workqueue.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917
  1. /*
  2. * linux/kernel/workqueue.c
  3. *
  4. * Generic mechanism for defining kernel helper threads for running
  5. * arbitrary tasks in process context.
  6. *
  7. * Started by Ingo Molnar, Copyright (C) 2002
  8. *
  9. * Derived from the taskqueue/keventd code by:
  10. *
  11. * David Woodhouse <dwmw2@infradead.org>
  12. * Andrew Morton <andrewm@uow.edu.au>
  13. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  14. * Theodore Ts'o <tytso@mit.edu>
  15. *
  16. * Made to use alloc_percpu by Christoph Lameter.
  17. */
  18. #include <linux/module.h>
  19. #include <linux/kernel.h>
  20. #include <linux/sched.h>
  21. #include <linux/init.h>
  22. #include <linux/signal.h>
  23. #include <linux/completion.h>
  24. #include <linux/workqueue.h>
  25. #include <linux/slab.h>
  26. #include <linux/cpu.h>
  27. #include <linux/notifier.h>
  28. #include <linux/kthread.h>
  29. #include <linux/hardirq.h>
  30. #include <linux/mempolicy.h>
  31. #include <linux/freezer.h>
  32. #include <linux/kallsyms.h>
  33. #include <linux/debug_locks.h>
  34. #include <linux/lockdep.h>
  35. /*
  36. * The per-CPU workqueue (if single thread, we always use the first
  37. * possible cpu).
  38. */
  39. struct cpu_workqueue_struct {
  40. spinlock_t lock;
  41. struct list_head worklist;
  42. wait_queue_head_t more_work;
  43. struct work_struct *current_work;
  44. struct workqueue_struct *wq;
  45. struct task_struct *thread;
  46. int run_depth; /* Detect run_workqueue() recursion depth */
  47. } ____cacheline_aligned;
  48. /*
  49. * The externally visible workqueue abstraction is an array of
  50. * per-CPU workqueues:
  51. */
  52. struct workqueue_struct {
  53. struct cpu_workqueue_struct *cpu_wq;
  54. struct list_head list;
  55. const char *name;
  56. int singlethread;
  57. int freezeable; /* Freeze threads during suspend */
  58. #ifdef CONFIG_LOCKDEP
  59. struct lockdep_map lockdep_map;
  60. #endif
  61. };
  62. /* Serializes the accesses to the list of workqueues. */
  63. static DEFINE_SPINLOCK(workqueue_lock);
  64. static LIST_HEAD(workqueues);
  65. static int singlethread_cpu __read_mostly;
  66. static cpumask_t cpu_singlethread_map __read_mostly;
  67. /*
  68. * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
  69. * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
  70. * which comes in between can't use for_each_online_cpu(). We could
  71. * use cpu_possible_map, the cpumask below is more a documentation
  72. * than optimization.
  73. */
  74. static cpumask_t cpu_populated_map __read_mostly;
  75. /* If it's single threaded, it isn't in the list of workqueues. */
  76. static inline int is_single_threaded(struct workqueue_struct *wq)
  77. {
  78. return wq->singlethread;
  79. }
  80. static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
  81. {
  82. return is_single_threaded(wq)
  83. ? &cpu_singlethread_map : &cpu_populated_map;
  84. }
  85. static
  86. struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
  87. {
  88. if (unlikely(is_single_threaded(wq)))
  89. cpu = singlethread_cpu;
  90. return per_cpu_ptr(wq->cpu_wq, cpu);
  91. }
  92. /*
  93. * Set the workqueue on which a work item is to be run
  94. * - Must *only* be called if the pending flag is set
  95. */
  96. static inline void set_wq_data(struct work_struct *work,
  97. struct cpu_workqueue_struct *cwq)
  98. {
  99. unsigned long new;
  100. BUG_ON(!work_pending(work));
  101. new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
  102. new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
  103. atomic_long_set(&work->data, new);
  104. }
  105. static inline
  106. struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
  107. {
  108. return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
  109. }
  110. static void insert_work(struct cpu_workqueue_struct *cwq,
  111. struct work_struct *work, int tail)
  112. {
  113. set_wq_data(work, cwq);
  114. /*
  115. * Ensure that we get the right work->data if we see the
  116. * result of list_add() below, see try_to_grab_pending().
  117. */
  118. smp_wmb();
  119. if (tail)
  120. list_add_tail(&work->entry, &cwq->worklist);
  121. else
  122. list_add(&work->entry, &cwq->worklist);
  123. wake_up(&cwq->more_work);
  124. }
  125. static void __queue_work(struct cpu_workqueue_struct *cwq,
  126. struct work_struct *work)
  127. {
  128. unsigned long flags;
  129. spin_lock_irqsave(&cwq->lock, flags);
  130. insert_work(cwq, work, 1);
  131. spin_unlock_irqrestore(&cwq->lock, flags);
  132. }
  133. /**
  134. * queue_work - queue work on a workqueue
  135. * @wq: workqueue to use
  136. * @work: work to queue
  137. *
  138. * Returns 0 if @work was already on a queue, non-zero otherwise.
  139. *
  140. * We queue the work to the CPU on which it was submitted, but if the CPU dies
  141. * it can be processed by another CPU.
  142. */
  143. int queue_work(struct workqueue_struct *wq, struct work_struct *work)
  144. {
  145. int ret = 0;
  146. if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
  147. BUG_ON(!list_empty(&work->entry));
  148. __queue_work(wq_per_cpu(wq, get_cpu()), work);
  149. put_cpu();
  150. ret = 1;
  151. }
  152. return ret;
  153. }
  154. EXPORT_SYMBOL_GPL(queue_work);
  155. /**
  156. * queue_work_on - queue work on specific cpu
  157. * @cpu: CPU number to execute work on
  158. * @wq: workqueue to use
  159. * @work: work to queue
  160. *
  161. * Returns 0 if @work was already on a queue, non-zero otherwise.
  162. *
  163. * We queue the work to a specific CPU, the caller must ensure it
  164. * can't go away.
  165. */
  166. int
  167. queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
  168. {
  169. int ret = 0;
  170. if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
  171. BUG_ON(!list_empty(&work->entry));
  172. __queue_work(wq_per_cpu(wq, cpu), work);
  173. ret = 1;
  174. }
  175. return ret;
  176. }
  177. EXPORT_SYMBOL_GPL(queue_work_on);
  178. static void delayed_work_timer_fn(unsigned long __data)
  179. {
  180. struct delayed_work *dwork = (struct delayed_work *)__data;
  181. struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
  182. struct workqueue_struct *wq = cwq->wq;
  183. __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
  184. }
  185. /**
  186. * queue_delayed_work - queue work on a workqueue after delay
  187. * @wq: workqueue to use
  188. * @dwork: delayable work to queue
  189. * @delay: number of jiffies to wait before queueing
  190. *
  191. * Returns 0 if @work was already on a queue, non-zero otherwise.
  192. */
  193. int queue_delayed_work(struct workqueue_struct *wq,
  194. struct delayed_work *dwork, unsigned long delay)
  195. {
  196. if (delay == 0)
  197. return queue_work(wq, &dwork->work);
  198. return queue_delayed_work_on(-1, wq, dwork, delay);
  199. }
  200. EXPORT_SYMBOL_GPL(queue_delayed_work);
  201. /**
  202. * queue_delayed_work_on - queue work on specific CPU after delay
  203. * @cpu: CPU number to execute work on
  204. * @wq: workqueue to use
  205. * @dwork: work to queue
  206. * @delay: number of jiffies to wait before queueing
  207. *
  208. * Returns 0 if @work was already on a queue, non-zero otherwise.
  209. */
  210. int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  211. struct delayed_work *dwork, unsigned long delay)
  212. {
  213. int ret = 0;
  214. struct timer_list *timer = &dwork->timer;
  215. struct work_struct *work = &dwork->work;
  216. if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
  217. BUG_ON(timer_pending(timer));
  218. BUG_ON(!list_empty(&work->entry));
  219. timer_stats_timer_set_start_info(&dwork->timer);
  220. /* This stores cwq for the moment, for the timer_fn */
  221. set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
  222. timer->expires = jiffies + delay;
  223. timer->data = (unsigned long)dwork;
  224. timer->function = delayed_work_timer_fn;
  225. if (unlikely(cpu >= 0))
  226. add_timer_on(timer, cpu);
  227. else
  228. add_timer(timer);
  229. ret = 1;
  230. }
  231. return ret;
  232. }
  233. EXPORT_SYMBOL_GPL(queue_delayed_work_on);
  234. static void run_workqueue(struct cpu_workqueue_struct *cwq)
  235. {
  236. spin_lock_irq(&cwq->lock);
  237. cwq->run_depth++;
  238. if (cwq->run_depth > 3) {
  239. /* morton gets to eat his hat */
  240. printk("%s: recursion depth exceeded: %d\n",
  241. __func__, cwq->run_depth);
  242. dump_stack();
  243. }
  244. while (!list_empty(&cwq->worklist)) {
  245. struct work_struct *work = list_entry(cwq->worklist.next,
  246. struct work_struct, entry);
  247. work_func_t f = work->func;
  248. #ifdef CONFIG_LOCKDEP
  249. /*
  250. * It is permissible to free the struct work_struct
  251. * from inside the function that is called from it,
  252. * this we need to take into account for lockdep too.
  253. * To avoid bogus "held lock freed" warnings as well
  254. * as problems when looking into work->lockdep_map,
  255. * make a copy and use that here.
  256. */
  257. struct lockdep_map lockdep_map = work->lockdep_map;
  258. #endif
  259. cwq->current_work = work;
  260. list_del_init(cwq->worklist.next);
  261. spin_unlock_irq(&cwq->lock);
  262. BUG_ON(get_wq_data(work) != cwq);
  263. work_clear_pending(work);
  264. lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
  265. lock_acquire(&lockdep_map, 0, 0, 0, 2, _THIS_IP_);
  266. f(work);
  267. lock_release(&lockdep_map, 1, _THIS_IP_);
  268. lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
  269. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  270. printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
  271. "%s/0x%08x/%d\n",
  272. current->comm, preempt_count(),
  273. task_pid_nr(current));
  274. printk(KERN_ERR " last function: ");
  275. print_symbol("%s\n", (unsigned long)f);
  276. debug_show_held_locks(current);
  277. dump_stack();
  278. }
  279. spin_lock_irq(&cwq->lock);
  280. cwq->current_work = NULL;
  281. }
  282. cwq->run_depth--;
  283. spin_unlock_irq(&cwq->lock);
  284. }
  285. static int worker_thread(void *__cwq)
  286. {
  287. struct cpu_workqueue_struct *cwq = __cwq;
  288. DEFINE_WAIT(wait);
  289. if (cwq->wq->freezeable)
  290. set_freezable();
  291. set_user_nice(current, -5);
  292. for (;;) {
  293. prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
  294. if (!freezing(current) &&
  295. !kthread_should_stop() &&
  296. list_empty(&cwq->worklist))
  297. schedule();
  298. finish_wait(&cwq->more_work, &wait);
  299. try_to_freeze();
  300. if (kthread_should_stop())
  301. break;
  302. run_workqueue(cwq);
  303. }
  304. return 0;
  305. }
  306. struct wq_barrier {
  307. struct work_struct work;
  308. struct completion done;
  309. };
  310. static void wq_barrier_func(struct work_struct *work)
  311. {
  312. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  313. complete(&barr->done);
  314. }
  315. static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
  316. struct wq_barrier *barr, int tail)
  317. {
  318. INIT_WORK(&barr->work, wq_barrier_func);
  319. __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
  320. init_completion(&barr->done);
  321. insert_work(cwq, &barr->work, tail);
  322. }
  323. static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
  324. {
  325. int active;
  326. if (cwq->thread == current) {
  327. /*
  328. * Probably keventd trying to flush its own queue. So simply run
  329. * it by hand rather than deadlocking.
  330. */
  331. run_workqueue(cwq);
  332. active = 1;
  333. } else {
  334. struct wq_barrier barr;
  335. active = 0;
  336. spin_lock_irq(&cwq->lock);
  337. if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
  338. insert_wq_barrier(cwq, &barr, 1);
  339. active = 1;
  340. }
  341. spin_unlock_irq(&cwq->lock);
  342. if (active)
  343. wait_for_completion(&barr.done);
  344. }
  345. return active;
  346. }
  347. /**
  348. * flush_workqueue - ensure that any scheduled work has run to completion.
  349. * @wq: workqueue to flush
  350. *
  351. * Forces execution of the workqueue and blocks until its completion.
  352. * This is typically used in driver shutdown handlers.
  353. *
  354. * We sleep until all works which were queued on entry have been handled,
  355. * but we are not livelocked by new incoming ones.
  356. *
  357. * This function used to run the workqueues itself. Now we just wait for the
  358. * helper threads to do it.
  359. */
  360. void flush_workqueue(struct workqueue_struct *wq)
  361. {
  362. const cpumask_t *cpu_map = wq_cpu_map(wq);
  363. int cpu;
  364. might_sleep();
  365. lock_acquire(&wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
  366. lock_release(&wq->lockdep_map, 1, _THIS_IP_);
  367. for_each_cpu_mask_nr(cpu, *cpu_map)
  368. flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
  369. }
  370. EXPORT_SYMBOL_GPL(flush_workqueue);
  371. /*
  372. * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
  373. * so this work can't be re-armed in any way.
  374. */
  375. static int try_to_grab_pending(struct work_struct *work)
  376. {
  377. struct cpu_workqueue_struct *cwq;
  378. int ret = -1;
  379. if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
  380. return 0;
  381. /*
  382. * The queueing is in progress, or it is already queued. Try to
  383. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  384. */
  385. cwq = get_wq_data(work);
  386. if (!cwq)
  387. return ret;
  388. spin_lock_irq(&cwq->lock);
  389. if (!list_empty(&work->entry)) {
  390. /*
  391. * This work is queued, but perhaps we locked the wrong cwq.
  392. * In that case we must see the new value after rmb(), see
  393. * insert_work()->wmb().
  394. */
  395. smp_rmb();
  396. if (cwq == get_wq_data(work)) {
  397. list_del_init(&work->entry);
  398. ret = 1;
  399. }
  400. }
  401. spin_unlock_irq(&cwq->lock);
  402. return ret;
  403. }
  404. static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
  405. struct work_struct *work)
  406. {
  407. struct wq_barrier barr;
  408. int running = 0;
  409. spin_lock_irq(&cwq->lock);
  410. if (unlikely(cwq->current_work == work)) {
  411. insert_wq_barrier(cwq, &barr, 0);
  412. running = 1;
  413. }
  414. spin_unlock_irq(&cwq->lock);
  415. if (unlikely(running))
  416. wait_for_completion(&barr.done);
  417. }
  418. static void wait_on_work(struct work_struct *work)
  419. {
  420. struct cpu_workqueue_struct *cwq;
  421. struct workqueue_struct *wq;
  422. const cpumask_t *cpu_map;
  423. int cpu;
  424. might_sleep();
  425. lock_acquire(&work->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
  426. lock_release(&work->lockdep_map, 1, _THIS_IP_);
  427. cwq = get_wq_data(work);
  428. if (!cwq)
  429. return;
  430. wq = cwq->wq;
  431. cpu_map = wq_cpu_map(wq);
  432. for_each_cpu_mask_nr(cpu, *cpu_map)
  433. wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
  434. }
  435. static int __cancel_work_timer(struct work_struct *work,
  436. struct timer_list* timer)
  437. {
  438. int ret;
  439. do {
  440. ret = (timer && likely(del_timer(timer)));
  441. if (!ret)
  442. ret = try_to_grab_pending(work);
  443. wait_on_work(work);
  444. } while (unlikely(ret < 0));
  445. work_clear_pending(work);
  446. return ret;
  447. }
  448. /**
  449. * cancel_work_sync - block until a work_struct's callback has terminated
  450. * @work: the work which is to be flushed
  451. *
  452. * Returns true if @work was pending.
  453. *
  454. * cancel_work_sync() will cancel the work if it is queued. If the work's
  455. * callback appears to be running, cancel_work_sync() will block until it
  456. * has completed.
  457. *
  458. * It is possible to use this function if the work re-queues itself. It can
  459. * cancel the work even if it migrates to another workqueue, however in that
  460. * case it only guarantees that work->func() has completed on the last queued
  461. * workqueue.
  462. *
  463. * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
  464. * pending, otherwise it goes into a busy-wait loop until the timer expires.
  465. *
  466. * The caller must ensure that workqueue_struct on which this work was last
  467. * queued can't be destroyed before this function returns.
  468. */
  469. int cancel_work_sync(struct work_struct *work)
  470. {
  471. return __cancel_work_timer(work, NULL);
  472. }
  473. EXPORT_SYMBOL_GPL(cancel_work_sync);
  474. /**
  475. * cancel_delayed_work_sync - reliably kill off a delayed work.
  476. * @dwork: the delayed work struct
  477. *
  478. * Returns true if @dwork was pending.
  479. *
  480. * It is possible to use this function if @dwork rearms itself via queue_work()
  481. * or queue_delayed_work(). See also the comment for cancel_work_sync().
  482. */
  483. int cancel_delayed_work_sync(struct delayed_work *dwork)
  484. {
  485. return __cancel_work_timer(&dwork->work, &dwork->timer);
  486. }
  487. EXPORT_SYMBOL(cancel_delayed_work_sync);
  488. static struct workqueue_struct *keventd_wq __read_mostly;
  489. /**
  490. * schedule_work - put work task in global workqueue
  491. * @work: job to be done
  492. *
  493. * This puts a job in the kernel-global workqueue.
  494. */
  495. int schedule_work(struct work_struct *work)
  496. {
  497. return queue_work(keventd_wq, work);
  498. }
  499. EXPORT_SYMBOL(schedule_work);
  500. /*
  501. * schedule_work_on - put work task on a specific cpu
  502. * @cpu: cpu to put the work task on
  503. * @work: job to be done
  504. *
  505. * This puts a job on a specific cpu
  506. */
  507. int schedule_work_on(int cpu, struct work_struct *work)
  508. {
  509. return queue_work_on(cpu, keventd_wq, work);
  510. }
  511. EXPORT_SYMBOL(schedule_work_on);
  512. /**
  513. * schedule_delayed_work - put work task in global workqueue after delay
  514. * @dwork: job to be done
  515. * @delay: number of jiffies to wait or 0 for immediate execution
  516. *
  517. * After waiting for a given time this puts a job in the kernel-global
  518. * workqueue.
  519. */
  520. int schedule_delayed_work(struct delayed_work *dwork,
  521. unsigned long delay)
  522. {
  523. return queue_delayed_work(keventd_wq, dwork, delay);
  524. }
  525. EXPORT_SYMBOL(schedule_delayed_work);
  526. /**
  527. * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
  528. * @cpu: cpu to use
  529. * @dwork: job to be done
  530. * @delay: number of jiffies to wait
  531. *
  532. * After waiting for a given time this puts a job in the kernel-global
  533. * workqueue on the specified CPU.
  534. */
  535. int schedule_delayed_work_on(int cpu,
  536. struct delayed_work *dwork, unsigned long delay)
  537. {
  538. return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
  539. }
  540. EXPORT_SYMBOL(schedule_delayed_work_on);
  541. /**
  542. * schedule_on_each_cpu - call a function on each online CPU from keventd
  543. * @func: the function to call
  544. *
  545. * Returns zero on success.
  546. * Returns -ve errno on failure.
  547. *
  548. * schedule_on_each_cpu() is very slow.
  549. */
  550. int schedule_on_each_cpu(work_func_t func)
  551. {
  552. int cpu;
  553. struct work_struct *works;
  554. works = alloc_percpu(struct work_struct);
  555. if (!works)
  556. return -ENOMEM;
  557. get_online_cpus();
  558. for_each_online_cpu(cpu) {
  559. struct work_struct *work = per_cpu_ptr(works, cpu);
  560. INIT_WORK(work, func);
  561. set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
  562. __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
  563. }
  564. flush_workqueue(keventd_wq);
  565. put_online_cpus();
  566. free_percpu(works);
  567. return 0;
  568. }
  569. void flush_scheduled_work(void)
  570. {
  571. flush_workqueue(keventd_wq);
  572. }
  573. EXPORT_SYMBOL(flush_scheduled_work);
  574. /**
  575. * execute_in_process_context - reliably execute the routine with user context
  576. * @fn: the function to execute
  577. * @ew: guaranteed storage for the execute work structure (must
  578. * be available when the work executes)
  579. *
  580. * Executes the function immediately if process context is available,
  581. * otherwise schedules the function for delayed execution.
  582. *
  583. * Returns: 0 - function was executed
  584. * 1 - function was scheduled for execution
  585. */
  586. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  587. {
  588. if (!in_interrupt()) {
  589. fn(&ew->work);
  590. return 0;
  591. }
  592. INIT_WORK(&ew->work, fn);
  593. schedule_work(&ew->work);
  594. return 1;
  595. }
  596. EXPORT_SYMBOL_GPL(execute_in_process_context);
  597. int keventd_up(void)
  598. {
  599. return keventd_wq != NULL;
  600. }
  601. int current_is_keventd(void)
  602. {
  603. struct cpu_workqueue_struct *cwq;
  604. int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
  605. int ret = 0;
  606. BUG_ON(!keventd_wq);
  607. cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
  608. if (current == cwq->thread)
  609. ret = 1;
  610. return ret;
  611. }
  612. static struct cpu_workqueue_struct *
  613. init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
  614. {
  615. struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
  616. cwq->wq = wq;
  617. spin_lock_init(&cwq->lock);
  618. INIT_LIST_HEAD(&cwq->worklist);
  619. init_waitqueue_head(&cwq->more_work);
  620. return cwq;
  621. }
  622. static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
  623. {
  624. struct workqueue_struct *wq = cwq->wq;
  625. const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
  626. struct task_struct *p;
  627. p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
  628. /*
  629. * Nobody can add the work_struct to this cwq,
  630. * if (caller is __create_workqueue)
  631. * nobody should see this wq
  632. * else // caller is CPU_UP_PREPARE
  633. * cpu is not on cpu_online_map
  634. * so we can abort safely.
  635. */
  636. if (IS_ERR(p))
  637. return PTR_ERR(p);
  638. cwq->thread = p;
  639. return 0;
  640. }
  641. static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
  642. {
  643. struct task_struct *p = cwq->thread;
  644. if (p != NULL) {
  645. if (cpu >= 0)
  646. kthread_bind(p, cpu);
  647. wake_up_process(p);
  648. }
  649. }
  650. struct workqueue_struct *__create_workqueue_key(const char *name,
  651. int singlethread,
  652. int freezeable,
  653. struct lock_class_key *key,
  654. const char *lock_name)
  655. {
  656. struct workqueue_struct *wq;
  657. struct cpu_workqueue_struct *cwq;
  658. int err = 0, cpu;
  659. wq = kzalloc(sizeof(*wq), GFP_KERNEL);
  660. if (!wq)
  661. return NULL;
  662. wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
  663. if (!wq->cpu_wq) {
  664. kfree(wq);
  665. return NULL;
  666. }
  667. wq->name = name;
  668. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  669. wq->singlethread = singlethread;
  670. wq->freezeable = freezeable;
  671. INIT_LIST_HEAD(&wq->list);
  672. if (singlethread) {
  673. cwq = init_cpu_workqueue(wq, singlethread_cpu);
  674. err = create_workqueue_thread(cwq, singlethread_cpu);
  675. start_workqueue_thread(cwq, -1);
  676. } else {
  677. get_online_cpus();
  678. spin_lock(&workqueue_lock);
  679. list_add(&wq->list, &workqueues);
  680. spin_unlock(&workqueue_lock);
  681. for_each_possible_cpu(cpu) {
  682. cwq = init_cpu_workqueue(wq, cpu);
  683. if (err || !cpu_online(cpu))
  684. continue;
  685. err = create_workqueue_thread(cwq, cpu);
  686. start_workqueue_thread(cwq, cpu);
  687. }
  688. put_online_cpus();
  689. }
  690. if (err) {
  691. destroy_workqueue(wq);
  692. wq = NULL;
  693. }
  694. return wq;
  695. }
  696. EXPORT_SYMBOL_GPL(__create_workqueue_key);
  697. static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
  698. {
  699. /*
  700. * Our caller is either destroy_workqueue() or CPU_DEAD,
  701. * get_online_cpus() protects cwq->thread.
  702. */
  703. if (cwq->thread == NULL)
  704. return;
  705. lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
  706. lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
  707. flush_cpu_workqueue(cwq);
  708. /*
  709. * If the caller is CPU_DEAD and cwq->worklist was not empty,
  710. * a concurrent flush_workqueue() can insert a barrier after us.
  711. * However, in that case run_workqueue() won't return and check
  712. * kthread_should_stop() until it flushes all work_struct's.
  713. * When ->worklist becomes empty it is safe to exit because no
  714. * more work_structs can be queued on this cwq: flush_workqueue
  715. * checks list_empty(), and a "normal" queue_work() can't use
  716. * a dead CPU.
  717. */
  718. kthread_stop(cwq->thread);
  719. cwq->thread = NULL;
  720. }
  721. /**
  722. * destroy_workqueue - safely terminate a workqueue
  723. * @wq: target workqueue
  724. *
  725. * Safely destroy a workqueue. All work currently pending will be done first.
  726. */
  727. void destroy_workqueue(struct workqueue_struct *wq)
  728. {
  729. const cpumask_t *cpu_map = wq_cpu_map(wq);
  730. int cpu;
  731. get_online_cpus();
  732. spin_lock(&workqueue_lock);
  733. list_del(&wq->list);
  734. spin_unlock(&workqueue_lock);
  735. for_each_cpu_mask_nr(cpu, *cpu_map)
  736. cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
  737. put_online_cpus();
  738. free_percpu(wq->cpu_wq);
  739. kfree(wq);
  740. }
  741. EXPORT_SYMBOL_GPL(destroy_workqueue);
  742. static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
  743. unsigned long action,
  744. void *hcpu)
  745. {
  746. unsigned int cpu = (unsigned long)hcpu;
  747. struct cpu_workqueue_struct *cwq;
  748. struct workqueue_struct *wq;
  749. action &= ~CPU_TASKS_FROZEN;
  750. switch (action) {
  751. case CPU_UP_PREPARE:
  752. cpu_set(cpu, cpu_populated_map);
  753. }
  754. list_for_each_entry(wq, &workqueues, list) {
  755. cwq = per_cpu_ptr(wq->cpu_wq, cpu);
  756. switch (action) {
  757. case CPU_UP_PREPARE:
  758. if (!create_workqueue_thread(cwq, cpu))
  759. break;
  760. printk(KERN_ERR "workqueue [%s] for %i failed\n",
  761. wq->name, cpu);
  762. return NOTIFY_BAD;
  763. case CPU_ONLINE:
  764. start_workqueue_thread(cwq, cpu);
  765. break;
  766. case CPU_UP_CANCELED:
  767. start_workqueue_thread(cwq, -1);
  768. case CPU_DEAD:
  769. cleanup_workqueue_thread(cwq);
  770. break;
  771. }
  772. }
  773. switch (action) {
  774. case CPU_UP_CANCELED:
  775. case CPU_DEAD:
  776. cpu_clear(cpu, cpu_populated_map);
  777. }
  778. return NOTIFY_OK;
  779. }
  780. void __init init_workqueues(void)
  781. {
  782. cpu_populated_map = cpu_online_map;
  783. singlethread_cpu = first_cpu(cpu_possible_map);
  784. cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
  785. hotcpu_notifier(workqueue_cpu_callback, 0);
  786. keventd_wq = create_workqueue("events");
  787. BUG_ON(!keventd_wq);
  788. }