slub.c 126 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <linux/memcontrol.h>
  34. #include <trace/events/kmem.h>
  35. #include "internal.h"
  36. /*
  37. * Lock order:
  38. * 1. slab_mutex (Global Mutex)
  39. * 2. node->list_lock
  40. * 3. slab_lock(page) (Only on some arches and for debugging)
  41. *
  42. * slab_mutex
  43. *
  44. * The role of the slab_mutex is to protect the list of all the slabs
  45. * and to synchronize major metadata changes to slab cache structures.
  46. *
  47. * The slab_lock is only used for debugging and on arches that do not
  48. * have the ability to do a cmpxchg_double. It only protects the second
  49. * double word in the page struct. Meaning
  50. * A. page->freelist -> List of object free in a page
  51. * B. page->counters -> Counters of objects
  52. * C. page->frozen -> frozen state
  53. *
  54. * If a slab is frozen then it is exempt from list management. It is not
  55. * on any list. The processor that froze the slab is the one who can
  56. * perform list operations on the page. Other processors may put objects
  57. * onto the freelist but the processor that froze the slab is the only
  58. * one that can retrieve the objects from the page's freelist.
  59. *
  60. * The list_lock protects the partial and full list on each node and
  61. * the partial slab counter. If taken then no new slabs may be added or
  62. * removed from the lists nor make the number of partial slabs be modified.
  63. * (Note that the total number of slabs is an atomic value that may be
  64. * modified without taking the list lock).
  65. *
  66. * The list_lock is a centralized lock and thus we avoid taking it as
  67. * much as possible. As long as SLUB does not have to handle partial
  68. * slabs, operations can continue without any centralized lock. F.e.
  69. * allocating a long series of objects that fill up slabs does not require
  70. * the list lock.
  71. * Interrupts are disabled during allocation and deallocation in order to
  72. * make the slab allocator safe to use in the context of an irq. In addition
  73. * interrupts are disabled to ensure that the processor does not change
  74. * while handling per_cpu slabs, due to kernel preemption.
  75. *
  76. * SLUB assigns one slab for allocation to each processor.
  77. * Allocations only occur from these slabs called cpu slabs.
  78. *
  79. * Slabs with free elements are kept on a partial list and during regular
  80. * operations no list for full slabs is used. If an object in a full slab is
  81. * freed then the slab will show up again on the partial lists.
  82. * We track full slabs for debugging purposes though because otherwise we
  83. * cannot scan all objects.
  84. *
  85. * Slabs are freed when they become empty. Teardown and setup is
  86. * minimal so we rely on the page allocators per cpu caches for
  87. * fast frees and allocs.
  88. *
  89. * Overloading of page flags that are otherwise used for LRU management.
  90. *
  91. * PageActive The slab is frozen and exempt from list processing.
  92. * This means that the slab is dedicated to a purpose
  93. * such as satisfying allocations for a specific
  94. * processor. Objects may be freed in the slab while
  95. * it is frozen but slab_free will then skip the usual
  96. * list operations. It is up to the processor holding
  97. * the slab to integrate the slab into the slab lists
  98. * when the slab is no longer needed.
  99. *
  100. * One use of this flag is to mark slabs that are
  101. * used for allocations. Then such a slab becomes a cpu
  102. * slab. The cpu slab may be equipped with an additional
  103. * freelist that allows lockless access to
  104. * free objects in addition to the regular freelist
  105. * that requires the slab lock.
  106. *
  107. * PageError Slab requires special handling due to debug
  108. * options set. This moves slab handling out of
  109. * the fast path and disables lockless freelists.
  110. */
  111. static inline int kmem_cache_debug(struct kmem_cache *s)
  112. {
  113. #ifdef CONFIG_SLUB_DEBUG
  114. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  115. #else
  116. return 0;
  117. #endif
  118. }
  119. /*
  120. * Issues still to be resolved:
  121. *
  122. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  123. *
  124. * - Variable sizing of the per node arrays
  125. */
  126. /* Enable to test recovery from slab corruption on boot */
  127. #undef SLUB_RESILIENCY_TEST
  128. /* Enable to log cmpxchg failures */
  129. #undef SLUB_DEBUG_CMPXCHG
  130. /*
  131. * Mininum number of partial slabs. These will be left on the partial
  132. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  133. */
  134. #define MIN_PARTIAL 5
  135. /*
  136. * Maximum number of desirable partial slabs.
  137. * The existence of more partial slabs makes kmem_cache_shrink
  138. * sort the partial list by the number of objects in the.
  139. */
  140. #define MAX_PARTIAL 10
  141. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  142. SLAB_POISON | SLAB_STORE_USER)
  143. /*
  144. * Debugging flags that require metadata to be stored in the slab. These get
  145. * disabled when slub_debug=O is used and a cache's min order increases with
  146. * metadata.
  147. */
  148. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  149. /*
  150. * Set of flags that will prevent slab merging
  151. */
  152. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  153. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  154. SLAB_FAILSLAB)
  155. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  156. SLAB_CACHE_DMA | SLAB_NOTRACK)
  157. #define OO_SHIFT 16
  158. #define OO_MASK ((1 << OO_SHIFT) - 1)
  159. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  160. /* Internal SLUB flags */
  161. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  162. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  163. #ifdef CONFIG_SMP
  164. static struct notifier_block slab_notifier;
  165. #endif
  166. /*
  167. * Tracking user of a slab.
  168. */
  169. #define TRACK_ADDRS_COUNT 16
  170. struct track {
  171. unsigned long addr; /* Called from address */
  172. #ifdef CONFIG_STACKTRACE
  173. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  174. #endif
  175. int cpu; /* Was running on cpu */
  176. int pid; /* Pid context */
  177. unsigned long when; /* When did the operation occur */
  178. };
  179. enum track_item { TRACK_ALLOC, TRACK_FREE };
  180. #ifdef CONFIG_SYSFS
  181. static int sysfs_slab_add(struct kmem_cache *);
  182. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  183. static void sysfs_slab_remove(struct kmem_cache *);
  184. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  185. #else
  186. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  187. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  188. { return 0; }
  189. static inline void sysfs_slab_remove(struct kmem_cache *s) { }
  190. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  191. #endif
  192. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  193. {
  194. #ifdef CONFIG_SLUB_STATS
  195. __this_cpu_inc(s->cpu_slab->stat[si]);
  196. #endif
  197. }
  198. /********************************************************************
  199. * Core slab cache functions
  200. *******************************************************************/
  201. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  202. {
  203. return s->node[node];
  204. }
  205. /* Verify that a pointer has an address that is valid within a slab page */
  206. static inline int check_valid_pointer(struct kmem_cache *s,
  207. struct page *page, const void *object)
  208. {
  209. void *base;
  210. if (!object)
  211. return 1;
  212. base = page_address(page);
  213. if (object < base || object >= base + page->objects * s->size ||
  214. (object - base) % s->size) {
  215. return 0;
  216. }
  217. return 1;
  218. }
  219. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  220. {
  221. return *(void **)(object + s->offset);
  222. }
  223. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  224. {
  225. prefetch(object + s->offset);
  226. }
  227. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  228. {
  229. void *p;
  230. #ifdef CONFIG_DEBUG_PAGEALLOC
  231. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  232. #else
  233. p = get_freepointer(s, object);
  234. #endif
  235. return p;
  236. }
  237. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  238. {
  239. *(void **)(object + s->offset) = fp;
  240. }
  241. /* Loop over all objects in a slab */
  242. #define for_each_object(__p, __s, __addr, __objects) \
  243. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  244. __p += (__s)->size)
  245. /* Determine object index from a given position */
  246. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  247. {
  248. return (p - addr) / s->size;
  249. }
  250. static inline size_t slab_ksize(const struct kmem_cache *s)
  251. {
  252. #ifdef CONFIG_SLUB_DEBUG
  253. /*
  254. * Debugging requires use of the padding between object
  255. * and whatever may come after it.
  256. */
  257. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  258. return s->object_size;
  259. #endif
  260. /*
  261. * If we have the need to store the freelist pointer
  262. * back there or track user information then we can
  263. * only use the space before that information.
  264. */
  265. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  266. return s->inuse;
  267. /*
  268. * Else we can use all the padding etc for the allocation
  269. */
  270. return s->size;
  271. }
  272. static inline int order_objects(int order, unsigned long size, int reserved)
  273. {
  274. return ((PAGE_SIZE << order) - reserved) / size;
  275. }
  276. static inline struct kmem_cache_order_objects oo_make(int order,
  277. unsigned long size, int reserved)
  278. {
  279. struct kmem_cache_order_objects x = {
  280. (order << OO_SHIFT) + order_objects(order, size, reserved)
  281. };
  282. return x;
  283. }
  284. static inline int oo_order(struct kmem_cache_order_objects x)
  285. {
  286. return x.x >> OO_SHIFT;
  287. }
  288. static inline int oo_objects(struct kmem_cache_order_objects x)
  289. {
  290. return x.x & OO_MASK;
  291. }
  292. /*
  293. * Per slab locking using the pagelock
  294. */
  295. static __always_inline void slab_lock(struct page *page)
  296. {
  297. bit_spin_lock(PG_locked, &page->flags);
  298. }
  299. static __always_inline void slab_unlock(struct page *page)
  300. {
  301. __bit_spin_unlock(PG_locked, &page->flags);
  302. }
  303. /* Interrupts must be disabled (for the fallback code to work right) */
  304. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  305. void *freelist_old, unsigned long counters_old,
  306. void *freelist_new, unsigned long counters_new,
  307. const char *n)
  308. {
  309. VM_BUG_ON(!irqs_disabled());
  310. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  311. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  312. if (s->flags & __CMPXCHG_DOUBLE) {
  313. if (cmpxchg_double(&page->freelist, &page->counters,
  314. freelist_old, counters_old,
  315. freelist_new, counters_new))
  316. return 1;
  317. } else
  318. #endif
  319. {
  320. slab_lock(page);
  321. if (page->freelist == freelist_old && page->counters == counters_old) {
  322. page->freelist = freelist_new;
  323. page->counters = counters_new;
  324. slab_unlock(page);
  325. return 1;
  326. }
  327. slab_unlock(page);
  328. }
  329. cpu_relax();
  330. stat(s, CMPXCHG_DOUBLE_FAIL);
  331. #ifdef SLUB_DEBUG_CMPXCHG
  332. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  333. #endif
  334. return 0;
  335. }
  336. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  337. void *freelist_old, unsigned long counters_old,
  338. void *freelist_new, unsigned long counters_new,
  339. const char *n)
  340. {
  341. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  342. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  343. if (s->flags & __CMPXCHG_DOUBLE) {
  344. if (cmpxchg_double(&page->freelist, &page->counters,
  345. freelist_old, counters_old,
  346. freelist_new, counters_new))
  347. return 1;
  348. } else
  349. #endif
  350. {
  351. unsigned long flags;
  352. local_irq_save(flags);
  353. slab_lock(page);
  354. if (page->freelist == freelist_old && page->counters == counters_old) {
  355. page->freelist = freelist_new;
  356. page->counters = counters_new;
  357. slab_unlock(page);
  358. local_irq_restore(flags);
  359. return 1;
  360. }
  361. slab_unlock(page);
  362. local_irq_restore(flags);
  363. }
  364. cpu_relax();
  365. stat(s, CMPXCHG_DOUBLE_FAIL);
  366. #ifdef SLUB_DEBUG_CMPXCHG
  367. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  368. #endif
  369. return 0;
  370. }
  371. #ifdef CONFIG_SLUB_DEBUG
  372. /*
  373. * Determine a map of object in use on a page.
  374. *
  375. * Node listlock must be held to guarantee that the page does
  376. * not vanish from under us.
  377. */
  378. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  379. {
  380. void *p;
  381. void *addr = page_address(page);
  382. for (p = page->freelist; p; p = get_freepointer(s, p))
  383. set_bit(slab_index(p, s, addr), map);
  384. }
  385. /*
  386. * Debug settings:
  387. */
  388. #ifdef CONFIG_SLUB_DEBUG_ON
  389. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  390. #else
  391. static int slub_debug;
  392. #endif
  393. static char *slub_debug_slabs;
  394. static int disable_higher_order_debug;
  395. /*
  396. * Object debugging
  397. */
  398. static void print_section(char *text, u8 *addr, unsigned int length)
  399. {
  400. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  401. length, 1);
  402. }
  403. static struct track *get_track(struct kmem_cache *s, void *object,
  404. enum track_item alloc)
  405. {
  406. struct track *p;
  407. if (s->offset)
  408. p = object + s->offset + sizeof(void *);
  409. else
  410. p = object + s->inuse;
  411. return p + alloc;
  412. }
  413. static void set_track(struct kmem_cache *s, void *object,
  414. enum track_item alloc, unsigned long addr)
  415. {
  416. struct track *p = get_track(s, object, alloc);
  417. if (addr) {
  418. #ifdef CONFIG_STACKTRACE
  419. struct stack_trace trace;
  420. int i;
  421. trace.nr_entries = 0;
  422. trace.max_entries = TRACK_ADDRS_COUNT;
  423. trace.entries = p->addrs;
  424. trace.skip = 3;
  425. save_stack_trace(&trace);
  426. /* See rant in lockdep.c */
  427. if (trace.nr_entries != 0 &&
  428. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  429. trace.nr_entries--;
  430. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  431. p->addrs[i] = 0;
  432. #endif
  433. p->addr = addr;
  434. p->cpu = smp_processor_id();
  435. p->pid = current->pid;
  436. p->when = jiffies;
  437. } else
  438. memset(p, 0, sizeof(struct track));
  439. }
  440. static void init_tracking(struct kmem_cache *s, void *object)
  441. {
  442. if (!(s->flags & SLAB_STORE_USER))
  443. return;
  444. set_track(s, object, TRACK_FREE, 0UL);
  445. set_track(s, object, TRACK_ALLOC, 0UL);
  446. }
  447. static void print_track(const char *s, struct track *t)
  448. {
  449. if (!t->addr)
  450. return;
  451. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  452. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  453. #ifdef CONFIG_STACKTRACE
  454. {
  455. int i;
  456. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  457. if (t->addrs[i])
  458. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  459. else
  460. break;
  461. }
  462. #endif
  463. }
  464. static void print_tracking(struct kmem_cache *s, void *object)
  465. {
  466. if (!(s->flags & SLAB_STORE_USER))
  467. return;
  468. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  469. print_track("Freed", get_track(s, object, TRACK_FREE));
  470. }
  471. static void print_page_info(struct page *page)
  472. {
  473. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  474. page, page->objects, page->inuse, page->freelist, page->flags);
  475. }
  476. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  477. {
  478. va_list args;
  479. char buf[100];
  480. va_start(args, fmt);
  481. vsnprintf(buf, sizeof(buf), fmt, args);
  482. va_end(args);
  483. printk(KERN_ERR "========================================"
  484. "=====================================\n");
  485. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  486. printk(KERN_ERR "----------------------------------------"
  487. "-------------------------------------\n\n");
  488. add_taint(TAINT_BAD_PAGE);
  489. }
  490. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  491. {
  492. va_list args;
  493. char buf[100];
  494. va_start(args, fmt);
  495. vsnprintf(buf, sizeof(buf), fmt, args);
  496. va_end(args);
  497. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  498. }
  499. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  500. {
  501. unsigned int off; /* Offset of last byte */
  502. u8 *addr = page_address(page);
  503. print_tracking(s, p);
  504. print_page_info(page);
  505. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  506. p, p - addr, get_freepointer(s, p));
  507. if (p > addr + 16)
  508. print_section("Bytes b4 ", p - 16, 16);
  509. print_section("Object ", p, min_t(unsigned long, s->object_size,
  510. PAGE_SIZE));
  511. if (s->flags & SLAB_RED_ZONE)
  512. print_section("Redzone ", p + s->object_size,
  513. s->inuse - s->object_size);
  514. if (s->offset)
  515. off = s->offset + sizeof(void *);
  516. else
  517. off = s->inuse;
  518. if (s->flags & SLAB_STORE_USER)
  519. off += 2 * sizeof(struct track);
  520. if (off != s->size)
  521. /* Beginning of the filler is the free pointer */
  522. print_section("Padding ", p + off, s->size - off);
  523. dump_stack();
  524. }
  525. static void object_err(struct kmem_cache *s, struct page *page,
  526. u8 *object, char *reason)
  527. {
  528. slab_bug(s, "%s", reason);
  529. print_trailer(s, page, object);
  530. }
  531. static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
  532. {
  533. va_list args;
  534. char buf[100];
  535. va_start(args, fmt);
  536. vsnprintf(buf, sizeof(buf), fmt, args);
  537. va_end(args);
  538. slab_bug(s, "%s", buf);
  539. print_page_info(page);
  540. dump_stack();
  541. }
  542. static void init_object(struct kmem_cache *s, void *object, u8 val)
  543. {
  544. u8 *p = object;
  545. if (s->flags & __OBJECT_POISON) {
  546. memset(p, POISON_FREE, s->object_size - 1);
  547. p[s->object_size - 1] = POISON_END;
  548. }
  549. if (s->flags & SLAB_RED_ZONE)
  550. memset(p + s->object_size, val, s->inuse - s->object_size);
  551. }
  552. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  553. void *from, void *to)
  554. {
  555. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  556. memset(from, data, to - from);
  557. }
  558. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  559. u8 *object, char *what,
  560. u8 *start, unsigned int value, unsigned int bytes)
  561. {
  562. u8 *fault;
  563. u8 *end;
  564. fault = memchr_inv(start, value, bytes);
  565. if (!fault)
  566. return 1;
  567. end = start + bytes;
  568. while (end > fault && end[-1] == value)
  569. end--;
  570. slab_bug(s, "%s overwritten", what);
  571. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  572. fault, end - 1, fault[0], value);
  573. print_trailer(s, page, object);
  574. restore_bytes(s, what, value, fault, end);
  575. return 0;
  576. }
  577. /*
  578. * Object layout:
  579. *
  580. * object address
  581. * Bytes of the object to be managed.
  582. * If the freepointer may overlay the object then the free
  583. * pointer is the first word of the object.
  584. *
  585. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  586. * 0xa5 (POISON_END)
  587. *
  588. * object + s->object_size
  589. * Padding to reach word boundary. This is also used for Redzoning.
  590. * Padding is extended by another word if Redzoning is enabled and
  591. * object_size == inuse.
  592. *
  593. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  594. * 0xcc (RED_ACTIVE) for objects in use.
  595. *
  596. * object + s->inuse
  597. * Meta data starts here.
  598. *
  599. * A. Free pointer (if we cannot overwrite object on free)
  600. * B. Tracking data for SLAB_STORE_USER
  601. * C. Padding to reach required alignment boundary or at mininum
  602. * one word if debugging is on to be able to detect writes
  603. * before the word boundary.
  604. *
  605. * Padding is done using 0x5a (POISON_INUSE)
  606. *
  607. * object + s->size
  608. * Nothing is used beyond s->size.
  609. *
  610. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  611. * ignored. And therefore no slab options that rely on these boundaries
  612. * may be used with merged slabcaches.
  613. */
  614. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  615. {
  616. unsigned long off = s->inuse; /* The end of info */
  617. if (s->offset)
  618. /* Freepointer is placed after the object. */
  619. off += sizeof(void *);
  620. if (s->flags & SLAB_STORE_USER)
  621. /* We also have user information there */
  622. off += 2 * sizeof(struct track);
  623. if (s->size == off)
  624. return 1;
  625. return check_bytes_and_report(s, page, p, "Object padding",
  626. p + off, POISON_INUSE, s->size - off);
  627. }
  628. /* Check the pad bytes at the end of a slab page */
  629. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  630. {
  631. u8 *start;
  632. u8 *fault;
  633. u8 *end;
  634. int length;
  635. int remainder;
  636. if (!(s->flags & SLAB_POISON))
  637. return 1;
  638. start = page_address(page);
  639. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  640. end = start + length;
  641. remainder = length % s->size;
  642. if (!remainder)
  643. return 1;
  644. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  645. if (!fault)
  646. return 1;
  647. while (end > fault && end[-1] == POISON_INUSE)
  648. end--;
  649. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  650. print_section("Padding ", end - remainder, remainder);
  651. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  652. return 0;
  653. }
  654. static int check_object(struct kmem_cache *s, struct page *page,
  655. void *object, u8 val)
  656. {
  657. u8 *p = object;
  658. u8 *endobject = object + s->object_size;
  659. if (s->flags & SLAB_RED_ZONE) {
  660. if (!check_bytes_and_report(s, page, object, "Redzone",
  661. endobject, val, s->inuse - s->object_size))
  662. return 0;
  663. } else {
  664. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  665. check_bytes_and_report(s, page, p, "Alignment padding",
  666. endobject, POISON_INUSE, s->inuse - s->object_size);
  667. }
  668. }
  669. if (s->flags & SLAB_POISON) {
  670. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  671. (!check_bytes_and_report(s, page, p, "Poison", p,
  672. POISON_FREE, s->object_size - 1) ||
  673. !check_bytes_and_report(s, page, p, "Poison",
  674. p + s->object_size - 1, POISON_END, 1)))
  675. return 0;
  676. /*
  677. * check_pad_bytes cleans up on its own.
  678. */
  679. check_pad_bytes(s, page, p);
  680. }
  681. if (!s->offset && val == SLUB_RED_ACTIVE)
  682. /*
  683. * Object and freepointer overlap. Cannot check
  684. * freepointer while object is allocated.
  685. */
  686. return 1;
  687. /* Check free pointer validity */
  688. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  689. object_err(s, page, p, "Freepointer corrupt");
  690. /*
  691. * No choice but to zap it and thus lose the remainder
  692. * of the free objects in this slab. May cause
  693. * another error because the object count is now wrong.
  694. */
  695. set_freepointer(s, p, NULL);
  696. return 0;
  697. }
  698. return 1;
  699. }
  700. static int check_slab(struct kmem_cache *s, struct page *page)
  701. {
  702. int maxobj;
  703. VM_BUG_ON(!irqs_disabled());
  704. if (!PageSlab(page)) {
  705. slab_err(s, page, "Not a valid slab page");
  706. return 0;
  707. }
  708. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  709. if (page->objects > maxobj) {
  710. slab_err(s, page, "objects %u > max %u",
  711. s->name, page->objects, maxobj);
  712. return 0;
  713. }
  714. if (page->inuse > page->objects) {
  715. slab_err(s, page, "inuse %u > max %u",
  716. s->name, page->inuse, page->objects);
  717. return 0;
  718. }
  719. /* Slab_pad_check fixes things up after itself */
  720. slab_pad_check(s, page);
  721. return 1;
  722. }
  723. /*
  724. * Determine if a certain object on a page is on the freelist. Must hold the
  725. * slab lock to guarantee that the chains are in a consistent state.
  726. */
  727. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  728. {
  729. int nr = 0;
  730. void *fp;
  731. void *object = NULL;
  732. unsigned long max_objects;
  733. fp = page->freelist;
  734. while (fp && nr <= page->objects) {
  735. if (fp == search)
  736. return 1;
  737. if (!check_valid_pointer(s, page, fp)) {
  738. if (object) {
  739. object_err(s, page, object,
  740. "Freechain corrupt");
  741. set_freepointer(s, object, NULL);
  742. break;
  743. } else {
  744. slab_err(s, page, "Freepointer corrupt");
  745. page->freelist = NULL;
  746. page->inuse = page->objects;
  747. slab_fix(s, "Freelist cleared");
  748. return 0;
  749. }
  750. break;
  751. }
  752. object = fp;
  753. fp = get_freepointer(s, object);
  754. nr++;
  755. }
  756. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  757. if (max_objects > MAX_OBJS_PER_PAGE)
  758. max_objects = MAX_OBJS_PER_PAGE;
  759. if (page->objects != max_objects) {
  760. slab_err(s, page, "Wrong number of objects. Found %d but "
  761. "should be %d", page->objects, max_objects);
  762. page->objects = max_objects;
  763. slab_fix(s, "Number of objects adjusted.");
  764. }
  765. if (page->inuse != page->objects - nr) {
  766. slab_err(s, page, "Wrong object count. Counter is %d but "
  767. "counted were %d", page->inuse, page->objects - nr);
  768. page->inuse = page->objects - nr;
  769. slab_fix(s, "Object count adjusted.");
  770. }
  771. return search == NULL;
  772. }
  773. static void trace(struct kmem_cache *s, struct page *page, void *object,
  774. int alloc)
  775. {
  776. if (s->flags & SLAB_TRACE) {
  777. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  778. s->name,
  779. alloc ? "alloc" : "free",
  780. object, page->inuse,
  781. page->freelist);
  782. if (!alloc)
  783. print_section("Object ", (void *)object, s->object_size);
  784. dump_stack();
  785. }
  786. }
  787. /*
  788. * Hooks for other subsystems that check memory allocations. In a typical
  789. * production configuration these hooks all should produce no code at all.
  790. */
  791. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  792. {
  793. flags &= gfp_allowed_mask;
  794. lockdep_trace_alloc(flags);
  795. might_sleep_if(flags & __GFP_WAIT);
  796. return should_failslab(s->object_size, flags, s->flags);
  797. }
  798. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  799. {
  800. flags &= gfp_allowed_mask;
  801. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  802. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  803. }
  804. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  805. {
  806. kmemleak_free_recursive(x, s->flags);
  807. /*
  808. * Trouble is that we may no longer disable interupts in the fast path
  809. * So in order to make the debug calls that expect irqs to be
  810. * disabled we need to disable interrupts temporarily.
  811. */
  812. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  813. {
  814. unsigned long flags;
  815. local_irq_save(flags);
  816. kmemcheck_slab_free(s, x, s->object_size);
  817. debug_check_no_locks_freed(x, s->object_size);
  818. local_irq_restore(flags);
  819. }
  820. #endif
  821. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  822. debug_check_no_obj_freed(x, s->object_size);
  823. }
  824. /*
  825. * Tracking of fully allocated slabs for debugging purposes.
  826. *
  827. * list_lock must be held.
  828. */
  829. static void add_full(struct kmem_cache *s,
  830. struct kmem_cache_node *n, struct page *page)
  831. {
  832. if (!(s->flags & SLAB_STORE_USER))
  833. return;
  834. list_add(&page->lru, &n->full);
  835. }
  836. /*
  837. * list_lock must be held.
  838. */
  839. static void remove_full(struct kmem_cache *s, struct page *page)
  840. {
  841. if (!(s->flags & SLAB_STORE_USER))
  842. return;
  843. list_del(&page->lru);
  844. }
  845. /* Tracking of the number of slabs for debugging purposes */
  846. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  847. {
  848. struct kmem_cache_node *n = get_node(s, node);
  849. return atomic_long_read(&n->nr_slabs);
  850. }
  851. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  852. {
  853. return atomic_long_read(&n->nr_slabs);
  854. }
  855. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  856. {
  857. struct kmem_cache_node *n = get_node(s, node);
  858. /*
  859. * May be called early in order to allocate a slab for the
  860. * kmem_cache_node structure. Solve the chicken-egg
  861. * dilemma by deferring the increment of the count during
  862. * bootstrap (see early_kmem_cache_node_alloc).
  863. */
  864. if (likely(n)) {
  865. atomic_long_inc(&n->nr_slabs);
  866. atomic_long_add(objects, &n->total_objects);
  867. }
  868. }
  869. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  870. {
  871. struct kmem_cache_node *n = get_node(s, node);
  872. atomic_long_dec(&n->nr_slabs);
  873. atomic_long_sub(objects, &n->total_objects);
  874. }
  875. /* Object debug checks for alloc/free paths */
  876. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  877. void *object)
  878. {
  879. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  880. return;
  881. init_object(s, object, SLUB_RED_INACTIVE);
  882. init_tracking(s, object);
  883. }
  884. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  885. void *object, unsigned long addr)
  886. {
  887. if (!check_slab(s, page))
  888. goto bad;
  889. if (!check_valid_pointer(s, page, object)) {
  890. object_err(s, page, object, "Freelist Pointer check fails");
  891. goto bad;
  892. }
  893. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  894. goto bad;
  895. /* Success perform special debug activities for allocs */
  896. if (s->flags & SLAB_STORE_USER)
  897. set_track(s, object, TRACK_ALLOC, addr);
  898. trace(s, page, object, 1);
  899. init_object(s, object, SLUB_RED_ACTIVE);
  900. return 1;
  901. bad:
  902. if (PageSlab(page)) {
  903. /*
  904. * If this is a slab page then lets do the best we can
  905. * to avoid issues in the future. Marking all objects
  906. * as used avoids touching the remaining objects.
  907. */
  908. slab_fix(s, "Marking all objects used");
  909. page->inuse = page->objects;
  910. page->freelist = NULL;
  911. }
  912. return 0;
  913. }
  914. static noinline struct kmem_cache_node *free_debug_processing(
  915. struct kmem_cache *s, struct page *page, void *object,
  916. unsigned long addr, unsigned long *flags)
  917. {
  918. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  919. spin_lock_irqsave(&n->list_lock, *flags);
  920. slab_lock(page);
  921. if (!check_slab(s, page))
  922. goto fail;
  923. if (!check_valid_pointer(s, page, object)) {
  924. slab_err(s, page, "Invalid object pointer 0x%p", object);
  925. goto fail;
  926. }
  927. if (on_freelist(s, page, object)) {
  928. object_err(s, page, object, "Object already free");
  929. goto fail;
  930. }
  931. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  932. goto out;
  933. if (unlikely(s != page->slab_cache)) {
  934. if (!PageSlab(page)) {
  935. slab_err(s, page, "Attempt to free object(0x%p) "
  936. "outside of slab", object);
  937. } else if (!page->slab_cache) {
  938. printk(KERN_ERR
  939. "SLUB <none>: no slab for object 0x%p.\n",
  940. object);
  941. dump_stack();
  942. } else
  943. object_err(s, page, object,
  944. "page slab pointer corrupt.");
  945. goto fail;
  946. }
  947. if (s->flags & SLAB_STORE_USER)
  948. set_track(s, object, TRACK_FREE, addr);
  949. trace(s, page, object, 0);
  950. init_object(s, object, SLUB_RED_INACTIVE);
  951. out:
  952. slab_unlock(page);
  953. /*
  954. * Keep node_lock to preserve integrity
  955. * until the object is actually freed
  956. */
  957. return n;
  958. fail:
  959. slab_unlock(page);
  960. spin_unlock_irqrestore(&n->list_lock, *flags);
  961. slab_fix(s, "Object at 0x%p not freed", object);
  962. return NULL;
  963. }
  964. static int __init setup_slub_debug(char *str)
  965. {
  966. slub_debug = DEBUG_DEFAULT_FLAGS;
  967. if (*str++ != '=' || !*str)
  968. /*
  969. * No options specified. Switch on full debugging.
  970. */
  971. goto out;
  972. if (*str == ',')
  973. /*
  974. * No options but restriction on slabs. This means full
  975. * debugging for slabs matching a pattern.
  976. */
  977. goto check_slabs;
  978. if (tolower(*str) == 'o') {
  979. /*
  980. * Avoid enabling debugging on caches if its minimum order
  981. * would increase as a result.
  982. */
  983. disable_higher_order_debug = 1;
  984. goto out;
  985. }
  986. slub_debug = 0;
  987. if (*str == '-')
  988. /*
  989. * Switch off all debugging measures.
  990. */
  991. goto out;
  992. /*
  993. * Determine which debug features should be switched on
  994. */
  995. for (; *str && *str != ','; str++) {
  996. switch (tolower(*str)) {
  997. case 'f':
  998. slub_debug |= SLAB_DEBUG_FREE;
  999. break;
  1000. case 'z':
  1001. slub_debug |= SLAB_RED_ZONE;
  1002. break;
  1003. case 'p':
  1004. slub_debug |= SLAB_POISON;
  1005. break;
  1006. case 'u':
  1007. slub_debug |= SLAB_STORE_USER;
  1008. break;
  1009. case 't':
  1010. slub_debug |= SLAB_TRACE;
  1011. break;
  1012. case 'a':
  1013. slub_debug |= SLAB_FAILSLAB;
  1014. break;
  1015. default:
  1016. printk(KERN_ERR "slub_debug option '%c' "
  1017. "unknown. skipped\n", *str);
  1018. }
  1019. }
  1020. check_slabs:
  1021. if (*str == ',')
  1022. slub_debug_slabs = str + 1;
  1023. out:
  1024. return 1;
  1025. }
  1026. __setup("slub_debug", setup_slub_debug);
  1027. static unsigned long kmem_cache_flags(unsigned long object_size,
  1028. unsigned long flags, const char *name,
  1029. void (*ctor)(void *))
  1030. {
  1031. /*
  1032. * Enable debugging if selected on the kernel commandline.
  1033. */
  1034. if (slub_debug && (!slub_debug_slabs ||
  1035. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1036. flags |= slub_debug;
  1037. return flags;
  1038. }
  1039. #else
  1040. static inline void setup_object_debug(struct kmem_cache *s,
  1041. struct page *page, void *object) {}
  1042. static inline int alloc_debug_processing(struct kmem_cache *s,
  1043. struct page *page, void *object, unsigned long addr) { return 0; }
  1044. static inline struct kmem_cache_node *free_debug_processing(
  1045. struct kmem_cache *s, struct page *page, void *object,
  1046. unsigned long addr, unsigned long *flags) { return NULL; }
  1047. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1048. { return 1; }
  1049. static inline int check_object(struct kmem_cache *s, struct page *page,
  1050. void *object, u8 val) { return 1; }
  1051. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1052. struct page *page) {}
  1053. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1054. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1055. unsigned long flags, const char *name,
  1056. void (*ctor)(void *))
  1057. {
  1058. return flags;
  1059. }
  1060. #define slub_debug 0
  1061. #define disable_higher_order_debug 0
  1062. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1063. { return 0; }
  1064. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1065. { return 0; }
  1066. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1067. int objects) {}
  1068. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1069. int objects) {}
  1070. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1071. { return 0; }
  1072. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1073. void *object) {}
  1074. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1075. #endif /* CONFIG_SLUB_DEBUG */
  1076. /*
  1077. * Slab allocation and freeing
  1078. */
  1079. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1080. struct kmem_cache_order_objects oo)
  1081. {
  1082. int order = oo_order(oo);
  1083. flags |= __GFP_NOTRACK;
  1084. if (node == NUMA_NO_NODE)
  1085. return alloc_pages(flags, order);
  1086. else
  1087. return alloc_pages_exact_node(node, flags, order);
  1088. }
  1089. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1090. {
  1091. struct page *page;
  1092. struct kmem_cache_order_objects oo = s->oo;
  1093. gfp_t alloc_gfp;
  1094. flags &= gfp_allowed_mask;
  1095. if (flags & __GFP_WAIT)
  1096. local_irq_enable();
  1097. flags |= s->allocflags;
  1098. /*
  1099. * Let the initial higher-order allocation fail under memory pressure
  1100. * so we fall-back to the minimum order allocation.
  1101. */
  1102. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1103. page = alloc_slab_page(alloc_gfp, node, oo);
  1104. if (unlikely(!page)) {
  1105. oo = s->min;
  1106. /*
  1107. * Allocation may have failed due to fragmentation.
  1108. * Try a lower order alloc if possible
  1109. */
  1110. page = alloc_slab_page(flags, node, oo);
  1111. if (page)
  1112. stat(s, ORDER_FALLBACK);
  1113. }
  1114. if (kmemcheck_enabled && page
  1115. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1116. int pages = 1 << oo_order(oo);
  1117. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1118. /*
  1119. * Objects from caches that have a constructor don't get
  1120. * cleared when they're allocated, so we need to do it here.
  1121. */
  1122. if (s->ctor)
  1123. kmemcheck_mark_uninitialized_pages(page, pages);
  1124. else
  1125. kmemcheck_mark_unallocated_pages(page, pages);
  1126. }
  1127. if (flags & __GFP_WAIT)
  1128. local_irq_disable();
  1129. if (!page)
  1130. return NULL;
  1131. page->objects = oo_objects(oo);
  1132. mod_zone_page_state(page_zone(page),
  1133. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1134. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1135. 1 << oo_order(oo));
  1136. return page;
  1137. }
  1138. static void setup_object(struct kmem_cache *s, struct page *page,
  1139. void *object)
  1140. {
  1141. setup_object_debug(s, page, object);
  1142. if (unlikely(s->ctor))
  1143. s->ctor(object);
  1144. }
  1145. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1146. {
  1147. struct page *page;
  1148. void *start;
  1149. void *last;
  1150. void *p;
  1151. int order;
  1152. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1153. page = allocate_slab(s,
  1154. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1155. if (!page)
  1156. goto out;
  1157. order = compound_order(page);
  1158. inc_slabs_node(s, page_to_nid(page), page->objects);
  1159. memcg_bind_pages(s, order);
  1160. page->slab_cache = s;
  1161. __SetPageSlab(page);
  1162. if (page->pfmemalloc)
  1163. SetPageSlabPfmemalloc(page);
  1164. start = page_address(page);
  1165. if (unlikely(s->flags & SLAB_POISON))
  1166. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1167. last = start;
  1168. for_each_object(p, s, start, page->objects) {
  1169. setup_object(s, page, last);
  1170. set_freepointer(s, last, p);
  1171. last = p;
  1172. }
  1173. setup_object(s, page, last);
  1174. set_freepointer(s, last, NULL);
  1175. page->freelist = start;
  1176. page->inuse = page->objects;
  1177. page->frozen = 1;
  1178. out:
  1179. return page;
  1180. }
  1181. static void __free_slab(struct kmem_cache *s, struct page *page)
  1182. {
  1183. int order = compound_order(page);
  1184. int pages = 1 << order;
  1185. if (kmem_cache_debug(s)) {
  1186. void *p;
  1187. slab_pad_check(s, page);
  1188. for_each_object(p, s, page_address(page),
  1189. page->objects)
  1190. check_object(s, page, p, SLUB_RED_INACTIVE);
  1191. }
  1192. kmemcheck_free_shadow(page, compound_order(page));
  1193. mod_zone_page_state(page_zone(page),
  1194. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1195. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1196. -pages);
  1197. __ClearPageSlabPfmemalloc(page);
  1198. __ClearPageSlab(page);
  1199. memcg_release_pages(s, order);
  1200. reset_page_mapcount(page);
  1201. if (current->reclaim_state)
  1202. current->reclaim_state->reclaimed_slab += pages;
  1203. __free_memcg_kmem_pages(page, order);
  1204. }
  1205. #define need_reserve_slab_rcu \
  1206. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1207. static void rcu_free_slab(struct rcu_head *h)
  1208. {
  1209. struct page *page;
  1210. if (need_reserve_slab_rcu)
  1211. page = virt_to_head_page(h);
  1212. else
  1213. page = container_of((struct list_head *)h, struct page, lru);
  1214. __free_slab(page->slab_cache, page);
  1215. }
  1216. static void free_slab(struct kmem_cache *s, struct page *page)
  1217. {
  1218. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1219. struct rcu_head *head;
  1220. if (need_reserve_slab_rcu) {
  1221. int order = compound_order(page);
  1222. int offset = (PAGE_SIZE << order) - s->reserved;
  1223. VM_BUG_ON(s->reserved != sizeof(*head));
  1224. head = page_address(page) + offset;
  1225. } else {
  1226. /*
  1227. * RCU free overloads the RCU head over the LRU
  1228. */
  1229. head = (void *)&page->lru;
  1230. }
  1231. call_rcu(head, rcu_free_slab);
  1232. } else
  1233. __free_slab(s, page);
  1234. }
  1235. static void discard_slab(struct kmem_cache *s, struct page *page)
  1236. {
  1237. dec_slabs_node(s, page_to_nid(page), page->objects);
  1238. free_slab(s, page);
  1239. }
  1240. /*
  1241. * Management of partially allocated slabs.
  1242. *
  1243. * list_lock must be held.
  1244. */
  1245. static inline void add_partial(struct kmem_cache_node *n,
  1246. struct page *page, int tail)
  1247. {
  1248. n->nr_partial++;
  1249. if (tail == DEACTIVATE_TO_TAIL)
  1250. list_add_tail(&page->lru, &n->partial);
  1251. else
  1252. list_add(&page->lru, &n->partial);
  1253. }
  1254. /*
  1255. * list_lock must be held.
  1256. */
  1257. static inline void remove_partial(struct kmem_cache_node *n,
  1258. struct page *page)
  1259. {
  1260. list_del(&page->lru);
  1261. n->nr_partial--;
  1262. }
  1263. /*
  1264. * Remove slab from the partial list, freeze it and
  1265. * return the pointer to the freelist.
  1266. *
  1267. * Returns a list of objects or NULL if it fails.
  1268. *
  1269. * Must hold list_lock since we modify the partial list.
  1270. */
  1271. static inline void *acquire_slab(struct kmem_cache *s,
  1272. struct kmem_cache_node *n, struct page *page,
  1273. int mode, int *objects)
  1274. {
  1275. void *freelist;
  1276. unsigned long counters;
  1277. struct page new;
  1278. /*
  1279. * Zap the freelist and set the frozen bit.
  1280. * The old freelist is the list of objects for the
  1281. * per cpu allocation list.
  1282. */
  1283. freelist = page->freelist;
  1284. counters = page->counters;
  1285. new.counters = counters;
  1286. *objects = new.objects - new.inuse;
  1287. if (mode) {
  1288. new.inuse = page->objects;
  1289. new.freelist = NULL;
  1290. } else {
  1291. new.freelist = freelist;
  1292. }
  1293. VM_BUG_ON(new.frozen);
  1294. new.frozen = 1;
  1295. if (!__cmpxchg_double_slab(s, page,
  1296. freelist, counters,
  1297. new.freelist, new.counters,
  1298. "acquire_slab"))
  1299. return NULL;
  1300. remove_partial(n, page);
  1301. WARN_ON(!freelist);
  1302. return freelist;
  1303. }
  1304. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1305. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1306. /*
  1307. * Try to allocate a partial slab from a specific node.
  1308. */
  1309. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1310. struct kmem_cache_cpu *c, gfp_t flags)
  1311. {
  1312. struct page *page, *page2;
  1313. void *object = NULL;
  1314. int available = 0;
  1315. int objects;
  1316. /*
  1317. * Racy check. If we mistakenly see no partial slabs then we
  1318. * just allocate an empty slab. If we mistakenly try to get a
  1319. * partial slab and there is none available then get_partials()
  1320. * will return NULL.
  1321. */
  1322. if (!n || !n->nr_partial)
  1323. return NULL;
  1324. spin_lock(&n->list_lock);
  1325. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1326. void *t;
  1327. if (!pfmemalloc_match(page, flags))
  1328. continue;
  1329. t = acquire_slab(s, n, page, object == NULL, &objects);
  1330. if (!t)
  1331. break;
  1332. available += objects;
  1333. if (!object) {
  1334. c->page = page;
  1335. stat(s, ALLOC_FROM_PARTIAL);
  1336. object = t;
  1337. } else {
  1338. put_cpu_partial(s, page, 0);
  1339. stat(s, CPU_PARTIAL_NODE);
  1340. }
  1341. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1342. break;
  1343. }
  1344. spin_unlock(&n->list_lock);
  1345. return object;
  1346. }
  1347. /*
  1348. * Get a page from somewhere. Search in increasing NUMA distances.
  1349. */
  1350. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1351. struct kmem_cache_cpu *c)
  1352. {
  1353. #ifdef CONFIG_NUMA
  1354. struct zonelist *zonelist;
  1355. struct zoneref *z;
  1356. struct zone *zone;
  1357. enum zone_type high_zoneidx = gfp_zone(flags);
  1358. void *object;
  1359. unsigned int cpuset_mems_cookie;
  1360. /*
  1361. * The defrag ratio allows a configuration of the tradeoffs between
  1362. * inter node defragmentation and node local allocations. A lower
  1363. * defrag_ratio increases the tendency to do local allocations
  1364. * instead of attempting to obtain partial slabs from other nodes.
  1365. *
  1366. * If the defrag_ratio is set to 0 then kmalloc() always
  1367. * returns node local objects. If the ratio is higher then kmalloc()
  1368. * may return off node objects because partial slabs are obtained
  1369. * from other nodes and filled up.
  1370. *
  1371. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1372. * defrag_ratio = 1000) then every (well almost) allocation will
  1373. * first attempt to defrag slab caches on other nodes. This means
  1374. * scanning over all nodes to look for partial slabs which may be
  1375. * expensive if we do it every time we are trying to find a slab
  1376. * with available objects.
  1377. */
  1378. if (!s->remote_node_defrag_ratio ||
  1379. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1380. return NULL;
  1381. do {
  1382. cpuset_mems_cookie = get_mems_allowed();
  1383. zonelist = node_zonelist(slab_node(), flags);
  1384. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1385. struct kmem_cache_node *n;
  1386. n = get_node(s, zone_to_nid(zone));
  1387. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1388. n->nr_partial > s->min_partial) {
  1389. object = get_partial_node(s, n, c, flags);
  1390. if (object) {
  1391. /*
  1392. * Return the object even if
  1393. * put_mems_allowed indicated that
  1394. * the cpuset mems_allowed was
  1395. * updated in parallel. It's a
  1396. * harmless race between the alloc
  1397. * and the cpuset update.
  1398. */
  1399. put_mems_allowed(cpuset_mems_cookie);
  1400. return object;
  1401. }
  1402. }
  1403. }
  1404. } while (!put_mems_allowed(cpuset_mems_cookie));
  1405. #endif
  1406. return NULL;
  1407. }
  1408. /*
  1409. * Get a partial page, lock it and return it.
  1410. */
  1411. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1412. struct kmem_cache_cpu *c)
  1413. {
  1414. void *object;
  1415. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1416. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1417. if (object || node != NUMA_NO_NODE)
  1418. return object;
  1419. return get_any_partial(s, flags, c);
  1420. }
  1421. #ifdef CONFIG_PREEMPT
  1422. /*
  1423. * Calculate the next globally unique transaction for disambiguiation
  1424. * during cmpxchg. The transactions start with the cpu number and are then
  1425. * incremented by CONFIG_NR_CPUS.
  1426. */
  1427. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1428. #else
  1429. /*
  1430. * No preemption supported therefore also no need to check for
  1431. * different cpus.
  1432. */
  1433. #define TID_STEP 1
  1434. #endif
  1435. static inline unsigned long next_tid(unsigned long tid)
  1436. {
  1437. return tid + TID_STEP;
  1438. }
  1439. static inline unsigned int tid_to_cpu(unsigned long tid)
  1440. {
  1441. return tid % TID_STEP;
  1442. }
  1443. static inline unsigned long tid_to_event(unsigned long tid)
  1444. {
  1445. return tid / TID_STEP;
  1446. }
  1447. static inline unsigned int init_tid(int cpu)
  1448. {
  1449. return cpu;
  1450. }
  1451. static inline void note_cmpxchg_failure(const char *n,
  1452. const struct kmem_cache *s, unsigned long tid)
  1453. {
  1454. #ifdef SLUB_DEBUG_CMPXCHG
  1455. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1456. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1457. #ifdef CONFIG_PREEMPT
  1458. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1459. printk("due to cpu change %d -> %d\n",
  1460. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1461. else
  1462. #endif
  1463. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1464. printk("due to cpu running other code. Event %ld->%ld\n",
  1465. tid_to_event(tid), tid_to_event(actual_tid));
  1466. else
  1467. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1468. actual_tid, tid, next_tid(tid));
  1469. #endif
  1470. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1471. }
  1472. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1473. {
  1474. int cpu;
  1475. for_each_possible_cpu(cpu)
  1476. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1477. }
  1478. /*
  1479. * Remove the cpu slab
  1480. */
  1481. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1482. {
  1483. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1484. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1485. int lock = 0;
  1486. enum slab_modes l = M_NONE, m = M_NONE;
  1487. void *nextfree;
  1488. int tail = DEACTIVATE_TO_HEAD;
  1489. struct page new;
  1490. struct page old;
  1491. if (page->freelist) {
  1492. stat(s, DEACTIVATE_REMOTE_FREES);
  1493. tail = DEACTIVATE_TO_TAIL;
  1494. }
  1495. /*
  1496. * Stage one: Free all available per cpu objects back
  1497. * to the page freelist while it is still frozen. Leave the
  1498. * last one.
  1499. *
  1500. * There is no need to take the list->lock because the page
  1501. * is still frozen.
  1502. */
  1503. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1504. void *prior;
  1505. unsigned long counters;
  1506. do {
  1507. prior = page->freelist;
  1508. counters = page->counters;
  1509. set_freepointer(s, freelist, prior);
  1510. new.counters = counters;
  1511. new.inuse--;
  1512. VM_BUG_ON(!new.frozen);
  1513. } while (!__cmpxchg_double_slab(s, page,
  1514. prior, counters,
  1515. freelist, new.counters,
  1516. "drain percpu freelist"));
  1517. freelist = nextfree;
  1518. }
  1519. /*
  1520. * Stage two: Ensure that the page is unfrozen while the
  1521. * list presence reflects the actual number of objects
  1522. * during unfreeze.
  1523. *
  1524. * We setup the list membership and then perform a cmpxchg
  1525. * with the count. If there is a mismatch then the page
  1526. * is not unfrozen but the page is on the wrong list.
  1527. *
  1528. * Then we restart the process which may have to remove
  1529. * the page from the list that we just put it on again
  1530. * because the number of objects in the slab may have
  1531. * changed.
  1532. */
  1533. redo:
  1534. old.freelist = page->freelist;
  1535. old.counters = page->counters;
  1536. VM_BUG_ON(!old.frozen);
  1537. /* Determine target state of the slab */
  1538. new.counters = old.counters;
  1539. if (freelist) {
  1540. new.inuse--;
  1541. set_freepointer(s, freelist, old.freelist);
  1542. new.freelist = freelist;
  1543. } else
  1544. new.freelist = old.freelist;
  1545. new.frozen = 0;
  1546. if (!new.inuse && n->nr_partial > s->min_partial)
  1547. m = M_FREE;
  1548. else if (new.freelist) {
  1549. m = M_PARTIAL;
  1550. if (!lock) {
  1551. lock = 1;
  1552. /*
  1553. * Taking the spinlock removes the possiblity
  1554. * that acquire_slab() will see a slab page that
  1555. * is frozen
  1556. */
  1557. spin_lock(&n->list_lock);
  1558. }
  1559. } else {
  1560. m = M_FULL;
  1561. if (kmem_cache_debug(s) && !lock) {
  1562. lock = 1;
  1563. /*
  1564. * This also ensures that the scanning of full
  1565. * slabs from diagnostic functions will not see
  1566. * any frozen slabs.
  1567. */
  1568. spin_lock(&n->list_lock);
  1569. }
  1570. }
  1571. if (l != m) {
  1572. if (l == M_PARTIAL)
  1573. remove_partial(n, page);
  1574. else if (l == M_FULL)
  1575. remove_full(s, page);
  1576. if (m == M_PARTIAL) {
  1577. add_partial(n, page, tail);
  1578. stat(s, tail);
  1579. } else if (m == M_FULL) {
  1580. stat(s, DEACTIVATE_FULL);
  1581. add_full(s, n, page);
  1582. }
  1583. }
  1584. l = m;
  1585. if (!__cmpxchg_double_slab(s, page,
  1586. old.freelist, old.counters,
  1587. new.freelist, new.counters,
  1588. "unfreezing slab"))
  1589. goto redo;
  1590. if (lock)
  1591. spin_unlock(&n->list_lock);
  1592. if (m == M_FREE) {
  1593. stat(s, DEACTIVATE_EMPTY);
  1594. discard_slab(s, page);
  1595. stat(s, FREE_SLAB);
  1596. }
  1597. }
  1598. /*
  1599. * Unfreeze all the cpu partial slabs.
  1600. *
  1601. * This function must be called with interrupts disabled
  1602. * for the cpu using c (or some other guarantee must be there
  1603. * to guarantee no concurrent accesses).
  1604. */
  1605. static void unfreeze_partials(struct kmem_cache *s,
  1606. struct kmem_cache_cpu *c)
  1607. {
  1608. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1609. struct page *page, *discard_page = NULL;
  1610. while ((page = c->partial)) {
  1611. struct page new;
  1612. struct page old;
  1613. c->partial = page->next;
  1614. n2 = get_node(s, page_to_nid(page));
  1615. if (n != n2) {
  1616. if (n)
  1617. spin_unlock(&n->list_lock);
  1618. n = n2;
  1619. spin_lock(&n->list_lock);
  1620. }
  1621. do {
  1622. old.freelist = page->freelist;
  1623. old.counters = page->counters;
  1624. VM_BUG_ON(!old.frozen);
  1625. new.counters = old.counters;
  1626. new.freelist = old.freelist;
  1627. new.frozen = 0;
  1628. } while (!__cmpxchg_double_slab(s, page,
  1629. old.freelist, old.counters,
  1630. new.freelist, new.counters,
  1631. "unfreezing slab"));
  1632. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1633. page->next = discard_page;
  1634. discard_page = page;
  1635. } else {
  1636. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1637. stat(s, FREE_ADD_PARTIAL);
  1638. }
  1639. }
  1640. if (n)
  1641. spin_unlock(&n->list_lock);
  1642. while (discard_page) {
  1643. page = discard_page;
  1644. discard_page = discard_page->next;
  1645. stat(s, DEACTIVATE_EMPTY);
  1646. discard_slab(s, page);
  1647. stat(s, FREE_SLAB);
  1648. }
  1649. }
  1650. /*
  1651. * Put a page that was just frozen (in __slab_free) into a partial page
  1652. * slot if available. This is done without interrupts disabled and without
  1653. * preemption disabled. The cmpxchg is racy and may put the partial page
  1654. * onto a random cpus partial slot.
  1655. *
  1656. * If we did not find a slot then simply move all the partials to the
  1657. * per node partial list.
  1658. */
  1659. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1660. {
  1661. struct page *oldpage;
  1662. int pages;
  1663. int pobjects;
  1664. do {
  1665. pages = 0;
  1666. pobjects = 0;
  1667. oldpage = this_cpu_read(s->cpu_slab->partial);
  1668. if (oldpage) {
  1669. pobjects = oldpage->pobjects;
  1670. pages = oldpage->pages;
  1671. if (drain && pobjects > s->cpu_partial) {
  1672. unsigned long flags;
  1673. /*
  1674. * partial array is full. Move the existing
  1675. * set to the per node partial list.
  1676. */
  1677. local_irq_save(flags);
  1678. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1679. local_irq_restore(flags);
  1680. oldpage = NULL;
  1681. pobjects = 0;
  1682. pages = 0;
  1683. stat(s, CPU_PARTIAL_DRAIN);
  1684. }
  1685. }
  1686. pages++;
  1687. pobjects += page->objects - page->inuse;
  1688. page->pages = pages;
  1689. page->pobjects = pobjects;
  1690. page->next = oldpage;
  1691. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1692. }
  1693. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1694. {
  1695. stat(s, CPUSLAB_FLUSH);
  1696. deactivate_slab(s, c->page, c->freelist);
  1697. c->tid = next_tid(c->tid);
  1698. c->page = NULL;
  1699. c->freelist = NULL;
  1700. }
  1701. /*
  1702. * Flush cpu slab.
  1703. *
  1704. * Called from IPI handler with interrupts disabled.
  1705. */
  1706. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1707. {
  1708. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1709. if (likely(c)) {
  1710. if (c->page)
  1711. flush_slab(s, c);
  1712. unfreeze_partials(s, c);
  1713. }
  1714. }
  1715. static void flush_cpu_slab(void *d)
  1716. {
  1717. struct kmem_cache *s = d;
  1718. __flush_cpu_slab(s, smp_processor_id());
  1719. }
  1720. static bool has_cpu_slab(int cpu, void *info)
  1721. {
  1722. struct kmem_cache *s = info;
  1723. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1724. return c->page || c->partial;
  1725. }
  1726. static void flush_all(struct kmem_cache *s)
  1727. {
  1728. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1729. }
  1730. /*
  1731. * Check if the objects in a per cpu structure fit numa
  1732. * locality expectations.
  1733. */
  1734. static inline int node_match(struct page *page, int node)
  1735. {
  1736. #ifdef CONFIG_NUMA
  1737. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1738. return 0;
  1739. #endif
  1740. return 1;
  1741. }
  1742. static int count_free(struct page *page)
  1743. {
  1744. return page->objects - page->inuse;
  1745. }
  1746. static unsigned long count_partial(struct kmem_cache_node *n,
  1747. int (*get_count)(struct page *))
  1748. {
  1749. unsigned long flags;
  1750. unsigned long x = 0;
  1751. struct page *page;
  1752. spin_lock_irqsave(&n->list_lock, flags);
  1753. list_for_each_entry(page, &n->partial, lru)
  1754. x += get_count(page);
  1755. spin_unlock_irqrestore(&n->list_lock, flags);
  1756. return x;
  1757. }
  1758. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1759. {
  1760. #ifdef CONFIG_SLUB_DEBUG
  1761. return atomic_long_read(&n->total_objects);
  1762. #else
  1763. return 0;
  1764. #endif
  1765. }
  1766. static noinline void
  1767. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1768. {
  1769. int node;
  1770. printk(KERN_WARNING
  1771. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1772. nid, gfpflags);
  1773. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1774. "default order: %d, min order: %d\n", s->name, s->object_size,
  1775. s->size, oo_order(s->oo), oo_order(s->min));
  1776. if (oo_order(s->min) > get_order(s->object_size))
  1777. printk(KERN_WARNING " %s debugging increased min order, use "
  1778. "slub_debug=O to disable.\n", s->name);
  1779. for_each_online_node(node) {
  1780. struct kmem_cache_node *n = get_node(s, node);
  1781. unsigned long nr_slabs;
  1782. unsigned long nr_objs;
  1783. unsigned long nr_free;
  1784. if (!n)
  1785. continue;
  1786. nr_free = count_partial(n, count_free);
  1787. nr_slabs = node_nr_slabs(n);
  1788. nr_objs = node_nr_objs(n);
  1789. printk(KERN_WARNING
  1790. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1791. node, nr_slabs, nr_objs, nr_free);
  1792. }
  1793. }
  1794. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1795. int node, struct kmem_cache_cpu **pc)
  1796. {
  1797. void *freelist;
  1798. struct kmem_cache_cpu *c = *pc;
  1799. struct page *page;
  1800. freelist = get_partial(s, flags, node, c);
  1801. if (freelist)
  1802. return freelist;
  1803. page = new_slab(s, flags, node);
  1804. if (page) {
  1805. c = __this_cpu_ptr(s->cpu_slab);
  1806. if (c->page)
  1807. flush_slab(s, c);
  1808. /*
  1809. * No other reference to the page yet so we can
  1810. * muck around with it freely without cmpxchg
  1811. */
  1812. freelist = page->freelist;
  1813. page->freelist = NULL;
  1814. stat(s, ALLOC_SLAB);
  1815. c->page = page;
  1816. *pc = c;
  1817. } else
  1818. freelist = NULL;
  1819. return freelist;
  1820. }
  1821. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1822. {
  1823. if (unlikely(PageSlabPfmemalloc(page)))
  1824. return gfp_pfmemalloc_allowed(gfpflags);
  1825. return true;
  1826. }
  1827. /*
  1828. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1829. * or deactivate the page.
  1830. *
  1831. * The page is still frozen if the return value is not NULL.
  1832. *
  1833. * If this function returns NULL then the page has been unfrozen.
  1834. *
  1835. * This function must be called with interrupt disabled.
  1836. */
  1837. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1838. {
  1839. struct page new;
  1840. unsigned long counters;
  1841. void *freelist;
  1842. do {
  1843. freelist = page->freelist;
  1844. counters = page->counters;
  1845. new.counters = counters;
  1846. VM_BUG_ON(!new.frozen);
  1847. new.inuse = page->objects;
  1848. new.frozen = freelist != NULL;
  1849. } while (!__cmpxchg_double_slab(s, page,
  1850. freelist, counters,
  1851. NULL, new.counters,
  1852. "get_freelist"));
  1853. return freelist;
  1854. }
  1855. /*
  1856. * Slow path. The lockless freelist is empty or we need to perform
  1857. * debugging duties.
  1858. *
  1859. * Processing is still very fast if new objects have been freed to the
  1860. * regular freelist. In that case we simply take over the regular freelist
  1861. * as the lockless freelist and zap the regular freelist.
  1862. *
  1863. * If that is not working then we fall back to the partial lists. We take the
  1864. * first element of the freelist as the object to allocate now and move the
  1865. * rest of the freelist to the lockless freelist.
  1866. *
  1867. * And if we were unable to get a new slab from the partial slab lists then
  1868. * we need to allocate a new slab. This is the slowest path since it involves
  1869. * a call to the page allocator and the setup of a new slab.
  1870. */
  1871. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1872. unsigned long addr, struct kmem_cache_cpu *c)
  1873. {
  1874. void *freelist;
  1875. struct page *page;
  1876. unsigned long flags;
  1877. local_irq_save(flags);
  1878. #ifdef CONFIG_PREEMPT
  1879. /*
  1880. * We may have been preempted and rescheduled on a different
  1881. * cpu before disabling interrupts. Need to reload cpu area
  1882. * pointer.
  1883. */
  1884. c = this_cpu_ptr(s->cpu_slab);
  1885. #endif
  1886. page = c->page;
  1887. if (!page)
  1888. goto new_slab;
  1889. redo:
  1890. if (unlikely(!node_match(page, node))) {
  1891. stat(s, ALLOC_NODE_MISMATCH);
  1892. deactivate_slab(s, page, c->freelist);
  1893. c->page = NULL;
  1894. c->freelist = NULL;
  1895. goto new_slab;
  1896. }
  1897. /*
  1898. * By rights, we should be searching for a slab page that was
  1899. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1900. * information when the page leaves the per-cpu allocator
  1901. */
  1902. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1903. deactivate_slab(s, page, c->freelist);
  1904. c->page = NULL;
  1905. c->freelist = NULL;
  1906. goto new_slab;
  1907. }
  1908. /* must check again c->freelist in case of cpu migration or IRQ */
  1909. freelist = c->freelist;
  1910. if (freelist)
  1911. goto load_freelist;
  1912. stat(s, ALLOC_SLOWPATH);
  1913. freelist = get_freelist(s, page);
  1914. if (!freelist) {
  1915. c->page = NULL;
  1916. stat(s, DEACTIVATE_BYPASS);
  1917. goto new_slab;
  1918. }
  1919. stat(s, ALLOC_REFILL);
  1920. load_freelist:
  1921. /*
  1922. * freelist is pointing to the list of objects to be used.
  1923. * page is pointing to the page from which the objects are obtained.
  1924. * That page must be frozen for per cpu allocations to work.
  1925. */
  1926. VM_BUG_ON(!c->page->frozen);
  1927. c->freelist = get_freepointer(s, freelist);
  1928. c->tid = next_tid(c->tid);
  1929. local_irq_restore(flags);
  1930. return freelist;
  1931. new_slab:
  1932. if (c->partial) {
  1933. page = c->page = c->partial;
  1934. c->partial = page->next;
  1935. stat(s, CPU_PARTIAL_ALLOC);
  1936. c->freelist = NULL;
  1937. goto redo;
  1938. }
  1939. freelist = new_slab_objects(s, gfpflags, node, &c);
  1940. if (unlikely(!freelist)) {
  1941. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1942. slab_out_of_memory(s, gfpflags, node);
  1943. local_irq_restore(flags);
  1944. return NULL;
  1945. }
  1946. page = c->page;
  1947. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1948. goto load_freelist;
  1949. /* Only entered in the debug case */
  1950. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1951. goto new_slab; /* Slab failed checks. Next slab needed */
  1952. deactivate_slab(s, page, get_freepointer(s, freelist));
  1953. c->page = NULL;
  1954. c->freelist = NULL;
  1955. local_irq_restore(flags);
  1956. return freelist;
  1957. }
  1958. /*
  1959. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1960. * have the fastpath folded into their functions. So no function call
  1961. * overhead for requests that can be satisfied on the fastpath.
  1962. *
  1963. * The fastpath works by first checking if the lockless freelist can be used.
  1964. * If not then __slab_alloc is called for slow processing.
  1965. *
  1966. * Otherwise we can simply pick the next object from the lockless free list.
  1967. */
  1968. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  1969. gfp_t gfpflags, int node, unsigned long addr)
  1970. {
  1971. void **object;
  1972. struct kmem_cache_cpu *c;
  1973. struct page *page;
  1974. unsigned long tid;
  1975. if (slab_pre_alloc_hook(s, gfpflags))
  1976. return NULL;
  1977. s = memcg_kmem_get_cache(s, gfpflags);
  1978. redo:
  1979. /*
  1980. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1981. * enabled. We may switch back and forth between cpus while
  1982. * reading from one cpu area. That does not matter as long
  1983. * as we end up on the original cpu again when doing the cmpxchg.
  1984. *
  1985. * Preemption is disabled for the retrieval of the tid because that
  1986. * must occur from the current processor. We cannot allow rescheduling
  1987. * on a different processor between the determination of the pointer
  1988. * and the retrieval of the tid.
  1989. */
  1990. preempt_disable();
  1991. c = __this_cpu_ptr(s->cpu_slab);
  1992. /*
  1993. * The transaction ids are globally unique per cpu and per operation on
  1994. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1995. * occurs on the right processor and that there was no operation on the
  1996. * linked list in between.
  1997. */
  1998. tid = c->tid;
  1999. preempt_enable();
  2000. object = c->freelist;
  2001. page = c->page;
  2002. if (unlikely(!object || !node_match(page, node)))
  2003. object = __slab_alloc(s, gfpflags, node, addr, c);
  2004. else {
  2005. void *next_object = get_freepointer_safe(s, object);
  2006. /*
  2007. * The cmpxchg will only match if there was no additional
  2008. * operation and if we are on the right processor.
  2009. *
  2010. * The cmpxchg does the following atomically (without lock semantics!)
  2011. * 1. Relocate first pointer to the current per cpu area.
  2012. * 2. Verify that tid and freelist have not been changed
  2013. * 3. If they were not changed replace tid and freelist
  2014. *
  2015. * Since this is without lock semantics the protection is only against
  2016. * code executing on this cpu *not* from access by other cpus.
  2017. */
  2018. if (unlikely(!this_cpu_cmpxchg_double(
  2019. s->cpu_slab->freelist, s->cpu_slab->tid,
  2020. object, tid,
  2021. next_object, next_tid(tid)))) {
  2022. note_cmpxchg_failure("slab_alloc", s, tid);
  2023. goto redo;
  2024. }
  2025. prefetch_freepointer(s, next_object);
  2026. stat(s, ALLOC_FASTPATH);
  2027. }
  2028. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2029. memset(object, 0, s->object_size);
  2030. slab_post_alloc_hook(s, gfpflags, object);
  2031. return object;
  2032. }
  2033. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2034. gfp_t gfpflags, unsigned long addr)
  2035. {
  2036. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2037. }
  2038. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2039. {
  2040. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2041. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2042. return ret;
  2043. }
  2044. EXPORT_SYMBOL(kmem_cache_alloc);
  2045. #ifdef CONFIG_TRACING
  2046. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2047. {
  2048. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2049. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2050. return ret;
  2051. }
  2052. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2053. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2054. {
  2055. void *ret = kmalloc_order(size, flags, order);
  2056. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2057. return ret;
  2058. }
  2059. EXPORT_SYMBOL(kmalloc_order_trace);
  2060. #endif
  2061. #ifdef CONFIG_NUMA
  2062. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2063. {
  2064. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2065. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2066. s->object_size, s->size, gfpflags, node);
  2067. return ret;
  2068. }
  2069. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2070. #ifdef CONFIG_TRACING
  2071. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2072. gfp_t gfpflags,
  2073. int node, size_t size)
  2074. {
  2075. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2076. trace_kmalloc_node(_RET_IP_, ret,
  2077. size, s->size, gfpflags, node);
  2078. return ret;
  2079. }
  2080. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2081. #endif
  2082. #endif
  2083. /*
  2084. * Slow patch handling. This may still be called frequently since objects
  2085. * have a longer lifetime than the cpu slabs in most processing loads.
  2086. *
  2087. * So we still attempt to reduce cache line usage. Just take the slab
  2088. * lock and free the item. If there is no additional partial page
  2089. * handling required then we can return immediately.
  2090. */
  2091. static void __slab_free(struct kmem_cache *s, struct page *page,
  2092. void *x, unsigned long addr)
  2093. {
  2094. void *prior;
  2095. void **object = (void *)x;
  2096. int was_frozen;
  2097. struct page new;
  2098. unsigned long counters;
  2099. struct kmem_cache_node *n = NULL;
  2100. unsigned long uninitialized_var(flags);
  2101. stat(s, FREE_SLOWPATH);
  2102. if (kmem_cache_debug(s) &&
  2103. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2104. return;
  2105. do {
  2106. if (unlikely(n)) {
  2107. spin_unlock_irqrestore(&n->list_lock, flags);
  2108. n = NULL;
  2109. }
  2110. prior = page->freelist;
  2111. counters = page->counters;
  2112. set_freepointer(s, object, prior);
  2113. new.counters = counters;
  2114. was_frozen = new.frozen;
  2115. new.inuse--;
  2116. if ((!new.inuse || !prior) && !was_frozen) {
  2117. if (!kmem_cache_debug(s) && !prior)
  2118. /*
  2119. * Slab was on no list before and will be partially empty
  2120. * We can defer the list move and instead freeze it.
  2121. */
  2122. new.frozen = 1;
  2123. else { /* Needs to be taken off a list */
  2124. n = get_node(s, page_to_nid(page));
  2125. /*
  2126. * Speculatively acquire the list_lock.
  2127. * If the cmpxchg does not succeed then we may
  2128. * drop the list_lock without any processing.
  2129. *
  2130. * Otherwise the list_lock will synchronize with
  2131. * other processors updating the list of slabs.
  2132. */
  2133. spin_lock_irqsave(&n->list_lock, flags);
  2134. }
  2135. }
  2136. } while (!cmpxchg_double_slab(s, page,
  2137. prior, counters,
  2138. object, new.counters,
  2139. "__slab_free"));
  2140. if (likely(!n)) {
  2141. /*
  2142. * If we just froze the page then put it onto the
  2143. * per cpu partial list.
  2144. */
  2145. if (new.frozen && !was_frozen) {
  2146. put_cpu_partial(s, page, 1);
  2147. stat(s, CPU_PARTIAL_FREE);
  2148. }
  2149. /*
  2150. * The list lock was not taken therefore no list
  2151. * activity can be necessary.
  2152. */
  2153. if (was_frozen)
  2154. stat(s, FREE_FROZEN);
  2155. return;
  2156. }
  2157. if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
  2158. goto slab_empty;
  2159. /*
  2160. * Objects left in the slab. If it was not on the partial list before
  2161. * then add it.
  2162. */
  2163. if (kmem_cache_debug(s) && unlikely(!prior)) {
  2164. remove_full(s, page);
  2165. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2166. stat(s, FREE_ADD_PARTIAL);
  2167. }
  2168. spin_unlock_irqrestore(&n->list_lock, flags);
  2169. return;
  2170. slab_empty:
  2171. if (prior) {
  2172. /*
  2173. * Slab on the partial list.
  2174. */
  2175. remove_partial(n, page);
  2176. stat(s, FREE_REMOVE_PARTIAL);
  2177. } else
  2178. /* Slab must be on the full list */
  2179. remove_full(s, page);
  2180. spin_unlock_irqrestore(&n->list_lock, flags);
  2181. stat(s, FREE_SLAB);
  2182. discard_slab(s, page);
  2183. }
  2184. /*
  2185. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2186. * can perform fastpath freeing without additional function calls.
  2187. *
  2188. * The fastpath is only possible if we are freeing to the current cpu slab
  2189. * of this processor. This typically the case if we have just allocated
  2190. * the item before.
  2191. *
  2192. * If fastpath is not possible then fall back to __slab_free where we deal
  2193. * with all sorts of special processing.
  2194. */
  2195. static __always_inline void slab_free(struct kmem_cache *s,
  2196. struct page *page, void *x, unsigned long addr)
  2197. {
  2198. void **object = (void *)x;
  2199. struct kmem_cache_cpu *c;
  2200. unsigned long tid;
  2201. slab_free_hook(s, x);
  2202. redo:
  2203. /*
  2204. * Determine the currently cpus per cpu slab.
  2205. * The cpu may change afterward. However that does not matter since
  2206. * data is retrieved via this pointer. If we are on the same cpu
  2207. * during the cmpxchg then the free will succedd.
  2208. */
  2209. preempt_disable();
  2210. c = __this_cpu_ptr(s->cpu_slab);
  2211. tid = c->tid;
  2212. preempt_enable();
  2213. if (likely(page == c->page)) {
  2214. set_freepointer(s, object, c->freelist);
  2215. if (unlikely(!this_cpu_cmpxchg_double(
  2216. s->cpu_slab->freelist, s->cpu_slab->tid,
  2217. c->freelist, tid,
  2218. object, next_tid(tid)))) {
  2219. note_cmpxchg_failure("slab_free", s, tid);
  2220. goto redo;
  2221. }
  2222. stat(s, FREE_FASTPATH);
  2223. } else
  2224. __slab_free(s, page, x, addr);
  2225. }
  2226. void kmem_cache_free(struct kmem_cache *s, void *x)
  2227. {
  2228. s = cache_from_obj(s, x);
  2229. if (!s)
  2230. return;
  2231. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2232. trace_kmem_cache_free(_RET_IP_, x);
  2233. }
  2234. EXPORT_SYMBOL(kmem_cache_free);
  2235. /*
  2236. * Object placement in a slab is made very easy because we always start at
  2237. * offset 0. If we tune the size of the object to the alignment then we can
  2238. * get the required alignment by putting one properly sized object after
  2239. * another.
  2240. *
  2241. * Notice that the allocation order determines the sizes of the per cpu
  2242. * caches. Each processor has always one slab available for allocations.
  2243. * Increasing the allocation order reduces the number of times that slabs
  2244. * must be moved on and off the partial lists and is therefore a factor in
  2245. * locking overhead.
  2246. */
  2247. /*
  2248. * Mininum / Maximum order of slab pages. This influences locking overhead
  2249. * and slab fragmentation. A higher order reduces the number of partial slabs
  2250. * and increases the number of allocations possible without having to
  2251. * take the list_lock.
  2252. */
  2253. static int slub_min_order;
  2254. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2255. static int slub_min_objects;
  2256. /*
  2257. * Merge control. If this is set then no merging of slab caches will occur.
  2258. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2259. */
  2260. static int slub_nomerge;
  2261. /*
  2262. * Calculate the order of allocation given an slab object size.
  2263. *
  2264. * The order of allocation has significant impact on performance and other
  2265. * system components. Generally order 0 allocations should be preferred since
  2266. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2267. * be problematic to put into order 0 slabs because there may be too much
  2268. * unused space left. We go to a higher order if more than 1/16th of the slab
  2269. * would be wasted.
  2270. *
  2271. * In order to reach satisfactory performance we must ensure that a minimum
  2272. * number of objects is in one slab. Otherwise we may generate too much
  2273. * activity on the partial lists which requires taking the list_lock. This is
  2274. * less a concern for large slabs though which are rarely used.
  2275. *
  2276. * slub_max_order specifies the order where we begin to stop considering the
  2277. * number of objects in a slab as critical. If we reach slub_max_order then
  2278. * we try to keep the page order as low as possible. So we accept more waste
  2279. * of space in favor of a small page order.
  2280. *
  2281. * Higher order allocations also allow the placement of more objects in a
  2282. * slab and thereby reduce object handling overhead. If the user has
  2283. * requested a higher mininum order then we start with that one instead of
  2284. * the smallest order which will fit the object.
  2285. */
  2286. static inline int slab_order(int size, int min_objects,
  2287. int max_order, int fract_leftover, int reserved)
  2288. {
  2289. int order;
  2290. int rem;
  2291. int min_order = slub_min_order;
  2292. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2293. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2294. for (order = max(min_order,
  2295. fls(min_objects * size - 1) - PAGE_SHIFT);
  2296. order <= max_order; order++) {
  2297. unsigned long slab_size = PAGE_SIZE << order;
  2298. if (slab_size < min_objects * size + reserved)
  2299. continue;
  2300. rem = (slab_size - reserved) % size;
  2301. if (rem <= slab_size / fract_leftover)
  2302. break;
  2303. }
  2304. return order;
  2305. }
  2306. static inline int calculate_order(int size, int reserved)
  2307. {
  2308. int order;
  2309. int min_objects;
  2310. int fraction;
  2311. int max_objects;
  2312. /*
  2313. * Attempt to find best configuration for a slab. This
  2314. * works by first attempting to generate a layout with
  2315. * the best configuration and backing off gradually.
  2316. *
  2317. * First we reduce the acceptable waste in a slab. Then
  2318. * we reduce the minimum objects required in a slab.
  2319. */
  2320. min_objects = slub_min_objects;
  2321. if (!min_objects)
  2322. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2323. max_objects = order_objects(slub_max_order, size, reserved);
  2324. min_objects = min(min_objects, max_objects);
  2325. while (min_objects > 1) {
  2326. fraction = 16;
  2327. while (fraction >= 4) {
  2328. order = slab_order(size, min_objects,
  2329. slub_max_order, fraction, reserved);
  2330. if (order <= slub_max_order)
  2331. return order;
  2332. fraction /= 2;
  2333. }
  2334. min_objects--;
  2335. }
  2336. /*
  2337. * We were unable to place multiple objects in a slab. Now
  2338. * lets see if we can place a single object there.
  2339. */
  2340. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2341. if (order <= slub_max_order)
  2342. return order;
  2343. /*
  2344. * Doh this slab cannot be placed using slub_max_order.
  2345. */
  2346. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2347. if (order < MAX_ORDER)
  2348. return order;
  2349. return -ENOSYS;
  2350. }
  2351. static void
  2352. init_kmem_cache_node(struct kmem_cache_node *n)
  2353. {
  2354. n->nr_partial = 0;
  2355. spin_lock_init(&n->list_lock);
  2356. INIT_LIST_HEAD(&n->partial);
  2357. #ifdef CONFIG_SLUB_DEBUG
  2358. atomic_long_set(&n->nr_slabs, 0);
  2359. atomic_long_set(&n->total_objects, 0);
  2360. INIT_LIST_HEAD(&n->full);
  2361. #endif
  2362. }
  2363. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2364. {
  2365. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2366. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2367. /*
  2368. * Must align to double word boundary for the double cmpxchg
  2369. * instructions to work; see __pcpu_double_call_return_bool().
  2370. */
  2371. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2372. 2 * sizeof(void *));
  2373. if (!s->cpu_slab)
  2374. return 0;
  2375. init_kmem_cache_cpus(s);
  2376. return 1;
  2377. }
  2378. static struct kmem_cache *kmem_cache_node;
  2379. /*
  2380. * No kmalloc_node yet so do it by hand. We know that this is the first
  2381. * slab on the node for this slabcache. There are no concurrent accesses
  2382. * possible.
  2383. *
  2384. * Note that this function only works on the kmalloc_node_cache
  2385. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2386. * memory on a fresh node that has no slab structures yet.
  2387. */
  2388. static void early_kmem_cache_node_alloc(int node)
  2389. {
  2390. struct page *page;
  2391. struct kmem_cache_node *n;
  2392. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2393. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2394. BUG_ON(!page);
  2395. if (page_to_nid(page) != node) {
  2396. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2397. "node %d\n", node);
  2398. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2399. "in order to be able to continue\n");
  2400. }
  2401. n = page->freelist;
  2402. BUG_ON(!n);
  2403. page->freelist = get_freepointer(kmem_cache_node, n);
  2404. page->inuse = 1;
  2405. page->frozen = 0;
  2406. kmem_cache_node->node[node] = n;
  2407. #ifdef CONFIG_SLUB_DEBUG
  2408. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2409. init_tracking(kmem_cache_node, n);
  2410. #endif
  2411. init_kmem_cache_node(n);
  2412. inc_slabs_node(kmem_cache_node, node, page->objects);
  2413. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2414. }
  2415. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2416. {
  2417. int node;
  2418. for_each_node_state(node, N_NORMAL_MEMORY) {
  2419. struct kmem_cache_node *n = s->node[node];
  2420. if (n)
  2421. kmem_cache_free(kmem_cache_node, n);
  2422. s->node[node] = NULL;
  2423. }
  2424. }
  2425. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2426. {
  2427. int node;
  2428. for_each_node_state(node, N_NORMAL_MEMORY) {
  2429. struct kmem_cache_node *n;
  2430. if (slab_state == DOWN) {
  2431. early_kmem_cache_node_alloc(node);
  2432. continue;
  2433. }
  2434. n = kmem_cache_alloc_node(kmem_cache_node,
  2435. GFP_KERNEL, node);
  2436. if (!n) {
  2437. free_kmem_cache_nodes(s);
  2438. return 0;
  2439. }
  2440. s->node[node] = n;
  2441. init_kmem_cache_node(n);
  2442. }
  2443. return 1;
  2444. }
  2445. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2446. {
  2447. if (min < MIN_PARTIAL)
  2448. min = MIN_PARTIAL;
  2449. else if (min > MAX_PARTIAL)
  2450. min = MAX_PARTIAL;
  2451. s->min_partial = min;
  2452. }
  2453. /*
  2454. * calculate_sizes() determines the order and the distribution of data within
  2455. * a slab object.
  2456. */
  2457. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2458. {
  2459. unsigned long flags = s->flags;
  2460. unsigned long size = s->object_size;
  2461. int order;
  2462. /*
  2463. * Round up object size to the next word boundary. We can only
  2464. * place the free pointer at word boundaries and this determines
  2465. * the possible location of the free pointer.
  2466. */
  2467. size = ALIGN(size, sizeof(void *));
  2468. #ifdef CONFIG_SLUB_DEBUG
  2469. /*
  2470. * Determine if we can poison the object itself. If the user of
  2471. * the slab may touch the object after free or before allocation
  2472. * then we should never poison the object itself.
  2473. */
  2474. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2475. !s->ctor)
  2476. s->flags |= __OBJECT_POISON;
  2477. else
  2478. s->flags &= ~__OBJECT_POISON;
  2479. /*
  2480. * If we are Redzoning then check if there is some space between the
  2481. * end of the object and the free pointer. If not then add an
  2482. * additional word to have some bytes to store Redzone information.
  2483. */
  2484. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2485. size += sizeof(void *);
  2486. #endif
  2487. /*
  2488. * With that we have determined the number of bytes in actual use
  2489. * by the object. This is the potential offset to the free pointer.
  2490. */
  2491. s->inuse = size;
  2492. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2493. s->ctor)) {
  2494. /*
  2495. * Relocate free pointer after the object if it is not
  2496. * permitted to overwrite the first word of the object on
  2497. * kmem_cache_free.
  2498. *
  2499. * This is the case if we do RCU, have a constructor or
  2500. * destructor or are poisoning the objects.
  2501. */
  2502. s->offset = size;
  2503. size += sizeof(void *);
  2504. }
  2505. #ifdef CONFIG_SLUB_DEBUG
  2506. if (flags & SLAB_STORE_USER)
  2507. /*
  2508. * Need to store information about allocs and frees after
  2509. * the object.
  2510. */
  2511. size += 2 * sizeof(struct track);
  2512. if (flags & SLAB_RED_ZONE)
  2513. /*
  2514. * Add some empty padding so that we can catch
  2515. * overwrites from earlier objects rather than let
  2516. * tracking information or the free pointer be
  2517. * corrupted if a user writes before the start
  2518. * of the object.
  2519. */
  2520. size += sizeof(void *);
  2521. #endif
  2522. /*
  2523. * SLUB stores one object immediately after another beginning from
  2524. * offset 0. In order to align the objects we have to simply size
  2525. * each object to conform to the alignment.
  2526. */
  2527. size = ALIGN(size, s->align);
  2528. s->size = size;
  2529. if (forced_order >= 0)
  2530. order = forced_order;
  2531. else
  2532. order = calculate_order(size, s->reserved);
  2533. if (order < 0)
  2534. return 0;
  2535. s->allocflags = 0;
  2536. if (order)
  2537. s->allocflags |= __GFP_COMP;
  2538. if (s->flags & SLAB_CACHE_DMA)
  2539. s->allocflags |= GFP_DMA;
  2540. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2541. s->allocflags |= __GFP_RECLAIMABLE;
  2542. /*
  2543. * Determine the number of objects per slab
  2544. */
  2545. s->oo = oo_make(order, size, s->reserved);
  2546. s->min = oo_make(get_order(size), size, s->reserved);
  2547. if (oo_objects(s->oo) > oo_objects(s->max))
  2548. s->max = s->oo;
  2549. return !!oo_objects(s->oo);
  2550. }
  2551. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2552. {
  2553. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2554. s->reserved = 0;
  2555. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2556. s->reserved = sizeof(struct rcu_head);
  2557. if (!calculate_sizes(s, -1))
  2558. goto error;
  2559. if (disable_higher_order_debug) {
  2560. /*
  2561. * Disable debugging flags that store metadata if the min slab
  2562. * order increased.
  2563. */
  2564. if (get_order(s->size) > get_order(s->object_size)) {
  2565. s->flags &= ~DEBUG_METADATA_FLAGS;
  2566. s->offset = 0;
  2567. if (!calculate_sizes(s, -1))
  2568. goto error;
  2569. }
  2570. }
  2571. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2572. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2573. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2574. /* Enable fast mode */
  2575. s->flags |= __CMPXCHG_DOUBLE;
  2576. #endif
  2577. /*
  2578. * The larger the object size is, the more pages we want on the partial
  2579. * list to avoid pounding the page allocator excessively.
  2580. */
  2581. set_min_partial(s, ilog2(s->size) / 2);
  2582. /*
  2583. * cpu_partial determined the maximum number of objects kept in the
  2584. * per cpu partial lists of a processor.
  2585. *
  2586. * Per cpu partial lists mainly contain slabs that just have one
  2587. * object freed. If they are used for allocation then they can be
  2588. * filled up again with minimal effort. The slab will never hit the
  2589. * per node partial lists and therefore no locking will be required.
  2590. *
  2591. * This setting also determines
  2592. *
  2593. * A) The number of objects from per cpu partial slabs dumped to the
  2594. * per node list when we reach the limit.
  2595. * B) The number of objects in cpu partial slabs to extract from the
  2596. * per node list when we run out of per cpu objects. We only fetch 50%
  2597. * to keep some capacity around for frees.
  2598. */
  2599. if (kmem_cache_debug(s))
  2600. s->cpu_partial = 0;
  2601. else if (s->size >= PAGE_SIZE)
  2602. s->cpu_partial = 2;
  2603. else if (s->size >= 1024)
  2604. s->cpu_partial = 6;
  2605. else if (s->size >= 256)
  2606. s->cpu_partial = 13;
  2607. else
  2608. s->cpu_partial = 30;
  2609. #ifdef CONFIG_NUMA
  2610. s->remote_node_defrag_ratio = 1000;
  2611. #endif
  2612. if (!init_kmem_cache_nodes(s))
  2613. goto error;
  2614. if (alloc_kmem_cache_cpus(s))
  2615. return 0;
  2616. free_kmem_cache_nodes(s);
  2617. error:
  2618. if (flags & SLAB_PANIC)
  2619. panic("Cannot create slab %s size=%lu realsize=%u "
  2620. "order=%u offset=%u flags=%lx\n",
  2621. s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
  2622. s->offset, flags);
  2623. return -EINVAL;
  2624. }
  2625. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2626. const char *text)
  2627. {
  2628. #ifdef CONFIG_SLUB_DEBUG
  2629. void *addr = page_address(page);
  2630. void *p;
  2631. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2632. sizeof(long), GFP_ATOMIC);
  2633. if (!map)
  2634. return;
  2635. slab_err(s, page, text, s->name);
  2636. slab_lock(page);
  2637. get_map(s, page, map);
  2638. for_each_object(p, s, addr, page->objects) {
  2639. if (!test_bit(slab_index(p, s, addr), map)) {
  2640. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2641. p, p - addr);
  2642. print_tracking(s, p);
  2643. }
  2644. }
  2645. slab_unlock(page);
  2646. kfree(map);
  2647. #endif
  2648. }
  2649. /*
  2650. * Attempt to free all partial slabs on a node.
  2651. * This is called from kmem_cache_close(). We must be the last thread
  2652. * using the cache and therefore we do not need to lock anymore.
  2653. */
  2654. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2655. {
  2656. struct page *page, *h;
  2657. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2658. if (!page->inuse) {
  2659. remove_partial(n, page);
  2660. discard_slab(s, page);
  2661. } else {
  2662. list_slab_objects(s, page,
  2663. "Objects remaining in %s on kmem_cache_close()");
  2664. }
  2665. }
  2666. }
  2667. /*
  2668. * Release all resources used by a slab cache.
  2669. */
  2670. static inline int kmem_cache_close(struct kmem_cache *s)
  2671. {
  2672. int node;
  2673. flush_all(s);
  2674. /* Attempt to free all objects */
  2675. for_each_node_state(node, N_NORMAL_MEMORY) {
  2676. struct kmem_cache_node *n = get_node(s, node);
  2677. free_partial(s, n);
  2678. if (n->nr_partial || slabs_node(s, node))
  2679. return 1;
  2680. }
  2681. free_percpu(s->cpu_slab);
  2682. free_kmem_cache_nodes(s);
  2683. return 0;
  2684. }
  2685. int __kmem_cache_shutdown(struct kmem_cache *s)
  2686. {
  2687. int rc = kmem_cache_close(s);
  2688. if (!rc) {
  2689. /*
  2690. * We do the same lock strategy around sysfs_slab_add, see
  2691. * __kmem_cache_create. Because this is pretty much the last
  2692. * operation we do and the lock will be released shortly after
  2693. * that in slab_common.c, we could just move sysfs_slab_remove
  2694. * to a later point in common code. We should do that when we
  2695. * have a common sysfs framework for all allocators.
  2696. */
  2697. mutex_unlock(&slab_mutex);
  2698. sysfs_slab_remove(s);
  2699. mutex_lock(&slab_mutex);
  2700. }
  2701. return rc;
  2702. }
  2703. /********************************************************************
  2704. * Kmalloc subsystem
  2705. *******************************************************************/
  2706. static int __init setup_slub_min_order(char *str)
  2707. {
  2708. get_option(&str, &slub_min_order);
  2709. return 1;
  2710. }
  2711. __setup("slub_min_order=", setup_slub_min_order);
  2712. static int __init setup_slub_max_order(char *str)
  2713. {
  2714. get_option(&str, &slub_max_order);
  2715. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2716. return 1;
  2717. }
  2718. __setup("slub_max_order=", setup_slub_max_order);
  2719. static int __init setup_slub_min_objects(char *str)
  2720. {
  2721. get_option(&str, &slub_min_objects);
  2722. return 1;
  2723. }
  2724. __setup("slub_min_objects=", setup_slub_min_objects);
  2725. static int __init setup_slub_nomerge(char *str)
  2726. {
  2727. slub_nomerge = 1;
  2728. return 1;
  2729. }
  2730. __setup("slub_nomerge", setup_slub_nomerge);
  2731. void *__kmalloc(size_t size, gfp_t flags)
  2732. {
  2733. struct kmem_cache *s;
  2734. void *ret;
  2735. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2736. return kmalloc_large(size, flags);
  2737. s = kmalloc_slab(size, flags);
  2738. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2739. return s;
  2740. ret = slab_alloc(s, flags, _RET_IP_);
  2741. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2742. return ret;
  2743. }
  2744. EXPORT_SYMBOL(__kmalloc);
  2745. #ifdef CONFIG_NUMA
  2746. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2747. {
  2748. struct page *page;
  2749. void *ptr = NULL;
  2750. flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
  2751. page = alloc_pages_node(node, flags, get_order(size));
  2752. if (page)
  2753. ptr = page_address(page);
  2754. kmemleak_alloc(ptr, size, 1, flags);
  2755. return ptr;
  2756. }
  2757. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2758. {
  2759. struct kmem_cache *s;
  2760. void *ret;
  2761. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2762. ret = kmalloc_large_node(size, flags, node);
  2763. trace_kmalloc_node(_RET_IP_, ret,
  2764. size, PAGE_SIZE << get_order(size),
  2765. flags, node);
  2766. return ret;
  2767. }
  2768. s = kmalloc_slab(size, flags);
  2769. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2770. return s;
  2771. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2772. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2773. return ret;
  2774. }
  2775. EXPORT_SYMBOL(__kmalloc_node);
  2776. #endif
  2777. size_t ksize(const void *object)
  2778. {
  2779. struct page *page;
  2780. if (unlikely(object == ZERO_SIZE_PTR))
  2781. return 0;
  2782. page = virt_to_head_page(object);
  2783. if (unlikely(!PageSlab(page))) {
  2784. WARN_ON(!PageCompound(page));
  2785. return PAGE_SIZE << compound_order(page);
  2786. }
  2787. return slab_ksize(page->slab_cache);
  2788. }
  2789. EXPORT_SYMBOL(ksize);
  2790. #ifdef CONFIG_SLUB_DEBUG
  2791. bool verify_mem_not_deleted(const void *x)
  2792. {
  2793. struct page *page;
  2794. void *object = (void *)x;
  2795. unsigned long flags;
  2796. bool rv;
  2797. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2798. return false;
  2799. local_irq_save(flags);
  2800. page = virt_to_head_page(x);
  2801. if (unlikely(!PageSlab(page))) {
  2802. /* maybe it was from stack? */
  2803. rv = true;
  2804. goto out_unlock;
  2805. }
  2806. slab_lock(page);
  2807. if (on_freelist(page->slab_cache, page, object)) {
  2808. object_err(page->slab_cache, page, object, "Object is on free-list");
  2809. rv = false;
  2810. } else {
  2811. rv = true;
  2812. }
  2813. slab_unlock(page);
  2814. out_unlock:
  2815. local_irq_restore(flags);
  2816. return rv;
  2817. }
  2818. EXPORT_SYMBOL(verify_mem_not_deleted);
  2819. #endif
  2820. void kfree(const void *x)
  2821. {
  2822. struct page *page;
  2823. void *object = (void *)x;
  2824. trace_kfree(_RET_IP_, x);
  2825. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2826. return;
  2827. page = virt_to_head_page(x);
  2828. if (unlikely(!PageSlab(page))) {
  2829. BUG_ON(!PageCompound(page));
  2830. kmemleak_free(x);
  2831. __free_memcg_kmem_pages(page, compound_order(page));
  2832. return;
  2833. }
  2834. slab_free(page->slab_cache, page, object, _RET_IP_);
  2835. }
  2836. EXPORT_SYMBOL(kfree);
  2837. /*
  2838. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2839. * the remaining slabs by the number of items in use. The slabs with the
  2840. * most items in use come first. New allocations will then fill those up
  2841. * and thus they can be removed from the partial lists.
  2842. *
  2843. * The slabs with the least items are placed last. This results in them
  2844. * being allocated from last increasing the chance that the last objects
  2845. * are freed in them.
  2846. */
  2847. int kmem_cache_shrink(struct kmem_cache *s)
  2848. {
  2849. int node;
  2850. int i;
  2851. struct kmem_cache_node *n;
  2852. struct page *page;
  2853. struct page *t;
  2854. int objects = oo_objects(s->max);
  2855. struct list_head *slabs_by_inuse =
  2856. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2857. unsigned long flags;
  2858. if (!slabs_by_inuse)
  2859. return -ENOMEM;
  2860. flush_all(s);
  2861. for_each_node_state(node, N_NORMAL_MEMORY) {
  2862. n = get_node(s, node);
  2863. if (!n->nr_partial)
  2864. continue;
  2865. for (i = 0; i < objects; i++)
  2866. INIT_LIST_HEAD(slabs_by_inuse + i);
  2867. spin_lock_irqsave(&n->list_lock, flags);
  2868. /*
  2869. * Build lists indexed by the items in use in each slab.
  2870. *
  2871. * Note that concurrent frees may occur while we hold the
  2872. * list_lock. page->inuse here is the upper limit.
  2873. */
  2874. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2875. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2876. if (!page->inuse)
  2877. n->nr_partial--;
  2878. }
  2879. /*
  2880. * Rebuild the partial list with the slabs filled up most
  2881. * first and the least used slabs at the end.
  2882. */
  2883. for (i = objects - 1; i > 0; i--)
  2884. list_splice(slabs_by_inuse + i, n->partial.prev);
  2885. spin_unlock_irqrestore(&n->list_lock, flags);
  2886. /* Release empty slabs */
  2887. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2888. discard_slab(s, page);
  2889. }
  2890. kfree(slabs_by_inuse);
  2891. return 0;
  2892. }
  2893. EXPORT_SYMBOL(kmem_cache_shrink);
  2894. #if defined(CONFIG_MEMORY_HOTPLUG)
  2895. static int slab_mem_going_offline_callback(void *arg)
  2896. {
  2897. struct kmem_cache *s;
  2898. mutex_lock(&slab_mutex);
  2899. list_for_each_entry(s, &slab_caches, list)
  2900. kmem_cache_shrink(s);
  2901. mutex_unlock(&slab_mutex);
  2902. return 0;
  2903. }
  2904. static void slab_mem_offline_callback(void *arg)
  2905. {
  2906. struct kmem_cache_node *n;
  2907. struct kmem_cache *s;
  2908. struct memory_notify *marg = arg;
  2909. int offline_node;
  2910. offline_node = marg->status_change_nid_normal;
  2911. /*
  2912. * If the node still has available memory. we need kmem_cache_node
  2913. * for it yet.
  2914. */
  2915. if (offline_node < 0)
  2916. return;
  2917. mutex_lock(&slab_mutex);
  2918. list_for_each_entry(s, &slab_caches, list) {
  2919. n = get_node(s, offline_node);
  2920. if (n) {
  2921. /*
  2922. * if n->nr_slabs > 0, slabs still exist on the node
  2923. * that is going down. We were unable to free them,
  2924. * and offline_pages() function shouldn't call this
  2925. * callback. So, we must fail.
  2926. */
  2927. BUG_ON(slabs_node(s, offline_node));
  2928. s->node[offline_node] = NULL;
  2929. kmem_cache_free(kmem_cache_node, n);
  2930. }
  2931. }
  2932. mutex_unlock(&slab_mutex);
  2933. }
  2934. static int slab_mem_going_online_callback(void *arg)
  2935. {
  2936. struct kmem_cache_node *n;
  2937. struct kmem_cache *s;
  2938. struct memory_notify *marg = arg;
  2939. int nid = marg->status_change_nid_normal;
  2940. int ret = 0;
  2941. /*
  2942. * If the node's memory is already available, then kmem_cache_node is
  2943. * already created. Nothing to do.
  2944. */
  2945. if (nid < 0)
  2946. return 0;
  2947. /*
  2948. * We are bringing a node online. No memory is available yet. We must
  2949. * allocate a kmem_cache_node structure in order to bring the node
  2950. * online.
  2951. */
  2952. mutex_lock(&slab_mutex);
  2953. list_for_each_entry(s, &slab_caches, list) {
  2954. /*
  2955. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2956. * since memory is not yet available from the node that
  2957. * is brought up.
  2958. */
  2959. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2960. if (!n) {
  2961. ret = -ENOMEM;
  2962. goto out;
  2963. }
  2964. init_kmem_cache_node(n);
  2965. s->node[nid] = n;
  2966. }
  2967. out:
  2968. mutex_unlock(&slab_mutex);
  2969. return ret;
  2970. }
  2971. static int slab_memory_callback(struct notifier_block *self,
  2972. unsigned long action, void *arg)
  2973. {
  2974. int ret = 0;
  2975. switch (action) {
  2976. case MEM_GOING_ONLINE:
  2977. ret = slab_mem_going_online_callback(arg);
  2978. break;
  2979. case MEM_GOING_OFFLINE:
  2980. ret = slab_mem_going_offline_callback(arg);
  2981. break;
  2982. case MEM_OFFLINE:
  2983. case MEM_CANCEL_ONLINE:
  2984. slab_mem_offline_callback(arg);
  2985. break;
  2986. case MEM_ONLINE:
  2987. case MEM_CANCEL_OFFLINE:
  2988. break;
  2989. }
  2990. if (ret)
  2991. ret = notifier_from_errno(ret);
  2992. else
  2993. ret = NOTIFY_OK;
  2994. return ret;
  2995. }
  2996. #endif /* CONFIG_MEMORY_HOTPLUG */
  2997. /********************************************************************
  2998. * Basic setup of slabs
  2999. *******************************************************************/
  3000. /*
  3001. * Used for early kmem_cache structures that were allocated using
  3002. * the page allocator. Allocate them properly then fix up the pointers
  3003. * that may be pointing to the wrong kmem_cache structure.
  3004. */
  3005. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3006. {
  3007. int node;
  3008. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3009. memcpy(s, static_cache, kmem_cache->object_size);
  3010. /*
  3011. * This runs very early, and only the boot processor is supposed to be
  3012. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3013. * IPIs around.
  3014. */
  3015. __flush_cpu_slab(s, smp_processor_id());
  3016. for_each_node_state(node, N_NORMAL_MEMORY) {
  3017. struct kmem_cache_node *n = get_node(s, node);
  3018. struct page *p;
  3019. if (n) {
  3020. list_for_each_entry(p, &n->partial, lru)
  3021. p->slab_cache = s;
  3022. #ifdef CONFIG_SLUB_DEBUG
  3023. list_for_each_entry(p, &n->full, lru)
  3024. p->slab_cache = s;
  3025. #endif
  3026. }
  3027. }
  3028. list_add(&s->list, &slab_caches);
  3029. return s;
  3030. }
  3031. void __init kmem_cache_init(void)
  3032. {
  3033. static __initdata struct kmem_cache boot_kmem_cache,
  3034. boot_kmem_cache_node;
  3035. if (debug_guardpage_minorder())
  3036. slub_max_order = 0;
  3037. kmem_cache_node = &boot_kmem_cache_node;
  3038. kmem_cache = &boot_kmem_cache;
  3039. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3040. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3041. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3042. /* Able to allocate the per node structures */
  3043. slab_state = PARTIAL;
  3044. create_boot_cache(kmem_cache, "kmem_cache",
  3045. offsetof(struct kmem_cache, node) +
  3046. nr_node_ids * sizeof(struct kmem_cache_node *),
  3047. SLAB_HWCACHE_ALIGN);
  3048. kmem_cache = bootstrap(&boot_kmem_cache);
  3049. /*
  3050. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3051. * kmem_cache_node is separately allocated so no need to
  3052. * update any list pointers.
  3053. */
  3054. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3055. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3056. create_kmalloc_caches(0);
  3057. #ifdef CONFIG_SMP
  3058. register_cpu_notifier(&slab_notifier);
  3059. #endif
  3060. printk(KERN_INFO
  3061. "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3062. " CPUs=%d, Nodes=%d\n",
  3063. cache_line_size(),
  3064. slub_min_order, slub_max_order, slub_min_objects,
  3065. nr_cpu_ids, nr_node_ids);
  3066. }
  3067. void __init kmem_cache_init_late(void)
  3068. {
  3069. }
  3070. /*
  3071. * Find a mergeable slab cache
  3072. */
  3073. static int slab_unmergeable(struct kmem_cache *s)
  3074. {
  3075. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3076. return 1;
  3077. if (s->ctor)
  3078. return 1;
  3079. /*
  3080. * We may have set a slab to be unmergeable during bootstrap.
  3081. */
  3082. if (s->refcount < 0)
  3083. return 1;
  3084. return 0;
  3085. }
  3086. static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
  3087. size_t align, unsigned long flags, const char *name,
  3088. void (*ctor)(void *))
  3089. {
  3090. struct kmem_cache *s;
  3091. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3092. return NULL;
  3093. if (ctor)
  3094. return NULL;
  3095. size = ALIGN(size, sizeof(void *));
  3096. align = calculate_alignment(flags, align, size);
  3097. size = ALIGN(size, align);
  3098. flags = kmem_cache_flags(size, flags, name, NULL);
  3099. list_for_each_entry(s, &slab_caches, list) {
  3100. if (slab_unmergeable(s))
  3101. continue;
  3102. if (size > s->size)
  3103. continue;
  3104. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3105. continue;
  3106. /*
  3107. * Check if alignment is compatible.
  3108. * Courtesy of Adrian Drzewiecki
  3109. */
  3110. if ((s->size & ~(align - 1)) != s->size)
  3111. continue;
  3112. if (s->size - size >= sizeof(void *))
  3113. continue;
  3114. if (!cache_match_memcg(s, memcg))
  3115. continue;
  3116. return s;
  3117. }
  3118. return NULL;
  3119. }
  3120. struct kmem_cache *
  3121. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  3122. size_t align, unsigned long flags, void (*ctor)(void *))
  3123. {
  3124. struct kmem_cache *s;
  3125. s = find_mergeable(memcg, size, align, flags, name, ctor);
  3126. if (s) {
  3127. s->refcount++;
  3128. /*
  3129. * Adjust the object sizes so that we clear
  3130. * the complete object on kzalloc.
  3131. */
  3132. s->object_size = max(s->object_size, (int)size);
  3133. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3134. if (sysfs_slab_alias(s, name)) {
  3135. s->refcount--;
  3136. s = NULL;
  3137. }
  3138. }
  3139. return s;
  3140. }
  3141. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3142. {
  3143. int err;
  3144. err = kmem_cache_open(s, flags);
  3145. if (err)
  3146. return err;
  3147. /* Mutex is not taken during early boot */
  3148. if (slab_state <= UP)
  3149. return 0;
  3150. memcg_propagate_slab_attrs(s);
  3151. mutex_unlock(&slab_mutex);
  3152. err = sysfs_slab_add(s);
  3153. mutex_lock(&slab_mutex);
  3154. if (err)
  3155. kmem_cache_close(s);
  3156. return err;
  3157. }
  3158. #ifdef CONFIG_SMP
  3159. /*
  3160. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3161. * necessary.
  3162. */
  3163. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3164. unsigned long action, void *hcpu)
  3165. {
  3166. long cpu = (long)hcpu;
  3167. struct kmem_cache *s;
  3168. unsigned long flags;
  3169. switch (action) {
  3170. case CPU_UP_CANCELED:
  3171. case CPU_UP_CANCELED_FROZEN:
  3172. case CPU_DEAD:
  3173. case CPU_DEAD_FROZEN:
  3174. mutex_lock(&slab_mutex);
  3175. list_for_each_entry(s, &slab_caches, list) {
  3176. local_irq_save(flags);
  3177. __flush_cpu_slab(s, cpu);
  3178. local_irq_restore(flags);
  3179. }
  3180. mutex_unlock(&slab_mutex);
  3181. break;
  3182. default:
  3183. break;
  3184. }
  3185. return NOTIFY_OK;
  3186. }
  3187. static struct notifier_block __cpuinitdata slab_notifier = {
  3188. .notifier_call = slab_cpuup_callback
  3189. };
  3190. #endif
  3191. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3192. {
  3193. struct kmem_cache *s;
  3194. void *ret;
  3195. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3196. return kmalloc_large(size, gfpflags);
  3197. s = kmalloc_slab(size, gfpflags);
  3198. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3199. return s;
  3200. ret = slab_alloc(s, gfpflags, caller);
  3201. /* Honor the call site pointer we received. */
  3202. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3203. return ret;
  3204. }
  3205. #ifdef CONFIG_NUMA
  3206. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3207. int node, unsigned long caller)
  3208. {
  3209. struct kmem_cache *s;
  3210. void *ret;
  3211. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3212. ret = kmalloc_large_node(size, gfpflags, node);
  3213. trace_kmalloc_node(caller, ret,
  3214. size, PAGE_SIZE << get_order(size),
  3215. gfpflags, node);
  3216. return ret;
  3217. }
  3218. s = kmalloc_slab(size, gfpflags);
  3219. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3220. return s;
  3221. ret = slab_alloc_node(s, gfpflags, node, caller);
  3222. /* Honor the call site pointer we received. */
  3223. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3224. return ret;
  3225. }
  3226. #endif
  3227. #ifdef CONFIG_SYSFS
  3228. static int count_inuse(struct page *page)
  3229. {
  3230. return page->inuse;
  3231. }
  3232. static int count_total(struct page *page)
  3233. {
  3234. return page->objects;
  3235. }
  3236. #endif
  3237. #ifdef CONFIG_SLUB_DEBUG
  3238. static int validate_slab(struct kmem_cache *s, struct page *page,
  3239. unsigned long *map)
  3240. {
  3241. void *p;
  3242. void *addr = page_address(page);
  3243. if (!check_slab(s, page) ||
  3244. !on_freelist(s, page, NULL))
  3245. return 0;
  3246. /* Now we know that a valid freelist exists */
  3247. bitmap_zero(map, page->objects);
  3248. get_map(s, page, map);
  3249. for_each_object(p, s, addr, page->objects) {
  3250. if (test_bit(slab_index(p, s, addr), map))
  3251. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3252. return 0;
  3253. }
  3254. for_each_object(p, s, addr, page->objects)
  3255. if (!test_bit(slab_index(p, s, addr), map))
  3256. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3257. return 0;
  3258. return 1;
  3259. }
  3260. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3261. unsigned long *map)
  3262. {
  3263. slab_lock(page);
  3264. validate_slab(s, page, map);
  3265. slab_unlock(page);
  3266. }
  3267. static int validate_slab_node(struct kmem_cache *s,
  3268. struct kmem_cache_node *n, unsigned long *map)
  3269. {
  3270. unsigned long count = 0;
  3271. struct page *page;
  3272. unsigned long flags;
  3273. spin_lock_irqsave(&n->list_lock, flags);
  3274. list_for_each_entry(page, &n->partial, lru) {
  3275. validate_slab_slab(s, page, map);
  3276. count++;
  3277. }
  3278. if (count != n->nr_partial)
  3279. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3280. "counter=%ld\n", s->name, count, n->nr_partial);
  3281. if (!(s->flags & SLAB_STORE_USER))
  3282. goto out;
  3283. list_for_each_entry(page, &n->full, lru) {
  3284. validate_slab_slab(s, page, map);
  3285. count++;
  3286. }
  3287. if (count != atomic_long_read(&n->nr_slabs))
  3288. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3289. "counter=%ld\n", s->name, count,
  3290. atomic_long_read(&n->nr_slabs));
  3291. out:
  3292. spin_unlock_irqrestore(&n->list_lock, flags);
  3293. return count;
  3294. }
  3295. static long validate_slab_cache(struct kmem_cache *s)
  3296. {
  3297. int node;
  3298. unsigned long count = 0;
  3299. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3300. sizeof(unsigned long), GFP_KERNEL);
  3301. if (!map)
  3302. return -ENOMEM;
  3303. flush_all(s);
  3304. for_each_node_state(node, N_NORMAL_MEMORY) {
  3305. struct kmem_cache_node *n = get_node(s, node);
  3306. count += validate_slab_node(s, n, map);
  3307. }
  3308. kfree(map);
  3309. return count;
  3310. }
  3311. /*
  3312. * Generate lists of code addresses where slabcache objects are allocated
  3313. * and freed.
  3314. */
  3315. struct location {
  3316. unsigned long count;
  3317. unsigned long addr;
  3318. long long sum_time;
  3319. long min_time;
  3320. long max_time;
  3321. long min_pid;
  3322. long max_pid;
  3323. DECLARE_BITMAP(cpus, NR_CPUS);
  3324. nodemask_t nodes;
  3325. };
  3326. struct loc_track {
  3327. unsigned long max;
  3328. unsigned long count;
  3329. struct location *loc;
  3330. };
  3331. static void free_loc_track(struct loc_track *t)
  3332. {
  3333. if (t->max)
  3334. free_pages((unsigned long)t->loc,
  3335. get_order(sizeof(struct location) * t->max));
  3336. }
  3337. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3338. {
  3339. struct location *l;
  3340. int order;
  3341. order = get_order(sizeof(struct location) * max);
  3342. l = (void *)__get_free_pages(flags, order);
  3343. if (!l)
  3344. return 0;
  3345. if (t->count) {
  3346. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3347. free_loc_track(t);
  3348. }
  3349. t->max = max;
  3350. t->loc = l;
  3351. return 1;
  3352. }
  3353. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3354. const struct track *track)
  3355. {
  3356. long start, end, pos;
  3357. struct location *l;
  3358. unsigned long caddr;
  3359. unsigned long age = jiffies - track->when;
  3360. start = -1;
  3361. end = t->count;
  3362. for ( ; ; ) {
  3363. pos = start + (end - start + 1) / 2;
  3364. /*
  3365. * There is nothing at "end". If we end up there
  3366. * we need to add something to before end.
  3367. */
  3368. if (pos == end)
  3369. break;
  3370. caddr = t->loc[pos].addr;
  3371. if (track->addr == caddr) {
  3372. l = &t->loc[pos];
  3373. l->count++;
  3374. if (track->when) {
  3375. l->sum_time += age;
  3376. if (age < l->min_time)
  3377. l->min_time = age;
  3378. if (age > l->max_time)
  3379. l->max_time = age;
  3380. if (track->pid < l->min_pid)
  3381. l->min_pid = track->pid;
  3382. if (track->pid > l->max_pid)
  3383. l->max_pid = track->pid;
  3384. cpumask_set_cpu(track->cpu,
  3385. to_cpumask(l->cpus));
  3386. }
  3387. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3388. return 1;
  3389. }
  3390. if (track->addr < caddr)
  3391. end = pos;
  3392. else
  3393. start = pos;
  3394. }
  3395. /*
  3396. * Not found. Insert new tracking element.
  3397. */
  3398. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3399. return 0;
  3400. l = t->loc + pos;
  3401. if (pos < t->count)
  3402. memmove(l + 1, l,
  3403. (t->count - pos) * sizeof(struct location));
  3404. t->count++;
  3405. l->count = 1;
  3406. l->addr = track->addr;
  3407. l->sum_time = age;
  3408. l->min_time = age;
  3409. l->max_time = age;
  3410. l->min_pid = track->pid;
  3411. l->max_pid = track->pid;
  3412. cpumask_clear(to_cpumask(l->cpus));
  3413. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3414. nodes_clear(l->nodes);
  3415. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3416. return 1;
  3417. }
  3418. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3419. struct page *page, enum track_item alloc,
  3420. unsigned long *map)
  3421. {
  3422. void *addr = page_address(page);
  3423. void *p;
  3424. bitmap_zero(map, page->objects);
  3425. get_map(s, page, map);
  3426. for_each_object(p, s, addr, page->objects)
  3427. if (!test_bit(slab_index(p, s, addr), map))
  3428. add_location(t, s, get_track(s, p, alloc));
  3429. }
  3430. static int list_locations(struct kmem_cache *s, char *buf,
  3431. enum track_item alloc)
  3432. {
  3433. int len = 0;
  3434. unsigned long i;
  3435. struct loc_track t = { 0, 0, NULL };
  3436. int node;
  3437. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3438. sizeof(unsigned long), GFP_KERNEL);
  3439. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3440. GFP_TEMPORARY)) {
  3441. kfree(map);
  3442. return sprintf(buf, "Out of memory\n");
  3443. }
  3444. /* Push back cpu slabs */
  3445. flush_all(s);
  3446. for_each_node_state(node, N_NORMAL_MEMORY) {
  3447. struct kmem_cache_node *n = get_node(s, node);
  3448. unsigned long flags;
  3449. struct page *page;
  3450. if (!atomic_long_read(&n->nr_slabs))
  3451. continue;
  3452. spin_lock_irqsave(&n->list_lock, flags);
  3453. list_for_each_entry(page, &n->partial, lru)
  3454. process_slab(&t, s, page, alloc, map);
  3455. list_for_each_entry(page, &n->full, lru)
  3456. process_slab(&t, s, page, alloc, map);
  3457. spin_unlock_irqrestore(&n->list_lock, flags);
  3458. }
  3459. for (i = 0; i < t.count; i++) {
  3460. struct location *l = &t.loc[i];
  3461. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3462. break;
  3463. len += sprintf(buf + len, "%7ld ", l->count);
  3464. if (l->addr)
  3465. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3466. else
  3467. len += sprintf(buf + len, "<not-available>");
  3468. if (l->sum_time != l->min_time) {
  3469. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3470. l->min_time,
  3471. (long)div_u64(l->sum_time, l->count),
  3472. l->max_time);
  3473. } else
  3474. len += sprintf(buf + len, " age=%ld",
  3475. l->min_time);
  3476. if (l->min_pid != l->max_pid)
  3477. len += sprintf(buf + len, " pid=%ld-%ld",
  3478. l->min_pid, l->max_pid);
  3479. else
  3480. len += sprintf(buf + len, " pid=%ld",
  3481. l->min_pid);
  3482. if (num_online_cpus() > 1 &&
  3483. !cpumask_empty(to_cpumask(l->cpus)) &&
  3484. len < PAGE_SIZE - 60) {
  3485. len += sprintf(buf + len, " cpus=");
  3486. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3487. to_cpumask(l->cpus));
  3488. }
  3489. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3490. len < PAGE_SIZE - 60) {
  3491. len += sprintf(buf + len, " nodes=");
  3492. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3493. l->nodes);
  3494. }
  3495. len += sprintf(buf + len, "\n");
  3496. }
  3497. free_loc_track(&t);
  3498. kfree(map);
  3499. if (!t.count)
  3500. len += sprintf(buf, "No data\n");
  3501. return len;
  3502. }
  3503. #endif
  3504. #ifdef SLUB_RESILIENCY_TEST
  3505. static void resiliency_test(void)
  3506. {
  3507. u8 *p;
  3508. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3509. printk(KERN_ERR "SLUB resiliency testing\n");
  3510. printk(KERN_ERR "-----------------------\n");
  3511. printk(KERN_ERR "A. Corruption after allocation\n");
  3512. p = kzalloc(16, GFP_KERNEL);
  3513. p[16] = 0x12;
  3514. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3515. " 0x12->0x%p\n\n", p + 16);
  3516. validate_slab_cache(kmalloc_caches[4]);
  3517. /* Hmmm... The next two are dangerous */
  3518. p = kzalloc(32, GFP_KERNEL);
  3519. p[32 + sizeof(void *)] = 0x34;
  3520. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3521. " 0x34 -> -0x%p\n", p);
  3522. printk(KERN_ERR
  3523. "If allocated object is overwritten then not detectable\n\n");
  3524. validate_slab_cache(kmalloc_caches[5]);
  3525. p = kzalloc(64, GFP_KERNEL);
  3526. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3527. *p = 0x56;
  3528. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3529. p);
  3530. printk(KERN_ERR
  3531. "If allocated object is overwritten then not detectable\n\n");
  3532. validate_slab_cache(kmalloc_caches[6]);
  3533. printk(KERN_ERR "\nB. Corruption after free\n");
  3534. p = kzalloc(128, GFP_KERNEL);
  3535. kfree(p);
  3536. *p = 0x78;
  3537. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3538. validate_slab_cache(kmalloc_caches[7]);
  3539. p = kzalloc(256, GFP_KERNEL);
  3540. kfree(p);
  3541. p[50] = 0x9a;
  3542. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3543. p);
  3544. validate_slab_cache(kmalloc_caches[8]);
  3545. p = kzalloc(512, GFP_KERNEL);
  3546. kfree(p);
  3547. p[512] = 0xab;
  3548. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3549. validate_slab_cache(kmalloc_caches[9]);
  3550. }
  3551. #else
  3552. #ifdef CONFIG_SYSFS
  3553. static void resiliency_test(void) {};
  3554. #endif
  3555. #endif
  3556. #ifdef CONFIG_SYSFS
  3557. enum slab_stat_type {
  3558. SL_ALL, /* All slabs */
  3559. SL_PARTIAL, /* Only partially allocated slabs */
  3560. SL_CPU, /* Only slabs used for cpu caches */
  3561. SL_OBJECTS, /* Determine allocated objects not slabs */
  3562. SL_TOTAL /* Determine object capacity not slabs */
  3563. };
  3564. #define SO_ALL (1 << SL_ALL)
  3565. #define SO_PARTIAL (1 << SL_PARTIAL)
  3566. #define SO_CPU (1 << SL_CPU)
  3567. #define SO_OBJECTS (1 << SL_OBJECTS)
  3568. #define SO_TOTAL (1 << SL_TOTAL)
  3569. static ssize_t show_slab_objects(struct kmem_cache *s,
  3570. char *buf, unsigned long flags)
  3571. {
  3572. unsigned long total = 0;
  3573. int node;
  3574. int x;
  3575. unsigned long *nodes;
  3576. unsigned long *per_cpu;
  3577. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3578. if (!nodes)
  3579. return -ENOMEM;
  3580. per_cpu = nodes + nr_node_ids;
  3581. if (flags & SO_CPU) {
  3582. int cpu;
  3583. for_each_possible_cpu(cpu) {
  3584. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3585. int node;
  3586. struct page *page;
  3587. page = ACCESS_ONCE(c->page);
  3588. if (!page)
  3589. continue;
  3590. node = page_to_nid(page);
  3591. if (flags & SO_TOTAL)
  3592. x = page->objects;
  3593. else if (flags & SO_OBJECTS)
  3594. x = page->inuse;
  3595. else
  3596. x = 1;
  3597. total += x;
  3598. nodes[node] += x;
  3599. page = ACCESS_ONCE(c->partial);
  3600. if (page) {
  3601. x = page->pobjects;
  3602. total += x;
  3603. nodes[node] += x;
  3604. }
  3605. per_cpu[node]++;
  3606. }
  3607. }
  3608. lock_memory_hotplug();
  3609. #ifdef CONFIG_SLUB_DEBUG
  3610. if (flags & SO_ALL) {
  3611. for_each_node_state(node, N_NORMAL_MEMORY) {
  3612. struct kmem_cache_node *n = get_node(s, node);
  3613. if (flags & SO_TOTAL)
  3614. x = atomic_long_read(&n->total_objects);
  3615. else if (flags & SO_OBJECTS)
  3616. x = atomic_long_read(&n->total_objects) -
  3617. count_partial(n, count_free);
  3618. else
  3619. x = atomic_long_read(&n->nr_slabs);
  3620. total += x;
  3621. nodes[node] += x;
  3622. }
  3623. } else
  3624. #endif
  3625. if (flags & SO_PARTIAL) {
  3626. for_each_node_state(node, N_NORMAL_MEMORY) {
  3627. struct kmem_cache_node *n = get_node(s, node);
  3628. if (flags & SO_TOTAL)
  3629. x = count_partial(n, count_total);
  3630. else if (flags & SO_OBJECTS)
  3631. x = count_partial(n, count_inuse);
  3632. else
  3633. x = n->nr_partial;
  3634. total += x;
  3635. nodes[node] += x;
  3636. }
  3637. }
  3638. x = sprintf(buf, "%lu", total);
  3639. #ifdef CONFIG_NUMA
  3640. for_each_node_state(node, N_NORMAL_MEMORY)
  3641. if (nodes[node])
  3642. x += sprintf(buf + x, " N%d=%lu",
  3643. node, nodes[node]);
  3644. #endif
  3645. unlock_memory_hotplug();
  3646. kfree(nodes);
  3647. return x + sprintf(buf + x, "\n");
  3648. }
  3649. #ifdef CONFIG_SLUB_DEBUG
  3650. static int any_slab_objects(struct kmem_cache *s)
  3651. {
  3652. int node;
  3653. for_each_online_node(node) {
  3654. struct kmem_cache_node *n = get_node(s, node);
  3655. if (!n)
  3656. continue;
  3657. if (atomic_long_read(&n->total_objects))
  3658. return 1;
  3659. }
  3660. return 0;
  3661. }
  3662. #endif
  3663. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3664. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3665. struct slab_attribute {
  3666. struct attribute attr;
  3667. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3668. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3669. };
  3670. #define SLAB_ATTR_RO(_name) \
  3671. static struct slab_attribute _name##_attr = \
  3672. __ATTR(_name, 0400, _name##_show, NULL)
  3673. #define SLAB_ATTR(_name) \
  3674. static struct slab_attribute _name##_attr = \
  3675. __ATTR(_name, 0600, _name##_show, _name##_store)
  3676. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3677. {
  3678. return sprintf(buf, "%d\n", s->size);
  3679. }
  3680. SLAB_ATTR_RO(slab_size);
  3681. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3682. {
  3683. return sprintf(buf, "%d\n", s->align);
  3684. }
  3685. SLAB_ATTR_RO(align);
  3686. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3687. {
  3688. return sprintf(buf, "%d\n", s->object_size);
  3689. }
  3690. SLAB_ATTR_RO(object_size);
  3691. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3692. {
  3693. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3694. }
  3695. SLAB_ATTR_RO(objs_per_slab);
  3696. static ssize_t order_store(struct kmem_cache *s,
  3697. const char *buf, size_t length)
  3698. {
  3699. unsigned long order;
  3700. int err;
  3701. err = strict_strtoul(buf, 10, &order);
  3702. if (err)
  3703. return err;
  3704. if (order > slub_max_order || order < slub_min_order)
  3705. return -EINVAL;
  3706. calculate_sizes(s, order);
  3707. return length;
  3708. }
  3709. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3710. {
  3711. return sprintf(buf, "%d\n", oo_order(s->oo));
  3712. }
  3713. SLAB_ATTR(order);
  3714. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3715. {
  3716. return sprintf(buf, "%lu\n", s->min_partial);
  3717. }
  3718. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3719. size_t length)
  3720. {
  3721. unsigned long min;
  3722. int err;
  3723. err = strict_strtoul(buf, 10, &min);
  3724. if (err)
  3725. return err;
  3726. set_min_partial(s, min);
  3727. return length;
  3728. }
  3729. SLAB_ATTR(min_partial);
  3730. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3731. {
  3732. return sprintf(buf, "%u\n", s->cpu_partial);
  3733. }
  3734. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3735. size_t length)
  3736. {
  3737. unsigned long objects;
  3738. int err;
  3739. err = strict_strtoul(buf, 10, &objects);
  3740. if (err)
  3741. return err;
  3742. if (objects && kmem_cache_debug(s))
  3743. return -EINVAL;
  3744. s->cpu_partial = objects;
  3745. flush_all(s);
  3746. return length;
  3747. }
  3748. SLAB_ATTR(cpu_partial);
  3749. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3750. {
  3751. if (!s->ctor)
  3752. return 0;
  3753. return sprintf(buf, "%pS\n", s->ctor);
  3754. }
  3755. SLAB_ATTR_RO(ctor);
  3756. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3757. {
  3758. return sprintf(buf, "%d\n", s->refcount - 1);
  3759. }
  3760. SLAB_ATTR_RO(aliases);
  3761. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3762. {
  3763. return show_slab_objects(s, buf, SO_PARTIAL);
  3764. }
  3765. SLAB_ATTR_RO(partial);
  3766. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3767. {
  3768. return show_slab_objects(s, buf, SO_CPU);
  3769. }
  3770. SLAB_ATTR_RO(cpu_slabs);
  3771. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3772. {
  3773. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3774. }
  3775. SLAB_ATTR_RO(objects);
  3776. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3777. {
  3778. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3779. }
  3780. SLAB_ATTR_RO(objects_partial);
  3781. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3782. {
  3783. int objects = 0;
  3784. int pages = 0;
  3785. int cpu;
  3786. int len;
  3787. for_each_online_cpu(cpu) {
  3788. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3789. if (page) {
  3790. pages += page->pages;
  3791. objects += page->pobjects;
  3792. }
  3793. }
  3794. len = sprintf(buf, "%d(%d)", objects, pages);
  3795. #ifdef CONFIG_SMP
  3796. for_each_online_cpu(cpu) {
  3797. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3798. if (page && len < PAGE_SIZE - 20)
  3799. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3800. page->pobjects, page->pages);
  3801. }
  3802. #endif
  3803. return len + sprintf(buf + len, "\n");
  3804. }
  3805. SLAB_ATTR_RO(slabs_cpu_partial);
  3806. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3807. {
  3808. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3809. }
  3810. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3811. const char *buf, size_t length)
  3812. {
  3813. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3814. if (buf[0] == '1')
  3815. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3816. return length;
  3817. }
  3818. SLAB_ATTR(reclaim_account);
  3819. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3820. {
  3821. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3822. }
  3823. SLAB_ATTR_RO(hwcache_align);
  3824. #ifdef CONFIG_ZONE_DMA
  3825. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3826. {
  3827. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3828. }
  3829. SLAB_ATTR_RO(cache_dma);
  3830. #endif
  3831. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3832. {
  3833. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3834. }
  3835. SLAB_ATTR_RO(destroy_by_rcu);
  3836. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3837. {
  3838. return sprintf(buf, "%d\n", s->reserved);
  3839. }
  3840. SLAB_ATTR_RO(reserved);
  3841. #ifdef CONFIG_SLUB_DEBUG
  3842. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3843. {
  3844. return show_slab_objects(s, buf, SO_ALL);
  3845. }
  3846. SLAB_ATTR_RO(slabs);
  3847. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3848. {
  3849. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3850. }
  3851. SLAB_ATTR_RO(total_objects);
  3852. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3853. {
  3854. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3855. }
  3856. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3857. const char *buf, size_t length)
  3858. {
  3859. s->flags &= ~SLAB_DEBUG_FREE;
  3860. if (buf[0] == '1') {
  3861. s->flags &= ~__CMPXCHG_DOUBLE;
  3862. s->flags |= SLAB_DEBUG_FREE;
  3863. }
  3864. return length;
  3865. }
  3866. SLAB_ATTR(sanity_checks);
  3867. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3868. {
  3869. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3870. }
  3871. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3872. size_t length)
  3873. {
  3874. s->flags &= ~SLAB_TRACE;
  3875. if (buf[0] == '1') {
  3876. s->flags &= ~__CMPXCHG_DOUBLE;
  3877. s->flags |= SLAB_TRACE;
  3878. }
  3879. return length;
  3880. }
  3881. SLAB_ATTR(trace);
  3882. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3883. {
  3884. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3885. }
  3886. static ssize_t red_zone_store(struct kmem_cache *s,
  3887. const char *buf, size_t length)
  3888. {
  3889. if (any_slab_objects(s))
  3890. return -EBUSY;
  3891. s->flags &= ~SLAB_RED_ZONE;
  3892. if (buf[0] == '1') {
  3893. s->flags &= ~__CMPXCHG_DOUBLE;
  3894. s->flags |= SLAB_RED_ZONE;
  3895. }
  3896. calculate_sizes(s, -1);
  3897. return length;
  3898. }
  3899. SLAB_ATTR(red_zone);
  3900. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3901. {
  3902. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3903. }
  3904. static ssize_t poison_store(struct kmem_cache *s,
  3905. const char *buf, size_t length)
  3906. {
  3907. if (any_slab_objects(s))
  3908. return -EBUSY;
  3909. s->flags &= ~SLAB_POISON;
  3910. if (buf[0] == '1') {
  3911. s->flags &= ~__CMPXCHG_DOUBLE;
  3912. s->flags |= SLAB_POISON;
  3913. }
  3914. calculate_sizes(s, -1);
  3915. return length;
  3916. }
  3917. SLAB_ATTR(poison);
  3918. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3919. {
  3920. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3921. }
  3922. static ssize_t store_user_store(struct kmem_cache *s,
  3923. const char *buf, size_t length)
  3924. {
  3925. if (any_slab_objects(s))
  3926. return -EBUSY;
  3927. s->flags &= ~SLAB_STORE_USER;
  3928. if (buf[0] == '1') {
  3929. s->flags &= ~__CMPXCHG_DOUBLE;
  3930. s->flags |= SLAB_STORE_USER;
  3931. }
  3932. calculate_sizes(s, -1);
  3933. return length;
  3934. }
  3935. SLAB_ATTR(store_user);
  3936. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3937. {
  3938. return 0;
  3939. }
  3940. static ssize_t validate_store(struct kmem_cache *s,
  3941. const char *buf, size_t length)
  3942. {
  3943. int ret = -EINVAL;
  3944. if (buf[0] == '1') {
  3945. ret = validate_slab_cache(s);
  3946. if (ret >= 0)
  3947. ret = length;
  3948. }
  3949. return ret;
  3950. }
  3951. SLAB_ATTR(validate);
  3952. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3953. {
  3954. if (!(s->flags & SLAB_STORE_USER))
  3955. return -ENOSYS;
  3956. return list_locations(s, buf, TRACK_ALLOC);
  3957. }
  3958. SLAB_ATTR_RO(alloc_calls);
  3959. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3960. {
  3961. if (!(s->flags & SLAB_STORE_USER))
  3962. return -ENOSYS;
  3963. return list_locations(s, buf, TRACK_FREE);
  3964. }
  3965. SLAB_ATTR_RO(free_calls);
  3966. #endif /* CONFIG_SLUB_DEBUG */
  3967. #ifdef CONFIG_FAILSLAB
  3968. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3969. {
  3970. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3971. }
  3972. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3973. size_t length)
  3974. {
  3975. s->flags &= ~SLAB_FAILSLAB;
  3976. if (buf[0] == '1')
  3977. s->flags |= SLAB_FAILSLAB;
  3978. return length;
  3979. }
  3980. SLAB_ATTR(failslab);
  3981. #endif
  3982. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3983. {
  3984. return 0;
  3985. }
  3986. static ssize_t shrink_store(struct kmem_cache *s,
  3987. const char *buf, size_t length)
  3988. {
  3989. if (buf[0] == '1') {
  3990. int rc = kmem_cache_shrink(s);
  3991. if (rc)
  3992. return rc;
  3993. } else
  3994. return -EINVAL;
  3995. return length;
  3996. }
  3997. SLAB_ATTR(shrink);
  3998. #ifdef CONFIG_NUMA
  3999. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4000. {
  4001. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4002. }
  4003. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4004. const char *buf, size_t length)
  4005. {
  4006. unsigned long ratio;
  4007. int err;
  4008. err = strict_strtoul(buf, 10, &ratio);
  4009. if (err)
  4010. return err;
  4011. if (ratio <= 100)
  4012. s->remote_node_defrag_ratio = ratio * 10;
  4013. return length;
  4014. }
  4015. SLAB_ATTR(remote_node_defrag_ratio);
  4016. #endif
  4017. #ifdef CONFIG_SLUB_STATS
  4018. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4019. {
  4020. unsigned long sum = 0;
  4021. int cpu;
  4022. int len;
  4023. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4024. if (!data)
  4025. return -ENOMEM;
  4026. for_each_online_cpu(cpu) {
  4027. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4028. data[cpu] = x;
  4029. sum += x;
  4030. }
  4031. len = sprintf(buf, "%lu", sum);
  4032. #ifdef CONFIG_SMP
  4033. for_each_online_cpu(cpu) {
  4034. if (data[cpu] && len < PAGE_SIZE - 20)
  4035. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4036. }
  4037. #endif
  4038. kfree(data);
  4039. return len + sprintf(buf + len, "\n");
  4040. }
  4041. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4042. {
  4043. int cpu;
  4044. for_each_online_cpu(cpu)
  4045. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4046. }
  4047. #define STAT_ATTR(si, text) \
  4048. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4049. { \
  4050. return show_stat(s, buf, si); \
  4051. } \
  4052. static ssize_t text##_store(struct kmem_cache *s, \
  4053. const char *buf, size_t length) \
  4054. { \
  4055. if (buf[0] != '0') \
  4056. return -EINVAL; \
  4057. clear_stat(s, si); \
  4058. return length; \
  4059. } \
  4060. SLAB_ATTR(text); \
  4061. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4062. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4063. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4064. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4065. STAT_ATTR(FREE_FROZEN, free_frozen);
  4066. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4067. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4068. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4069. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4070. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4071. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4072. STAT_ATTR(FREE_SLAB, free_slab);
  4073. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4074. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4075. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4076. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4077. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4078. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4079. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4080. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4081. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4082. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4083. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4084. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4085. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4086. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4087. #endif
  4088. static struct attribute *slab_attrs[] = {
  4089. &slab_size_attr.attr,
  4090. &object_size_attr.attr,
  4091. &objs_per_slab_attr.attr,
  4092. &order_attr.attr,
  4093. &min_partial_attr.attr,
  4094. &cpu_partial_attr.attr,
  4095. &objects_attr.attr,
  4096. &objects_partial_attr.attr,
  4097. &partial_attr.attr,
  4098. &cpu_slabs_attr.attr,
  4099. &ctor_attr.attr,
  4100. &aliases_attr.attr,
  4101. &align_attr.attr,
  4102. &hwcache_align_attr.attr,
  4103. &reclaim_account_attr.attr,
  4104. &destroy_by_rcu_attr.attr,
  4105. &shrink_attr.attr,
  4106. &reserved_attr.attr,
  4107. &slabs_cpu_partial_attr.attr,
  4108. #ifdef CONFIG_SLUB_DEBUG
  4109. &total_objects_attr.attr,
  4110. &slabs_attr.attr,
  4111. &sanity_checks_attr.attr,
  4112. &trace_attr.attr,
  4113. &red_zone_attr.attr,
  4114. &poison_attr.attr,
  4115. &store_user_attr.attr,
  4116. &validate_attr.attr,
  4117. &alloc_calls_attr.attr,
  4118. &free_calls_attr.attr,
  4119. #endif
  4120. #ifdef CONFIG_ZONE_DMA
  4121. &cache_dma_attr.attr,
  4122. #endif
  4123. #ifdef CONFIG_NUMA
  4124. &remote_node_defrag_ratio_attr.attr,
  4125. #endif
  4126. #ifdef CONFIG_SLUB_STATS
  4127. &alloc_fastpath_attr.attr,
  4128. &alloc_slowpath_attr.attr,
  4129. &free_fastpath_attr.attr,
  4130. &free_slowpath_attr.attr,
  4131. &free_frozen_attr.attr,
  4132. &free_add_partial_attr.attr,
  4133. &free_remove_partial_attr.attr,
  4134. &alloc_from_partial_attr.attr,
  4135. &alloc_slab_attr.attr,
  4136. &alloc_refill_attr.attr,
  4137. &alloc_node_mismatch_attr.attr,
  4138. &free_slab_attr.attr,
  4139. &cpuslab_flush_attr.attr,
  4140. &deactivate_full_attr.attr,
  4141. &deactivate_empty_attr.attr,
  4142. &deactivate_to_head_attr.attr,
  4143. &deactivate_to_tail_attr.attr,
  4144. &deactivate_remote_frees_attr.attr,
  4145. &deactivate_bypass_attr.attr,
  4146. &order_fallback_attr.attr,
  4147. &cmpxchg_double_fail_attr.attr,
  4148. &cmpxchg_double_cpu_fail_attr.attr,
  4149. &cpu_partial_alloc_attr.attr,
  4150. &cpu_partial_free_attr.attr,
  4151. &cpu_partial_node_attr.attr,
  4152. &cpu_partial_drain_attr.attr,
  4153. #endif
  4154. #ifdef CONFIG_FAILSLAB
  4155. &failslab_attr.attr,
  4156. #endif
  4157. NULL
  4158. };
  4159. static struct attribute_group slab_attr_group = {
  4160. .attrs = slab_attrs,
  4161. };
  4162. static ssize_t slab_attr_show(struct kobject *kobj,
  4163. struct attribute *attr,
  4164. char *buf)
  4165. {
  4166. struct slab_attribute *attribute;
  4167. struct kmem_cache *s;
  4168. int err;
  4169. attribute = to_slab_attr(attr);
  4170. s = to_slab(kobj);
  4171. if (!attribute->show)
  4172. return -EIO;
  4173. err = attribute->show(s, buf);
  4174. return err;
  4175. }
  4176. static ssize_t slab_attr_store(struct kobject *kobj,
  4177. struct attribute *attr,
  4178. const char *buf, size_t len)
  4179. {
  4180. struct slab_attribute *attribute;
  4181. struct kmem_cache *s;
  4182. int err;
  4183. attribute = to_slab_attr(attr);
  4184. s = to_slab(kobj);
  4185. if (!attribute->store)
  4186. return -EIO;
  4187. err = attribute->store(s, buf, len);
  4188. #ifdef CONFIG_MEMCG_KMEM
  4189. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4190. int i;
  4191. mutex_lock(&slab_mutex);
  4192. if (s->max_attr_size < len)
  4193. s->max_attr_size = len;
  4194. /*
  4195. * This is a best effort propagation, so this function's return
  4196. * value will be determined by the parent cache only. This is
  4197. * basically because not all attributes will have a well
  4198. * defined semantics for rollbacks - most of the actions will
  4199. * have permanent effects.
  4200. *
  4201. * Returning the error value of any of the children that fail
  4202. * is not 100 % defined, in the sense that users seeing the
  4203. * error code won't be able to know anything about the state of
  4204. * the cache.
  4205. *
  4206. * Only returning the error code for the parent cache at least
  4207. * has well defined semantics. The cache being written to
  4208. * directly either failed or succeeded, in which case we loop
  4209. * through the descendants with best-effort propagation.
  4210. */
  4211. for_each_memcg_cache_index(i) {
  4212. struct kmem_cache *c = cache_from_memcg(s, i);
  4213. if (c)
  4214. attribute->store(c, buf, len);
  4215. }
  4216. mutex_unlock(&slab_mutex);
  4217. }
  4218. #endif
  4219. return err;
  4220. }
  4221. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4222. {
  4223. #ifdef CONFIG_MEMCG_KMEM
  4224. int i;
  4225. char *buffer = NULL;
  4226. if (!is_root_cache(s))
  4227. return;
  4228. /*
  4229. * This mean this cache had no attribute written. Therefore, no point
  4230. * in copying default values around
  4231. */
  4232. if (!s->max_attr_size)
  4233. return;
  4234. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4235. char mbuf[64];
  4236. char *buf;
  4237. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4238. if (!attr || !attr->store || !attr->show)
  4239. continue;
  4240. /*
  4241. * It is really bad that we have to allocate here, so we will
  4242. * do it only as a fallback. If we actually allocate, though,
  4243. * we can just use the allocated buffer until the end.
  4244. *
  4245. * Most of the slub attributes will tend to be very small in
  4246. * size, but sysfs allows buffers up to a page, so they can
  4247. * theoretically happen.
  4248. */
  4249. if (buffer)
  4250. buf = buffer;
  4251. else if (s->max_attr_size < ARRAY_SIZE(mbuf))
  4252. buf = mbuf;
  4253. else {
  4254. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4255. if (WARN_ON(!buffer))
  4256. continue;
  4257. buf = buffer;
  4258. }
  4259. attr->show(s->memcg_params->root_cache, buf);
  4260. attr->store(s, buf, strlen(buf));
  4261. }
  4262. if (buffer)
  4263. free_page((unsigned long)buffer);
  4264. #endif
  4265. }
  4266. static const struct sysfs_ops slab_sysfs_ops = {
  4267. .show = slab_attr_show,
  4268. .store = slab_attr_store,
  4269. };
  4270. static struct kobj_type slab_ktype = {
  4271. .sysfs_ops = &slab_sysfs_ops,
  4272. };
  4273. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4274. {
  4275. struct kobj_type *ktype = get_ktype(kobj);
  4276. if (ktype == &slab_ktype)
  4277. return 1;
  4278. return 0;
  4279. }
  4280. static const struct kset_uevent_ops slab_uevent_ops = {
  4281. .filter = uevent_filter,
  4282. };
  4283. static struct kset *slab_kset;
  4284. #define ID_STR_LENGTH 64
  4285. /* Create a unique string id for a slab cache:
  4286. *
  4287. * Format :[flags-]size
  4288. */
  4289. static char *create_unique_id(struct kmem_cache *s)
  4290. {
  4291. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4292. char *p = name;
  4293. BUG_ON(!name);
  4294. *p++ = ':';
  4295. /*
  4296. * First flags affecting slabcache operations. We will only
  4297. * get here for aliasable slabs so we do not need to support
  4298. * too many flags. The flags here must cover all flags that
  4299. * are matched during merging to guarantee that the id is
  4300. * unique.
  4301. */
  4302. if (s->flags & SLAB_CACHE_DMA)
  4303. *p++ = 'd';
  4304. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4305. *p++ = 'a';
  4306. if (s->flags & SLAB_DEBUG_FREE)
  4307. *p++ = 'F';
  4308. if (!(s->flags & SLAB_NOTRACK))
  4309. *p++ = 't';
  4310. if (p != name + 1)
  4311. *p++ = '-';
  4312. p += sprintf(p, "%07d", s->size);
  4313. #ifdef CONFIG_MEMCG_KMEM
  4314. if (!is_root_cache(s))
  4315. p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
  4316. #endif
  4317. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4318. return name;
  4319. }
  4320. static int sysfs_slab_add(struct kmem_cache *s)
  4321. {
  4322. int err;
  4323. const char *name;
  4324. int unmergeable = slab_unmergeable(s);
  4325. if (unmergeable) {
  4326. /*
  4327. * Slabcache can never be merged so we can use the name proper.
  4328. * This is typically the case for debug situations. In that
  4329. * case we can catch duplicate names easily.
  4330. */
  4331. sysfs_remove_link(&slab_kset->kobj, s->name);
  4332. name = s->name;
  4333. } else {
  4334. /*
  4335. * Create a unique name for the slab as a target
  4336. * for the symlinks.
  4337. */
  4338. name = create_unique_id(s);
  4339. }
  4340. s->kobj.kset = slab_kset;
  4341. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4342. if (err) {
  4343. kobject_put(&s->kobj);
  4344. return err;
  4345. }
  4346. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4347. if (err) {
  4348. kobject_del(&s->kobj);
  4349. kobject_put(&s->kobj);
  4350. return err;
  4351. }
  4352. kobject_uevent(&s->kobj, KOBJ_ADD);
  4353. if (!unmergeable) {
  4354. /* Setup first alias */
  4355. sysfs_slab_alias(s, s->name);
  4356. kfree(name);
  4357. }
  4358. return 0;
  4359. }
  4360. static void sysfs_slab_remove(struct kmem_cache *s)
  4361. {
  4362. if (slab_state < FULL)
  4363. /*
  4364. * Sysfs has not been setup yet so no need to remove the
  4365. * cache from sysfs.
  4366. */
  4367. return;
  4368. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4369. kobject_del(&s->kobj);
  4370. kobject_put(&s->kobj);
  4371. }
  4372. /*
  4373. * Need to buffer aliases during bootup until sysfs becomes
  4374. * available lest we lose that information.
  4375. */
  4376. struct saved_alias {
  4377. struct kmem_cache *s;
  4378. const char *name;
  4379. struct saved_alias *next;
  4380. };
  4381. static struct saved_alias *alias_list;
  4382. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4383. {
  4384. struct saved_alias *al;
  4385. if (slab_state == FULL) {
  4386. /*
  4387. * If we have a leftover link then remove it.
  4388. */
  4389. sysfs_remove_link(&slab_kset->kobj, name);
  4390. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4391. }
  4392. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4393. if (!al)
  4394. return -ENOMEM;
  4395. al->s = s;
  4396. al->name = name;
  4397. al->next = alias_list;
  4398. alias_list = al;
  4399. return 0;
  4400. }
  4401. static int __init slab_sysfs_init(void)
  4402. {
  4403. struct kmem_cache *s;
  4404. int err;
  4405. mutex_lock(&slab_mutex);
  4406. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4407. if (!slab_kset) {
  4408. mutex_unlock(&slab_mutex);
  4409. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4410. return -ENOSYS;
  4411. }
  4412. slab_state = FULL;
  4413. list_for_each_entry(s, &slab_caches, list) {
  4414. err = sysfs_slab_add(s);
  4415. if (err)
  4416. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4417. " to sysfs\n", s->name);
  4418. }
  4419. while (alias_list) {
  4420. struct saved_alias *al = alias_list;
  4421. alias_list = alias_list->next;
  4422. err = sysfs_slab_alias(al->s, al->name);
  4423. if (err)
  4424. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4425. " %s to sysfs\n", al->name);
  4426. kfree(al);
  4427. }
  4428. mutex_unlock(&slab_mutex);
  4429. resiliency_test();
  4430. return 0;
  4431. }
  4432. __initcall(slab_sysfs_init);
  4433. #endif /* CONFIG_SYSFS */
  4434. /*
  4435. * The /proc/slabinfo ABI
  4436. */
  4437. #ifdef CONFIG_SLABINFO
  4438. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4439. {
  4440. unsigned long nr_slabs = 0;
  4441. unsigned long nr_objs = 0;
  4442. unsigned long nr_free = 0;
  4443. int node;
  4444. for_each_online_node(node) {
  4445. struct kmem_cache_node *n = get_node(s, node);
  4446. if (!n)
  4447. continue;
  4448. nr_slabs += node_nr_slabs(n);
  4449. nr_objs += node_nr_objs(n);
  4450. nr_free += count_partial(n, count_free);
  4451. }
  4452. sinfo->active_objs = nr_objs - nr_free;
  4453. sinfo->num_objs = nr_objs;
  4454. sinfo->active_slabs = nr_slabs;
  4455. sinfo->num_slabs = nr_slabs;
  4456. sinfo->objects_per_slab = oo_objects(s->oo);
  4457. sinfo->cache_order = oo_order(s->oo);
  4458. }
  4459. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4460. {
  4461. }
  4462. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4463. size_t count, loff_t *ppos)
  4464. {
  4465. return -EIO;
  4466. }
  4467. #endif /* CONFIG_SLABINFO */