sched.c 165 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <asm/tlb.h>
  64. /*
  65. * Scheduler clock - returns current time in nanosec units.
  66. * This is default implementation.
  67. * Architectures and sub-architectures can override this.
  68. */
  69. unsigned long long __attribute__((weak)) sched_clock(void)
  70. {
  71. return (unsigned long long)jiffies * (1000000000 / HZ);
  72. }
  73. /*
  74. * Convert user-nice values [ -20 ... 0 ... 19 ]
  75. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  76. * and back.
  77. */
  78. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  79. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  80. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  81. /*
  82. * 'User priority' is the nice value converted to something we
  83. * can work with better when scaling various scheduler parameters,
  84. * it's a [ 0 ... 39 ] range.
  85. */
  86. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  87. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  88. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  89. /*
  90. * Some helpers for converting nanosecond timing to jiffy resolution
  91. */
  92. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  93. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  100. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. #ifdef CONFIG_SMP
  106. /*
  107. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  108. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  109. */
  110. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  111. {
  112. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  113. }
  114. /*
  115. * Each time a sched group cpu_power is changed,
  116. * we must compute its reciprocal value
  117. */
  118. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  119. {
  120. sg->__cpu_power += val;
  121. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  122. }
  123. #endif
  124. #define SCALE_PRIO(x, prio) \
  125. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  126. /*
  127. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  128. * to time slice values: [800ms ... 100ms ... 5ms]
  129. */
  130. static unsigned int static_prio_timeslice(int static_prio)
  131. {
  132. if (static_prio == NICE_TO_PRIO(19))
  133. return 1;
  134. if (static_prio < NICE_TO_PRIO(0))
  135. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  136. else
  137. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  138. }
  139. static inline int rt_policy(int policy)
  140. {
  141. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  142. return 1;
  143. return 0;
  144. }
  145. static inline int task_has_rt_policy(struct task_struct *p)
  146. {
  147. return rt_policy(p->policy);
  148. }
  149. /*
  150. * This is the priority-queue data structure of the RT scheduling class:
  151. */
  152. struct rt_prio_array {
  153. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  154. struct list_head queue[MAX_RT_PRIO];
  155. };
  156. struct load_stat {
  157. struct load_weight load;
  158. u64 load_update_start, load_update_last;
  159. unsigned long delta_fair, delta_exec, delta_stat;
  160. };
  161. /* CFS-related fields in a runqueue */
  162. struct cfs_rq {
  163. struct load_weight load;
  164. unsigned long nr_running;
  165. s64 fair_clock;
  166. u64 exec_clock;
  167. s64 wait_runtime;
  168. u64 sleeper_bonus;
  169. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  170. struct rb_root tasks_timeline;
  171. struct rb_node *rb_leftmost;
  172. struct rb_node *rb_load_balance_curr;
  173. #ifdef CONFIG_FAIR_GROUP_SCHED
  174. /* 'curr' points to currently running entity on this cfs_rq.
  175. * It is set to NULL otherwise (i.e when none are currently running).
  176. */
  177. struct sched_entity *curr;
  178. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  179. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  180. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  181. * (like users, containers etc.)
  182. *
  183. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  184. * list is used during load balance.
  185. */
  186. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  187. #endif
  188. };
  189. /* Real-Time classes' related field in a runqueue: */
  190. struct rt_rq {
  191. struct rt_prio_array active;
  192. int rt_load_balance_idx;
  193. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  194. };
  195. /*
  196. * This is the main, per-CPU runqueue data structure.
  197. *
  198. * Locking rule: those places that want to lock multiple runqueues
  199. * (such as the load balancing or the thread migration code), lock
  200. * acquire operations must be ordered by ascending &runqueue.
  201. */
  202. struct rq {
  203. spinlock_t lock; /* runqueue lock */
  204. /*
  205. * nr_running and cpu_load should be in the same cacheline because
  206. * remote CPUs use both these fields when doing load calculation.
  207. */
  208. unsigned long nr_running;
  209. #define CPU_LOAD_IDX_MAX 5
  210. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  211. unsigned char idle_at_tick;
  212. #ifdef CONFIG_NO_HZ
  213. unsigned char in_nohz_recently;
  214. #endif
  215. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  216. unsigned long nr_load_updates;
  217. u64 nr_switches;
  218. struct cfs_rq cfs;
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  221. #endif
  222. struct rt_rq rt;
  223. /*
  224. * This is part of a global counter where only the total sum
  225. * over all CPUs matters. A task can increase this counter on
  226. * one CPU and if it got migrated afterwards it may decrease
  227. * it on another CPU. Always updated under the runqueue lock:
  228. */
  229. unsigned long nr_uninterruptible;
  230. struct task_struct *curr, *idle;
  231. unsigned long next_balance;
  232. struct mm_struct *prev_mm;
  233. u64 clock, prev_clock_raw;
  234. s64 clock_max_delta;
  235. unsigned int clock_warps, clock_overflows;
  236. unsigned int clock_unstable_events;
  237. atomic_t nr_iowait;
  238. #ifdef CONFIG_SMP
  239. struct sched_domain *sd;
  240. /* For active balancing */
  241. int active_balance;
  242. int push_cpu;
  243. int cpu; /* cpu of this runqueue */
  244. struct task_struct *migration_thread;
  245. struct list_head migration_queue;
  246. #endif
  247. #ifdef CONFIG_SCHEDSTATS
  248. /* latency stats */
  249. struct sched_info rq_sched_info;
  250. /* sys_sched_yield() stats */
  251. unsigned long yld_exp_empty;
  252. unsigned long yld_act_empty;
  253. unsigned long yld_both_empty;
  254. unsigned long yld_cnt;
  255. /* schedule() stats */
  256. unsigned long sched_switch;
  257. unsigned long sched_cnt;
  258. unsigned long sched_goidle;
  259. /* try_to_wake_up() stats */
  260. unsigned long ttwu_cnt;
  261. unsigned long ttwu_local;
  262. #endif
  263. struct lock_class_key rq_lock_key;
  264. };
  265. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  266. static DEFINE_MUTEX(sched_hotcpu_mutex);
  267. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  268. {
  269. rq->curr->sched_class->check_preempt_curr(rq, p);
  270. }
  271. static inline int cpu_of(struct rq *rq)
  272. {
  273. #ifdef CONFIG_SMP
  274. return rq->cpu;
  275. #else
  276. return 0;
  277. #endif
  278. }
  279. /*
  280. * Update the per-runqueue clock, as finegrained as the platform can give
  281. * us, but without assuming monotonicity, etc.:
  282. */
  283. static void __update_rq_clock(struct rq *rq)
  284. {
  285. u64 prev_raw = rq->prev_clock_raw;
  286. u64 now = sched_clock();
  287. s64 delta = now - prev_raw;
  288. u64 clock = rq->clock;
  289. #ifdef CONFIG_SCHED_DEBUG
  290. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  291. #endif
  292. /*
  293. * Protect against sched_clock() occasionally going backwards:
  294. */
  295. if (unlikely(delta < 0)) {
  296. clock++;
  297. rq->clock_warps++;
  298. } else {
  299. /*
  300. * Catch too large forward jumps too:
  301. */
  302. if (unlikely(delta > 2*TICK_NSEC)) {
  303. clock++;
  304. rq->clock_overflows++;
  305. } else {
  306. if (unlikely(delta > rq->clock_max_delta))
  307. rq->clock_max_delta = delta;
  308. clock += delta;
  309. }
  310. }
  311. rq->prev_clock_raw = now;
  312. rq->clock = clock;
  313. }
  314. static void update_rq_clock(struct rq *rq)
  315. {
  316. if (likely(smp_processor_id() == cpu_of(rq)))
  317. __update_rq_clock(rq);
  318. }
  319. static u64 __rq_clock(struct rq *rq)
  320. {
  321. __update_rq_clock(rq);
  322. return rq->clock;
  323. }
  324. /*
  325. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  326. * See detach_destroy_domains: synchronize_sched for details.
  327. *
  328. * The domain tree of any CPU may only be accessed from within
  329. * preempt-disabled sections.
  330. */
  331. #define for_each_domain(cpu, __sd) \
  332. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  333. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  334. #define this_rq() (&__get_cpu_var(runqueues))
  335. #define task_rq(p) cpu_rq(task_cpu(p))
  336. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  337. /*
  338. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  339. * clock constructed from sched_clock():
  340. */
  341. unsigned long long cpu_clock(int cpu)
  342. {
  343. unsigned long long now;
  344. unsigned long flags;
  345. struct rq *rq;
  346. local_irq_save(flags);
  347. rq = cpu_rq(cpu);
  348. update_rq_clock(rq);
  349. now = rq->clock;
  350. local_irq_restore(flags);
  351. return now;
  352. }
  353. #ifdef CONFIG_FAIR_GROUP_SCHED
  354. /* Change a task's ->cfs_rq if it moves across CPUs */
  355. static inline void set_task_cfs_rq(struct task_struct *p)
  356. {
  357. p->se.cfs_rq = &task_rq(p)->cfs;
  358. }
  359. #else
  360. static inline void set_task_cfs_rq(struct task_struct *p)
  361. {
  362. }
  363. #endif
  364. #ifndef prepare_arch_switch
  365. # define prepare_arch_switch(next) do { } while (0)
  366. #endif
  367. #ifndef finish_arch_switch
  368. # define finish_arch_switch(prev) do { } while (0)
  369. #endif
  370. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  371. static inline int task_running(struct rq *rq, struct task_struct *p)
  372. {
  373. return rq->curr == p;
  374. }
  375. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  376. {
  377. }
  378. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  379. {
  380. #ifdef CONFIG_DEBUG_SPINLOCK
  381. /* this is a valid case when another task releases the spinlock */
  382. rq->lock.owner = current;
  383. #endif
  384. /*
  385. * If we are tracking spinlock dependencies then we have to
  386. * fix up the runqueue lock - which gets 'carried over' from
  387. * prev into current:
  388. */
  389. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  390. spin_unlock_irq(&rq->lock);
  391. }
  392. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  393. static inline int task_running(struct rq *rq, struct task_struct *p)
  394. {
  395. #ifdef CONFIG_SMP
  396. return p->oncpu;
  397. #else
  398. return rq->curr == p;
  399. #endif
  400. }
  401. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  402. {
  403. #ifdef CONFIG_SMP
  404. /*
  405. * We can optimise this out completely for !SMP, because the
  406. * SMP rebalancing from interrupt is the only thing that cares
  407. * here.
  408. */
  409. next->oncpu = 1;
  410. #endif
  411. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  412. spin_unlock_irq(&rq->lock);
  413. #else
  414. spin_unlock(&rq->lock);
  415. #endif
  416. }
  417. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  418. {
  419. #ifdef CONFIG_SMP
  420. /*
  421. * After ->oncpu is cleared, the task can be moved to a different CPU.
  422. * We must ensure this doesn't happen until the switch is completely
  423. * finished.
  424. */
  425. smp_wmb();
  426. prev->oncpu = 0;
  427. #endif
  428. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  429. local_irq_enable();
  430. #endif
  431. }
  432. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  433. /*
  434. * __task_rq_lock - lock the runqueue a given task resides on.
  435. * Must be called interrupts disabled.
  436. */
  437. static inline struct rq *__task_rq_lock(struct task_struct *p)
  438. __acquires(rq->lock)
  439. {
  440. struct rq *rq;
  441. repeat_lock_task:
  442. rq = task_rq(p);
  443. spin_lock(&rq->lock);
  444. if (unlikely(rq != task_rq(p))) {
  445. spin_unlock(&rq->lock);
  446. goto repeat_lock_task;
  447. }
  448. return rq;
  449. }
  450. /*
  451. * task_rq_lock - lock the runqueue a given task resides on and disable
  452. * interrupts. Note the ordering: we can safely lookup the task_rq without
  453. * explicitly disabling preemption.
  454. */
  455. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  456. __acquires(rq->lock)
  457. {
  458. struct rq *rq;
  459. repeat_lock_task:
  460. local_irq_save(*flags);
  461. rq = task_rq(p);
  462. spin_lock(&rq->lock);
  463. if (unlikely(rq != task_rq(p))) {
  464. spin_unlock_irqrestore(&rq->lock, *flags);
  465. goto repeat_lock_task;
  466. }
  467. return rq;
  468. }
  469. static inline void __task_rq_unlock(struct rq *rq)
  470. __releases(rq->lock)
  471. {
  472. spin_unlock(&rq->lock);
  473. }
  474. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  475. __releases(rq->lock)
  476. {
  477. spin_unlock_irqrestore(&rq->lock, *flags);
  478. }
  479. /*
  480. * this_rq_lock - lock this runqueue and disable interrupts.
  481. */
  482. static inline struct rq *this_rq_lock(void)
  483. __acquires(rq->lock)
  484. {
  485. struct rq *rq;
  486. local_irq_disable();
  487. rq = this_rq();
  488. spin_lock(&rq->lock);
  489. return rq;
  490. }
  491. /*
  492. * CPU frequency is/was unstable - start new by setting prev_clock_raw:
  493. */
  494. void sched_clock_unstable_event(void)
  495. {
  496. unsigned long flags;
  497. struct rq *rq;
  498. rq = task_rq_lock(current, &flags);
  499. rq->prev_clock_raw = sched_clock();
  500. rq->clock_unstable_events++;
  501. task_rq_unlock(rq, &flags);
  502. }
  503. /*
  504. * resched_task - mark a task 'to be rescheduled now'.
  505. *
  506. * On UP this means the setting of the need_resched flag, on SMP it
  507. * might also involve a cross-CPU call to trigger the scheduler on
  508. * the target CPU.
  509. */
  510. #ifdef CONFIG_SMP
  511. #ifndef tsk_is_polling
  512. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  513. #endif
  514. static void resched_task(struct task_struct *p)
  515. {
  516. int cpu;
  517. assert_spin_locked(&task_rq(p)->lock);
  518. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  519. return;
  520. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  521. cpu = task_cpu(p);
  522. if (cpu == smp_processor_id())
  523. return;
  524. /* NEED_RESCHED must be visible before we test polling */
  525. smp_mb();
  526. if (!tsk_is_polling(p))
  527. smp_send_reschedule(cpu);
  528. }
  529. static void resched_cpu(int cpu)
  530. {
  531. struct rq *rq = cpu_rq(cpu);
  532. unsigned long flags;
  533. if (!spin_trylock_irqsave(&rq->lock, flags))
  534. return;
  535. resched_task(cpu_curr(cpu));
  536. spin_unlock_irqrestore(&rq->lock, flags);
  537. }
  538. #else
  539. static inline void resched_task(struct task_struct *p)
  540. {
  541. assert_spin_locked(&task_rq(p)->lock);
  542. set_tsk_need_resched(p);
  543. }
  544. #endif
  545. static u64 div64_likely32(u64 divident, unsigned long divisor)
  546. {
  547. #if BITS_PER_LONG == 32
  548. if (likely(divident <= 0xffffffffULL))
  549. return (u32)divident / divisor;
  550. do_div(divident, divisor);
  551. return divident;
  552. #else
  553. return divident / divisor;
  554. #endif
  555. }
  556. #if BITS_PER_LONG == 32
  557. # define WMULT_CONST (~0UL)
  558. #else
  559. # define WMULT_CONST (1UL << 32)
  560. #endif
  561. #define WMULT_SHIFT 32
  562. static unsigned long
  563. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  564. struct load_weight *lw)
  565. {
  566. u64 tmp;
  567. if (unlikely(!lw->inv_weight))
  568. lw->inv_weight = WMULT_CONST / lw->weight;
  569. tmp = (u64)delta_exec * weight;
  570. /*
  571. * Check whether we'd overflow the 64-bit multiplication:
  572. */
  573. if (unlikely(tmp > WMULT_CONST)) {
  574. tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
  575. >> (WMULT_SHIFT/2);
  576. } else {
  577. tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
  578. }
  579. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  580. }
  581. static inline unsigned long
  582. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  583. {
  584. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  585. }
  586. static void update_load_add(struct load_weight *lw, unsigned long inc)
  587. {
  588. lw->weight += inc;
  589. lw->inv_weight = 0;
  590. }
  591. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  592. {
  593. lw->weight -= dec;
  594. lw->inv_weight = 0;
  595. }
  596. /*
  597. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  598. * of tasks with abnormal "nice" values across CPUs the contribution that
  599. * each task makes to its run queue's load is weighted according to its
  600. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  601. * scaled version of the new time slice allocation that they receive on time
  602. * slice expiry etc.
  603. */
  604. #define WEIGHT_IDLEPRIO 2
  605. #define WMULT_IDLEPRIO (1 << 31)
  606. /*
  607. * Nice levels are multiplicative, with a gentle 10% change for every
  608. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  609. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  610. * that remained on nice 0.
  611. *
  612. * The "10% effect" is relative and cumulative: from _any_ nice level,
  613. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  614. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  615. * If a task goes up by ~10% and another task goes down by ~10% then
  616. * the relative distance between them is ~25%.)
  617. */
  618. static const int prio_to_weight[40] = {
  619. /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
  620. /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
  621. /* 0 */ NICE_0_LOAD /* 1024 */,
  622. /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
  623. /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
  624. };
  625. /*
  626. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  627. *
  628. * In cases where the weight does not change often, we can use the
  629. * precalculated inverse to speed up arithmetics by turning divisions
  630. * into multiplications:
  631. */
  632. static const u32 prio_to_wmult[40] = {
  633. /* -20 */ 48356, 60446, 75558, 94446, 118058,
  634. /* -15 */ 147573, 184467, 230589, 288233, 360285,
  635. /* -10 */ 450347, 562979, 703746, 879575, 1099582,
  636. /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
  637. /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
  638. /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
  639. /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
  640. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  641. };
  642. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  643. /*
  644. * runqueue iterator, to support SMP load-balancing between different
  645. * scheduling classes, without having to expose their internal data
  646. * structures to the load-balancing proper:
  647. */
  648. struct rq_iterator {
  649. void *arg;
  650. struct task_struct *(*start)(void *);
  651. struct task_struct *(*next)(void *);
  652. };
  653. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  654. unsigned long max_nr_move, unsigned long max_load_move,
  655. struct sched_domain *sd, enum cpu_idle_type idle,
  656. int *all_pinned, unsigned long *load_moved,
  657. int *this_best_prio, struct rq_iterator *iterator);
  658. #include "sched_stats.h"
  659. #include "sched_rt.c"
  660. #include "sched_fair.c"
  661. #include "sched_idletask.c"
  662. #ifdef CONFIG_SCHED_DEBUG
  663. # include "sched_debug.c"
  664. #endif
  665. #define sched_class_highest (&rt_sched_class)
  666. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  667. {
  668. if (rq->curr != rq->idle && ls->load.weight) {
  669. ls->delta_exec += ls->delta_stat;
  670. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  671. ls->delta_stat = 0;
  672. }
  673. }
  674. /*
  675. * Update delta_exec, delta_fair fields for rq.
  676. *
  677. * delta_fair clock advances at a rate inversely proportional to
  678. * total load (rq->ls.load.weight) on the runqueue, while
  679. * delta_exec advances at the same rate as wall-clock (provided
  680. * cpu is not idle).
  681. *
  682. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  683. * runqueue over any given interval. This (smoothened) load is used
  684. * during load balance.
  685. *
  686. * This function is called /before/ updating rq->ls.load
  687. * and when switching tasks.
  688. */
  689. static void update_curr_load(struct rq *rq, u64 now)
  690. {
  691. struct load_stat *ls = &rq->ls;
  692. u64 start;
  693. start = ls->load_update_start;
  694. ls->load_update_start = now;
  695. ls->delta_stat += now - start;
  696. /*
  697. * Stagger updates to ls->delta_fair. Very frequent updates
  698. * can be expensive.
  699. */
  700. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  701. __update_curr_load(rq, ls);
  702. }
  703. static inline void
  704. inc_load(struct rq *rq, const struct task_struct *p, u64 now)
  705. {
  706. update_curr_load(rq, now);
  707. update_load_add(&rq->ls.load, p->se.load.weight);
  708. }
  709. static inline void
  710. dec_load(struct rq *rq, const struct task_struct *p, u64 now)
  711. {
  712. update_curr_load(rq, now);
  713. update_load_sub(&rq->ls.load, p->se.load.weight);
  714. }
  715. static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  716. {
  717. rq->nr_running++;
  718. inc_load(rq, p, now);
  719. }
  720. static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  721. {
  722. rq->nr_running--;
  723. dec_load(rq, p, now);
  724. }
  725. static void set_load_weight(struct task_struct *p)
  726. {
  727. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  728. p->se.wait_runtime = 0;
  729. if (task_has_rt_policy(p)) {
  730. p->se.load.weight = prio_to_weight[0] * 2;
  731. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  732. return;
  733. }
  734. /*
  735. * SCHED_IDLE tasks get minimal weight:
  736. */
  737. if (p->policy == SCHED_IDLE) {
  738. p->se.load.weight = WEIGHT_IDLEPRIO;
  739. p->se.load.inv_weight = WMULT_IDLEPRIO;
  740. return;
  741. }
  742. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  743. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  744. }
  745. static void
  746. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
  747. {
  748. sched_info_queued(p);
  749. p->sched_class->enqueue_task(rq, p, wakeup, now);
  750. p->se.on_rq = 1;
  751. }
  752. static void
  753. dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  754. {
  755. p->sched_class->dequeue_task(rq, p, sleep, now);
  756. p->se.on_rq = 0;
  757. }
  758. /*
  759. * __normal_prio - return the priority that is based on the static prio
  760. */
  761. static inline int __normal_prio(struct task_struct *p)
  762. {
  763. return p->static_prio;
  764. }
  765. /*
  766. * Calculate the expected normal priority: i.e. priority
  767. * without taking RT-inheritance into account. Might be
  768. * boosted by interactivity modifiers. Changes upon fork,
  769. * setprio syscalls, and whenever the interactivity
  770. * estimator recalculates.
  771. */
  772. static inline int normal_prio(struct task_struct *p)
  773. {
  774. int prio;
  775. if (task_has_rt_policy(p))
  776. prio = MAX_RT_PRIO-1 - p->rt_priority;
  777. else
  778. prio = __normal_prio(p);
  779. return prio;
  780. }
  781. /*
  782. * Calculate the current priority, i.e. the priority
  783. * taken into account by the scheduler. This value might
  784. * be boosted by RT tasks, or might be boosted by
  785. * interactivity modifiers. Will be RT if the task got
  786. * RT-boosted. If not then it returns p->normal_prio.
  787. */
  788. static int effective_prio(struct task_struct *p)
  789. {
  790. p->normal_prio = normal_prio(p);
  791. /*
  792. * If we are RT tasks or we were boosted to RT priority,
  793. * keep the priority unchanged. Otherwise, update priority
  794. * to the normal priority:
  795. */
  796. if (!rt_prio(p->prio))
  797. return p->normal_prio;
  798. return p->prio;
  799. }
  800. /*
  801. * activate_task - move a task to the runqueue.
  802. */
  803. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  804. {
  805. u64 now;
  806. update_rq_clock(rq);
  807. now = rq->clock;
  808. if (p->state == TASK_UNINTERRUPTIBLE)
  809. rq->nr_uninterruptible--;
  810. enqueue_task(rq, p, wakeup, now);
  811. inc_nr_running(p, rq, now);
  812. }
  813. /*
  814. * activate_idle_task - move idle task to the _front_ of runqueue.
  815. */
  816. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  817. {
  818. u64 now;
  819. update_rq_clock(rq);
  820. now = rq->clock;
  821. if (p->state == TASK_UNINTERRUPTIBLE)
  822. rq->nr_uninterruptible--;
  823. enqueue_task(rq, p, 0, now);
  824. inc_nr_running(p, rq, now);
  825. }
  826. /*
  827. * deactivate_task - remove a task from the runqueue.
  828. */
  829. static void
  830. deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  831. {
  832. if (p->state == TASK_UNINTERRUPTIBLE)
  833. rq->nr_uninterruptible++;
  834. dequeue_task(rq, p, sleep, now);
  835. dec_nr_running(p, rq, now);
  836. }
  837. /**
  838. * task_curr - is this task currently executing on a CPU?
  839. * @p: the task in question.
  840. */
  841. inline int task_curr(const struct task_struct *p)
  842. {
  843. return cpu_curr(task_cpu(p)) == p;
  844. }
  845. /* Used instead of source_load when we know the type == 0 */
  846. unsigned long weighted_cpuload(const int cpu)
  847. {
  848. return cpu_rq(cpu)->ls.load.weight;
  849. }
  850. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  851. {
  852. #ifdef CONFIG_SMP
  853. task_thread_info(p)->cpu = cpu;
  854. set_task_cfs_rq(p);
  855. #endif
  856. }
  857. #ifdef CONFIG_SMP
  858. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  859. {
  860. int old_cpu = task_cpu(p);
  861. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  862. u64 clock_offset, fair_clock_offset;
  863. clock_offset = old_rq->clock - new_rq->clock;
  864. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  865. if (p->se.wait_start_fair)
  866. p->se.wait_start_fair -= fair_clock_offset;
  867. if (p->se.sleep_start_fair)
  868. p->se.sleep_start_fair -= fair_clock_offset;
  869. #ifdef CONFIG_SCHEDSTATS
  870. if (p->se.wait_start)
  871. p->se.wait_start -= clock_offset;
  872. if (p->se.sleep_start)
  873. p->se.sleep_start -= clock_offset;
  874. if (p->se.block_start)
  875. p->se.block_start -= clock_offset;
  876. #endif
  877. __set_task_cpu(p, new_cpu);
  878. }
  879. struct migration_req {
  880. struct list_head list;
  881. struct task_struct *task;
  882. int dest_cpu;
  883. struct completion done;
  884. };
  885. /*
  886. * The task's runqueue lock must be held.
  887. * Returns true if you have to wait for migration thread.
  888. */
  889. static int
  890. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  891. {
  892. struct rq *rq = task_rq(p);
  893. /*
  894. * If the task is not on a runqueue (and not running), then
  895. * it is sufficient to simply update the task's cpu field.
  896. */
  897. if (!p->se.on_rq && !task_running(rq, p)) {
  898. set_task_cpu(p, dest_cpu);
  899. return 0;
  900. }
  901. init_completion(&req->done);
  902. req->task = p;
  903. req->dest_cpu = dest_cpu;
  904. list_add(&req->list, &rq->migration_queue);
  905. return 1;
  906. }
  907. /*
  908. * wait_task_inactive - wait for a thread to unschedule.
  909. *
  910. * The caller must ensure that the task *will* unschedule sometime soon,
  911. * else this function might spin for a *long* time. This function can't
  912. * be called with interrupts off, or it may introduce deadlock with
  913. * smp_call_function() if an IPI is sent by the same process we are
  914. * waiting to become inactive.
  915. */
  916. void wait_task_inactive(struct task_struct *p)
  917. {
  918. unsigned long flags;
  919. int running, on_rq;
  920. struct rq *rq;
  921. repeat:
  922. /*
  923. * We do the initial early heuristics without holding
  924. * any task-queue locks at all. We'll only try to get
  925. * the runqueue lock when things look like they will
  926. * work out!
  927. */
  928. rq = task_rq(p);
  929. /*
  930. * If the task is actively running on another CPU
  931. * still, just relax and busy-wait without holding
  932. * any locks.
  933. *
  934. * NOTE! Since we don't hold any locks, it's not
  935. * even sure that "rq" stays as the right runqueue!
  936. * But we don't care, since "task_running()" will
  937. * return false if the runqueue has changed and p
  938. * is actually now running somewhere else!
  939. */
  940. while (task_running(rq, p))
  941. cpu_relax();
  942. /*
  943. * Ok, time to look more closely! We need the rq
  944. * lock now, to be *sure*. If we're wrong, we'll
  945. * just go back and repeat.
  946. */
  947. rq = task_rq_lock(p, &flags);
  948. running = task_running(rq, p);
  949. on_rq = p->se.on_rq;
  950. task_rq_unlock(rq, &flags);
  951. /*
  952. * Was it really running after all now that we
  953. * checked with the proper locks actually held?
  954. *
  955. * Oops. Go back and try again..
  956. */
  957. if (unlikely(running)) {
  958. cpu_relax();
  959. goto repeat;
  960. }
  961. /*
  962. * It's not enough that it's not actively running,
  963. * it must be off the runqueue _entirely_, and not
  964. * preempted!
  965. *
  966. * So if it wa still runnable (but just not actively
  967. * running right now), it's preempted, and we should
  968. * yield - it could be a while.
  969. */
  970. if (unlikely(on_rq)) {
  971. yield();
  972. goto repeat;
  973. }
  974. /*
  975. * Ahh, all good. It wasn't running, and it wasn't
  976. * runnable, which means that it will never become
  977. * running in the future either. We're all done!
  978. */
  979. }
  980. /***
  981. * kick_process - kick a running thread to enter/exit the kernel
  982. * @p: the to-be-kicked thread
  983. *
  984. * Cause a process which is running on another CPU to enter
  985. * kernel-mode, without any delay. (to get signals handled.)
  986. *
  987. * NOTE: this function doesnt have to take the runqueue lock,
  988. * because all it wants to ensure is that the remote task enters
  989. * the kernel. If the IPI races and the task has been migrated
  990. * to another CPU then no harm is done and the purpose has been
  991. * achieved as well.
  992. */
  993. void kick_process(struct task_struct *p)
  994. {
  995. int cpu;
  996. preempt_disable();
  997. cpu = task_cpu(p);
  998. if ((cpu != smp_processor_id()) && task_curr(p))
  999. smp_send_reschedule(cpu);
  1000. preempt_enable();
  1001. }
  1002. /*
  1003. * Return a low guess at the load of a migration-source cpu weighted
  1004. * according to the scheduling class and "nice" value.
  1005. *
  1006. * We want to under-estimate the load of migration sources, to
  1007. * balance conservatively.
  1008. */
  1009. static inline unsigned long source_load(int cpu, int type)
  1010. {
  1011. struct rq *rq = cpu_rq(cpu);
  1012. unsigned long total = weighted_cpuload(cpu);
  1013. if (type == 0)
  1014. return total;
  1015. return min(rq->cpu_load[type-1], total);
  1016. }
  1017. /*
  1018. * Return a high guess at the load of a migration-target cpu weighted
  1019. * according to the scheduling class and "nice" value.
  1020. */
  1021. static inline unsigned long target_load(int cpu, int type)
  1022. {
  1023. struct rq *rq = cpu_rq(cpu);
  1024. unsigned long total = weighted_cpuload(cpu);
  1025. if (type == 0)
  1026. return total;
  1027. return max(rq->cpu_load[type-1], total);
  1028. }
  1029. /*
  1030. * Return the average load per task on the cpu's run queue
  1031. */
  1032. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1033. {
  1034. struct rq *rq = cpu_rq(cpu);
  1035. unsigned long total = weighted_cpuload(cpu);
  1036. unsigned long n = rq->nr_running;
  1037. return n ? total / n : SCHED_LOAD_SCALE;
  1038. }
  1039. /*
  1040. * find_idlest_group finds and returns the least busy CPU group within the
  1041. * domain.
  1042. */
  1043. static struct sched_group *
  1044. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1045. {
  1046. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1047. unsigned long min_load = ULONG_MAX, this_load = 0;
  1048. int load_idx = sd->forkexec_idx;
  1049. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1050. do {
  1051. unsigned long load, avg_load;
  1052. int local_group;
  1053. int i;
  1054. /* Skip over this group if it has no CPUs allowed */
  1055. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1056. goto nextgroup;
  1057. local_group = cpu_isset(this_cpu, group->cpumask);
  1058. /* Tally up the load of all CPUs in the group */
  1059. avg_load = 0;
  1060. for_each_cpu_mask(i, group->cpumask) {
  1061. /* Bias balancing toward cpus of our domain */
  1062. if (local_group)
  1063. load = source_load(i, load_idx);
  1064. else
  1065. load = target_load(i, load_idx);
  1066. avg_load += load;
  1067. }
  1068. /* Adjust by relative CPU power of the group */
  1069. avg_load = sg_div_cpu_power(group,
  1070. avg_load * SCHED_LOAD_SCALE);
  1071. if (local_group) {
  1072. this_load = avg_load;
  1073. this = group;
  1074. } else if (avg_load < min_load) {
  1075. min_load = avg_load;
  1076. idlest = group;
  1077. }
  1078. nextgroup:
  1079. group = group->next;
  1080. } while (group != sd->groups);
  1081. if (!idlest || 100*this_load < imbalance*min_load)
  1082. return NULL;
  1083. return idlest;
  1084. }
  1085. /*
  1086. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1087. */
  1088. static int
  1089. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1090. {
  1091. cpumask_t tmp;
  1092. unsigned long load, min_load = ULONG_MAX;
  1093. int idlest = -1;
  1094. int i;
  1095. /* Traverse only the allowed CPUs */
  1096. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1097. for_each_cpu_mask(i, tmp) {
  1098. load = weighted_cpuload(i);
  1099. if (load < min_load || (load == min_load && i == this_cpu)) {
  1100. min_load = load;
  1101. idlest = i;
  1102. }
  1103. }
  1104. return idlest;
  1105. }
  1106. /*
  1107. * sched_balance_self: balance the current task (running on cpu) in domains
  1108. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1109. * SD_BALANCE_EXEC.
  1110. *
  1111. * Balance, ie. select the least loaded group.
  1112. *
  1113. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1114. *
  1115. * preempt must be disabled.
  1116. */
  1117. static int sched_balance_self(int cpu, int flag)
  1118. {
  1119. struct task_struct *t = current;
  1120. struct sched_domain *tmp, *sd = NULL;
  1121. for_each_domain(cpu, tmp) {
  1122. /*
  1123. * If power savings logic is enabled for a domain, stop there.
  1124. */
  1125. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1126. break;
  1127. if (tmp->flags & flag)
  1128. sd = tmp;
  1129. }
  1130. while (sd) {
  1131. cpumask_t span;
  1132. struct sched_group *group;
  1133. int new_cpu, weight;
  1134. if (!(sd->flags & flag)) {
  1135. sd = sd->child;
  1136. continue;
  1137. }
  1138. span = sd->span;
  1139. group = find_idlest_group(sd, t, cpu);
  1140. if (!group) {
  1141. sd = sd->child;
  1142. continue;
  1143. }
  1144. new_cpu = find_idlest_cpu(group, t, cpu);
  1145. if (new_cpu == -1 || new_cpu == cpu) {
  1146. /* Now try balancing at a lower domain level of cpu */
  1147. sd = sd->child;
  1148. continue;
  1149. }
  1150. /* Now try balancing at a lower domain level of new_cpu */
  1151. cpu = new_cpu;
  1152. sd = NULL;
  1153. weight = cpus_weight(span);
  1154. for_each_domain(cpu, tmp) {
  1155. if (weight <= cpus_weight(tmp->span))
  1156. break;
  1157. if (tmp->flags & flag)
  1158. sd = tmp;
  1159. }
  1160. /* while loop will break here if sd == NULL */
  1161. }
  1162. return cpu;
  1163. }
  1164. #endif /* CONFIG_SMP */
  1165. /*
  1166. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1167. * not idle and an idle cpu is available. The span of cpus to
  1168. * search starts with cpus closest then further out as needed,
  1169. * so we always favor a closer, idle cpu.
  1170. *
  1171. * Returns the CPU we should wake onto.
  1172. */
  1173. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1174. static int wake_idle(int cpu, struct task_struct *p)
  1175. {
  1176. cpumask_t tmp;
  1177. struct sched_domain *sd;
  1178. int i;
  1179. /*
  1180. * If it is idle, then it is the best cpu to run this task.
  1181. *
  1182. * This cpu is also the best, if it has more than one task already.
  1183. * Siblings must be also busy(in most cases) as they didn't already
  1184. * pickup the extra load from this cpu and hence we need not check
  1185. * sibling runqueue info. This will avoid the checks and cache miss
  1186. * penalities associated with that.
  1187. */
  1188. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1189. return cpu;
  1190. for_each_domain(cpu, sd) {
  1191. if (sd->flags & SD_WAKE_IDLE) {
  1192. cpus_and(tmp, sd->span, p->cpus_allowed);
  1193. for_each_cpu_mask(i, tmp) {
  1194. if (idle_cpu(i))
  1195. return i;
  1196. }
  1197. } else {
  1198. break;
  1199. }
  1200. }
  1201. return cpu;
  1202. }
  1203. #else
  1204. static inline int wake_idle(int cpu, struct task_struct *p)
  1205. {
  1206. return cpu;
  1207. }
  1208. #endif
  1209. /***
  1210. * try_to_wake_up - wake up a thread
  1211. * @p: the to-be-woken-up thread
  1212. * @state: the mask of task states that can be woken
  1213. * @sync: do a synchronous wakeup?
  1214. *
  1215. * Put it on the run-queue if it's not already there. The "current"
  1216. * thread is always on the run-queue (except when the actual
  1217. * re-schedule is in progress), and as such you're allowed to do
  1218. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1219. * runnable without the overhead of this.
  1220. *
  1221. * returns failure only if the task is already active.
  1222. */
  1223. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1224. {
  1225. int cpu, this_cpu, success = 0;
  1226. unsigned long flags;
  1227. long old_state;
  1228. struct rq *rq;
  1229. #ifdef CONFIG_SMP
  1230. struct sched_domain *sd, *this_sd = NULL;
  1231. unsigned long load, this_load;
  1232. int new_cpu;
  1233. #endif
  1234. rq = task_rq_lock(p, &flags);
  1235. old_state = p->state;
  1236. if (!(old_state & state))
  1237. goto out;
  1238. if (p->se.on_rq)
  1239. goto out_running;
  1240. cpu = task_cpu(p);
  1241. this_cpu = smp_processor_id();
  1242. #ifdef CONFIG_SMP
  1243. if (unlikely(task_running(rq, p)))
  1244. goto out_activate;
  1245. new_cpu = cpu;
  1246. schedstat_inc(rq, ttwu_cnt);
  1247. if (cpu == this_cpu) {
  1248. schedstat_inc(rq, ttwu_local);
  1249. goto out_set_cpu;
  1250. }
  1251. for_each_domain(this_cpu, sd) {
  1252. if (cpu_isset(cpu, sd->span)) {
  1253. schedstat_inc(sd, ttwu_wake_remote);
  1254. this_sd = sd;
  1255. break;
  1256. }
  1257. }
  1258. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1259. goto out_set_cpu;
  1260. /*
  1261. * Check for affine wakeup and passive balancing possibilities.
  1262. */
  1263. if (this_sd) {
  1264. int idx = this_sd->wake_idx;
  1265. unsigned int imbalance;
  1266. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1267. load = source_load(cpu, idx);
  1268. this_load = target_load(this_cpu, idx);
  1269. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1270. if (this_sd->flags & SD_WAKE_AFFINE) {
  1271. unsigned long tl = this_load;
  1272. unsigned long tl_per_task;
  1273. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1274. /*
  1275. * If sync wakeup then subtract the (maximum possible)
  1276. * effect of the currently running task from the load
  1277. * of the current CPU:
  1278. */
  1279. if (sync)
  1280. tl -= current->se.load.weight;
  1281. if ((tl <= load &&
  1282. tl + target_load(cpu, idx) <= tl_per_task) ||
  1283. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1284. /*
  1285. * This domain has SD_WAKE_AFFINE and
  1286. * p is cache cold in this domain, and
  1287. * there is no bad imbalance.
  1288. */
  1289. schedstat_inc(this_sd, ttwu_move_affine);
  1290. goto out_set_cpu;
  1291. }
  1292. }
  1293. /*
  1294. * Start passive balancing when half the imbalance_pct
  1295. * limit is reached.
  1296. */
  1297. if (this_sd->flags & SD_WAKE_BALANCE) {
  1298. if (imbalance*this_load <= 100*load) {
  1299. schedstat_inc(this_sd, ttwu_move_balance);
  1300. goto out_set_cpu;
  1301. }
  1302. }
  1303. }
  1304. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1305. out_set_cpu:
  1306. new_cpu = wake_idle(new_cpu, p);
  1307. if (new_cpu != cpu) {
  1308. set_task_cpu(p, new_cpu);
  1309. task_rq_unlock(rq, &flags);
  1310. /* might preempt at this point */
  1311. rq = task_rq_lock(p, &flags);
  1312. old_state = p->state;
  1313. if (!(old_state & state))
  1314. goto out;
  1315. if (p->se.on_rq)
  1316. goto out_running;
  1317. this_cpu = smp_processor_id();
  1318. cpu = task_cpu(p);
  1319. }
  1320. out_activate:
  1321. #endif /* CONFIG_SMP */
  1322. activate_task(rq, p, 1);
  1323. /*
  1324. * Sync wakeups (i.e. those types of wakeups where the waker
  1325. * has indicated that it will leave the CPU in short order)
  1326. * don't trigger a preemption, if the woken up task will run on
  1327. * this cpu. (in this case the 'I will reschedule' promise of
  1328. * the waker guarantees that the freshly woken up task is going
  1329. * to be considered on this CPU.)
  1330. */
  1331. if (!sync || cpu != this_cpu)
  1332. check_preempt_curr(rq, p);
  1333. success = 1;
  1334. out_running:
  1335. p->state = TASK_RUNNING;
  1336. out:
  1337. task_rq_unlock(rq, &flags);
  1338. return success;
  1339. }
  1340. int fastcall wake_up_process(struct task_struct *p)
  1341. {
  1342. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1343. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1344. }
  1345. EXPORT_SYMBOL(wake_up_process);
  1346. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1347. {
  1348. return try_to_wake_up(p, state, 0);
  1349. }
  1350. /*
  1351. * Perform scheduler related setup for a newly forked process p.
  1352. * p is forked by current.
  1353. *
  1354. * __sched_fork() is basic setup used by init_idle() too:
  1355. */
  1356. static void __sched_fork(struct task_struct *p)
  1357. {
  1358. p->se.wait_start_fair = 0;
  1359. p->se.exec_start = 0;
  1360. p->se.sum_exec_runtime = 0;
  1361. p->se.delta_exec = 0;
  1362. p->se.delta_fair_run = 0;
  1363. p->se.delta_fair_sleep = 0;
  1364. p->se.wait_runtime = 0;
  1365. p->se.sleep_start_fair = 0;
  1366. #ifdef CONFIG_SCHEDSTATS
  1367. p->se.wait_start = 0;
  1368. p->se.sum_wait_runtime = 0;
  1369. p->se.sum_sleep_runtime = 0;
  1370. p->se.sleep_start = 0;
  1371. p->se.block_start = 0;
  1372. p->se.sleep_max = 0;
  1373. p->se.block_max = 0;
  1374. p->se.exec_max = 0;
  1375. p->se.wait_max = 0;
  1376. p->se.wait_runtime_overruns = 0;
  1377. p->se.wait_runtime_underruns = 0;
  1378. #endif
  1379. INIT_LIST_HEAD(&p->run_list);
  1380. p->se.on_rq = 0;
  1381. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1382. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1383. #endif
  1384. /*
  1385. * We mark the process as running here, but have not actually
  1386. * inserted it onto the runqueue yet. This guarantees that
  1387. * nobody will actually run it, and a signal or other external
  1388. * event cannot wake it up and insert it on the runqueue either.
  1389. */
  1390. p->state = TASK_RUNNING;
  1391. }
  1392. /*
  1393. * fork()/clone()-time setup:
  1394. */
  1395. void sched_fork(struct task_struct *p, int clone_flags)
  1396. {
  1397. int cpu = get_cpu();
  1398. __sched_fork(p);
  1399. #ifdef CONFIG_SMP
  1400. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1401. #endif
  1402. __set_task_cpu(p, cpu);
  1403. /*
  1404. * Make sure we do not leak PI boosting priority to the child:
  1405. */
  1406. p->prio = current->normal_prio;
  1407. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1408. if (likely(sched_info_on()))
  1409. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1410. #endif
  1411. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1412. p->oncpu = 0;
  1413. #endif
  1414. #ifdef CONFIG_PREEMPT
  1415. /* Want to start with kernel preemption disabled. */
  1416. task_thread_info(p)->preempt_count = 1;
  1417. #endif
  1418. put_cpu();
  1419. }
  1420. /*
  1421. * After fork, child runs first. (default) If set to 0 then
  1422. * parent will (try to) run first.
  1423. */
  1424. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1425. /*
  1426. * wake_up_new_task - wake up a newly created task for the first time.
  1427. *
  1428. * This function will do some initial scheduler statistics housekeeping
  1429. * that must be done for every newly created context, then puts the task
  1430. * on the runqueue and wakes it.
  1431. */
  1432. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1433. {
  1434. unsigned long flags;
  1435. struct rq *rq;
  1436. int this_cpu;
  1437. u64 now;
  1438. rq = task_rq_lock(p, &flags);
  1439. BUG_ON(p->state != TASK_RUNNING);
  1440. this_cpu = smp_processor_id(); /* parent's CPU */
  1441. update_rq_clock(rq);
  1442. now = rq->clock;
  1443. p->prio = effective_prio(p);
  1444. if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
  1445. (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
  1446. !current->se.on_rq) {
  1447. activate_task(rq, p, 0);
  1448. } else {
  1449. /*
  1450. * Let the scheduling class do new task startup
  1451. * management (if any):
  1452. */
  1453. p->sched_class->task_new(rq, p, now);
  1454. inc_nr_running(p, rq, now);
  1455. }
  1456. check_preempt_curr(rq, p);
  1457. task_rq_unlock(rq, &flags);
  1458. }
  1459. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1460. /**
  1461. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1462. * @notifier: notifier struct to register
  1463. */
  1464. void preempt_notifier_register(struct preempt_notifier *notifier)
  1465. {
  1466. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1467. }
  1468. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1469. /**
  1470. * preempt_notifier_unregister - no longer interested in preemption notifications
  1471. * @notifier: notifier struct to unregister
  1472. *
  1473. * This is safe to call from within a preemption notifier.
  1474. */
  1475. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1476. {
  1477. hlist_del(&notifier->link);
  1478. }
  1479. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1480. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1481. {
  1482. struct preempt_notifier *notifier;
  1483. struct hlist_node *node;
  1484. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1485. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1486. }
  1487. static void
  1488. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1489. struct task_struct *next)
  1490. {
  1491. struct preempt_notifier *notifier;
  1492. struct hlist_node *node;
  1493. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1494. notifier->ops->sched_out(notifier, next);
  1495. }
  1496. #else
  1497. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1498. {
  1499. }
  1500. static void
  1501. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1502. struct task_struct *next)
  1503. {
  1504. }
  1505. #endif
  1506. /**
  1507. * prepare_task_switch - prepare to switch tasks
  1508. * @rq: the runqueue preparing to switch
  1509. * @prev: the current task that is being switched out
  1510. * @next: the task we are going to switch to.
  1511. *
  1512. * This is called with the rq lock held and interrupts off. It must
  1513. * be paired with a subsequent finish_task_switch after the context
  1514. * switch.
  1515. *
  1516. * prepare_task_switch sets up locking and calls architecture specific
  1517. * hooks.
  1518. */
  1519. static inline void
  1520. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1521. struct task_struct *next)
  1522. {
  1523. fire_sched_out_preempt_notifiers(prev, next);
  1524. prepare_lock_switch(rq, next);
  1525. prepare_arch_switch(next);
  1526. }
  1527. /**
  1528. * finish_task_switch - clean up after a task-switch
  1529. * @rq: runqueue associated with task-switch
  1530. * @prev: the thread we just switched away from.
  1531. *
  1532. * finish_task_switch must be called after the context switch, paired
  1533. * with a prepare_task_switch call before the context switch.
  1534. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1535. * and do any other architecture-specific cleanup actions.
  1536. *
  1537. * Note that we may have delayed dropping an mm in context_switch(). If
  1538. * so, we finish that here outside of the runqueue lock. (Doing it
  1539. * with the lock held can cause deadlocks; see schedule() for
  1540. * details.)
  1541. */
  1542. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1543. __releases(rq->lock)
  1544. {
  1545. struct mm_struct *mm = rq->prev_mm;
  1546. long prev_state;
  1547. rq->prev_mm = NULL;
  1548. /*
  1549. * A task struct has one reference for the use as "current".
  1550. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1551. * schedule one last time. The schedule call will never return, and
  1552. * the scheduled task must drop that reference.
  1553. * The test for TASK_DEAD must occur while the runqueue locks are
  1554. * still held, otherwise prev could be scheduled on another cpu, die
  1555. * there before we look at prev->state, and then the reference would
  1556. * be dropped twice.
  1557. * Manfred Spraul <manfred@colorfullife.com>
  1558. */
  1559. prev_state = prev->state;
  1560. finish_arch_switch(prev);
  1561. finish_lock_switch(rq, prev);
  1562. fire_sched_in_preempt_notifiers(current);
  1563. if (mm)
  1564. mmdrop(mm);
  1565. if (unlikely(prev_state == TASK_DEAD)) {
  1566. /*
  1567. * Remove function-return probe instances associated with this
  1568. * task and put them back on the free list.
  1569. */
  1570. kprobe_flush_task(prev);
  1571. put_task_struct(prev);
  1572. }
  1573. }
  1574. /**
  1575. * schedule_tail - first thing a freshly forked thread must call.
  1576. * @prev: the thread we just switched away from.
  1577. */
  1578. asmlinkage void schedule_tail(struct task_struct *prev)
  1579. __releases(rq->lock)
  1580. {
  1581. struct rq *rq = this_rq();
  1582. finish_task_switch(rq, prev);
  1583. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1584. /* In this case, finish_task_switch does not reenable preemption */
  1585. preempt_enable();
  1586. #endif
  1587. if (current->set_child_tid)
  1588. put_user(current->pid, current->set_child_tid);
  1589. }
  1590. /*
  1591. * context_switch - switch to the new MM and the new
  1592. * thread's register state.
  1593. */
  1594. static inline void
  1595. context_switch(struct rq *rq, struct task_struct *prev,
  1596. struct task_struct *next)
  1597. {
  1598. struct mm_struct *mm, *oldmm;
  1599. prepare_task_switch(rq, prev, next);
  1600. mm = next->mm;
  1601. oldmm = prev->active_mm;
  1602. /*
  1603. * For paravirt, this is coupled with an exit in switch_to to
  1604. * combine the page table reload and the switch backend into
  1605. * one hypercall.
  1606. */
  1607. arch_enter_lazy_cpu_mode();
  1608. if (unlikely(!mm)) {
  1609. next->active_mm = oldmm;
  1610. atomic_inc(&oldmm->mm_count);
  1611. enter_lazy_tlb(oldmm, next);
  1612. } else
  1613. switch_mm(oldmm, mm, next);
  1614. if (unlikely(!prev->mm)) {
  1615. prev->active_mm = NULL;
  1616. rq->prev_mm = oldmm;
  1617. }
  1618. /*
  1619. * Since the runqueue lock will be released by the next
  1620. * task (which is an invalid locking op but in the case
  1621. * of the scheduler it's an obvious special-case), so we
  1622. * do an early lockdep release here:
  1623. */
  1624. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1625. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1626. #endif
  1627. /* Here we just switch the register state and the stack. */
  1628. switch_to(prev, next, prev);
  1629. barrier();
  1630. /*
  1631. * this_rq must be evaluated again because prev may have moved
  1632. * CPUs since it called schedule(), thus the 'rq' on its stack
  1633. * frame will be invalid.
  1634. */
  1635. finish_task_switch(this_rq(), prev);
  1636. }
  1637. /*
  1638. * nr_running, nr_uninterruptible and nr_context_switches:
  1639. *
  1640. * externally visible scheduler statistics: current number of runnable
  1641. * threads, current number of uninterruptible-sleeping threads, total
  1642. * number of context switches performed since bootup.
  1643. */
  1644. unsigned long nr_running(void)
  1645. {
  1646. unsigned long i, sum = 0;
  1647. for_each_online_cpu(i)
  1648. sum += cpu_rq(i)->nr_running;
  1649. return sum;
  1650. }
  1651. unsigned long nr_uninterruptible(void)
  1652. {
  1653. unsigned long i, sum = 0;
  1654. for_each_possible_cpu(i)
  1655. sum += cpu_rq(i)->nr_uninterruptible;
  1656. /*
  1657. * Since we read the counters lockless, it might be slightly
  1658. * inaccurate. Do not allow it to go below zero though:
  1659. */
  1660. if (unlikely((long)sum < 0))
  1661. sum = 0;
  1662. return sum;
  1663. }
  1664. unsigned long long nr_context_switches(void)
  1665. {
  1666. int i;
  1667. unsigned long long sum = 0;
  1668. for_each_possible_cpu(i)
  1669. sum += cpu_rq(i)->nr_switches;
  1670. return sum;
  1671. }
  1672. unsigned long nr_iowait(void)
  1673. {
  1674. unsigned long i, sum = 0;
  1675. for_each_possible_cpu(i)
  1676. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1677. return sum;
  1678. }
  1679. unsigned long nr_active(void)
  1680. {
  1681. unsigned long i, running = 0, uninterruptible = 0;
  1682. for_each_online_cpu(i) {
  1683. running += cpu_rq(i)->nr_running;
  1684. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1685. }
  1686. if (unlikely((long)uninterruptible < 0))
  1687. uninterruptible = 0;
  1688. return running + uninterruptible;
  1689. }
  1690. /*
  1691. * Update rq->cpu_load[] statistics. This function is usually called every
  1692. * scheduler tick (TICK_NSEC).
  1693. */
  1694. static void update_cpu_load(struct rq *this_rq)
  1695. {
  1696. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1697. unsigned long total_load = this_rq->ls.load.weight;
  1698. unsigned long this_load = total_load;
  1699. struct load_stat *ls = &this_rq->ls;
  1700. u64 now;
  1701. int i, scale;
  1702. __update_rq_clock(this_rq);
  1703. now = this_rq->clock;
  1704. this_rq->nr_load_updates++;
  1705. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1706. goto do_avg;
  1707. /* Update delta_fair/delta_exec fields first */
  1708. update_curr_load(this_rq, now);
  1709. fair_delta64 = ls->delta_fair + 1;
  1710. ls->delta_fair = 0;
  1711. exec_delta64 = ls->delta_exec + 1;
  1712. ls->delta_exec = 0;
  1713. sample_interval64 = now - ls->load_update_last;
  1714. ls->load_update_last = now;
  1715. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1716. sample_interval64 = TICK_NSEC;
  1717. if (exec_delta64 > sample_interval64)
  1718. exec_delta64 = sample_interval64;
  1719. idle_delta64 = sample_interval64 - exec_delta64;
  1720. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1721. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1722. this_load = (unsigned long)tmp64;
  1723. do_avg:
  1724. /* Update our load: */
  1725. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1726. unsigned long old_load, new_load;
  1727. /* scale is effectively 1 << i now, and >> i divides by scale */
  1728. old_load = this_rq->cpu_load[i];
  1729. new_load = this_load;
  1730. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1731. }
  1732. }
  1733. #ifdef CONFIG_SMP
  1734. /*
  1735. * double_rq_lock - safely lock two runqueues
  1736. *
  1737. * Note this does not disable interrupts like task_rq_lock,
  1738. * you need to do so manually before calling.
  1739. */
  1740. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1741. __acquires(rq1->lock)
  1742. __acquires(rq2->lock)
  1743. {
  1744. BUG_ON(!irqs_disabled());
  1745. if (rq1 == rq2) {
  1746. spin_lock(&rq1->lock);
  1747. __acquire(rq2->lock); /* Fake it out ;) */
  1748. } else {
  1749. if (rq1 < rq2) {
  1750. spin_lock(&rq1->lock);
  1751. spin_lock(&rq2->lock);
  1752. } else {
  1753. spin_lock(&rq2->lock);
  1754. spin_lock(&rq1->lock);
  1755. }
  1756. }
  1757. }
  1758. /*
  1759. * double_rq_unlock - safely unlock two runqueues
  1760. *
  1761. * Note this does not restore interrupts like task_rq_unlock,
  1762. * you need to do so manually after calling.
  1763. */
  1764. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1765. __releases(rq1->lock)
  1766. __releases(rq2->lock)
  1767. {
  1768. spin_unlock(&rq1->lock);
  1769. if (rq1 != rq2)
  1770. spin_unlock(&rq2->lock);
  1771. else
  1772. __release(rq2->lock);
  1773. }
  1774. /*
  1775. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1776. */
  1777. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1778. __releases(this_rq->lock)
  1779. __acquires(busiest->lock)
  1780. __acquires(this_rq->lock)
  1781. {
  1782. if (unlikely(!irqs_disabled())) {
  1783. /* printk() doesn't work good under rq->lock */
  1784. spin_unlock(&this_rq->lock);
  1785. BUG_ON(1);
  1786. }
  1787. if (unlikely(!spin_trylock(&busiest->lock))) {
  1788. if (busiest < this_rq) {
  1789. spin_unlock(&this_rq->lock);
  1790. spin_lock(&busiest->lock);
  1791. spin_lock(&this_rq->lock);
  1792. } else
  1793. spin_lock(&busiest->lock);
  1794. }
  1795. }
  1796. /*
  1797. * If dest_cpu is allowed for this process, migrate the task to it.
  1798. * This is accomplished by forcing the cpu_allowed mask to only
  1799. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1800. * the cpu_allowed mask is restored.
  1801. */
  1802. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1803. {
  1804. struct migration_req req;
  1805. unsigned long flags;
  1806. struct rq *rq;
  1807. rq = task_rq_lock(p, &flags);
  1808. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1809. || unlikely(cpu_is_offline(dest_cpu)))
  1810. goto out;
  1811. /* force the process onto the specified CPU */
  1812. if (migrate_task(p, dest_cpu, &req)) {
  1813. /* Need to wait for migration thread (might exit: take ref). */
  1814. struct task_struct *mt = rq->migration_thread;
  1815. get_task_struct(mt);
  1816. task_rq_unlock(rq, &flags);
  1817. wake_up_process(mt);
  1818. put_task_struct(mt);
  1819. wait_for_completion(&req.done);
  1820. return;
  1821. }
  1822. out:
  1823. task_rq_unlock(rq, &flags);
  1824. }
  1825. /*
  1826. * sched_exec - execve() is a valuable balancing opportunity, because at
  1827. * this point the task has the smallest effective memory and cache footprint.
  1828. */
  1829. void sched_exec(void)
  1830. {
  1831. int new_cpu, this_cpu = get_cpu();
  1832. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1833. put_cpu();
  1834. if (new_cpu != this_cpu)
  1835. sched_migrate_task(current, new_cpu);
  1836. }
  1837. /*
  1838. * pull_task - move a task from a remote runqueue to the local runqueue.
  1839. * Both runqueues must be locked.
  1840. */
  1841. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1842. struct rq *this_rq, int this_cpu)
  1843. {
  1844. update_rq_clock(src_rq);
  1845. deactivate_task(src_rq, p, 0, src_rq->clock);
  1846. set_task_cpu(p, this_cpu);
  1847. activate_task(this_rq, p, 0);
  1848. /*
  1849. * Note that idle threads have a prio of MAX_PRIO, for this test
  1850. * to be always true for them.
  1851. */
  1852. check_preempt_curr(this_rq, p);
  1853. }
  1854. /*
  1855. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1856. */
  1857. static
  1858. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1859. struct sched_domain *sd, enum cpu_idle_type idle,
  1860. int *all_pinned)
  1861. {
  1862. /*
  1863. * We do not migrate tasks that are:
  1864. * 1) running (obviously), or
  1865. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1866. * 3) are cache-hot on their current CPU.
  1867. */
  1868. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1869. return 0;
  1870. *all_pinned = 0;
  1871. if (task_running(rq, p))
  1872. return 0;
  1873. /*
  1874. * Aggressive migration if too many balance attempts have failed:
  1875. */
  1876. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1877. return 1;
  1878. return 1;
  1879. }
  1880. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1881. unsigned long max_nr_move, unsigned long max_load_move,
  1882. struct sched_domain *sd, enum cpu_idle_type idle,
  1883. int *all_pinned, unsigned long *load_moved,
  1884. int *this_best_prio, struct rq_iterator *iterator)
  1885. {
  1886. int pulled = 0, pinned = 0, skip_for_load;
  1887. struct task_struct *p;
  1888. long rem_load_move = max_load_move;
  1889. if (max_nr_move == 0 || max_load_move == 0)
  1890. goto out;
  1891. pinned = 1;
  1892. /*
  1893. * Start the load-balancing iterator:
  1894. */
  1895. p = iterator->start(iterator->arg);
  1896. next:
  1897. if (!p)
  1898. goto out;
  1899. /*
  1900. * To help distribute high priority tasks accross CPUs we don't
  1901. * skip a task if it will be the highest priority task (i.e. smallest
  1902. * prio value) on its new queue regardless of its load weight
  1903. */
  1904. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1905. SCHED_LOAD_SCALE_FUZZ;
  1906. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1907. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1908. p = iterator->next(iterator->arg);
  1909. goto next;
  1910. }
  1911. pull_task(busiest, p, this_rq, this_cpu);
  1912. pulled++;
  1913. rem_load_move -= p->se.load.weight;
  1914. /*
  1915. * We only want to steal up to the prescribed number of tasks
  1916. * and the prescribed amount of weighted load.
  1917. */
  1918. if (pulled < max_nr_move && rem_load_move > 0) {
  1919. if (p->prio < *this_best_prio)
  1920. *this_best_prio = p->prio;
  1921. p = iterator->next(iterator->arg);
  1922. goto next;
  1923. }
  1924. out:
  1925. /*
  1926. * Right now, this is the only place pull_task() is called,
  1927. * so we can safely collect pull_task() stats here rather than
  1928. * inside pull_task().
  1929. */
  1930. schedstat_add(sd, lb_gained[idle], pulled);
  1931. if (all_pinned)
  1932. *all_pinned = pinned;
  1933. *load_moved = max_load_move - rem_load_move;
  1934. return pulled;
  1935. }
  1936. /*
  1937. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1938. * this_rq, as part of a balancing operation within domain "sd".
  1939. * Returns 1 if successful and 0 otherwise.
  1940. *
  1941. * Called with both runqueues locked.
  1942. */
  1943. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1944. unsigned long max_load_move,
  1945. struct sched_domain *sd, enum cpu_idle_type idle,
  1946. int *all_pinned)
  1947. {
  1948. struct sched_class *class = sched_class_highest;
  1949. unsigned long total_load_moved = 0;
  1950. int this_best_prio = this_rq->curr->prio;
  1951. do {
  1952. total_load_moved +=
  1953. class->load_balance(this_rq, this_cpu, busiest,
  1954. ULONG_MAX, max_load_move - total_load_moved,
  1955. sd, idle, all_pinned, &this_best_prio);
  1956. class = class->next;
  1957. } while (class && max_load_move > total_load_moved);
  1958. return total_load_moved > 0;
  1959. }
  1960. /*
  1961. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1962. * part of active balancing operations within "domain".
  1963. * Returns 1 if successful and 0 otherwise.
  1964. *
  1965. * Called with both runqueues locked.
  1966. */
  1967. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1968. struct sched_domain *sd, enum cpu_idle_type idle)
  1969. {
  1970. struct sched_class *class;
  1971. int this_best_prio = MAX_PRIO;
  1972. for (class = sched_class_highest; class; class = class->next)
  1973. if (class->load_balance(this_rq, this_cpu, busiest,
  1974. 1, ULONG_MAX, sd, idle, NULL,
  1975. &this_best_prio))
  1976. return 1;
  1977. return 0;
  1978. }
  1979. /*
  1980. * find_busiest_group finds and returns the busiest CPU group within the
  1981. * domain. It calculates and returns the amount of weighted load which
  1982. * should be moved to restore balance via the imbalance parameter.
  1983. */
  1984. static struct sched_group *
  1985. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1986. unsigned long *imbalance, enum cpu_idle_type idle,
  1987. int *sd_idle, cpumask_t *cpus, int *balance)
  1988. {
  1989. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1990. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1991. unsigned long max_pull;
  1992. unsigned long busiest_load_per_task, busiest_nr_running;
  1993. unsigned long this_load_per_task, this_nr_running;
  1994. int load_idx;
  1995. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1996. int power_savings_balance = 1;
  1997. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1998. unsigned long min_nr_running = ULONG_MAX;
  1999. struct sched_group *group_min = NULL, *group_leader = NULL;
  2000. #endif
  2001. max_load = this_load = total_load = total_pwr = 0;
  2002. busiest_load_per_task = busiest_nr_running = 0;
  2003. this_load_per_task = this_nr_running = 0;
  2004. if (idle == CPU_NOT_IDLE)
  2005. load_idx = sd->busy_idx;
  2006. else if (idle == CPU_NEWLY_IDLE)
  2007. load_idx = sd->newidle_idx;
  2008. else
  2009. load_idx = sd->idle_idx;
  2010. do {
  2011. unsigned long load, group_capacity;
  2012. int local_group;
  2013. int i;
  2014. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2015. unsigned long sum_nr_running, sum_weighted_load;
  2016. local_group = cpu_isset(this_cpu, group->cpumask);
  2017. if (local_group)
  2018. balance_cpu = first_cpu(group->cpumask);
  2019. /* Tally up the load of all CPUs in the group */
  2020. sum_weighted_load = sum_nr_running = avg_load = 0;
  2021. for_each_cpu_mask(i, group->cpumask) {
  2022. struct rq *rq;
  2023. if (!cpu_isset(i, *cpus))
  2024. continue;
  2025. rq = cpu_rq(i);
  2026. if (*sd_idle && rq->nr_running)
  2027. *sd_idle = 0;
  2028. /* Bias balancing toward cpus of our domain */
  2029. if (local_group) {
  2030. if (idle_cpu(i) && !first_idle_cpu) {
  2031. first_idle_cpu = 1;
  2032. balance_cpu = i;
  2033. }
  2034. load = target_load(i, load_idx);
  2035. } else
  2036. load = source_load(i, load_idx);
  2037. avg_load += load;
  2038. sum_nr_running += rq->nr_running;
  2039. sum_weighted_load += weighted_cpuload(i);
  2040. }
  2041. /*
  2042. * First idle cpu or the first cpu(busiest) in this sched group
  2043. * is eligible for doing load balancing at this and above
  2044. * domains. In the newly idle case, we will allow all the cpu's
  2045. * to do the newly idle load balance.
  2046. */
  2047. if (idle != CPU_NEWLY_IDLE && local_group &&
  2048. balance_cpu != this_cpu && balance) {
  2049. *balance = 0;
  2050. goto ret;
  2051. }
  2052. total_load += avg_load;
  2053. total_pwr += group->__cpu_power;
  2054. /* Adjust by relative CPU power of the group */
  2055. avg_load = sg_div_cpu_power(group,
  2056. avg_load * SCHED_LOAD_SCALE);
  2057. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2058. if (local_group) {
  2059. this_load = avg_load;
  2060. this = group;
  2061. this_nr_running = sum_nr_running;
  2062. this_load_per_task = sum_weighted_load;
  2063. } else if (avg_load > max_load &&
  2064. sum_nr_running > group_capacity) {
  2065. max_load = avg_load;
  2066. busiest = group;
  2067. busiest_nr_running = sum_nr_running;
  2068. busiest_load_per_task = sum_weighted_load;
  2069. }
  2070. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2071. /*
  2072. * Busy processors will not participate in power savings
  2073. * balance.
  2074. */
  2075. if (idle == CPU_NOT_IDLE ||
  2076. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2077. goto group_next;
  2078. /*
  2079. * If the local group is idle or completely loaded
  2080. * no need to do power savings balance at this domain
  2081. */
  2082. if (local_group && (this_nr_running >= group_capacity ||
  2083. !this_nr_running))
  2084. power_savings_balance = 0;
  2085. /*
  2086. * If a group is already running at full capacity or idle,
  2087. * don't include that group in power savings calculations
  2088. */
  2089. if (!power_savings_balance || sum_nr_running >= group_capacity
  2090. || !sum_nr_running)
  2091. goto group_next;
  2092. /*
  2093. * Calculate the group which has the least non-idle load.
  2094. * This is the group from where we need to pick up the load
  2095. * for saving power
  2096. */
  2097. if ((sum_nr_running < min_nr_running) ||
  2098. (sum_nr_running == min_nr_running &&
  2099. first_cpu(group->cpumask) <
  2100. first_cpu(group_min->cpumask))) {
  2101. group_min = group;
  2102. min_nr_running = sum_nr_running;
  2103. min_load_per_task = sum_weighted_load /
  2104. sum_nr_running;
  2105. }
  2106. /*
  2107. * Calculate the group which is almost near its
  2108. * capacity but still has some space to pick up some load
  2109. * from other group and save more power
  2110. */
  2111. if (sum_nr_running <= group_capacity - 1) {
  2112. if (sum_nr_running > leader_nr_running ||
  2113. (sum_nr_running == leader_nr_running &&
  2114. first_cpu(group->cpumask) >
  2115. first_cpu(group_leader->cpumask))) {
  2116. group_leader = group;
  2117. leader_nr_running = sum_nr_running;
  2118. }
  2119. }
  2120. group_next:
  2121. #endif
  2122. group = group->next;
  2123. } while (group != sd->groups);
  2124. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2125. goto out_balanced;
  2126. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2127. if (this_load >= avg_load ||
  2128. 100*max_load <= sd->imbalance_pct*this_load)
  2129. goto out_balanced;
  2130. busiest_load_per_task /= busiest_nr_running;
  2131. /*
  2132. * We're trying to get all the cpus to the average_load, so we don't
  2133. * want to push ourselves above the average load, nor do we wish to
  2134. * reduce the max loaded cpu below the average load, as either of these
  2135. * actions would just result in more rebalancing later, and ping-pong
  2136. * tasks around. Thus we look for the minimum possible imbalance.
  2137. * Negative imbalances (*we* are more loaded than anyone else) will
  2138. * be counted as no imbalance for these purposes -- we can't fix that
  2139. * by pulling tasks to us. Be careful of negative numbers as they'll
  2140. * appear as very large values with unsigned longs.
  2141. */
  2142. if (max_load <= busiest_load_per_task)
  2143. goto out_balanced;
  2144. /*
  2145. * In the presence of smp nice balancing, certain scenarios can have
  2146. * max load less than avg load(as we skip the groups at or below
  2147. * its cpu_power, while calculating max_load..)
  2148. */
  2149. if (max_load < avg_load) {
  2150. *imbalance = 0;
  2151. goto small_imbalance;
  2152. }
  2153. /* Don't want to pull so many tasks that a group would go idle */
  2154. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2155. /* How much load to actually move to equalise the imbalance */
  2156. *imbalance = min(max_pull * busiest->__cpu_power,
  2157. (avg_load - this_load) * this->__cpu_power)
  2158. / SCHED_LOAD_SCALE;
  2159. /*
  2160. * if *imbalance is less than the average load per runnable task
  2161. * there is no gaurantee that any tasks will be moved so we'll have
  2162. * a think about bumping its value to force at least one task to be
  2163. * moved
  2164. */
  2165. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
  2166. unsigned long tmp, pwr_now, pwr_move;
  2167. unsigned int imbn;
  2168. small_imbalance:
  2169. pwr_move = pwr_now = 0;
  2170. imbn = 2;
  2171. if (this_nr_running) {
  2172. this_load_per_task /= this_nr_running;
  2173. if (busiest_load_per_task > this_load_per_task)
  2174. imbn = 1;
  2175. } else
  2176. this_load_per_task = SCHED_LOAD_SCALE;
  2177. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2178. busiest_load_per_task * imbn) {
  2179. *imbalance = busiest_load_per_task;
  2180. return busiest;
  2181. }
  2182. /*
  2183. * OK, we don't have enough imbalance to justify moving tasks,
  2184. * however we may be able to increase total CPU power used by
  2185. * moving them.
  2186. */
  2187. pwr_now += busiest->__cpu_power *
  2188. min(busiest_load_per_task, max_load);
  2189. pwr_now += this->__cpu_power *
  2190. min(this_load_per_task, this_load);
  2191. pwr_now /= SCHED_LOAD_SCALE;
  2192. /* Amount of load we'd subtract */
  2193. tmp = sg_div_cpu_power(busiest,
  2194. busiest_load_per_task * SCHED_LOAD_SCALE);
  2195. if (max_load > tmp)
  2196. pwr_move += busiest->__cpu_power *
  2197. min(busiest_load_per_task, max_load - tmp);
  2198. /* Amount of load we'd add */
  2199. if (max_load * busiest->__cpu_power <
  2200. busiest_load_per_task * SCHED_LOAD_SCALE)
  2201. tmp = sg_div_cpu_power(this,
  2202. max_load * busiest->__cpu_power);
  2203. else
  2204. tmp = sg_div_cpu_power(this,
  2205. busiest_load_per_task * SCHED_LOAD_SCALE);
  2206. pwr_move += this->__cpu_power *
  2207. min(this_load_per_task, this_load + tmp);
  2208. pwr_move /= SCHED_LOAD_SCALE;
  2209. /* Move if we gain throughput */
  2210. if (pwr_move <= pwr_now)
  2211. goto out_balanced;
  2212. *imbalance = busiest_load_per_task;
  2213. }
  2214. return busiest;
  2215. out_balanced:
  2216. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2217. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2218. goto ret;
  2219. if (this == group_leader && group_leader != group_min) {
  2220. *imbalance = min_load_per_task;
  2221. return group_min;
  2222. }
  2223. #endif
  2224. ret:
  2225. *imbalance = 0;
  2226. return NULL;
  2227. }
  2228. /*
  2229. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2230. */
  2231. static struct rq *
  2232. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2233. unsigned long imbalance, cpumask_t *cpus)
  2234. {
  2235. struct rq *busiest = NULL, *rq;
  2236. unsigned long max_load = 0;
  2237. int i;
  2238. for_each_cpu_mask(i, group->cpumask) {
  2239. unsigned long wl;
  2240. if (!cpu_isset(i, *cpus))
  2241. continue;
  2242. rq = cpu_rq(i);
  2243. wl = weighted_cpuload(i);
  2244. if (rq->nr_running == 1 && wl > imbalance)
  2245. continue;
  2246. if (wl > max_load) {
  2247. max_load = wl;
  2248. busiest = rq;
  2249. }
  2250. }
  2251. return busiest;
  2252. }
  2253. /*
  2254. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2255. * so long as it is large enough.
  2256. */
  2257. #define MAX_PINNED_INTERVAL 512
  2258. /*
  2259. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2260. * tasks if there is an imbalance.
  2261. */
  2262. static int load_balance(int this_cpu, struct rq *this_rq,
  2263. struct sched_domain *sd, enum cpu_idle_type idle,
  2264. int *balance)
  2265. {
  2266. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2267. struct sched_group *group;
  2268. unsigned long imbalance;
  2269. struct rq *busiest;
  2270. cpumask_t cpus = CPU_MASK_ALL;
  2271. unsigned long flags;
  2272. /*
  2273. * When power savings policy is enabled for the parent domain, idle
  2274. * sibling can pick up load irrespective of busy siblings. In this case,
  2275. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2276. * portraying it as CPU_NOT_IDLE.
  2277. */
  2278. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2279. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2280. sd_idle = 1;
  2281. schedstat_inc(sd, lb_cnt[idle]);
  2282. redo:
  2283. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2284. &cpus, balance);
  2285. if (*balance == 0)
  2286. goto out_balanced;
  2287. if (!group) {
  2288. schedstat_inc(sd, lb_nobusyg[idle]);
  2289. goto out_balanced;
  2290. }
  2291. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2292. if (!busiest) {
  2293. schedstat_inc(sd, lb_nobusyq[idle]);
  2294. goto out_balanced;
  2295. }
  2296. BUG_ON(busiest == this_rq);
  2297. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2298. ld_moved = 0;
  2299. if (busiest->nr_running > 1) {
  2300. /*
  2301. * Attempt to move tasks. If find_busiest_group has found
  2302. * an imbalance but busiest->nr_running <= 1, the group is
  2303. * still unbalanced. ld_moved simply stays zero, so it is
  2304. * correctly treated as an imbalance.
  2305. */
  2306. local_irq_save(flags);
  2307. double_rq_lock(this_rq, busiest);
  2308. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2309. imbalance, sd, idle, &all_pinned);
  2310. double_rq_unlock(this_rq, busiest);
  2311. local_irq_restore(flags);
  2312. /*
  2313. * some other cpu did the load balance for us.
  2314. */
  2315. if (ld_moved && this_cpu != smp_processor_id())
  2316. resched_cpu(this_cpu);
  2317. /* All tasks on this runqueue were pinned by CPU affinity */
  2318. if (unlikely(all_pinned)) {
  2319. cpu_clear(cpu_of(busiest), cpus);
  2320. if (!cpus_empty(cpus))
  2321. goto redo;
  2322. goto out_balanced;
  2323. }
  2324. }
  2325. if (!ld_moved) {
  2326. schedstat_inc(sd, lb_failed[idle]);
  2327. sd->nr_balance_failed++;
  2328. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2329. spin_lock_irqsave(&busiest->lock, flags);
  2330. /* don't kick the migration_thread, if the curr
  2331. * task on busiest cpu can't be moved to this_cpu
  2332. */
  2333. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2334. spin_unlock_irqrestore(&busiest->lock, flags);
  2335. all_pinned = 1;
  2336. goto out_one_pinned;
  2337. }
  2338. if (!busiest->active_balance) {
  2339. busiest->active_balance = 1;
  2340. busiest->push_cpu = this_cpu;
  2341. active_balance = 1;
  2342. }
  2343. spin_unlock_irqrestore(&busiest->lock, flags);
  2344. if (active_balance)
  2345. wake_up_process(busiest->migration_thread);
  2346. /*
  2347. * We've kicked active balancing, reset the failure
  2348. * counter.
  2349. */
  2350. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2351. }
  2352. } else
  2353. sd->nr_balance_failed = 0;
  2354. if (likely(!active_balance)) {
  2355. /* We were unbalanced, so reset the balancing interval */
  2356. sd->balance_interval = sd->min_interval;
  2357. } else {
  2358. /*
  2359. * If we've begun active balancing, start to back off. This
  2360. * case may not be covered by the all_pinned logic if there
  2361. * is only 1 task on the busy runqueue (because we don't call
  2362. * move_tasks).
  2363. */
  2364. if (sd->balance_interval < sd->max_interval)
  2365. sd->balance_interval *= 2;
  2366. }
  2367. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2368. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2369. return -1;
  2370. return ld_moved;
  2371. out_balanced:
  2372. schedstat_inc(sd, lb_balanced[idle]);
  2373. sd->nr_balance_failed = 0;
  2374. out_one_pinned:
  2375. /* tune up the balancing interval */
  2376. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2377. (sd->balance_interval < sd->max_interval))
  2378. sd->balance_interval *= 2;
  2379. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2380. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2381. return -1;
  2382. return 0;
  2383. }
  2384. /*
  2385. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2386. * tasks if there is an imbalance.
  2387. *
  2388. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2389. * this_rq is locked.
  2390. */
  2391. static int
  2392. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2393. {
  2394. struct sched_group *group;
  2395. struct rq *busiest = NULL;
  2396. unsigned long imbalance;
  2397. int ld_moved = 0;
  2398. int sd_idle = 0;
  2399. int all_pinned = 0;
  2400. cpumask_t cpus = CPU_MASK_ALL;
  2401. /*
  2402. * When power savings policy is enabled for the parent domain, idle
  2403. * sibling can pick up load irrespective of busy siblings. In this case,
  2404. * let the state of idle sibling percolate up as IDLE, instead of
  2405. * portraying it as CPU_NOT_IDLE.
  2406. */
  2407. if (sd->flags & SD_SHARE_CPUPOWER &&
  2408. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2409. sd_idle = 1;
  2410. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2411. redo:
  2412. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2413. &sd_idle, &cpus, NULL);
  2414. if (!group) {
  2415. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2416. goto out_balanced;
  2417. }
  2418. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2419. &cpus);
  2420. if (!busiest) {
  2421. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2422. goto out_balanced;
  2423. }
  2424. BUG_ON(busiest == this_rq);
  2425. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2426. ld_moved = 0;
  2427. if (busiest->nr_running > 1) {
  2428. /* Attempt to move tasks */
  2429. double_lock_balance(this_rq, busiest);
  2430. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2431. imbalance, sd, CPU_NEWLY_IDLE,
  2432. &all_pinned);
  2433. spin_unlock(&busiest->lock);
  2434. if (unlikely(all_pinned)) {
  2435. cpu_clear(cpu_of(busiest), cpus);
  2436. if (!cpus_empty(cpus))
  2437. goto redo;
  2438. }
  2439. }
  2440. if (!ld_moved) {
  2441. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2442. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2443. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2444. return -1;
  2445. } else
  2446. sd->nr_balance_failed = 0;
  2447. return ld_moved;
  2448. out_balanced:
  2449. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2450. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2451. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2452. return -1;
  2453. sd->nr_balance_failed = 0;
  2454. return 0;
  2455. }
  2456. /*
  2457. * idle_balance is called by schedule() if this_cpu is about to become
  2458. * idle. Attempts to pull tasks from other CPUs.
  2459. */
  2460. static void idle_balance(int this_cpu, struct rq *this_rq)
  2461. {
  2462. struct sched_domain *sd;
  2463. int pulled_task = -1;
  2464. unsigned long next_balance = jiffies + HZ;
  2465. for_each_domain(this_cpu, sd) {
  2466. unsigned long interval;
  2467. if (!(sd->flags & SD_LOAD_BALANCE))
  2468. continue;
  2469. if (sd->flags & SD_BALANCE_NEWIDLE)
  2470. /* If we've pulled tasks over stop searching: */
  2471. pulled_task = load_balance_newidle(this_cpu,
  2472. this_rq, sd);
  2473. interval = msecs_to_jiffies(sd->balance_interval);
  2474. if (time_after(next_balance, sd->last_balance + interval))
  2475. next_balance = sd->last_balance + interval;
  2476. if (pulled_task)
  2477. break;
  2478. }
  2479. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2480. /*
  2481. * We are going idle. next_balance may be set based on
  2482. * a busy processor. So reset next_balance.
  2483. */
  2484. this_rq->next_balance = next_balance;
  2485. }
  2486. }
  2487. /*
  2488. * active_load_balance is run by migration threads. It pushes running tasks
  2489. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2490. * running on each physical CPU where possible, and avoids physical /
  2491. * logical imbalances.
  2492. *
  2493. * Called with busiest_rq locked.
  2494. */
  2495. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2496. {
  2497. int target_cpu = busiest_rq->push_cpu;
  2498. struct sched_domain *sd;
  2499. struct rq *target_rq;
  2500. /* Is there any task to move? */
  2501. if (busiest_rq->nr_running <= 1)
  2502. return;
  2503. target_rq = cpu_rq(target_cpu);
  2504. /*
  2505. * This condition is "impossible", if it occurs
  2506. * we need to fix it. Originally reported by
  2507. * Bjorn Helgaas on a 128-cpu setup.
  2508. */
  2509. BUG_ON(busiest_rq == target_rq);
  2510. /* move a task from busiest_rq to target_rq */
  2511. double_lock_balance(busiest_rq, target_rq);
  2512. /* Search for an sd spanning us and the target CPU. */
  2513. for_each_domain(target_cpu, sd) {
  2514. if ((sd->flags & SD_LOAD_BALANCE) &&
  2515. cpu_isset(busiest_cpu, sd->span))
  2516. break;
  2517. }
  2518. if (likely(sd)) {
  2519. schedstat_inc(sd, alb_cnt);
  2520. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2521. sd, CPU_IDLE))
  2522. schedstat_inc(sd, alb_pushed);
  2523. else
  2524. schedstat_inc(sd, alb_failed);
  2525. }
  2526. spin_unlock(&target_rq->lock);
  2527. }
  2528. #ifdef CONFIG_NO_HZ
  2529. static struct {
  2530. atomic_t load_balancer;
  2531. cpumask_t cpu_mask;
  2532. } nohz ____cacheline_aligned = {
  2533. .load_balancer = ATOMIC_INIT(-1),
  2534. .cpu_mask = CPU_MASK_NONE,
  2535. };
  2536. /*
  2537. * This routine will try to nominate the ilb (idle load balancing)
  2538. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2539. * load balancing on behalf of all those cpus. If all the cpus in the system
  2540. * go into this tickless mode, then there will be no ilb owner (as there is
  2541. * no need for one) and all the cpus will sleep till the next wakeup event
  2542. * arrives...
  2543. *
  2544. * For the ilb owner, tick is not stopped. And this tick will be used
  2545. * for idle load balancing. ilb owner will still be part of
  2546. * nohz.cpu_mask..
  2547. *
  2548. * While stopping the tick, this cpu will become the ilb owner if there
  2549. * is no other owner. And will be the owner till that cpu becomes busy
  2550. * or if all cpus in the system stop their ticks at which point
  2551. * there is no need for ilb owner.
  2552. *
  2553. * When the ilb owner becomes busy, it nominates another owner, during the
  2554. * next busy scheduler_tick()
  2555. */
  2556. int select_nohz_load_balancer(int stop_tick)
  2557. {
  2558. int cpu = smp_processor_id();
  2559. if (stop_tick) {
  2560. cpu_set(cpu, nohz.cpu_mask);
  2561. cpu_rq(cpu)->in_nohz_recently = 1;
  2562. /*
  2563. * If we are going offline and still the leader, give up!
  2564. */
  2565. if (cpu_is_offline(cpu) &&
  2566. atomic_read(&nohz.load_balancer) == cpu) {
  2567. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2568. BUG();
  2569. return 0;
  2570. }
  2571. /* time for ilb owner also to sleep */
  2572. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2573. if (atomic_read(&nohz.load_balancer) == cpu)
  2574. atomic_set(&nohz.load_balancer, -1);
  2575. return 0;
  2576. }
  2577. if (atomic_read(&nohz.load_balancer) == -1) {
  2578. /* make me the ilb owner */
  2579. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2580. return 1;
  2581. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2582. return 1;
  2583. } else {
  2584. if (!cpu_isset(cpu, nohz.cpu_mask))
  2585. return 0;
  2586. cpu_clear(cpu, nohz.cpu_mask);
  2587. if (atomic_read(&nohz.load_balancer) == cpu)
  2588. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2589. BUG();
  2590. }
  2591. return 0;
  2592. }
  2593. #endif
  2594. static DEFINE_SPINLOCK(balancing);
  2595. /*
  2596. * It checks each scheduling domain to see if it is due to be balanced,
  2597. * and initiates a balancing operation if so.
  2598. *
  2599. * Balancing parameters are set up in arch_init_sched_domains.
  2600. */
  2601. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2602. {
  2603. int balance = 1;
  2604. struct rq *rq = cpu_rq(cpu);
  2605. unsigned long interval;
  2606. struct sched_domain *sd;
  2607. /* Earliest time when we have to do rebalance again */
  2608. unsigned long next_balance = jiffies + 60*HZ;
  2609. for_each_domain(cpu, sd) {
  2610. if (!(sd->flags & SD_LOAD_BALANCE))
  2611. continue;
  2612. interval = sd->balance_interval;
  2613. if (idle != CPU_IDLE)
  2614. interval *= sd->busy_factor;
  2615. /* scale ms to jiffies */
  2616. interval = msecs_to_jiffies(interval);
  2617. if (unlikely(!interval))
  2618. interval = 1;
  2619. if (interval > HZ*NR_CPUS/10)
  2620. interval = HZ*NR_CPUS/10;
  2621. if (sd->flags & SD_SERIALIZE) {
  2622. if (!spin_trylock(&balancing))
  2623. goto out;
  2624. }
  2625. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2626. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2627. /*
  2628. * We've pulled tasks over so either we're no
  2629. * longer idle, or one of our SMT siblings is
  2630. * not idle.
  2631. */
  2632. idle = CPU_NOT_IDLE;
  2633. }
  2634. sd->last_balance = jiffies;
  2635. }
  2636. if (sd->flags & SD_SERIALIZE)
  2637. spin_unlock(&balancing);
  2638. out:
  2639. if (time_after(next_balance, sd->last_balance + interval))
  2640. next_balance = sd->last_balance + interval;
  2641. /*
  2642. * Stop the load balance at this level. There is another
  2643. * CPU in our sched group which is doing load balancing more
  2644. * actively.
  2645. */
  2646. if (!balance)
  2647. break;
  2648. }
  2649. rq->next_balance = next_balance;
  2650. }
  2651. /*
  2652. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2653. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2654. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2655. */
  2656. static void run_rebalance_domains(struct softirq_action *h)
  2657. {
  2658. int this_cpu = smp_processor_id();
  2659. struct rq *this_rq = cpu_rq(this_cpu);
  2660. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2661. CPU_IDLE : CPU_NOT_IDLE;
  2662. rebalance_domains(this_cpu, idle);
  2663. #ifdef CONFIG_NO_HZ
  2664. /*
  2665. * If this cpu is the owner for idle load balancing, then do the
  2666. * balancing on behalf of the other idle cpus whose ticks are
  2667. * stopped.
  2668. */
  2669. if (this_rq->idle_at_tick &&
  2670. atomic_read(&nohz.load_balancer) == this_cpu) {
  2671. cpumask_t cpus = nohz.cpu_mask;
  2672. struct rq *rq;
  2673. int balance_cpu;
  2674. cpu_clear(this_cpu, cpus);
  2675. for_each_cpu_mask(balance_cpu, cpus) {
  2676. /*
  2677. * If this cpu gets work to do, stop the load balancing
  2678. * work being done for other cpus. Next load
  2679. * balancing owner will pick it up.
  2680. */
  2681. if (need_resched())
  2682. break;
  2683. rebalance_domains(balance_cpu, SCHED_IDLE);
  2684. rq = cpu_rq(balance_cpu);
  2685. if (time_after(this_rq->next_balance, rq->next_balance))
  2686. this_rq->next_balance = rq->next_balance;
  2687. }
  2688. }
  2689. #endif
  2690. }
  2691. /*
  2692. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2693. *
  2694. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2695. * idle load balancing owner or decide to stop the periodic load balancing,
  2696. * if the whole system is idle.
  2697. */
  2698. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2699. {
  2700. #ifdef CONFIG_NO_HZ
  2701. /*
  2702. * If we were in the nohz mode recently and busy at the current
  2703. * scheduler tick, then check if we need to nominate new idle
  2704. * load balancer.
  2705. */
  2706. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2707. rq->in_nohz_recently = 0;
  2708. if (atomic_read(&nohz.load_balancer) == cpu) {
  2709. cpu_clear(cpu, nohz.cpu_mask);
  2710. atomic_set(&nohz.load_balancer, -1);
  2711. }
  2712. if (atomic_read(&nohz.load_balancer) == -1) {
  2713. /*
  2714. * simple selection for now: Nominate the
  2715. * first cpu in the nohz list to be the next
  2716. * ilb owner.
  2717. *
  2718. * TBD: Traverse the sched domains and nominate
  2719. * the nearest cpu in the nohz.cpu_mask.
  2720. */
  2721. int ilb = first_cpu(nohz.cpu_mask);
  2722. if (ilb != NR_CPUS)
  2723. resched_cpu(ilb);
  2724. }
  2725. }
  2726. /*
  2727. * If this cpu is idle and doing idle load balancing for all the
  2728. * cpus with ticks stopped, is it time for that to stop?
  2729. */
  2730. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2731. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2732. resched_cpu(cpu);
  2733. return;
  2734. }
  2735. /*
  2736. * If this cpu is idle and the idle load balancing is done by
  2737. * someone else, then no need raise the SCHED_SOFTIRQ
  2738. */
  2739. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2740. cpu_isset(cpu, nohz.cpu_mask))
  2741. return;
  2742. #endif
  2743. if (time_after_eq(jiffies, rq->next_balance))
  2744. raise_softirq(SCHED_SOFTIRQ);
  2745. }
  2746. #else /* CONFIG_SMP */
  2747. /*
  2748. * on UP we do not need to balance between CPUs:
  2749. */
  2750. static inline void idle_balance(int cpu, struct rq *rq)
  2751. {
  2752. }
  2753. /* Avoid "used but not defined" warning on UP */
  2754. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2755. unsigned long max_nr_move, unsigned long max_load_move,
  2756. struct sched_domain *sd, enum cpu_idle_type idle,
  2757. int *all_pinned, unsigned long *load_moved,
  2758. int *this_best_prio, struct rq_iterator *iterator)
  2759. {
  2760. *load_moved = 0;
  2761. return 0;
  2762. }
  2763. #endif
  2764. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2765. EXPORT_PER_CPU_SYMBOL(kstat);
  2766. /*
  2767. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2768. * that have not yet been banked in case the task is currently running.
  2769. */
  2770. unsigned long long task_sched_runtime(struct task_struct *p)
  2771. {
  2772. unsigned long flags;
  2773. u64 ns, delta_exec;
  2774. struct rq *rq;
  2775. rq = task_rq_lock(p, &flags);
  2776. ns = p->se.sum_exec_runtime;
  2777. if (rq->curr == p) {
  2778. update_rq_clock(rq);
  2779. delta_exec = rq->clock - p->se.exec_start;
  2780. if ((s64)delta_exec > 0)
  2781. ns += delta_exec;
  2782. }
  2783. task_rq_unlock(rq, &flags);
  2784. return ns;
  2785. }
  2786. /*
  2787. * Account user cpu time to a process.
  2788. * @p: the process that the cpu time gets accounted to
  2789. * @hardirq_offset: the offset to subtract from hardirq_count()
  2790. * @cputime: the cpu time spent in user space since the last update
  2791. */
  2792. void account_user_time(struct task_struct *p, cputime_t cputime)
  2793. {
  2794. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2795. cputime64_t tmp;
  2796. p->utime = cputime_add(p->utime, cputime);
  2797. /* Add user time to cpustat. */
  2798. tmp = cputime_to_cputime64(cputime);
  2799. if (TASK_NICE(p) > 0)
  2800. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2801. else
  2802. cpustat->user = cputime64_add(cpustat->user, tmp);
  2803. }
  2804. /*
  2805. * Account system cpu time to a process.
  2806. * @p: the process that the cpu time gets accounted to
  2807. * @hardirq_offset: the offset to subtract from hardirq_count()
  2808. * @cputime: the cpu time spent in kernel space since the last update
  2809. */
  2810. void account_system_time(struct task_struct *p, int hardirq_offset,
  2811. cputime_t cputime)
  2812. {
  2813. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2814. struct rq *rq = this_rq();
  2815. cputime64_t tmp;
  2816. p->stime = cputime_add(p->stime, cputime);
  2817. /* Add system time to cpustat. */
  2818. tmp = cputime_to_cputime64(cputime);
  2819. if (hardirq_count() - hardirq_offset)
  2820. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2821. else if (softirq_count())
  2822. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2823. else if (p != rq->idle)
  2824. cpustat->system = cputime64_add(cpustat->system, tmp);
  2825. else if (atomic_read(&rq->nr_iowait) > 0)
  2826. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2827. else
  2828. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2829. /* Account for system time used */
  2830. acct_update_integrals(p);
  2831. }
  2832. /*
  2833. * Account for involuntary wait time.
  2834. * @p: the process from which the cpu time has been stolen
  2835. * @steal: the cpu time spent in involuntary wait
  2836. */
  2837. void account_steal_time(struct task_struct *p, cputime_t steal)
  2838. {
  2839. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2840. cputime64_t tmp = cputime_to_cputime64(steal);
  2841. struct rq *rq = this_rq();
  2842. if (p == rq->idle) {
  2843. p->stime = cputime_add(p->stime, steal);
  2844. if (atomic_read(&rq->nr_iowait) > 0)
  2845. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2846. else
  2847. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2848. } else
  2849. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2850. }
  2851. /*
  2852. * This function gets called by the timer code, with HZ frequency.
  2853. * We call it with interrupts disabled.
  2854. *
  2855. * It also gets called by the fork code, when changing the parent's
  2856. * timeslices.
  2857. */
  2858. void scheduler_tick(void)
  2859. {
  2860. int cpu = smp_processor_id();
  2861. struct rq *rq = cpu_rq(cpu);
  2862. struct task_struct *curr = rq->curr;
  2863. spin_lock(&rq->lock);
  2864. update_cpu_load(rq);
  2865. if (curr != rq->idle) /* FIXME: needed? */
  2866. curr->sched_class->task_tick(rq, curr);
  2867. spin_unlock(&rq->lock);
  2868. #ifdef CONFIG_SMP
  2869. rq->idle_at_tick = idle_cpu(cpu);
  2870. trigger_load_balance(rq, cpu);
  2871. #endif
  2872. }
  2873. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2874. void fastcall add_preempt_count(int val)
  2875. {
  2876. /*
  2877. * Underflow?
  2878. */
  2879. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2880. return;
  2881. preempt_count() += val;
  2882. /*
  2883. * Spinlock count overflowing soon?
  2884. */
  2885. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2886. PREEMPT_MASK - 10);
  2887. }
  2888. EXPORT_SYMBOL(add_preempt_count);
  2889. void fastcall sub_preempt_count(int val)
  2890. {
  2891. /*
  2892. * Underflow?
  2893. */
  2894. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2895. return;
  2896. /*
  2897. * Is the spinlock portion underflowing?
  2898. */
  2899. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2900. !(preempt_count() & PREEMPT_MASK)))
  2901. return;
  2902. preempt_count() -= val;
  2903. }
  2904. EXPORT_SYMBOL(sub_preempt_count);
  2905. #endif
  2906. /*
  2907. * Print scheduling while atomic bug:
  2908. */
  2909. static noinline void __schedule_bug(struct task_struct *prev)
  2910. {
  2911. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2912. prev->comm, preempt_count(), prev->pid);
  2913. debug_show_held_locks(prev);
  2914. if (irqs_disabled())
  2915. print_irqtrace_events(prev);
  2916. dump_stack();
  2917. }
  2918. /*
  2919. * Various schedule()-time debugging checks and statistics:
  2920. */
  2921. static inline void schedule_debug(struct task_struct *prev)
  2922. {
  2923. /*
  2924. * Test if we are atomic. Since do_exit() needs to call into
  2925. * schedule() atomically, we ignore that path for now.
  2926. * Otherwise, whine if we are scheduling when we should not be.
  2927. */
  2928. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2929. __schedule_bug(prev);
  2930. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2931. schedstat_inc(this_rq(), sched_cnt);
  2932. }
  2933. /*
  2934. * Pick up the highest-prio task:
  2935. */
  2936. static inline struct task_struct *
  2937. pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
  2938. {
  2939. struct sched_class *class;
  2940. struct task_struct *p;
  2941. /*
  2942. * Optimization: we know that if all tasks are in
  2943. * the fair class we can call that function directly:
  2944. */
  2945. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2946. p = fair_sched_class.pick_next_task(rq, now);
  2947. if (likely(p))
  2948. return p;
  2949. }
  2950. class = sched_class_highest;
  2951. for ( ; ; ) {
  2952. p = class->pick_next_task(rq, now);
  2953. if (p)
  2954. return p;
  2955. /*
  2956. * Will never be NULL as the idle class always
  2957. * returns a non-NULL p:
  2958. */
  2959. class = class->next;
  2960. }
  2961. }
  2962. /*
  2963. * schedule() is the main scheduler function.
  2964. */
  2965. asmlinkage void __sched schedule(void)
  2966. {
  2967. struct task_struct *prev, *next;
  2968. long *switch_count;
  2969. struct rq *rq;
  2970. u64 now;
  2971. int cpu;
  2972. need_resched:
  2973. preempt_disable();
  2974. cpu = smp_processor_id();
  2975. rq = cpu_rq(cpu);
  2976. rcu_qsctr_inc(cpu);
  2977. prev = rq->curr;
  2978. switch_count = &prev->nivcsw;
  2979. release_kernel_lock(prev);
  2980. need_resched_nonpreemptible:
  2981. schedule_debug(prev);
  2982. spin_lock_irq(&rq->lock);
  2983. clear_tsk_need_resched(prev);
  2984. __update_rq_clock(rq);
  2985. now = rq->clock;
  2986. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2987. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2988. unlikely(signal_pending(prev)))) {
  2989. prev->state = TASK_RUNNING;
  2990. } else {
  2991. deactivate_task(rq, prev, 1, now);
  2992. }
  2993. switch_count = &prev->nvcsw;
  2994. }
  2995. if (unlikely(!rq->nr_running))
  2996. idle_balance(cpu, rq);
  2997. prev->sched_class->put_prev_task(rq, prev, now);
  2998. next = pick_next_task(rq, prev, now);
  2999. sched_info_switch(prev, next);
  3000. if (likely(prev != next)) {
  3001. rq->nr_switches++;
  3002. rq->curr = next;
  3003. ++*switch_count;
  3004. context_switch(rq, prev, next); /* unlocks the rq */
  3005. } else
  3006. spin_unlock_irq(&rq->lock);
  3007. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3008. cpu = smp_processor_id();
  3009. rq = cpu_rq(cpu);
  3010. goto need_resched_nonpreemptible;
  3011. }
  3012. preempt_enable_no_resched();
  3013. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3014. goto need_resched;
  3015. }
  3016. EXPORT_SYMBOL(schedule);
  3017. #ifdef CONFIG_PREEMPT
  3018. /*
  3019. * this is the entry point to schedule() from in-kernel preemption
  3020. * off of preempt_enable. Kernel preemptions off return from interrupt
  3021. * occur there and call schedule directly.
  3022. */
  3023. asmlinkage void __sched preempt_schedule(void)
  3024. {
  3025. struct thread_info *ti = current_thread_info();
  3026. #ifdef CONFIG_PREEMPT_BKL
  3027. struct task_struct *task = current;
  3028. int saved_lock_depth;
  3029. #endif
  3030. /*
  3031. * If there is a non-zero preempt_count or interrupts are disabled,
  3032. * we do not want to preempt the current task. Just return..
  3033. */
  3034. if (likely(ti->preempt_count || irqs_disabled()))
  3035. return;
  3036. need_resched:
  3037. add_preempt_count(PREEMPT_ACTIVE);
  3038. /*
  3039. * We keep the big kernel semaphore locked, but we
  3040. * clear ->lock_depth so that schedule() doesnt
  3041. * auto-release the semaphore:
  3042. */
  3043. #ifdef CONFIG_PREEMPT_BKL
  3044. saved_lock_depth = task->lock_depth;
  3045. task->lock_depth = -1;
  3046. #endif
  3047. schedule();
  3048. #ifdef CONFIG_PREEMPT_BKL
  3049. task->lock_depth = saved_lock_depth;
  3050. #endif
  3051. sub_preempt_count(PREEMPT_ACTIVE);
  3052. /* we could miss a preemption opportunity between schedule and now */
  3053. barrier();
  3054. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3055. goto need_resched;
  3056. }
  3057. EXPORT_SYMBOL(preempt_schedule);
  3058. /*
  3059. * this is the entry point to schedule() from kernel preemption
  3060. * off of irq context.
  3061. * Note, that this is called and return with irqs disabled. This will
  3062. * protect us against recursive calling from irq.
  3063. */
  3064. asmlinkage void __sched preempt_schedule_irq(void)
  3065. {
  3066. struct thread_info *ti = current_thread_info();
  3067. #ifdef CONFIG_PREEMPT_BKL
  3068. struct task_struct *task = current;
  3069. int saved_lock_depth;
  3070. #endif
  3071. /* Catch callers which need to be fixed */
  3072. BUG_ON(ti->preempt_count || !irqs_disabled());
  3073. need_resched:
  3074. add_preempt_count(PREEMPT_ACTIVE);
  3075. /*
  3076. * We keep the big kernel semaphore locked, but we
  3077. * clear ->lock_depth so that schedule() doesnt
  3078. * auto-release the semaphore:
  3079. */
  3080. #ifdef CONFIG_PREEMPT_BKL
  3081. saved_lock_depth = task->lock_depth;
  3082. task->lock_depth = -1;
  3083. #endif
  3084. local_irq_enable();
  3085. schedule();
  3086. local_irq_disable();
  3087. #ifdef CONFIG_PREEMPT_BKL
  3088. task->lock_depth = saved_lock_depth;
  3089. #endif
  3090. sub_preempt_count(PREEMPT_ACTIVE);
  3091. /* we could miss a preemption opportunity between schedule and now */
  3092. barrier();
  3093. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3094. goto need_resched;
  3095. }
  3096. #endif /* CONFIG_PREEMPT */
  3097. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3098. void *key)
  3099. {
  3100. return try_to_wake_up(curr->private, mode, sync);
  3101. }
  3102. EXPORT_SYMBOL(default_wake_function);
  3103. /*
  3104. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3105. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3106. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3107. *
  3108. * There are circumstances in which we can try to wake a task which has already
  3109. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3110. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3111. */
  3112. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3113. int nr_exclusive, int sync, void *key)
  3114. {
  3115. struct list_head *tmp, *next;
  3116. list_for_each_safe(tmp, next, &q->task_list) {
  3117. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3118. unsigned flags = curr->flags;
  3119. if (curr->func(curr, mode, sync, key) &&
  3120. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3121. break;
  3122. }
  3123. }
  3124. /**
  3125. * __wake_up - wake up threads blocked on a waitqueue.
  3126. * @q: the waitqueue
  3127. * @mode: which threads
  3128. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3129. * @key: is directly passed to the wakeup function
  3130. */
  3131. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3132. int nr_exclusive, void *key)
  3133. {
  3134. unsigned long flags;
  3135. spin_lock_irqsave(&q->lock, flags);
  3136. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3137. spin_unlock_irqrestore(&q->lock, flags);
  3138. }
  3139. EXPORT_SYMBOL(__wake_up);
  3140. /*
  3141. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3142. */
  3143. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3144. {
  3145. __wake_up_common(q, mode, 1, 0, NULL);
  3146. }
  3147. /**
  3148. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3149. * @q: the waitqueue
  3150. * @mode: which threads
  3151. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3152. *
  3153. * The sync wakeup differs that the waker knows that it will schedule
  3154. * away soon, so while the target thread will be woken up, it will not
  3155. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3156. * with each other. This can prevent needless bouncing between CPUs.
  3157. *
  3158. * On UP it can prevent extra preemption.
  3159. */
  3160. void fastcall
  3161. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3162. {
  3163. unsigned long flags;
  3164. int sync = 1;
  3165. if (unlikely(!q))
  3166. return;
  3167. if (unlikely(!nr_exclusive))
  3168. sync = 0;
  3169. spin_lock_irqsave(&q->lock, flags);
  3170. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3171. spin_unlock_irqrestore(&q->lock, flags);
  3172. }
  3173. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3174. void fastcall complete(struct completion *x)
  3175. {
  3176. unsigned long flags;
  3177. spin_lock_irqsave(&x->wait.lock, flags);
  3178. x->done++;
  3179. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3180. 1, 0, NULL);
  3181. spin_unlock_irqrestore(&x->wait.lock, flags);
  3182. }
  3183. EXPORT_SYMBOL(complete);
  3184. void fastcall complete_all(struct completion *x)
  3185. {
  3186. unsigned long flags;
  3187. spin_lock_irqsave(&x->wait.lock, flags);
  3188. x->done += UINT_MAX/2;
  3189. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3190. 0, 0, NULL);
  3191. spin_unlock_irqrestore(&x->wait.lock, flags);
  3192. }
  3193. EXPORT_SYMBOL(complete_all);
  3194. void fastcall __sched wait_for_completion(struct completion *x)
  3195. {
  3196. might_sleep();
  3197. spin_lock_irq(&x->wait.lock);
  3198. if (!x->done) {
  3199. DECLARE_WAITQUEUE(wait, current);
  3200. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3201. __add_wait_queue_tail(&x->wait, &wait);
  3202. do {
  3203. __set_current_state(TASK_UNINTERRUPTIBLE);
  3204. spin_unlock_irq(&x->wait.lock);
  3205. schedule();
  3206. spin_lock_irq(&x->wait.lock);
  3207. } while (!x->done);
  3208. __remove_wait_queue(&x->wait, &wait);
  3209. }
  3210. x->done--;
  3211. spin_unlock_irq(&x->wait.lock);
  3212. }
  3213. EXPORT_SYMBOL(wait_for_completion);
  3214. unsigned long fastcall __sched
  3215. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3216. {
  3217. might_sleep();
  3218. spin_lock_irq(&x->wait.lock);
  3219. if (!x->done) {
  3220. DECLARE_WAITQUEUE(wait, current);
  3221. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3222. __add_wait_queue_tail(&x->wait, &wait);
  3223. do {
  3224. __set_current_state(TASK_UNINTERRUPTIBLE);
  3225. spin_unlock_irq(&x->wait.lock);
  3226. timeout = schedule_timeout(timeout);
  3227. spin_lock_irq(&x->wait.lock);
  3228. if (!timeout) {
  3229. __remove_wait_queue(&x->wait, &wait);
  3230. goto out;
  3231. }
  3232. } while (!x->done);
  3233. __remove_wait_queue(&x->wait, &wait);
  3234. }
  3235. x->done--;
  3236. out:
  3237. spin_unlock_irq(&x->wait.lock);
  3238. return timeout;
  3239. }
  3240. EXPORT_SYMBOL(wait_for_completion_timeout);
  3241. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3242. {
  3243. int ret = 0;
  3244. might_sleep();
  3245. spin_lock_irq(&x->wait.lock);
  3246. if (!x->done) {
  3247. DECLARE_WAITQUEUE(wait, current);
  3248. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3249. __add_wait_queue_tail(&x->wait, &wait);
  3250. do {
  3251. if (signal_pending(current)) {
  3252. ret = -ERESTARTSYS;
  3253. __remove_wait_queue(&x->wait, &wait);
  3254. goto out;
  3255. }
  3256. __set_current_state(TASK_INTERRUPTIBLE);
  3257. spin_unlock_irq(&x->wait.lock);
  3258. schedule();
  3259. spin_lock_irq(&x->wait.lock);
  3260. } while (!x->done);
  3261. __remove_wait_queue(&x->wait, &wait);
  3262. }
  3263. x->done--;
  3264. out:
  3265. spin_unlock_irq(&x->wait.lock);
  3266. return ret;
  3267. }
  3268. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3269. unsigned long fastcall __sched
  3270. wait_for_completion_interruptible_timeout(struct completion *x,
  3271. unsigned long timeout)
  3272. {
  3273. might_sleep();
  3274. spin_lock_irq(&x->wait.lock);
  3275. if (!x->done) {
  3276. DECLARE_WAITQUEUE(wait, current);
  3277. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3278. __add_wait_queue_tail(&x->wait, &wait);
  3279. do {
  3280. if (signal_pending(current)) {
  3281. timeout = -ERESTARTSYS;
  3282. __remove_wait_queue(&x->wait, &wait);
  3283. goto out;
  3284. }
  3285. __set_current_state(TASK_INTERRUPTIBLE);
  3286. spin_unlock_irq(&x->wait.lock);
  3287. timeout = schedule_timeout(timeout);
  3288. spin_lock_irq(&x->wait.lock);
  3289. if (!timeout) {
  3290. __remove_wait_queue(&x->wait, &wait);
  3291. goto out;
  3292. }
  3293. } while (!x->done);
  3294. __remove_wait_queue(&x->wait, &wait);
  3295. }
  3296. x->done--;
  3297. out:
  3298. spin_unlock_irq(&x->wait.lock);
  3299. return timeout;
  3300. }
  3301. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3302. static inline void
  3303. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3304. {
  3305. spin_lock_irqsave(&q->lock, *flags);
  3306. __add_wait_queue(q, wait);
  3307. spin_unlock(&q->lock);
  3308. }
  3309. static inline void
  3310. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3311. {
  3312. spin_lock_irq(&q->lock);
  3313. __remove_wait_queue(q, wait);
  3314. spin_unlock_irqrestore(&q->lock, *flags);
  3315. }
  3316. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3317. {
  3318. unsigned long flags;
  3319. wait_queue_t wait;
  3320. init_waitqueue_entry(&wait, current);
  3321. current->state = TASK_INTERRUPTIBLE;
  3322. sleep_on_head(q, &wait, &flags);
  3323. schedule();
  3324. sleep_on_tail(q, &wait, &flags);
  3325. }
  3326. EXPORT_SYMBOL(interruptible_sleep_on);
  3327. long __sched
  3328. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3329. {
  3330. unsigned long flags;
  3331. wait_queue_t wait;
  3332. init_waitqueue_entry(&wait, current);
  3333. current->state = TASK_INTERRUPTIBLE;
  3334. sleep_on_head(q, &wait, &flags);
  3335. timeout = schedule_timeout(timeout);
  3336. sleep_on_tail(q, &wait, &flags);
  3337. return timeout;
  3338. }
  3339. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3340. void __sched sleep_on(wait_queue_head_t *q)
  3341. {
  3342. unsigned long flags;
  3343. wait_queue_t wait;
  3344. init_waitqueue_entry(&wait, current);
  3345. current->state = TASK_UNINTERRUPTIBLE;
  3346. sleep_on_head(q, &wait, &flags);
  3347. schedule();
  3348. sleep_on_tail(q, &wait, &flags);
  3349. }
  3350. EXPORT_SYMBOL(sleep_on);
  3351. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3352. {
  3353. unsigned long flags;
  3354. wait_queue_t wait;
  3355. init_waitqueue_entry(&wait, current);
  3356. current->state = TASK_UNINTERRUPTIBLE;
  3357. sleep_on_head(q, &wait, &flags);
  3358. timeout = schedule_timeout(timeout);
  3359. sleep_on_tail(q, &wait, &flags);
  3360. return timeout;
  3361. }
  3362. EXPORT_SYMBOL(sleep_on_timeout);
  3363. #ifdef CONFIG_RT_MUTEXES
  3364. /*
  3365. * rt_mutex_setprio - set the current priority of a task
  3366. * @p: task
  3367. * @prio: prio value (kernel-internal form)
  3368. *
  3369. * This function changes the 'effective' priority of a task. It does
  3370. * not touch ->normal_prio like __setscheduler().
  3371. *
  3372. * Used by the rt_mutex code to implement priority inheritance logic.
  3373. */
  3374. void rt_mutex_setprio(struct task_struct *p, int prio)
  3375. {
  3376. unsigned long flags;
  3377. int oldprio, on_rq;
  3378. struct rq *rq;
  3379. u64 now;
  3380. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3381. rq = task_rq_lock(p, &flags);
  3382. update_rq_clock(rq);
  3383. now = rq->clock;
  3384. oldprio = p->prio;
  3385. on_rq = p->se.on_rq;
  3386. if (on_rq)
  3387. dequeue_task(rq, p, 0, now);
  3388. if (rt_prio(prio))
  3389. p->sched_class = &rt_sched_class;
  3390. else
  3391. p->sched_class = &fair_sched_class;
  3392. p->prio = prio;
  3393. if (on_rq) {
  3394. enqueue_task(rq, p, 0, now);
  3395. /*
  3396. * Reschedule if we are currently running on this runqueue and
  3397. * our priority decreased, or if we are not currently running on
  3398. * this runqueue and our priority is higher than the current's
  3399. */
  3400. if (task_running(rq, p)) {
  3401. if (p->prio > oldprio)
  3402. resched_task(rq->curr);
  3403. } else {
  3404. check_preempt_curr(rq, p);
  3405. }
  3406. }
  3407. task_rq_unlock(rq, &flags);
  3408. }
  3409. #endif
  3410. void set_user_nice(struct task_struct *p, long nice)
  3411. {
  3412. int old_prio, delta, on_rq;
  3413. unsigned long flags;
  3414. struct rq *rq;
  3415. u64 now;
  3416. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3417. return;
  3418. /*
  3419. * We have to be careful, if called from sys_setpriority(),
  3420. * the task might be in the middle of scheduling on another CPU.
  3421. */
  3422. rq = task_rq_lock(p, &flags);
  3423. update_rq_clock(rq);
  3424. now = rq->clock;
  3425. /*
  3426. * The RT priorities are set via sched_setscheduler(), but we still
  3427. * allow the 'normal' nice value to be set - but as expected
  3428. * it wont have any effect on scheduling until the task is
  3429. * SCHED_FIFO/SCHED_RR:
  3430. */
  3431. if (task_has_rt_policy(p)) {
  3432. p->static_prio = NICE_TO_PRIO(nice);
  3433. goto out_unlock;
  3434. }
  3435. on_rq = p->se.on_rq;
  3436. if (on_rq) {
  3437. dequeue_task(rq, p, 0, now);
  3438. dec_load(rq, p, now);
  3439. }
  3440. p->static_prio = NICE_TO_PRIO(nice);
  3441. set_load_weight(p);
  3442. old_prio = p->prio;
  3443. p->prio = effective_prio(p);
  3444. delta = p->prio - old_prio;
  3445. if (on_rq) {
  3446. enqueue_task(rq, p, 0, now);
  3447. inc_load(rq, p, now);
  3448. /*
  3449. * If the task increased its priority or is running and
  3450. * lowered its priority, then reschedule its CPU:
  3451. */
  3452. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3453. resched_task(rq->curr);
  3454. }
  3455. out_unlock:
  3456. task_rq_unlock(rq, &flags);
  3457. }
  3458. EXPORT_SYMBOL(set_user_nice);
  3459. /*
  3460. * can_nice - check if a task can reduce its nice value
  3461. * @p: task
  3462. * @nice: nice value
  3463. */
  3464. int can_nice(const struct task_struct *p, const int nice)
  3465. {
  3466. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3467. int nice_rlim = 20 - nice;
  3468. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3469. capable(CAP_SYS_NICE));
  3470. }
  3471. #ifdef __ARCH_WANT_SYS_NICE
  3472. /*
  3473. * sys_nice - change the priority of the current process.
  3474. * @increment: priority increment
  3475. *
  3476. * sys_setpriority is a more generic, but much slower function that
  3477. * does similar things.
  3478. */
  3479. asmlinkage long sys_nice(int increment)
  3480. {
  3481. long nice, retval;
  3482. /*
  3483. * Setpriority might change our priority at the same moment.
  3484. * We don't have to worry. Conceptually one call occurs first
  3485. * and we have a single winner.
  3486. */
  3487. if (increment < -40)
  3488. increment = -40;
  3489. if (increment > 40)
  3490. increment = 40;
  3491. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3492. if (nice < -20)
  3493. nice = -20;
  3494. if (nice > 19)
  3495. nice = 19;
  3496. if (increment < 0 && !can_nice(current, nice))
  3497. return -EPERM;
  3498. retval = security_task_setnice(current, nice);
  3499. if (retval)
  3500. return retval;
  3501. set_user_nice(current, nice);
  3502. return 0;
  3503. }
  3504. #endif
  3505. /**
  3506. * task_prio - return the priority value of a given task.
  3507. * @p: the task in question.
  3508. *
  3509. * This is the priority value as seen by users in /proc.
  3510. * RT tasks are offset by -200. Normal tasks are centered
  3511. * around 0, value goes from -16 to +15.
  3512. */
  3513. int task_prio(const struct task_struct *p)
  3514. {
  3515. return p->prio - MAX_RT_PRIO;
  3516. }
  3517. /**
  3518. * task_nice - return the nice value of a given task.
  3519. * @p: the task in question.
  3520. */
  3521. int task_nice(const struct task_struct *p)
  3522. {
  3523. return TASK_NICE(p);
  3524. }
  3525. EXPORT_SYMBOL_GPL(task_nice);
  3526. /**
  3527. * idle_cpu - is a given cpu idle currently?
  3528. * @cpu: the processor in question.
  3529. */
  3530. int idle_cpu(int cpu)
  3531. {
  3532. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3533. }
  3534. /**
  3535. * idle_task - return the idle task for a given cpu.
  3536. * @cpu: the processor in question.
  3537. */
  3538. struct task_struct *idle_task(int cpu)
  3539. {
  3540. return cpu_rq(cpu)->idle;
  3541. }
  3542. /**
  3543. * find_process_by_pid - find a process with a matching PID value.
  3544. * @pid: the pid in question.
  3545. */
  3546. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3547. {
  3548. return pid ? find_task_by_pid(pid) : current;
  3549. }
  3550. /* Actually do priority change: must hold rq lock. */
  3551. static void
  3552. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3553. {
  3554. BUG_ON(p->se.on_rq);
  3555. p->policy = policy;
  3556. switch (p->policy) {
  3557. case SCHED_NORMAL:
  3558. case SCHED_BATCH:
  3559. case SCHED_IDLE:
  3560. p->sched_class = &fair_sched_class;
  3561. break;
  3562. case SCHED_FIFO:
  3563. case SCHED_RR:
  3564. p->sched_class = &rt_sched_class;
  3565. break;
  3566. }
  3567. p->rt_priority = prio;
  3568. p->normal_prio = normal_prio(p);
  3569. /* we are holding p->pi_lock already */
  3570. p->prio = rt_mutex_getprio(p);
  3571. set_load_weight(p);
  3572. }
  3573. /**
  3574. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3575. * @p: the task in question.
  3576. * @policy: new policy.
  3577. * @param: structure containing the new RT priority.
  3578. *
  3579. * NOTE that the task may be already dead.
  3580. */
  3581. int sched_setscheduler(struct task_struct *p, int policy,
  3582. struct sched_param *param)
  3583. {
  3584. int retval, oldprio, oldpolicy = -1, on_rq;
  3585. unsigned long flags;
  3586. struct rq *rq;
  3587. /* may grab non-irq protected spin_locks */
  3588. BUG_ON(in_interrupt());
  3589. recheck:
  3590. /* double check policy once rq lock held */
  3591. if (policy < 0)
  3592. policy = oldpolicy = p->policy;
  3593. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3594. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3595. policy != SCHED_IDLE)
  3596. return -EINVAL;
  3597. /*
  3598. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3599. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3600. * SCHED_BATCH and SCHED_IDLE is 0.
  3601. */
  3602. if (param->sched_priority < 0 ||
  3603. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3604. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3605. return -EINVAL;
  3606. if (rt_policy(policy) != (param->sched_priority != 0))
  3607. return -EINVAL;
  3608. /*
  3609. * Allow unprivileged RT tasks to decrease priority:
  3610. */
  3611. if (!capable(CAP_SYS_NICE)) {
  3612. if (rt_policy(policy)) {
  3613. unsigned long rlim_rtprio;
  3614. if (!lock_task_sighand(p, &flags))
  3615. return -ESRCH;
  3616. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3617. unlock_task_sighand(p, &flags);
  3618. /* can't set/change the rt policy */
  3619. if (policy != p->policy && !rlim_rtprio)
  3620. return -EPERM;
  3621. /* can't increase priority */
  3622. if (param->sched_priority > p->rt_priority &&
  3623. param->sched_priority > rlim_rtprio)
  3624. return -EPERM;
  3625. }
  3626. /*
  3627. * Like positive nice levels, dont allow tasks to
  3628. * move out of SCHED_IDLE either:
  3629. */
  3630. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3631. return -EPERM;
  3632. /* can't change other user's priorities */
  3633. if ((current->euid != p->euid) &&
  3634. (current->euid != p->uid))
  3635. return -EPERM;
  3636. }
  3637. retval = security_task_setscheduler(p, policy, param);
  3638. if (retval)
  3639. return retval;
  3640. /*
  3641. * make sure no PI-waiters arrive (or leave) while we are
  3642. * changing the priority of the task:
  3643. */
  3644. spin_lock_irqsave(&p->pi_lock, flags);
  3645. /*
  3646. * To be able to change p->policy safely, the apropriate
  3647. * runqueue lock must be held.
  3648. */
  3649. rq = __task_rq_lock(p);
  3650. /* recheck policy now with rq lock held */
  3651. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3652. policy = oldpolicy = -1;
  3653. __task_rq_unlock(rq);
  3654. spin_unlock_irqrestore(&p->pi_lock, flags);
  3655. goto recheck;
  3656. }
  3657. on_rq = p->se.on_rq;
  3658. if (on_rq) {
  3659. update_rq_clock(rq);
  3660. deactivate_task(rq, p, 0, rq->clock);
  3661. }
  3662. oldprio = p->prio;
  3663. __setscheduler(rq, p, policy, param->sched_priority);
  3664. if (on_rq) {
  3665. activate_task(rq, p, 0);
  3666. /*
  3667. * Reschedule if we are currently running on this runqueue and
  3668. * our priority decreased, or if we are not currently running on
  3669. * this runqueue and our priority is higher than the current's
  3670. */
  3671. if (task_running(rq, p)) {
  3672. if (p->prio > oldprio)
  3673. resched_task(rq->curr);
  3674. } else {
  3675. check_preempt_curr(rq, p);
  3676. }
  3677. }
  3678. __task_rq_unlock(rq);
  3679. spin_unlock_irqrestore(&p->pi_lock, flags);
  3680. rt_mutex_adjust_pi(p);
  3681. return 0;
  3682. }
  3683. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3684. static int
  3685. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3686. {
  3687. struct sched_param lparam;
  3688. struct task_struct *p;
  3689. int retval;
  3690. if (!param || pid < 0)
  3691. return -EINVAL;
  3692. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3693. return -EFAULT;
  3694. rcu_read_lock();
  3695. retval = -ESRCH;
  3696. p = find_process_by_pid(pid);
  3697. if (p != NULL)
  3698. retval = sched_setscheduler(p, policy, &lparam);
  3699. rcu_read_unlock();
  3700. return retval;
  3701. }
  3702. /**
  3703. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3704. * @pid: the pid in question.
  3705. * @policy: new policy.
  3706. * @param: structure containing the new RT priority.
  3707. */
  3708. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3709. struct sched_param __user *param)
  3710. {
  3711. /* negative values for policy are not valid */
  3712. if (policy < 0)
  3713. return -EINVAL;
  3714. return do_sched_setscheduler(pid, policy, param);
  3715. }
  3716. /**
  3717. * sys_sched_setparam - set/change the RT priority of a thread
  3718. * @pid: the pid in question.
  3719. * @param: structure containing the new RT priority.
  3720. */
  3721. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3722. {
  3723. return do_sched_setscheduler(pid, -1, param);
  3724. }
  3725. /**
  3726. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3727. * @pid: the pid in question.
  3728. */
  3729. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3730. {
  3731. struct task_struct *p;
  3732. int retval = -EINVAL;
  3733. if (pid < 0)
  3734. goto out_nounlock;
  3735. retval = -ESRCH;
  3736. read_lock(&tasklist_lock);
  3737. p = find_process_by_pid(pid);
  3738. if (p) {
  3739. retval = security_task_getscheduler(p);
  3740. if (!retval)
  3741. retval = p->policy;
  3742. }
  3743. read_unlock(&tasklist_lock);
  3744. out_nounlock:
  3745. return retval;
  3746. }
  3747. /**
  3748. * sys_sched_getscheduler - get the RT priority of a thread
  3749. * @pid: the pid in question.
  3750. * @param: structure containing the RT priority.
  3751. */
  3752. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3753. {
  3754. struct sched_param lp;
  3755. struct task_struct *p;
  3756. int retval = -EINVAL;
  3757. if (!param || pid < 0)
  3758. goto out_nounlock;
  3759. read_lock(&tasklist_lock);
  3760. p = find_process_by_pid(pid);
  3761. retval = -ESRCH;
  3762. if (!p)
  3763. goto out_unlock;
  3764. retval = security_task_getscheduler(p);
  3765. if (retval)
  3766. goto out_unlock;
  3767. lp.sched_priority = p->rt_priority;
  3768. read_unlock(&tasklist_lock);
  3769. /*
  3770. * This one might sleep, we cannot do it with a spinlock held ...
  3771. */
  3772. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3773. out_nounlock:
  3774. return retval;
  3775. out_unlock:
  3776. read_unlock(&tasklist_lock);
  3777. return retval;
  3778. }
  3779. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3780. {
  3781. cpumask_t cpus_allowed;
  3782. struct task_struct *p;
  3783. int retval;
  3784. mutex_lock(&sched_hotcpu_mutex);
  3785. read_lock(&tasklist_lock);
  3786. p = find_process_by_pid(pid);
  3787. if (!p) {
  3788. read_unlock(&tasklist_lock);
  3789. mutex_unlock(&sched_hotcpu_mutex);
  3790. return -ESRCH;
  3791. }
  3792. /*
  3793. * It is not safe to call set_cpus_allowed with the
  3794. * tasklist_lock held. We will bump the task_struct's
  3795. * usage count and then drop tasklist_lock.
  3796. */
  3797. get_task_struct(p);
  3798. read_unlock(&tasklist_lock);
  3799. retval = -EPERM;
  3800. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3801. !capable(CAP_SYS_NICE))
  3802. goto out_unlock;
  3803. retval = security_task_setscheduler(p, 0, NULL);
  3804. if (retval)
  3805. goto out_unlock;
  3806. cpus_allowed = cpuset_cpus_allowed(p);
  3807. cpus_and(new_mask, new_mask, cpus_allowed);
  3808. retval = set_cpus_allowed(p, new_mask);
  3809. out_unlock:
  3810. put_task_struct(p);
  3811. mutex_unlock(&sched_hotcpu_mutex);
  3812. return retval;
  3813. }
  3814. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3815. cpumask_t *new_mask)
  3816. {
  3817. if (len < sizeof(cpumask_t)) {
  3818. memset(new_mask, 0, sizeof(cpumask_t));
  3819. } else if (len > sizeof(cpumask_t)) {
  3820. len = sizeof(cpumask_t);
  3821. }
  3822. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3823. }
  3824. /**
  3825. * sys_sched_setaffinity - set the cpu affinity of a process
  3826. * @pid: pid of the process
  3827. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3828. * @user_mask_ptr: user-space pointer to the new cpu mask
  3829. */
  3830. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3831. unsigned long __user *user_mask_ptr)
  3832. {
  3833. cpumask_t new_mask;
  3834. int retval;
  3835. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3836. if (retval)
  3837. return retval;
  3838. return sched_setaffinity(pid, new_mask);
  3839. }
  3840. /*
  3841. * Represents all cpu's present in the system
  3842. * In systems capable of hotplug, this map could dynamically grow
  3843. * as new cpu's are detected in the system via any platform specific
  3844. * method, such as ACPI for e.g.
  3845. */
  3846. cpumask_t cpu_present_map __read_mostly;
  3847. EXPORT_SYMBOL(cpu_present_map);
  3848. #ifndef CONFIG_SMP
  3849. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3850. EXPORT_SYMBOL(cpu_online_map);
  3851. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3852. EXPORT_SYMBOL(cpu_possible_map);
  3853. #endif
  3854. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3855. {
  3856. struct task_struct *p;
  3857. int retval;
  3858. mutex_lock(&sched_hotcpu_mutex);
  3859. read_lock(&tasklist_lock);
  3860. retval = -ESRCH;
  3861. p = find_process_by_pid(pid);
  3862. if (!p)
  3863. goto out_unlock;
  3864. retval = security_task_getscheduler(p);
  3865. if (retval)
  3866. goto out_unlock;
  3867. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3868. out_unlock:
  3869. read_unlock(&tasklist_lock);
  3870. mutex_unlock(&sched_hotcpu_mutex);
  3871. return retval;
  3872. }
  3873. /**
  3874. * sys_sched_getaffinity - get the cpu affinity of a process
  3875. * @pid: pid of the process
  3876. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3877. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3878. */
  3879. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3880. unsigned long __user *user_mask_ptr)
  3881. {
  3882. int ret;
  3883. cpumask_t mask;
  3884. if (len < sizeof(cpumask_t))
  3885. return -EINVAL;
  3886. ret = sched_getaffinity(pid, &mask);
  3887. if (ret < 0)
  3888. return ret;
  3889. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3890. return -EFAULT;
  3891. return sizeof(cpumask_t);
  3892. }
  3893. /**
  3894. * sys_sched_yield - yield the current processor to other threads.
  3895. *
  3896. * This function yields the current CPU to other tasks. If there are no
  3897. * other threads running on this CPU then this function will return.
  3898. */
  3899. asmlinkage long sys_sched_yield(void)
  3900. {
  3901. struct rq *rq = this_rq_lock();
  3902. schedstat_inc(rq, yld_cnt);
  3903. if (unlikely(rq->nr_running == 1))
  3904. schedstat_inc(rq, yld_act_empty);
  3905. else
  3906. current->sched_class->yield_task(rq, current);
  3907. /*
  3908. * Since we are going to call schedule() anyway, there's
  3909. * no need to preempt or enable interrupts:
  3910. */
  3911. __release(rq->lock);
  3912. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3913. _raw_spin_unlock(&rq->lock);
  3914. preempt_enable_no_resched();
  3915. schedule();
  3916. return 0;
  3917. }
  3918. static void __cond_resched(void)
  3919. {
  3920. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3921. __might_sleep(__FILE__, __LINE__);
  3922. #endif
  3923. /*
  3924. * The BKS might be reacquired before we have dropped
  3925. * PREEMPT_ACTIVE, which could trigger a second
  3926. * cond_resched() call.
  3927. */
  3928. do {
  3929. add_preempt_count(PREEMPT_ACTIVE);
  3930. schedule();
  3931. sub_preempt_count(PREEMPT_ACTIVE);
  3932. } while (need_resched());
  3933. }
  3934. int __sched cond_resched(void)
  3935. {
  3936. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3937. system_state == SYSTEM_RUNNING) {
  3938. __cond_resched();
  3939. return 1;
  3940. }
  3941. return 0;
  3942. }
  3943. EXPORT_SYMBOL(cond_resched);
  3944. /*
  3945. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3946. * call schedule, and on return reacquire the lock.
  3947. *
  3948. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3949. * operations here to prevent schedule() from being called twice (once via
  3950. * spin_unlock(), once by hand).
  3951. */
  3952. int cond_resched_lock(spinlock_t *lock)
  3953. {
  3954. int ret = 0;
  3955. if (need_lockbreak(lock)) {
  3956. spin_unlock(lock);
  3957. cpu_relax();
  3958. ret = 1;
  3959. spin_lock(lock);
  3960. }
  3961. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3962. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3963. _raw_spin_unlock(lock);
  3964. preempt_enable_no_resched();
  3965. __cond_resched();
  3966. ret = 1;
  3967. spin_lock(lock);
  3968. }
  3969. return ret;
  3970. }
  3971. EXPORT_SYMBOL(cond_resched_lock);
  3972. int __sched cond_resched_softirq(void)
  3973. {
  3974. BUG_ON(!in_softirq());
  3975. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3976. local_bh_enable();
  3977. __cond_resched();
  3978. local_bh_disable();
  3979. return 1;
  3980. }
  3981. return 0;
  3982. }
  3983. EXPORT_SYMBOL(cond_resched_softirq);
  3984. /**
  3985. * yield - yield the current processor to other threads.
  3986. *
  3987. * This is a shortcut for kernel-space yielding - it marks the
  3988. * thread runnable and calls sys_sched_yield().
  3989. */
  3990. void __sched yield(void)
  3991. {
  3992. set_current_state(TASK_RUNNING);
  3993. sys_sched_yield();
  3994. }
  3995. EXPORT_SYMBOL(yield);
  3996. /*
  3997. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3998. * that process accounting knows that this is a task in IO wait state.
  3999. *
  4000. * But don't do that if it is a deliberate, throttling IO wait (this task
  4001. * has set its backing_dev_info: the queue against which it should throttle)
  4002. */
  4003. void __sched io_schedule(void)
  4004. {
  4005. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4006. delayacct_blkio_start();
  4007. atomic_inc(&rq->nr_iowait);
  4008. schedule();
  4009. atomic_dec(&rq->nr_iowait);
  4010. delayacct_blkio_end();
  4011. }
  4012. EXPORT_SYMBOL(io_schedule);
  4013. long __sched io_schedule_timeout(long timeout)
  4014. {
  4015. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4016. long ret;
  4017. delayacct_blkio_start();
  4018. atomic_inc(&rq->nr_iowait);
  4019. ret = schedule_timeout(timeout);
  4020. atomic_dec(&rq->nr_iowait);
  4021. delayacct_blkio_end();
  4022. return ret;
  4023. }
  4024. /**
  4025. * sys_sched_get_priority_max - return maximum RT priority.
  4026. * @policy: scheduling class.
  4027. *
  4028. * this syscall returns the maximum rt_priority that can be used
  4029. * by a given scheduling class.
  4030. */
  4031. asmlinkage long sys_sched_get_priority_max(int policy)
  4032. {
  4033. int ret = -EINVAL;
  4034. switch (policy) {
  4035. case SCHED_FIFO:
  4036. case SCHED_RR:
  4037. ret = MAX_USER_RT_PRIO-1;
  4038. break;
  4039. case SCHED_NORMAL:
  4040. case SCHED_BATCH:
  4041. case SCHED_IDLE:
  4042. ret = 0;
  4043. break;
  4044. }
  4045. return ret;
  4046. }
  4047. /**
  4048. * sys_sched_get_priority_min - return minimum RT priority.
  4049. * @policy: scheduling class.
  4050. *
  4051. * this syscall returns the minimum rt_priority that can be used
  4052. * by a given scheduling class.
  4053. */
  4054. asmlinkage long sys_sched_get_priority_min(int policy)
  4055. {
  4056. int ret = -EINVAL;
  4057. switch (policy) {
  4058. case SCHED_FIFO:
  4059. case SCHED_RR:
  4060. ret = 1;
  4061. break;
  4062. case SCHED_NORMAL:
  4063. case SCHED_BATCH:
  4064. case SCHED_IDLE:
  4065. ret = 0;
  4066. }
  4067. return ret;
  4068. }
  4069. /**
  4070. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4071. * @pid: pid of the process.
  4072. * @interval: userspace pointer to the timeslice value.
  4073. *
  4074. * this syscall writes the default timeslice value of a given process
  4075. * into the user-space timespec buffer. A value of '0' means infinity.
  4076. */
  4077. asmlinkage
  4078. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4079. {
  4080. struct task_struct *p;
  4081. int retval = -EINVAL;
  4082. struct timespec t;
  4083. if (pid < 0)
  4084. goto out_nounlock;
  4085. retval = -ESRCH;
  4086. read_lock(&tasklist_lock);
  4087. p = find_process_by_pid(pid);
  4088. if (!p)
  4089. goto out_unlock;
  4090. retval = security_task_getscheduler(p);
  4091. if (retval)
  4092. goto out_unlock;
  4093. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4094. 0 : static_prio_timeslice(p->static_prio), &t);
  4095. read_unlock(&tasklist_lock);
  4096. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4097. out_nounlock:
  4098. return retval;
  4099. out_unlock:
  4100. read_unlock(&tasklist_lock);
  4101. return retval;
  4102. }
  4103. static const char stat_nam[] = "RSDTtZX";
  4104. static void show_task(struct task_struct *p)
  4105. {
  4106. unsigned long free = 0;
  4107. unsigned state;
  4108. state = p->state ? __ffs(p->state) + 1 : 0;
  4109. printk("%-13.13s %c", p->comm,
  4110. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4111. #if BITS_PER_LONG == 32
  4112. if (state == TASK_RUNNING)
  4113. printk(" running ");
  4114. else
  4115. printk(" %08lx ", thread_saved_pc(p));
  4116. #else
  4117. if (state == TASK_RUNNING)
  4118. printk(" running task ");
  4119. else
  4120. printk(" %016lx ", thread_saved_pc(p));
  4121. #endif
  4122. #ifdef CONFIG_DEBUG_STACK_USAGE
  4123. {
  4124. unsigned long *n = end_of_stack(p);
  4125. while (!*n)
  4126. n++;
  4127. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4128. }
  4129. #endif
  4130. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4131. if (state != TASK_RUNNING)
  4132. show_stack(p, NULL);
  4133. }
  4134. void show_state_filter(unsigned long state_filter)
  4135. {
  4136. struct task_struct *g, *p;
  4137. #if BITS_PER_LONG == 32
  4138. printk(KERN_INFO
  4139. " task PC stack pid father\n");
  4140. #else
  4141. printk(KERN_INFO
  4142. " task PC stack pid father\n");
  4143. #endif
  4144. read_lock(&tasklist_lock);
  4145. do_each_thread(g, p) {
  4146. /*
  4147. * reset the NMI-timeout, listing all files on a slow
  4148. * console might take alot of time:
  4149. */
  4150. touch_nmi_watchdog();
  4151. if (!state_filter || (p->state & state_filter))
  4152. show_task(p);
  4153. } while_each_thread(g, p);
  4154. touch_all_softlockup_watchdogs();
  4155. #ifdef CONFIG_SCHED_DEBUG
  4156. sysrq_sched_debug_show();
  4157. #endif
  4158. read_unlock(&tasklist_lock);
  4159. /*
  4160. * Only show locks if all tasks are dumped:
  4161. */
  4162. if (state_filter == -1)
  4163. debug_show_all_locks();
  4164. }
  4165. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4166. {
  4167. idle->sched_class = &idle_sched_class;
  4168. }
  4169. /**
  4170. * init_idle - set up an idle thread for a given CPU
  4171. * @idle: task in question
  4172. * @cpu: cpu the idle task belongs to
  4173. *
  4174. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4175. * flag, to make booting more robust.
  4176. */
  4177. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4178. {
  4179. struct rq *rq = cpu_rq(cpu);
  4180. unsigned long flags;
  4181. __sched_fork(idle);
  4182. idle->se.exec_start = sched_clock();
  4183. idle->prio = idle->normal_prio = MAX_PRIO;
  4184. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4185. __set_task_cpu(idle, cpu);
  4186. spin_lock_irqsave(&rq->lock, flags);
  4187. rq->curr = rq->idle = idle;
  4188. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4189. idle->oncpu = 1;
  4190. #endif
  4191. spin_unlock_irqrestore(&rq->lock, flags);
  4192. /* Set the preempt count _outside_ the spinlocks! */
  4193. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4194. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4195. #else
  4196. task_thread_info(idle)->preempt_count = 0;
  4197. #endif
  4198. /*
  4199. * The idle tasks have their own, simple scheduling class:
  4200. */
  4201. idle->sched_class = &idle_sched_class;
  4202. }
  4203. /*
  4204. * In a system that switches off the HZ timer nohz_cpu_mask
  4205. * indicates which cpus entered this state. This is used
  4206. * in the rcu update to wait only for active cpus. For system
  4207. * which do not switch off the HZ timer nohz_cpu_mask should
  4208. * always be CPU_MASK_NONE.
  4209. */
  4210. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4211. /*
  4212. * Increase the granularity value when there are more CPUs,
  4213. * because with more CPUs the 'effective latency' as visible
  4214. * to users decreases. But the relationship is not linear,
  4215. * so pick a second-best guess by going with the log2 of the
  4216. * number of CPUs.
  4217. *
  4218. * This idea comes from the SD scheduler of Con Kolivas:
  4219. */
  4220. static inline void sched_init_granularity(void)
  4221. {
  4222. unsigned int factor = 1 + ilog2(num_online_cpus());
  4223. const unsigned long gran_limit = 100000000;
  4224. sysctl_sched_granularity *= factor;
  4225. if (sysctl_sched_granularity > gran_limit)
  4226. sysctl_sched_granularity = gran_limit;
  4227. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4228. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4229. }
  4230. #ifdef CONFIG_SMP
  4231. /*
  4232. * This is how migration works:
  4233. *
  4234. * 1) we queue a struct migration_req structure in the source CPU's
  4235. * runqueue and wake up that CPU's migration thread.
  4236. * 2) we down() the locked semaphore => thread blocks.
  4237. * 3) migration thread wakes up (implicitly it forces the migrated
  4238. * thread off the CPU)
  4239. * 4) it gets the migration request and checks whether the migrated
  4240. * task is still in the wrong runqueue.
  4241. * 5) if it's in the wrong runqueue then the migration thread removes
  4242. * it and puts it into the right queue.
  4243. * 6) migration thread up()s the semaphore.
  4244. * 7) we wake up and the migration is done.
  4245. */
  4246. /*
  4247. * Change a given task's CPU affinity. Migrate the thread to a
  4248. * proper CPU and schedule it away if the CPU it's executing on
  4249. * is removed from the allowed bitmask.
  4250. *
  4251. * NOTE: the caller must have a valid reference to the task, the
  4252. * task must not exit() & deallocate itself prematurely. The
  4253. * call is not atomic; no spinlocks may be held.
  4254. */
  4255. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4256. {
  4257. struct migration_req req;
  4258. unsigned long flags;
  4259. struct rq *rq;
  4260. int ret = 0;
  4261. rq = task_rq_lock(p, &flags);
  4262. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4263. ret = -EINVAL;
  4264. goto out;
  4265. }
  4266. p->cpus_allowed = new_mask;
  4267. /* Can the task run on the task's current CPU? If so, we're done */
  4268. if (cpu_isset(task_cpu(p), new_mask))
  4269. goto out;
  4270. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4271. /* Need help from migration thread: drop lock and wait. */
  4272. task_rq_unlock(rq, &flags);
  4273. wake_up_process(rq->migration_thread);
  4274. wait_for_completion(&req.done);
  4275. tlb_migrate_finish(p->mm);
  4276. return 0;
  4277. }
  4278. out:
  4279. task_rq_unlock(rq, &flags);
  4280. return ret;
  4281. }
  4282. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4283. /*
  4284. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4285. * this because either it can't run here any more (set_cpus_allowed()
  4286. * away from this CPU, or CPU going down), or because we're
  4287. * attempting to rebalance this task on exec (sched_exec).
  4288. *
  4289. * So we race with normal scheduler movements, but that's OK, as long
  4290. * as the task is no longer on this CPU.
  4291. *
  4292. * Returns non-zero if task was successfully migrated.
  4293. */
  4294. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4295. {
  4296. struct rq *rq_dest, *rq_src;
  4297. int ret = 0, on_rq;
  4298. if (unlikely(cpu_is_offline(dest_cpu)))
  4299. return ret;
  4300. rq_src = cpu_rq(src_cpu);
  4301. rq_dest = cpu_rq(dest_cpu);
  4302. double_rq_lock(rq_src, rq_dest);
  4303. /* Already moved. */
  4304. if (task_cpu(p) != src_cpu)
  4305. goto out;
  4306. /* Affinity changed (again). */
  4307. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4308. goto out;
  4309. on_rq = p->se.on_rq;
  4310. if (on_rq) {
  4311. update_rq_clock(rq_src);
  4312. deactivate_task(rq_src, p, 0, rq_src->clock);
  4313. }
  4314. set_task_cpu(p, dest_cpu);
  4315. if (on_rq) {
  4316. activate_task(rq_dest, p, 0);
  4317. check_preempt_curr(rq_dest, p);
  4318. }
  4319. ret = 1;
  4320. out:
  4321. double_rq_unlock(rq_src, rq_dest);
  4322. return ret;
  4323. }
  4324. /*
  4325. * migration_thread - this is a highprio system thread that performs
  4326. * thread migration by bumping thread off CPU then 'pushing' onto
  4327. * another runqueue.
  4328. */
  4329. static int migration_thread(void *data)
  4330. {
  4331. int cpu = (long)data;
  4332. struct rq *rq;
  4333. rq = cpu_rq(cpu);
  4334. BUG_ON(rq->migration_thread != current);
  4335. set_current_state(TASK_INTERRUPTIBLE);
  4336. while (!kthread_should_stop()) {
  4337. struct migration_req *req;
  4338. struct list_head *head;
  4339. spin_lock_irq(&rq->lock);
  4340. if (cpu_is_offline(cpu)) {
  4341. spin_unlock_irq(&rq->lock);
  4342. goto wait_to_die;
  4343. }
  4344. if (rq->active_balance) {
  4345. active_load_balance(rq, cpu);
  4346. rq->active_balance = 0;
  4347. }
  4348. head = &rq->migration_queue;
  4349. if (list_empty(head)) {
  4350. spin_unlock_irq(&rq->lock);
  4351. schedule();
  4352. set_current_state(TASK_INTERRUPTIBLE);
  4353. continue;
  4354. }
  4355. req = list_entry(head->next, struct migration_req, list);
  4356. list_del_init(head->next);
  4357. spin_unlock(&rq->lock);
  4358. __migrate_task(req->task, cpu, req->dest_cpu);
  4359. local_irq_enable();
  4360. complete(&req->done);
  4361. }
  4362. __set_current_state(TASK_RUNNING);
  4363. return 0;
  4364. wait_to_die:
  4365. /* Wait for kthread_stop */
  4366. set_current_state(TASK_INTERRUPTIBLE);
  4367. while (!kthread_should_stop()) {
  4368. schedule();
  4369. set_current_state(TASK_INTERRUPTIBLE);
  4370. }
  4371. __set_current_state(TASK_RUNNING);
  4372. return 0;
  4373. }
  4374. #ifdef CONFIG_HOTPLUG_CPU
  4375. /*
  4376. * Figure out where task on dead CPU should go, use force if neccessary.
  4377. * NOTE: interrupts should be disabled by the caller
  4378. */
  4379. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4380. {
  4381. unsigned long flags;
  4382. cpumask_t mask;
  4383. struct rq *rq;
  4384. int dest_cpu;
  4385. restart:
  4386. /* On same node? */
  4387. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4388. cpus_and(mask, mask, p->cpus_allowed);
  4389. dest_cpu = any_online_cpu(mask);
  4390. /* On any allowed CPU? */
  4391. if (dest_cpu == NR_CPUS)
  4392. dest_cpu = any_online_cpu(p->cpus_allowed);
  4393. /* No more Mr. Nice Guy. */
  4394. if (dest_cpu == NR_CPUS) {
  4395. rq = task_rq_lock(p, &flags);
  4396. cpus_setall(p->cpus_allowed);
  4397. dest_cpu = any_online_cpu(p->cpus_allowed);
  4398. task_rq_unlock(rq, &flags);
  4399. /*
  4400. * Don't tell them about moving exiting tasks or
  4401. * kernel threads (both mm NULL), since they never
  4402. * leave kernel.
  4403. */
  4404. if (p->mm && printk_ratelimit())
  4405. printk(KERN_INFO "process %d (%s) no "
  4406. "longer affine to cpu%d\n",
  4407. p->pid, p->comm, dead_cpu);
  4408. }
  4409. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4410. goto restart;
  4411. }
  4412. /*
  4413. * While a dead CPU has no uninterruptible tasks queued at this point,
  4414. * it might still have a nonzero ->nr_uninterruptible counter, because
  4415. * for performance reasons the counter is not stricly tracking tasks to
  4416. * their home CPUs. So we just add the counter to another CPU's counter,
  4417. * to keep the global sum constant after CPU-down:
  4418. */
  4419. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4420. {
  4421. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4422. unsigned long flags;
  4423. local_irq_save(flags);
  4424. double_rq_lock(rq_src, rq_dest);
  4425. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4426. rq_src->nr_uninterruptible = 0;
  4427. double_rq_unlock(rq_src, rq_dest);
  4428. local_irq_restore(flags);
  4429. }
  4430. /* Run through task list and migrate tasks from the dead cpu. */
  4431. static void migrate_live_tasks(int src_cpu)
  4432. {
  4433. struct task_struct *p, *t;
  4434. write_lock_irq(&tasklist_lock);
  4435. do_each_thread(t, p) {
  4436. if (p == current)
  4437. continue;
  4438. if (task_cpu(p) == src_cpu)
  4439. move_task_off_dead_cpu(src_cpu, p);
  4440. } while_each_thread(t, p);
  4441. write_unlock_irq(&tasklist_lock);
  4442. }
  4443. /*
  4444. * Schedules idle task to be the next runnable task on current CPU.
  4445. * It does so by boosting its priority to highest possible and adding it to
  4446. * the _front_ of the runqueue. Used by CPU offline code.
  4447. */
  4448. void sched_idle_next(void)
  4449. {
  4450. int this_cpu = smp_processor_id();
  4451. struct rq *rq = cpu_rq(this_cpu);
  4452. struct task_struct *p = rq->idle;
  4453. unsigned long flags;
  4454. /* cpu has to be offline */
  4455. BUG_ON(cpu_online(this_cpu));
  4456. /*
  4457. * Strictly not necessary since rest of the CPUs are stopped by now
  4458. * and interrupts disabled on the current cpu.
  4459. */
  4460. spin_lock_irqsave(&rq->lock, flags);
  4461. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4462. /* Add idle task to the _front_ of its priority queue: */
  4463. activate_idle_task(p, rq);
  4464. spin_unlock_irqrestore(&rq->lock, flags);
  4465. }
  4466. /*
  4467. * Ensures that the idle task is using init_mm right before its cpu goes
  4468. * offline.
  4469. */
  4470. void idle_task_exit(void)
  4471. {
  4472. struct mm_struct *mm = current->active_mm;
  4473. BUG_ON(cpu_online(smp_processor_id()));
  4474. if (mm != &init_mm)
  4475. switch_mm(mm, &init_mm, current);
  4476. mmdrop(mm);
  4477. }
  4478. /* called under rq->lock with disabled interrupts */
  4479. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4480. {
  4481. struct rq *rq = cpu_rq(dead_cpu);
  4482. /* Must be exiting, otherwise would be on tasklist. */
  4483. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4484. /* Cannot have done final schedule yet: would have vanished. */
  4485. BUG_ON(p->state == TASK_DEAD);
  4486. get_task_struct(p);
  4487. /*
  4488. * Drop lock around migration; if someone else moves it,
  4489. * that's OK. No task can be added to this CPU, so iteration is
  4490. * fine.
  4491. * NOTE: interrupts should be left disabled --dev@
  4492. */
  4493. spin_unlock(&rq->lock);
  4494. move_task_off_dead_cpu(dead_cpu, p);
  4495. spin_lock(&rq->lock);
  4496. put_task_struct(p);
  4497. }
  4498. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4499. static void migrate_dead_tasks(unsigned int dead_cpu)
  4500. {
  4501. struct rq *rq = cpu_rq(dead_cpu);
  4502. struct task_struct *next;
  4503. for ( ; ; ) {
  4504. if (!rq->nr_running)
  4505. break;
  4506. update_rq_clock(rq);
  4507. next = pick_next_task(rq, rq->curr, rq->clock);
  4508. if (!next)
  4509. break;
  4510. migrate_dead(dead_cpu, next);
  4511. }
  4512. }
  4513. #endif /* CONFIG_HOTPLUG_CPU */
  4514. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4515. static struct ctl_table sd_ctl_dir[] = {
  4516. {
  4517. .procname = "sched_domain",
  4518. .mode = 0755,
  4519. },
  4520. {0,},
  4521. };
  4522. static struct ctl_table sd_ctl_root[] = {
  4523. {
  4524. .procname = "kernel",
  4525. .mode = 0755,
  4526. .child = sd_ctl_dir,
  4527. },
  4528. {0,},
  4529. };
  4530. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4531. {
  4532. struct ctl_table *entry =
  4533. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4534. BUG_ON(!entry);
  4535. memset(entry, 0, n * sizeof(struct ctl_table));
  4536. return entry;
  4537. }
  4538. static void
  4539. set_table_entry(struct ctl_table *entry,
  4540. const char *procname, void *data, int maxlen,
  4541. mode_t mode, proc_handler *proc_handler)
  4542. {
  4543. entry->procname = procname;
  4544. entry->data = data;
  4545. entry->maxlen = maxlen;
  4546. entry->mode = mode;
  4547. entry->proc_handler = proc_handler;
  4548. }
  4549. static struct ctl_table *
  4550. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4551. {
  4552. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4553. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4554. sizeof(long), 0644, proc_doulongvec_minmax);
  4555. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4556. sizeof(long), 0644, proc_doulongvec_minmax);
  4557. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4558. sizeof(int), 0644, proc_dointvec_minmax);
  4559. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4560. sizeof(int), 0644, proc_dointvec_minmax);
  4561. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4562. sizeof(int), 0644, proc_dointvec_minmax);
  4563. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4564. sizeof(int), 0644, proc_dointvec_minmax);
  4565. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4566. sizeof(int), 0644, proc_dointvec_minmax);
  4567. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4568. sizeof(int), 0644, proc_dointvec_minmax);
  4569. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4570. sizeof(int), 0644, proc_dointvec_minmax);
  4571. set_table_entry(&table[10], "cache_nice_tries",
  4572. &sd->cache_nice_tries,
  4573. sizeof(int), 0644, proc_dointvec_minmax);
  4574. set_table_entry(&table[12], "flags", &sd->flags,
  4575. sizeof(int), 0644, proc_dointvec_minmax);
  4576. return table;
  4577. }
  4578. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4579. {
  4580. struct ctl_table *entry, *table;
  4581. struct sched_domain *sd;
  4582. int domain_num = 0, i;
  4583. char buf[32];
  4584. for_each_domain(cpu, sd)
  4585. domain_num++;
  4586. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4587. i = 0;
  4588. for_each_domain(cpu, sd) {
  4589. snprintf(buf, 32, "domain%d", i);
  4590. entry->procname = kstrdup(buf, GFP_KERNEL);
  4591. entry->mode = 0755;
  4592. entry->child = sd_alloc_ctl_domain_table(sd);
  4593. entry++;
  4594. i++;
  4595. }
  4596. return table;
  4597. }
  4598. static struct ctl_table_header *sd_sysctl_header;
  4599. static void init_sched_domain_sysctl(void)
  4600. {
  4601. int i, cpu_num = num_online_cpus();
  4602. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4603. char buf[32];
  4604. sd_ctl_dir[0].child = entry;
  4605. for (i = 0; i < cpu_num; i++, entry++) {
  4606. snprintf(buf, 32, "cpu%d", i);
  4607. entry->procname = kstrdup(buf, GFP_KERNEL);
  4608. entry->mode = 0755;
  4609. entry->child = sd_alloc_ctl_cpu_table(i);
  4610. }
  4611. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4612. }
  4613. #else
  4614. static void init_sched_domain_sysctl(void)
  4615. {
  4616. }
  4617. #endif
  4618. /*
  4619. * migration_call - callback that gets triggered when a CPU is added.
  4620. * Here we can start up the necessary migration thread for the new CPU.
  4621. */
  4622. static int __cpuinit
  4623. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4624. {
  4625. struct task_struct *p;
  4626. int cpu = (long)hcpu;
  4627. unsigned long flags;
  4628. struct rq *rq;
  4629. switch (action) {
  4630. case CPU_LOCK_ACQUIRE:
  4631. mutex_lock(&sched_hotcpu_mutex);
  4632. break;
  4633. case CPU_UP_PREPARE:
  4634. case CPU_UP_PREPARE_FROZEN:
  4635. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4636. if (IS_ERR(p))
  4637. return NOTIFY_BAD;
  4638. kthread_bind(p, cpu);
  4639. /* Must be high prio: stop_machine expects to yield to it. */
  4640. rq = task_rq_lock(p, &flags);
  4641. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4642. task_rq_unlock(rq, &flags);
  4643. cpu_rq(cpu)->migration_thread = p;
  4644. break;
  4645. case CPU_ONLINE:
  4646. case CPU_ONLINE_FROZEN:
  4647. /* Strictly unneccessary, as first user will wake it. */
  4648. wake_up_process(cpu_rq(cpu)->migration_thread);
  4649. break;
  4650. #ifdef CONFIG_HOTPLUG_CPU
  4651. case CPU_UP_CANCELED:
  4652. case CPU_UP_CANCELED_FROZEN:
  4653. if (!cpu_rq(cpu)->migration_thread)
  4654. break;
  4655. /* Unbind it from offline cpu so it can run. Fall thru. */
  4656. kthread_bind(cpu_rq(cpu)->migration_thread,
  4657. any_online_cpu(cpu_online_map));
  4658. kthread_stop(cpu_rq(cpu)->migration_thread);
  4659. cpu_rq(cpu)->migration_thread = NULL;
  4660. break;
  4661. case CPU_DEAD:
  4662. case CPU_DEAD_FROZEN:
  4663. migrate_live_tasks(cpu);
  4664. rq = cpu_rq(cpu);
  4665. kthread_stop(rq->migration_thread);
  4666. rq->migration_thread = NULL;
  4667. /* Idle task back to normal (off runqueue, low prio) */
  4668. rq = task_rq_lock(rq->idle, &flags);
  4669. update_rq_clock(rq);
  4670. deactivate_task(rq, rq->idle, 0, rq->clock);
  4671. rq->idle->static_prio = MAX_PRIO;
  4672. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4673. rq->idle->sched_class = &idle_sched_class;
  4674. migrate_dead_tasks(cpu);
  4675. task_rq_unlock(rq, &flags);
  4676. migrate_nr_uninterruptible(rq);
  4677. BUG_ON(rq->nr_running != 0);
  4678. /* No need to migrate the tasks: it was best-effort if
  4679. * they didn't take sched_hotcpu_mutex. Just wake up
  4680. * the requestors. */
  4681. spin_lock_irq(&rq->lock);
  4682. while (!list_empty(&rq->migration_queue)) {
  4683. struct migration_req *req;
  4684. req = list_entry(rq->migration_queue.next,
  4685. struct migration_req, list);
  4686. list_del_init(&req->list);
  4687. complete(&req->done);
  4688. }
  4689. spin_unlock_irq(&rq->lock);
  4690. break;
  4691. #endif
  4692. case CPU_LOCK_RELEASE:
  4693. mutex_unlock(&sched_hotcpu_mutex);
  4694. break;
  4695. }
  4696. return NOTIFY_OK;
  4697. }
  4698. /* Register at highest priority so that task migration (migrate_all_tasks)
  4699. * happens before everything else.
  4700. */
  4701. static struct notifier_block __cpuinitdata migration_notifier = {
  4702. .notifier_call = migration_call,
  4703. .priority = 10
  4704. };
  4705. int __init migration_init(void)
  4706. {
  4707. void *cpu = (void *)(long)smp_processor_id();
  4708. int err;
  4709. /* Start one for the boot CPU: */
  4710. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4711. BUG_ON(err == NOTIFY_BAD);
  4712. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4713. register_cpu_notifier(&migration_notifier);
  4714. return 0;
  4715. }
  4716. #endif
  4717. #ifdef CONFIG_SMP
  4718. /* Number of possible processor ids */
  4719. int nr_cpu_ids __read_mostly = NR_CPUS;
  4720. EXPORT_SYMBOL(nr_cpu_ids);
  4721. #undef SCHED_DOMAIN_DEBUG
  4722. #ifdef SCHED_DOMAIN_DEBUG
  4723. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4724. {
  4725. int level = 0;
  4726. if (!sd) {
  4727. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4728. return;
  4729. }
  4730. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4731. do {
  4732. int i;
  4733. char str[NR_CPUS];
  4734. struct sched_group *group = sd->groups;
  4735. cpumask_t groupmask;
  4736. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4737. cpus_clear(groupmask);
  4738. printk(KERN_DEBUG);
  4739. for (i = 0; i < level + 1; i++)
  4740. printk(" ");
  4741. printk("domain %d: ", level);
  4742. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4743. printk("does not load-balance\n");
  4744. if (sd->parent)
  4745. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4746. " has parent");
  4747. break;
  4748. }
  4749. printk("span %s\n", str);
  4750. if (!cpu_isset(cpu, sd->span))
  4751. printk(KERN_ERR "ERROR: domain->span does not contain "
  4752. "CPU%d\n", cpu);
  4753. if (!cpu_isset(cpu, group->cpumask))
  4754. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4755. " CPU%d\n", cpu);
  4756. printk(KERN_DEBUG);
  4757. for (i = 0; i < level + 2; i++)
  4758. printk(" ");
  4759. printk("groups:");
  4760. do {
  4761. if (!group) {
  4762. printk("\n");
  4763. printk(KERN_ERR "ERROR: group is NULL\n");
  4764. break;
  4765. }
  4766. if (!group->__cpu_power) {
  4767. printk("\n");
  4768. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4769. "set\n");
  4770. }
  4771. if (!cpus_weight(group->cpumask)) {
  4772. printk("\n");
  4773. printk(KERN_ERR "ERROR: empty group\n");
  4774. }
  4775. if (cpus_intersects(groupmask, group->cpumask)) {
  4776. printk("\n");
  4777. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4778. }
  4779. cpus_or(groupmask, groupmask, group->cpumask);
  4780. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4781. printk(" %s", str);
  4782. group = group->next;
  4783. } while (group != sd->groups);
  4784. printk("\n");
  4785. if (!cpus_equal(sd->span, groupmask))
  4786. printk(KERN_ERR "ERROR: groups don't span "
  4787. "domain->span\n");
  4788. level++;
  4789. sd = sd->parent;
  4790. if (!sd)
  4791. continue;
  4792. if (!cpus_subset(groupmask, sd->span))
  4793. printk(KERN_ERR "ERROR: parent span is not a superset "
  4794. "of domain->span\n");
  4795. } while (sd);
  4796. }
  4797. #else
  4798. # define sched_domain_debug(sd, cpu) do { } while (0)
  4799. #endif
  4800. static int sd_degenerate(struct sched_domain *sd)
  4801. {
  4802. if (cpus_weight(sd->span) == 1)
  4803. return 1;
  4804. /* Following flags need at least 2 groups */
  4805. if (sd->flags & (SD_LOAD_BALANCE |
  4806. SD_BALANCE_NEWIDLE |
  4807. SD_BALANCE_FORK |
  4808. SD_BALANCE_EXEC |
  4809. SD_SHARE_CPUPOWER |
  4810. SD_SHARE_PKG_RESOURCES)) {
  4811. if (sd->groups != sd->groups->next)
  4812. return 0;
  4813. }
  4814. /* Following flags don't use groups */
  4815. if (sd->flags & (SD_WAKE_IDLE |
  4816. SD_WAKE_AFFINE |
  4817. SD_WAKE_BALANCE))
  4818. return 0;
  4819. return 1;
  4820. }
  4821. static int
  4822. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4823. {
  4824. unsigned long cflags = sd->flags, pflags = parent->flags;
  4825. if (sd_degenerate(parent))
  4826. return 1;
  4827. if (!cpus_equal(sd->span, parent->span))
  4828. return 0;
  4829. /* Does parent contain flags not in child? */
  4830. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4831. if (cflags & SD_WAKE_AFFINE)
  4832. pflags &= ~SD_WAKE_BALANCE;
  4833. /* Flags needing groups don't count if only 1 group in parent */
  4834. if (parent->groups == parent->groups->next) {
  4835. pflags &= ~(SD_LOAD_BALANCE |
  4836. SD_BALANCE_NEWIDLE |
  4837. SD_BALANCE_FORK |
  4838. SD_BALANCE_EXEC |
  4839. SD_SHARE_CPUPOWER |
  4840. SD_SHARE_PKG_RESOURCES);
  4841. }
  4842. if (~cflags & pflags)
  4843. return 0;
  4844. return 1;
  4845. }
  4846. /*
  4847. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4848. * hold the hotplug lock.
  4849. */
  4850. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4851. {
  4852. struct rq *rq = cpu_rq(cpu);
  4853. struct sched_domain *tmp;
  4854. /* Remove the sched domains which do not contribute to scheduling. */
  4855. for (tmp = sd; tmp; tmp = tmp->parent) {
  4856. struct sched_domain *parent = tmp->parent;
  4857. if (!parent)
  4858. break;
  4859. if (sd_parent_degenerate(tmp, parent)) {
  4860. tmp->parent = parent->parent;
  4861. if (parent->parent)
  4862. parent->parent->child = tmp;
  4863. }
  4864. }
  4865. if (sd && sd_degenerate(sd)) {
  4866. sd = sd->parent;
  4867. if (sd)
  4868. sd->child = NULL;
  4869. }
  4870. sched_domain_debug(sd, cpu);
  4871. rcu_assign_pointer(rq->sd, sd);
  4872. }
  4873. /* cpus with isolated domains */
  4874. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4875. /* Setup the mask of cpus configured for isolated domains */
  4876. static int __init isolated_cpu_setup(char *str)
  4877. {
  4878. int ints[NR_CPUS], i;
  4879. str = get_options(str, ARRAY_SIZE(ints), ints);
  4880. cpus_clear(cpu_isolated_map);
  4881. for (i = 1; i <= ints[0]; i++)
  4882. if (ints[i] < NR_CPUS)
  4883. cpu_set(ints[i], cpu_isolated_map);
  4884. return 1;
  4885. }
  4886. __setup ("isolcpus=", isolated_cpu_setup);
  4887. /*
  4888. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4889. * to a function which identifies what group(along with sched group) a CPU
  4890. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4891. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4892. *
  4893. * init_sched_build_groups will build a circular linked list of the groups
  4894. * covered by the given span, and will set each group's ->cpumask correctly,
  4895. * and ->cpu_power to 0.
  4896. */
  4897. static void
  4898. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4899. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4900. struct sched_group **sg))
  4901. {
  4902. struct sched_group *first = NULL, *last = NULL;
  4903. cpumask_t covered = CPU_MASK_NONE;
  4904. int i;
  4905. for_each_cpu_mask(i, span) {
  4906. struct sched_group *sg;
  4907. int group = group_fn(i, cpu_map, &sg);
  4908. int j;
  4909. if (cpu_isset(i, covered))
  4910. continue;
  4911. sg->cpumask = CPU_MASK_NONE;
  4912. sg->__cpu_power = 0;
  4913. for_each_cpu_mask(j, span) {
  4914. if (group_fn(j, cpu_map, NULL) != group)
  4915. continue;
  4916. cpu_set(j, covered);
  4917. cpu_set(j, sg->cpumask);
  4918. }
  4919. if (!first)
  4920. first = sg;
  4921. if (last)
  4922. last->next = sg;
  4923. last = sg;
  4924. }
  4925. last->next = first;
  4926. }
  4927. #define SD_NODES_PER_DOMAIN 16
  4928. #ifdef CONFIG_NUMA
  4929. /**
  4930. * find_next_best_node - find the next node to include in a sched_domain
  4931. * @node: node whose sched_domain we're building
  4932. * @used_nodes: nodes already in the sched_domain
  4933. *
  4934. * Find the next node to include in a given scheduling domain. Simply
  4935. * finds the closest node not already in the @used_nodes map.
  4936. *
  4937. * Should use nodemask_t.
  4938. */
  4939. static int find_next_best_node(int node, unsigned long *used_nodes)
  4940. {
  4941. int i, n, val, min_val, best_node = 0;
  4942. min_val = INT_MAX;
  4943. for (i = 0; i < MAX_NUMNODES; i++) {
  4944. /* Start at @node */
  4945. n = (node + i) % MAX_NUMNODES;
  4946. if (!nr_cpus_node(n))
  4947. continue;
  4948. /* Skip already used nodes */
  4949. if (test_bit(n, used_nodes))
  4950. continue;
  4951. /* Simple min distance search */
  4952. val = node_distance(node, n);
  4953. if (val < min_val) {
  4954. min_val = val;
  4955. best_node = n;
  4956. }
  4957. }
  4958. set_bit(best_node, used_nodes);
  4959. return best_node;
  4960. }
  4961. /**
  4962. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4963. * @node: node whose cpumask we're constructing
  4964. * @size: number of nodes to include in this span
  4965. *
  4966. * Given a node, construct a good cpumask for its sched_domain to span. It
  4967. * should be one that prevents unnecessary balancing, but also spreads tasks
  4968. * out optimally.
  4969. */
  4970. static cpumask_t sched_domain_node_span(int node)
  4971. {
  4972. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4973. cpumask_t span, nodemask;
  4974. int i;
  4975. cpus_clear(span);
  4976. bitmap_zero(used_nodes, MAX_NUMNODES);
  4977. nodemask = node_to_cpumask(node);
  4978. cpus_or(span, span, nodemask);
  4979. set_bit(node, used_nodes);
  4980. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4981. int next_node = find_next_best_node(node, used_nodes);
  4982. nodemask = node_to_cpumask(next_node);
  4983. cpus_or(span, span, nodemask);
  4984. }
  4985. return span;
  4986. }
  4987. #endif
  4988. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4989. /*
  4990. * SMT sched-domains:
  4991. */
  4992. #ifdef CONFIG_SCHED_SMT
  4993. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4994. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4995. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4996. struct sched_group **sg)
  4997. {
  4998. if (sg)
  4999. *sg = &per_cpu(sched_group_cpus, cpu);
  5000. return cpu;
  5001. }
  5002. #endif
  5003. /*
  5004. * multi-core sched-domains:
  5005. */
  5006. #ifdef CONFIG_SCHED_MC
  5007. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5008. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5009. #endif
  5010. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5011. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5012. struct sched_group **sg)
  5013. {
  5014. int group;
  5015. cpumask_t mask = cpu_sibling_map[cpu];
  5016. cpus_and(mask, mask, *cpu_map);
  5017. group = first_cpu(mask);
  5018. if (sg)
  5019. *sg = &per_cpu(sched_group_core, group);
  5020. return group;
  5021. }
  5022. #elif defined(CONFIG_SCHED_MC)
  5023. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5024. struct sched_group **sg)
  5025. {
  5026. if (sg)
  5027. *sg = &per_cpu(sched_group_core, cpu);
  5028. return cpu;
  5029. }
  5030. #endif
  5031. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5032. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5033. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5034. struct sched_group **sg)
  5035. {
  5036. int group;
  5037. #ifdef CONFIG_SCHED_MC
  5038. cpumask_t mask = cpu_coregroup_map(cpu);
  5039. cpus_and(mask, mask, *cpu_map);
  5040. group = first_cpu(mask);
  5041. #elif defined(CONFIG_SCHED_SMT)
  5042. cpumask_t mask = cpu_sibling_map[cpu];
  5043. cpus_and(mask, mask, *cpu_map);
  5044. group = first_cpu(mask);
  5045. #else
  5046. group = cpu;
  5047. #endif
  5048. if (sg)
  5049. *sg = &per_cpu(sched_group_phys, group);
  5050. return group;
  5051. }
  5052. #ifdef CONFIG_NUMA
  5053. /*
  5054. * The init_sched_build_groups can't handle what we want to do with node
  5055. * groups, so roll our own. Now each node has its own list of groups which
  5056. * gets dynamically allocated.
  5057. */
  5058. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5059. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5060. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5061. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5062. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5063. struct sched_group **sg)
  5064. {
  5065. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5066. int group;
  5067. cpus_and(nodemask, nodemask, *cpu_map);
  5068. group = first_cpu(nodemask);
  5069. if (sg)
  5070. *sg = &per_cpu(sched_group_allnodes, group);
  5071. return group;
  5072. }
  5073. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5074. {
  5075. struct sched_group *sg = group_head;
  5076. int j;
  5077. if (!sg)
  5078. return;
  5079. next_sg:
  5080. for_each_cpu_mask(j, sg->cpumask) {
  5081. struct sched_domain *sd;
  5082. sd = &per_cpu(phys_domains, j);
  5083. if (j != first_cpu(sd->groups->cpumask)) {
  5084. /*
  5085. * Only add "power" once for each
  5086. * physical package.
  5087. */
  5088. continue;
  5089. }
  5090. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5091. }
  5092. sg = sg->next;
  5093. if (sg != group_head)
  5094. goto next_sg;
  5095. }
  5096. #endif
  5097. #ifdef CONFIG_NUMA
  5098. /* Free memory allocated for various sched_group structures */
  5099. static void free_sched_groups(const cpumask_t *cpu_map)
  5100. {
  5101. int cpu, i;
  5102. for_each_cpu_mask(cpu, *cpu_map) {
  5103. struct sched_group **sched_group_nodes
  5104. = sched_group_nodes_bycpu[cpu];
  5105. if (!sched_group_nodes)
  5106. continue;
  5107. for (i = 0; i < MAX_NUMNODES; i++) {
  5108. cpumask_t nodemask = node_to_cpumask(i);
  5109. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5110. cpus_and(nodemask, nodemask, *cpu_map);
  5111. if (cpus_empty(nodemask))
  5112. continue;
  5113. if (sg == NULL)
  5114. continue;
  5115. sg = sg->next;
  5116. next_sg:
  5117. oldsg = sg;
  5118. sg = sg->next;
  5119. kfree(oldsg);
  5120. if (oldsg != sched_group_nodes[i])
  5121. goto next_sg;
  5122. }
  5123. kfree(sched_group_nodes);
  5124. sched_group_nodes_bycpu[cpu] = NULL;
  5125. }
  5126. }
  5127. #else
  5128. static void free_sched_groups(const cpumask_t *cpu_map)
  5129. {
  5130. }
  5131. #endif
  5132. /*
  5133. * Initialize sched groups cpu_power.
  5134. *
  5135. * cpu_power indicates the capacity of sched group, which is used while
  5136. * distributing the load between different sched groups in a sched domain.
  5137. * Typically cpu_power for all the groups in a sched domain will be same unless
  5138. * there are asymmetries in the topology. If there are asymmetries, group
  5139. * having more cpu_power will pickup more load compared to the group having
  5140. * less cpu_power.
  5141. *
  5142. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5143. * the maximum number of tasks a group can handle in the presence of other idle
  5144. * or lightly loaded groups in the same sched domain.
  5145. */
  5146. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5147. {
  5148. struct sched_domain *child;
  5149. struct sched_group *group;
  5150. WARN_ON(!sd || !sd->groups);
  5151. if (cpu != first_cpu(sd->groups->cpumask))
  5152. return;
  5153. child = sd->child;
  5154. sd->groups->__cpu_power = 0;
  5155. /*
  5156. * For perf policy, if the groups in child domain share resources
  5157. * (for example cores sharing some portions of the cache hierarchy
  5158. * or SMT), then set this domain groups cpu_power such that each group
  5159. * can handle only one task, when there are other idle groups in the
  5160. * same sched domain.
  5161. */
  5162. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5163. (child->flags &
  5164. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5165. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5166. return;
  5167. }
  5168. /*
  5169. * add cpu_power of each child group to this groups cpu_power
  5170. */
  5171. group = child->groups;
  5172. do {
  5173. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5174. group = group->next;
  5175. } while (group != child->groups);
  5176. }
  5177. /*
  5178. * Build sched domains for a given set of cpus and attach the sched domains
  5179. * to the individual cpus
  5180. */
  5181. static int build_sched_domains(const cpumask_t *cpu_map)
  5182. {
  5183. int i;
  5184. #ifdef CONFIG_NUMA
  5185. struct sched_group **sched_group_nodes = NULL;
  5186. int sd_allnodes = 0;
  5187. /*
  5188. * Allocate the per-node list of sched groups
  5189. */
  5190. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5191. GFP_KERNEL);
  5192. if (!sched_group_nodes) {
  5193. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5194. return -ENOMEM;
  5195. }
  5196. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5197. #endif
  5198. /*
  5199. * Set up domains for cpus specified by the cpu_map.
  5200. */
  5201. for_each_cpu_mask(i, *cpu_map) {
  5202. struct sched_domain *sd = NULL, *p;
  5203. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5204. cpus_and(nodemask, nodemask, *cpu_map);
  5205. #ifdef CONFIG_NUMA
  5206. if (cpus_weight(*cpu_map) >
  5207. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5208. sd = &per_cpu(allnodes_domains, i);
  5209. *sd = SD_ALLNODES_INIT;
  5210. sd->span = *cpu_map;
  5211. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5212. p = sd;
  5213. sd_allnodes = 1;
  5214. } else
  5215. p = NULL;
  5216. sd = &per_cpu(node_domains, i);
  5217. *sd = SD_NODE_INIT;
  5218. sd->span = sched_domain_node_span(cpu_to_node(i));
  5219. sd->parent = p;
  5220. if (p)
  5221. p->child = sd;
  5222. cpus_and(sd->span, sd->span, *cpu_map);
  5223. #endif
  5224. p = sd;
  5225. sd = &per_cpu(phys_domains, i);
  5226. *sd = SD_CPU_INIT;
  5227. sd->span = nodemask;
  5228. sd->parent = p;
  5229. if (p)
  5230. p->child = sd;
  5231. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5232. #ifdef CONFIG_SCHED_MC
  5233. p = sd;
  5234. sd = &per_cpu(core_domains, i);
  5235. *sd = SD_MC_INIT;
  5236. sd->span = cpu_coregroup_map(i);
  5237. cpus_and(sd->span, sd->span, *cpu_map);
  5238. sd->parent = p;
  5239. p->child = sd;
  5240. cpu_to_core_group(i, cpu_map, &sd->groups);
  5241. #endif
  5242. #ifdef CONFIG_SCHED_SMT
  5243. p = sd;
  5244. sd = &per_cpu(cpu_domains, i);
  5245. *sd = SD_SIBLING_INIT;
  5246. sd->span = cpu_sibling_map[i];
  5247. cpus_and(sd->span, sd->span, *cpu_map);
  5248. sd->parent = p;
  5249. p->child = sd;
  5250. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5251. #endif
  5252. }
  5253. #ifdef CONFIG_SCHED_SMT
  5254. /* Set up CPU (sibling) groups */
  5255. for_each_cpu_mask(i, *cpu_map) {
  5256. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5257. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5258. if (i != first_cpu(this_sibling_map))
  5259. continue;
  5260. init_sched_build_groups(this_sibling_map, cpu_map,
  5261. &cpu_to_cpu_group);
  5262. }
  5263. #endif
  5264. #ifdef CONFIG_SCHED_MC
  5265. /* Set up multi-core groups */
  5266. for_each_cpu_mask(i, *cpu_map) {
  5267. cpumask_t this_core_map = cpu_coregroup_map(i);
  5268. cpus_and(this_core_map, this_core_map, *cpu_map);
  5269. if (i != first_cpu(this_core_map))
  5270. continue;
  5271. init_sched_build_groups(this_core_map, cpu_map,
  5272. &cpu_to_core_group);
  5273. }
  5274. #endif
  5275. /* Set up physical groups */
  5276. for (i = 0; i < MAX_NUMNODES; i++) {
  5277. cpumask_t nodemask = node_to_cpumask(i);
  5278. cpus_and(nodemask, nodemask, *cpu_map);
  5279. if (cpus_empty(nodemask))
  5280. continue;
  5281. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5282. }
  5283. #ifdef CONFIG_NUMA
  5284. /* Set up node groups */
  5285. if (sd_allnodes)
  5286. init_sched_build_groups(*cpu_map, cpu_map,
  5287. &cpu_to_allnodes_group);
  5288. for (i = 0; i < MAX_NUMNODES; i++) {
  5289. /* Set up node groups */
  5290. struct sched_group *sg, *prev;
  5291. cpumask_t nodemask = node_to_cpumask(i);
  5292. cpumask_t domainspan;
  5293. cpumask_t covered = CPU_MASK_NONE;
  5294. int j;
  5295. cpus_and(nodemask, nodemask, *cpu_map);
  5296. if (cpus_empty(nodemask)) {
  5297. sched_group_nodes[i] = NULL;
  5298. continue;
  5299. }
  5300. domainspan = sched_domain_node_span(i);
  5301. cpus_and(domainspan, domainspan, *cpu_map);
  5302. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5303. if (!sg) {
  5304. printk(KERN_WARNING "Can not alloc domain group for "
  5305. "node %d\n", i);
  5306. goto error;
  5307. }
  5308. sched_group_nodes[i] = sg;
  5309. for_each_cpu_mask(j, nodemask) {
  5310. struct sched_domain *sd;
  5311. sd = &per_cpu(node_domains, j);
  5312. sd->groups = sg;
  5313. }
  5314. sg->__cpu_power = 0;
  5315. sg->cpumask = nodemask;
  5316. sg->next = sg;
  5317. cpus_or(covered, covered, nodemask);
  5318. prev = sg;
  5319. for (j = 0; j < MAX_NUMNODES; j++) {
  5320. cpumask_t tmp, notcovered;
  5321. int n = (i + j) % MAX_NUMNODES;
  5322. cpus_complement(notcovered, covered);
  5323. cpus_and(tmp, notcovered, *cpu_map);
  5324. cpus_and(tmp, tmp, domainspan);
  5325. if (cpus_empty(tmp))
  5326. break;
  5327. nodemask = node_to_cpumask(n);
  5328. cpus_and(tmp, tmp, nodemask);
  5329. if (cpus_empty(tmp))
  5330. continue;
  5331. sg = kmalloc_node(sizeof(struct sched_group),
  5332. GFP_KERNEL, i);
  5333. if (!sg) {
  5334. printk(KERN_WARNING
  5335. "Can not alloc domain group for node %d\n", j);
  5336. goto error;
  5337. }
  5338. sg->__cpu_power = 0;
  5339. sg->cpumask = tmp;
  5340. sg->next = prev->next;
  5341. cpus_or(covered, covered, tmp);
  5342. prev->next = sg;
  5343. prev = sg;
  5344. }
  5345. }
  5346. #endif
  5347. /* Calculate CPU power for physical packages and nodes */
  5348. #ifdef CONFIG_SCHED_SMT
  5349. for_each_cpu_mask(i, *cpu_map) {
  5350. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5351. init_sched_groups_power(i, sd);
  5352. }
  5353. #endif
  5354. #ifdef CONFIG_SCHED_MC
  5355. for_each_cpu_mask(i, *cpu_map) {
  5356. struct sched_domain *sd = &per_cpu(core_domains, i);
  5357. init_sched_groups_power(i, sd);
  5358. }
  5359. #endif
  5360. for_each_cpu_mask(i, *cpu_map) {
  5361. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5362. init_sched_groups_power(i, sd);
  5363. }
  5364. #ifdef CONFIG_NUMA
  5365. for (i = 0; i < MAX_NUMNODES; i++)
  5366. init_numa_sched_groups_power(sched_group_nodes[i]);
  5367. if (sd_allnodes) {
  5368. struct sched_group *sg;
  5369. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5370. init_numa_sched_groups_power(sg);
  5371. }
  5372. #endif
  5373. /* Attach the domains */
  5374. for_each_cpu_mask(i, *cpu_map) {
  5375. struct sched_domain *sd;
  5376. #ifdef CONFIG_SCHED_SMT
  5377. sd = &per_cpu(cpu_domains, i);
  5378. #elif defined(CONFIG_SCHED_MC)
  5379. sd = &per_cpu(core_domains, i);
  5380. #else
  5381. sd = &per_cpu(phys_domains, i);
  5382. #endif
  5383. cpu_attach_domain(sd, i);
  5384. }
  5385. return 0;
  5386. #ifdef CONFIG_NUMA
  5387. error:
  5388. free_sched_groups(cpu_map);
  5389. return -ENOMEM;
  5390. #endif
  5391. }
  5392. /*
  5393. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5394. */
  5395. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5396. {
  5397. cpumask_t cpu_default_map;
  5398. int err;
  5399. /*
  5400. * Setup mask for cpus without special case scheduling requirements.
  5401. * For now this just excludes isolated cpus, but could be used to
  5402. * exclude other special cases in the future.
  5403. */
  5404. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5405. err = build_sched_domains(&cpu_default_map);
  5406. return err;
  5407. }
  5408. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5409. {
  5410. free_sched_groups(cpu_map);
  5411. }
  5412. /*
  5413. * Detach sched domains from a group of cpus specified in cpu_map
  5414. * These cpus will now be attached to the NULL domain
  5415. */
  5416. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5417. {
  5418. int i;
  5419. for_each_cpu_mask(i, *cpu_map)
  5420. cpu_attach_domain(NULL, i);
  5421. synchronize_sched();
  5422. arch_destroy_sched_domains(cpu_map);
  5423. }
  5424. /*
  5425. * Partition sched domains as specified by the cpumasks below.
  5426. * This attaches all cpus from the cpumasks to the NULL domain,
  5427. * waits for a RCU quiescent period, recalculates sched
  5428. * domain information and then attaches them back to the
  5429. * correct sched domains
  5430. * Call with hotplug lock held
  5431. */
  5432. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5433. {
  5434. cpumask_t change_map;
  5435. int err = 0;
  5436. cpus_and(*partition1, *partition1, cpu_online_map);
  5437. cpus_and(*partition2, *partition2, cpu_online_map);
  5438. cpus_or(change_map, *partition1, *partition2);
  5439. /* Detach sched domains from all of the affected cpus */
  5440. detach_destroy_domains(&change_map);
  5441. if (!cpus_empty(*partition1))
  5442. err = build_sched_domains(partition1);
  5443. if (!err && !cpus_empty(*partition2))
  5444. err = build_sched_domains(partition2);
  5445. return err;
  5446. }
  5447. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5448. int arch_reinit_sched_domains(void)
  5449. {
  5450. int err;
  5451. mutex_lock(&sched_hotcpu_mutex);
  5452. detach_destroy_domains(&cpu_online_map);
  5453. err = arch_init_sched_domains(&cpu_online_map);
  5454. mutex_unlock(&sched_hotcpu_mutex);
  5455. return err;
  5456. }
  5457. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5458. {
  5459. int ret;
  5460. if (buf[0] != '0' && buf[0] != '1')
  5461. return -EINVAL;
  5462. if (smt)
  5463. sched_smt_power_savings = (buf[0] == '1');
  5464. else
  5465. sched_mc_power_savings = (buf[0] == '1');
  5466. ret = arch_reinit_sched_domains();
  5467. return ret ? ret : count;
  5468. }
  5469. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5470. {
  5471. int err = 0;
  5472. #ifdef CONFIG_SCHED_SMT
  5473. if (smt_capable())
  5474. err = sysfs_create_file(&cls->kset.kobj,
  5475. &attr_sched_smt_power_savings.attr);
  5476. #endif
  5477. #ifdef CONFIG_SCHED_MC
  5478. if (!err && mc_capable())
  5479. err = sysfs_create_file(&cls->kset.kobj,
  5480. &attr_sched_mc_power_savings.attr);
  5481. #endif
  5482. return err;
  5483. }
  5484. #endif
  5485. #ifdef CONFIG_SCHED_MC
  5486. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5487. {
  5488. return sprintf(page, "%u\n", sched_mc_power_savings);
  5489. }
  5490. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5491. const char *buf, size_t count)
  5492. {
  5493. return sched_power_savings_store(buf, count, 0);
  5494. }
  5495. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5496. sched_mc_power_savings_store);
  5497. #endif
  5498. #ifdef CONFIG_SCHED_SMT
  5499. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5500. {
  5501. return sprintf(page, "%u\n", sched_smt_power_savings);
  5502. }
  5503. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5504. const char *buf, size_t count)
  5505. {
  5506. return sched_power_savings_store(buf, count, 1);
  5507. }
  5508. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5509. sched_smt_power_savings_store);
  5510. #endif
  5511. /*
  5512. * Force a reinitialization of the sched domains hierarchy. The domains
  5513. * and groups cannot be updated in place without racing with the balancing
  5514. * code, so we temporarily attach all running cpus to the NULL domain
  5515. * which will prevent rebalancing while the sched domains are recalculated.
  5516. */
  5517. static int update_sched_domains(struct notifier_block *nfb,
  5518. unsigned long action, void *hcpu)
  5519. {
  5520. switch (action) {
  5521. case CPU_UP_PREPARE:
  5522. case CPU_UP_PREPARE_FROZEN:
  5523. case CPU_DOWN_PREPARE:
  5524. case CPU_DOWN_PREPARE_FROZEN:
  5525. detach_destroy_domains(&cpu_online_map);
  5526. return NOTIFY_OK;
  5527. case CPU_UP_CANCELED:
  5528. case CPU_UP_CANCELED_FROZEN:
  5529. case CPU_DOWN_FAILED:
  5530. case CPU_DOWN_FAILED_FROZEN:
  5531. case CPU_ONLINE:
  5532. case CPU_ONLINE_FROZEN:
  5533. case CPU_DEAD:
  5534. case CPU_DEAD_FROZEN:
  5535. /*
  5536. * Fall through and re-initialise the domains.
  5537. */
  5538. break;
  5539. default:
  5540. return NOTIFY_DONE;
  5541. }
  5542. /* The hotplug lock is already held by cpu_up/cpu_down */
  5543. arch_init_sched_domains(&cpu_online_map);
  5544. return NOTIFY_OK;
  5545. }
  5546. void __init sched_init_smp(void)
  5547. {
  5548. cpumask_t non_isolated_cpus;
  5549. mutex_lock(&sched_hotcpu_mutex);
  5550. arch_init_sched_domains(&cpu_online_map);
  5551. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5552. if (cpus_empty(non_isolated_cpus))
  5553. cpu_set(smp_processor_id(), non_isolated_cpus);
  5554. mutex_unlock(&sched_hotcpu_mutex);
  5555. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5556. hotcpu_notifier(update_sched_domains, 0);
  5557. init_sched_domain_sysctl();
  5558. /* Move init over to a non-isolated CPU */
  5559. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5560. BUG();
  5561. sched_init_granularity();
  5562. }
  5563. #else
  5564. void __init sched_init_smp(void)
  5565. {
  5566. sched_init_granularity();
  5567. }
  5568. #endif /* CONFIG_SMP */
  5569. int in_sched_functions(unsigned long addr)
  5570. {
  5571. /* Linker adds these: start and end of __sched functions */
  5572. extern char __sched_text_start[], __sched_text_end[];
  5573. return in_lock_functions(addr) ||
  5574. (addr >= (unsigned long)__sched_text_start
  5575. && addr < (unsigned long)__sched_text_end);
  5576. }
  5577. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5578. {
  5579. cfs_rq->tasks_timeline = RB_ROOT;
  5580. cfs_rq->fair_clock = 1;
  5581. #ifdef CONFIG_FAIR_GROUP_SCHED
  5582. cfs_rq->rq = rq;
  5583. #endif
  5584. }
  5585. void __init sched_init(void)
  5586. {
  5587. u64 now = sched_clock();
  5588. int highest_cpu = 0;
  5589. int i, j;
  5590. /*
  5591. * Link up the scheduling class hierarchy:
  5592. */
  5593. rt_sched_class.next = &fair_sched_class;
  5594. fair_sched_class.next = &idle_sched_class;
  5595. idle_sched_class.next = NULL;
  5596. for_each_possible_cpu(i) {
  5597. struct rt_prio_array *array;
  5598. struct rq *rq;
  5599. rq = cpu_rq(i);
  5600. spin_lock_init(&rq->lock);
  5601. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5602. rq->nr_running = 0;
  5603. rq->clock = 1;
  5604. init_cfs_rq(&rq->cfs, rq);
  5605. #ifdef CONFIG_FAIR_GROUP_SCHED
  5606. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5607. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5608. #endif
  5609. rq->ls.load_update_last = now;
  5610. rq->ls.load_update_start = now;
  5611. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5612. rq->cpu_load[j] = 0;
  5613. #ifdef CONFIG_SMP
  5614. rq->sd = NULL;
  5615. rq->active_balance = 0;
  5616. rq->next_balance = jiffies;
  5617. rq->push_cpu = 0;
  5618. rq->cpu = i;
  5619. rq->migration_thread = NULL;
  5620. INIT_LIST_HEAD(&rq->migration_queue);
  5621. #endif
  5622. atomic_set(&rq->nr_iowait, 0);
  5623. array = &rq->rt.active;
  5624. for (j = 0; j < MAX_RT_PRIO; j++) {
  5625. INIT_LIST_HEAD(array->queue + j);
  5626. __clear_bit(j, array->bitmap);
  5627. }
  5628. highest_cpu = i;
  5629. /* delimiter for bitsearch: */
  5630. __set_bit(MAX_RT_PRIO, array->bitmap);
  5631. }
  5632. set_load_weight(&init_task);
  5633. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5634. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5635. #endif
  5636. #ifdef CONFIG_SMP
  5637. nr_cpu_ids = highest_cpu + 1;
  5638. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5639. #endif
  5640. #ifdef CONFIG_RT_MUTEXES
  5641. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5642. #endif
  5643. /*
  5644. * The boot idle thread does lazy MMU switching as well:
  5645. */
  5646. atomic_inc(&init_mm.mm_count);
  5647. enter_lazy_tlb(&init_mm, current);
  5648. /*
  5649. * Make us the idle thread. Technically, schedule() should not be
  5650. * called from this thread, however somewhere below it might be,
  5651. * but because we are the idle thread, we just pick up running again
  5652. * when this runqueue becomes "idle".
  5653. */
  5654. init_idle(current, smp_processor_id());
  5655. /*
  5656. * During early bootup we pretend to be a normal task:
  5657. */
  5658. current->sched_class = &fair_sched_class;
  5659. }
  5660. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5661. void __might_sleep(char *file, int line)
  5662. {
  5663. #ifdef in_atomic
  5664. static unsigned long prev_jiffy; /* ratelimiting */
  5665. if ((in_atomic() || irqs_disabled()) &&
  5666. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5667. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5668. return;
  5669. prev_jiffy = jiffies;
  5670. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5671. " context at %s:%d\n", file, line);
  5672. printk("in_atomic():%d, irqs_disabled():%d\n",
  5673. in_atomic(), irqs_disabled());
  5674. debug_show_held_locks(current);
  5675. if (irqs_disabled())
  5676. print_irqtrace_events(current);
  5677. dump_stack();
  5678. }
  5679. #endif
  5680. }
  5681. EXPORT_SYMBOL(__might_sleep);
  5682. #endif
  5683. #ifdef CONFIG_MAGIC_SYSRQ
  5684. void normalize_rt_tasks(void)
  5685. {
  5686. struct task_struct *g, *p;
  5687. unsigned long flags;
  5688. struct rq *rq;
  5689. int on_rq;
  5690. read_lock_irq(&tasklist_lock);
  5691. do_each_thread(g, p) {
  5692. p->se.fair_key = 0;
  5693. p->se.wait_runtime = 0;
  5694. p->se.exec_start = 0;
  5695. p->se.wait_start_fair = 0;
  5696. p->se.sleep_start_fair = 0;
  5697. #ifdef CONFIG_SCHEDSTATS
  5698. p->se.wait_start = 0;
  5699. p->se.sleep_start = 0;
  5700. p->se.block_start = 0;
  5701. #endif
  5702. task_rq(p)->cfs.fair_clock = 0;
  5703. task_rq(p)->clock = 0;
  5704. if (!rt_task(p)) {
  5705. /*
  5706. * Renice negative nice level userspace
  5707. * tasks back to 0:
  5708. */
  5709. if (TASK_NICE(p) < 0 && p->mm)
  5710. set_user_nice(p, 0);
  5711. continue;
  5712. }
  5713. spin_lock_irqsave(&p->pi_lock, flags);
  5714. rq = __task_rq_lock(p);
  5715. #ifdef CONFIG_SMP
  5716. /*
  5717. * Do not touch the migration thread:
  5718. */
  5719. if (p == rq->migration_thread)
  5720. goto out_unlock;
  5721. #endif
  5722. on_rq = p->se.on_rq;
  5723. if (on_rq) {
  5724. update_rq_clock(task_rq(p));
  5725. deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
  5726. }
  5727. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5728. if (on_rq) {
  5729. activate_task(task_rq(p), p, 0);
  5730. resched_task(rq->curr);
  5731. }
  5732. #ifdef CONFIG_SMP
  5733. out_unlock:
  5734. #endif
  5735. __task_rq_unlock(rq);
  5736. spin_unlock_irqrestore(&p->pi_lock, flags);
  5737. } while_each_thread(g, p);
  5738. read_unlock_irq(&tasklist_lock);
  5739. }
  5740. #endif /* CONFIG_MAGIC_SYSRQ */
  5741. #ifdef CONFIG_IA64
  5742. /*
  5743. * These functions are only useful for the IA64 MCA handling.
  5744. *
  5745. * They can only be called when the whole system has been
  5746. * stopped - every CPU needs to be quiescent, and no scheduling
  5747. * activity can take place. Using them for anything else would
  5748. * be a serious bug, and as a result, they aren't even visible
  5749. * under any other configuration.
  5750. */
  5751. /**
  5752. * curr_task - return the current task for a given cpu.
  5753. * @cpu: the processor in question.
  5754. *
  5755. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5756. */
  5757. struct task_struct *curr_task(int cpu)
  5758. {
  5759. return cpu_curr(cpu);
  5760. }
  5761. /**
  5762. * set_curr_task - set the current task for a given cpu.
  5763. * @cpu: the processor in question.
  5764. * @p: the task pointer to set.
  5765. *
  5766. * Description: This function must only be used when non-maskable interrupts
  5767. * are serviced on a separate stack. It allows the architecture to switch the
  5768. * notion of the current task on a cpu in a non-blocking manner. This function
  5769. * must be called with all CPU's synchronized, and interrupts disabled, the
  5770. * and caller must save the original value of the current task (see
  5771. * curr_task() above) and restore that value before reenabling interrupts and
  5772. * re-starting the system.
  5773. *
  5774. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5775. */
  5776. void set_curr_task(int cpu, struct task_struct *p)
  5777. {
  5778. cpu_curr(cpu) = p;
  5779. }
  5780. #endif