < 0) {
  1667. ret = wret;
  1668. goto enospc;
  1669. }
  1670. if (wret == 1) {
  1671. wret = push_node_left(trans, root, left, mid, 1);
  1672. if (wret < 0)
  1673. ret = wret;
  1674. }
  1675. BUG_ON(wret == 1);
  1676. }
  1677. if (btrfs_header_nritems(mid) == 0) {
  1678. clean_tree_block(trans, root, mid);
  1679. btrfs_tree_unlock(mid);
  1680. del_ptr(root, path, level + 1, pslot);
  1681. root_sub_used(root, mid->len);
  1682. btrfs_free_tree_block(trans, root, mid, 0, 1);
  1683. free_extent_buffer_stale(mid);
  1684. mid = NULL;
  1685. } else {
  1686. /* update the parent key to reflect our changes */
  1687. struct btrfs_disk_key mid_key;
  1688. btrfs_node_key(mid, &mid_key, 0);
  1689. tree_mod_log_set_node_key(root->fs_info, parent,
  1690. pslot, 0);
  1691. btrfs_set_node_key(parent, &mid_key, pslot);
  1692. btrfs_mark_buffer_dirty(parent);
  1693. }
  1694. /* update the path */
  1695. if (left) {
  1696. if (btrfs_header_nritems(left) > orig_slot) {
  1697. extent_buffer_get(left);
  1698. /* left was locked after cow */
  1699. path->nodes[level] = left;
  1700. path->slots[level + 1] -= 1;
  1701. path->slots[level] = orig_slot;
  1702. if (mid) {
  1703. btrfs_tree_unlock(mid);
  1704. free_extent_buffer(mid);
  1705. }
  1706. } else {
  1707. orig_slot -= btrfs_header_nritems(left);
  1708. path->slots[level] = orig_slot;
  1709. }
  1710. }
  1711. /* double check we haven't messed things up */
  1712. if (orig_ptr !=
  1713. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1714. BUG();
  1715. enospc:
  1716. if (right) {
  1717. btrfs_tree_unlock(right);
  1718. free_extent_buffer(right);
  1719. }
  1720. if (left) {
  1721. if (path->nodes[level] != left)
  1722. btrfs_tree_unlock(left);
  1723. free_extent_buffer(left);
  1724. }
  1725. return ret;
  1726. }
  1727. /* Node balancing for insertion. Here we only split or push nodes around
  1728. * when they are completely full. This is also done top down, so we
  1729. * have to be pessimistic.
  1730. */
  1731. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1732. struct btrfs_root *root,
  1733. struct btrfs_path *path, int level)
  1734. {
  1735. struct extent_buffer *right = NULL;
  1736. struct extent_buffer *mid;
  1737. struct extent_buffer *left = NULL;
  1738. struct extent_buffer *parent = NULL;
  1739. int ret = 0;
  1740. int wret;
  1741. int pslot;
  1742. int orig_slot = path->slots[level];
  1743. if (level == 0)
  1744. return 1;
  1745. mid = path->nodes[level];
  1746. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1747. if (level < BTRFS_MAX_LEVEL - 1) {
  1748. parent = path->nodes[level + 1];
  1749. pslot = path->slots[level + 1];
  1750. }
  1751. if (!parent)
  1752. return 1;
  1753. left = read_node_slot(root, parent, pslot - 1);
  1754. /* first, try to make some room in the middle buffer */
  1755. if (left) {
  1756. u32 left_nr;
  1757. btrfs_tree_lock(left);
  1758. btrfs_set_lock_blocking(left);
  1759. left_nr = btrfs_header_nritems(left);
  1760. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1761. wret = 1;
  1762. } else {
  1763. ret = btrfs_cow_block(trans, root, left, parent,
  1764. pslot - 1, &left);
  1765. if (ret)
  1766. wret = 1;
  1767. else {
  1768. wret = push_node_left(trans, root,
  1769. left, mid, 0);
  1770. }
  1771. }
  1772. if (wret < 0)
  1773. ret = wret;
  1774. if (wret == 0) {
  1775. struct btrfs_disk_key disk_key;
  1776. orig_slot += left_nr;
  1777. btrfs_node_key(mid, &disk_key, 0);
  1778. tree_mod_log_set_node_key(root->fs_info, parent,
  1779. pslot, 0);
  1780. btrfs_set_node_key(parent, &disk_key, pslot);
  1781. btrfs_mark_buffer_dirty(parent);
  1782. if (btrfs_header_nritems(left) > orig_slot) {
  1783. path->nodes[level] = left;
  1784. path->slots[level + 1] -= 1;
  1785. path->slots[level] = orig_slot;
  1786. btrfs_tree_unlock(mid);
  1787. free_extent_buffer(mid);
  1788. } else {
  1789. orig_slot -=
  1790. btrfs_header_nritems(left);
  1791. path->slots[level] = orig_slot;
  1792. btrfs_tree_unlock(left);
  1793. free_extent_buffer(left);
  1794. }
  1795. return 0;
  1796. }
  1797. btrfs_tree_unlock(left);
  1798. free_extent_buffer(left);
  1799. }
  1800. right = read_node_slot(root, parent, pslot + 1);
  1801. /*
  1802. * then try to empty the right most buffer into the middle
  1803. */
  1804. if (right) {
  1805. u32 right_nr;
  1806. btrfs_tree_lock(right);
  1807. btrfs_set_lock_blocking(right);
  1808. right_nr = btrfs_header_nritems(right);
  1809. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1810. wret = 1;
  1811. } else {
  1812. ret = btrfs_cow_block(trans, root, right,
  1813. parent, pslot + 1,
  1814. &right);
  1815. if (ret)
  1816. wret = 1;
  1817. else {
  1818. wret = balance_node_right(trans, root,
  1819. right, mid);
  1820. }
  1821. }
  1822. if (wret < 0)
  1823. ret = wret;
  1824. if (wret == 0) {
  1825. struct btrfs_disk_key disk_key;
  1826. btrfs_node_key(right, &disk_key, 0);
  1827. tree_mod_log_set_node_key(root->fs_info, parent,
  1828. pslot + 1, 0);
  1829. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1830. btrfs_mark_buffer_dirty(parent);
  1831. if (btrfs_header_nritems(mid) <= orig_slot) {
  1832. path->nodes[level] = right;
  1833. path->slots[level + 1] += 1;
  1834. path->slots[level] = orig_slot -
  1835. btrfs_header_nritems(mid);
  1836. btrfs_tree_unlock(mid);
  1837. free_extent_buffer(mid);
  1838. } else {
  1839. btrfs_tree_unlock(right);
  1840. free_extent_buffer(right);
  1841. }
  1842. return 0;
  1843. }
  1844. btrfs_tree_unlock(right);
  1845. free_extent_buffer(right);
  1846. }
  1847. return 1;
  1848. }
  1849. /*
  1850. * readahead one full node of leaves, finding things that are close
  1851. * to the block in 'slot', and triggering ra on them.
  1852. */
  1853. static void reada_for_search(struct btrfs_root *root,
  1854. struct btrfs_path *path,
  1855. int level, int slot, u64 objectid)
  1856. {
  1857. struct extent_buffer *node;
  1858. struct btrfs_disk_key disk_key;
  1859. u32 nritems;
  1860. u64 search;
  1861. u64 target;
  1862. u64 nread = 0;
  1863. u64 gen;
  1864. int direction = path->reada;
  1865. struct extent_buffer *eb;
  1866. u32 nr;
  1867. u32 blocksize;
  1868. u32 nscan = 0;
  1869. if (level != 1)
  1870. return;
  1871. if (!path->nodes[level])
  1872. return;
  1873. node = path->nodes[level];
  1874. search = btrfs_node_blockptr(node, slot);
  1875. blocksize = btrfs_level_size(root, level - 1);
  1876. eb = btrfs_find_tree_block(root, search, blocksize);
  1877. if (eb) {
  1878. free_extent_buffer(eb);
  1879. return;
  1880. }
  1881. target = search;
  1882. nritems = btrfs_header_nritems(node);
  1883. nr = slot;
  1884. while (1) {
  1885. if (direction < 0) {
  1886. if (nr == 0)
  1887. break;
  1888. nr--;
  1889. } else if (direction > 0) {
  1890. nr++;
  1891. if (nr >= nritems)
  1892. break;
  1893. }
  1894. if (path->reada < 0 && objectid) {
  1895. btrfs_node_key(node, &disk_key, nr);
  1896. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1897. break;
  1898. }
  1899. search = btrfs_node_blockptr(node, nr);
  1900. if ((search <= target && target - search <= 65536) ||
  1901. (search > target && search - target <= 65536)) {
  1902. gen = btrfs_node_ptr_generation(node, nr);
  1903. readahead_tree_block(root, search, blocksize, gen);
  1904. nread += blocksize;
  1905. }
  1906. nscan++;
  1907. if ((nread > 65536 || nscan > 32))
  1908. break;
  1909. }
  1910. }
  1911. static noinline void reada_for_balance(struct btrfs_root *root,
  1912. struct btrfs_path *path, int level)
  1913. {
  1914. int slot;
  1915. int nritems;
  1916. struct extent_buffer *parent;
  1917. struct extent_buffer *eb;
  1918. u64 gen;
  1919. u64 block1 = 0;
  1920. u64 block2 = 0;
  1921. int blocksize;
  1922. parent = path->nodes[level + 1];
  1923. if (!parent)
  1924. return;
  1925. nritems = btrfs_header_nritems(parent);
  1926. slot = path->slots[level + 1];
  1927. blocksize = btrfs_level_size(root, level);
  1928. if (slot > 0) {
  1929. block1 = btrfs_node_blockptr(parent, slot - 1);
  1930. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1931. eb = btrfs_find_tree_block(root, block1, blocksize);
  1932. /*
  1933. * if we get -eagain from btrfs_buffer_uptodate, we
  1934. * don't want to return eagain here. That will loop
  1935. * forever
  1936. */
  1937. if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
  1938. block1 = 0;
  1939. free_extent_buffer(eb);
  1940. }
  1941. if (slot + 1 < nritems) {
  1942. block2 = btrfs_node_blockptr(parent, slot + 1);
  1943. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1944. eb = btrfs_find_tree_block(root, block2, blocksize);
  1945. if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
  1946. block2 = 0;
  1947. free_extent_buffer(eb);
  1948. }
  1949. if (block1)
  1950. readahead_tree_block(root, block1, blocksize, 0);
  1951. if (block2)
  1952. readahead_tree_block(root, block2, blocksize, 0);
  1953. }
  1954. /*
  1955. * when we walk down the tree, it is usually safe to unlock the higher layers
  1956. * in the tree. The exceptions are when our path goes through slot 0, because
  1957. * operations on the tree might require changing key pointers higher up in the
  1958. * tree.
  1959. *
  1960. * callers might also have set path->keep_locks, which tells this code to keep
  1961. * the lock if the path points to the last slot in the block. This is part of
  1962. * walking through the tree, and selecting the next slot in the higher block.
  1963. *
  1964. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1965. * if lowest_unlock is 1, level 0 won't be unlocked
  1966. */
  1967. static noinline void unlock_up(struct btrfs_path *path, int level,
  1968. int lowest_unlock, int min_write_lock_level,
  1969. int *write_lock_level)
  1970. {
  1971. int i;
  1972. int skip_level = level;
  1973. int no_skips = 0;
  1974. struct extent_buffer *t;
  1975. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1976. if (!path->nodes[i])
  1977. break;
  1978. if (!path->locks[i])
  1979. break;
  1980. if (!no_skips && path->slots[i] == 0) {
  1981. skip_level = i + 1;
  1982. continue;
  1983. }
  1984. if (!no_skips && path->keep_locks) {
  1985. u32 nritems;
  1986. t = path->nodes[i];
  1987. nritems = btrfs_header_nritems(t);
  1988. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1989. skip_level = i + 1;
  1990. continue;
  1991. }
  1992. }
  1993. if (skip_level < i && i >= lowest_unlock)
  1994. no_skips = 1;
  1995. t = path->nodes[i];
  1996. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1997. btrfs_tree_unlock_rw(t, path->locks[i]);
  1998. path->locks[i] = 0;
  1999. if (write_lock_level &&
  2000. i > min_write_lock_level &&
  2001. i <= *write_lock_level) {
  2002. *write_lock_level = i - 1;
  2003. }
  2004. }
  2005. }
  2006. }
  2007. /*
  2008. * This releases any locks held in the path starting at level and
  2009. * going all the way up to the root.
  2010. *
  2011. * btrfs_search_slot will keep the lock held on higher nodes in a few
  2012. * corner cases, such as COW of the block at slot zero in the node. This
  2013. * ignores those rules, and it should only be called when there are no
  2014. * more updates to be done higher up in the tree.
  2015. */
  2016. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  2017. {
  2018. int i;
  2019. if (path->keep_locks)
  2020. return;
  2021. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  2022. if (!path->nodes[i])
  2023. continue;
  2024. if (!path->locks[i])
  2025. continue;
  2026. btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
  2027. path->locks[i] = 0;
  2028. }
  2029. }
  2030. /*
  2031. * helper function for btrfs_search_slot. The goal is to find a block
  2032. * in cache without setting the path to blocking. If we find the block
  2033. * we return zero and the path is unchanged.
  2034. *
  2035. * If we can't find the block, we set the path blocking and do some
  2036. * reada. -EAGAIN is returned and the search must be repeated.
  2037. */
  2038. static int
  2039. read_block_for_search(struct btrfs_trans_handle *trans,
  2040. struct btrfs_root *root, struct btrfs_path *p,
  2041. struct extent_buffer **eb_ret, int level, int slot,
  2042. struct btrfs_key *key, u64 time_seq)
  2043. {
  2044. u64 blocknr;
  2045. u64 gen;
  2046. u32 blocksize;
  2047. struct extent_buffer *b = *eb_ret;
  2048. struct extent_buffer *tmp;
  2049. int ret;
  2050. blocknr = btrfs_node_blockptr(b, slot);
  2051. gen = btrfs_node_ptr_generation(b, slot);
  2052. blocksize = btrfs_level_size(root, level - 1);
  2053. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  2054. if (tmp) {
  2055. /* first we do an atomic uptodate check */
  2056. if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
  2057. *eb_ret = tmp;
  2058. return 0;
  2059. }
  2060. /* the pages were up to date, but we failed
  2061. * the generation number check. Do a full
  2062. * read for the generation number that is correct.
  2063. * We must do this without dropping locks so
  2064. * we can trust our generation number
  2065. */
  2066. btrfs_set_path_blocking(p);
  2067. /* now we're allowed to do a blocking uptodate check */
  2068. ret = btrfs_read_buffer(tmp, gen);
  2069. if (!ret) {
  2070. *eb_ret = tmp;
  2071. return 0;
  2072. }
  2073. free_extent_buffer(tmp);
  2074. btrfs_release_path(p);
  2075. return -EIO;
  2076. }
  2077. /*
  2078. * reduce lock contention at high levels
  2079. * of the btree by dropping locks before
  2080. * we read. Don't release the lock on the current
  2081. * level because we need to walk this node to figure
  2082. * out which blocks to read.
  2083. */
  2084. btrfs_unlock_up_safe(p, level + 1);
  2085. btrfs_set_path_blocking(p);
  2086. free_extent_buffer(tmp);
  2087. if (p->reada)
  2088. reada_for_search(root, p, level, slot, key->objectid);
  2089. btrfs_release_path(p);
  2090. ret = -EAGAIN;
  2091. tmp = read_tree_block(root, blocknr, blocksize, 0);
  2092. if (tmp) {
  2093. /*
  2094. * If the read above didn't mark this buffer up to date,
  2095. * it will never end up being up to date. Set ret to EIO now
  2096. * and give up so that our caller doesn't loop forever
  2097. * on our EAGAINs.
  2098. */
  2099. if (!btrfs_buffer_uptodate(tmp, 0, 0))
  2100. ret = -EIO;
  2101. free_extent_buffer(tmp);
  2102. }
  2103. return ret;
  2104. }
  2105. /*
  2106. * helper function for btrfs_search_slot. This does all of the checks
  2107. * for node-level blocks and does any balancing required based on
  2108. * the ins_len.
  2109. *
  2110. * If no extra work was required, zero is returned. If we had to
  2111. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  2112. * start over
  2113. */
  2114. static int
  2115. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  2116. struct btrfs_root *root, struct btrfs_path *p,
  2117. struct extent_buffer *b, int level, int ins_len,
  2118. int *write_lock_level)
  2119. {
  2120. int ret;
  2121. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  2122. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  2123. int sret;
  2124. if (*write_lock_level < level + 1) {
  2125. *write_lock_level = level + 1;
  2126. btrfs_release_path(p);
  2127. goto again;
  2128. }
  2129. btrfs_set_path_blocking(p);
  2130. reada_for_balance(root, p, level);
  2131. sret = split_node(trans, root, p, level);
  2132. btrfs_clear_path_blocking(p, NULL, 0);
  2133. BUG_ON(sret > 0);
  2134. if (sret) {
  2135. ret = sret;
  2136. goto done;
  2137. }
  2138. b = p->nodes[level];
  2139. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  2140. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  2141. int sret;
  2142. if (*write_lock_level < level + 1) {
  2143. *write_lock_level = level + 1;
  2144. btrfs_release_path(p);
  2145. goto again;
  2146. }
  2147. btrfs_set_path_blocking(p);
  2148. reada_for_balance(root, p, level);
  2149. sret = balance_level(trans, root, p, level);
  2150. btrfs_clear_path_blocking(p, NULL, 0);
  2151. if (sret) {
  2152. ret = sret;
  2153. goto done;
  2154. }
  2155. b = p->nodes[level];
  2156. if (!b) {
  2157. btrfs_release_path(p);
  2158. goto again;
  2159. }
  2160. BUG_ON(btrfs_header_nritems(b) == 1);
  2161. }
  2162. return 0;
  2163. again:
  2164. ret = -EAGAIN;
  2165. done:
  2166. return ret;
  2167. }
  2168. /*
  2169. * look for key in the tree. path is filled in with nodes along the way
  2170. * if key is found, we return zero and you can find the item in the leaf
  2171. * level of the path (level 0)
  2172. *
  2173. * If the key isn't found, the path points to the slot where it should
  2174. * be inserted, and 1 is returned. If there are other errors during the
  2175. * search a negative error number is returned.
  2176. *
  2177. * if ins_len > 0, nodes and leaves will be split as we walk down the
  2178. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  2179. * possible)
  2180. */
  2181. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  2182. *root, struct btrfs_key *key, struct btrfs_path *p, int
  2183. ins_len, int cow)
  2184. {
  2185. struct extent_buffer *b;
  2186. int slot;
  2187. int ret;
  2188. int err;
  2189. int level;
  2190. int lowest_unlock = 1;
  2191. int root_lock;
  2192. /* everything at write_lock_level or lower must be write locked */
  2193. int write_lock_level = 0;
  2194. u8 lowest_level = 0;
  2195. int min_write_lock_level;
  2196. lowest_level = p->lowest_level;
  2197. WARN_ON(lowest_level && ins_len > 0);
  2198. WARN_ON(p->nodes[0] != NULL);
  2199. if (ins_len < 0) {
  2200. lowest_unlock = 2;
  2201. /* when we are removing items, we might have to go up to level
  2202. * two as we update tree pointers Make sure we keep write
  2203. * for those levels as well
  2204. */
  2205. write_lock_level = 2;
  2206. } else if (ins_len > 0) {
  2207. /*
  2208. * for inserting items, make sure we have a write lock on
  2209. * level 1 so we can update keys
  2210. */
  2211. write_lock_level = 1;
  2212. }
  2213. if (!cow)
  2214. write_lock_level = -1;
  2215. if (cow && (p->keep_locks || p->lowest_level))
  2216. write_lock_level = BTRFS_MAX_LEVEL;
  2217. min_write_lock_level = write_lock_level;
  2218. again:
  2219. /*
  2220. * we try very hard to do read locks on the root
  2221. */
  2222. root_lock = BTRFS_READ_LOCK;
  2223. level = 0;
  2224. if (p->search_commit_root) {
  2225. /*
  2226. * the commit roots are read only
  2227. * so we always do read locks
  2228. */
  2229. b = root->commit_root;
  2230. extent_buffer_get(b);
  2231. level = btrfs_header_level(b);
  2232. if (!p->skip_locking)
  2233. btrfs_tree_read_lock(b);
  2234. } else {
  2235. if (p->skip_locking) {
  2236. b = btrfs_root_node(root);
  2237. level = btrfs_header_level(b);
  2238. } else {
  2239. /* we don't know the level of the root node
  2240. * until we actually have it read locked
  2241. */
  2242. b = btrfs_read_lock_root_node(root);
  2243. level = btrfs_header_level(b);
  2244. if (level <= write_lock_level) {
  2245. /* whoops, must trade for write lock */
  2246. btrfs_tree_read_unlock(b);
  2247. free_extent_buffer(b);
  2248. b = btrfs_lock_root_node(root);
  2249. root_lock = BTRFS_WRITE_LOCK;
  2250. /* the level might have changed, check again */
  2251. level = btrfs_header_level(b);
  2252. }
  2253. }
  2254. }
  2255. p->nodes[level] = b;
  2256. if (!p->skip_locking)
  2257. p->locks[level] = root_lock;
  2258. while (b) {
  2259. level = btrfs_header_level(b);
  2260. /*
  2261. * setup the path here so we can release it under lock
  2262. * contention with the cow code
  2263. */
  2264. if (cow) {
  2265. /*
  2266. * if we don't really need to cow this block
  2267. * then we don't want to set the path blocking,
  2268. * so we test it here
  2269. */
  2270. if (!should_cow_block(trans, root, b))
  2271. goto cow_done;
  2272. btrfs_set_path_blocking(p);
  2273. /*
  2274. * must have write locks on this node and the
  2275. * parent
  2276. */
  2277. if (level > write_lock_level ||
  2278. (level + 1 > write_lock_level &&
  2279. level + 1 < BTRFS_MAX_LEVEL &&
  2280. p->nodes[level + 1])) {
  2281. write_lock_level = level + 1;
  2282. btrfs_release_path(p);
  2283. goto again;
  2284. }
  2285. err = btrfs_cow_block(trans, root, b,
  2286. p->nodes[level + 1],
  2287. p->slots[level + 1], &b);
  2288. if (err) {
  2289. ret = err;
  2290. goto done;
  2291. }
  2292. }
  2293. cow_done:
  2294. BUG_ON(!cow && ins_len);
  2295. p->nodes[level] = b;
  2296. btrfs_clear_path_blocking(p, NULL, 0);
  2297. /*
  2298. * we have a lock on b and as long as we aren't changing
  2299. * the tree, there is no way to for the items in b to change.
  2300. * It is safe to drop the lock on our parent before we
  2301. * go through the expensive btree search on b.
  2302. *
  2303. * If cow is true, then we might be changing slot zero,
  2304. * which may require changing the parent. So, we can't
  2305. * drop the lock until after we know which slot we're
  2306. * operating on.
  2307. */
  2308. if (!cow)
  2309. btrfs_unlock_up_safe(p, level + 1);
  2310. ret = bin_search(b, key, level, &slot);
  2311. if (level != 0) {
  2312. int dec = 0;
  2313. if (ret && slot > 0) {
  2314. dec = 1;
  2315. slot -= 1;
  2316. }
  2317. p->slots[level] = slot;
  2318. err = setup_nodes_for_search(trans, root, p, b, level,
  2319. ins_len, &write_lock_level);
  2320. if (err == -EAGAIN)
  2321. goto again;
  2322. if (err) {
  2323. ret = err;
  2324. goto done;
  2325. }
  2326. b = p->nodes[level];
  2327. slot = p->slots[level];
  2328. /*
  2329. * slot 0 is special, if we change the key
  2330. * we have to update the parent pointer
  2331. * which means we must have a write lock
  2332. * on the parent
  2333. */
  2334. if (slot == 0 && cow &&
  2335. write_lock_level < level + 1) {
  2336. write_lock_level = level + 1;
  2337. btrfs_release_path(p);
  2338. goto again;
  2339. }
  2340. unlock_up(p, level, lowest_unlock,
  2341. min_write_lock_level, &write_lock_level);
  2342. if (level == lowest_level) {
  2343. if (dec)
  2344. p->slots[level]++;
  2345. goto done;
  2346. }
  2347. err = read_block_for_search(trans, root, p,
  2348. &b, level, slot, key, 0);
  2349. if (err == -EAGAIN)
  2350. goto again;
  2351. if (err) {
  2352. ret = err;
  2353. goto done;
  2354. }
  2355. if (!p->skip_locking) {
  2356. level = btrfs_header_level(b);
  2357. if (level <= write_lock_level) {
  2358. err = btrfs_try_tree_write_lock(b);
  2359. if (!err) {
  2360. btrfs_set_path_blocking(p);
  2361. btrfs_tree_lock(b);
  2362. btrfs_clear_path_blocking(p, b,
  2363. BTRFS_WRITE_LOCK);
  2364. }
  2365. p->locks[level] = BTRFS_WRITE_LOCK;
  2366. } else {
  2367. err = btrfs_try_tree_read_lock(b);
  2368. if (!err) {
  2369. btrfs_set_path_blocking(p);
  2370. btrfs_tree_read_lock(b);
  2371. btrfs_clear_path_blocking(p, b,
  2372. BTRFS_READ_LOCK);
  2373. }
  2374. p->locks[level] = BTRFS_READ_LOCK;
  2375. }
  2376. p->nodes[level] = b;
  2377. }
  2378. } else {
  2379. p->slots[level] = slot;
  2380. if (ins_len > 0 &&
  2381. btrfs_leaf_free_space(root, b) < ins_len) {
  2382. if (write_lock_level < 1) {
  2383. write_lock_level = 1;
  2384. btrfs_release_path(p);
  2385. goto again;
  2386. }
  2387. btrfs_set_path_blocking(p);
  2388. err = split_leaf(trans, root, key,
  2389. p, ins_len, ret == 0);
  2390. btrfs_clear_path_blocking(p, NULL, 0);
  2391. BUG_ON(err > 0);
  2392. if (err) {
  2393. ret = err;
  2394. goto done;
  2395. }
  2396. }
  2397. if (!p->search_for_split)
  2398. unlock_up(p, level, lowest_unlock,
  2399. min_write_lock_level, &write_lock_level);
  2400. goto done;
  2401. }
  2402. }
  2403. ret = 1;
  2404. done:
  2405. /*
  2406. * we don't really know what they plan on doing with the path
  2407. * from here on, so for now just mark it as blocking
  2408. */
  2409. if (!p->leave_spinning)
  2410. btrfs_set_path_blocking(p);
  2411. if (ret < 0)
  2412. btrfs_release_path(p);
  2413. return ret;
  2414. }
  2415. /*
  2416. * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
  2417. * current state of the tree together with the operations recorded in the tree
  2418. * modification log to search for the key in a previous version of this tree, as
  2419. * denoted by the time_seq parameter.
  2420. *
  2421. * Naturally, there is no support for insert, delete or cow operations.
  2422. *
  2423. * The resulting path and return value will be set up as if we called
  2424. * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
  2425. */
  2426. int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
  2427. struct btrfs_path *p, u64 time_seq)
  2428. {
  2429. struct extent_buffer *b;
  2430. int slot;
  2431. int ret;
  2432. int err;
  2433. int level;
  2434. int lowest_unlock = 1;
  2435. u8 lowest_level = 0;
  2436. lowest_level = p->lowest_level;
  2437. WARN_ON(p->nodes[0] != NULL);
  2438. if (p->search_commit_root) {
  2439. BUG_ON(time_seq);
  2440. return btrfs_search_slot(NULL, root, key, p, 0, 0);
  2441. }
  2442. again:
  2443. b = get_old_root(root, time_seq);
  2444. level = btrfs_header_level(b);
  2445. p->locks[level] = BTRFS_READ_LOCK;
  2446. while (b) {
  2447. level = btrfs_header_level(b);
  2448. p->nodes[level] = b;
  2449. btrfs_clear_path_blocking(p, NULL, 0);
  2450. /*
  2451. * we have a lock on b and as long as we aren't changing
  2452. * the tree, there is no way to for the items in b to change.
  2453. * It is safe to drop the lock on our parent before we
  2454. * go through the expensive btree search on b.
  2455. */
  2456. btrfs_unlock_up_safe(p, level + 1);
  2457. ret = bin_search(b, key, level, &slot);
  2458. if (level != 0) {
  2459. int dec = 0;
  2460. if (ret && slot > 0) {
  2461. dec = 1;
  2462. slot -= 1;
  2463. }
  2464. p->slots[level] = slot;
  2465. unlock_up(p, level, lowest_unlock, 0, NULL);
  2466. if (level == lowest_level) {
  2467. if (dec)
  2468. p->slots[level]++;
  2469. goto done;
  2470. }
  2471. err = read_block_for_search(NULL, root, p, &b, level,
  2472. slot, key, time_seq);
  2473. if (err == -EAGAIN)
  2474. goto again;
  2475. if (err) {
  2476. ret = err;
  2477. goto done;
  2478. }
  2479. level = btrfs_header_level(b);
  2480. err = btrfs_try_tree_read_lock(b);
  2481. if (!err) {
  2482. btrfs_set_path_blocking(p);
  2483. btrfs_tree_read_lock(b);
  2484. btrfs_clear_path_blocking(p, b,
  2485. BTRFS_READ_LOCK);
  2486. }
  2487. b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
  2488. if (!b) {
  2489. ret = -ENOMEM;
  2490. goto done;
  2491. }
  2492. p->locks[level] = BTRFS_READ_LOCK;
  2493. p->nodes[level] = b;
  2494. } else {
  2495. p->slots[level] = slot;
  2496. unlock_up(p, level, lowest_unlock, 0, NULL);
  2497. goto done;
  2498. }
  2499. }
  2500. ret = 1;
  2501. done:
  2502. if (!p->leave_spinning)
  2503. btrfs_set_path_blocking(p);
  2504. if (ret < 0)
  2505. btrfs_release_path(p);
  2506. return ret;
  2507. }
  2508. /*
  2509. * helper to use instead of search slot if no exact match is needed but
  2510. * instead the next or previous item should be returned.
  2511. * When find_higher is true, the next higher item is returned, the next lower
  2512. * otherwise.
  2513. * When return_any and find_higher are both true, and no higher item is found,
  2514. * return the next lower instead.
  2515. * When return_any is true and find_higher is false, and no lower item is found,
  2516. * return the next higher instead.
  2517. * It returns 0 if any item is found, 1 if none is found (tree empty), and
  2518. * < 0 on error
  2519. */
  2520. int btrfs_search_slot_for_read(struct btrfs_root *root,
  2521. struct btrfs_key *key, struct btrfs_path *p,
  2522. int find_higher, int return_any)
  2523. {
  2524. int ret;
  2525. struct extent_buffer *leaf;
  2526. again:
  2527. ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
  2528. if (ret <= 0)
  2529. return ret;
  2530. /*
  2531. * a return value of 1 means the path is at the position where the
  2532. * item should be inserted. Normally this is the next bigger item,
  2533. * but in case the previous item is the last in a leaf, path points
  2534. * to the first free slot in the previous leaf, i.e. at an invalid
  2535. * item.
  2536. */
  2537. leaf = p->nodes[0];
  2538. if (find_higher) {
  2539. if (p->slots[0] >= btrfs_header_nritems(leaf)) {
  2540. ret = btrfs_next_leaf(root, p);
  2541. if (ret <= 0)
  2542. return ret;
  2543. if (!return_any)
  2544. return 1;
  2545. /*
  2546. * no higher item found, return the next
  2547. * lower instead
  2548. */
  2549. return_any = 0;
  2550. find_higher = 0;
  2551. btrfs_release_path(p);
  2552. goto again;
  2553. }
  2554. } else {
  2555. if (p->slots[0] == 0) {
  2556. ret = btrfs_prev_leaf(root, p);
  2557. if (ret < 0)
  2558. return ret;
  2559. if (!ret) {
  2560. p->slots[0] = btrfs_header_nritems(leaf) - 1;
  2561. return 0;
  2562. }
  2563. if (!return_any)
  2564. return 1;
  2565. /*
  2566. * no lower item found, return the next
  2567. * higher instead
  2568. */
  2569. return_any = 0;
  2570. find_higher = 1;
  2571. btrfs_release_path(p);
  2572. goto again;
  2573. } else {
  2574. --p->slots[0];
  2575. }
  2576. }
  2577. return 0;
  2578. }
  2579. /*
  2580. * adjust the pointers going up the tree, starting at level
  2581. * making sure the right key of each node is points to 'key'.
  2582. * This is used after shifting pointers to the left, so it stops
  2583. * fixing up pointers when a given leaf/node is not in slot 0 of the
  2584. * higher levels
  2585. *
  2586. */
  2587. static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
  2588. struct btrfs_disk_key *key, int level)
  2589. {
  2590. int i;
  2591. struct extent_buffer *t;
  2592. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  2593. int tslot = path->slots[i];
  2594. if (!path->nodes[i])
  2595. break;
  2596. t = path->nodes[i];
  2597. tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
  2598. btrfs_set_node_key(t, key, tslot);
  2599. btrfs_mark_buffer_dirty(path->nodes[i]);
  2600. if (tslot != 0)
  2601. break;
  2602. }
  2603. }
  2604. /*
  2605. * update item key.
  2606. *
  2607. * This function isn't completely safe. It's the caller's responsibility
  2608. * that the new key won't break the order
  2609. */
  2610. void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
  2611. struct btrfs_key *new_key)
  2612. {
  2613. struct btrfs_disk_key disk_key;
  2614. struct extent_buffer *eb;
  2615. int slot;
  2616. eb = path->nodes[0];
  2617. slot = path->slots[0];
  2618. if (slot > 0) {
  2619. btrfs_item_key(eb, &disk_key, slot - 1);
  2620. BUG_ON(comp_keys(&disk_key, new_key) >= 0);
  2621. }
  2622. if (slot < btrfs_header_nritems(eb) - 1) {
  2623. btrfs_item_key(eb, &disk_key, slot + 1);
  2624. BUG_ON(comp_keys(&disk_key, new_key) <= 0);
  2625. }
  2626. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2627. btrfs_set_item_key(eb, &disk_key, slot);
  2628. btrfs_mark_buffer_dirty(eb);
  2629. if (slot == 0)
  2630. fixup_low_keys(root, path, &disk_key, 1);
  2631. }
  2632. /*
  2633. * try to push data from one node into the next node left in the
  2634. * tree.
  2635. *
  2636. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  2637. * error, and > 0 if there was no room in the left hand block.
  2638. */
  2639. static int push_node_left(struct btrfs_trans_handle *trans,
  2640. struct btrfs_root *root, struct extent_buffer *dst,
  2641. struct extent_buffer *src, int empty)
  2642. {
  2643. int push_items = 0;
  2644. int src_nritems;
  2645. int dst_nritems;
  2646. int ret = 0;
  2647. src_nritems = btrfs_header_nritems(src);
  2648. dst_nritems = btrfs_header_nritems(dst);
  2649. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  2650. WARN_ON(btrfs_header_generation(src) != trans->transid);
  2651. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  2652. if (!empty && src_nritems <= 8)
  2653. return 1;
  2654. if (push_items <= 0)
  2655. return 1;
  2656. if (empty) {
  2657. push_items = min(src_nritems, push_items);
  2658. if (push_items < src_nritems) {
  2659. /* leave at least 8 pointers in the node if
  2660. * we aren't going to empty it
  2661. */
  2662. if (src_nritems - push_items < 8) {
  2663. if (push_items <= 8)
  2664. return 1;
  2665. push_items -= 8;
  2666. }
  2667. }
  2668. } else
  2669. push_items = min(src_nritems - 8, push_items);
  2670. tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
  2671. push_items);
  2672. copy_extent_buffer(dst, src,
  2673. btrfs_node_key_ptr_offset(dst_nritems),
  2674. btrfs_node_key_ptr_offset(0),
  2675. push_items * sizeof(struct btrfs_key_ptr));
  2676. if (push_items < src_nritems) {
  2677. /*
  2678. * don't call tree_mod_log_eb_move here, key removal was already
  2679. * fully logged by tree_mod_log_eb_copy above.
  2680. */
  2681. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  2682. btrfs_node_key_ptr_offset(push_items),
  2683. (src_nritems - push_items) *
  2684. sizeof(struct btrfs_key_ptr));
  2685. }
  2686. btrfs_set_header_nritems(src, src_nritems - push_items);
  2687. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  2688. btrfs_mark_buffer_dirty(src);
  2689. btrfs_mark_buffer_dirty(dst);
  2690. return ret;
  2691. }
  2692. /*
  2693. * try to push data from one node into the next node right in the
  2694. * tree.
  2695. *
  2696. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  2697. * error, and > 0 if there was no room in the right hand block.
  2698. *
  2699. * this will only push up to 1/2 the contents of the left node over
  2700. */
  2701. static int balance_node_right(struct btrfs_trans_handle *trans,
  2702. struct btrfs_root *root,
  2703. struct extent_buffer *dst,
  2704. struct extent_buffer *src)
  2705. {
  2706. int push_items = 0;
  2707. int max_push;
  2708. int src_nritems;
  2709. int dst_nritems;
  2710. int ret = 0;
  2711. WARN_ON(btrfs_header_generation(src) != trans->transid);
  2712. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  2713. src_nritems = btrfs_header_nritems(src);
  2714. dst_nritems = btrfs_header_nritems(dst);
  2715. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  2716. if (push_items <= 0)
  2717. return 1;
  2718. if (src_nritems < 4)
  2719. return 1;
  2720. max_push = src_nritems / 2 + 1;
  2721. /* don't try to empty the node */
  2722. if (max_push >= src_nritems)
  2723. return 1;
  2724. if (max_push < push_items)
  2725. push_items = max_push;
  2726. tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
  2727. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  2728. btrfs_node_key_ptr_offset(0),
  2729. (dst_nritems) *
  2730. sizeof(struct btrfs_key_ptr));
  2731. tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
  2732. src_nritems - push_items, push_items);
  2733. copy_extent_buffer(dst, src,
  2734. btrfs_node_key_ptr_offset(0),
  2735. btrfs_node_key_ptr_offset(src_nritems - push_items),
  2736. push_items * sizeof(struct btrfs_key_ptr));
  2737. btrfs_set_header_nritems(src, src_nritems - push_items);
  2738. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  2739. btrfs_mark_buffer_dirty(src);
  2740. btrfs_mark_buffer_dirty(dst);
  2741. return ret;
  2742. }
  2743. /*
  2744. * helper function to insert a new root level in the tree.
  2745. * A new node is allocated, and a single item is inserted to
  2746. * point to the existing root
  2747. *
  2748. * returns zero on success or < 0 on failure.
  2749. */
  2750. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  2751. struct btrfs_root *root,
  2752. struct btrfs_path *path, int level)
  2753. {
  2754. u64 lower_gen;
  2755. struct extent_buffer *lower;
  2756. struct extent_buffer *c;
  2757. struct extent_buffer *old;
  2758. struct btrfs_disk_key lower_key;
  2759. BUG_ON(path->nodes[level]);
  2760. BUG_ON(path->nodes[level-1] != root->node);
  2761. lower = path->nodes[level-1];
  2762. if (level == 1)
  2763. btrfs_item_key(lower, &lower_key, 0);
  2764. else
  2765. btrfs_node_key(lower, &lower_key, 0);
  2766. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  2767. root->root_key.objectid, &lower_key,
  2768. level, root->node->start, 0);
  2769. if (IS_ERR(c))
  2770. return PTR_ERR(c);
  2771. root_add_used(root, root->nodesize);
  2772. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  2773. btrfs_set_header_nritems(c, 1);
  2774. btrfs_set_header_level(c, level);
  2775. btrfs_set_header_bytenr(c, c->start);
  2776. btrfs_set_header_generation(c, trans->transid);
  2777. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  2778. btrfs_set_header_owner(c, root->root_key.objectid);
  2779. write_extent_buffer(c, root->fs_info->fsid,
  2780. (unsigned long)btrfs_header_fsid(c),
  2781. BTRFS_FSID_SIZE);
  2782. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  2783. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  2784. BTRFS_UUID_SIZE);
  2785. btrfs_set_node_key(c, &lower_key, 0);
  2786. btrfs_set_node_blockptr(c, 0, lower->start);
  2787. lower_gen = btrfs_header_generation(lower);
  2788. WARN_ON(lower_gen != trans->transid);
  2789. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  2790. btrfs_mark_buffer_dirty(c);
  2791. old = root->node;
  2792. tree_mod_log_set_root_pointer(root, c, 0);
  2793. rcu_assign_pointer(root->node, c);
  2794. /* the super has an extra ref to root->node */
  2795. free_extent_buffer(old);
  2796. add_root_to_dirty_list(root);
  2797. extent_buffer_get(c);
  2798. path->nodes[level] = c;
  2799. path->locks[level] = BTRFS_WRITE_LOCK;
  2800. path->slots[level] = 0;
  2801. return 0;
  2802. }
  2803. /*
  2804. * worker function to insert a single pointer in a node.
  2805. * the node should have enough room for the pointer already
  2806. *
  2807. * slot and level indicate where you want the key to go, and
  2808. * blocknr is the block the key points to.
  2809. */
  2810. static void insert_ptr(struct btrfs_trans_handle *trans,
  2811. struct btrfs_root *root, struct btrfs_path *path,
  2812. struct btrfs_disk_key *key, u64 bytenr,
  2813. int slot, int level)
  2814. {
  2815. struct extent_buffer *lower;
  2816. int nritems;
  2817. int ret;
  2818. BUG_ON(!path->nodes[level]);
  2819. btrfs_assert_tree_locked(path->nodes[level]);
  2820. lower = path->nodes[level];
  2821. nritems = btrfs_header_nritems(lower);
  2822. BUG_ON(slot > nritems);
  2823. BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
  2824. if (slot != nritems) {
  2825. if (level)
  2826. tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
  2827. slot, nritems - slot);
  2828. memmove_extent_buffer(lower,
  2829. btrfs_node_key_ptr_offset(slot + 1),
  2830. btrfs_node_key_ptr_offset(slot),
  2831. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  2832. }
  2833. if (level) {
  2834. ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
  2835. MOD_LOG_KEY_ADD, GFP_NOFS);
  2836. BUG_ON(ret < 0);
  2837. }
  2838. btrfs_set_node_key(lower, key, slot);
  2839. btrfs_set_node_blockptr(lower, slot, bytenr);
  2840. WARN_ON(trans->transid == 0);
  2841. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  2842. btrfs_set_header_nritems(lower, nritems + 1);
  2843. btrfs_mark_buffer_dirty(lower);
  2844. }
  2845. /*
  2846. * split the node at the specified level in path in two.
  2847. * The path is corrected to point to the appropriate node after the split
  2848. *
  2849. * Before splitting this tries to make some room in the node by pushing
  2850. * left and right, if either one works, it returns right away.
  2851. *
  2852. * returns 0 on success and < 0 on failure
  2853. */
  2854. static noinline int split_node(struct btrfs_trans_handle *trans,
  2855. struct btrfs_root *root,
  2856. struct btrfs_path *path, int level)
  2857. {
  2858. struct extent_buffer *c;
  2859. struct extent_buffer *split;
  2860. struct btrfs_disk_key disk_key;
  2861. int mid;
  2862. int ret;
  2863. u32 c_nritems;
  2864. c = path->nodes[level];
  2865. WARN_ON(btrfs_header_generation(c) != trans->transid);
  2866. if (c == root->node) {
  2867. /*
  2868. * trying to split the root, lets make a new one
  2869. *
  2870. * tree mod log: We don't log_removal old root in
  2871. * insert_new_root, because that root buffer will be kept as a
  2872. * normal node. We are going to log removal of half of the
  2873. * elements below with tree_mod_log_eb_copy. We're holding a
  2874. * tree lock on the buffer, which is why we cannot race with
  2875. * other tree_mod_log users.
  2876. */
  2877. ret = insert_new_root(trans, root, path, level + 1);
  2878. if (ret)
  2879. return ret;
  2880. } else {
  2881. ret = push_nodes_for_insert(trans, root, path, level);
  2882. c = path->nodes[level];
  2883. if (!ret && btrfs_header_nritems(c) <
  2884. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  2885. return 0;
  2886. if (ret < 0)
  2887. return ret;
  2888. }
  2889. c_nritems = btrfs_header_nritems(c);
  2890. mid = (c_nritems + 1) / 2;
  2891. btrfs_node_key(c, &disk_key, mid);
  2892. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  2893. root->root_key.objectid,
  2894. &disk_key, level, c->start, 0);
  2895. if (IS_ERR(split))
  2896. return PTR_ERR(split);
  2897. root_add_used(root, root->nodesize);
  2898. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  2899. btrfs_set_header_level(split, btrfs_header_level(c));
  2900. btrfs_set_header_bytenr(split, split->start);
  2901. btrfs_set_header_generation(split, trans->transid);
  2902. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  2903. btrfs_set_header_owner(split, root->root_key.objectid);
  2904. write_extent_buffer(split, root->fs_info->fsid,
  2905. (unsigned long)btrfs_header_fsid(split),
  2906. BTRFS_FSID_SIZE);
  2907. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  2908. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  2909. BTRFS_UUID_SIZE);
  2910. tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
  2911. copy_extent_buffer(split, c,
  2912. btrfs_node_key_ptr_offset(0),
  2913. btrfs_node_key_ptr_offset(mid),
  2914. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  2915. btrfs_set_header_nritems(split, c_nritems - mid);
  2916. btrfs_set_header_nritems(c, mid);
  2917. ret = 0;
  2918. btrfs_mark_buffer_dirty(c);
  2919. btrfs_mark_buffer_dirty(split);
  2920. insert_ptr(trans, root, path, &disk_key, split->start,
  2921. path->slots[level + 1] + 1, level + 1);
  2922. if (path->slots[level] >= mid) {
  2923. path->slots[level] -= mid;
  2924. btrfs_tree_unlock(c);
  2925. free_extent_buffer(c);
  2926. path->nodes[level] = split;
  2927. path->slots[level + 1] += 1;
  2928. } else {
  2929. btrfs_tree_unlock(split);
  2930. free_extent_buffer(split);
  2931. }
  2932. return ret;
  2933. }
  2934. /*
  2935. * how many bytes are required to store the items in a leaf. start
  2936. * and nr indicate which items in the leaf to check. This totals up the
  2937. * space used both by the item structs and the item data
  2938. */
  2939. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2940. {
  2941. struct btrfs_item *start_item;
  2942. struct btrfs_item *end_item;
  2943. struct btrfs_map_token token;
  2944. int data_len;
  2945. int nritems = btrfs_header_nritems(l);
  2946. int end = min(nritems, start + nr) - 1;
  2947. if (!nr)
  2948. return 0;
  2949. btrfs_init_map_token(&token);
  2950. start_item = btrfs_item_nr(l, start);
  2951. end_item = btrfs_item_nr(l, end);
  2952. data_len = btrfs_token_item_offset(l, start_item, &token) +
  2953. btrfs_token_item_size(l, start_item, &token);
  2954. data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
  2955. data_len += sizeof(struct btrfs_item) * nr;
  2956. WARN_ON(data_len < 0);
  2957. return data_len;
  2958. }
  2959. /*
  2960. * The space between the end of the leaf items and
  2961. * the start of the leaf data. IOW, how much room
  2962. * the leaf has left for both items and data
  2963. */
  2964. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2965. struct extent_buffer *leaf)
  2966. {
  2967. int nritems = btrfs_header_nritems(leaf);
  2968. int ret;
  2969. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2970. if (ret < 0) {
  2971. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2972. "used %d nritems %d\n",
  2973. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2974. leaf_space_used(leaf, 0, nritems), nritems);
  2975. }
  2976. return ret;
  2977. }
  2978. /*
  2979. * min slot controls the lowest index we're willing to push to the
  2980. * right. We'll push up to and including min_slot, but no lower
  2981. */
  2982. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2983. struct btrfs_root *root,
  2984. struct btrfs_path *path,
  2985. int data_size, int empty,
  2986. struct extent_buffer *right,
  2987. int free_space, u32 left_nritems,
  2988. u32 min_slot)
  2989. {
  2990. struct extent_buffer *left = path->nodes[0];
  2991. struct extent_buffer *upper = path->nodes[1];
  2992. struct btrfs_map_token token;
  2993. struct btrfs_disk_key disk_key;
  2994. int slot;
  2995. u32 i;
  2996. int push_space = 0;
  2997. int push_items = 0;
  2998. struct btrfs_item *item;
  2999. u32 nr;
  3000. u32 right_nritems;
  3001. u32 data_end;
  3002. u32 this_item_size;
  3003. btrfs_init_map_token(&token);
  3004. if (empty)
  3005. nr = 0;
  3006. else
  3007. nr = max_t(u32, 1, min_slot);
  3008. if (path->slots[0] >= left_nritems)
  3009. push_space += data_size;
  3010. slot = path->slots[1];
  3011. i = left_nritems - 1;
  3012. while (i >= nr) {
  3013. item = btrfs_item_nr(left, i);
  3014. if (!empty && push_items > 0) {
  3015. if (path->slots[0] > i)
  3016. break;
  3017. if (path->slots[0] == i) {
  3018. int space = btrfs_leaf_free_space(root, left);
  3019. if (space + push_space * 2 > free_space)
  3020. break;
  3021. }
  3022. }
  3023. if (path->slots[0] == i)
  3024. push_space += data_size;
  3025. this_item_size = btrfs_item_size(left, item);
  3026. if (this_item_size + sizeof(*item) + push_space > free_space)
  3027. break;
  3028. push_items++;
  3029. push_space += this_item_size + sizeof(*item);
  3030. if (i == 0)
  3031. break;
  3032. i--;
  3033. }
  3034. if (push_items == 0)
  3035. goto out_unlock;
  3036. WARN_ON(!empty && push_items == left_nritems);
  3037. /* push left to right */
  3038. right_nritems = btrfs_header_nritems(right);
  3039. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  3040. push_space -= leaf_data_end(root, left);
  3041. /* make room in the right data area */
  3042. data_end = leaf_data_end(root, right);
  3043. memmove_extent_buffer(right,
  3044. btrfs_leaf_data(right) + data_end - push_space,
  3045. btrfs_leaf_data(right) + data_end,
  3046. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  3047. /* copy from the left data area */
  3048. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  3049. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  3050. btrfs_leaf_data(left) + leaf_data_end(root, left),
  3051. push_space);
  3052. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  3053. btrfs_item_nr_offset(0),
  3054. right_nritems * sizeof(struct btrfs_item));
  3055. /* copy the items from left to right */
  3056. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  3057. btrfs_item_nr_offset(left_nritems - push_items),
  3058. push_items * sizeof(struct btrfs_item));
  3059. /* update the item pointers */
  3060. right_nritems += push_items;
  3061. btrfs_set_header_nritems(right, right_nritems);
  3062. push_space = BTRFS_LEAF_DATA_SIZE(root);
  3063. for (i = 0; i < right_nritems; i++) {
  3064. item = btrfs_item_nr(right, i);
  3065. push_space -= btrfs_token_item_size(right, item, &token);
  3066. btrfs_set_token_item_offset(right, item, push_space, &token);
  3067. }
  3068. left_nritems -= push_items;
  3069. btrfs_set_header_nritems(left, left_nritems);
  3070. if (left_nritems)
  3071. btrfs_mark_buffer_dirty(left);
  3072. else
  3073. clean_tree_block(trans, root, left);
  3074. btrfs_mark_buffer_dirty(right);
  3075. btrfs_item_key(right, &disk_key, 0);
  3076. btrfs_set_node_key(upper, &disk_key, slot + 1);
  3077. btrfs_mark_buffer_dirty(upper);
  3078. /* then fixup the leaf pointer in the path */
  3079. if (path->slots[0] >= left_nritems) {
  3080. path->slots[0] -= left_nritems;
  3081. if (btrfs_header_nritems(path->nodes[0]) == 0)
  3082. clean_tree_block(trans, root, path->nodes[0]);
  3083. btrfs_tree_unlock(path->nodes[0]);
  3084. free_extent_buffer(path->nodes[0]);
  3085. path->nodes[0] = right;
  3086. path->slots[1] += 1;
  3087. } else {
  3088. btrfs_tree_unlock(right);
  3089. free_extent_buffer(right);
  3090. }
  3091. return 0;
  3092. out_unlock:
  3093. btrfs_tree_unlock(right);
  3094. free_extent_buffer(right);
  3095. return 1;
  3096. }
  3097. /*
  3098. * push some data in the path leaf to the right, trying to free up at
  3099. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  3100. *
  3101. * returns 1 if the push failed because the other node didn't have enough
  3102. * room, 0 if everything worked out and < 0 if there were major errors.
  3103. *
  3104. * this will push starting from min_slot to the end of the leaf. It won't
  3105. * push any slot lower than min_slot
  3106. */
  3107. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  3108. *root, struct btrfs_path *path,
  3109. int min_data_size, int data_size,
  3110. int empty, u32 min_slot)
  3111. {
  3112. struct extent_buffer *left = path->nodes[0];
  3113. struct extent_buffer *right;
  3114. struct extent_buffer *upper;
  3115. int slot;
  3116. int free_space;
  3117. u32 left_nritems;
  3118. int ret;
  3119. if (!path->nodes[1])
  3120. return 1;
  3121. slot = path->slots[1];
  3122. upper = path->nodes[1];
  3123. if (slot >= btrfs_header_nritems(upper) - 1)
  3124. return 1;
  3125. btrfs_assert_tree_locked(path->nodes[1]);
  3126. right = read_node_slot(root, upper, slot + 1);
  3127. if (right == NULL)
  3128. return 1;
  3129. btrfs_tree_lock(right);
  3130. btrfs_set_lock_blocking(right);
  3131. free_space = btrfs_leaf_free_space(root, right);
  3132. if (free_space < data_size)
  3133. goto out_unlock;
  3134. /* cow and double check */
  3135. ret = btrfs_cow_block(trans, root, right, upper,
  3136. slot + 1, &right);
  3137. if (ret)
  3138. goto out_unlock;
  3139. free_space = btrfs_leaf_free_space(root, right);
  3140. if (free_space < data_size)
  3141. goto out_unlock;
  3142. left_nritems = btrfs_header_nritems(left);
  3143. if (left_nritems == 0)
  3144. goto out_unlock;
  3145. return __push_leaf_right(trans, root, path, min_data_size, empty,
  3146. right, free_space, left_nritems, min_slot);
  3147. out_unlock:
  3148. btrfs_tree_unlock(right);
  3149. free_extent_buffer(right);
  3150. return 1;
  3151. }
  3152. /*
  3153. * push some data in the path leaf to the left, trying to free up at
  3154. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  3155. *
  3156. * max_slot can put a limit on how far into the leaf we'll push items. The
  3157. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  3158. * items
  3159. */
  3160. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  3161. struct btrfs_root *root,
  3162. struct btrfs_path *path, int data_size,
  3163. int empty, struct extent_buffer *left,
  3164. int free_space, u32 right_nritems,
  3165. u32 max_slot)
  3166. {
  3167. struct btrfs_disk_key disk_key;
  3168. struct extent_buffer *right = path->nodes[0];
  3169. int i;
  3170. int push_space = 0;
  3171. int push_items = 0;
  3172. struct btrfs_item *item;
  3173. u32 old_left_nritems;
  3174. u32 nr;
  3175. int ret = 0;
  3176. u32 this_item_size;
  3177. u32 old_left_item_size;
  3178. struct btrfs_map_token token;
  3179. btrfs_init_map_token(&token);
  3180. if (empty)
  3181. nr = min(right_nritems, max_slot);
  3182. else
  3183. nr = min(right_nritems - 1, max_slot);
  3184. for (i = 0; i < nr; i++) {
  3185. item = btrfs_item_nr(right, i);
  3186. if (!empty && push_items > 0) {
  3187. if (path->slots[0] < i)
  3188. break;
  3189. if (path->slots[0] == i) {
  3190. int space = btrfs_leaf_free_space(root, right);
  3191. if (space + push_space * 2 > free_space)
  3192. break;
  3193. }
  3194. }
  3195. if (path->slots[0] == i)
  3196. push_space += data_size;
  3197. this_item_size = btrfs_item_size(right, item);
  3198. if (this_item_size + sizeof(*item) + push_space > free_space)
  3199. break;
  3200. push_items++;
  3201. push_space += this_item_size + sizeof(*item);
  3202. }
  3203. if (push_items == 0) {
  3204. ret = 1;
  3205. goto out;
  3206. }
  3207. if (!empty && push_items == btrfs_header_nritems(right))
  3208. WARN_ON(1);
  3209. /* push data from right to left */
  3210. copy_extent_buffer(left, right,
  3211. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  3212. btrfs_item_nr_offset(0),
  3213. push_items * sizeof(struct btrfs_item));
  3214. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  3215. btrfs_item_offset_nr(right, push_items - 1);
  3216. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  3217. leaf_data_end(root, left) - push_space,
  3218. btrfs_leaf_data(right) +
  3219. btrfs_item_offset_nr(right, push_items - 1),
  3220. push_space);
  3221. old_left_nritems = btrfs_header_nritems(left);
  3222. BUG_ON(old_left_nritems <= 0);
  3223. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  3224. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  3225. u32 ioff;
  3226. item = btrfs_item_nr(left, i);
  3227. ioff = btrfs_token_item_offset(left, item, &token);
  3228. btrfs_set_token_item_offset(left, item,
  3229. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
  3230. &token);
  3231. }
  3232. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  3233. /* fixup right node */
  3234. if (push_items > right_nritems)
  3235. WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
  3236. right_nritems);
  3237. if (push_items < right_nritems) {
  3238. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  3239. leaf_data_end(root, right);
  3240. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  3241. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  3242. btrfs_leaf_data(right) +
  3243. leaf_data_end(root, right), push_space);
  3244. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  3245. btrfs_item_nr_offset(push_items),
  3246. (btrfs_header_nritems(right) - push_items) *
  3247. sizeof(struct btrfs_item));
  3248. }
  3249. right_nritems -= push_items;
  3250. btrfs_set_header_nritems(right, right_nritems);
  3251. push_space = BTRFS_LEAF_DATA_SIZE(root);
  3252. for (i = 0; i < right_nritems; i++) {
  3253. item = btrfs_item_nr(right, i);
  3254. push_space = push_space - btrfs_token_item_size(right,
  3255. item, &token);
  3256. btrfs_set_token_item_offset(right, item, push_space, &token);
  3257. }
  3258. btrfs_mark_buffer_dirty(left);
  3259. if (right_nritems)
  3260. btrfs_mark_buffer_dirty(right);
  3261. else
  3262. clean_tree_block(trans, root, right);
  3263. btrfs_item_key(right, &disk_key, 0);
  3264. fixup_low_keys(root, path, &disk_key, 1);
  3265. /* then fixup the leaf pointer in the path */
  3266. if (path->slots[0] < push_items) {
  3267. path->slots[0] += old_left_nritems;
  3268. btrfs_tree_unlock(path->nodes[0]);
  3269. free_extent_buffer(path->nodes[0]);
  3270. path->nodes[0] = left;
  3271. path->slots[1] -= 1;
  3272. } else {
  3273. btrfs_tree_unlock(left);
  3274. free_extent_buffer(left);
  3275. path->slots[0] -= push_items;
  3276. }
  3277. BUG_ON(path->slots[0] < 0);
  3278. return ret;
  3279. out:
  3280. btrfs_tree_unlock(left);
  3281. free_extent_buffer(left);
  3282. return ret;
  3283. }
  3284. /*
  3285. * push some data in the path leaf to the left, trying to free up at
  3286. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  3287. *
  3288. * max_slot can put a limit on how far into the leaf we'll push items. The
  3289. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  3290. * items
  3291. */
  3292. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  3293. *root, struct btrfs_path *path, int min_data_size,
  3294. int data_size, int empty, u32 max_slot)
  3295. {
  3296. struct extent_buffer *right = path->nodes[0];
  3297. struct extent_buffer *left;
  3298. int slot;
  3299. int free_space;
  3300. u32 right_nritems;
  3301. int ret = 0;
  3302. slot = path->slots[1];
  3303. if (slot == 0)
  3304. return 1;
  3305. if (!path->nodes[1])
  3306. return 1;
  3307. right_nritems = btrfs_header_nritems(right);
  3308. if (right_nritems == 0)
  3309. return 1;
  3310. btrfs_assert_tree_locked(path->nodes[1]);
  3311. left = read_node_slot(root, path->nodes[1], slot - 1);
  3312. if (left == NULL)
  3313. return 1;
  3314. btrfs_tree_lock(left);
  3315. btrfs_set_lock_blocking(left);
  3316. free_space = btrfs_leaf_free_space(root, left);
  3317. if (free_space < data_size) {
  3318. ret = 1;
  3319. goto out;
  3320. }
  3321. /* cow and double check */
  3322. ret = btrfs_cow_block(trans, root, left,
  3323. path->nodes[1], slot - 1, &left);
  3324. if (ret) {
  3325. /* we hit -ENOSPC, but it isn't fatal here */
  3326. if (ret == -ENOSPC)
  3327. ret = 1;
  3328. goto out;
  3329. }
  3330. free_space = btrfs_leaf_free_space(root, left);
  3331. if (free_space < data_size) {
  3332. ret = 1;
  3333. goto out;
  3334. }
  3335. return __push_leaf_left(trans, root, path, min_data_size,
  3336. empty, left, free_space, right_nritems,
  3337. max_slot);
  3338. out:
  3339. btrfs_tree_unlock(left);
  3340. free_extent_buffer(left);
  3341. return ret;
  3342. }
  3343. /*
  3344. * split the path's leaf in two, making sure there is at least data_size
  3345. * available for the resulting leaf level of the path.
  3346. */
  3347. static noinline void copy_for_split(struct btrfs_trans_handle *trans,
  3348. struct btrfs_root *root,
  3349. struct btrfs_path *path,
  3350. struct extent_buffer *l,
  3351. struct extent_buffer *right,
  3352. int slot, int mid, int nritems)
  3353. {
  3354. int data_copy_size;
  3355. int rt_data_off;
  3356. int i;
  3357. struct btrfs_disk_key disk_key;
  3358. struct btrfs_map_token token;
  3359. btrfs_init_map_token(&token);
  3360. nritems = nritems - mid;
  3361. btrfs_set_header_nritems(right, nritems);
  3362. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  3363. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  3364. btrfs_item_nr_offset(mid),
  3365. nritems * sizeof(struct btrfs_item));
  3366. copy_extent_buffer(right, l,
  3367. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  3368. data_copy_size, btrfs_leaf_data(l) +
  3369. leaf_data_end(root, l), data_copy_size);
  3370. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  3371. btrfs_item_end_nr(l, mid);
  3372. for (i = 0; i < nritems; i++) {
  3373. struct btrfs_item *item = btrfs_item_nr(right, i);
  3374. u32 ioff;
  3375. ioff = btrfs_token_item_offset(right, item, &token);
  3376. btrfs_set_token_item_offset(right, item,
  3377. ioff + rt_data_off, &token);
  3378. }
  3379. btrfs_set_header_nritems(l, mid);
  3380. btrfs_item_key(right, &disk_key, 0);
  3381. insert_ptr(trans, root, path, &disk_key, right->start,
  3382. path->slots[1] + 1, 1);
  3383. btrfs_mark_buffer_dirty(right);
  3384. btrfs_mark_buffer_dirty(l);
  3385. BUG_ON(path->slots[0] != slot);
  3386. if (mid <= slot) {
  3387. btrfs_tree_unlock(path->nodes[0]);
  3388. free_extent_buffer(path->nodes[0]);
  3389. path->nodes[0] = right;
  3390. path->slots[0] -= mid;
  3391. path->slots[1] += 1;
  3392. } else {
  3393. btrfs_tree_unlock(right);
  3394. free_extent_buffer(right);
  3395. }
  3396. BUG_ON(path->slots[0] < 0);
  3397. }
  3398. /*
  3399. * double splits happen when we need to insert a big item in the middle
  3400. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  3401. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  3402. * A B C
  3403. *
  3404. * We avoid this by trying to push the items on either side of our target
  3405. * into the adjacent leaves. If all goes well we can avoid the double split
  3406. * completely.
  3407. */
  3408. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  3409. struct btrfs_root *root,
  3410. struct btrfs_path *path,
  3411. int data_size)
  3412. {
  3413. int ret;
  3414. int progress = 0;
  3415. int slot;
  3416. u32 nritems;
  3417. slot = path->slots[0];
  3418. /*
  3419. * try to push all the items after our slot into the
  3420. * right leaf
  3421. */
  3422. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  3423. if (ret < 0)
  3424. return ret;
  3425. if (ret == 0)
  3426. progress++;
  3427. nritems = btrfs_header_nritems(path->nodes[0]);
  3428. /*
  3429. * our goal is to get our slot at the start or end of a leaf. If
  3430. * we've done so we're done
  3431. */
  3432. if (path->slots[0] == 0 || path->slots[0] == nritems)
  3433. return 0;
  3434. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  3435. return 0;
  3436. /* try to push all the items before our slot into the next leaf */
  3437. slot = path->slots[0];
  3438. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  3439. if (ret < 0)
  3440. return ret;
  3441. if (ret == 0)
  3442. progress++;
  3443. if (progress)
  3444. return 0;
  3445. return 1;
  3446. }
  3447. /*
  3448. * split the path's leaf in two, making sure there is at least data_size
  3449. * available for the resulting leaf level of the path.
  3450. *
  3451. * returns 0 if all went well and < 0 on failure.
  3452. */
  3453. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  3454. struct btrfs_root *root,
  3455. struct btrfs_key *ins_key,
  3456. struct btrfs_path *path, int data_size,
  3457. int extend)
  3458. {
  3459. struct btrfs_disk_key disk_key;
  3460. struct extent_buffer *l;
  3461. u32 nritems;
  3462. int mid;
  3463. int slot;
  3464. struct extent_buffer *right;
  3465. int ret = 0;
  3466. int wret;
  3467. int split;
  3468. int num_doubles = 0;
  3469. int tried_avoid_double = 0;
  3470. l = path->nodes[0];
  3471. slot = path->slots[0];
  3472. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  3473. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  3474. return -EOVERFLOW;
  3475. /* first try to make some room by pushing left and right */
  3476. if (data_size && path->nodes[1]) {
  3477. wret = push_leaf_right(trans, root, path, data_size,
  3478. data_size, 0, 0);
  3479. if (wret < 0)
  3480. return wret;
  3481. if (wret) {
  3482. wret = push_leaf_left(trans, root, path, data_size,
  3483. data_size, 0, (u32)-1);
  3484. if (wret < 0)
  3485. return wret;
  3486. }
  3487. l = path->nodes[0];
  3488. /* did the pushes work? */
  3489. if (btrfs_leaf_free_space(root, l) >= data_size)
  3490. return 0;
  3491. }
  3492. if (!path->nodes[1]) {
  3493. ret = insert_new_root(trans, root, path, 1);
  3494. if (ret)
  3495. return ret;
  3496. }
  3497. again:
  3498. split = 1;
  3499. l = path->nodes[0];
  3500. slot = path->slots[0];
  3501. nritems = btrfs_header_nritems(l);
  3502. mid = (nritems + 1) / 2;
  3503. if (mid <= slot) {
  3504. if (nritems == 1 ||
  3505. leaf_space_used(l, mid, nritems - mid) + data_size >
  3506. BTRFS_LEAF_DATA_SIZE(root)) {
  3507. if (slot >= nritems) {
  3508. split = 0;
  3509. } else {
  3510. mid = slot;
  3511. if (mid != nritems &&
  3512. leaf_space_used(l, mid, nritems - mid) +
  3513. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  3514. if (data_size && !tried_avoid_double)
  3515. goto push_for_double;
  3516. split = 2;
  3517. }
  3518. }
  3519. }
  3520. } else {
  3521. if (leaf_space_used(l, 0, mid) + data_size >
  3522. BTRFS_LEAF_DATA_SIZE(root)) {
  3523. if (!extend && data_size && slot == 0) {
  3524. split = 0;
  3525. } else if ((extend || !data_size) && slot == 0) {
  3526. mid = 1;
  3527. } else {
  3528. mid = slot;
  3529. if (mid != nritems &&
  3530. leaf_space_used(l, mid, nritems - mid) +
  3531. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  3532. if (data_size && !tried_avoid_double)
  3533. goto push_for_double;
  3534. split = 2 ;
  3535. }
  3536. }
  3537. }
  3538. }
  3539. if (split == 0)
  3540. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  3541. else
  3542. btrfs_item_key(l, &disk_key, mid);
  3543. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  3544. root->root_key.objectid,
  3545. &disk_key, 0, l->start, 0);
  3546. if (IS_ERR(right))
  3547. return PTR_ERR(right);
  3548. root_add_used(root, root->leafsize);
  3549. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  3550. btrfs_set_header_bytenr(right, right->start);
  3551. btrfs_set_header_generation(right, trans->transid);
  3552. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  3553. btrfs_set_header_owner(right, root->root_key.objectid);
  3554. btrfs_set_header_level(right, 0);
  3555. write_extent_buffer(right, root->fs_info->fsid,
  3556. (unsigned long)btrfs_header_fsid(right),
  3557. BTRFS_FSID_SIZE);
  3558. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  3559. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  3560. BTRFS_UUID_SIZE);
  3561. if (split == 0) {
  3562. if (mid <= slot) {
  3563. btrfs_set_header_nritems(right, 0);
  3564. insert_ptr(trans, root, path, &disk_key, right->start,
  3565. path->slots[1] + 1, 1);
  3566. btrfs_tree_unlock(path->nodes[0]);
  3567. free_extent_buffer(path->nodes[0]);
  3568. path->nodes[0] = right;
  3569. path->slots[0] = 0;
  3570. path->slots[1] += 1;
  3571. } else {
  3572. btrfs_set_header_nritems(right, 0);
  3573. insert_ptr(trans, root, path, &disk_key, right->start,
  3574. path->slots[1], 1);
  3575. btrfs_tree_unlock(path->nodes[0]);
  3576. free_extent_buffer(path->nodes[0]);
  3577. path->nodes[0] = right;
  3578. path->slots[0] = 0;
  3579. if (path->slots[1] == 0)
  3580. fixup_low_keys(root, path, &disk_key, 1);
  3581. }
  3582. btrfs_mark_buffer_dirty(right);
  3583. return ret;
  3584. }
  3585. copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  3586. if (split == 2) {
  3587. BUG_ON(num_doubles != 0);
  3588. num_doubles++;
  3589. goto again;
  3590. }
  3591. return 0;
  3592. push_for_double:
  3593. push_for_double_split(trans, root, path, data_size);
  3594. tried_avoid_double = 1;
  3595. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  3596. return 0;
  3597. goto again;
  3598. }
  3599. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  3600. struct btrfs_root *root,
  3601. struct btrfs_path *path, int ins_len)
  3602. {
  3603. struct btrfs_key key;
  3604. struct extent_buffer *leaf;
  3605. struct btrfs_file_extent_item *fi;
  3606. u64 extent_len = 0;
  3607. u32 item_size;
  3608. int ret;
  3609. leaf = path->nodes[0];
  3610. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3611. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  3612. key.type != BTRFS_EXTENT_CSUM_KEY);
  3613. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  3614. return 0;
  3615. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  3616. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  3617. fi = btrfs_item_ptr(leaf, path->slots[0],
  3618. struct btrfs_file_extent_item);
  3619. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  3620. }
  3621. btrfs_release_path(path);
  3622. path->keep_locks = 1;
  3623. path->search_for_split = 1;
  3624. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  3625. path->search_for_split = 0;
  3626. if (ret < 0)
  3627. goto err;
  3628. ret = -EAGAIN;
  3629. leaf = path->nodes[0];
  3630. /* if our item isn't there or got smaller, return now */
  3631. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  3632. goto err;
  3633. /* the leaf has changed, it now has room. return now */
  3634. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  3635. goto err;
  3636. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  3637. fi = btrfs_item_ptr(leaf, path->slots[0],
  3638. struct btrfs_file_extent_item);
  3639. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  3640. goto err;
  3641. }
  3642. btrfs_set_path_blocking(path);
  3643. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  3644. if (ret)
  3645. goto err;
  3646. path->keep_locks = 0;
  3647. btrfs_unlock_up_safe(path, 1);
  3648. return 0;
  3649. err:
  3650. path->keep_locks = 0;
  3651. return ret;
  3652. }
  3653. static noinline int split_item(struct btrfs_trans_handle *trans,
  3654. struct btrfs_root *root,
  3655. struct btrfs_path *path,
  3656. struct btrfs_key *new_key,
  3657. unsigned long split_offset)
  3658. {
  3659. struct extent_buffer *leaf;
  3660. struct btrfs_item *item;
  3661. struct btrfs_item *new_item;
  3662. int slot;
  3663. char *buf;
  3664. u32 nritems;
  3665. u32 item_size;
  3666. u32 orig_offset;
  3667. struct btrfs_disk_key disk_key;
  3668. leaf = path->nodes[0];
  3669. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  3670. btrfs_set_path_blocking(path);
  3671. item = btrfs_item_nr(leaf, path->slots[0]);
  3672. orig_offset = btrfs_item_offset(leaf, item);
  3673. item_size = btrfs_item_size(leaf, item);
  3674. buf = kmalloc(item_size, GFP_NOFS);
  3675. if (!buf)
  3676. return -ENOMEM;
  3677. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  3678. path->slots[0]), item_size);
  3679. slot = path->slots[0] + 1;
  3680. nritems = btrfs_header_nritems(leaf);
  3681. if (slot != nritems) {
  3682. /* shift the items */
  3683. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  3684. btrfs_item_nr_offset(slot),
  3685. (nritems - slot) * sizeof(struct btrfs_item));
  3686. }
  3687. btrfs_cpu_key_to_disk(&disk_key, new_key);
  3688. btrfs_set_item_key(leaf, &disk_key, slot);
  3689. new_item = btrfs_item_nr(leaf, slot);
  3690. btrfs_set_item_offset(leaf, new_item, orig_offset);
  3691. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  3692. btrfs_set_item_offset(leaf, item,
  3693. orig_offset + item_size - split_offset);
  3694. btrfs_set_item_size(leaf, item, split_offset);
  3695. btrfs_set_header_nritems(leaf, nritems + 1);
  3696. /* write the data for the start of the original item */
  3697. write_extent_buffer(leaf, buf,
  3698. btrfs_item_ptr_offset(leaf, path->slots[0]),
  3699. split_offset);
  3700. /* write the data for the new item */
  3701. write_extent_buffer(leaf, buf + split_offset,
  3702. btrfs_item_ptr_offset(leaf, slot),
  3703. item_size - split_offset);
  3704. btrfs_mark_buffer_dirty(leaf);
  3705. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  3706. kfree(buf);
  3707. return 0;
  3708. }
  3709. /*
  3710. * This function splits a single item into two items,
  3711. * giving 'new_key' to the new item and splitting the
  3712. * old one at split_offset (from the start of the item).
  3713. *
  3714. * The path may be released by this operation. After
  3715. * the split, the path is pointing to the old item. The
  3716. * new item is going to be in the same node as the old one.
  3717. *
  3718. * Note, the item being split must be smaller enough to live alone on
  3719. * a tree block with room for one extra struct btrfs_item
  3720. *
  3721. * This allows us to split the item in place, keeping a lock on the
  3722. * leaf the entire time.
  3723. */
  3724. int btrfs_split_item(struct btrfs_trans_handle *trans,
  3725. struct btrfs_root *root,
  3726. struct btrfs_path *path,
  3727. struct btrfs_key *new_key,
  3728. unsigned long split_offset)
  3729. {
  3730. int ret;
  3731. ret = setup_leaf_for_split(trans, root, path,
  3732. sizeof(struct btrfs_item));
  3733. if (ret)
  3734. return ret;
  3735. ret = split_item(trans, root, path, new_key, split_offset);
  3736. return ret;
  3737. }
  3738. /*
  3739. * This function duplicate a item, giving 'new_key' to the new item.
  3740. * It guarantees both items live in the same tree leaf and the new item
  3741. * is contiguous with the original item.
  3742. *
  3743. * This allows us to split file extent in place, keeping a lock on the
  3744. * leaf the entire time.
  3745. */
  3746. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  3747. struct btrfs_root *root,
  3748. struct btrfs_path *path,
  3749. struct btrfs_key *new_key)
  3750. {
  3751. struct extent_buffer *leaf;
  3752. int ret;
  3753. u32 item_size;
  3754. leaf = path->nodes[0];
  3755. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  3756. ret = setup_leaf_for_split(trans, root, path,
  3757. item_size + sizeof(struct btrfs_item));
  3758. if (ret)
  3759. return ret;
  3760. path->slots[0]++;
  3761. setup_items_for_insert(root, path, new_key, &item_size,
  3762. item_size, item_size +
  3763. sizeof(struct btrfs_item), 1);
  3764. leaf = path->nodes[0];
  3765. memcpy_extent_buffer(leaf,
  3766. btrfs_item_ptr_offset(leaf, path->slots[0]),
  3767. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  3768. item_size);
  3769. return 0;
  3770. }
  3771. /*
  3772. * make the item pointed to by the path smaller. new_size indicates
  3773. * how small to make it, and from_end tells us if we just chop bytes
  3774. * off the end of the item or if we shift the item to chop bytes off
  3775. * the front.
  3776. */
  3777. void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
  3778. u32 new_size, int from_end)
  3779. {
  3780. int slot;
  3781. struct extent_buffer *leaf;
  3782. struct btrfs_item *item;
  3783. u32 nritems;
  3784. unsigned int data_end;
  3785. unsigned int old_data_start;
  3786. unsigned int old_size;
  3787. unsigned int size_diff;
  3788. int i;
  3789. struct btrfs_map_token token;
  3790. btrfs_init_map_token(&token);
  3791. leaf = path->nodes[0];
  3792. slot = path->slots[0];
  3793. old_size = btrfs_item_size_nr(leaf, slot);
  3794. if (old_size == new_size)
  3795. return;
  3796. nritems = btrfs_header_nritems(leaf);
  3797. data_end = leaf_data_end(root, leaf);
  3798. old_data_start = btrfs_item_offset_nr(leaf, slot);
  3799. size_diff = old_size - new_size;
  3800. BUG_ON(slot < 0);
  3801. BUG_ON(slot >= nritems);
  3802. /*
  3803. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3804. */
  3805. /* first correct the data pointers */
  3806. for (i = slot; i < nritems; i++) {
  3807. u32 ioff;
  3808. item = btrfs_item_nr(leaf, i);
  3809. ioff = btrfs_token_item_offset(leaf, item, &token);
  3810. btrfs_set_token_item_offset(leaf, item,
  3811. ioff + size_diff, &token);
  3812. }
  3813. /* shift the data */
  3814. if (from_end) {
  3815. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3816. data_end + size_diff, btrfs_leaf_data(leaf) +
  3817. data_end, old_data_start + new_size - data_end);
  3818. } else {
  3819. struct btrfs_disk_key disk_key;
  3820. u64 offset;
  3821. btrfs_item_key(leaf, &disk_key, slot);
  3822. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  3823. unsigned long ptr;
  3824. struct btrfs_file_extent_item *fi;
  3825. fi = btrfs_item_ptr(leaf, slot,
  3826. struct btrfs_file_extent_item);
  3827. fi = (struct btrfs_file_extent_item *)(
  3828. (unsigned long)fi - size_diff);
  3829. if (btrfs_file_extent_type(leaf, fi) ==
  3830. BTRFS_FILE_EXTENT_INLINE) {
  3831. ptr = btrfs_item_ptr_offset(leaf, slot);
  3832. memmove_extent_buffer(leaf, ptr,
  3833. (unsigned long)fi,
  3834. offsetof(struct btrfs_file_extent_item,
  3835. disk_bytenr));
  3836. }
  3837. }
  3838. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3839. data_end + size_diff, btrfs_leaf_data(leaf) +
  3840. data_end, old_data_start - data_end);
  3841. offset = btrfs_disk_key_offset(&disk_key);
  3842. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  3843. btrfs_set_item_key(leaf, &disk_key, slot);
  3844. if (slot == 0)
  3845. fixup_low_keys(root, path, &disk_key, 1);
  3846. }
  3847. item = btrfs_item_nr(leaf, slot);
  3848. btrfs_set_item_size(leaf, item, new_size);
  3849. btrfs_mark_buffer_dirty(leaf);
  3850. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3851. btrfs_print_leaf(root, leaf);
  3852. BUG();
  3853. }
  3854. }
  3855. /*
  3856. * make the item pointed to by the path bigger, data_size is the added size.
  3857. */
  3858. void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
  3859. u32 data_size)
  3860. {
  3861. int slot;
  3862. struct extent_buffer *leaf;
  3863. struct btrfs_item *item;
  3864. u32 nritems;
  3865. unsigned int data_end;
  3866. unsigned int old_data;
  3867. unsigned int old_size;
  3868. int i;
  3869. struct btrfs_map_token token;
  3870. btrfs_init_map_token(&token);
  3871. leaf = path->nodes[0];
  3872. nritems = btrfs_header_nritems(leaf);
  3873. data_end = leaf_data_end(root, leaf);
  3874. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  3875. btrfs_print_leaf(root, leaf);
  3876. BUG();
  3877. }
  3878. slot = path->slots[0];
  3879. old_data = btrfs_item_end_nr(leaf, slot);
  3880. BUG_ON(slot < 0);
  3881. if (slot >= nritems) {
  3882. btrfs_print_leaf(root, leaf);
  3883. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  3884. slot, nritems);
  3885. BUG_ON(1);
  3886. }
  3887. /*
  3888. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3889. */
  3890. /* first correct the data pointers */
  3891. for (i = slot; i < nritems; i++) {
  3892. u32 ioff;
  3893. item = btrfs_item_nr(leaf, i);
  3894. ioff = btrfs_token_item_offset(leaf, item, &token);
  3895. btrfs_set_token_item_offset(leaf, item,
  3896. ioff - data_size, &token);
  3897. }
  3898. /* shift the data */
  3899. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3900. data_end - data_size, btrfs_leaf_data(leaf) +
  3901. data_end, old_data - data_end);
  3902. data_end = old_data;
  3903. old_size = btrfs_item_size_nr(leaf, slot);
  3904. item = btrfs_item_nr(leaf, slot);
  3905. btrfs_set_item_size(leaf, item, old_size + data_size);
  3906. btrfs_mark_buffer_dirty(leaf);
  3907. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3908. btrfs_print_leaf(root, leaf);
  3909. BUG();
  3910. }
  3911. }
  3912. /*
  3913. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3914. * to save stack depth by doing the bulk of the work in a function
  3915. * that doesn't call btrfs_search_slot
  3916. */
  3917. void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
  3918. struct btrfs_key *cpu_key, u32 *data_size,
  3919. u32 total_data, u32 total_size, int nr)
  3920. {
  3921. struct btrfs_item *item;
  3922. int i;
  3923. u32 nritems;
  3924. unsigned int data_end;
  3925. struct btrfs_disk_key disk_key;
  3926. struct extent_buffer *leaf;
  3927. int slot;
  3928. struct btrfs_map_token token;
  3929. btrfs_init_map_token(&token);
  3930. leaf = path->nodes[0];
  3931. slot = path->slots[0];
  3932. nritems = btrfs_header_nritems(leaf);
  3933. data_end = leaf_data_end(root, leaf);
  3934. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3935. btrfs_print_leaf(root, leaf);
  3936. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3937. total_size, btrfs_leaf_free_space(root, leaf));
  3938. BUG();
  3939. }
  3940. if (slot != nritems) {
  3941. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3942. if (old_data < data_end) {
  3943. btrfs_print_leaf(root, leaf);
  3944. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3945. slot, old_data, data_end);
  3946. BUG_ON(1);
  3947. }
  3948. /*
  3949. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3950. */
  3951. /* first correct the data pointers */
  3952. for (i = slot; i < nritems; i++) {
  3953. u32 ioff;
  3954. item = btrfs_item_nr(leaf, i);
  3955. ioff = btrfs_token_item_offset(leaf, item, &token);
  3956. btrfs_set_token_item_offset(leaf, item,
  3957. ioff - total_data, &token);
  3958. }
  3959. /* shift the items */
  3960. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3961. btrfs_item_nr_offset(slot),
  3962. (nritems - slot) * sizeof(struct btrfs_item));
  3963. /* shift the data */
  3964. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3965. data_end - total_data, btrfs_leaf_data(leaf) +
  3966. data_end, old_data - data_end);
  3967. data_end = old_data;
  3968. }
  3969. /* setup the item for the new data */
  3970. for (i = 0; i < nr; i++) {
  3971. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3972. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3973. item = btrfs_item_nr(leaf, slot + i);
  3974. btrfs_set_token_item_offset(leaf, item,
  3975. data_end - data_size[i], &token);
  3976. data_end -= data_size[i];
  3977. btrfs_set_token_item_size(leaf, item, data_size[i], &token);
  3978. }
  3979. btrfs_set_header_nritems(leaf, nritems + nr);
  3980. if (slot == 0) {
  3981. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3982. fixup_low_keys(root, path, &disk_key, 1);
  3983. }
  3984. btrfs_unlock_up_safe(path, 1);
  3985. btrfs_mark_buffer_dirty(leaf);
  3986. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3987. btrfs_print_leaf(root, leaf);
  3988. BUG();
  3989. }
  3990. }
  3991. /*
  3992. * Given a key and some data, insert items into the tree.
  3993. * This does all the path init required, making room in the tree if needed.
  3994. */
  3995. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3996. struct btrfs_root *root,
  3997. struct btrfs_path *path,
  3998. struct btrfs_key *cpu_key, u32 *data_size,
  3999. int nr)
  4000. {
  4001. int ret = 0;
  4002. int slot;
  4003. int i;
  4004. u32 total_size = 0;
  4005. u32 total_data = 0;
  4006. for (i = 0; i < nr; i++)
  4007. total_data += data_size[i];
  4008. total_size = total_data + (nr * sizeof(struct btrfs_item));
  4009. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  4010. if (ret == 0)
  4011. return -EEXIST;
  4012. if (ret < 0)
  4013. return ret;
  4014. slot = path->slots[0];
  4015. BUG_ON(slot < 0);
  4016. setup_items_for_insert(root, path, cpu_key, data_size,
  4017. total_data, total_size, nr);
  4018. return 0;
  4019. }
  4020. /*
  4021. * Given a key and some data, insert an item into the tree.
  4022. * This does all the path init required, making room in the tree if needed.
  4023. */
  4024. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  4025. *root, struct btrfs_key *cpu_key, void *data, u32
  4026. data_size)
  4027. {
  4028. int ret = 0;
  4029. struct btrfs_path *path;
  4030. struct extent_buffer *leaf;
  4031. unsigned long ptr;
  4032. path = btrfs_alloc_path();
  4033. if (!path)
  4034. return -ENOMEM;
  4035. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  4036. if (!ret) {
  4037. leaf = path->nodes[0];
  4038. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  4039. write_extent_buffer(leaf, data, ptr, data_size);
  4040. btrfs_mark_buffer_dirty(leaf);
  4041. }
  4042. btrfs_free_path(path);
  4043. return ret;
  4044. }
  4045. /*
  4046. * delete the pointer from a given node.
  4047. *
  4048. * the tree should have been previously balanced so the deletion does not
  4049. * empty a node.
  4050. */
  4051. static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  4052. int level, int slot)
  4053. {
  4054. struct extent_buffer *parent = path->nodes[level];
  4055. u32 nritems;
  4056. int ret;
  4057. nritems = btrfs_header_nritems(parent);
  4058. if (slot != nritems - 1) {
  4059. if (level)
  4060. tree_mod_log_eb_move(root->fs_info, parent, slot,
  4061. slot + 1, nritems - slot - 1);
  4062. memmove_extent_buffer(parent,
  4063. btrfs_node_key_ptr_offset(slot),
  4064. btrfs_node_key_ptr_offset(slot + 1),
  4065. sizeof(struct btrfs_key_ptr) *
  4066. (nritems - slot - 1));
  4067. } else if (level) {
  4068. ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
  4069. MOD_LOG_KEY_REMOVE, GFP_NOFS);
  4070. BUG_ON(ret < 0);
  4071. }
  4072. nritems--;
  4073. btrfs_set_header_nritems(parent, nritems);
  4074. if (nritems == 0 && parent == root->node) {
  4075. BUG_ON(btrfs_header_level(root->node) != 1);
  4076. /* just turn the root into a leaf and break */
  4077. btrfs_set_header_level(root->node, 0);
  4078. } else if (slot == 0) {
  4079. struct btrfs_disk_key disk_key;
  4080. btrfs_node_key(parent, &disk_key, 0);
  4081. fixup_low_keys(root, path, &disk_key, level + 1);
  4082. }
  4083. btrfs_mark_buffer_dirty(parent);
  4084. }
  4085. /*
  4086. * a helper function to delete the leaf pointed to by path->slots[1] and
  4087. * path->nodes[1].
  4088. *
  4089. * This deletes the pointer in path->nodes[1] and frees the leaf
  4090. * block extent. zero is returned if it all worked out, < 0 otherwise.
  4091. *
  4092. * The path must have already been setup for deleting the leaf, including
  4093. * all the proper balancing. path->nodes[1] must be locked.
  4094. */
  4095. static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
  4096. struct btrfs_root *root,
  4097. struct btrfs_path *path,
  4098. struct extent_buffer *leaf)
  4099. {
  4100. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  4101. del_ptr(root, path, 1, path->slots[1]);
  4102. /*
  4103. * btrfs_free_extent is expensive, we want to make sure we
  4104. * aren't holding any locks when we call it
  4105. */
  4106. btrfs_unlock_up_safe(path, 0);
  4107. root_sub_used(root, leaf->len);
  4108. extent_buffer_get(leaf);
  4109. btrfs_free_tree_block(trans, root, leaf, 0, 1);
  4110. free_extent_buffer_stale(leaf);
  4111. }
  4112. /*
  4113. * delete the item at the leaf level in path. If that empties
  4114. * the leaf, remove it from the tree
  4115. */
  4116. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  4117. struct btrfs_path *path, int slot, int nr)
  4118. {
  4119. struct extent_buffer *leaf;
  4120. struct btrfs_item *item;
  4121. int last_off;
  4122. int dsize = 0;
  4123. int ret = 0;
  4124. int wret;
  4125. int i;
  4126. u32 nritems;
  4127. struct btrfs_map_token token;
  4128. btrfs_init_map_token(&token);
  4129. leaf = path->nodes[0];
  4130. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  4131. for (i = 0; i < nr; i++)
  4132. dsize += btrfs_item_size_nr(leaf, slot + i);
  4133. nritems = btrfs_header_nritems(leaf);
  4134. if (slot + nr != nritems) {
  4135. int data_end = leaf_data_end(root, leaf);
  4136. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  4137. data_end + dsize,
  4138. btrfs_leaf_data(leaf) + data_end,
  4139. last_off - data_end);
  4140. for (i = slot + nr; i < nritems; i++) {
  4141. u32 ioff;
  4142. item = btrfs_item_nr(leaf, i);
  4143. ioff = btrfs_token_item_offset(leaf, item, &token);
  4144. btrfs_set_token_item_offset(leaf, item,
  4145. ioff + dsize, &token);
  4146. }
  4147. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  4148. btrfs_item_nr_offset(slot + nr),
  4149. sizeof(struct btrfs_item) *
  4150. (nritems - slot - nr));
  4151. }
  4152. btrfs_set_header_nritems(leaf, nritems - nr);
  4153. nritems -= nr;
  4154. /* delete the leaf if we've emptied it */
  4155. if (nritems == 0) {
  4156. if (leaf == root->node) {
  4157. btrfs_set_header_level(leaf, 0);
  4158. } else {
  4159. btrfs_set_path_blocking(path);
  4160. clean_tree_block(trans, root, leaf);
  4161. btrfs_del_leaf(trans, root, path, leaf);
  4162. }
  4163. } else {
  4164. int used = leaf_space_used(leaf, 0, nritems);
  4165. if (slot == 0) {
  4166. struct btrfs_disk_key disk_key;
  4167. btrfs_item_key(leaf, &disk_key, 0);
  4168. fixup_low_keys(root, path, &disk_key, 1);
  4169. }
  4170. /* delete the leaf if it is mostly empty */
  4171. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  4172. /* push_leaf_left fixes the path.
  4173. * make sure the path still points to our leaf
  4174. * for possible call to del_ptr below
  4175. */
  4176. slot = path->slots[1];
  4177. extent_buffer_get(leaf);
  4178. btrfs_set_path_blocking(path);
  4179. wret = push_leaf_left(trans, root, path, 1, 1,
  4180. 1, (u32)-1);
  4181. if (wret < 0 && wret != -ENOSPC)
  4182. ret = wret;
  4183. if (path->nodes[0] == leaf &&
  4184. btrfs_header_nritems(leaf)) {
  4185. wret = push_leaf_right(trans, root, path, 1,
  4186. 1, 1, 0);
  4187. if (wret < 0 && wret != -ENOSPC)
  4188. ret = wret;
  4189. }
  4190. if (btrfs_header_nritems(leaf) == 0) {
  4191. path->slots[1] = slot;
  4192. btrfs_del_leaf(trans, root, path, leaf);
  4193. free_extent_buffer(leaf);
  4194. ret = 0;
  4195. } else {
  4196. /* if we're still in the path, make sure
  4197. * we're dirty. Otherwise, one of the
  4198. * push_leaf functions must have already
  4199. * dirtied this buffer
  4200. */
  4201. if (path->nodes[0] == leaf)
  4202. btrfs_mark_buffer_dirty(leaf);
  4203. free_extent_buffer(leaf);
  4204. }
  4205. } else {
  4206. btrfs_mark_buffer_dirty(leaf);
  4207. }
  4208. }
  4209. return ret;
  4210. }
  4211. /*
  4212. * search the tree again to find a leaf with lesser keys
  4213. * returns 0 if it found something or 1 if there are no lesser leaves.
  4214. * returns < 0 on io errors.
  4215. *
  4216. * This may release the path, and so you may lose any locks held at the
  4217. * time you call it.
  4218. */
  4219. static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  4220. {
  4221. struct btrfs_key key;
  4222. struct btrfs_disk_key found_key;
  4223. int ret;
  4224. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  4225. if (key.offset > 0)
  4226. key.offset--;
  4227. else if (key.type > 0)
  4228. key.type--;
  4229. else if (key.objectid > 0)
  4230. key.objectid--;
  4231. else
  4232. return 1;
  4233. btrfs_release_path(path);
  4234. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  4235. if (ret < 0)
  4236. return ret;
  4237. btrfs_item_key(path->nodes[0], &found_key, 0);
  4238. ret = comp_keys(&found_key, &key);
  4239. if (ret < 0)
  4240. return 0;
  4241. return 1;
  4242. }
  4243. /*
  4244. * A helper function to walk down the tree starting at min_key, and looking
  4245. * for nodes or leaves that are have a minimum transaction id.
  4246. * This is used by the btree defrag code, and tree logging
  4247. *
  4248. * This does not cow, but it does stuff the starting key it finds back
  4249. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  4250. * key and get a writable path.
  4251. *
  4252. * This does lock as it descends, and path->keep_locks should be set
  4253. * to 1 by the caller.
  4254. *
  4255. * This honors path->lowest_level to prevent descent past a given level
  4256. * of the tree.
  4257. *
  4258. * min_trans indicates the oldest transaction that you are interested
  4259. * in walking through. Any nodes or leaves older than min_trans are
  4260. * skipped over (without reading them).
  4261. *
  4262. * returns zero if something useful was found, < 0 on error and 1 if there
  4263. * was nothing in the tree that matched the search criteria.
  4264. */
  4265. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  4266. struct btrfs_key *max_key,
  4267. struct btrfs_path *path,
  4268. u64 min_trans)
  4269. {
  4270. struct extent_buffer *cur;
  4271. struct btrfs_key found_key;
  4272. int slot;
  4273. int sret;
  4274. u32 nritems;
  4275. int level;
  4276. int ret = 1;
  4277. WARN_ON(!path->keep_locks);
  4278. again:
  4279. cur = btrfs_read_lock_root_node(root);
  4280. level = btrfs_header_level(cur);
  4281. WARN_ON(path->nodes[level]);
  4282. path->nodes[level] = cur;
  4283. path->locks[level] = BTRFS_READ_LOCK;
  4284. if (btrfs_header_generation(cur) < min_trans) {
  4285. ret = 1;
  4286. goto out;
  4287. }
  4288. while (1) {
  4289. nritems = btrfs_header_nritems(cur);
  4290. level = btrfs_header_level(cur);
  4291. sret = bin_search(cur, min_key, level, &slot);
  4292. /* at the lowest level, we're done, setup the path and exit */
  4293. if (level == path->lowest_level) {
  4294. if (slot >= nritems)
  4295. goto find_next_key;
  4296. ret = 0;
  4297. path->slots[level] = slot;
  4298. btrfs_item_key_to_cpu(cur, &found_key, slot);
  4299. goto out;
  4300. }
  4301. if (sret && slot > 0)
  4302. slot--;
  4303. /*
  4304. * check this node pointer against the min_trans parameters.
  4305. * If it is too old, old, skip to the next one.
  4306. */
  4307. while (slot < nritems) {
  4308. u64 blockptr;
  4309. u64 gen;
  4310. blockptr = btrfs_node_blockptr(cur, slot);
  4311. gen = btrfs_node_ptr_generation(cur, slot);
  4312. if (gen < min_trans) {
  4313. slot++;
  4314. continue;
  4315. }
  4316. break;
  4317. }
  4318. find_next_key:
  4319. /*
  4320. * we didn't find a candidate key in this node, walk forward
  4321. * and find another one
  4322. */
  4323. if (slot >= nritems) {
  4324. path->slots[level] = slot;
  4325. btrfs_set_path_blocking(path);
  4326. sret = btrfs_find_next_key(root, path, min_key, level,
  4327. min_trans);
  4328. if (sret == 0) {
  4329. btrfs_release_path(path);
  4330. goto again;
  4331. } else {
  4332. goto out;
  4333. }
  4334. }
  4335. /* save our key for returning back */
  4336. btrfs_node_key_to_cpu(cur, &found_key, slot);
  4337. path->slots[level] = slot;
  4338. if (level == path->lowest_level) {
  4339. ret = 0;
  4340. unlock_up(path, level, 1, 0, NULL);
  4341. goto out;
  4342. }
  4343. btrfs_set_path_blocking(path);
  4344. cur = read_node_slot(root, cur, slot);
  4345. BUG_ON(!cur); /* -ENOMEM */
  4346. btrfs_tree_read_lock(cur);
  4347. path->locks[level - 1] = BTRFS_READ_LOCK;
  4348. path->nodes[level - 1] = cur;
  4349. unlock_up(path, level, 1, 0, NULL);
  4350. btrfs_clear_path_blocking(path, NULL, 0);
  4351. }
  4352. out:
  4353. if (ret == 0)
  4354. memcpy(min_key, &found_key, sizeof(found_key));
  4355. btrfs_set_path_blocking(path);
  4356. return ret;
  4357. }
  4358. static void tree_move_down(struct btrfs_root *root,
  4359. struct btrfs_path *path,
  4360. int *level, int root_level)
  4361. {
  4362. BUG_ON(*level == 0);
  4363. path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
  4364. path->slots[*level]);
  4365. path->slots[*level - 1] = 0;
  4366. (*level)--;
  4367. }
  4368. static int tree_move_next_or_upnext(struct btrfs_root *root,
  4369. struct btrfs_path *path,
  4370. int *level, int root_level)
  4371. {
  4372. int ret = 0;
  4373. int nritems;
  4374. nritems = btrfs_header_nritems(path->nodes[*level]);
  4375. path->slots[*level]++;
  4376. while (path->slots[*level] >= nritems) {
  4377. if (*level == root_level)
  4378. return -1;
  4379. /* move upnext */
  4380. path->slots[*level] = 0;
  4381. free_extent_buffer(path->nodes[*level]);
  4382. path->nodes[*level] = NULL;
  4383. (*level)++;
  4384. path->slots[*level]++;
  4385. nritems = btrfs_header_nritems(path->nodes[*level]);
  4386. ret = 1;
  4387. }
  4388. return ret;
  4389. }
  4390. /*
  4391. * Returns 1 if it had to move up and next. 0 is returned if it moved only next
  4392. * or down.
  4393. */
  4394. static int tree_advance(struct btrfs_root *root,
  4395. struct btrfs_path *path,
  4396. int *level, int root_level,
  4397. int allow_down,
  4398. struct btrfs_key *key)
  4399. {
  4400. int ret;
  4401. if (*level == 0 || !allow_down) {
  4402. ret = tree_move_next_or_upnext(root, path, level, root_level);
  4403. } else {
  4404. tree_move_down(root, path, level, root_level);
  4405. ret = 0;
  4406. }
  4407. if (ret >= 0) {
  4408. if (*level == 0)
  4409. btrfs_item_key_to_cpu(path->nodes[*level], key,
  4410. path->slots[*level]);
  4411. else
  4412. btrfs_node_key_to_cpu(path->nodes[*level], key,
  4413. path->slots[*level]);
  4414. }
  4415. return ret;
  4416. }
  4417. static int tree_compare_item(struct btrfs_root *left_root,
  4418. struct btrfs_path *left_path,
  4419. struct btrfs_path *right_path,
  4420. char *tmp_buf)
  4421. {
  4422. int cmp;
  4423. int len1, len2;
  4424. unsigned long off1, off2;
  4425. len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
  4426. len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
  4427. if (len1 != len2)
  4428. return 1;
  4429. off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
  4430. off2 = btrfs_item_ptr_offset(right_path->nodes[0],
  4431. right_path->slots[0]);
  4432. read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
  4433. cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
  4434. if (cmp)
  4435. return 1;
  4436. return 0;
  4437. }
  4438. #define ADVANCE 1
  4439. #define ADVANCE_ONLY_NEXT -1
  4440. /*
  4441. * This function compares two trees and calls the provided callback for
  4442. * every changed/new/deleted item it finds.
  4443. * If shared tree blocks are encountered, whole subtrees are skipped, making
  4444. * the compare pretty fast on snapshotted subvolumes.
  4445. *
  4446. * This currently works on commit roots only. As commit roots are read only,
  4447. * we don't do any locking. The commit roots are protected with transactions.
  4448. * Transactions are ended and rejoined when a commit is tried in between.
  4449. *
  4450. * This function checks for modifications done to the trees while comparing.
  4451. * If it detects a change, it aborts immediately.
  4452. */
  4453. int btrfs_compare_trees(struct btrfs_root *left_root,
  4454. struct btrfs_root *right_root,
  4455. btrfs_changed_cb_t changed_cb, void *ctx)
  4456. {
  4457. int ret;
  4458. int cmp;
  4459. struct btrfs_trans_handle *trans = NULL;
  4460. struct btrfs_path *left_path = NULL;
  4461. struct btrfs_path *right_path = NULL;
  4462. struct btrfs_key left_key;
  4463. struct btrfs_key right_key;
  4464. char *tmp_buf = NULL;
  4465. int left_root_level;
  4466. int right_root_level;
  4467. int left_level;
  4468. int right_level;
  4469. int left_end_reached;
  4470. int right_end_reached;
  4471. int advance_left;
  4472. int advance_right;
  4473. u64 left_blockptr;
  4474. u64 right_blockptr;
  4475. u64 left_start_ctransid;
  4476. u64 right_start_ctransid;
  4477. u64 ctransid;
  4478. left_path = btrfs_alloc_path();
  4479. if (!left_path) {
  4480. ret = -ENOMEM;
  4481. goto out;
  4482. }
  4483. right_path = btrfs_alloc_path();
  4484. if (!right_path) {
  4485. ret = -ENOMEM;
  4486. goto out;
  4487. }
  4488. tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
  4489. if (!tmp_buf) {
  4490. ret = -ENOMEM;
  4491. goto out;
  4492. }
  4493. left_path->search_commit_root = 1;
  4494. left_path->skip_locking = 1;
  4495. right_path->search_commit_root = 1;
  4496. right_path->skip_locking = 1;
  4497. spin_lock(&left_root->root_item_lock);
  4498. left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
  4499. spin_unlock(&left_root->root_item_lock);
  4500. spin_lock(&right_root->root_item_lock);
  4501. right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
  4502. spin_unlock(&right_root->root_item_lock);
  4503. trans = btrfs_join_transaction(left_root);
  4504. if (IS_ERR(trans)) {
  4505. ret = PTR_ERR(trans);
  4506. trans = NULL;
  4507. goto out;
  4508. }
  4509. /*
  4510. * Strategy: Go to the first items of both trees. Then do
  4511. *
  4512. * If both trees are at level 0
  4513. * Compare keys of current items
  4514. * If left < right treat left item as new, advance left tree
  4515. * and repeat
  4516. * If left > right treat right item as deleted, advance right tree
  4517. * and repeat
  4518. * If left == right do deep compare of items, treat as changed if
  4519. * needed, advance both trees and repeat
  4520. * If both trees are at the same level but not at level 0
  4521. * Compare keys of current nodes/leafs
  4522. * If left < right advance left tree and repeat
  4523. * If left > right advance right tree and repeat
  4524. * If left == right compare blockptrs of the next nodes/leafs
  4525. * If they match advance both trees but stay at the same level
  4526. * and repeat
  4527. * If they don't match advance both trees while allowing to go
  4528. * deeper and repeat
  4529. * If tree levels are different
  4530. * Advance the tree that needs it and repeat
  4531. *
  4532. * Advancing a tree means:
  4533. * If we are at level 0, try to go to the next slot. If that's not
  4534. * possible, go one level up and repeat. Stop when we found a level
  4535. * where we could go to the next slot. We may at this point be on a
  4536. * node or a leaf.
  4537. *
  4538. * If we are not at level 0 and not on shared tree blocks, go one
  4539. * level deeper.
  4540. *
  4541. * If we are not at level 0 and on shared tree blocks, go one slot to
  4542. * the right if possible or go up and right.
  4543. */
  4544. left_level = btrfs_header_level(left_root->commit_root);
  4545. left_root_level = left_level;
  4546. left_path->nodes[left_level] = left_root->commit_root;
  4547. extent_buffer_get(left_path->nodes[left_level]);
  4548. right_level = btrfs_header_level(right_root->commit_root);
  4549. right_root_level = right_level;
  4550. right_path->nodes[right_level] = right_root->commit_root;
  4551. extent_buffer_get(right_path->nodes[right_level]);
  4552. if (left_level == 0)
  4553. btrfs_item_key_to_cpu(left_path->nodes[left_level],
  4554. &left_key, left_path->slots[left_level]);
  4555. else
  4556. btrfs_node_key_to_cpu(left_path->nodes[left_level],
  4557. &left_key, left_path->slots[left_level]);
  4558. if (right_level == 0)
  4559. btrfs_item_key_to_cpu(right_path->nodes[right_level],
  4560. &right_key, right_path->slots[right_level]);
  4561. else
  4562. btrfs_node_key_to_cpu(right_path->nodes[right_level],
  4563. &right_key, right_path->slots[right_level]);
  4564. left_end_reached = right_end_reached = 0;
  4565. advance_left = advance_right = 0;
  4566. while (1) {
  4567. /*
  4568. * We need to make sure the transaction does not get committed
  4569. * while we do anything on commit roots. This means, we need to
  4570. * join and leave transactions for every item that we process.
  4571. */
  4572. if (trans && btrfs_should_end_transaction(trans, left_root)) {
  4573. btrfs_release_path(left_path);
  4574. btrfs_release_path(right_path);
  4575. ret = btrfs_end_transaction(trans, left_root);
  4576. trans = NULL;
  4577. if (ret < 0)
  4578. goto out;
  4579. }
  4580. /* now rejoin the transaction */
  4581. if (!trans) {
  4582. trans = btrfs_join_transaction(left_root);
  4583. if (IS_ERR(trans)) {
  4584. ret = PTR_ERR(trans);
  4585. trans = NULL;
  4586. goto out;
  4587. }
  4588. spin_lock(&left_root->root_item_lock);
  4589. ctransid = btrfs_root_ctransid(&left_root->root_item);
  4590. spin_unlock(&left_root->root_item_lock);
  4591. if (ctransid != left_start_ctransid)
  4592. left_start_ctransid = 0;
  4593. spin_lock(&right_root->root_item_lock);
  4594. ctransid = btrfs_root_ctransid(&right_root->root_item);
  4595. spin_unlock(&right_root->root_item_lock);
  4596. if (ctransid != right_start_ctransid)
  4597. right_start_ctransid = 0;
  4598. if (!left_start_ctransid || !right_start_ctransid) {
  4599. WARN(1, KERN_WARNING
  4600. "btrfs: btrfs_compare_tree detected "
  4601. "a change in one of the trees while "
  4602. "iterating. This is probably a "
  4603. "bug.\n");
  4604. ret = -EIO;
  4605. goto out;
  4606. }
  4607. /*
  4608. * the commit root may have changed, so start again
  4609. * where we stopped
  4610. */
  4611. left_path->lowest_level = left_level;
  4612. right_path->lowest_level = right_level;
  4613. ret = btrfs_search_slot(NULL, left_root,
  4614. &left_key, left_path, 0, 0);
  4615. if (ret < 0)
  4616. goto out;
  4617. ret = btrfs_search_slot(NULL, right_root,
  4618. &right_key, right_path, 0, 0);
  4619. if (ret < 0)
  4620. goto out;
  4621. }
  4622. if (advance_left && !left_end_reached) {
  4623. ret = tree_advance(left_root, left_path, &left_level,
  4624. left_root_level,
  4625. advance_left != ADVANCE_ONLY_NEXT,
  4626. &left_key);
  4627. if (ret < 0)
  4628. left_end_reached = ADVANCE;
  4629. advance_left = 0;
  4630. }
  4631. if (advance_right && !right_end_reached) {
  4632. ret = tree_advance(right_root, right_path, &right_level,
  4633. right_root_level,
  4634. advance_right != ADVANCE_ONLY_NEXT,
  4635. &right_key);
  4636. if (ret < 0)
  4637. right_end_reached = ADVANCE;
  4638. advance_right = 0;
  4639. }
  4640. if (left_end_reached && right_end_reached) {
  4641. ret = 0;
  4642. goto out;
  4643. } else if (left_end_reached) {
  4644. if (right_level == 0) {
  4645. ret = changed_cb(left_root, right_root,
  4646. left_path, right_path,
  4647. &right_key,
  4648. BTRFS_COMPARE_TREE_DELETED,
  4649. ctx);
  4650. if (ret < 0)
  4651. goto out;
  4652. }
  4653. advance_right = ADVANCE;
  4654. continue;
  4655. } else if (right_end_reached) {
  4656. if (left_level == 0) {
  4657. ret = changed_cb(left_root, right_root,
  4658. left_path, right_path,
  4659. &left_key,
  4660. BTRFS_COMPARE_TREE_NEW,
  4661. ctx);
  4662. if (ret < 0)
  4663. goto out;
  4664. }
  4665. advance_left = ADVANCE;
  4666. continue;
  4667. }
  4668. if (left_level == 0 && right_level == 0) {
  4669. cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
  4670. if (cmp < 0) {
  4671. ret = changed_cb(left_root, right_root,
  4672. left_path, right_path,
  4673. &left_key,
  4674. BTRFS_COMPARE_TREE_NEW,
  4675. ctx);
  4676. if (ret < 0)
  4677. goto out;
  4678. advance_left = ADVANCE;
  4679. } else if (cmp > 0) {
  4680. ret = changed_cb(left_root, right_root,
  4681. left_path, right_path,
  4682. &right_key,
  4683. BTRFS_COMPARE_TREE_DELETED,
  4684. ctx);
  4685. if (ret < 0)
  4686. goto out;
  4687. advance_right = ADVANCE;
  4688. } else {
  4689. enum btrfs_compare_tree_result cmp;
  4690. WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
  4691. ret = tree_compare_item(left_root, left_path,
  4692. right_path, tmp_buf);
  4693. if (ret)
  4694. cmp = BTRFS_COMPARE_TREE_CHANGED;
  4695. else
  4696. cmp = BTRFS_COMPARE_TREE_SAME;
  4697. ret = changed_cb(left_root, right_root,
  4698. left_path, right_path,
  4699. &left_key, cmp, ctx);
  4700. if (ret < 0)
  4701. goto out;
  4702. advance_left = ADVANCE;
  4703. advance_right = ADVANCE;
  4704. }
  4705. } else if (left_level == right_level) {
  4706. cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
  4707. if (cmp < 0) {
  4708. advance_left = ADVANCE;
  4709. } else if (cmp > 0) {
  4710. advance_right = ADVANCE;
  4711. } else {
  4712. left_blockptr = btrfs_node_blockptr(
  4713. left_path->nodes[left_level],
  4714. left_path->slots[left_level]);
  4715. right_blockptr = btrfs_node_blockptr(
  4716. right_path->nodes[right_level],
  4717. right_path->slots[right_level]);
  4718. if (left_blockptr == right_blockptr) {
  4719. /*
  4720. * As we're on a shared block, don't
  4721. * allow to go deeper.
  4722. */
  4723. advance_left = ADVANCE_ONLY_NEXT;
  4724. advance_right = ADVANCE_ONLY_NEXT;
  4725. } else {
  4726. advance_left = ADVANCE;
  4727. advance_right = ADVANCE;
  4728. }
  4729. }
  4730. } else if (left_level < right_level) {
  4731. advance_right = ADVANCE;
  4732. } else {
  4733. advance_left = ADVANCE;
  4734. }
  4735. }
  4736. out:
  4737. btrfs_free_path(left_path);
  4738. btrfs_free_path(right_path);
  4739. kfree(tmp_buf);
  4740. if (trans) {
  4741. if (!ret)
  4742. ret = btrfs_end_transaction(trans, left_root);
  4743. else
  4744. btrfs_end_transaction(trans, left_root);
  4745. }
  4746. return ret;
  4747. }
  4748. /*
  4749. * this is similar to btrfs_next_leaf, but does not try to preserve
  4750. * and fixup the path. It looks for and returns the next key in the
  4751. * tree based on the current path and the min_trans parameters.
  4752. *
  4753. * 0 is returned if another key is found, < 0 if there are any errors
  4754. * and 1 is returned if there are no higher keys in the tree
  4755. *
  4756. * path->keep_locks should be set to 1 on the search made before
  4757. * calling this function.
  4758. */
  4759. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  4760. struct btrfs_key *key, int level, u64 min_trans)
  4761. {
  4762. int slot;
  4763. struct extent_buffer *c;
  4764. WARN_ON(!path->keep_locks);
  4765. while (level < BTRFS_MAX_LEVEL) {
  4766. if (!path->nodes[level])
  4767. return 1;
  4768. slot = path->slots[level] + 1;
  4769. c = path->nodes[level];
  4770. next:
  4771. if (slot >= btrfs_header_nritems(c)) {
  4772. int ret;
  4773. int orig_lowest;
  4774. struct btrfs_key cur_key;
  4775. if (level + 1 >= BTRFS_MAX_LEVEL ||
  4776. !path->nodes[level + 1])
  4777. return 1;
  4778. if (path->locks[level + 1]) {
  4779. level++;
  4780. continue;
  4781. }
  4782. slot = btrfs_header_nritems(c) - 1;
  4783. if (level == 0)
  4784. btrfs_item_key_to_cpu(c, &cur_key, slot);
  4785. else
  4786. btrfs_node_key_to_cpu(c, &cur_key, slot);
  4787. orig_lowest = path->lowest_level;
  4788. btrfs_release_path(path);
  4789. path->lowest_level = level;
  4790. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  4791. 0, 0);
  4792. path->lowest_level = orig_lowest;
  4793. if (ret < 0)
  4794. return ret;
  4795. c = path->nodes[level];
  4796. slot = path->slots[level];
  4797. if (ret == 0)
  4798. slot++;
  4799. goto next;
  4800. }
  4801. if (level == 0)
  4802. btrfs_item_key_to_cpu(c, key, slot);
  4803. else {
  4804. u64 gen = btrfs_node_ptr_generation(c, slot);
  4805. if (gen < min_trans) {
  4806. slot++;
  4807. goto next;
  4808. }
  4809. btrfs_node_key_to_cpu(c, key, slot);
  4810. }
  4811. return 0;
  4812. }
  4813. return 1;
  4814. }
  4815. /*
  4816. * search the tree again to find a leaf with greater keys
  4817. * returns 0 if it found something or 1 if there are no greater leaves.
  4818. * returns < 0 on io errors.
  4819. */
  4820. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  4821. {
  4822. return btrfs_next_old_leaf(root, path, 0);
  4823. }
  4824. int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
  4825. u64 time_seq)
  4826. {
  4827. int slot;
  4828. int level;
  4829. struct extent_buffer *c;
  4830. struct extent_buffer *next;
  4831. struct btrfs_key key;
  4832. u32 nritems;
  4833. int ret;
  4834. int old_spinning = path->leave_spinning;
  4835. int next_rw_lock = 0;
  4836. nritems = btrfs_header_nritems(path->nodes[0]);
  4837. if (nritems == 0)
  4838. return 1;
  4839. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  4840. again:
  4841. level = 1;
  4842. next = NULL;
  4843. next_rw_lock = 0;
  4844. btrfs_release_path(path);
  4845. path->keep_locks = 1;
  4846. path->leave_spinning = 1;
  4847. if (time_seq)
  4848. ret = btrfs_search_old_slot(root, &key, path, time_seq);
  4849. else
  4850. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  4851. path->keep_locks = 0;
  4852. if (ret < 0)
  4853. return ret;
  4854. nritems = btrfs_header_nritems(path->nodes[0]);
  4855. /*
  4856. * by releasing the path above we dropped all our locks. A balance
  4857. * could have added more items next to the key that used to be
  4858. * at the very end of the block. So, check again here and
  4859. * advance the path if there are now more items available.
  4860. */
  4861. if (nritems > 0 && path->slots[0] < nritems - 1) {
  4862. if (ret == 0)
  4863. path->slots[0]++;
  4864. ret = 0;
  4865. goto done;
  4866. }
  4867. while (level < BTRFS_MAX_LEVEL) {
  4868. if (!path->nodes[level]) {
  4869. ret = 1;
  4870. goto done;
  4871. }
  4872. slot = path->slots[level] + 1;
  4873. c = path->nodes[level];
  4874. if (slot >= btrfs_header_nritems(c)) {
  4875. level++;
  4876. if (level == BTRFS_MAX_LEVEL) {
  4877. ret = 1;
  4878. goto done;
  4879. }
  4880. continue;
  4881. }
  4882. if (next) {
  4883. btrfs_tree_unlock_rw(next, next_rw_lock);
  4884. free_extent_buffer(next);
  4885. }
  4886. next = c;
  4887. next_rw_lock = path->locks[level];
  4888. ret = read_block_for_search(NULL, root, path, &next, level,
  4889. slot, &key, 0);
  4890. if (ret == -EAGAIN)
  4891. goto again;
  4892. if (ret < 0) {
  4893. btrfs_release_path(path);
  4894. goto done;
  4895. }
  4896. if (!path->skip_locking) {
  4897. ret = btrfs_try_tree_read_lock(next);
  4898. if (!ret && time_seq) {
  4899. /*
  4900. * If we don't get the lock, we may be racing
  4901. * with push_leaf_left, holding that lock while
  4902. * itself waiting for the leaf we've currently
  4903. * locked. To solve this situation, we give up
  4904. * on our lock and cycle.
  4905. */
  4906. free_extent_buffer(next);
  4907. btrfs_release_path(path);
  4908. cond_resched();
  4909. goto again;
  4910. }
  4911. if (!ret) {
  4912. btrfs_set_path_blocking(path);
  4913. btrfs_tree_read_lock(next);
  4914. btrfs_clear_path_blocking(path, next,
  4915. BTRFS_READ_LOCK);
  4916. }
  4917. next_rw_lock = BTRFS_READ_LOCK;
  4918. }
  4919. break;
  4920. }
  4921. path->slots[level] = slot;
  4922. while (1) {
  4923. level--;
  4924. c = path->nodes[level];
  4925. if (path->locks[level])
  4926. btrfs_tree_unlock_rw(c, path->locks[level]);
  4927. free_extent_buffer(c);
  4928. path->nodes[level] = next;
  4929. path->slots[level] = 0;
  4930. if (!path->skip_locking)
  4931. path->locks[level] = next_rw_lock;
  4932. if (!level)
  4933. break;
  4934. ret = read_block_for_search(NULL, root, path, &next, level,
  4935. 0, &key, 0);
  4936. if (ret == -EAGAIN)
  4937. goto again;
  4938. if (ret < 0) {
  4939. btrfs_release_path(path);
  4940. goto done;
  4941. }
  4942. if (!path->skip_locking) {
  4943. ret = btrfs_try_tree_read_lock(next);
  4944. if (!ret) {
  4945. btrfs_set_path_blocking(path);
  4946. btrfs_tree_read_lock(next);
  4947. btrfs_clear_path_blocking(path, next,
  4948. BTRFS_READ_LOCK);
  4949. }
  4950. next_rw_lock = BTRFS_READ_LOCK;
  4951. }
  4952. }
  4953. ret = 0;
  4954. done:
  4955. unlock_up(path, 0, 1, 0, NULL);
  4956. path->leave_spinning = old_spinning;
  4957. if (!old_spinning)
  4958. btrfs_set_path_blocking(path);
  4959. return ret;
  4960. }
  4961. /*
  4962. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  4963. * searching until it gets past min_objectid or finds an item of 'type'
  4964. *
  4965. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  4966. */
  4967. int btrfs_previous_item(struct btrfs_root *root,
  4968. struct btrfs_path *path, u64 min_objectid,
  4969. int type)
  4970. {
  4971. struct btrfs_key found_key;
  4972. struct extent_buffer *leaf;
  4973. u32 nritems;
  4974. int ret;
  4975. while (1) {
  4976. if (path->slots[0] == 0) {
  4977. btrfs_set_path_blocking(path);
  4978. ret = btrfs_prev_leaf(root, path);
  4979. if (ret != 0)
  4980. return ret;
  4981. } else {
  4982. path->slots[0]--;
  4983. }
  4984. leaf = path->nodes[0];
  4985. nritems = btrfs_header_nritems(leaf);
  4986. if (nritems == 0)
  4987. return 1;
  4988. if (path->slots[0] == nritems)
  4989. path->slots[0]--;
  4990. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  4991. if (found_key.objectid < min_objectid)
  4992. break;
  4993. if (found_key.type == type)
  4994. return 0;
  4995. if (found_key.objectid == min_objectid &&
  4996. found_key.type < type)
  4997. break;
  4998. }
  4999. return 1;
  5000. }