e1000_ethtool.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. /* ethtool support for e1000 */
  21. #include "e1000.h"
  22. #include <asm/uaccess.h>
  23. extern char e1000_driver_name[];
  24. extern char e1000_driver_version[];
  25. extern int e1000_up(struct e1000_adapter *adapter);
  26. extern void e1000_down(struct e1000_adapter *adapter);
  27. extern void e1000_reset(struct e1000_adapter *adapter);
  28. extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  29. extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  30. extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  31. extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  32. extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  33. extern void e1000_update_stats(struct e1000_adapter *adapter);
  34. struct e1000_stats {
  35. char stat_string[ETH_GSTRING_LEN];
  36. int sizeof_stat;
  37. int stat_offset;
  38. };
  39. #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
  40. offsetof(struct e1000_adapter, m)
  41. static const struct e1000_stats e1000_gstrings_stats[] = {
  42. { "rx_packets", E1000_STAT(net_stats.rx_packets) },
  43. { "tx_packets", E1000_STAT(net_stats.tx_packets) },
  44. { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
  45. { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
  46. { "rx_errors", E1000_STAT(net_stats.rx_errors) },
  47. { "tx_errors", E1000_STAT(net_stats.tx_errors) },
  48. { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
  49. { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
  50. { "multicast", E1000_STAT(net_stats.multicast) },
  51. { "collisions", E1000_STAT(net_stats.collisions) },
  52. { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
  53. { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
  54. { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
  55. { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
  56. { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
  57. { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  58. { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
  59. { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
  60. { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
  61. { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
  62. { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
  63. { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
  64. { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  65. { "tx_deferred_ok", E1000_STAT(stats.dc) },
  66. { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  67. { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  68. { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  69. { "rx_long_length_errors", E1000_STAT(stats.roc) },
  70. { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  71. { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  72. { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  73. { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  74. { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  75. { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  76. { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  77. { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  78. { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  79. { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  80. { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  81. { "rx_header_split", E1000_STAT(rx_hdr_split) },
  82. { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  83. };
  84. #define E1000_QUEUE_STATS_LEN 0
  85. #define E1000_GLOBAL_STATS_LEN \
  86. sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
  87. #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
  88. static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  89. "Register test (offline)", "Eeprom test (offline)",
  90. "Interrupt test (offline)", "Loopback test (offline)",
  91. "Link test (on/offline)"
  92. };
  93. #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
  94. static int
  95. e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  96. {
  97. struct e1000_adapter *adapter = netdev_priv(netdev);
  98. struct e1000_hw *hw = &adapter->hw;
  99. if (hw->media_type == e1000_media_type_copper) {
  100. ecmd->supported = (SUPPORTED_10baseT_Half |
  101. SUPPORTED_10baseT_Full |
  102. SUPPORTED_100baseT_Half |
  103. SUPPORTED_100baseT_Full |
  104. SUPPORTED_1000baseT_Full|
  105. SUPPORTED_Autoneg |
  106. SUPPORTED_TP);
  107. ecmd->advertising = ADVERTISED_TP;
  108. if (hw->autoneg == 1) {
  109. ecmd->advertising |= ADVERTISED_Autoneg;
  110. /* the e1000 autoneg seems to match ethtool nicely */
  111. ecmd->advertising |= hw->autoneg_advertised;
  112. }
  113. ecmd->port = PORT_TP;
  114. ecmd->phy_address = hw->phy_addr;
  115. if (hw->mac_type == e1000_82543)
  116. ecmd->transceiver = XCVR_EXTERNAL;
  117. else
  118. ecmd->transceiver = XCVR_INTERNAL;
  119. } else {
  120. ecmd->supported = (SUPPORTED_1000baseT_Full |
  121. SUPPORTED_FIBRE |
  122. SUPPORTED_Autoneg);
  123. ecmd->advertising = (ADVERTISED_1000baseT_Full |
  124. ADVERTISED_FIBRE |
  125. ADVERTISED_Autoneg);
  126. ecmd->port = PORT_FIBRE;
  127. if (hw->mac_type >= e1000_82545)
  128. ecmd->transceiver = XCVR_INTERNAL;
  129. else
  130. ecmd->transceiver = XCVR_EXTERNAL;
  131. }
  132. if (netif_carrier_ok(adapter->netdev)) {
  133. e1000_get_speed_and_duplex(hw, &adapter->link_speed,
  134. &adapter->link_duplex);
  135. ecmd->speed = adapter->link_speed;
  136. /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
  137. * and HALF_DUPLEX != DUPLEX_HALF */
  138. if (adapter->link_duplex == FULL_DUPLEX)
  139. ecmd->duplex = DUPLEX_FULL;
  140. else
  141. ecmd->duplex = DUPLEX_HALF;
  142. } else {
  143. ecmd->speed = -1;
  144. ecmd->duplex = -1;
  145. }
  146. ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
  147. hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
  148. return 0;
  149. }
  150. static int
  151. e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  152. {
  153. struct e1000_adapter *adapter = netdev_priv(netdev);
  154. struct e1000_hw *hw = &adapter->hw;
  155. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  156. * cannot be changed */
  157. if (e1000_check_phy_reset_block(hw)) {
  158. DPRINTK(DRV, ERR, "Cannot change link characteristics "
  159. "when SoL/IDER is active.\n");
  160. return -EINVAL;
  161. }
  162. if (ecmd->autoneg == AUTONEG_ENABLE) {
  163. hw->autoneg = 1;
  164. if (hw->media_type == e1000_media_type_fiber)
  165. hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
  166. ADVERTISED_FIBRE |
  167. ADVERTISED_Autoneg;
  168. else
  169. hw->autoneg_advertised = ADVERTISED_10baseT_Half |
  170. ADVERTISED_10baseT_Full |
  171. ADVERTISED_100baseT_Half |
  172. ADVERTISED_100baseT_Full |
  173. ADVERTISED_1000baseT_Full|
  174. ADVERTISED_Autoneg |
  175. ADVERTISED_TP;
  176. ecmd->advertising = hw->autoneg_advertised;
  177. } else
  178. if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
  179. return -EINVAL;
  180. /* reset the link */
  181. if (netif_running(adapter->netdev)) {
  182. e1000_down(adapter);
  183. e1000_reset(adapter);
  184. e1000_up(adapter);
  185. } else
  186. e1000_reset(adapter);
  187. return 0;
  188. }
  189. static void
  190. e1000_get_pauseparam(struct net_device *netdev,
  191. struct ethtool_pauseparam *pause)
  192. {
  193. struct e1000_adapter *adapter = netdev_priv(netdev);
  194. struct e1000_hw *hw = &adapter->hw;
  195. pause->autoneg =
  196. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  197. if (hw->fc == e1000_fc_rx_pause)
  198. pause->rx_pause = 1;
  199. else if (hw->fc == e1000_fc_tx_pause)
  200. pause->tx_pause = 1;
  201. else if (hw->fc == e1000_fc_full) {
  202. pause->rx_pause = 1;
  203. pause->tx_pause = 1;
  204. }
  205. }
  206. static int
  207. e1000_set_pauseparam(struct net_device *netdev,
  208. struct ethtool_pauseparam *pause)
  209. {
  210. struct e1000_adapter *adapter = netdev_priv(netdev);
  211. struct e1000_hw *hw = &adapter->hw;
  212. adapter->fc_autoneg = pause->autoneg;
  213. if (pause->rx_pause && pause->tx_pause)
  214. hw->fc = e1000_fc_full;
  215. else if (pause->rx_pause && !pause->tx_pause)
  216. hw->fc = e1000_fc_rx_pause;
  217. else if (!pause->rx_pause && pause->tx_pause)
  218. hw->fc = e1000_fc_tx_pause;
  219. else if (!pause->rx_pause && !pause->tx_pause)
  220. hw->fc = e1000_fc_none;
  221. hw->original_fc = hw->fc;
  222. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  223. if (netif_running(adapter->netdev)) {
  224. e1000_down(adapter);
  225. e1000_up(adapter);
  226. } else
  227. e1000_reset(adapter);
  228. } else
  229. return ((hw->media_type == e1000_media_type_fiber) ?
  230. e1000_setup_link(hw) : e1000_force_mac_fc(hw));
  231. return 0;
  232. }
  233. static uint32_t
  234. e1000_get_rx_csum(struct net_device *netdev)
  235. {
  236. struct e1000_adapter *adapter = netdev_priv(netdev);
  237. return adapter->rx_csum;
  238. }
  239. static int
  240. e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
  241. {
  242. struct e1000_adapter *adapter = netdev_priv(netdev);
  243. adapter->rx_csum = data;
  244. if (netif_running(netdev)) {
  245. e1000_down(adapter);
  246. e1000_up(adapter);
  247. } else
  248. e1000_reset(adapter);
  249. return 0;
  250. }
  251. static uint32_t
  252. e1000_get_tx_csum(struct net_device *netdev)
  253. {
  254. return (netdev->features & NETIF_F_HW_CSUM) != 0;
  255. }
  256. static int
  257. e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
  258. {
  259. struct e1000_adapter *adapter = netdev_priv(netdev);
  260. if (adapter->hw.mac_type < e1000_82543) {
  261. if (!data)
  262. return -EINVAL;
  263. return 0;
  264. }
  265. if (data)
  266. netdev->features |= NETIF_F_HW_CSUM;
  267. else
  268. netdev->features &= ~NETIF_F_HW_CSUM;
  269. return 0;
  270. }
  271. #ifdef NETIF_F_TSO
  272. static int
  273. e1000_set_tso(struct net_device *netdev, uint32_t data)
  274. {
  275. struct e1000_adapter *adapter = netdev_priv(netdev);
  276. if ((adapter->hw.mac_type < e1000_82544) ||
  277. (adapter->hw.mac_type == e1000_82547))
  278. return data ? -EINVAL : 0;
  279. if (data)
  280. netdev->features |= NETIF_F_TSO;
  281. else
  282. netdev->features &= ~NETIF_F_TSO;
  283. return 0;
  284. }
  285. #endif /* NETIF_F_TSO */
  286. static uint32_t
  287. e1000_get_msglevel(struct net_device *netdev)
  288. {
  289. struct e1000_adapter *adapter = netdev_priv(netdev);
  290. return adapter->msg_enable;
  291. }
  292. static void
  293. e1000_set_msglevel(struct net_device *netdev, uint32_t data)
  294. {
  295. struct e1000_adapter *adapter = netdev_priv(netdev);
  296. adapter->msg_enable = data;
  297. }
  298. static int
  299. e1000_get_regs_len(struct net_device *netdev)
  300. {
  301. #define E1000_REGS_LEN 32
  302. return E1000_REGS_LEN * sizeof(uint32_t);
  303. }
  304. static void
  305. e1000_get_regs(struct net_device *netdev,
  306. struct ethtool_regs *regs, void *p)
  307. {
  308. struct e1000_adapter *adapter = netdev_priv(netdev);
  309. struct e1000_hw *hw = &adapter->hw;
  310. uint32_t *regs_buff = p;
  311. uint16_t phy_data;
  312. memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
  313. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  314. regs_buff[0] = E1000_READ_REG(hw, CTRL);
  315. regs_buff[1] = E1000_READ_REG(hw, STATUS);
  316. regs_buff[2] = E1000_READ_REG(hw, RCTL);
  317. regs_buff[3] = E1000_READ_REG(hw, RDLEN);
  318. regs_buff[4] = E1000_READ_REG(hw, RDH);
  319. regs_buff[5] = E1000_READ_REG(hw, RDT);
  320. regs_buff[6] = E1000_READ_REG(hw, RDTR);
  321. regs_buff[7] = E1000_READ_REG(hw, TCTL);
  322. regs_buff[8] = E1000_READ_REG(hw, TDLEN);
  323. regs_buff[9] = E1000_READ_REG(hw, TDH);
  324. regs_buff[10] = E1000_READ_REG(hw, TDT);
  325. regs_buff[11] = E1000_READ_REG(hw, TIDV);
  326. regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
  327. if (hw->phy_type == e1000_phy_igp) {
  328. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  329. IGP01E1000_PHY_AGC_A);
  330. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
  331. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  332. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  333. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  334. IGP01E1000_PHY_AGC_B);
  335. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
  336. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  337. regs_buff[14] = (uint32_t)phy_data; /* cable length */
  338. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  339. IGP01E1000_PHY_AGC_C);
  340. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
  341. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  342. regs_buff[15] = (uint32_t)phy_data; /* cable length */
  343. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  344. IGP01E1000_PHY_AGC_D);
  345. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
  346. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  347. regs_buff[16] = (uint32_t)phy_data; /* cable length */
  348. regs_buff[17] = 0; /* extended 10bt distance (not needed) */
  349. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  350. e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
  351. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  352. regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
  353. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  354. IGP01E1000_PHY_PCS_INIT_REG);
  355. e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
  356. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  357. regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
  358. regs_buff[20] = 0; /* polarity correction enabled (always) */
  359. regs_buff[22] = 0; /* phy receive errors (unavailable) */
  360. regs_buff[23] = regs_buff[18]; /* mdix mode */
  361. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  362. } else {
  363. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  364. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  365. regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  366. regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  367. regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  368. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  369. regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
  370. regs_buff[18] = regs_buff[13]; /* cable polarity */
  371. regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  372. regs_buff[20] = regs_buff[17]; /* polarity correction */
  373. /* phy receive errors */
  374. regs_buff[22] = adapter->phy_stats.receive_errors;
  375. regs_buff[23] = regs_buff[13]; /* mdix mode */
  376. }
  377. regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
  378. e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
  379. regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
  380. regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
  381. if (hw->mac_type >= e1000_82540 &&
  382. hw->media_type == e1000_media_type_copper) {
  383. regs_buff[26] = E1000_READ_REG(hw, MANC);
  384. }
  385. }
  386. static int
  387. e1000_get_eeprom_len(struct net_device *netdev)
  388. {
  389. struct e1000_adapter *adapter = netdev_priv(netdev);
  390. return adapter->hw.eeprom.word_size * 2;
  391. }
  392. static int
  393. e1000_get_eeprom(struct net_device *netdev,
  394. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  395. {
  396. struct e1000_adapter *adapter = netdev_priv(netdev);
  397. struct e1000_hw *hw = &adapter->hw;
  398. uint16_t *eeprom_buff;
  399. int first_word, last_word;
  400. int ret_val = 0;
  401. uint16_t i;
  402. if (eeprom->len == 0)
  403. return -EINVAL;
  404. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  405. first_word = eeprom->offset >> 1;
  406. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  407. eeprom_buff = kmalloc(sizeof(uint16_t) *
  408. (last_word - first_word + 1), GFP_KERNEL);
  409. if (!eeprom_buff)
  410. return -ENOMEM;
  411. if (hw->eeprom.type == e1000_eeprom_spi)
  412. ret_val = e1000_read_eeprom(hw, first_word,
  413. last_word - first_word + 1,
  414. eeprom_buff);
  415. else {
  416. for (i = 0; i < last_word - first_word + 1; i++)
  417. if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
  418. &eeprom_buff[i])))
  419. break;
  420. }
  421. /* Device's eeprom is always little-endian, word addressable */
  422. for (i = 0; i < last_word - first_word + 1; i++)
  423. le16_to_cpus(&eeprom_buff[i]);
  424. memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
  425. eeprom->len);
  426. kfree(eeprom_buff);
  427. return ret_val;
  428. }
  429. static int
  430. e1000_set_eeprom(struct net_device *netdev,
  431. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  432. {
  433. struct e1000_adapter *adapter = netdev_priv(netdev);
  434. struct e1000_hw *hw = &adapter->hw;
  435. uint16_t *eeprom_buff;
  436. void *ptr;
  437. int max_len, first_word, last_word, ret_val = 0;
  438. uint16_t i;
  439. if (eeprom->len == 0)
  440. return -EOPNOTSUPP;
  441. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  442. return -EFAULT;
  443. max_len = hw->eeprom.word_size * 2;
  444. first_word = eeprom->offset >> 1;
  445. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  446. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  447. if (!eeprom_buff)
  448. return -ENOMEM;
  449. ptr = (void *)eeprom_buff;
  450. if (eeprom->offset & 1) {
  451. /* need read/modify/write of first changed EEPROM word */
  452. /* only the second byte of the word is being modified */
  453. ret_val = e1000_read_eeprom(hw, first_word, 1,
  454. &eeprom_buff[0]);
  455. ptr++;
  456. }
  457. if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  458. /* need read/modify/write of last changed EEPROM word */
  459. /* only the first byte of the word is being modified */
  460. ret_val = e1000_read_eeprom(hw, last_word, 1,
  461. &eeprom_buff[last_word - first_word]);
  462. }
  463. /* Device's eeprom is always little-endian, word addressable */
  464. for (i = 0; i < last_word - first_word + 1; i++)
  465. le16_to_cpus(&eeprom_buff[i]);
  466. memcpy(ptr, bytes, eeprom->len);
  467. for (i = 0; i < last_word - first_word + 1; i++)
  468. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  469. ret_val = e1000_write_eeprom(hw, first_word,
  470. last_word - first_word + 1, eeprom_buff);
  471. /* Update the checksum over the first part of the EEPROM if needed
  472. * and flush shadow RAM for 82573 conrollers */
  473. if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
  474. (hw->mac_type == e1000_82573)))
  475. e1000_update_eeprom_checksum(hw);
  476. kfree(eeprom_buff);
  477. return ret_val;
  478. }
  479. static void
  480. e1000_get_drvinfo(struct net_device *netdev,
  481. struct ethtool_drvinfo *drvinfo)
  482. {
  483. struct e1000_adapter *adapter = netdev_priv(netdev);
  484. char firmware_version[32];
  485. uint16_t eeprom_data;
  486. strncpy(drvinfo->driver, e1000_driver_name, 32);
  487. strncpy(drvinfo->version, e1000_driver_version, 32);
  488. /* EEPROM image version # is reported as firmware version # for
  489. * 8257{1|2|3} controllers */
  490. e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
  491. switch (adapter->hw.mac_type) {
  492. case e1000_82571:
  493. case e1000_82572:
  494. case e1000_82573:
  495. sprintf(firmware_version, "%d.%d-%d",
  496. (eeprom_data & 0xF000) >> 12,
  497. (eeprom_data & 0x0FF0) >> 4,
  498. eeprom_data & 0x000F);
  499. break;
  500. default:
  501. sprintf(firmware_version, "N/A");
  502. }
  503. strncpy(drvinfo->fw_version, firmware_version, 32);
  504. strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
  505. drvinfo->n_stats = E1000_STATS_LEN;
  506. drvinfo->testinfo_len = E1000_TEST_LEN;
  507. drvinfo->regdump_len = e1000_get_regs_len(netdev);
  508. drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
  509. }
  510. static void
  511. e1000_get_ringparam(struct net_device *netdev,
  512. struct ethtool_ringparam *ring)
  513. {
  514. struct e1000_adapter *adapter = netdev_priv(netdev);
  515. e1000_mac_type mac_type = adapter->hw.mac_type;
  516. struct e1000_tx_ring *txdr = adapter->tx_ring;
  517. struct e1000_rx_ring *rxdr = adapter->rx_ring;
  518. ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
  519. E1000_MAX_82544_RXD;
  520. ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
  521. E1000_MAX_82544_TXD;
  522. ring->rx_mini_max_pending = 0;
  523. ring->rx_jumbo_max_pending = 0;
  524. ring->rx_pending = rxdr->count;
  525. ring->tx_pending = txdr->count;
  526. ring->rx_mini_pending = 0;
  527. ring->rx_jumbo_pending = 0;
  528. }
  529. static int
  530. e1000_set_ringparam(struct net_device *netdev,
  531. struct ethtool_ringparam *ring)
  532. {
  533. struct e1000_adapter *adapter = netdev_priv(netdev);
  534. e1000_mac_type mac_type = adapter->hw.mac_type;
  535. struct e1000_tx_ring *txdr, *tx_old, *tx_new;
  536. struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
  537. int i, err, tx_ring_size, rx_ring_size;
  538. tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
  539. rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
  540. if (netif_running(adapter->netdev))
  541. e1000_down(adapter);
  542. tx_old = adapter->tx_ring;
  543. rx_old = adapter->rx_ring;
  544. adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
  545. if (!adapter->tx_ring) {
  546. err = -ENOMEM;
  547. goto err_setup_rx;
  548. }
  549. memset(adapter->tx_ring, 0, tx_ring_size);
  550. adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
  551. if (!adapter->rx_ring) {
  552. kfree(adapter->tx_ring);
  553. err = -ENOMEM;
  554. goto err_setup_rx;
  555. }
  556. memset(adapter->rx_ring, 0, rx_ring_size);
  557. txdr = adapter->tx_ring;
  558. rxdr = adapter->rx_ring;
  559. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  560. return -EINVAL;
  561. rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
  562. rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
  563. E1000_MAX_RXD : E1000_MAX_82544_RXD));
  564. E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
  565. txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
  566. txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
  567. E1000_MAX_TXD : E1000_MAX_82544_TXD));
  568. E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
  569. for (i = 0; i < adapter->num_tx_queues; i++)
  570. txdr[i].count = txdr->count;
  571. for (i = 0; i < adapter->num_rx_queues; i++)
  572. rxdr[i].count = rxdr->count;
  573. if (netif_running(adapter->netdev)) {
  574. /* Try to get new resources before deleting old */
  575. if ((err = e1000_setup_all_rx_resources(adapter)))
  576. goto err_setup_rx;
  577. if ((err = e1000_setup_all_tx_resources(adapter)))
  578. goto err_setup_tx;
  579. /* save the new, restore the old in order to free it,
  580. * then restore the new back again */
  581. rx_new = adapter->rx_ring;
  582. tx_new = adapter->tx_ring;
  583. adapter->rx_ring = rx_old;
  584. adapter->tx_ring = tx_old;
  585. e1000_free_all_rx_resources(adapter);
  586. e1000_free_all_tx_resources(adapter);
  587. kfree(tx_old);
  588. kfree(rx_old);
  589. adapter->rx_ring = rx_new;
  590. adapter->tx_ring = tx_new;
  591. if ((err = e1000_up(adapter)))
  592. return err;
  593. }
  594. return 0;
  595. err_setup_tx:
  596. e1000_free_all_rx_resources(adapter);
  597. err_setup_rx:
  598. adapter->rx_ring = rx_old;
  599. adapter->tx_ring = tx_old;
  600. e1000_up(adapter);
  601. return err;
  602. }
  603. #define REG_PATTERN_TEST(R, M, W) \
  604. { \
  605. uint32_t pat, value; \
  606. uint32_t test[] = \
  607. {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
  608. for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
  609. E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
  610. value = E1000_READ_REG(&adapter->hw, R); \
  611. if (value != (test[pat] & W & M)) { \
  612. DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
  613. "0x%08X expected 0x%08X\n", \
  614. E1000_##R, value, (test[pat] & W & M)); \
  615. *data = (adapter->hw.mac_type < e1000_82543) ? \
  616. E1000_82542_##R : E1000_##R; \
  617. return 1; \
  618. } \
  619. } \
  620. }
  621. #define REG_SET_AND_CHECK(R, M, W) \
  622. { \
  623. uint32_t value; \
  624. E1000_WRITE_REG(&adapter->hw, R, W & M); \
  625. value = E1000_READ_REG(&adapter->hw, R); \
  626. if ((W & M) != (value & M)) { \
  627. DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
  628. "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
  629. *data = (adapter->hw.mac_type < e1000_82543) ? \
  630. E1000_82542_##R : E1000_##R; \
  631. return 1; \
  632. } \
  633. }
  634. static int
  635. e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
  636. {
  637. uint32_t value, before, after;
  638. uint32_t i, toggle;
  639. /* The status register is Read Only, so a write should fail.
  640. * Some bits that get toggled are ignored.
  641. */
  642. switch (adapter->hw.mac_type) {
  643. /* there are several bits on newer hardware that are r/w */
  644. case e1000_82571:
  645. case e1000_82572:
  646. toggle = 0x7FFFF3FF;
  647. break;
  648. case e1000_82573:
  649. toggle = 0x7FFFF033;
  650. break;
  651. default:
  652. toggle = 0xFFFFF833;
  653. break;
  654. }
  655. before = E1000_READ_REG(&adapter->hw, STATUS);
  656. value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
  657. E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
  658. after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
  659. if (value != after) {
  660. DPRINTK(DRV, ERR, "failed STATUS register test got: "
  661. "0x%08X expected: 0x%08X\n", after, value);
  662. *data = 1;
  663. return 1;
  664. }
  665. /* restore previous status */
  666. E1000_WRITE_REG(&adapter->hw, STATUS, before);
  667. REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
  668. REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
  669. REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
  670. REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
  671. REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
  672. REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  673. REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
  674. REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
  675. REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
  676. REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
  677. REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
  678. REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
  679. REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  680. REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
  681. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
  682. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
  683. REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
  684. if (adapter->hw.mac_type >= e1000_82543) {
  685. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
  686. REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  687. REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
  688. REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  689. REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
  690. for (i = 0; i < E1000_RAR_ENTRIES; i++) {
  691. REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
  692. 0xFFFFFFFF);
  693. REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
  694. 0xFFFFFFFF);
  695. }
  696. } else {
  697. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
  698. REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
  699. REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
  700. REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
  701. }
  702. for (i = 0; i < E1000_MC_TBL_SIZE; i++)
  703. REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
  704. *data = 0;
  705. return 0;
  706. }
  707. static int
  708. e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
  709. {
  710. uint16_t temp;
  711. uint16_t checksum = 0;
  712. uint16_t i;
  713. *data = 0;
  714. /* Read and add up the contents of the EEPROM */
  715. for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
  716. if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
  717. *data = 1;
  718. break;
  719. }
  720. checksum += temp;
  721. }
  722. /* If Checksum is not Correct return error else test passed */
  723. if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
  724. *data = 2;
  725. return *data;
  726. }
  727. static irqreturn_t
  728. e1000_test_intr(int irq,
  729. void *data,
  730. struct pt_regs *regs)
  731. {
  732. struct net_device *netdev = (struct net_device *) data;
  733. struct e1000_adapter *adapter = netdev_priv(netdev);
  734. adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
  735. return IRQ_HANDLED;
  736. }
  737. static int
  738. e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
  739. {
  740. struct net_device *netdev = adapter->netdev;
  741. uint32_t mask, i=0, shared_int = TRUE;
  742. uint32_t irq = adapter->pdev->irq;
  743. *data = 0;
  744. /* Hook up test interrupt handler just for this test */
  745. if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
  746. shared_int = FALSE;
  747. } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
  748. netdev->name, netdev)){
  749. *data = 1;
  750. return -1;
  751. }
  752. /* Disable all the interrupts */
  753. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  754. msec_delay(10);
  755. /* Test each interrupt */
  756. for (; i < 10; i++) {
  757. /* Interrupt to test */
  758. mask = 1 << i;
  759. if (!shared_int) {
  760. /* Disable the interrupt to be reported in
  761. * the cause register and then force the same
  762. * interrupt and see if one gets posted. If
  763. * an interrupt was posted to the bus, the
  764. * test failed.
  765. */
  766. adapter->test_icr = 0;
  767. E1000_WRITE_REG(&adapter->hw, IMC, mask);
  768. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  769. msec_delay(10);
  770. if (adapter->test_icr & mask) {
  771. *data = 3;
  772. break;
  773. }
  774. }
  775. /* Enable the interrupt to be reported in
  776. * the cause register and then force the same
  777. * interrupt and see if one gets posted. If
  778. * an interrupt was not posted to the bus, the
  779. * test failed.
  780. */
  781. adapter->test_icr = 0;
  782. E1000_WRITE_REG(&adapter->hw, IMS, mask);
  783. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  784. msec_delay(10);
  785. if (!(adapter->test_icr & mask)) {
  786. *data = 4;
  787. break;
  788. }
  789. if (!shared_int) {
  790. /* Disable the other interrupts to be reported in
  791. * the cause register and then force the other
  792. * interrupts and see if any get posted. If
  793. * an interrupt was posted to the bus, the
  794. * test failed.
  795. */
  796. adapter->test_icr = 0;
  797. E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
  798. E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
  799. msec_delay(10);
  800. if (adapter->test_icr) {
  801. *data = 5;
  802. break;
  803. }
  804. }
  805. }
  806. /* Disable all the interrupts */
  807. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  808. msec_delay(10);
  809. /* Unhook test interrupt handler */
  810. free_irq(irq, netdev);
  811. return *data;
  812. }
  813. static void
  814. e1000_free_desc_rings(struct e1000_adapter *adapter)
  815. {
  816. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  817. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  818. struct pci_dev *pdev = adapter->pdev;
  819. int i;
  820. if (txdr->desc && txdr->buffer_info) {
  821. for (i = 0; i < txdr->count; i++) {
  822. if (txdr->buffer_info[i].dma)
  823. pci_unmap_single(pdev, txdr->buffer_info[i].dma,
  824. txdr->buffer_info[i].length,
  825. PCI_DMA_TODEVICE);
  826. if (txdr->buffer_info[i].skb)
  827. dev_kfree_skb(txdr->buffer_info[i].skb);
  828. }
  829. }
  830. if (rxdr->desc && rxdr->buffer_info) {
  831. for (i = 0; i < rxdr->count; i++) {
  832. if (rxdr->buffer_info[i].dma)
  833. pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
  834. rxdr->buffer_info[i].length,
  835. PCI_DMA_FROMDEVICE);
  836. if (rxdr->buffer_info[i].skb)
  837. dev_kfree_skb(rxdr->buffer_info[i].skb);
  838. }
  839. }
  840. if (txdr->desc) {
  841. pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
  842. txdr->desc = NULL;
  843. }
  844. if (rxdr->desc) {
  845. pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
  846. rxdr->desc = NULL;
  847. }
  848. kfree(txdr->buffer_info);
  849. txdr->buffer_info = NULL;
  850. kfree(rxdr->buffer_info);
  851. rxdr->buffer_info = NULL;
  852. return;
  853. }
  854. static int
  855. e1000_setup_desc_rings(struct e1000_adapter *adapter)
  856. {
  857. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  858. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  859. struct pci_dev *pdev = adapter->pdev;
  860. uint32_t rctl;
  861. int size, i, ret_val;
  862. /* Setup Tx descriptor ring and Tx buffers */
  863. if (!txdr->count)
  864. txdr->count = E1000_DEFAULT_TXD;
  865. size = txdr->count * sizeof(struct e1000_buffer);
  866. if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  867. ret_val = 1;
  868. goto err_nomem;
  869. }
  870. memset(txdr->buffer_info, 0, size);
  871. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  872. E1000_ROUNDUP(txdr->size, 4096);
  873. if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
  874. ret_val = 2;
  875. goto err_nomem;
  876. }
  877. memset(txdr->desc, 0, txdr->size);
  878. txdr->next_to_use = txdr->next_to_clean = 0;
  879. E1000_WRITE_REG(&adapter->hw, TDBAL,
  880. ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
  881. E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
  882. E1000_WRITE_REG(&adapter->hw, TDLEN,
  883. txdr->count * sizeof(struct e1000_tx_desc));
  884. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  885. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  886. E1000_WRITE_REG(&adapter->hw, TCTL,
  887. E1000_TCTL_PSP | E1000_TCTL_EN |
  888. E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
  889. E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
  890. for (i = 0; i < txdr->count; i++) {
  891. struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
  892. struct sk_buff *skb;
  893. unsigned int size = 1024;
  894. if (!(skb = alloc_skb(size, GFP_KERNEL))) {
  895. ret_val = 3;
  896. goto err_nomem;
  897. }
  898. skb_put(skb, size);
  899. txdr->buffer_info[i].skb = skb;
  900. txdr->buffer_info[i].length = skb->len;
  901. txdr->buffer_info[i].dma =
  902. pci_map_single(pdev, skb->data, skb->len,
  903. PCI_DMA_TODEVICE);
  904. tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
  905. tx_desc->lower.data = cpu_to_le32(skb->len);
  906. tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
  907. E1000_TXD_CMD_IFCS |
  908. E1000_TXD_CMD_RPS);
  909. tx_desc->upper.data = 0;
  910. }
  911. /* Setup Rx descriptor ring and Rx buffers */
  912. if (!rxdr->count)
  913. rxdr->count = E1000_DEFAULT_RXD;
  914. size = rxdr->count * sizeof(struct e1000_buffer);
  915. if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  916. ret_val = 4;
  917. goto err_nomem;
  918. }
  919. memset(rxdr->buffer_info, 0, size);
  920. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  921. if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
  922. ret_val = 5;
  923. goto err_nomem;
  924. }
  925. memset(rxdr->desc, 0, rxdr->size);
  926. rxdr->next_to_use = rxdr->next_to_clean = 0;
  927. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  928. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  929. E1000_WRITE_REG(&adapter->hw, RDBAL,
  930. ((uint64_t) rxdr->dma & 0xFFFFFFFF));
  931. E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
  932. E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
  933. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  934. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  935. rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
  936. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  937. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  938. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  939. for (i = 0; i < rxdr->count; i++) {
  940. struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
  941. struct sk_buff *skb;
  942. if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
  943. GFP_KERNEL))) {
  944. ret_val = 6;
  945. goto err_nomem;
  946. }
  947. skb_reserve(skb, NET_IP_ALIGN);
  948. rxdr->buffer_info[i].skb = skb;
  949. rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
  950. rxdr->buffer_info[i].dma =
  951. pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
  952. PCI_DMA_FROMDEVICE);
  953. rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
  954. memset(skb->data, 0x00, skb->len);
  955. }
  956. return 0;
  957. err_nomem:
  958. e1000_free_desc_rings(adapter);
  959. return ret_val;
  960. }
  961. static void
  962. e1000_phy_disable_receiver(struct e1000_adapter *adapter)
  963. {
  964. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  965. e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
  966. e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
  967. e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
  968. e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
  969. }
  970. static void
  971. e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
  972. {
  973. uint16_t phy_reg;
  974. /* Because we reset the PHY above, we need to re-force TX_CLK in the
  975. * Extended PHY Specific Control Register to 25MHz clock. This
  976. * value defaults back to a 2.5MHz clock when the PHY is reset.
  977. */
  978. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  979. phy_reg |= M88E1000_EPSCR_TX_CLK_25;
  980. e1000_write_phy_reg(&adapter->hw,
  981. M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
  982. /* In addition, because of the s/w reset above, we need to enable
  983. * CRS on TX. This must be set for both full and half duplex
  984. * operation.
  985. */
  986. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  987. phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
  988. e1000_write_phy_reg(&adapter->hw,
  989. M88E1000_PHY_SPEC_CTRL, phy_reg);
  990. }
  991. static int
  992. e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
  993. {
  994. uint32_t ctrl_reg;
  995. uint16_t phy_reg;
  996. /* Setup the Device Control Register for PHY loopback test. */
  997. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  998. ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
  999. E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1000. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1001. E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
  1002. E1000_CTRL_FD); /* Force Duplex to FULL */
  1003. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  1004. /* Read the PHY Specific Control Register (0x10) */
  1005. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  1006. /* Clear Auto-Crossover bits in PHY Specific Control Register
  1007. * (bits 6:5).
  1008. */
  1009. phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
  1010. e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
  1011. /* Perform software reset on the PHY */
  1012. e1000_phy_reset(&adapter->hw);
  1013. /* Have to setup TX_CLK and TX_CRS after software reset */
  1014. e1000_phy_reset_clk_and_crs(adapter);
  1015. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
  1016. /* Wait for reset to complete. */
  1017. udelay(500);
  1018. /* Have to setup TX_CLK and TX_CRS after software reset */
  1019. e1000_phy_reset_clk_and_crs(adapter);
  1020. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1021. e1000_phy_disable_receiver(adapter);
  1022. /* Set the loopback bit in the PHY control register. */
  1023. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1024. phy_reg |= MII_CR_LOOPBACK;
  1025. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1026. /* Setup TX_CLK and TX_CRS one more time. */
  1027. e1000_phy_reset_clk_and_crs(adapter);
  1028. /* Check Phy Configuration */
  1029. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1030. if (phy_reg != 0x4100)
  1031. return 9;
  1032. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  1033. if (phy_reg != 0x0070)
  1034. return 10;
  1035. e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
  1036. if (phy_reg != 0x001A)
  1037. return 11;
  1038. return 0;
  1039. }
  1040. static int
  1041. e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
  1042. {
  1043. uint32_t ctrl_reg = 0;
  1044. uint32_t stat_reg = 0;
  1045. adapter->hw.autoneg = FALSE;
  1046. if (adapter->hw.phy_type == e1000_phy_m88) {
  1047. /* Auto-MDI/MDIX Off */
  1048. e1000_write_phy_reg(&adapter->hw,
  1049. M88E1000_PHY_SPEC_CTRL, 0x0808);
  1050. /* reset to update Auto-MDI/MDIX */
  1051. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
  1052. /* autoneg off */
  1053. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
  1054. }
  1055. /* force 1000, set loopback */
  1056. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
  1057. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1058. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  1059. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1060. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1061. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1062. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1063. E1000_CTRL_FD); /* Force Duplex to FULL */
  1064. if (adapter->hw.media_type == e1000_media_type_copper &&
  1065. adapter->hw.phy_type == e1000_phy_m88) {
  1066. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1067. } else {
  1068. /* Set the ILOS bit on the fiber Nic is half
  1069. * duplex link is detected. */
  1070. stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
  1071. if ((stat_reg & E1000_STATUS_FD) == 0)
  1072. ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
  1073. }
  1074. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  1075. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1076. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1077. */
  1078. if (adapter->hw.phy_type == e1000_phy_m88)
  1079. e1000_phy_disable_receiver(adapter);
  1080. udelay(500);
  1081. return 0;
  1082. }
  1083. static int
  1084. e1000_set_phy_loopback(struct e1000_adapter *adapter)
  1085. {
  1086. uint16_t phy_reg = 0;
  1087. uint16_t count = 0;
  1088. switch (adapter->hw.mac_type) {
  1089. case e1000_82543:
  1090. if (adapter->hw.media_type == e1000_media_type_copper) {
  1091. /* Attempt to setup Loopback mode on Non-integrated PHY.
  1092. * Some PHY registers get corrupted at random, so
  1093. * attempt this 10 times.
  1094. */
  1095. while (e1000_nonintegrated_phy_loopback(adapter) &&
  1096. count++ < 10);
  1097. if (count < 11)
  1098. return 0;
  1099. }
  1100. break;
  1101. case e1000_82544:
  1102. case e1000_82540:
  1103. case e1000_82545:
  1104. case e1000_82545_rev_3:
  1105. case e1000_82546:
  1106. case e1000_82546_rev_3:
  1107. case e1000_82541:
  1108. case e1000_82541_rev_2:
  1109. case e1000_82547:
  1110. case e1000_82547_rev_2:
  1111. case e1000_82571:
  1112. case e1000_82572:
  1113. case e1000_82573:
  1114. return e1000_integrated_phy_loopback(adapter);
  1115. break;
  1116. default:
  1117. /* Default PHY loopback work is to read the MII
  1118. * control register and assert bit 14 (loopback mode).
  1119. */
  1120. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1121. phy_reg |= MII_CR_LOOPBACK;
  1122. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1123. return 0;
  1124. break;
  1125. }
  1126. return 8;
  1127. }
  1128. static int
  1129. e1000_setup_loopback_test(struct e1000_adapter *adapter)
  1130. {
  1131. struct e1000_hw *hw = &adapter->hw;
  1132. uint32_t rctl;
  1133. if (hw->media_type == e1000_media_type_fiber ||
  1134. hw->media_type == e1000_media_type_internal_serdes) {
  1135. switch (hw->mac_type) {
  1136. case e1000_82545:
  1137. case e1000_82546:
  1138. case e1000_82545_rev_3:
  1139. case e1000_82546_rev_3:
  1140. return e1000_set_phy_loopback(adapter);
  1141. break;
  1142. case e1000_82571:
  1143. case e1000_82572:
  1144. #define E1000_SERDES_LB_ON 0x410
  1145. e1000_set_phy_loopback(adapter);
  1146. E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
  1147. msec_delay(10);
  1148. return 0;
  1149. break;
  1150. default:
  1151. rctl = E1000_READ_REG(hw, RCTL);
  1152. rctl |= E1000_RCTL_LBM_TCVR;
  1153. E1000_WRITE_REG(hw, RCTL, rctl);
  1154. return 0;
  1155. }
  1156. } else if (hw->media_type == e1000_media_type_copper)
  1157. return e1000_set_phy_loopback(adapter);
  1158. return 7;
  1159. }
  1160. static void
  1161. e1000_loopback_cleanup(struct e1000_adapter *adapter)
  1162. {
  1163. struct e1000_hw *hw = &adapter->hw;
  1164. uint32_t rctl;
  1165. uint16_t phy_reg;
  1166. rctl = E1000_READ_REG(hw, RCTL);
  1167. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1168. E1000_WRITE_REG(hw, RCTL, rctl);
  1169. switch (hw->mac_type) {
  1170. case e1000_82571:
  1171. case e1000_82572:
  1172. if (hw->media_type == e1000_media_type_fiber ||
  1173. hw->media_type == e1000_media_type_internal_serdes) {
  1174. #define E1000_SERDES_LB_OFF 0x400
  1175. E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
  1176. msec_delay(10);
  1177. break;
  1178. }
  1179. /* Fall Through */
  1180. case e1000_82545:
  1181. case e1000_82546:
  1182. case e1000_82545_rev_3:
  1183. case e1000_82546_rev_3:
  1184. default:
  1185. hw->autoneg = TRUE;
  1186. e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
  1187. if (phy_reg & MII_CR_LOOPBACK) {
  1188. phy_reg &= ~MII_CR_LOOPBACK;
  1189. e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
  1190. e1000_phy_reset(hw);
  1191. }
  1192. break;
  1193. }
  1194. }
  1195. static void
  1196. e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1197. {
  1198. memset(skb->data, 0xFF, frame_size);
  1199. frame_size &= ~1;
  1200. memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
  1201. memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
  1202. memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
  1203. }
  1204. static int
  1205. e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1206. {
  1207. frame_size &= ~1;
  1208. if (*(skb->data + 3) == 0xFF) {
  1209. if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
  1210. (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
  1211. return 0;
  1212. }
  1213. }
  1214. return 13;
  1215. }
  1216. static int
  1217. e1000_run_loopback_test(struct e1000_adapter *adapter)
  1218. {
  1219. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  1220. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  1221. struct pci_dev *pdev = adapter->pdev;
  1222. int i, j, k, l, lc, good_cnt, ret_val=0;
  1223. unsigned long time;
  1224. E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
  1225. /* Calculate the loop count based on the largest descriptor ring
  1226. * The idea is to wrap the largest ring a number of times using 64
  1227. * send/receive pairs during each loop
  1228. */
  1229. if (rxdr->count <= txdr->count)
  1230. lc = ((txdr->count / 64) * 2) + 1;
  1231. else
  1232. lc = ((rxdr->count / 64) * 2) + 1;
  1233. k = l = 0;
  1234. for (j = 0; j <= lc; j++) { /* loop count loop */
  1235. for (i = 0; i < 64; i++) { /* send the packets */
  1236. e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
  1237. 1024);
  1238. pci_dma_sync_single_for_device(pdev,
  1239. txdr->buffer_info[k].dma,
  1240. txdr->buffer_info[k].length,
  1241. PCI_DMA_TODEVICE);
  1242. if (unlikely(++k == txdr->count)) k = 0;
  1243. }
  1244. E1000_WRITE_REG(&adapter->hw, TDT, k);
  1245. msec_delay(200);
  1246. time = jiffies; /* set the start time for the receive */
  1247. good_cnt = 0;
  1248. do { /* receive the sent packets */
  1249. pci_dma_sync_single_for_cpu(pdev,
  1250. rxdr->buffer_info[l].dma,
  1251. rxdr->buffer_info[l].length,
  1252. PCI_DMA_FROMDEVICE);
  1253. ret_val = e1000_check_lbtest_frame(
  1254. rxdr->buffer_info[l].skb,
  1255. 1024);
  1256. if (!ret_val)
  1257. good_cnt++;
  1258. if (unlikely(++l == rxdr->count)) l = 0;
  1259. /* time + 20 msecs (200 msecs on 2.4) is more than
  1260. * enough time to complete the receives, if it's
  1261. * exceeded, break and error off
  1262. */
  1263. } while (good_cnt < 64 && jiffies < (time + 20));
  1264. if (good_cnt != 64) {
  1265. ret_val = 13; /* ret_val is the same as mis-compare */
  1266. break;
  1267. }
  1268. if (jiffies >= (time + 2)) {
  1269. ret_val = 14; /* error code for time out error */
  1270. break;
  1271. }
  1272. } /* end loop count loop */
  1273. return ret_val;
  1274. }
  1275. static int
  1276. e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
  1277. {
  1278. /* PHY loopback cannot be performed if SoL/IDER
  1279. * sessions are active */
  1280. if (e1000_check_phy_reset_block(&adapter->hw)) {
  1281. DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
  1282. "when SoL/IDER is active.\n");
  1283. *data = 0;
  1284. goto out;
  1285. }
  1286. if ((*data = e1000_setup_desc_rings(adapter)))
  1287. goto out;
  1288. if ((*data = e1000_setup_loopback_test(adapter)))
  1289. goto err_loopback;
  1290. *data = e1000_run_loopback_test(adapter);
  1291. e1000_loopback_cleanup(adapter);
  1292. err_loopback:
  1293. e1000_free_desc_rings(adapter);
  1294. out:
  1295. return *data;
  1296. }
  1297. static int
  1298. e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
  1299. {
  1300. *data = 0;
  1301. if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
  1302. int i = 0;
  1303. adapter->hw.serdes_link_down = TRUE;
  1304. /* On some blade server designs, link establishment
  1305. * could take as long as 2-3 minutes */
  1306. do {
  1307. e1000_check_for_link(&adapter->hw);
  1308. if (adapter->hw.serdes_link_down == FALSE)
  1309. return *data;
  1310. msec_delay(20);
  1311. } while (i++ < 3750);
  1312. *data = 1;
  1313. } else {
  1314. e1000_check_for_link(&adapter->hw);
  1315. if (adapter->hw.autoneg) /* if auto_neg is set wait for it */
  1316. msec_delay(4000);
  1317. if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
  1318. *data = 1;
  1319. }
  1320. }
  1321. return *data;
  1322. }
  1323. static int
  1324. e1000_diag_test_count(struct net_device *netdev)
  1325. {
  1326. return E1000_TEST_LEN;
  1327. }
  1328. static void
  1329. e1000_diag_test(struct net_device *netdev,
  1330. struct ethtool_test *eth_test, uint64_t *data)
  1331. {
  1332. struct e1000_adapter *adapter = netdev_priv(netdev);
  1333. boolean_t if_running = netif_running(netdev);
  1334. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1335. /* Offline tests */
  1336. /* save speed, duplex, autoneg settings */
  1337. uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
  1338. uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
  1339. uint8_t autoneg = adapter->hw.autoneg;
  1340. /* Link test performed before hardware reset so autoneg doesn't
  1341. * interfere with test result */
  1342. if (e1000_link_test(adapter, &data[4]))
  1343. eth_test->flags |= ETH_TEST_FL_FAILED;
  1344. if (if_running)
  1345. e1000_down(adapter);
  1346. else
  1347. e1000_reset(adapter);
  1348. if (e1000_reg_test(adapter, &data[0]))
  1349. eth_test->flags |= ETH_TEST_FL_FAILED;
  1350. e1000_reset(adapter);
  1351. if (e1000_eeprom_test(adapter, &data[1]))
  1352. eth_test->flags |= ETH_TEST_FL_FAILED;
  1353. e1000_reset(adapter);
  1354. if (e1000_intr_test(adapter, &data[2]))
  1355. eth_test->flags |= ETH_TEST_FL_FAILED;
  1356. e1000_reset(adapter);
  1357. if (e1000_loopback_test(adapter, &data[3]))
  1358. eth_test->flags |= ETH_TEST_FL_FAILED;
  1359. /* restore speed, duplex, autoneg settings */
  1360. adapter->hw.autoneg_advertised = autoneg_advertised;
  1361. adapter->hw.forced_speed_duplex = forced_speed_duplex;
  1362. adapter->hw.autoneg = autoneg;
  1363. e1000_reset(adapter);
  1364. if (if_running)
  1365. e1000_up(adapter);
  1366. } else {
  1367. /* Online tests */
  1368. if (e1000_link_test(adapter, &data[4]))
  1369. eth_test->flags |= ETH_TEST_FL_FAILED;
  1370. /* Offline tests aren't run; pass by default */
  1371. data[0] = 0;
  1372. data[1] = 0;
  1373. data[2] = 0;
  1374. data[3] = 0;
  1375. }
  1376. msleep_interruptible(4 * 1000);
  1377. }
  1378. static void
  1379. e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1380. {
  1381. struct e1000_adapter *adapter = netdev_priv(netdev);
  1382. struct e1000_hw *hw = &adapter->hw;
  1383. switch (adapter->hw.device_id) {
  1384. case E1000_DEV_ID_82542:
  1385. case E1000_DEV_ID_82543GC_FIBER:
  1386. case E1000_DEV_ID_82543GC_COPPER:
  1387. case E1000_DEV_ID_82544EI_FIBER:
  1388. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1389. case E1000_DEV_ID_82545EM_FIBER:
  1390. case E1000_DEV_ID_82545EM_COPPER:
  1391. wol->supported = 0;
  1392. wol->wolopts = 0;
  1393. return;
  1394. case E1000_DEV_ID_82546EB_FIBER:
  1395. case E1000_DEV_ID_82546GB_FIBER:
  1396. case E1000_DEV_ID_82571EB_FIBER:
  1397. /* Wake events only supported on port A for dual fiber */
  1398. if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
  1399. wol->supported = 0;
  1400. wol->wolopts = 0;
  1401. return;
  1402. }
  1403. /* Fall Through */
  1404. default:
  1405. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1406. WAKE_BCAST | WAKE_MAGIC;
  1407. wol->wolopts = 0;
  1408. if (adapter->wol & E1000_WUFC_EX)
  1409. wol->wolopts |= WAKE_UCAST;
  1410. if (adapter->wol & E1000_WUFC_MC)
  1411. wol->wolopts |= WAKE_MCAST;
  1412. if (adapter->wol & E1000_WUFC_BC)
  1413. wol->wolopts |= WAKE_BCAST;
  1414. if (adapter->wol & E1000_WUFC_MAG)
  1415. wol->wolopts |= WAKE_MAGIC;
  1416. return;
  1417. }
  1418. }
  1419. static int
  1420. e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1421. {
  1422. struct e1000_adapter *adapter = netdev_priv(netdev);
  1423. struct e1000_hw *hw = &adapter->hw;
  1424. switch (adapter->hw.device_id) {
  1425. case E1000_DEV_ID_82542:
  1426. case E1000_DEV_ID_82543GC_FIBER:
  1427. case E1000_DEV_ID_82543GC_COPPER:
  1428. case E1000_DEV_ID_82544EI_FIBER:
  1429. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1430. case E1000_DEV_ID_82545EM_FIBER:
  1431. case E1000_DEV_ID_82545EM_COPPER:
  1432. return wol->wolopts ? -EOPNOTSUPP : 0;
  1433. case E1000_DEV_ID_82546EB_FIBER:
  1434. case E1000_DEV_ID_82546GB_FIBER:
  1435. case E1000_DEV_ID_82571EB_FIBER:
  1436. /* Wake events only supported on port A for dual fiber */
  1437. if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
  1438. return wol->wolopts ? -EOPNOTSUPP : 0;
  1439. /* Fall Through */
  1440. default:
  1441. if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
  1442. return -EOPNOTSUPP;
  1443. adapter->wol = 0;
  1444. if (wol->wolopts & WAKE_UCAST)
  1445. adapter->wol |= E1000_WUFC_EX;
  1446. if (wol->wolopts & WAKE_MCAST)
  1447. adapter->wol |= E1000_WUFC_MC;
  1448. if (wol->wolopts & WAKE_BCAST)
  1449. adapter->wol |= E1000_WUFC_BC;
  1450. if (wol->wolopts & WAKE_MAGIC)
  1451. adapter->wol |= E1000_WUFC_MAG;
  1452. }
  1453. return 0;
  1454. }
  1455. /* toggle LED 4 times per second = 2 "blinks" per second */
  1456. #define E1000_ID_INTERVAL (HZ/4)
  1457. /* bit defines for adapter->led_status */
  1458. #define E1000_LED_ON 0
  1459. static void
  1460. e1000_led_blink_callback(unsigned long data)
  1461. {
  1462. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1463. if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
  1464. e1000_led_off(&adapter->hw);
  1465. else
  1466. e1000_led_on(&adapter->hw);
  1467. mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
  1468. }
  1469. static int
  1470. e1000_phys_id(struct net_device *netdev, uint32_t data)
  1471. {
  1472. struct e1000_adapter *adapter = netdev_priv(netdev);
  1473. if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
  1474. data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
  1475. if (adapter->hw.mac_type < e1000_82571) {
  1476. if (!adapter->blink_timer.function) {
  1477. init_timer(&adapter->blink_timer);
  1478. adapter->blink_timer.function = e1000_led_blink_callback;
  1479. adapter->blink_timer.data = (unsigned long) adapter;
  1480. }
  1481. e1000_setup_led(&adapter->hw);
  1482. mod_timer(&adapter->blink_timer, jiffies);
  1483. msleep_interruptible(data * 1000);
  1484. del_timer_sync(&adapter->blink_timer);
  1485. } else if (adapter->hw.mac_type < e1000_82573) {
  1486. E1000_WRITE_REG(&adapter->hw, LEDCTL,
  1487. (E1000_LEDCTL_LED2_BLINK_RATE |
  1488. E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
  1489. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1490. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
  1491. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
  1492. msleep_interruptible(data * 1000);
  1493. } else {
  1494. E1000_WRITE_REG(&adapter->hw, LEDCTL,
  1495. (E1000_LEDCTL_LED2_BLINK_RATE |
  1496. E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
  1497. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1498. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
  1499. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
  1500. msleep_interruptible(data * 1000);
  1501. }
  1502. e1000_led_off(&adapter->hw);
  1503. clear_bit(E1000_LED_ON, &adapter->led_status);
  1504. e1000_cleanup_led(&adapter->hw);
  1505. return 0;
  1506. }
  1507. static int
  1508. e1000_nway_reset(struct net_device *netdev)
  1509. {
  1510. struct e1000_adapter *adapter = netdev_priv(netdev);
  1511. if (netif_running(netdev)) {
  1512. e1000_down(adapter);
  1513. e1000_up(adapter);
  1514. }
  1515. return 0;
  1516. }
  1517. static int
  1518. e1000_get_stats_count(struct net_device *netdev)
  1519. {
  1520. return E1000_STATS_LEN;
  1521. }
  1522. static void
  1523. e1000_get_ethtool_stats(struct net_device *netdev,
  1524. struct ethtool_stats *stats, uint64_t *data)
  1525. {
  1526. struct e1000_adapter *adapter = netdev_priv(netdev);
  1527. int i;
  1528. e1000_update_stats(adapter);
  1529. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1530. char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
  1531. data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
  1532. sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
  1533. }
  1534. /* BUG_ON(i != E1000_STATS_LEN); */
  1535. }
  1536. static void
  1537. e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
  1538. {
  1539. uint8_t *p = data;
  1540. int i;
  1541. switch (stringset) {
  1542. case ETH_SS_TEST:
  1543. memcpy(data, *e1000_gstrings_test,
  1544. E1000_TEST_LEN*ETH_GSTRING_LEN);
  1545. break;
  1546. case ETH_SS_STATS:
  1547. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1548. memcpy(p, e1000_gstrings_stats[i].stat_string,
  1549. ETH_GSTRING_LEN);
  1550. p += ETH_GSTRING_LEN;
  1551. }
  1552. /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
  1553. break;
  1554. }
  1555. }
  1556. static struct ethtool_ops e1000_ethtool_ops = {
  1557. .get_settings = e1000_get_settings,
  1558. .set_settings = e1000_set_settings,
  1559. .get_drvinfo = e1000_get_drvinfo,
  1560. .get_regs_len = e1000_get_regs_len,
  1561. .get_regs = e1000_get_regs,
  1562. .get_wol = e1000_get_wol,
  1563. .set_wol = e1000_set_wol,
  1564. .get_msglevel = e1000_get_msglevel,
  1565. .set_msglevel = e1000_set_msglevel,
  1566. .nway_reset = e1000_nway_reset,
  1567. .get_link = ethtool_op_get_link,
  1568. .get_eeprom_len = e1000_get_eeprom_len,
  1569. .get_eeprom = e1000_get_eeprom,
  1570. .set_eeprom = e1000_set_eeprom,
  1571. .get_ringparam = e1000_get_ringparam,
  1572. .set_ringparam = e1000_set_ringparam,
  1573. .get_pauseparam = e1000_get_pauseparam,
  1574. .set_pauseparam = e1000_set_pauseparam,
  1575. .get_rx_csum = e1000_get_rx_csum,
  1576. .set_rx_csum = e1000_set_rx_csum,
  1577. .get_tx_csum = e1000_get_tx_csum,
  1578. .set_tx_csum = e1000_set_tx_csum,
  1579. .get_sg = ethtool_op_get_sg,
  1580. .set_sg = ethtool_op_set_sg,
  1581. #ifdef NETIF_F_TSO
  1582. .get_tso = ethtool_op_get_tso,
  1583. .set_tso = e1000_set_tso,
  1584. #endif
  1585. .self_test_count = e1000_diag_test_count,
  1586. .self_test = e1000_diag_test,
  1587. .get_strings = e1000_get_strings,
  1588. .phys_id = e1000_phys_id,
  1589. .get_stats_count = e1000_get_stats_count,
  1590. .get_ethtool_stats = e1000_get_ethtool_stats,
  1591. .get_perm_addr = ethtool_op_get_perm_addr,
  1592. };
  1593. void e1000_set_ethtool_ops(struct net_device *netdev)
  1594. {
  1595. SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
  1596. }