kvm_main.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <asm/processor.h>
  39. #include <asm/msr.h>
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/desc.h>
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. static cpumask_t cpus_hardware_enabled;
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. struct kmem_cache *kvm_vcpu_cache;
  50. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  51. static __read_mostly struct preempt_ops kvm_preempt_ops;
  52. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  53. static struct kvm_stats_debugfs_item {
  54. const char *name;
  55. int offset;
  56. struct dentry *dentry;
  57. } debugfs_entries[] = {
  58. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  59. { "pf_guest", STAT_OFFSET(pf_guest) },
  60. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  61. { "invlpg", STAT_OFFSET(invlpg) },
  62. { "exits", STAT_OFFSET(exits) },
  63. { "io_exits", STAT_OFFSET(io_exits) },
  64. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  65. { "signal_exits", STAT_OFFSET(signal_exits) },
  66. { "irq_window", STAT_OFFSET(irq_window_exits) },
  67. { "halt_exits", STAT_OFFSET(halt_exits) },
  68. { "request_irq", STAT_OFFSET(request_irq_exits) },
  69. { "irq_exits", STAT_OFFSET(irq_exits) },
  70. { "light_exits", STAT_OFFSET(light_exits) },
  71. { "efer_reload", STAT_OFFSET(efer_reload) },
  72. { NULL }
  73. };
  74. static struct dentry *debugfs_dir;
  75. #define MAX_IO_MSRS 256
  76. #define CR0_RESERVED_BITS \
  77. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  78. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  79. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  80. #define CR4_RESERVED_BITS \
  81. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  82. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  83. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  84. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  85. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  86. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  87. #ifdef CONFIG_X86_64
  88. // LDT or TSS descriptor in the GDT. 16 bytes.
  89. struct segment_descriptor_64 {
  90. struct segment_descriptor s;
  91. u32 base_higher;
  92. u32 pad_zero;
  93. };
  94. #endif
  95. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  96. unsigned long arg);
  97. unsigned long segment_base(u16 selector)
  98. {
  99. struct descriptor_table gdt;
  100. struct segment_descriptor *d;
  101. unsigned long table_base;
  102. typedef unsigned long ul;
  103. unsigned long v;
  104. if (selector == 0)
  105. return 0;
  106. asm ("sgdt %0" : "=m"(gdt));
  107. table_base = gdt.base;
  108. if (selector & 4) { /* from ldt */
  109. u16 ldt_selector;
  110. asm ("sldt %0" : "=g"(ldt_selector));
  111. table_base = segment_base(ldt_selector);
  112. }
  113. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  114. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  115. #ifdef CONFIG_X86_64
  116. if (d->system == 0
  117. && (d->type == 2 || d->type == 9 || d->type == 11))
  118. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  119. #endif
  120. return v;
  121. }
  122. EXPORT_SYMBOL_GPL(segment_base);
  123. static inline int valid_vcpu(int n)
  124. {
  125. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  126. }
  127. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  128. {
  129. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  130. return;
  131. vcpu->guest_fpu_loaded = 1;
  132. fx_save(vcpu->host_fx_image);
  133. fx_restore(vcpu->guest_fx_image);
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  136. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  137. {
  138. if (!vcpu->guest_fpu_loaded)
  139. return;
  140. vcpu->guest_fpu_loaded = 0;
  141. fx_save(vcpu->guest_fx_image);
  142. fx_restore(vcpu->host_fx_image);
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  145. /*
  146. * Switches to specified vcpu, until a matching vcpu_put()
  147. */
  148. static void vcpu_load(struct kvm_vcpu *vcpu)
  149. {
  150. int cpu;
  151. mutex_lock(&vcpu->mutex);
  152. cpu = get_cpu();
  153. preempt_notifier_register(&vcpu->preempt_notifier);
  154. kvm_arch_ops->vcpu_load(vcpu, cpu);
  155. put_cpu();
  156. }
  157. static void vcpu_put(struct kvm_vcpu *vcpu)
  158. {
  159. preempt_disable();
  160. kvm_arch_ops->vcpu_put(vcpu);
  161. preempt_notifier_unregister(&vcpu->preempt_notifier);
  162. preempt_enable();
  163. mutex_unlock(&vcpu->mutex);
  164. }
  165. static void ack_flush(void *_completed)
  166. {
  167. atomic_t *completed = _completed;
  168. atomic_inc(completed);
  169. }
  170. void kvm_flush_remote_tlbs(struct kvm *kvm)
  171. {
  172. int i, cpu, needed;
  173. cpumask_t cpus;
  174. struct kvm_vcpu *vcpu;
  175. atomic_t completed;
  176. atomic_set(&completed, 0);
  177. cpus_clear(cpus);
  178. needed = 0;
  179. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  180. vcpu = kvm->vcpus[i];
  181. if (!vcpu)
  182. continue;
  183. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  184. continue;
  185. cpu = vcpu->cpu;
  186. if (cpu != -1 && cpu != raw_smp_processor_id())
  187. if (!cpu_isset(cpu, cpus)) {
  188. cpu_set(cpu, cpus);
  189. ++needed;
  190. }
  191. }
  192. /*
  193. * We really want smp_call_function_mask() here. But that's not
  194. * available, so ipi all cpus in parallel and wait for them
  195. * to complete.
  196. */
  197. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  198. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  199. while (atomic_read(&completed) != needed) {
  200. cpu_relax();
  201. barrier();
  202. }
  203. }
  204. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  205. {
  206. struct page *page;
  207. int r;
  208. mutex_init(&vcpu->mutex);
  209. vcpu->cpu = -1;
  210. vcpu->mmu.root_hpa = INVALID_PAGE;
  211. vcpu->kvm = kvm;
  212. vcpu->vcpu_id = id;
  213. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  214. if (!page) {
  215. r = -ENOMEM;
  216. goto fail;
  217. }
  218. vcpu->run = page_address(page);
  219. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  220. if (!page) {
  221. r = -ENOMEM;
  222. goto fail_free_run;
  223. }
  224. vcpu->pio_data = page_address(page);
  225. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  226. FX_IMAGE_ALIGN);
  227. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  228. r = kvm_mmu_create(vcpu);
  229. if (r < 0)
  230. goto fail_free_pio_data;
  231. return 0;
  232. fail_free_pio_data:
  233. free_page((unsigned long)vcpu->pio_data);
  234. fail_free_run:
  235. free_page((unsigned long)vcpu->run);
  236. fail:
  237. return -ENOMEM;
  238. }
  239. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  240. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  241. {
  242. kvm_mmu_destroy(vcpu);
  243. free_page((unsigned long)vcpu->pio_data);
  244. free_page((unsigned long)vcpu->run);
  245. }
  246. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  247. static struct kvm *kvm_create_vm(void)
  248. {
  249. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  250. if (!kvm)
  251. return ERR_PTR(-ENOMEM);
  252. kvm_io_bus_init(&kvm->pio_bus);
  253. mutex_init(&kvm->lock);
  254. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  255. kvm_io_bus_init(&kvm->mmio_bus);
  256. spin_lock(&kvm_lock);
  257. list_add(&kvm->vm_list, &vm_list);
  258. spin_unlock(&kvm_lock);
  259. return kvm;
  260. }
  261. static int kvm_dev_open(struct inode *inode, struct file *filp)
  262. {
  263. return 0;
  264. }
  265. /*
  266. * Free any memory in @free but not in @dont.
  267. */
  268. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  269. struct kvm_memory_slot *dont)
  270. {
  271. int i;
  272. if (!dont || free->phys_mem != dont->phys_mem)
  273. if (free->phys_mem) {
  274. for (i = 0; i < free->npages; ++i)
  275. if (free->phys_mem[i])
  276. __free_page(free->phys_mem[i]);
  277. vfree(free->phys_mem);
  278. }
  279. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  280. vfree(free->dirty_bitmap);
  281. free->phys_mem = NULL;
  282. free->npages = 0;
  283. free->dirty_bitmap = NULL;
  284. }
  285. static void kvm_free_physmem(struct kvm *kvm)
  286. {
  287. int i;
  288. for (i = 0; i < kvm->nmemslots; ++i)
  289. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  290. }
  291. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  292. {
  293. int i;
  294. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  295. if (vcpu->pio.guest_pages[i]) {
  296. __free_page(vcpu->pio.guest_pages[i]);
  297. vcpu->pio.guest_pages[i] = NULL;
  298. }
  299. }
  300. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  301. {
  302. vcpu_load(vcpu);
  303. kvm_mmu_unload(vcpu);
  304. vcpu_put(vcpu);
  305. }
  306. static void kvm_free_vcpus(struct kvm *kvm)
  307. {
  308. unsigned int i;
  309. /*
  310. * Unpin any mmu pages first.
  311. */
  312. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  313. if (kvm->vcpus[i])
  314. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  315. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  316. if (kvm->vcpus[i]) {
  317. kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
  318. kvm->vcpus[i] = NULL;
  319. }
  320. }
  321. }
  322. static int kvm_dev_release(struct inode *inode, struct file *filp)
  323. {
  324. return 0;
  325. }
  326. static void kvm_destroy_vm(struct kvm *kvm)
  327. {
  328. spin_lock(&kvm_lock);
  329. list_del(&kvm->vm_list);
  330. spin_unlock(&kvm_lock);
  331. kvm_io_bus_destroy(&kvm->pio_bus);
  332. kvm_io_bus_destroy(&kvm->mmio_bus);
  333. kvm_free_vcpus(kvm);
  334. kvm_free_physmem(kvm);
  335. kfree(kvm);
  336. }
  337. static int kvm_vm_release(struct inode *inode, struct file *filp)
  338. {
  339. struct kvm *kvm = filp->private_data;
  340. kvm_destroy_vm(kvm);
  341. return 0;
  342. }
  343. static void inject_gp(struct kvm_vcpu *vcpu)
  344. {
  345. kvm_arch_ops->inject_gp(vcpu, 0);
  346. }
  347. /*
  348. * Load the pae pdptrs. Return true is they are all valid.
  349. */
  350. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  351. {
  352. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  353. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  354. int i;
  355. u64 *pdpt;
  356. int ret;
  357. struct page *page;
  358. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  359. mutex_lock(&vcpu->kvm->lock);
  360. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  361. if (!page) {
  362. ret = 0;
  363. goto out;
  364. }
  365. pdpt = kmap_atomic(page, KM_USER0);
  366. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  367. kunmap_atomic(pdpt, KM_USER0);
  368. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  369. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  370. ret = 0;
  371. goto out;
  372. }
  373. }
  374. ret = 1;
  375. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  376. out:
  377. mutex_unlock(&vcpu->kvm->lock);
  378. return ret;
  379. }
  380. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  381. {
  382. if (cr0 & CR0_RESERVED_BITS) {
  383. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  384. cr0, vcpu->cr0);
  385. inject_gp(vcpu);
  386. return;
  387. }
  388. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  389. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  390. inject_gp(vcpu);
  391. return;
  392. }
  393. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  394. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  395. "and a clear PE flag\n");
  396. inject_gp(vcpu);
  397. return;
  398. }
  399. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  400. #ifdef CONFIG_X86_64
  401. if ((vcpu->shadow_efer & EFER_LME)) {
  402. int cs_db, cs_l;
  403. if (!is_pae(vcpu)) {
  404. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  405. "in long mode while PAE is disabled\n");
  406. inject_gp(vcpu);
  407. return;
  408. }
  409. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  410. if (cs_l) {
  411. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  412. "in long mode while CS.L == 1\n");
  413. inject_gp(vcpu);
  414. return;
  415. }
  416. } else
  417. #endif
  418. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  419. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  420. "reserved bits\n");
  421. inject_gp(vcpu);
  422. return;
  423. }
  424. }
  425. kvm_arch_ops->set_cr0(vcpu, cr0);
  426. vcpu->cr0 = cr0;
  427. mutex_lock(&vcpu->kvm->lock);
  428. kvm_mmu_reset_context(vcpu);
  429. mutex_unlock(&vcpu->kvm->lock);
  430. return;
  431. }
  432. EXPORT_SYMBOL_GPL(set_cr0);
  433. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  434. {
  435. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  436. }
  437. EXPORT_SYMBOL_GPL(lmsw);
  438. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  439. {
  440. if (cr4 & CR4_RESERVED_BITS) {
  441. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  442. inject_gp(vcpu);
  443. return;
  444. }
  445. if (is_long_mode(vcpu)) {
  446. if (!(cr4 & X86_CR4_PAE)) {
  447. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  448. "in long mode\n");
  449. inject_gp(vcpu);
  450. return;
  451. }
  452. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  453. && !load_pdptrs(vcpu, vcpu->cr3)) {
  454. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  455. inject_gp(vcpu);
  456. return;
  457. }
  458. if (cr4 & X86_CR4_VMXE) {
  459. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  460. inject_gp(vcpu);
  461. return;
  462. }
  463. kvm_arch_ops->set_cr4(vcpu, cr4);
  464. mutex_lock(&vcpu->kvm->lock);
  465. kvm_mmu_reset_context(vcpu);
  466. mutex_unlock(&vcpu->kvm->lock);
  467. }
  468. EXPORT_SYMBOL_GPL(set_cr4);
  469. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  470. {
  471. if (is_long_mode(vcpu)) {
  472. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  473. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  474. inject_gp(vcpu);
  475. return;
  476. }
  477. } else {
  478. if (is_pae(vcpu)) {
  479. if (cr3 & CR3_PAE_RESERVED_BITS) {
  480. printk(KERN_DEBUG
  481. "set_cr3: #GP, reserved bits\n");
  482. inject_gp(vcpu);
  483. return;
  484. }
  485. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  486. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  487. "reserved bits\n");
  488. inject_gp(vcpu);
  489. return;
  490. }
  491. } else {
  492. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  493. printk(KERN_DEBUG
  494. "set_cr3: #GP, reserved bits\n");
  495. inject_gp(vcpu);
  496. return;
  497. }
  498. }
  499. }
  500. vcpu->cr3 = cr3;
  501. mutex_lock(&vcpu->kvm->lock);
  502. /*
  503. * Does the new cr3 value map to physical memory? (Note, we
  504. * catch an invalid cr3 even in real-mode, because it would
  505. * cause trouble later on when we turn on paging anyway.)
  506. *
  507. * A real CPU would silently accept an invalid cr3 and would
  508. * attempt to use it - with largely undefined (and often hard
  509. * to debug) behavior on the guest side.
  510. */
  511. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  512. inject_gp(vcpu);
  513. else
  514. vcpu->mmu.new_cr3(vcpu);
  515. mutex_unlock(&vcpu->kvm->lock);
  516. }
  517. EXPORT_SYMBOL_GPL(set_cr3);
  518. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  519. {
  520. if (cr8 & CR8_RESERVED_BITS) {
  521. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  522. inject_gp(vcpu);
  523. return;
  524. }
  525. vcpu->cr8 = cr8;
  526. }
  527. EXPORT_SYMBOL_GPL(set_cr8);
  528. void fx_init(struct kvm_vcpu *vcpu)
  529. {
  530. struct __attribute__ ((__packed__)) fx_image_s {
  531. u16 control; //fcw
  532. u16 status; //fsw
  533. u16 tag; // ftw
  534. u16 opcode; //fop
  535. u64 ip; // fpu ip
  536. u64 operand;// fpu dp
  537. u32 mxcsr;
  538. u32 mxcsr_mask;
  539. } *fx_image;
  540. /* Initialize guest FPU by resetting ours and saving into guest's */
  541. preempt_disable();
  542. fx_save(vcpu->host_fx_image);
  543. fpu_init();
  544. fx_save(vcpu->guest_fx_image);
  545. fx_restore(vcpu->host_fx_image);
  546. preempt_enable();
  547. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  548. fx_image->mxcsr = 0x1f80;
  549. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  550. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  551. }
  552. EXPORT_SYMBOL_GPL(fx_init);
  553. /*
  554. * Allocate some memory and give it an address in the guest physical address
  555. * space.
  556. *
  557. * Discontiguous memory is allowed, mostly for framebuffers.
  558. */
  559. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  560. struct kvm_memory_region *mem)
  561. {
  562. int r;
  563. gfn_t base_gfn;
  564. unsigned long npages;
  565. unsigned long i;
  566. struct kvm_memory_slot *memslot;
  567. struct kvm_memory_slot old, new;
  568. int memory_config_version;
  569. r = -EINVAL;
  570. /* General sanity checks */
  571. if (mem->memory_size & (PAGE_SIZE - 1))
  572. goto out;
  573. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  574. goto out;
  575. if (mem->slot >= KVM_MEMORY_SLOTS)
  576. goto out;
  577. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  578. goto out;
  579. memslot = &kvm->memslots[mem->slot];
  580. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  581. npages = mem->memory_size >> PAGE_SHIFT;
  582. if (!npages)
  583. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  584. raced:
  585. mutex_lock(&kvm->lock);
  586. memory_config_version = kvm->memory_config_version;
  587. new = old = *memslot;
  588. new.base_gfn = base_gfn;
  589. new.npages = npages;
  590. new.flags = mem->flags;
  591. /* Disallow changing a memory slot's size. */
  592. r = -EINVAL;
  593. if (npages && old.npages && npages != old.npages)
  594. goto out_unlock;
  595. /* Check for overlaps */
  596. r = -EEXIST;
  597. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  598. struct kvm_memory_slot *s = &kvm->memslots[i];
  599. if (s == memslot)
  600. continue;
  601. if (!((base_gfn + npages <= s->base_gfn) ||
  602. (base_gfn >= s->base_gfn + s->npages)))
  603. goto out_unlock;
  604. }
  605. /*
  606. * Do memory allocations outside lock. memory_config_version will
  607. * detect any races.
  608. */
  609. mutex_unlock(&kvm->lock);
  610. /* Deallocate if slot is being removed */
  611. if (!npages)
  612. new.phys_mem = NULL;
  613. /* Free page dirty bitmap if unneeded */
  614. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  615. new.dirty_bitmap = NULL;
  616. r = -ENOMEM;
  617. /* Allocate if a slot is being created */
  618. if (npages && !new.phys_mem) {
  619. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  620. if (!new.phys_mem)
  621. goto out_free;
  622. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  623. for (i = 0; i < npages; ++i) {
  624. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  625. | __GFP_ZERO);
  626. if (!new.phys_mem[i])
  627. goto out_free;
  628. set_page_private(new.phys_mem[i],0);
  629. }
  630. }
  631. /* Allocate page dirty bitmap if needed */
  632. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  633. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  634. new.dirty_bitmap = vmalloc(dirty_bytes);
  635. if (!new.dirty_bitmap)
  636. goto out_free;
  637. memset(new.dirty_bitmap, 0, dirty_bytes);
  638. }
  639. mutex_lock(&kvm->lock);
  640. if (memory_config_version != kvm->memory_config_version) {
  641. mutex_unlock(&kvm->lock);
  642. kvm_free_physmem_slot(&new, &old);
  643. goto raced;
  644. }
  645. r = -EAGAIN;
  646. if (kvm->busy)
  647. goto out_unlock;
  648. if (mem->slot >= kvm->nmemslots)
  649. kvm->nmemslots = mem->slot + 1;
  650. *memslot = new;
  651. ++kvm->memory_config_version;
  652. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  653. kvm_flush_remote_tlbs(kvm);
  654. mutex_unlock(&kvm->lock);
  655. kvm_free_physmem_slot(&old, &new);
  656. return 0;
  657. out_unlock:
  658. mutex_unlock(&kvm->lock);
  659. out_free:
  660. kvm_free_physmem_slot(&new, &old);
  661. out:
  662. return r;
  663. }
  664. /*
  665. * Get (and clear) the dirty memory log for a memory slot.
  666. */
  667. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  668. struct kvm_dirty_log *log)
  669. {
  670. struct kvm_memory_slot *memslot;
  671. int r, i;
  672. int n;
  673. unsigned long any = 0;
  674. mutex_lock(&kvm->lock);
  675. /*
  676. * Prevent changes to guest memory configuration even while the lock
  677. * is not taken.
  678. */
  679. ++kvm->busy;
  680. mutex_unlock(&kvm->lock);
  681. r = -EINVAL;
  682. if (log->slot >= KVM_MEMORY_SLOTS)
  683. goto out;
  684. memslot = &kvm->memslots[log->slot];
  685. r = -ENOENT;
  686. if (!memslot->dirty_bitmap)
  687. goto out;
  688. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  689. for (i = 0; !any && i < n/sizeof(long); ++i)
  690. any = memslot->dirty_bitmap[i];
  691. r = -EFAULT;
  692. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  693. goto out;
  694. mutex_lock(&kvm->lock);
  695. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  696. kvm_flush_remote_tlbs(kvm);
  697. memset(memslot->dirty_bitmap, 0, n);
  698. mutex_unlock(&kvm->lock);
  699. r = 0;
  700. out:
  701. mutex_lock(&kvm->lock);
  702. --kvm->busy;
  703. mutex_unlock(&kvm->lock);
  704. return r;
  705. }
  706. /*
  707. * Set a new alias region. Aliases map a portion of physical memory into
  708. * another portion. This is useful for memory windows, for example the PC
  709. * VGA region.
  710. */
  711. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  712. struct kvm_memory_alias *alias)
  713. {
  714. int r, n;
  715. struct kvm_mem_alias *p;
  716. r = -EINVAL;
  717. /* General sanity checks */
  718. if (alias->memory_size & (PAGE_SIZE - 1))
  719. goto out;
  720. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  721. goto out;
  722. if (alias->slot >= KVM_ALIAS_SLOTS)
  723. goto out;
  724. if (alias->guest_phys_addr + alias->memory_size
  725. < alias->guest_phys_addr)
  726. goto out;
  727. if (alias->target_phys_addr + alias->memory_size
  728. < alias->target_phys_addr)
  729. goto out;
  730. mutex_lock(&kvm->lock);
  731. p = &kvm->aliases[alias->slot];
  732. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  733. p->npages = alias->memory_size >> PAGE_SHIFT;
  734. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  735. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  736. if (kvm->aliases[n - 1].npages)
  737. break;
  738. kvm->naliases = n;
  739. kvm_mmu_zap_all(kvm);
  740. mutex_unlock(&kvm->lock);
  741. return 0;
  742. out:
  743. return r;
  744. }
  745. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  746. {
  747. int i;
  748. struct kvm_mem_alias *alias;
  749. for (i = 0; i < kvm->naliases; ++i) {
  750. alias = &kvm->aliases[i];
  751. if (gfn >= alias->base_gfn
  752. && gfn < alias->base_gfn + alias->npages)
  753. return alias->target_gfn + gfn - alias->base_gfn;
  754. }
  755. return gfn;
  756. }
  757. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  758. {
  759. int i;
  760. for (i = 0; i < kvm->nmemslots; ++i) {
  761. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  762. if (gfn >= memslot->base_gfn
  763. && gfn < memslot->base_gfn + memslot->npages)
  764. return memslot;
  765. }
  766. return NULL;
  767. }
  768. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  769. {
  770. gfn = unalias_gfn(kvm, gfn);
  771. return __gfn_to_memslot(kvm, gfn);
  772. }
  773. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  774. {
  775. struct kvm_memory_slot *slot;
  776. gfn = unalias_gfn(kvm, gfn);
  777. slot = __gfn_to_memslot(kvm, gfn);
  778. if (!slot)
  779. return NULL;
  780. return slot->phys_mem[gfn - slot->base_gfn];
  781. }
  782. EXPORT_SYMBOL_GPL(gfn_to_page);
  783. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  784. {
  785. int i;
  786. struct kvm_memory_slot *memslot;
  787. unsigned long rel_gfn;
  788. for (i = 0; i < kvm->nmemslots; ++i) {
  789. memslot = &kvm->memslots[i];
  790. if (gfn >= memslot->base_gfn
  791. && gfn < memslot->base_gfn + memslot->npages) {
  792. if (!memslot->dirty_bitmap)
  793. return;
  794. rel_gfn = gfn - memslot->base_gfn;
  795. /* avoid RMW */
  796. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  797. set_bit(rel_gfn, memslot->dirty_bitmap);
  798. return;
  799. }
  800. }
  801. }
  802. int emulator_read_std(unsigned long addr,
  803. void *val,
  804. unsigned int bytes,
  805. struct kvm_vcpu *vcpu)
  806. {
  807. void *data = val;
  808. while (bytes) {
  809. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  810. unsigned offset = addr & (PAGE_SIZE-1);
  811. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  812. unsigned long pfn;
  813. struct page *page;
  814. void *page_virt;
  815. if (gpa == UNMAPPED_GVA)
  816. return X86EMUL_PROPAGATE_FAULT;
  817. pfn = gpa >> PAGE_SHIFT;
  818. page = gfn_to_page(vcpu->kvm, pfn);
  819. if (!page)
  820. return X86EMUL_UNHANDLEABLE;
  821. page_virt = kmap_atomic(page, KM_USER0);
  822. memcpy(data, page_virt + offset, tocopy);
  823. kunmap_atomic(page_virt, KM_USER0);
  824. bytes -= tocopy;
  825. data += tocopy;
  826. addr += tocopy;
  827. }
  828. return X86EMUL_CONTINUE;
  829. }
  830. EXPORT_SYMBOL_GPL(emulator_read_std);
  831. static int emulator_write_std(unsigned long addr,
  832. const void *val,
  833. unsigned int bytes,
  834. struct kvm_vcpu *vcpu)
  835. {
  836. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  837. addr, bytes);
  838. return X86EMUL_UNHANDLEABLE;
  839. }
  840. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  841. gpa_t addr)
  842. {
  843. /*
  844. * Note that its important to have this wrapper function because
  845. * in the very near future we will be checking for MMIOs against
  846. * the LAPIC as well as the general MMIO bus
  847. */
  848. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  849. }
  850. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  851. gpa_t addr)
  852. {
  853. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  854. }
  855. static int emulator_read_emulated(unsigned long addr,
  856. void *val,
  857. unsigned int bytes,
  858. struct kvm_vcpu *vcpu)
  859. {
  860. struct kvm_io_device *mmio_dev;
  861. gpa_t gpa;
  862. if (vcpu->mmio_read_completed) {
  863. memcpy(val, vcpu->mmio_data, bytes);
  864. vcpu->mmio_read_completed = 0;
  865. return X86EMUL_CONTINUE;
  866. } else if (emulator_read_std(addr, val, bytes, vcpu)
  867. == X86EMUL_CONTINUE)
  868. return X86EMUL_CONTINUE;
  869. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  870. if (gpa == UNMAPPED_GVA)
  871. return X86EMUL_PROPAGATE_FAULT;
  872. /*
  873. * Is this MMIO handled locally?
  874. */
  875. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  876. if (mmio_dev) {
  877. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  878. return X86EMUL_CONTINUE;
  879. }
  880. vcpu->mmio_needed = 1;
  881. vcpu->mmio_phys_addr = gpa;
  882. vcpu->mmio_size = bytes;
  883. vcpu->mmio_is_write = 0;
  884. return X86EMUL_UNHANDLEABLE;
  885. }
  886. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  887. const void *val, int bytes)
  888. {
  889. struct page *page;
  890. void *virt;
  891. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  892. return 0;
  893. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  894. if (!page)
  895. return 0;
  896. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  897. virt = kmap_atomic(page, KM_USER0);
  898. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  899. memcpy(virt + offset_in_page(gpa), val, bytes);
  900. kunmap_atomic(virt, KM_USER0);
  901. return 1;
  902. }
  903. static int emulator_write_emulated_onepage(unsigned long addr,
  904. const void *val,
  905. unsigned int bytes,
  906. struct kvm_vcpu *vcpu)
  907. {
  908. struct kvm_io_device *mmio_dev;
  909. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  910. if (gpa == UNMAPPED_GVA) {
  911. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  912. return X86EMUL_PROPAGATE_FAULT;
  913. }
  914. if (emulator_write_phys(vcpu, gpa, val, bytes))
  915. return X86EMUL_CONTINUE;
  916. /*
  917. * Is this MMIO handled locally?
  918. */
  919. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  920. if (mmio_dev) {
  921. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  922. return X86EMUL_CONTINUE;
  923. }
  924. vcpu->mmio_needed = 1;
  925. vcpu->mmio_phys_addr = gpa;
  926. vcpu->mmio_size = bytes;
  927. vcpu->mmio_is_write = 1;
  928. memcpy(vcpu->mmio_data, val, bytes);
  929. return X86EMUL_CONTINUE;
  930. }
  931. int emulator_write_emulated(unsigned long addr,
  932. const void *val,
  933. unsigned int bytes,
  934. struct kvm_vcpu *vcpu)
  935. {
  936. /* Crossing a page boundary? */
  937. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  938. int rc, now;
  939. now = -addr & ~PAGE_MASK;
  940. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  941. if (rc != X86EMUL_CONTINUE)
  942. return rc;
  943. addr += now;
  944. val += now;
  945. bytes -= now;
  946. }
  947. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  948. }
  949. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  950. static int emulator_cmpxchg_emulated(unsigned long addr,
  951. const void *old,
  952. const void *new,
  953. unsigned int bytes,
  954. struct kvm_vcpu *vcpu)
  955. {
  956. static int reported;
  957. if (!reported) {
  958. reported = 1;
  959. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  960. }
  961. return emulator_write_emulated(addr, new, bytes, vcpu);
  962. }
  963. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  964. {
  965. return kvm_arch_ops->get_segment_base(vcpu, seg);
  966. }
  967. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  968. {
  969. return X86EMUL_CONTINUE;
  970. }
  971. int emulate_clts(struct kvm_vcpu *vcpu)
  972. {
  973. unsigned long cr0;
  974. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  975. kvm_arch_ops->set_cr0(vcpu, cr0);
  976. return X86EMUL_CONTINUE;
  977. }
  978. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  979. {
  980. struct kvm_vcpu *vcpu = ctxt->vcpu;
  981. switch (dr) {
  982. case 0 ... 3:
  983. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  984. return X86EMUL_CONTINUE;
  985. default:
  986. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  987. __FUNCTION__, dr);
  988. return X86EMUL_UNHANDLEABLE;
  989. }
  990. }
  991. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  992. {
  993. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  994. int exception;
  995. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  996. if (exception) {
  997. /* FIXME: better handling */
  998. return X86EMUL_UNHANDLEABLE;
  999. }
  1000. return X86EMUL_CONTINUE;
  1001. }
  1002. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1003. {
  1004. static int reported;
  1005. u8 opcodes[4];
  1006. unsigned long rip = ctxt->vcpu->rip;
  1007. unsigned long rip_linear;
  1008. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1009. if (reported)
  1010. return;
  1011. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  1012. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1013. " rip %lx %02x %02x %02x %02x\n",
  1014. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1015. reported = 1;
  1016. }
  1017. struct x86_emulate_ops emulate_ops = {
  1018. .read_std = emulator_read_std,
  1019. .write_std = emulator_write_std,
  1020. .read_emulated = emulator_read_emulated,
  1021. .write_emulated = emulator_write_emulated,
  1022. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1023. };
  1024. int emulate_instruction(struct kvm_vcpu *vcpu,
  1025. struct kvm_run *run,
  1026. unsigned long cr2,
  1027. u16 error_code)
  1028. {
  1029. struct x86_emulate_ctxt emulate_ctxt;
  1030. int r;
  1031. int cs_db, cs_l;
  1032. vcpu->mmio_fault_cr2 = cr2;
  1033. kvm_arch_ops->cache_regs(vcpu);
  1034. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1035. emulate_ctxt.vcpu = vcpu;
  1036. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1037. emulate_ctxt.cr2 = cr2;
  1038. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1039. ? X86EMUL_MODE_REAL : cs_l
  1040. ? X86EMUL_MODE_PROT64 : cs_db
  1041. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1042. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1043. emulate_ctxt.cs_base = 0;
  1044. emulate_ctxt.ds_base = 0;
  1045. emulate_ctxt.es_base = 0;
  1046. emulate_ctxt.ss_base = 0;
  1047. } else {
  1048. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1049. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1050. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1051. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1052. }
  1053. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1054. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1055. vcpu->mmio_is_write = 0;
  1056. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1057. if ((r || vcpu->mmio_is_write) && run) {
  1058. run->exit_reason = KVM_EXIT_MMIO;
  1059. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1060. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1061. run->mmio.len = vcpu->mmio_size;
  1062. run->mmio.is_write = vcpu->mmio_is_write;
  1063. }
  1064. if (r) {
  1065. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1066. return EMULATE_DONE;
  1067. if (!vcpu->mmio_needed) {
  1068. report_emulation_failure(&emulate_ctxt);
  1069. return EMULATE_FAIL;
  1070. }
  1071. return EMULATE_DO_MMIO;
  1072. }
  1073. kvm_arch_ops->decache_regs(vcpu);
  1074. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1075. if (vcpu->mmio_is_write) {
  1076. vcpu->mmio_needed = 0;
  1077. return EMULATE_DO_MMIO;
  1078. }
  1079. return EMULATE_DONE;
  1080. }
  1081. EXPORT_SYMBOL_GPL(emulate_instruction);
  1082. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1083. {
  1084. if (vcpu->irq_summary)
  1085. return 1;
  1086. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1087. ++vcpu->stat.halt_exits;
  1088. return 0;
  1089. }
  1090. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1091. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1092. {
  1093. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1094. kvm_arch_ops->cache_regs(vcpu);
  1095. ret = -KVM_EINVAL;
  1096. #ifdef CONFIG_X86_64
  1097. if (is_long_mode(vcpu)) {
  1098. nr = vcpu->regs[VCPU_REGS_RAX];
  1099. a0 = vcpu->regs[VCPU_REGS_RDI];
  1100. a1 = vcpu->regs[VCPU_REGS_RSI];
  1101. a2 = vcpu->regs[VCPU_REGS_RDX];
  1102. a3 = vcpu->regs[VCPU_REGS_RCX];
  1103. a4 = vcpu->regs[VCPU_REGS_R8];
  1104. a5 = vcpu->regs[VCPU_REGS_R9];
  1105. } else
  1106. #endif
  1107. {
  1108. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1109. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1110. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1111. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1112. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1113. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1114. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1115. }
  1116. switch (nr) {
  1117. default:
  1118. run->hypercall.nr = nr;
  1119. run->hypercall.args[0] = a0;
  1120. run->hypercall.args[1] = a1;
  1121. run->hypercall.args[2] = a2;
  1122. run->hypercall.args[3] = a3;
  1123. run->hypercall.args[4] = a4;
  1124. run->hypercall.args[5] = a5;
  1125. run->hypercall.ret = ret;
  1126. run->hypercall.longmode = is_long_mode(vcpu);
  1127. kvm_arch_ops->decache_regs(vcpu);
  1128. return 0;
  1129. }
  1130. vcpu->regs[VCPU_REGS_RAX] = ret;
  1131. kvm_arch_ops->decache_regs(vcpu);
  1132. return 1;
  1133. }
  1134. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1135. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1136. {
  1137. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1138. }
  1139. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1140. {
  1141. struct descriptor_table dt = { limit, base };
  1142. kvm_arch_ops->set_gdt(vcpu, &dt);
  1143. }
  1144. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1145. {
  1146. struct descriptor_table dt = { limit, base };
  1147. kvm_arch_ops->set_idt(vcpu, &dt);
  1148. }
  1149. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1150. unsigned long *rflags)
  1151. {
  1152. lmsw(vcpu, msw);
  1153. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1154. }
  1155. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1156. {
  1157. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1158. switch (cr) {
  1159. case 0:
  1160. return vcpu->cr0;
  1161. case 2:
  1162. return vcpu->cr2;
  1163. case 3:
  1164. return vcpu->cr3;
  1165. case 4:
  1166. return vcpu->cr4;
  1167. default:
  1168. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1169. return 0;
  1170. }
  1171. }
  1172. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1173. unsigned long *rflags)
  1174. {
  1175. switch (cr) {
  1176. case 0:
  1177. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1178. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1179. break;
  1180. case 2:
  1181. vcpu->cr2 = val;
  1182. break;
  1183. case 3:
  1184. set_cr3(vcpu, val);
  1185. break;
  1186. case 4:
  1187. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1188. break;
  1189. default:
  1190. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1191. }
  1192. }
  1193. /*
  1194. * Register the para guest with the host:
  1195. */
  1196. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1197. {
  1198. struct kvm_vcpu_para_state *para_state;
  1199. hpa_t para_state_hpa, hypercall_hpa;
  1200. struct page *para_state_page;
  1201. unsigned char *hypercall;
  1202. gpa_t hypercall_gpa;
  1203. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1204. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1205. /*
  1206. * Needs to be page aligned:
  1207. */
  1208. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1209. goto err_gp;
  1210. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1211. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1212. if (is_error_hpa(para_state_hpa))
  1213. goto err_gp;
  1214. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1215. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1216. para_state = kmap(para_state_page);
  1217. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1218. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1219. para_state->host_version = KVM_PARA_API_VERSION;
  1220. /*
  1221. * We cannot support guests that try to register themselves
  1222. * with a newer API version than the host supports:
  1223. */
  1224. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1225. para_state->ret = -KVM_EINVAL;
  1226. goto err_kunmap_skip;
  1227. }
  1228. hypercall_gpa = para_state->hypercall_gpa;
  1229. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1230. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1231. if (is_error_hpa(hypercall_hpa)) {
  1232. para_state->ret = -KVM_EINVAL;
  1233. goto err_kunmap_skip;
  1234. }
  1235. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1236. vcpu->para_state_page = para_state_page;
  1237. vcpu->para_state_gpa = para_state_gpa;
  1238. vcpu->hypercall_gpa = hypercall_gpa;
  1239. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1240. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1241. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1242. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1243. kunmap_atomic(hypercall, KM_USER1);
  1244. para_state->ret = 0;
  1245. err_kunmap_skip:
  1246. kunmap(para_state_page);
  1247. return 0;
  1248. err_gp:
  1249. return 1;
  1250. }
  1251. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1252. {
  1253. u64 data;
  1254. switch (msr) {
  1255. case 0xc0010010: /* SYSCFG */
  1256. case 0xc0010015: /* HWCR */
  1257. case MSR_IA32_PLATFORM_ID:
  1258. case MSR_IA32_P5_MC_ADDR:
  1259. case MSR_IA32_P5_MC_TYPE:
  1260. case MSR_IA32_MC0_CTL:
  1261. case MSR_IA32_MCG_STATUS:
  1262. case MSR_IA32_MCG_CAP:
  1263. case MSR_IA32_MC0_MISC:
  1264. case MSR_IA32_MC0_MISC+4:
  1265. case MSR_IA32_MC0_MISC+8:
  1266. case MSR_IA32_MC0_MISC+12:
  1267. case MSR_IA32_MC0_MISC+16:
  1268. case MSR_IA32_UCODE_REV:
  1269. case MSR_IA32_PERF_STATUS:
  1270. case MSR_IA32_EBL_CR_POWERON:
  1271. /* MTRR registers */
  1272. case 0xfe:
  1273. case 0x200 ... 0x2ff:
  1274. data = 0;
  1275. break;
  1276. case 0xcd: /* fsb frequency */
  1277. data = 3;
  1278. break;
  1279. case MSR_IA32_APICBASE:
  1280. data = vcpu->apic_base;
  1281. break;
  1282. case MSR_IA32_MISC_ENABLE:
  1283. data = vcpu->ia32_misc_enable_msr;
  1284. break;
  1285. #ifdef CONFIG_X86_64
  1286. case MSR_EFER:
  1287. data = vcpu->shadow_efer;
  1288. break;
  1289. #endif
  1290. default:
  1291. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1292. return 1;
  1293. }
  1294. *pdata = data;
  1295. return 0;
  1296. }
  1297. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1298. /*
  1299. * Reads an msr value (of 'msr_index') into 'pdata'.
  1300. * Returns 0 on success, non-0 otherwise.
  1301. * Assumes vcpu_load() was already called.
  1302. */
  1303. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1304. {
  1305. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1306. }
  1307. #ifdef CONFIG_X86_64
  1308. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1309. {
  1310. if (efer & EFER_RESERVED_BITS) {
  1311. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1312. efer);
  1313. inject_gp(vcpu);
  1314. return;
  1315. }
  1316. if (is_paging(vcpu)
  1317. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1318. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1319. inject_gp(vcpu);
  1320. return;
  1321. }
  1322. kvm_arch_ops->set_efer(vcpu, efer);
  1323. efer &= ~EFER_LMA;
  1324. efer |= vcpu->shadow_efer & EFER_LMA;
  1325. vcpu->shadow_efer = efer;
  1326. }
  1327. #endif
  1328. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1329. {
  1330. switch (msr) {
  1331. #ifdef CONFIG_X86_64
  1332. case MSR_EFER:
  1333. set_efer(vcpu, data);
  1334. break;
  1335. #endif
  1336. case MSR_IA32_MC0_STATUS:
  1337. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1338. __FUNCTION__, data);
  1339. break;
  1340. case MSR_IA32_MCG_STATUS:
  1341. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1342. __FUNCTION__, data);
  1343. break;
  1344. case MSR_IA32_UCODE_REV:
  1345. case MSR_IA32_UCODE_WRITE:
  1346. case 0x200 ... 0x2ff: /* MTRRs */
  1347. break;
  1348. case MSR_IA32_APICBASE:
  1349. vcpu->apic_base = data;
  1350. break;
  1351. case MSR_IA32_MISC_ENABLE:
  1352. vcpu->ia32_misc_enable_msr = data;
  1353. break;
  1354. /*
  1355. * This is the 'probe whether the host is KVM' logic:
  1356. */
  1357. case MSR_KVM_API_MAGIC:
  1358. return vcpu_register_para(vcpu, data);
  1359. default:
  1360. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1361. return 1;
  1362. }
  1363. return 0;
  1364. }
  1365. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1366. /*
  1367. * Writes msr value into into the appropriate "register".
  1368. * Returns 0 on success, non-0 otherwise.
  1369. * Assumes vcpu_load() was already called.
  1370. */
  1371. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1372. {
  1373. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1374. }
  1375. void kvm_resched(struct kvm_vcpu *vcpu)
  1376. {
  1377. if (!need_resched())
  1378. return;
  1379. cond_resched();
  1380. }
  1381. EXPORT_SYMBOL_GPL(kvm_resched);
  1382. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1383. {
  1384. int i;
  1385. u32 function;
  1386. struct kvm_cpuid_entry *e, *best;
  1387. kvm_arch_ops->cache_regs(vcpu);
  1388. function = vcpu->regs[VCPU_REGS_RAX];
  1389. vcpu->regs[VCPU_REGS_RAX] = 0;
  1390. vcpu->regs[VCPU_REGS_RBX] = 0;
  1391. vcpu->regs[VCPU_REGS_RCX] = 0;
  1392. vcpu->regs[VCPU_REGS_RDX] = 0;
  1393. best = NULL;
  1394. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1395. e = &vcpu->cpuid_entries[i];
  1396. if (e->function == function) {
  1397. best = e;
  1398. break;
  1399. }
  1400. /*
  1401. * Both basic or both extended?
  1402. */
  1403. if (((e->function ^ function) & 0x80000000) == 0)
  1404. if (!best || e->function > best->function)
  1405. best = e;
  1406. }
  1407. if (best) {
  1408. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1409. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1410. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1411. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1412. }
  1413. kvm_arch_ops->decache_regs(vcpu);
  1414. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1415. }
  1416. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1417. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1418. {
  1419. void *p = vcpu->pio_data;
  1420. void *q;
  1421. unsigned bytes;
  1422. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1423. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1424. PAGE_KERNEL);
  1425. if (!q) {
  1426. free_pio_guest_pages(vcpu);
  1427. return -ENOMEM;
  1428. }
  1429. q += vcpu->pio.guest_page_offset;
  1430. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1431. if (vcpu->pio.in)
  1432. memcpy(q, p, bytes);
  1433. else
  1434. memcpy(p, q, bytes);
  1435. q -= vcpu->pio.guest_page_offset;
  1436. vunmap(q);
  1437. free_pio_guest_pages(vcpu);
  1438. return 0;
  1439. }
  1440. static int complete_pio(struct kvm_vcpu *vcpu)
  1441. {
  1442. struct kvm_pio_request *io = &vcpu->pio;
  1443. long delta;
  1444. int r;
  1445. kvm_arch_ops->cache_regs(vcpu);
  1446. if (!io->string) {
  1447. if (io->in)
  1448. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1449. io->size);
  1450. } else {
  1451. if (io->in) {
  1452. r = pio_copy_data(vcpu);
  1453. if (r) {
  1454. kvm_arch_ops->cache_regs(vcpu);
  1455. return r;
  1456. }
  1457. }
  1458. delta = 1;
  1459. if (io->rep) {
  1460. delta *= io->cur_count;
  1461. /*
  1462. * The size of the register should really depend on
  1463. * current address size.
  1464. */
  1465. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1466. }
  1467. if (io->down)
  1468. delta = -delta;
  1469. delta *= io->size;
  1470. if (io->in)
  1471. vcpu->regs[VCPU_REGS_RDI] += delta;
  1472. else
  1473. vcpu->regs[VCPU_REGS_RSI] += delta;
  1474. }
  1475. kvm_arch_ops->decache_regs(vcpu);
  1476. io->count -= io->cur_count;
  1477. io->cur_count = 0;
  1478. if (!io->count)
  1479. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1480. return 0;
  1481. }
  1482. static void kernel_pio(struct kvm_io_device *pio_dev,
  1483. struct kvm_vcpu *vcpu,
  1484. void *pd)
  1485. {
  1486. /* TODO: String I/O for in kernel device */
  1487. if (vcpu->pio.in)
  1488. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1489. vcpu->pio.size,
  1490. pd);
  1491. else
  1492. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1493. vcpu->pio.size,
  1494. pd);
  1495. }
  1496. static void pio_string_write(struct kvm_io_device *pio_dev,
  1497. struct kvm_vcpu *vcpu)
  1498. {
  1499. struct kvm_pio_request *io = &vcpu->pio;
  1500. void *pd = vcpu->pio_data;
  1501. int i;
  1502. for (i = 0; i < io->cur_count; i++) {
  1503. kvm_iodevice_write(pio_dev, io->port,
  1504. io->size,
  1505. pd);
  1506. pd += io->size;
  1507. }
  1508. }
  1509. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1510. int size, unsigned long count, int string, int down,
  1511. gva_t address, int rep, unsigned port)
  1512. {
  1513. unsigned now, in_page;
  1514. int i, ret = 0;
  1515. int nr_pages = 1;
  1516. struct page *page;
  1517. struct kvm_io_device *pio_dev;
  1518. vcpu->run->exit_reason = KVM_EXIT_IO;
  1519. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1520. vcpu->run->io.size = size;
  1521. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1522. vcpu->run->io.count = count;
  1523. vcpu->run->io.port = port;
  1524. vcpu->pio.count = count;
  1525. vcpu->pio.cur_count = count;
  1526. vcpu->pio.size = size;
  1527. vcpu->pio.in = in;
  1528. vcpu->pio.port = port;
  1529. vcpu->pio.string = string;
  1530. vcpu->pio.down = down;
  1531. vcpu->pio.guest_page_offset = offset_in_page(address);
  1532. vcpu->pio.rep = rep;
  1533. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1534. if (!string) {
  1535. kvm_arch_ops->cache_regs(vcpu);
  1536. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1537. kvm_arch_ops->decache_regs(vcpu);
  1538. if (pio_dev) {
  1539. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1540. complete_pio(vcpu);
  1541. return 1;
  1542. }
  1543. return 0;
  1544. }
  1545. if (!count) {
  1546. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1547. return 1;
  1548. }
  1549. now = min(count, PAGE_SIZE / size);
  1550. if (!down)
  1551. in_page = PAGE_SIZE - offset_in_page(address);
  1552. else
  1553. in_page = offset_in_page(address) + size;
  1554. now = min(count, (unsigned long)in_page / size);
  1555. if (!now) {
  1556. /*
  1557. * String I/O straddles page boundary. Pin two guest pages
  1558. * so that we satisfy atomicity constraints. Do just one
  1559. * transaction to avoid complexity.
  1560. */
  1561. nr_pages = 2;
  1562. now = 1;
  1563. }
  1564. if (down) {
  1565. /*
  1566. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1567. */
  1568. printk(KERN_ERR "kvm: guest string pio down\n");
  1569. inject_gp(vcpu);
  1570. return 1;
  1571. }
  1572. vcpu->run->io.count = now;
  1573. vcpu->pio.cur_count = now;
  1574. for (i = 0; i < nr_pages; ++i) {
  1575. mutex_lock(&vcpu->kvm->lock);
  1576. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1577. if (page)
  1578. get_page(page);
  1579. vcpu->pio.guest_pages[i] = page;
  1580. mutex_unlock(&vcpu->kvm->lock);
  1581. if (!page) {
  1582. inject_gp(vcpu);
  1583. free_pio_guest_pages(vcpu);
  1584. return 1;
  1585. }
  1586. }
  1587. if (!vcpu->pio.in) {
  1588. /* string PIO write */
  1589. ret = pio_copy_data(vcpu);
  1590. if (ret >= 0 && pio_dev) {
  1591. pio_string_write(pio_dev, vcpu);
  1592. complete_pio(vcpu);
  1593. if (vcpu->pio.count == 0)
  1594. ret = 1;
  1595. }
  1596. } else if (pio_dev)
  1597. printk(KERN_ERR "no string pio read support yet, "
  1598. "port %x size %d count %ld\n",
  1599. port, size, count);
  1600. return ret;
  1601. }
  1602. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1603. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1604. {
  1605. int r;
  1606. sigset_t sigsaved;
  1607. vcpu_load(vcpu);
  1608. if (vcpu->sigset_active)
  1609. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1610. /* re-sync apic's tpr */
  1611. vcpu->cr8 = kvm_run->cr8;
  1612. if (vcpu->pio.cur_count) {
  1613. r = complete_pio(vcpu);
  1614. if (r)
  1615. goto out;
  1616. }
  1617. if (vcpu->mmio_needed) {
  1618. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1619. vcpu->mmio_read_completed = 1;
  1620. vcpu->mmio_needed = 0;
  1621. r = emulate_instruction(vcpu, kvm_run,
  1622. vcpu->mmio_fault_cr2, 0);
  1623. if (r == EMULATE_DO_MMIO) {
  1624. /*
  1625. * Read-modify-write. Back to userspace.
  1626. */
  1627. r = 0;
  1628. goto out;
  1629. }
  1630. }
  1631. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1632. kvm_arch_ops->cache_regs(vcpu);
  1633. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1634. kvm_arch_ops->decache_regs(vcpu);
  1635. }
  1636. r = kvm_arch_ops->run(vcpu, kvm_run);
  1637. out:
  1638. if (vcpu->sigset_active)
  1639. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1640. vcpu_put(vcpu);
  1641. return r;
  1642. }
  1643. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1644. struct kvm_regs *regs)
  1645. {
  1646. vcpu_load(vcpu);
  1647. kvm_arch_ops->cache_regs(vcpu);
  1648. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1649. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1650. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1651. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1652. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1653. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1654. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1655. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1656. #ifdef CONFIG_X86_64
  1657. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1658. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1659. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1660. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1661. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1662. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1663. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1664. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1665. #endif
  1666. regs->rip = vcpu->rip;
  1667. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1668. /*
  1669. * Don't leak debug flags in case they were set for guest debugging
  1670. */
  1671. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1672. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1673. vcpu_put(vcpu);
  1674. return 0;
  1675. }
  1676. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1677. struct kvm_regs *regs)
  1678. {
  1679. vcpu_load(vcpu);
  1680. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1681. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1682. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1683. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1684. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1685. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1686. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1687. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1688. #ifdef CONFIG_X86_64
  1689. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1690. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1691. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1692. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1693. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1694. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1695. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1696. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1697. #endif
  1698. vcpu->rip = regs->rip;
  1699. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1700. kvm_arch_ops->decache_regs(vcpu);
  1701. vcpu_put(vcpu);
  1702. return 0;
  1703. }
  1704. static void get_segment(struct kvm_vcpu *vcpu,
  1705. struct kvm_segment *var, int seg)
  1706. {
  1707. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1708. }
  1709. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1710. struct kvm_sregs *sregs)
  1711. {
  1712. struct descriptor_table dt;
  1713. vcpu_load(vcpu);
  1714. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1715. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1716. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1717. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1718. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1719. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1720. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1721. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1722. kvm_arch_ops->get_idt(vcpu, &dt);
  1723. sregs->idt.limit = dt.limit;
  1724. sregs->idt.base = dt.base;
  1725. kvm_arch_ops->get_gdt(vcpu, &dt);
  1726. sregs->gdt.limit = dt.limit;
  1727. sregs->gdt.base = dt.base;
  1728. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1729. sregs->cr0 = vcpu->cr0;
  1730. sregs->cr2 = vcpu->cr2;
  1731. sregs->cr3 = vcpu->cr3;
  1732. sregs->cr4 = vcpu->cr4;
  1733. sregs->cr8 = vcpu->cr8;
  1734. sregs->efer = vcpu->shadow_efer;
  1735. sregs->apic_base = vcpu->apic_base;
  1736. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1737. sizeof sregs->interrupt_bitmap);
  1738. vcpu_put(vcpu);
  1739. return 0;
  1740. }
  1741. static void set_segment(struct kvm_vcpu *vcpu,
  1742. struct kvm_segment *var, int seg)
  1743. {
  1744. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1745. }
  1746. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1747. struct kvm_sregs *sregs)
  1748. {
  1749. int mmu_reset_needed = 0;
  1750. int i;
  1751. struct descriptor_table dt;
  1752. vcpu_load(vcpu);
  1753. dt.limit = sregs->idt.limit;
  1754. dt.base = sregs->idt.base;
  1755. kvm_arch_ops->set_idt(vcpu, &dt);
  1756. dt.limit = sregs->gdt.limit;
  1757. dt.base = sregs->gdt.base;
  1758. kvm_arch_ops->set_gdt(vcpu, &dt);
  1759. vcpu->cr2 = sregs->cr2;
  1760. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1761. vcpu->cr3 = sregs->cr3;
  1762. vcpu->cr8 = sregs->cr8;
  1763. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1764. #ifdef CONFIG_X86_64
  1765. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1766. #endif
  1767. vcpu->apic_base = sregs->apic_base;
  1768. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1769. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1770. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1771. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1772. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1773. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1774. load_pdptrs(vcpu, vcpu->cr3);
  1775. if (mmu_reset_needed)
  1776. kvm_mmu_reset_context(vcpu);
  1777. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1778. sizeof vcpu->irq_pending);
  1779. vcpu->irq_summary = 0;
  1780. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1781. if (vcpu->irq_pending[i])
  1782. __set_bit(i, &vcpu->irq_summary);
  1783. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1784. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1785. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1786. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1787. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1788. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1789. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1790. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1791. vcpu_put(vcpu);
  1792. return 0;
  1793. }
  1794. /*
  1795. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1796. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1797. *
  1798. * This list is modified at module load time to reflect the
  1799. * capabilities of the host cpu.
  1800. */
  1801. static u32 msrs_to_save[] = {
  1802. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1803. MSR_K6_STAR,
  1804. #ifdef CONFIG_X86_64
  1805. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1806. #endif
  1807. MSR_IA32_TIME_STAMP_COUNTER,
  1808. };
  1809. static unsigned num_msrs_to_save;
  1810. static u32 emulated_msrs[] = {
  1811. MSR_IA32_MISC_ENABLE,
  1812. };
  1813. static __init void kvm_init_msr_list(void)
  1814. {
  1815. u32 dummy[2];
  1816. unsigned i, j;
  1817. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1818. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1819. continue;
  1820. if (j < i)
  1821. msrs_to_save[j] = msrs_to_save[i];
  1822. j++;
  1823. }
  1824. num_msrs_to_save = j;
  1825. }
  1826. /*
  1827. * Adapt set_msr() to msr_io()'s calling convention
  1828. */
  1829. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1830. {
  1831. return kvm_set_msr(vcpu, index, *data);
  1832. }
  1833. /*
  1834. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1835. *
  1836. * @return number of msrs set successfully.
  1837. */
  1838. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1839. struct kvm_msr_entry *entries,
  1840. int (*do_msr)(struct kvm_vcpu *vcpu,
  1841. unsigned index, u64 *data))
  1842. {
  1843. int i;
  1844. vcpu_load(vcpu);
  1845. for (i = 0; i < msrs->nmsrs; ++i)
  1846. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1847. break;
  1848. vcpu_put(vcpu);
  1849. return i;
  1850. }
  1851. /*
  1852. * Read or write a bunch of msrs. Parameters are user addresses.
  1853. *
  1854. * @return number of msrs set successfully.
  1855. */
  1856. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1857. int (*do_msr)(struct kvm_vcpu *vcpu,
  1858. unsigned index, u64 *data),
  1859. int writeback)
  1860. {
  1861. struct kvm_msrs msrs;
  1862. struct kvm_msr_entry *entries;
  1863. int r, n;
  1864. unsigned size;
  1865. r = -EFAULT;
  1866. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1867. goto out;
  1868. r = -E2BIG;
  1869. if (msrs.nmsrs >= MAX_IO_MSRS)
  1870. goto out;
  1871. r = -ENOMEM;
  1872. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1873. entries = vmalloc(size);
  1874. if (!entries)
  1875. goto out;
  1876. r = -EFAULT;
  1877. if (copy_from_user(entries, user_msrs->entries, size))
  1878. goto out_free;
  1879. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1880. if (r < 0)
  1881. goto out_free;
  1882. r = -EFAULT;
  1883. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1884. goto out_free;
  1885. r = n;
  1886. out_free:
  1887. vfree(entries);
  1888. out:
  1889. return r;
  1890. }
  1891. /*
  1892. * Translate a guest virtual address to a guest physical address.
  1893. */
  1894. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1895. struct kvm_translation *tr)
  1896. {
  1897. unsigned long vaddr = tr->linear_address;
  1898. gpa_t gpa;
  1899. vcpu_load(vcpu);
  1900. mutex_lock(&vcpu->kvm->lock);
  1901. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1902. tr->physical_address = gpa;
  1903. tr->valid = gpa != UNMAPPED_GVA;
  1904. tr->writeable = 1;
  1905. tr->usermode = 0;
  1906. mutex_unlock(&vcpu->kvm->lock);
  1907. vcpu_put(vcpu);
  1908. return 0;
  1909. }
  1910. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1911. struct kvm_interrupt *irq)
  1912. {
  1913. if (irq->irq < 0 || irq->irq >= 256)
  1914. return -EINVAL;
  1915. vcpu_load(vcpu);
  1916. set_bit(irq->irq, vcpu->irq_pending);
  1917. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1918. vcpu_put(vcpu);
  1919. return 0;
  1920. }
  1921. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1922. struct kvm_debug_guest *dbg)
  1923. {
  1924. int r;
  1925. vcpu_load(vcpu);
  1926. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1927. vcpu_put(vcpu);
  1928. return r;
  1929. }
  1930. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1931. unsigned long address,
  1932. int *type)
  1933. {
  1934. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1935. unsigned long pgoff;
  1936. struct page *page;
  1937. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1938. if (pgoff == 0)
  1939. page = virt_to_page(vcpu->run);
  1940. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1941. page = virt_to_page(vcpu->pio_data);
  1942. else
  1943. return NOPAGE_SIGBUS;
  1944. get_page(page);
  1945. if (type != NULL)
  1946. *type = VM_FAULT_MINOR;
  1947. return page;
  1948. }
  1949. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1950. .nopage = kvm_vcpu_nopage,
  1951. };
  1952. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1953. {
  1954. vma->vm_ops = &kvm_vcpu_vm_ops;
  1955. return 0;
  1956. }
  1957. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1958. {
  1959. struct kvm_vcpu *vcpu = filp->private_data;
  1960. fput(vcpu->kvm->filp);
  1961. return 0;
  1962. }
  1963. static struct file_operations kvm_vcpu_fops = {
  1964. .release = kvm_vcpu_release,
  1965. .unlocked_ioctl = kvm_vcpu_ioctl,
  1966. .compat_ioctl = kvm_vcpu_ioctl,
  1967. .mmap = kvm_vcpu_mmap,
  1968. };
  1969. /*
  1970. * Allocates an inode for the vcpu.
  1971. */
  1972. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1973. {
  1974. int fd, r;
  1975. struct inode *inode;
  1976. struct file *file;
  1977. r = anon_inode_getfd(&fd, &inode, &file,
  1978. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1979. if (r)
  1980. return r;
  1981. atomic_inc(&vcpu->kvm->filp->f_count);
  1982. return fd;
  1983. }
  1984. /*
  1985. * Creates some virtual cpus. Good luck creating more than one.
  1986. */
  1987. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1988. {
  1989. int r;
  1990. struct kvm_vcpu *vcpu;
  1991. if (!valid_vcpu(n))
  1992. return -EINVAL;
  1993. vcpu = kvm_arch_ops->vcpu_create(kvm, n);
  1994. if (IS_ERR(vcpu))
  1995. return PTR_ERR(vcpu);
  1996. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1997. vcpu_load(vcpu);
  1998. r = kvm_mmu_setup(vcpu);
  1999. vcpu_put(vcpu);
  2000. if (r < 0)
  2001. goto free_vcpu;
  2002. mutex_lock(&kvm->lock);
  2003. if (kvm->vcpus[n]) {
  2004. r = -EEXIST;
  2005. mutex_unlock(&kvm->lock);
  2006. goto mmu_unload;
  2007. }
  2008. kvm->vcpus[n] = vcpu;
  2009. mutex_unlock(&kvm->lock);
  2010. /* Now it's all set up, let userspace reach it */
  2011. r = create_vcpu_fd(vcpu);
  2012. if (r < 0)
  2013. goto unlink;
  2014. return r;
  2015. unlink:
  2016. mutex_lock(&kvm->lock);
  2017. kvm->vcpus[n] = NULL;
  2018. mutex_unlock(&kvm->lock);
  2019. mmu_unload:
  2020. vcpu_load(vcpu);
  2021. kvm_mmu_unload(vcpu);
  2022. vcpu_put(vcpu);
  2023. free_vcpu:
  2024. kvm_arch_ops->vcpu_free(vcpu);
  2025. return r;
  2026. }
  2027. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2028. {
  2029. u64 efer;
  2030. int i;
  2031. struct kvm_cpuid_entry *e, *entry;
  2032. rdmsrl(MSR_EFER, efer);
  2033. entry = NULL;
  2034. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2035. e = &vcpu->cpuid_entries[i];
  2036. if (e->function == 0x80000001) {
  2037. entry = e;
  2038. break;
  2039. }
  2040. }
  2041. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2042. entry->edx &= ~(1 << 20);
  2043. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2044. }
  2045. }
  2046. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2047. struct kvm_cpuid *cpuid,
  2048. struct kvm_cpuid_entry __user *entries)
  2049. {
  2050. int r;
  2051. r = -E2BIG;
  2052. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2053. goto out;
  2054. r = -EFAULT;
  2055. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2056. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2057. goto out;
  2058. vcpu->cpuid_nent = cpuid->nent;
  2059. cpuid_fix_nx_cap(vcpu);
  2060. return 0;
  2061. out:
  2062. return r;
  2063. }
  2064. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2065. {
  2066. if (sigset) {
  2067. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2068. vcpu->sigset_active = 1;
  2069. vcpu->sigset = *sigset;
  2070. } else
  2071. vcpu->sigset_active = 0;
  2072. return 0;
  2073. }
  2074. /*
  2075. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2076. * we have asm/x86/processor.h
  2077. */
  2078. struct fxsave {
  2079. u16 cwd;
  2080. u16 swd;
  2081. u16 twd;
  2082. u16 fop;
  2083. u64 rip;
  2084. u64 rdp;
  2085. u32 mxcsr;
  2086. u32 mxcsr_mask;
  2087. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2088. #ifdef CONFIG_X86_64
  2089. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2090. #else
  2091. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2092. #endif
  2093. };
  2094. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2095. {
  2096. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2097. vcpu_load(vcpu);
  2098. memcpy(fpu->fpr, fxsave->st_space, 128);
  2099. fpu->fcw = fxsave->cwd;
  2100. fpu->fsw = fxsave->swd;
  2101. fpu->ftwx = fxsave->twd;
  2102. fpu->last_opcode = fxsave->fop;
  2103. fpu->last_ip = fxsave->rip;
  2104. fpu->last_dp = fxsave->rdp;
  2105. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2106. vcpu_put(vcpu);
  2107. return 0;
  2108. }
  2109. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2110. {
  2111. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2112. vcpu_load(vcpu);
  2113. memcpy(fxsave->st_space, fpu->fpr, 128);
  2114. fxsave->cwd = fpu->fcw;
  2115. fxsave->swd = fpu->fsw;
  2116. fxsave->twd = fpu->ftwx;
  2117. fxsave->fop = fpu->last_opcode;
  2118. fxsave->rip = fpu->last_ip;
  2119. fxsave->rdp = fpu->last_dp;
  2120. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2121. vcpu_put(vcpu);
  2122. return 0;
  2123. }
  2124. static long kvm_vcpu_ioctl(struct file *filp,
  2125. unsigned int ioctl, unsigned long arg)
  2126. {
  2127. struct kvm_vcpu *vcpu = filp->private_data;
  2128. void __user *argp = (void __user *)arg;
  2129. int r = -EINVAL;
  2130. switch (ioctl) {
  2131. case KVM_RUN:
  2132. r = -EINVAL;
  2133. if (arg)
  2134. goto out;
  2135. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2136. break;
  2137. case KVM_GET_REGS: {
  2138. struct kvm_regs kvm_regs;
  2139. memset(&kvm_regs, 0, sizeof kvm_regs);
  2140. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2141. if (r)
  2142. goto out;
  2143. r = -EFAULT;
  2144. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2145. goto out;
  2146. r = 0;
  2147. break;
  2148. }
  2149. case KVM_SET_REGS: {
  2150. struct kvm_regs kvm_regs;
  2151. r = -EFAULT;
  2152. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2153. goto out;
  2154. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2155. if (r)
  2156. goto out;
  2157. r = 0;
  2158. break;
  2159. }
  2160. case KVM_GET_SREGS: {
  2161. struct kvm_sregs kvm_sregs;
  2162. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2163. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2164. if (r)
  2165. goto out;
  2166. r = -EFAULT;
  2167. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2168. goto out;
  2169. r = 0;
  2170. break;
  2171. }
  2172. case KVM_SET_SREGS: {
  2173. struct kvm_sregs kvm_sregs;
  2174. r = -EFAULT;
  2175. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2176. goto out;
  2177. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2178. if (r)
  2179. goto out;
  2180. r = 0;
  2181. break;
  2182. }
  2183. case KVM_TRANSLATE: {
  2184. struct kvm_translation tr;
  2185. r = -EFAULT;
  2186. if (copy_from_user(&tr, argp, sizeof tr))
  2187. goto out;
  2188. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2189. if (r)
  2190. goto out;
  2191. r = -EFAULT;
  2192. if (copy_to_user(argp, &tr, sizeof tr))
  2193. goto out;
  2194. r = 0;
  2195. break;
  2196. }
  2197. case KVM_INTERRUPT: {
  2198. struct kvm_interrupt irq;
  2199. r = -EFAULT;
  2200. if (copy_from_user(&irq, argp, sizeof irq))
  2201. goto out;
  2202. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2203. if (r)
  2204. goto out;
  2205. r = 0;
  2206. break;
  2207. }
  2208. case KVM_DEBUG_GUEST: {
  2209. struct kvm_debug_guest dbg;
  2210. r = -EFAULT;
  2211. if (copy_from_user(&dbg, argp, sizeof dbg))
  2212. goto out;
  2213. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2214. if (r)
  2215. goto out;
  2216. r = 0;
  2217. break;
  2218. }
  2219. case KVM_GET_MSRS:
  2220. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2221. break;
  2222. case KVM_SET_MSRS:
  2223. r = msr_io(vcpu, argp, do_set_msr, 0);
  2224. break;
  2225. case KVM_SET_CPUID: {
  2226. struct kvm_cpuid __user *cpuid_arg = argp;
  2227. struct kvm_cpuid cpuid;
  2228. r = -EFAULT;
  2229. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2230. goto out;
  2231. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2232. if (r)
  2233. goto out;
  2234. break;
  2235. }
  2236. case KVM_SET_SIGNAL_MASK: {
  2237. struct kvm_signal_mask __user *sigmask_arg = argp;
  2238. struct kvm_signal_mask kvm_sigmask;
  2239. sigset_t sigset, *p;
  2240. p = NULL;
  2241. if (argp) {
  2242. r = -EFAULT;
  2243. if (copy_from_user(&kvm_sigmask, argp,
  2244. sizeof kvm_sigmask))
  2245. goto out;
  2246. r = -EINVAL;
  2247. if (kvm_sigmask.len != sizeof sigset)
  2248. goto out;
  2249. r = -EFAULT;
  2250. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2251. sizeof sigset))
  2252. goto out;
  2253. p = &sigset;
  2254. }
  2255. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2256. break;
  2257. }
  2258. case KVM_GET_FPU: {
  2259. struct kvm_fpu fpu;
  2260. memset(&fpu, 0, sizeof fpu);
  2261. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2262. if (r)
  2263. goto out;
  2264. r = -EFAULT;
  2265. if (copy_to_user(argp, &fpu, sizeof fpu))
  2266. goto out;
  2267. r = 0;
  2268. break;
  2269. }
  2270. case KVM_SET_FPU: {
  2271. struct kvm_fpu fpu;
  2272. r = -EFAULT;
  2273. if (copy_from_user(&fpu, argp, sizeof fpu))
  2274. goto out;
  2275. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2276. if (r)
  2277. goto out;
  2278. r = 0;
  2279. break;
  2280. }
  2281. default:
  2282. ;
  2283. }
  2284. out:
  2285. return r;
  2286. }
  2287. static long kvm_vm_ioctl(struct file *filp,
  2288. unsigned int ioctl, unsigned long arg)
  2289. {
  2290. struct kvm *kvm = filp->private_data;
  2291. void __user *argp = (void __user *)arg;
  2292. int r = -EINVAL;
  2293. switch (ioctl) {
  2294. case KVM_CREATE_VCPU:
  2295. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2296. if (r < 0)
  2297. goto out;
  2298. break;
  2299. case KVM_SET_MEMORY_REGION: {
  2300. struct kvm_memory_region kvm_mem;
  2301. r = -EFAULT;
  2302. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2303. goto out;
  2304. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2305. if (r)
  2306. goto out;
  2307. break;
  2308. }
  2309. case KVM_GET_DIRTY_LOG: {
  2310. struct kvm_dirty_log log;
  2311. r = -EFAULT;
  2312. if (copy_from_user(&log, argp, sizeof log))
  2313. goto out;
  2314. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2315. if (r)
  2316. goto out;
  2317. break;
  2318. }
  2319. case KVM_SET_MEMORY_ALIAS: {
  2320. struct kvm_memory_alias alias;
  2321. r = -EFAULT;
  2322. if (copy_from_user(&alias, argp, sizeof alias))
  2323. goto out;
  2324. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2325. if (r)
  2326. goto out;
  2327. break;
  2328. }
  2329. default:
  2330. ;
  2331. }
  2332. out:
  2333. return r;
  2334. }
  2335. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2336. unsigned long address,
  2337. int *type)
  2338. {
  2339. struct kvm *kvm = vma->vm_file->private_data;
  2340. unsigned long pgoff;
  2341. struct page *page;
  2342. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2343. page = gfn_to_page(kvm, pgoff);
  2344. if (!page)
  2345. return NOPAGE_SIGBUS;
  2346. get_page(page);
  2347. if (type != NULL)
  2348. *type = VM_FAULT_MINOR;
  2349. return page;
  2350. }
  2351. static struct vm_operations_struct kvm_vm_vm_ops = {
  2352. .nopage = kvm_vm_nopage,
  2353. };
  2354. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2355. {
  2356. vma->vm_ops = &kvm_vm_vm_ops;
  2357. return 0;
  2358. }
  2359. static struct file_operations kvm_vm_fops = {
  2360. .release = kvm_vm_release,
  2361. .unlocked_ioctl = kvm_vm_ioctl,
  2362. .compat_ioctl = kvm_vm_ioctl,
  2363. .mmap = kvm_vm_mmap,
  2364. };
  2365. static int kvm_dev_ioctl_create_vm(void)
  2366. {
  2367. int fd, r;
  2368. struct inode *inode;
  2369. struct file *file;
  2370. struct kvm *kvm;
  2371. kvm = kvm_create_vm();
  2372. if (IS_ERR(kvm))
  2373. return PTR_ERR(kvm);
  2374. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2375. if (r) {
  2376. kvm_destroy_vm(kvm);
  2377. return r;
  2378. }
  2379. kvm->filp = file;
  2380. return fd;
  2381. }
  2382. static long kvm_dev_ioctl(struct file *filp,
  2383. unsigned int ioctl, unsigned long arg)
  2384. {
  2385. void __user *argp = (void __user *)arg;
  2386. long r = -EINVAL;
  2387. switch (ioctl) {
  2388. case KVM_GET_API_VERSION:
  2389. r = -EINVAL;
  2390. if (arg)
  2391. goto out;
  2392. r = KVM_API_VERSION;
  2393. break;
  2394. case KVM_CREATE_VM:
  2395. r = -EINVAL;
  2396. if (arg)
  2397. goto out;
  2398. r = kvm_dev_ioctl_create_vm();
  2399. break;
  2400. case KVM_GET_MSR_INDEX_LIST: {
  2401. struct kvm_msr_list __user *user_msr_list = argp;
  2402. struct kvm_msr_list msr_list;
  2403. unsigned n;
  2404. r = -EFAULT;
  2405. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2406. goto out;
  2407. n = msr_list.nmsrs;
  2408. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2409. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2410. goto out;
  2411. r = -E2BIG;
  2412. if (n < num_msrs_to_save)
  2413. goto out;
  2414. r = -EFAULT;
  2415. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2416. num_msrs_to_save * sizeof(u32)))
  2417. goto out;
  2418. if (copy_to_user(user_msr_list->indices
  2419. + num_msrs_to_save * sizeof(u32),
  2420. &emulated_msrs,
  2421. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2422. goto out;
  2423. r = 0;
  2424. break;
  2425. }
  2426. case KVM_CHECK_EXTENSION:
  2427. /*
  2428. * No extensions defined at present.
  2429. */
  2430. r = 0;
  2431. break;
  2432. case KVM_GET_VCPU_MMAP_SIZE:
  2433. r = -EINVAL;
  2434. if (arg)
  2435. goto out;
  2436. r = 2 * PAGE_SIZE;
  2437. break;
  2438. default:
  2439. ;
  2440. }
  2441. out:
  2442. return r;
  2443. }
  2444. static struct file_operations kvm_chardev_ops = {
  2445. .open = kvm_dev_open,
  2446. .release = kvm_dev_release,
  2447. .unlocked_ioctl = kvm_dev_ioctl,
  2448. .compat_ioctl = kvm_dev_ioctl,
  2449. };
  2450. static struct miscdevice kvm_dev = {
  2451. KVM_MINOR,
  2452. "kvm",
  2453. &kvm_chardev_ops,
  2454. };
  2455. /*
  2456. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2457. * cached on it.
  2458. */
  2459. static void decache_vcpus_on_cpu(int cpu)
  2460. {
  2461. struct kvm *vm;
  2462. struct kvm_vcpu *vcpu;
  2463. int i;
  2464. spin_lock(&kvm_lock);
  2465. list_for_each_entry(vm, &vm_list, vm_list)
  2466. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2467. vcpu = vm->vcpus[i];
  2468. if (!vcpu)
  2469. continue;
  2470. /*
  2471. * If the vcpu is locked, then it is running on some
  2472. * other cpu and therefore it is not cached on the
  2473. * cpu in question.
  2474. *
  2475. * If it's not locked, check the last cpu it executed
  2476. * on.
  2477. */
  2478. if (mutex_trylock(&vcpu->mutex)) {
  2479. if (vcpu->cpu == cpu) {
  2480. kvm_arch_ops->vcpu_decache(vcpu);
  2481. vcpu->cpu = -1;
  2482. }
  2483. mutex_unlock(&vcpu->mutex);
  2484. }
  2485. }
  2486. spin_unlock(&kvm_lock);
  2487. }
  2488. static void hardware_enable(void *junk)
  2489. {
  2490. int cpu = raw_smp_processor_id();
  2491. if (cpu_isset(cpu, cpus_hardware_enabled))
  2492. return;
  2493. cpu_set(cpu, cpus_hardware_enabled);
  2494. kvm_arch_ops->hardware_enable(NULL);
  2495. }
  2496. static void hardware_disable(void *junk)
  2497. {
  2498. int cpu = raw_smp_processor_id();
  2499. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2500. return;
  2501. cpu_clear(cpu, cpus_hardware_enabled);
  2502. decache_vcpus_on_cpu(cpu);
  2503. kvm_arch_ops->hardware_disable(NULL);
  2504. }
  2505. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2506. void *v)
  2507. {
  2508. int cpu = (long)v;
  2509. switch (val) {
  2510. case CPU_DYING:
  2511. case CPU_DYING_FROZEN:
  2512. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2513. cpu);
  2514. hardware_disable(NULL);
  2515. break;
  2516. case CPU_UP_CANCELED:
  2517. case CPU_UP_CANCELED_FROZEN:
  2518. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2519. cpu);
  2520. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2521. break;
  2522. case CPU_ONLINE:
  2523. case CPU_ONLINE_FROZEN:
  2524. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2525. cpu);
  2526. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2527. break;
  2528. }
  2529. return NOTIFY_OK;
  2530. }
  2531. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2532. void *v)
  2533. {
  2534. if (val == SYS_RESTART) {
  2535. /*
  2536. * Some (well, at least mine) BIOSes hang on reboot if
  2537. * in vmx root mode.
  2538. */
  2539. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2540. on_each_cpu(hardware_disable, NULL, 0, 1);
  2541. }
  2542. return NOTIFY_OK;
  2543. }
  2544. static struct notifier_block kvm_reboot_notifier = {
  2545. .notifier_call = kvm_reboot,
  2546. .priority = 0,
  2547. };
  2548. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2549. {
  2550. memset(bus, 0, sizeof(*bus));
  2551. }
  2552. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2553. {
  2554. int i;
  2555. for (i = 0; i < bus->dev_count; i++) {
  2556. struct kvm_io_device *pos = bus->devs[i];
  2557. kvm_iodevice_destructor(pos);
  2558. }
  2559. }
  2560. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2561. {
  2562. int i;
  2563. for (i = 0; i < bus->dev_count; i++) {
  2564. struct kvm_io_device *pos = bus->devs[i];
  2565. if (pos->in_range(pos, addr))
  2566. return pos;
  2567. }
  2568. return NULL;
  2569. }
  2570. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2571. {
  2572. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2573. bus->devs[bus->dev_count++] = dev;
  2574. }
  2575. static struct notifier_block kvm_cpu_notifier = {
  2576. .notifier_call = kvm_cpu_hotplug,
  2577. .priority = 20, /* must be > scheduler priority */
  2578. };
  2579. static u64 stat_get(void *_offset)
  2580. {
  2581. unsigned offset = (long)_offset;
  2582. u64 total = 0;
  2583. struct kvm *kvm;
  2584. struct kvm_vcpu *vcpu;
  2585. int i;
  2586. spin_lock(&kvm_lock);
  2587. list_for_each_entry(kvm, &vm_list, vm_list)
  2588. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2589. vcpu = kvm->vcpus[i];
  2590. if (vcpu)
  2591. total += *(u32 *)((void *)vcpu + offset);
  2592. }
  2593. spin_unlock(&kvm_lock);
  2594. return total;
  2595. }
  2596. static void stat_set(void *offset, u64 val)
  2597. {
  2598. }
  2599. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2600. static __init void kvm_init_debug(void)
  2601. {
  2602. struct kvm_stats_debugfs_item *p;
  2603. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2604. for (p = debugfs_entries; p->name; ++p)
  2605. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2606. (void *)(long)p->offset,
  2607. &stat_fops);
  2608. }
  2609. static void kvm_exit_debug(void)
  2610. {
  2611. struct kvm_stats_debugfs_item *p;
  2612. for (p = debugfs_entries; p->name; ++p)
  2613. debugfs_remove(p->dentry);
  2614. debugfs_remove(debugfs_dir);
  2615. }
  2616. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2617. {
  2618. hardware_disable(NULL);
  2619. return 0;
  2620. }
  2621. static int kvm_resume(struct sys_device *dev)
  2622. {
  2623. hardware_enable(NULL);
  2624. return 0;
  2625. }
  2626. static struct sysdev_class kvm_sysdev_class = {
  2627. set_kset_name("kvm"),
  2628. .suspend = kvm_suspend,
  2629. .resume = kvm_resume,
  2630. };
  2631. static struct sys_device kvm_sysdev = {
  2632. .id = 0,
  2633. .cls = &kvm_sysdev_class,
  2634. };
  2635. hpa_t bad_page_address;
  2636. static inline
  2637. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2638. {
  2639. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2640. }
  2641. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2642. {
  2643. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2644. kvm_arch_ops->vcpu_load(vcpu, cpu);
  2645. }
  2646. static void kvm_sched_out(struct preempt_notifier *pn,
  2647. struct task_struct *next)
  2648. {
  2649. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2650. kvm_arch_ops->vcpu_put(vcpu);
  2651. }
  2652. int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
  2653. struct module *module)
  2654. {
  2655. int r;
  2656. if (kvm_arch_ops) {
  2657. printk(KERN_ERR "kvm: already loaded the other module\n");
  2658. return -EEXIST;
  2659. }
  2660. if (!ops->cpu_has_kvm_support()) {
  2661. printk(KERN_ERR "kvm: no hardware support\n");
  2662. return -EOPNOTSUPP;
  2663. }
  2664. if (ops->disabled_by_bios()) {
  2665. printk(KERN_ERR "kvm: disabled by bios\n");
  2666. return -EOPNOTSUPP;
  2667. }
  2668. kvm_arch_ops = ops;
  2669. r = kvm_arch_ops->hardware_setup();
  2670. if (r < 0)
  2671. goto out;
  2672. on_each_cpu(hardware_enable, NULL, 0, 1);
  2673. r = register_cpu_notifier(&kvm_cpu_notifier);
  2674. if (r)
  2675. goto out_free_1;
  2676. register_reboot_notifier(&kvm_reboot_notifier);
  2677. r = sysdev_class_register(&kvm_sysdev_class);
  2678. if (r)
  2679. goto out_free_2;
  2680. r = sysdev_register(&kvm_sysdev);
  2681. if (r)
  2682. goto out_free_3;
  2683. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2684. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2685. __alignof__(struct kvm_vcpu), 0, 0);
  2686. if (!kvm_vcpu_cache) {
  2687. r = -ENOMEM;
  2688. goto out_free_4;
  2689. }
  2690. kvm_chardev_ops.owner = module;
  2691. r = misc_register(&kvm_dev);
  2692. if (r) {
  2693. printk (KERN_ERR "kvm: misc device register failed\n");
  2694. goto out_free;
  2695. }
  2696. kvm_preempt_ops.sched_in = kvm_sched_in;
  2697. kvm_preempt_ops.sched_out = kvm_sched_out;
  2698. return r;
  2699. out_free:
  2700. kmem_cache_destroy(kvm_vcpu_cache);
  2701. out_free_4:
  2702. sysdev_unregister(&kvm_sysdev);
  2703. out_free_3:
  2704. sysdev_class_unregister(&kvm_sysdev_class);
  2705. out_free_2:
  2706. unregister_reboot_notifier(&kvm_reboot_notifier);
  2707. unregister_cpu_notifier(&kvm_cpu_notifier);
  2708. out_free_1:
  2709. on_each_cpu(hardware_disable, NULL, 0, 1);
  2710. kvm_arch_ops->hardware_unsetup();
  2711. out:
  2712. kvm_arch_ops = NULL;
  2713. return r;
  2714. }
  2715. void kvm_exit_arch(void)
  2716. {
  2717. misc_deregister(&kvm_dev);
  2718. kmem_cache_destroy(kvm_vcpu_cache);
  2719. sysdev_unregister(&kvm_sysdev);
  2720. sysdev_class_unregister(&kvm_sysdev_class);
  2721. unregister_reboot_notifier(&kvm_reboot_notifier);
  2722. unregister_cpu_notifier(&kvm_cpu_notifier);
  2723. on_each_cpu(hardware_disable, NULL, 0, 1);
  2724. kvm_arch_ops->hardware_unsetup();
  2725. kvm_arch_ops = NULL;
  2726. }
  2727. static __init int kvm_init(void)
  2728. {
  2729. static struct page *bad_page;
  2730. int r;
  2731. r = kvm_mmu_module_init();
  2732. if (r)
  2733. goto out4;
  2734. kvm_init_debug();
  2735. kvm_init_msr_list();
  2736. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2737. r = -ENOMEM;
  2738. goto out;
  2739. }
  2740. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2741. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2742. return 0;
  2743. out:
  2744. kvm_exit_debug();
  2745. kvm_mmu_module_exit();
  2746. out4:
  2747. return r;
  2748. }
  2749. static __exit void kvm_exit(void)
  2750. {
  2751. kvm_exit_debug();
  2752. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2753. kvm_mmu_module_exit();
  2754. }
  2755. module_init(kvm_init)
  2756. module_exit(kvm_exit)
  2757. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2758. EXPORT_SYMBOL_GPL(kvm_exit_arch);