backref.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/vmalloc.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "backref.h"
  22. #include "ulist.h"
  23. #include "transaction.h"
  24. #include "delayed-ref.h"
  25. #include "locking.h"
  26. struct extent_inode_elem {
  27. u64 inum;
  28. u64 offset;
  29. struct extent_inode_elem *next;
  30. };
  31. static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  32. struct btrfs_file_extent_item *fi,
  33. u64 extent_item_pos,
  34. struct extent_inode_elem **eie)
  35. {
  36. u64 offset = 0;
  37. struct extent_inode_elem *e;
  38. if (!btrfs_file_extent_compression(eb, fi) &&
  39. !btrfs_file_extent_encryption(eb, fi) &&
  40. !btrfs_file_extent_other_encoding(eb, fi)) {
  41. u64 data_offset;
  42. u64 data_len;
  43. data_offset = btrfs_file_extent_offset(eb, fi);
  44. data_len = btrfs_file_extent_num_bytes(eb, fi);
  45. if (extent_item_pos < data_offset ||
  46. extent_item_pos >= data_offset + data_len)
  47. return 1;
  48. offset = extent_item_pos - data_offset;
  49. }
  50. e = kmalloc(sizeof(*e), GFP_NOFS);
  51. if (!e)
  52. return -ENOMEM;
  53. e->next = *eie;
  54. e->inum = key->objectid;
  55. e->offset = key->offset + offset;
  56. *eie = e;
  57. return 0;
  58. }
  59. static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  60. u64 extent_item_pos,
  61. struct extent_inode_elem **eie)
  62. {
  63. u64 disk_byte;
  64. struct btrfs_key key;
  65. struct btrfs_file_extent_item *fi;
  66. int slot;
  67. int nritems;
  68. int extent_type;
  69. int ret;
  70. /*
  71. * from the shared data ref, we only have the leaf but we need
  72. * the key. thus, we must look into all items and see that we
  73. * find one (some) with a reference to our extent item.
  74. */
  75. nritems = btrfs_header_nritems(eb);
  76. for (slot = 0; slot < nritems; ++slot) {
  77. btrfs_item_key_to_cpu(eb, &key, slot);
  78. if (key.type != BTRFS_EXTENT_DATA_KEY)
  79. continue;
  80. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  81. extent_type = btrfs_file_extent_type(eb, fi);
  82. if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  83. continue;
  84. /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  85. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  86. if (disk_byte != wanted_disk_byte)
  87. continue;
  88. ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  89. if (ret < 0)
  90. return ret;
  91. }
  92. return 0;
  93. }
  94. /*
  95. * this structure records all encountered refs on the way up to the root
  96. */
  97. struct __prelim_ref {
  98. struct list_head list;
  99. u64 root_id;
  100. struct btrfs_key key_for_search;
  101. int level;
  102. int count;
  103. struct extent_inode_elem *inode_list;
  104. u64 parent;
  105. u64 wanted_disk_byte;
  106. };
  107. /*
  108. * the rules for all callers of this function are:
  109. * - obtaining the parent is the goal
  110. * - if you add a key, you must know that it is a correct key
  111. * - if you cannot add the parent or a correct key, then we will look into the
  112. * block later to set a correct key
  113. *
  114. * delayed refs
  115. * ============
  116. * backref type | shared | indirect | shared | indirect
  117. * information | tree | tree | data | data
  118. * --------------------+--------+----------+--------+----------
  119. * parent logical | y | - | - | -
  120. * key to resolve | - | y | y | y
  121. * tree block logical | - | - | - | -
  122. * root for resolving | y | y | y | y
  123. *
  124. * - column 1: we've the parent -> done
  125. * - column 2, 3, 4: we use the key to find the parent
  126. *
  127. * on disk refs (inline or keyed)
  128. * ==============================
  129. * backref type | shared | indirect | shared | indirect
  130. * information | tree | tree | data | data
  131. * --------------------+--------+----------+--------+----------
  132. * parent logical | y | - | y | -
  133. * key to resolve | - | - | - | y
  134. * tree block logical | y | y | y | y
  135. * root for resolving | - | y | y | y
  136. *
  137. * - column 1, 3: we've the parent -> done
  138. * - column 2: we take the first key from the block to find the parent
  139. * (see __add_missing_keys)
  140. * - column 4: we use the key to find the parent
  141. *
  142. * additional information that's available but not required to find the parent
  143. * block might help in merging entries to gain some speed.
  144. */
  145. static int __add_prelim_ref(struct list_head *head, u64 root_id,
  146. struct btrfs_key *key, int level,
  147. u64 parent, u64 wanted_disk_byte, int count)
  148. {
  149. struct __prelim_ref *ref;
  150. /* in case we're adding delayed refs, we're holding the refs spinlock */
  151. ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
  152. if (!ref)
  153. return -ENOMEM;
  154. ref->root_id = root_id;
  155. if (key)
  156. ref->key_for_search = *key;
  157. else
  158. memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
  159. ref->inode_list = NULL;
  160. ref->level = level;
  161. ref->count = count;
  162. ref->parent = parent;
  163. ref->wanted_disk_byte = wanted_disk_byte;
  164. list_add_tail(&ref->list, head);
  165. return 0;
  166. }
  167. static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
  168. struct ulist *parents, int level,
  169. struct btrfs_key *key_for_search, u64 time_seq,
  170. u64 wanted_disk_byte,
  171. const u64 *extent_item_pos)
  172. {
  173. int ret = 0;
  174. int slot;
  175. struct extent_buffer *eb;
  176. struct btrfs_key key;
  177. struct btrfs_file_extent_item *fi;
  178. struct extent_inode_elem *eie = NULL, *old = NULL;
  179. u64 disk_byte;
  180. if (level != 0) {
  181. eb = path->nodes[level];
  182. ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
  183. if (ret < 0)
  184. return ret;
  185. return 0;
  186. }
  187. /*
  188. * We normally enter this function with the path already pointing to
  189. * the first item to check. But sometimes, we may enter it with
  190. * slot==nritems. In that case, go to the next leaf before we continue.
  191. */
  192. if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
  193. ret = btrfs_next_old_leaf(root, path, time_seq);
  194. while (!ret) {
  195. eb = path->nodes[0];
  196. slot = path->slots[0];
  197. btrfs_item_key_to_cpu(eb, &key, slot);
  198. if (key.objectid != key_for_search->objectid ||
  199. key.type != BTRFS_EXTENT_DATA_KEY)
  200. break;
  201. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  202. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  203. if (disk_byte == wanted_disk_byte) {
  204. eie = NULL;
  205. old = NULL;
  206. if (extent_item_pos) {
  207. ret = check_extent_in_eb(&key, eb, fi,
  208. *extent_item_pos,
  209. &eie);
  210. if (ret < 0)
  211. break;
  212. }
  213. if (ret > 0)
  214. goto next;
  215. ret = ulist_add_merge(parents, eb->start,
  216. (uintptr_t)eie,
  217. (u64 *)&old, GFP_NOFS);
  218. if (ret < 0)
  219. break;
  220. if (!ret && extent_item_pos) {
  221. while (old->next)
  222. old = old->next;
  223. old->next = eie;
  224. }
  225. }
  226. next:
  227. ret = btrfs_next_old_item(root, path, time_seq);
  228. }
  229. if (ret > 0)
  230. ret = 0;
  231. return ret;
  232. }
  233. /*
  234. * resolve an indirect backref in the form (root_id, key, level)
  235. * to a logical address
  236. */
  237. static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
  238. struct btrfs_path *path, u64 time_seq,
  239. struct __prelim_ref *ref,
  240. struct ulist *parents,
  241. const u64 *extent_item_pos)
  242. {
  243. struct btrfs_root *root;
  244. struct btrfs_key root_key;
  245. struct extent_buffer *eb;
  246. int ret = 0;
  247. int root_level;
  248. int level = ref->level;
  249. root_key.objectid = ref->root_id;
  250. root_key.type = BTRFS_ROOT_ITEM_KEY;
  251. root_key.offset = (u64)-1;
  252. root = btrfs_read_fs_root_no_name(fs_info, &root_key);
  253. if (IS_ERR(root)) {
  254. ret = PTR_ERR(root);
  255. goto out;
  256. }
  257. root_level = btrfs_old_root_level(root, time_seq);
  258. if (root_level + 1 == level)
  259. goto out;
  260. path->lowest_level = level;
  261. ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
  262. pr_debug("search slot in root %llu (level %d, ref count %d) returned "
  263. "%d for key (%llu %u %llu)\n",
  264. ref->root_id, level, ref->count, ret,
  265. ref->key_for_search.objectid, ref->key_for_search.type,
  266. ref->key_for_search.offset);
  267. if (ret < 0)
  268. goto out;
  269. eb = path->nodes[level];
  270. while (!eb) {
  271. if (!level) {
  272. WARN_ON(1);
  273. ret = 1;
  274. goto out;
  275. }
  276. level--;
  277. eb = path->nodes[level];
  278. }
  279. ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
  280. time_seq, ref->wanted_disk_byte,
  281. extent_item_pos);
  282. out:
  283. path->lowest_level = 0;
  284. btrfs_release_path(path);
  285. return ret;
  286. }
  287. /*
  288. * resolve all indirect backrefs from the list
  289. */
  290. static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
  291. struct btrfs_path *path, u64 time_seq,
  292. struct list_head *head,
  293. const u64 *extent_item_pos)
  294. {
  295. int err;
  296. int ret = 0;
  297. struct __prelim_ref *ref;
  298. struct __prelim_ref *ref_safe;
  299. struct __prelim_ref *new_ref;
  300. struct ulist *parents;
  301. struct ulist_node *node;
  302. struct ulist_iterator uiter;
  303. parents = ulist_alloc(GFP_NOFS);
  304. if (!parents)
  305. return -ENOMEM;
  306. /*
  307. * _safe allows us to insert directly after the current item without
  308. * iterating over the newly inserted items.
  309. * we're also allowed to re-assign ref during iteration.
  310. */
  311. list_for_each_entry_safe(ref, ref_safe, head, list) {
  312. if (ref->parent) /* already direct */
  313. continue;
  314. if (ref->count == 0)
  315. continue;
  316. err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
  317. parents, extent_item_pos);
  318. if (err == -ENOMEM)
  319. goto out;
  320. if (err)
  321. continue;
  322. /* we put the first parent into the ref at hand */
  323. ULIST_ITER_INIT(&uiter);
  324. node = ulist_next(parents, &uiter);
  325. ref->parent = node ? node->val : 0;
  326. ref->inode_list = node ?
  327. (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
  328. /* additional parents require new refs being added here */
  329. while ((node = ulist_next(parents, &uiter))) {
  330. new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
  331. if (!new_ref) {
  332. ret = -ENOMEM;
  333. goto out;
  334. }
  335. memcpy(new_ref, ref, sizeof(*ref));
  336. new_ref->parent = node->val;
  337. new_ref->inode_list = (struct extent_inode_elem *)
  338. (uintptr_t)node->aux;
  339. list_add(&new_ref->list, &ref->list);
  340. }
  341. ulist_reinit(parents);
  342. }
  343. out:
  344. ulist_free(parents);
  345. return ret;
  346. }
  347. static inline int ref_for_same_block(struct __prelim_ref *ref1,
  348. struct __prelim_ref *ref2)
  349. {
  350. if (ref1->level != ref2->level)
  351. return 0;
  352. if (ref1->root_id != ref2->root_id)
  353. return 0;
  354. if (ref1->key_for_search.type != ref2->key_for_search.type)
  355. return 0;
  356. if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
  357. return 0;
  358. if (ref1->key_for_search.offset != ref2->key_for_search.offset)
  359. return 0;
  360. if (ref1->parent != ref2->parent)
  361. return 0;
  362. return 1;
  363. }
  364. /*
  365. * read tree blocks and add keys where required.
  366. */
  367. static int __add_missing_keys(struct btrfs_fs_info *fs_info,
  368. struct list_head *head)
  369. {
  370. struct list_head *pos;
  371. struct extent_buffer *eb;
  372. list_for_each(pos, head) {
  373. struct __prelim_ref *ref;
  374. ref = list_entry(pos, struct __prelim_ref, list);
  375. if (ref->parent)
  376. continue;
  377. if (ref->key_for_search.type)
  378. continue;
  379. BUG_ON(!ref->wanted_disk_byte);
  380. eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
  381. fs_info->tree_root->leafsize, 0);
  382. if (!eb || !extent_buffer_uptodate(eb)) {
  383. free_extent_buffer(eb);
  384. return -EIO;
  385. }
  386. btrfs_tree_read_lock(eb);
  387. if (btrfs_header_level(eb) == 0)
  388. btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
  389. else
  390. btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
  391. btrfs_tree_read_unlock(eb);
  392. free_extent_buffer(eb);
  393. }
  394. return 0;
  395. }
  396. /*
  397. * merge two lists of backrefs and adjust counts accordingly
  398. *
  399. * mode = 1: merge identical keys, if key is set
  400. * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
  401. * additionally, we could even add a key range for the blocks we
  402. * looked into to merge even more (-> replace unresolved refs by those
  403. * having a parent).
  404. * mode = 2: merge identical parents
  405. */
  406. static void __merge_refs(struct list_head *head, int mode)
  407. {
  408. struct list_head *pos1;
  409. list_for_each(pos1, head) {
  410. struct list_head *n2;
  411. struct list_head *pos2;
  412. struct __prelim_ref *ref1;
  413. ref1 = list_entry(pos1, struct __prelim_ref, list);
  414. for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
  415. pos2 = n2, n2 = pos2->next) {
  416. struct __prelim_ref *ref2;
  417. struct __prelim_ref *xchg;
  418. struct extent_inode_elem *eie;
  419. ref2 = list_entry(pos2, struct __prelim_ref, list);
  420. if (mode == 1) {
  421. if (!ref_for_same_block(ref1, ref2))
  422. continue;
  423. if (!ref1->parent && ref2->parent) {
  424. xchg = ref1;
  425. ref1 = ref2;
  426. ref2 = xchg;
  427. }
  428. } else {
  429. if (ref1->parent != ref2->parent)
  430. continue;
  431. }
  432. eie = ref1->inode_list;
  433. while (eie && eie->next)
  434. eie = eie->next;
  435. if (eie)
  436. eie->next = ref2->inode_list;
  437. else
  438. ref1->inode_list = ref2->inode_list;
  439. ref1->count += ref2->count;
  440. list_del(&ref2->list);
  441. kfree(ref2);
  442. }
  443. }
  444. }
  445. /*
  446. * add all currently queued delayed refs from this head whose seq nr is
  447. * smaller or equal that seq to the list
  448. */
  449. static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
  450. struct list_head *prefs)
  451. {
  452. struct btrfs_delayed_extent_op *extent_op = head->extent_op;
  453. struct rb_node *n = &head->node.rb_node;
  454. struct btrfs_key key;
  455. struct btrfs_key op_key = {0};
  456. int sgn;
  457. int ret = 0;
  458. if (extent_op && extent_op->update_key)
  459. btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
  460. while ((n = rb_prev(n))) {
  461. struct btrfs_delayed_ref_node *node;
  462. node = rb_entry(n, struct btrfs_delayed_ref_node,
  463. rb_node);
  464. if (node->bytenr != head->node.bytenr)
  465. break;
  466. WARN_ON(node->is_head);
  467. if (node->seq > seq)
  468. continue;
  469. switch (node->action) {
  470. case BTRFS_ADD_DELAYED_EXTENT:
  471. case BTRFS_UPDATE_DELAYED_HEAD:
  472. WARN_ON(1);
  473. continue;
  474. case BTRFS_ADD_DELAYED_REF:
  475. sgn = 1;
  476. break;
  477. case BTRFS_DROP_DELAYED_REF:
  478. sgn = -1;
  479. break;
  480. default:
  481. BUG_ON(1);
  482. }
  483. switch (node->type) {
  484. case BTRFS_TREE_BLOCK_REF_KEY: {
  485. struct btrfs_delayed_tree_ref *ref;
  486. ref = btrfs_delayed_node_to_tree_ref(node);
  487. ret = __add_prelim_ref(prefs, ref->root, &op_key,
  488. ref->level + 1, 0, node->bytenr,
  489. node->ref_mod * sgn);
  490. break;
  491. }
  492. case BTRFS_SHARED_BLOCK_REF_KEY: {
  493. struct btrfs_delayed_tree_ref *ref;
  494. ref = btrfs_delayed_node_to_tree_ref(node);
  495. ret = __add_prelim_ref(prefs, ref->root, NULL,
  496. ref->level + 1, ref->parent,
  497. node->bytenr,
  498. node->ref_mod * sgn);
  499. break;
  500. }
  501. case BTRFS_EXTENT_DATA_REF_KEY: {
  502. struct btrfs_delayed_data_ref *ref;
  503. ref = btrfs_delayed_node_to_data_ref(node);
  504. key.objectid = ref->objectid;
  505. key.type = BTRFS_EXTENT_DATA_KEY;
  506. key.offset = ref->offset;
  507. ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
  508. node->bytenr,
  509. node->ref_mod * sgn);
  510. break;
  511. }
  512. case BTRFS_SHARED_DATA_REF_KEY: {
  513. struct btrfs_delayed_data_ref *ref;
  514. ref = btrfs_delayed_node_to_data_ref(node);
  515. key.objectid = ref->objectid;
  516. key.type = BTRFS_EXTENT_DATA_KEY;
  517. key.offset = ref->offset;
  518. ret = __add_prelim_ref(prefs, ref->root, &key, 0,
  519. ref->parent, node->bytenr,
  520. node->ref_mod * sgn);
  521. break;
  522. }
  523. default:
  524. WARN_ON(1);
  525. }
  526. if (ret)
  527. return ret;
  528. }
  529. return 0;
  530. }
  531. /*
  532. * add all inline backrefs for bytenr to the list
  533. */
  534. static int __add_inline_refs(struct btrfs_fs_info *fs_info,
  535. struct btrfs_path *path, u64 bytenr,
  536. int *info_level, struct list_head *prefs)
  537. {
  538. int ret = 0;
  539. int slot;
  540. struct extent_buffer *leaf;
  541. struct btrfs_key key;
  542. struct btrfs_key found_key;
  543. unsigned long ptr;
  544. unsigned long end;
  545. struct btrfs_extent_item *ei;
  546. u64 flags;
  547. u64 item_size;
  548. /*
  549. * enumerate all inline refs
  550. */
  551. leaf = path->nodes[0];
  552. slot = path->slots[0];
  553. item_size = btrfs_item_size_nr(leaf, slot);
  554. BUG_ON(item_size < sizeof(*ei));
  555. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  556. flags = btrfs_extent_flags(leaf, ei);
  557. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  558. ptr = (unsigned long)(ei + 1);
  559. end = (unsigned long)ei + item_size;
  560. if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
  561. flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  562. struct btrfs_tree_block_info *info;
  563. info = (struct btrfs_tree_block_info *)ptr;
  564. *info_level = btrfs_tree_block_level(leaf, info);
  565. ptr += sizeof(struct btrfs_tree_block_info);
  566. BUG_ON(ptr > end);
  567. } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
  568. *info_level = found_key.offset;
  569. } else {
  570. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  571. }
  572. while (ptr < end) {
  573. struct btrfs_extent_inline_ref *iref;
  574. u64 offset;
  575. int type;
  576. iref = (struct btrfs_extent_inline_ref *)ptr;
  577. type = btrfs_extent_inline_ref_type(leaf, iref);
  578. offset = btrfs_extent_inline_ref_offset(leaf, iref);
  579. switch (type) {
  580. case BTRFS_SHARED_BLOCK_REF_KEY:
  581. ret = __add_prelim_ref(prefs, 0, NULL,
  582. *info_level + 1, offset,
  583. bytenr, 1);
  584. break;
  585. case BTRFS_SHARED_DATA_REF_KEY: {
  586. struct btrfs_shared_data_ref *sdref;
  587. int count;
  588. sdref = (struct btrfs_shared_data_ref *)(iref + 1);
  589. count = btrfs_shared_data_ref_count(leaf, sdref);
  590. ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
  591. bytenr, count);
  592. break;
  593. }
  594. case BTRFS_TREE_BLOCK_REF_KEY:
  595. ret = __add_prelim_ref(prefs, offset, NULL,
  596. *info_level + 1, 0,
  597. bytenr, 1);
  598. break;
  599. case BTRFS_EXTENT_DATA_REF_KEY: {
  600. struct btrfs_extent_data_ref *dref;
  601. int count;
  602. u64 root;
  603. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  604. count = btrfs_extent_data_ref_count(leaf, dref);
  605. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  606. dref);
  607. key.type = BTRFS_EXTENT_DATA_KEY;
  608. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  609. root = btrfs_extent_data_ref_root(leaf, dref);
  610. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  611. bytenr, count);
  612. break;
  613. }
  614. default:
  615. WARN_ON(1);
  616. }
  617. if (ret)
  618. return ret;
  619. ptr += btrfs_extent_inline_ref_size(type);
  620. }
  621. return 0;
  622. }
  623. /*
  624. * add all non-inline backrefs for bytenr to the list
  625. */
  626. static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
  627. struct btrfs_path *path, u64 bytenr,
  628. int info_level, struct list_head *prefs)
  629. {
  630. struct btrfs_root *extent_root = fs_info->extent_root;
  631. int ret;
  632. int slot;
  633. struct extent_buffer *leaf;
  634. struct btrfs_key key;
  635. while (1) {
  636. ret = btrfs_next_item(extent_root, path);
  637. if (ret < 0)
  638. break;
  639. if (ret) {
  640. ret = 0;
  641. break;
  642. }
  643. slot = path->slots[0];
  644. leaf = path->nodes[0];
  645. btrfs_item_key_to_cpu(leaf, &key, slot);
  646. if (key.objectid != bytenr)
  647. break;
  648. if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
  649. continue;
  650. if (key.type > BTRFS_SHARED_DATA_REF_KEY)
  651. break;
  652. switch (key.type) {
  653. case BTRFS_SHARED_BLOCK_REF_KEY:
  654. ret = __add_prelim_ref(prefs, 0, NULL,
  655. info_level + 1, key.offset,
  656. bytenr, 1);
  657. break;
  658. case BTRFS_SHARED_DATA_REF_KEY: {
  659. struct btrfs_shared_data_ref *sdref;
  660. int count;
  661. sdref = btrfs_item_ptr(leaf, slot,
  662. struct btrfs_shared_data_ref);
  663. count = btrfs_shared_data_ref_count(leaf, sdref);
  664. ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
  665. bytenr, count);
  666. break;
  667. }
  668. case BTRFS_TREE_BLOCK_REF_KEY:
  669. ret = __add_prelim_ref(prefs, key.offset, NULL,
  670. info_level + 1, 0,
  671. bytenr, 1);
  672. break;
  673. case BTRFS_EXTENT_DATA_REF_KEY: {
  674. struct btrfs_extent_data_ref *dref;
  675. int count;
  676. u64 root;
  677. dref = btrfs_item_ptr(leaf, slot,
  678. struct btrfs_extent_data_ref);
  679. count = btrfs_extent_data_ref_count(leaf, dref);
  680. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  681. dref);
  682. key.type = BTRFS_EXTENT_DATA_KEY;
  683. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  684. root = btrfs_extent_data_ref_root(leaf, dref);
  685. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  686. bytenr, count);
  687. break;
  688. }
  689. default:
  690. WARN_ON(1);
  691. }
  692. if (ret)
  693. return ret;
  694. }
  695. return ret;
  696. }
  697. /*
  698. * this adds all existing backrefs (inline backrefs, backrefs and delayed
  699. * refs) for the given bytenr to the refs list, merges duplicates and resolves
  700. * indirect refs to their parent bytenr.
  701. * When roots are found, they're added to the roots list
  702. *
  703. * FIXME some caching might speed things up
  704. */
  705. static int find_parent_nodes(struct btrfs_trans_handle *trans,
  706. struct btrfs_fs_info *fs_info, u64 bytenr,
  707. u64 time_seq, struct ulist *refs,
  708. struct ulist *roots, const u64 *extent_item_pos)
  709. {
  710. struct btrfs_key key;
  711. struct btrfs_path *path;
  712. struct btrfs_delayed_ref_root *delayed_refs = NULL;
  713. struct btrfs_delayed_ref_head *head;
  714. int info_level = 0;
  715. int ret;
  716. struct list_head prefs_delayed;
  717. struct list_head prefs;
  718. struct __prelim_ref *ref;
  719. INIT_LIST_HEAD(&prefs);
  720. INIT_LIST_HEAD(&prefs_delayed);
  721. key.objectid = bytenr;
  722. key.offset = (u64)-1;
  723. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  724. key.type = BTRFS_METADATA_ITEM_KEY;
  725. else
  726. key.type = BTRFS_EXTENT_ITEM_KEY;
  727. path = btrfs_alloc_path();
  728. if (!path)
  729. return -ENOMEM;
  730. if (!trans)
  731. path->search_commit_root = 1;
  732. /*
  733. * grab both a lock on the path and a lock on the delayed ref head.
  734. * We need both to get a consistent picture of how the refs look
  735. * at a specified point in time
  736. */
  737. again:
  738. head = NULL;
  739. ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
  740. if (ret < 0)
  741. goto out;
  742. BUG_ON(ret == 0);
  743. if (trans) {
  744. /*
  745. * look if there are updates for this ref queued and lock the
  746. * head
  747. */
  748. delayed_refs = &trans->transaction->delayed_refs;
  749. spin_lock(&delayed_refs->lock);
  750. head = btrfs_find_delayed_ref_head(trans, bytenr);
  751. if (head) {
  752. if (!mutex_trylock(&head->mutex)) {
  753. atomic_inc(&head->node.refs);
  754. spin_unlock(&delayed_refs->lock);
  755. btrfs_release_path(path);
  756. /*
  757. * Mutex was contended, block until it's
  758. * released and try again
  759. */
  760. mutex_lock(&head->mutex);
  761. mutex_unlock(&head->mutex);
  762. btrfs_put_delayed_ref(&head->node);
  763. goto again;
  764. }
  765. ret = __add_delayed_refs(head, time_seq,
  766. &prefs_delayed);
  767. mutex_unlock(&head->mutex);
  768. if (ret) {
  769. spin_unlock(&delayed_refs->lock);
  770. goto out;
  771. }
  772. }
  773. spin_unlock(&delayed_refs->lock);
  774. }
  775. if (path->slots[0]) {
  776. struct extent_buffer *leaf;
  777. int slot;
  778. path->slots[0]--;
  779. leaf = path->nodes[0];
  780. slot = path->slots[0];
  781. btrfs_item_key_to_cpu(leaf, &key, slot);
  782. if (key.objectid == bytenr &&
  783. (key.type == BTRFS_EXTENT_ITEM_KEY ||
  784. key.type == BTRFS_METADATA_ITEM_KEY)) {
  785. ret = __add_inline_refs(fs_info, path, bytenr,
  786. &info_level, &prefs);
  787. if (ret)
  788. goto out;
  789. ret = __add_keyed_refs(fs_info, path, bytenr,
  790. info_level, &prefs);
  791. if (ret)
  792. goto out;
  793. }
  794. }
  795. btrfs_release_path(path);
  796. list_splice_init(&prefs_delayed, &prefs);
  797. ret = __add_missing_keys(fs_info, &prefs);
  798. if (ret)
  799. goto out;
  800. __merge_refs(&prefs, 1);
  801. ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
  802. extent_item_pos);
  803. if (ret)
  804. goto out;
  805. __merge_refs(&prefs, 2);
  806. while (!list_empty(&prefs)) {
  807. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  808. WARN_ON(ref->count < 0);
  809. if (ref->count && ref->root_id && ref->parent == 0) {
  810. /* no parent == root of tree */
  811. ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
  812. if (ret < 0)
  813. goto out;
  814. }
  815. if (ref->count && ref->parent) {
  816. struct extent_inode_elem *eie = NULL;
  817. if (extent_item_pos && !ref->inode_list) {
  818. u32 bsz;
  819. struct extent_buffer *eb;
  820. bsz = btrfs_level_size(fs_info->extent_root,
  821. info_level);
  822. eb = read_tree_block(fs_info->extent_root,
  823. ref->parent, bsz, 0);
  824. if (!eb || !extent_buffer_uptodate(eb)) {
  825. free_extent_buffer(eb);
  826. ret = -EIO;
  827. goto out;
  828. }
  829. ret = find_extent_in_eb(eb, bytenr,
  830. *extent_item_pos, &eie);
  831. free_extent_buffer(eb);
  832. if (ret < 0)
  833. goto out;
  834. ref->inode_list = eie;
  835. }
  836. ret = ulist_add_merge(refs, ref->parent,
  837. (uintptr_t)ref->inode_list,
  838. (u64 *)&eie, GFP_NOFS);
  839. if (ret < 0)
  840. goto out;
  841. if (!ret && extent_item_pos) {
  842. /*
  843. * we've recorded that parent, so we must extend
  844. * its inode list here
  845. */
  846. BUG_ON(!eie);
  847. while (eie->next)
  848. eie = eie->next;
  849. eie->next = ref->inode_list;
  850. }
  851. }
  852. list_del(&ref->list);
  853. kfree(ref);
  854. }
  855. out:
  856. btrfs_free_path(path);
  857. while (!list_empty(&prefs)) {
  858. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  859. list_del(&ref->list);
  860. kfree(ref);
  861. }
  862. while (!list_empty(&prefs_delayed)) {
  863. ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
  864. list);
  865. list_del(&ref->list);
  866. kfree(ref);
  867. }
  868. return ret;
  869. }
  870. static void free_leaf_list(struct ulist *blocks)
  871. {
  872. struct ulist_node *node = NULL;
  873. struct extent_inode_elem *eie;
  874. struct extent_inode_elem *eie_next;
  875. struct ulist_iterator uiter;
  876. ULIST_ITER_INIT(&uiter);
  877. while ((node = ulist_next(blocks, &uiter))) {
  878. if (!node->aux)
  879. continue;
  880. eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
  881. for (; eie; eie = eie_next) {
  882. eie_next = eie->next;
  883. kfree(eie);
  884. }
  885. node->aux = 0;
  886. }
  887. ulist_free(blocks);
  888. }
  889. /*
  890. * Finds all leafs with a reference to the specified combination of bytenr and
  891. * offset. key_list_head will point to a list of corresponding keys (caller must
  892. * free each list element). The leafs will be stored in the leafs ulist, which
  893. * must be freed with ulist_free.
  894. *
  895. * returns 0 on success, <0 on error
  896. */
  897. static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
  898. struct btrfs_fs_info *fs_info, u64 bytenr,
  899. u64 time_seq, struct ulist **leafs,
  900. const u64 *extent_item_pos)
  901. {
  902. struct ulist *tmp;
  903. int ret;
  904. tmp = ulist_alloc(GFP_NOFS);
  905. if (!tmp)
  906. return -ENOMEM;
  907. *leafs = ulist_alloc(GFP_NOFS);
  908. if (!*leafs) {
  909. ulist_free(tmp);
  910. return -ENOMEM;
  911. }
  912. ret = find_parent_nodes(trans, fs_info, bytenr,
  913. time_seq, *leafs, tmp, extent_item_pos);
  914. ulist_free(tmp);
  915. if (ret < 0 && ret != -ENOENT) {
  916. free_leaf_list(*leafs);
  917. return ret;
  918. }
  919. return 0;
  920. }
  921. /*
  922. * walk all backrefs for a given extent to find all roots that reference this
  923. * extent. Walking a backref means finding all extents that reference this
  924. * extent and in turn walk the backrefs of those, too. Naturally this is a
  925. * recursive process, but here it is implemented in an iterative fashion: We
  926. * find all referencing extents for the extent in question and put them on a
  927. * list. In turn, we find all referencing extents for those, further appending
  928. * to the list. The way we iterate the list allows adding more elements after
  929. * the current while iterating. The process stops when we reach the end of the
  930. * list. Found roots are added to the roots list.
  931. *
  932. * returns 0 on success, < 0 on error.
  933. */
  934. int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
  935. struct btrfs_fs_info *fs_info, u64 bytenr,
  936. u64 time_seq, struct ulist **roots)
  937. {
  938. struct ulist *tmp;
  939. struct ulist_node *node = NULL;
  940. struct ulist_iterator uiter;
  941. int ret;
  942. tmp = ulist_alloc(GFP_NOFS);
  943. if (!tmp)
  944. return -ENOMEM;
  945. *roots = ulist_alloc(GFP_NOFS);
  946. if (!*roots) {
  947. ulist_free(tmp);
  948. return -ENOMEM;
  949. }
  950. ULIST_ITER_INIT(&uiter);
  951. while (1) {
  952. ret = find_parent_nodes(trans, fs_info, bytenr,
  953. time_seq, tmp, *roots, NULL);
  954. if (ret < 0 && ret != -ENOENT) {
  955. ulist_free(tmp);
  956. ulist_free(*roots);
  957. return ret;
  958. }
  959. node = ulist_next(tmp, &uiter);
  960. if (!node)
  961. break;
  962. bytenr = node->val;
  963. }
  964. ulist_free(tmp);
  965. return 0;
  966. }
  967. static int __inode_info(u64 inum, u64 ioff, u8 key_type,
  968. struct btrfs_root *fs_root, struct btrfs_path *path,
  969. struct btrfs_key *found_key)
  970. {
  971. int ret;
  972. struct btrfs_key key;
  973. struct extent_buffer *eb;
  974. key.type = key_type;
  975. key.objectid = inum;
  976. key.offset = ioff;
  977. ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
  978. if (ret < 0)
  979. return ret;
  980. eb = path->nodes[0];
  981. if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
  982. ret = btrfs_next_leaf(fs_root, path);
  983. if (ret)
  984. return ret;
  985. eb = path->nodes[0];
  986. }
  987. btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
  988. if (found_key->type != key.type || found_key->objectid != key.objectid)
  989. return 1;
  990. return 0;
  991. }
  992. /*
  993. * this makes the path point to (inum INODE_ITEM ioff)
  994. */
  995. int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  996. struct btrfs_path *path)
  997. {
  998. struct btrfs_key key;
  999. return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
  1000. &key);
  1001. }
  1002. static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  1003. struct btrfs_path *path,
  1004. struct btrfs_key *found_key)
  1005. {
  1006. return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
  1007. found_key);
  1008. }
  1009. int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
  1010. u64 start_off, struct btrfs_path *path,
  1011. struct btrfs_inode_extref **ret_extref,
  1012. u64 *found_off)
  1013. {
  1014. int ret, slot;
  1015. struct btrfs_key key;
  1016. struct btrfs_key found_key;
  1017. struct btrfs_inode_extref *extref;
  1018. struct extent_buffer *leaf;
  1019. unsigned long ptr;
  1020. key.objectid = inode_objectid;
  1021. btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
  1022. key.offset = start_off;
  1023. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1024. if (ret < 0)
  1025. return ret;
  1026. while (1) {
  1027. leaf = path->nodes[0];
  1028. slot = path->slots[0];
  1029. if (slot >= btrfs_header_nritems(leaf)) {
  1030. /*
  1031. * If the item at offset is not found,
  1032. * btrfs_search_slot will point us to the slot
  1033. * where it should be inserted. In our case
  1034. * that will be the slot directly before the
  1035. * next INODE_REF_KEY_V2 item. In the case
  1036. * that we're pointing to the last slot in a
  1037. * leaf, we must move one leaf over.
  1038. */
  1039. ret = btrfs_next_leaf(root, path);
  1040. if (ret) {
  1041. if (ret >= 1)
  1042. ret = -ENOENT;
  1043. break;
  1044. }
  1045. continue;
  1046. }
  1047. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  1048. /*
  1049. * Check that we're still looking at an extended ref key for
  1050. * this particular objectid. If we have different
  1051. * objectid or type then there are no more to be found
  1052. * in the tree and we can exit.
  1053. */
  1054. ret = -ENOENT;
  1055. if (found_key.objectid != inode_objectid)
  1056. break;
  1057. if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
  1058. break;
  1059. ret = 0;
  1060. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1061. extref = (struct btrfs_inode_extref *)ptr;
  1062. *ret_extref = extref;
  1063. if (found_off)
  1064. *found_off = found_key.offset;
  1065. break;
  1066. }
  1067. return ret;
  1068. }
  1069. /*
  1070. * this iterates to turn a name (from iref/extref) into a full filesystem path.
  1071. * Elements of the path are separated by '/' and the path is guaranteed to be
  1072. * 0-terminated. the path is only given within the current file system.
  1073. * Therefore, it never starts with a '/'. the caller is responsible to provide
  1074. * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
  1075. * the start point of the resulting string is returned. this pointer is within
  1076. * dest, normally.
  1077. * in case the path buffer would overflow, the pointer is decremented further
  1078. * as if output was written to the buffer, though no more output is actually
  1079. * generated. that way, the caller can determine how much space would be
  1080. * required for the path to fit into the buffer. in that case, the returned
  1081. * value will be smaller than dest. callers must check this!
  1082. */
  1083. char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
  1084. u32 name_len, unsigned long name_off,
  1085. struct extent_buffer *eb_in, u64 parent,
  1086. char *dest, u32 size)
  1087. {
  1088. int slot;
  1089. u64 next_inum;
  1090. int ret;
  1091. s64 bytes_left = ((s64)size) - 1;
  1092. struct extent_buffer *eb = eb_in;
  1093. struct btrfs_key found_key;
  1094. int leave_spinning = path->leave_spinning;
  1095. struct btrfs_inode_ref *iref;
  1096. if (bytes_left >= 0)
  1097. dest[bytes_left] = '\0';
  1098. path->leave_spinning = 1;
  1099. while (1) {
  1100. bytes_left -= name_len;
  1101. if (bytes_left >= 0)
  1102. read_extent_buffer(eb, dest + bytes_left,
  1103. name_off, name_len);
  1104. if (eb != eb_in) {
  1105. btrfs_tree_read_unlock_blocking(eb);
  1106. free_extent_buffer(eb);
  1107. }
  1108. ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
  1109. if (ret > 0)
  1110. ret = -ENOENT;
  1111. if (ret)
  1112. break;
  1113. next_inum = found_key.offset;
  1114. /* regular exit ahead */
  1115. if (parent == next_inum)
  1116. break;
  1117. slot = path->slots[0];
  1118. eb = path->nodes[0];
  1119. /* make sure we can use eb after releasing the path */
  1120. if (eb != eb_in) {
  1121. atomic_inc(&eb->refs);
  1122. btrfs_tree_read_lock(eb);
  1123. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1124. }
  1125. btrfs_release_path(path);
  1126. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1127. name_len = btrfs_inode_ref_name_len(eb, iref);
  1128. name_off = (unsigned long)(iref + 1);
  1129. parent = next_inum;
  1130. --bytes_left;
  1131. if (bytes_left >= 0)
  1132. dest[bytes_left] = '/';
  1133. }
  1134. btrfs_release_path(path);
  1135. path->leave_spinning = leave_spinning;
  1136. if (ret)
  1137. return ERR_PTR(ret);
  1138. return dest + bytes_left;
  1139. }
  1140. /*
  1141. * this makes the path point to (logical EXTENT_ITEM *)
  1142. * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
  1143. * tree blocks and <0 on error.
  1144. */
  1145. int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
  1146. struct btrfs_path *path, struct btrfs_key *found_key,
  1147. u64 *flags_ret)
  1148. {
  1149. int ret;
  1150. u64 flags;
  1151. u64 size = 0;
  1152. u32 item_size;
  1153. struct extent_buffer *eb;
  1154. struct btrfs_extent_item *ei;
  1155. struct btrfs_key key;
  1156. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  1157. key.type = BTRFS_METADATA_ITEM_KEY;
  1158. else
  1159. key.type = BTRFS_EXTENT_ITEM_KEY;
  1160. key.objectid = logical;
  1161. key.offset = (u64)-1;
  1162. ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
  1163. if (ret < 0)
  1164. return ret;
  1165. ret = btrfs_previous_item(fs_info->extent_root, path,
  1166. 0, BTRFS_EXTENT_ITEM_KEY);
  1167. if (ret < 0)
  1168. return ret;
  1169. btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
  1170. if (found_key->type == BTRFS_METADATA_ITEM_KEY)
  1171. size = fs_info->extent_root->leafsize;
  1172. else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
  1173. size = found_key->offset;
  1174. if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
  1175. found_key->type != BTRFS_METADATA_ITEM_KEY) ||
  1176. found_key->objectid > logical ||
  1177. found_key->objectid + size <= logical) {
  1178. pr_debug("logical %llu is not within any extent\n", logical);
  1179. return -ENOENT;
  1180. }
  1181. eb = path->nodes[0];
  1182. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  1183. BUG_ON(item_size < sizeof(*ei));
  1184. ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
  1185. flags = btrfs_extent_flags(eb, ei);
  1186. pr_debug("logical %llu is at position %llu within the extent (%llu "
  1187. "EXTENT_ITEM %llu) flags %#llx size %u\n",
  1188. logical, logical - found_key->objectid, found_key->objectid,
  1189. found_key->offset, flags, item_size);
  1190. WARN_ON(!flags_ret);
  1191. if (flags_ret) {
  1192. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1193. *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  1194. else if (flags & BTRFS_EXTENT_FLAG_DATA)
  1195. *flags_ret = BTRFS_EXTENT_FLAG_DATA;
  1196. else
  1197. BUG_ON(1);
  1198. return 0;
  1199. }
  1200. return -EIO;
  1201. }
  1202. /*
  1203. * helper function to iterate extent inline refs. ptr must point to a 0 value
  1204. * for the first call and may be modified. it is used to track state.
  1205. * if more refs exist, 0 is returned and the next call to
  1206. * __get_extent_inline_ref must pass the modified ptr parameter to get the
  1207. * next ref. after the last ref was processed, 1 is returned.
  1208. * returns <0 on error
  1209. */
  1210. static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
  1211. struct btrfs_extent_item *ei, u32 item_size,
  1212. struct btrfs_extent_inline_ref **out_eiref,
  1213. int *out_type)
  1214. {
  1215. unsigned long end;
  1216. u64 flags;
  1217. struct btrfs_tree_block_info *info;
  1218. if (!*ptr) {
  1219. /* first call */
  1220. flags = btrfs_extent_flags(eb, ei);
  1221. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1222. info = (struct btrfs_tree_block_info *)(ei + 1);
  1223. *out_eiref =
  1224. (struct btrfs_extent_inline_ref *)(info + 1);
  1225. } else {
  1226. *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
  1227. }
  1228. *ptr = (unsigned long)*out_eiref;
  1229. if ((void *)*ptr >= (void *)ei + item_size)
  1230. return -ENOENT;
  1231. }
  1232. end = (unsigned long)ei + item_size;
  1233. *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
  1234. *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
  1235. *ptr += btrfs_extent_inline_ref_size(*out_type);
  1236. WARN_ON(*ptr > end);
  1237. if (*ptr == end)
  1238. return 1; /* last */
  1239. return 0;
  1240. }
  1241. /*
  1242. * reads the tree block backref for an extent. tree level and root are returned
  1243. * through out_level and out_root. ptr must point to a 0 value for the first
  1244. * call and may be modified (see __get_extent_inline_ref comment).
  1245. * returns 0 if data was provided, 1 if there was no more data to provide or
  1246. * <0 on error.
  1247. */
  1248. int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
  1249. struct btrfs_extent_item *ei, u32 item_size,
  1250. u64 *out_root, u8 *out_level)
  1251. {
  1252. int ret;
  1253. int type;
  1254. struct btrfs_tree_block_info *info;
  1255. struct btrfs_extent_inline_ref *eiref;
  1256. if (*ptr == (unsigned long)-1)
  1257. return 1;
  1258. while (1) {
  1259. ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
  1260. &eiref, &type);
  1261. if (ret < 0)
  1262. return ret;
  1263. if (type == BTRFS_TREE_BLOCK_REF_KEY ||
  1264. type == BTRFS_SHARED_BLOCK_REF_KEY)
  1265. break;
  1266. if (ret == 1)
  1267. return 1;
  1268. }
  1269. /* we can treat both ref types equally here */
  1270. info = (struct btrfs_tree_block_info *)(ei + 1);
  1271. *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
  1272. *out_level = btrfs_tree_block_level(eb, info);
  1273. if (ret == 1)
  1274. *ptr = (unsigned long)-1;
  1275. return 0;
  1276. }
  1277. static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
  1278. u64 root, u64 extent_item_objectid,
  1279. iterate_extent_inodes_t *iterate, void *ctx)
  1280. {
  1281. struct extent_inode_elem *eie;
  1282. int ret = 0;
  1283. for (eie = inode_list; eie; eie = eie->next) {
  1284. pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
  1285. "root %llu\n", extent_item_objectid,
  1286. eie->inum, eie->offset, root);
  1287. ret = iterate(eie->inum, eie->offset, root, ctx);
  1288. if (ret) {
  1289. pr_debug("stopping iteration for %llu due to ret=%d\n",
  1290. extent_item_objectid, ret);
  1291. break;
  1292. }
  1293. }
  1294. return ret;
  1295. }
  1296. /*
  1297. * calls iterate() for every inode that references the extent identified by
  1298. * the given parameters.
  1299. * when the iterator function returns a non-zero value, iteration stops.
  1300. */
  1301. int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
  1302. u64 extent_item_objectid, u64 extent_item_pos,
  1303. int search_commit_root,
  1304. iterate_extent_inodes_t *iterate, void *ctx)
  1305. {
  1306. int ret;
  1307. struct btrfs_trans_handle *trans = NULL;
  1308. struct ulist *refs = NULL;
  1309. struct ulist *roots = NULL;
  1310. struct ulist_node *ref_node = NULL;
  1311. struct ulist_node *root_node = NULL;
  1312. struct seq_list tree_mod_seq_elem = {};
  1313. struct ulist_iterator ref_uiter;
  1314. struct ulist_iterator root_uiter;
  1315. pr_debug("resolving all inodes for extent %llu\n",
  1316. extent_item_objectid);
  1317. if (!search_commit_root) {
  1318. trans = btrfs_join_transaction(fs_info->extent_root);
  1319. if (IS_ERR(trans))
  1320. return PTR_ERR(trans);
  1321. btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1322. }
  1323. ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
  1324. tree_mod_seq_elem.seq, &refs,
  1325. &extent_item_pos);
  1326. if (ret)
  1327. goto out;
  1328. ULIST_ITER_INIT(&ref_uiter);
  1329. while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
  1330. ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
  1331. tree_mod_seq_elem.seq, &roots);
  1332. if (ret)
  1333. break;
  1334. ULIST_ITER_INIT(&root_uiter);
  1335. while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
  1336. pr_debug("root %llu references leaf %llu, data list "
  1337. "%#llx\n", root_node->val, ref_node->val,
  1338. ref_node->aux);
  1339. ret = iterate_leaf_refs((struct extent_inode_elem *)
  1340. (uintptr_t)ref_node->aux,
  1341. root_node->val,
  1342. extent_item_objectid,
  1343. iterate, ctx);
  1344. }
  1345. ulist_free(roots);
  1346. }
  1347. free_leaf_list(refs);
  1348. out:
  1349. if (!search_commit_root) {
  1350. btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1351. btrfs_end_transaction(trans, fs_info->extent_root);
  1352. }
  1353. return ret;
  1354. }
  1355. int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
  1356. struct btrfs_path *path,
  1357. iterate_extent_inodes_t *iterate, void *ctx)
  1358. {
  1359. int ret;
  1360. u64 extent_item_pos;
  1361. u64 flags = 0;
  1362. struct btrfs_key found_key;
  1363. int search_commit_root = path->search_commit_root;
  1364. ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
  1365. btrfs_release_path(path);
  1366. if (ret < 0)
  1367. return ret;
  1368. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1369. return -EINVAL;
  1370. extent_item_pos = logical - found_key.objectid;
  1371. ret = iterate_extent_inodes(fs_info, found_key.objectid,
  1372. extent_item_pos, search_commit_root,
  1373. iterate, ctx);
  1374. return ret;
  1375. }
  1376. typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
  1377. struct extent_buffer *eb, void *ctx);
  1378. static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
  1379. struct btrfs_path *path,
  1380. iterate_irefs_t *iterate, void *ctx)
  1381. {
  1382. int ret = 0;
  1383. int slot;
  1384. u32 cur;
  1385. u32 len;
  1386. u32 name_len;
  1387. u64 parent = 0;
  1388. int found = 0;
  1389. struct extent_buffer *eb;
  1390. struct btrfs_item *item;
  1391. struct btrfs_inode_ref *iref;
  1392. struct btrfs_key found_key;
  1393. while (!ret) {
  1394. path->leave_spinning = 1;
  1395. ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
  1396. &found_key);
  1397. if (ret < 0)
  1398. break;
  1399. if (ret) {
  1400. ret = found ? 0 : -ENOENT;
  1401. break;
  1402. }
  1403. ++found;
  1404. parent = found_key.offset;
  1405. slot = path->slots[0];
  1406. eb = path->nodes[0];
  1407. /* make sure we can use eb after releasing the path */
  1408. atomic_inc(&eb->refs);
  1409. btrfs_tree_read_lock(eb);
  1410. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1411. btrfs_release_path(path);
  1412. item = btrfs_item_nr(eb, slot);
  1413. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1414. for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
  1415. name_len = btrfs_inode_ref_name_len(eb, iref);
  1416. /* path must be released before calling iterate()! */
  1417. pr_debug("following ref at offset %u for inode %llu in "
  1418. "tree %llu\n", cur, found_key.objectid,
  1419. fs_root->objectid);
  1420. ret = iterate(parent, name_len,
  1421. (unsigned long)(iref + 1), eb, ctx);
  1422. if (ret)
  1423. break;
  1424. len = sizeof(*iref) + name_len;
  1425. iref = (struct btrfs_inode_ref *)((char *)iref + len);
  1426. }
  1427. btrfs_tree_read_unlock_blocking(eb);
  1428. free_extent_buffer(eb);
  1429. }
  1430. btrfs_release_path(path);
  1431. return ret;
  1432. }
  1433. static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
  1434. struct btrfs_path *path,
  1435. iterate_irefs_t *iterate, void *ctx)
  1436. {
  1437. int ret;
  1438. int slot;
  1439. u64 offset = 0;
  1440. u64 parent;
  1441. int found = 0;
  1442. struct extent_buffer *eb;
  1443. struct btrfs_inode_extref *extref;
  1444. struct extent_buffer *leaf;
  1445. u32 item_size;
  1446. u32 cur_offset;
  1447. unsigned long ptr;
  1448. while (1) {
  1449. ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
  1450. &offset);
  1451. if (ret < 0)
  1452. break;
  1453. if (ret) {
  1454. ret = found ? 0 : -ENOENT;
  1455. break;
  1456. }
  1457. ++found;
  1458. slot = path->slots[0];
  1459. eb = path->nodes[0];
  1460. /* make sure we can use eb after releasing the path */
  1461. atomic_inc(&eb->refs);
  1462. btrfs_tree_read_lock(eb);
  1463. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1464. btrfs_release_path(path);
  1465. leaf = path->nodes[0];
  1466. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1467. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1468. cur_offset = 0;
  1469. while (cur_offset < item_size) {
  1470. u32 name_len;
  1471. extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
  1472. parent = btrfs_inode_extref_parent(eb, extref);
  1473. name_len = btrfs_inode_extref_name_len(eb, extref);
  1474. ret = iterate(parent, name_len,
  1475. (unsigned long)&extref->name, eb, ctx);
  1476. if (ret)
  1477. break;
  1478. cur_offset += btrfs_inode_extref_name_len(leaf, extref);
  1479. cur_offset += sizeof(*extref);
  1480. }
  1481. btrfs_tree_read_unlock_blocking(eb);
  1482. free_extent_buffer(eb);
  1483. offset++;
  1484. }
  1485. btrfs_release_path(path);
  1486. return ret;
  1487. }
  1488. static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
  1489. struct btrfs_path *path, iterate_irefs_t *iterate,
  1490. void *ctx)
  1491. {
  1492. int ret;
  1493. int found_refs = 0;
  1494. ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
  1495. if (!ret)
  1496. ++found_refs;
  1497. else if (ret != -ENOENT)
  1498. return ret;
  1499. ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
  1500. if (ret == -ENOENT && found_refs)
  1501. return 0;
  1502. return ret;
  1503. }
  1504. /*
  1505. * returns 0 if the path could be dumped (probably truncated)
  1506. * returns <0 in case of an error
  1507. */
  1508. static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
  1509. struct extent_buffer *eb, void *ctx)
  1510. {
  1511. struct inode_fs_paths *ipath = ctx;
  1512. char *fspath;
  1513. char *fspath_min;
  1514. int i = ipath->fspath->elem_cnt;
  1515. const int s_ptr = sizeof(char *);
  1516. u32 bytes_left;
  1517. bytes_left = ipath->fspath->bytes_left > s_ptr ?
  1518. ipath->fspath->bytes_left - s_ptr : 0;
  1519. fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
  1520. fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
  1521. name_off, eb, inum, fspath_min, bytes_left);
  1522. if (IS_ERR(fspath))
  1523. return PTR_ERR(fspath);
  1524. if (fspath > fspath_min) {
  1525. ipath->fspath->val[i] = (u64)(unsigned long)fspath;
  1526. ++ipath->fspath->elem_cnt;
  1527. ipath->fspath->bytes_left = fspath - fspath_min;
  1528. } else {
  1529. ++ipath->fspath->elem_missed;
  1530. ipath->fspath->bytes_missing += fspath_min - fspath;
  1531. ipath->fspath->bytes_left = 0;
  1532. }
  1533. return 0;
  1534. }
  1535. /*
  1536. * this dumps all file system paths to the inode into the ipath struct, provided
  1537. * is has been created large enough. each path is zero-terminated and accessed
  1538. * from ipath->fspath->val[i].
  1539. * when it returns, there are ipath->fspath->elem_cnt number of paths available
  1540. * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
  1541. * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
  1542. * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
  1543. * have been needed to return all paths.
  1544. */
  1545. int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
  1546. {
  1547. return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
  1548. inode_to_path, ipath);
  1549. }
  1550. struct btrfs_data_container *init_data_container(u32 total_bytes)
  1551. {
  1552. struct btrfs_data_container *data;
  1553. size_t alloc_bytes;
  1554. alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
  1555. data = vmalloc(alloc_bytes);
  1556. if (!data)
  1557. return ERR_PTR(-ENOMEM);
  1558. if (total_bytes >= sizeof(*data)) {
  1559. data->bytes_left = total_bytes - sizeof(*data);
  1560. data->bytes_missing = 0;
  1561. } else {
  1562. data->bytes_missing = sizeof(*data) - total_bytes;
  1563. data->bytes_left = 0;
  1564. }
  1565. data->elem_cnt = 0;
  1566. data->elem_missed = 0;
  1567. return data;
  1568. }
  1569. /*
  1570. * allocates space to return multiple file system paths for an inode.
  1571. * total_bytes to allocate are passed, note that space usable for actual path
  1572. * information will be total_bytes - sizeof(struct inode_fs_paths).
  1573. * the returned pointer must be freed with free_ipath() in the end.
  1574. */
  1575. struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
  1576. struct btrfs_path *path)
  1577. {
  1578. struct inode_fs_paths *ifp;
  1579. struct btrfs_data_container *fspath;
  1580. fspath = init_data_container(total_bytes);
  1581. if (IS_ERR(fspath))
  1582. return (void *)fspath;
  1583. ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
  1584. if (!ifp) {
  1585. kfree(fspath);
  1586. return ERR_PTR(-ENOMEM);
  1587. }
  1588. ifp->btrfs_path = path;
  1589. ifp->fspath = fspath;
  1590. ifp->fs_root = fs_root;
  1591. return ifp;
  1592. }
  1593. void free_ipath(struct inode_fs_paths *ipath)
  1594. {
  1595. if (!ipath)
  1596. return;
  1597. vfree(ipath->fspath);
  1598. kfree(ipath);
  1599. }