mmu.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  119. /* make pte_list_desc fit well in cache line */
  120. #define PTE_LIST_EXT 3
  121. struct pte_list_desc {
  122. u64 *sptes[PTE_LIST_EXT];
  123. struct pte_list_desc *more;
  124. };
  125. struct kvm_shadow_walk_iterator {
  126. u64 addr;
  127. hpa_t shadow_addr;
  128. u64 *sptep;
  129. int level;
  130. unsigned index;
  131. };
  132. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  133. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  134. shadow_walk_okay(&(_walker)); \
  135. shadow_walk_next(&(_walker)))
  136. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  137. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  138. shadow_walk_okay(&(_walker)) && \
  139. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  140. __shadow_walk_next(&(_walker), spte))
  141. static struct kmem_cache *pte_list_desc_cache;
  142. static struct kmem_cache *mmu_page_header_cache;
  143. static struct percpu_counter kvm_total_used_mmu_pages;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static u64 __read_mostly shadow_mmio_mask;
  150. static void mmu_spte_set(u64 *sptep, u64 spte);
  151. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  152. {
  153. shadow_mmio_mask = mmio_mask;
  154. }
  155. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  156. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  157. {
  158. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  159. trace_mark_mmio_spte(sptep, gfn, access);
  160. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  161. }
  162. static bool is_mmio_spte(u64 spte)
  163. {
  164. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  165. }
  166. static gfn_t get_mmio_spte_gfn(u64 spte)
  167. {
  168. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  169. }
  170. static unsigned get_mmio_spte_access(u64 spte)
  171. {
  172. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  173. }
  174. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  175. {
  176. if (unlikely(is_noslot_pfn(pfn))) {
  177. mark_mmio_spte(sptep, gfn, access);
  178. return true;
  179. }
  180. return false;
  181. }
  182. static inline u64 rsvd_bits(int s, int e)
  183. {
  184. return ((1ULL << (e - s + 1)) - 1) << s;
  185. }
  186. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  187. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  188. {
  189. shadow_user_mask = user_mask;
  190. shadow_accessed_mask = accessed_mask;
  191. shadow_dirty_mask = dirty_mask;
  192. shadow_nx_mask = nx_mask;
  193. shadow_x_mask = x_mask;
  194. }
  195. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  196. static int is_cpuid_PSE36(void)
  197. {
  198. return 1;
  199. }
  200. static int is_nx(struct kvm_vcpu *vcpu)
  201. {
  202. return vcpu->arch.efer & EFER_NX;
  203. }
  204. static int is_shadow_present_pte(u64 pte)
  205. {
  206. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  207. }
  208. static int is_large_pte(u64 pte)
  209. {
  210. return pte & PT_PAGE_SIZE_MASK;
  211. }
  212. static int is_dirty_gpte(unsigned long pte)
  213. {
  214. return pte & PT_DIRTY_MASK;
  215. }
  216. static int is_rmap_spte(u64 pte)
  217. {
  218. return is_shadow_present_pte(pte);
  219. }
  220. static int is_last_spte(u64 pte, int level)
  221. {
  222. if (level == PT_PAGE_TABLE_LEVEL)
  223. return 1;
  224. if (is_large_pte(pte))
  225. return 1;
  226. return 0;
  227. }
  228. static pfn_t spte_to_pfn(u64 pte)
  229. {
  230. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  231. }
  232. static gfn_t pse36_gfn_delta(u32 gpte)
  233. {
  234. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  235. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  236. }
  237. #ifdef CONFIG_X86_64
  238. static void __set_spte(u64 *sptep, u64 spte)
  239. {
  240. *sptep = spte;
  241. }
  242. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  243. {
  244. *sptep = spte;
  245. }
  246. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  247. {
  248. return xchg(sptep, spte);
  249. }
  250. static u64 __get_spte_lockless(u64 *sptep)
  251. {
  252. return ACCESS_ONCE(*sptep);
  253. }
  254. static bool __check_direct_spte_mmio_pf(u64 spte)
  255. {
  256. /* It is valid if the spte is zapped. */
  257. return spte == 0ull;
  258. }
  259. #else
  260. union split_spte {
  261. struct {
  262. u32 spte_low;
  263. u32 spte_high;
  264. };
  265. u64 spte;
  266. };
  267. static void count_spte_clear(u64 *sptep, u64 spte)
  268. {
  269. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  270. if (is_shadow_present_pte(spte))
  271. return;
  272. /* Ensure the spte is completely set before we increase the count */
  273. smp_wmb();
  274. sp->clear_spte_count++;
  275. }
  276. static void __set_spte(u64 *sptep, u64 spte)
  277. {
  278. union split_spte *ssptep, sspte;
  279. ssptep = (union split_spte *)sptep;
  280. sspte = (union split_spte)spte;
  281. ssptep->spte_high = sspte.spte_high;
  282. /*
  283. * If we map the spte from nonpresent to present, We should store
  284. * the high bits firstly, then set present bit, so cpu can not
  285. * fetch this spte while we are setting the spte.
  286. */
  287. smp_wmb();
  288. ssptep->spte_low = sspte.spte_low;
  289. }
  290. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  291. {
  292. union split_spte *ssptep, sspte;
  293. ssptep = (union split_spte *)sptep;
  294. sspte = (union split_spte)spte;
  295. ssptep->spte_low = sspte.spte_low;
  296. /*
  297. * If we map the spte from present to nonpresent, we should clear
  298. * present bit firstly to avoid vcpu fetch the old high bits.
  299. */
  300. smp_wmb();
  301. ssptep->spte_high = sspte.spte_high;
  302. count_spte_clear(sptep, spte);
  303. }
  304. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  305. {
  306. union split_spte *ssptep, sspte, orig;
  307. ssptep = (union split_spte *)sptep;
  308. sspte = (union split_spte)spte;
  309. /* xchg acts as a barrier before the setting of the high bits */
  310. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  311. orig.spte_high = ssptep->spte_high;
  312. ssptep->spte_high = sspte.spte_high;
  313. count_spte_clear(sptep, spte);
  314. return orig.spte;
  315. }
  316. /*
  317. * The idea using the light way get the spte on x86_32 guest is from
  318. * gup_get_pte(arch/x86/mm/gup.c).
  319. * The difference is we can not catch the spte tlb flush if we leave
  320. * guest mode, so we emulate it by increase clear_spte_count when spte
  321. * is cleared.
  322. */
  323. static u64 __get_spte_lockless(u64 *sptep)
  324. {
  325. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  326. union split_spte spte, *orig = (union split_spte *)sptep;
  327. int count;
  328. retry:
  329. count = sp->clear_spte_count;
  330. smp_rmb();
  331. spte.spte_low = orig->spte_low;
  332. smp_rmb();
  333. spte.spte_high = orig->spte_high;
  334. smp_rmb();
  335. if (unlikely(spte.spte_low != orig->spte_low ||
  336. count != sp->clear_spte_count))
  337. goto retry;
  338. return spte.spte;
  339. }
  340. static bool __check_direct_spte_mmio_pf(u64 spte)
  341. {
  342. union split_spte sspte = (union split_spte)spte;
  343. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  344. /* It is valid if the spte is zapped. */
  345. if (spte == 0ull)
  346. return true;
  347. /* It is valid if the spte is being zapped. */
  348. if (sspte.spte_low == 0ull &&
  349. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  350. return true;
  351. return false;
  352. }
  353. #endif
  354. static bool spte_has_volatile_bits(u64 spte)
  355. {
  356. if (!shadow_accessed_mask)
  357. return false;
  358. if (!is_shadow_present_pte(spte))
  359. return false;
  360. if ((spte & shadow_accessed_mask) &&
  361. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  362. return false;
  363. return true;
  364. }
  365. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  366. {
  367. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  368. }
  369. /* Rules for using mmu_spte_set:
  370. * Set the sptep from nonpresent to present.
  371. * Note: the sptep being assigned *must* be either not present
  372. * or in a state where the hardware will not attempt to update
  373. * the spte.
  374. */
  375. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  376. {
  377. WARN_ON(is_shadow_present_pte(*sptep));
  378. __set_spte(sptep, new_spte);
  379. }
  380. /* Rules for using mmu_spte_update:
  381. * Update the state bits, it means the mapped pfn is not changged.
  382. */
  383. static void mmu_spte_update(u64 *sptep, u64 new_spte)
  384. {
  385. u64 mask, old_spte = *sptep;
  386. WARN_ON(!is_rmap_spte(new_spte));
  387. if (!is_shadow_present_pte(old_spte))
  388. return mmu_spte_set(sptep, new_spte);
  389. new_spte |= old_spte & shadow_dirty_mask;
  390. mask = shadow_accessed_mask;
  391. if (is_writable_pte(old_spte))
  392. mask |= shadow_dirty_mask;
  393. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  394. __update_clear_spte_fast(sptep, new_spte);
  395. else
  396. old_spte = __update_clear_spte_slow(sptep, new_spte);
  397. if (!shadow_accessed_mask)
  398. return;
  399. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  400. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  401. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  402. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  403. }
  404. /*
  405. * Rules for using mmu_spte_clear_track_bits:
  406. * It sets the sptep from present to nonpresent, and track the
  407. * state bits, it is used to clear the last level sptep.
  408. */
  409. static int mmu_spte_clear_track_bits(u64 *sptep)
  410. {
  411. pfn_t pfn;
  412. u64 old_spte = *sptep;
  413. if (!spte_has_volatile_bits(old_spte))
  414. __update_clear_spte_fast(sptep, 0ull);
  415. else
  416. old_spte = __update_clear_spte_slow(sptep, 0ull);
  417. if (!is_rmap_spte(old_spte))
  418. return 0;
  419. pfn = spte_to_pfn(old_spte);
  420. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  421. kvm_set_pfn_accessed(pfn);
  422. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  423. kvm_set_pfn_dirty(pfn);
  424. return 1;
  425. }
  426. /*
  427. * Rules for using mmu_spte_clear_no_track:
  428. * Directly clear spte without caring the state bits of sptep,
  429. * it is used to set the upper level spte.
  430. */
  431. static void mmu_spte_clear_no_track(u64 *sptep)
  432. {
  433. __update_clear_spte_fast(sptep, 0ull);
  434. }
  435. static u64 mmu_spte_get_lockless(u64 *sptep)
  436. {
  437. return __get_spte_lockless(sptep);
  438. }
  439. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  440. {
  441. /*
  442. * Prevent page table teardown by making any free-er wait during
  443. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  444. */
  445. local_irq_disable();
  446. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  447. /*
  448. * Make sure a following spte read is not reordered ahead of the write
  449. * to vcpu->mode.
  450. */
  451. smp_mb();
  452. }
  453. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  454. {
  455. /*
  456. * Make sure the write to vcpu->mode is not reordered in front of
  457. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  458. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  459. */
  460. smp_mb();
  461. vcpu->mode = OUTSIDE_GUEST_MODE;
  462. local_irq_enable();
  463. }
  464. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  465. struct kmem_cache *base_cache, int min)
  466. {
  467. void *obj;
  468. if (cache->nobjs >= min)
  469. return 0;
  470. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  471. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  472. if (!obj)
  473. return -ENOMEM;
  474. cache->objects[cache->nobjs++] = obj;
  475. }
  476. return 0;
  477. }
  478. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  479. {
  480. return cache->nobjs;
  481. }
  482. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  483. struct kmem_cache *cache)
  484. {
  485. while (mc->nobjs)
  486. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  487. }
  488. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  489. int min)
  490. {
  491. void *page;
  492. if (cache->nobjs >= min)
  493. return 0;
  494. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  495. page = (void *)__get_free_page(GFP_KERNEL);
  496. if (!page)
  497. return -ENOMEM;
  498. cache->objects[cache->nobjs++] = page;
  499. }
  500. return 0;
  501. }
  502. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  503. {
  504. while (mc->nobjs)
  505. free_page((unsigned long)mc->objects[--mc->nobjs]);
  506. }
  507. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  508. {
  509. int r;
  510. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  511. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  512. if (r)
  513. goto out;
  514. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  515. if (r)
  516. goto out;
  517. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  518. mmu_page_header_cache, 4);
  519. out:
  520. return r;
  521. }
  522. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  523. {
  524. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  525. pte_list_desc_cache);
  526. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  527. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  528. mmu_page_header_cache);
  529. }
  530. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  531. size_t size)
  532. {
  533. void *p;
  534. BUG_ON(!mc->nobjs);
  535. p = mc->objects[--mc->nobjs];
  536. return p;
  537. }
  538. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  539. {
  540. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
  541. sizeof(struct pte_list_desc));
  542. }
  543. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  544. {
  545. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  546. }
  547. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  548. {
  549. if (!sp->role.direct)
  550. return sp->gfns[index];
  551. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  552. }
  553. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  554. {
  555. if (sp->role.direct)
  556. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  557. else
  558. sp->gfns[index] = gfn;
  559. }
  560. /*
  561. * Return the pointer to the large page information for a given gfn,
  562. * handling slots that are not large page aligned.
  563. */
  564. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  565. struct kvm_memory_slot *slot,
  566. int level)
  567. {
  568. unsigned long idx;
  569. idx = gfn_to_index(gfn, slot->base_gfn, level);
  570. return &slot->arch.lpage_info[level - 2][idx];
  571. }
  572. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  573. {
  574. struct kvm_memory_slot *slot;
  575. struct kvm_lpage_info *linfo;
  576. int i;
  577. slot = gfn_to_memslot(kvm, gfn);
  578. for (i = PT_DIRECTORY_LEVEL;
  579. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  580. linfo = lpage_info_slot(gfn, slot, i);
  581. linfo->write_count += 1;
  582. }
  583. kvm->arch.indirect_shadow_pages++;
  584. }
  585. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  586. {
  587. struct kvm_memory_slot *slot;
  588. struct kvm_lpage_info *linfo;
  589. int i;
  590. slot = gfn_to_memslot(kvm, gfn);
  591. for (i = PT_DIRECTORY_LEVEL;
  592. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  593. linfo = lpage_info_slot(gfn, slot, i);
  594. linfo->write_count -= 1;
  595. WARN_ON(linfo->write_count < 0);
  596. }
  597. kvm->arch.indirect_shadow_pages--;
  598. }
  599. static int has_wrprotected_page(struct kvm *kvm,
  600. gfn_t gfn,
  601. int level)
  602. {
  603. struct kvm_memory_slot *slot;
  604. struct kvm_lpage_info *linfo;
  605. slot = gfn_to_memslot(kvm, gfn);
  606. if (slot) {
  607. linfo = lpage_info_slot(gfn, slot, level);
  608. return linfo->write_count;
  609. }
  610. return 1;
  611. }
  612. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  613. {
  614. unsigned long page_size;
  615. int i, ret = 0;
  616. page_size = kvm_host_page_size(kvm, gfn);
  617. for (i = PT_PAGE_TABLE_LEVEL;
  618. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  619. if (page_size >= KVM_HPAGE_SIZE(i))
  620. ret = i;
  621. else
  622. break;
  623. }
  624. return ret;
  625. }
  626. static struct kvm_memory_slot *
  627. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  628. bool no_dirty_log)
  629. {
  630. struct kvm_memory_slot *slot;
  631. slot = gfn_to_memslot(vcpu->kvm, gfn);
  632. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  633. (no_dirty_log && slot->dirty_bitmap))
  634. slot = NULL;
  635. return slot;
  636. }
  637. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  638. {
  639. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  640. }
  641. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  642. {
  643. int host_level, level, max_level;
  644. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  645. if (host_level == PT_PAGE_TABLE_LEVEL)
  646. return host_level;
  647. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  648. kvm_x86_ops->get_lpage_level() : host_level;
  649. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  650. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  651. break;
  652. return level - 1;
  653. }
  654. /*
  655. * Pte mapping structures:
  656. *
  657. * If pte_list bit zero is zero, then pte_list point to the spte.
  658. *
  659. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  660. * pte_list_desc containing more mappings.
  661. *
  662. * Returns the number of pte entries before the spte was added or zero if
  663. * the spte was not added.
  664. *
  665. */
  666. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  667. unsigned long *pte_list)
  668. {
  669. struct pte_list_desc *desc;
  670. int i, count = 0;
  671. if (!*pte_list) {
  672. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  673. *pte_list = (unsigned long)spte;
  674. } else if (!(*pte_list & 1)) {
  675. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  676. desc = mmu_alloc_pte_list_desc(vcpu);
  677. desc->sptes[0] = (u64 *)*pte_list;
  678. desc->sptes[1] = spte;
  679. *pte_list = (unsigned long)desc | 1;
  680. ++count;
  681. } else {
  682. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  683. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  684. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  685. desc = desc->more;
  686. count += PTE_LIST_EXT;
  687. }
  688. if (desc->sptes[PTE_LIST_EXT-1]) {
  689. desc->more = mmu_alloc_pte_list_desc(vcpu);
  690. desc = desc->more;
  691. }
  692. for (i = 0; desc->sptes[i]; ++i)
  693. ++count;
  694. desc->sptes[i] = spte;
  695. }
  696. return count;
  697. }
  698. static void
  699. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  700. int i, struct pte_list_desc *prev_desc)
  701. {
  702. int j;
  703. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  704. ;
  705. desc->sptes[i] = desc->sptes[j];
  706. desc->sptes[j] = NULL;
  707. if (j != 0)
  708. return;
  709. if (!prev_desc && !desc->more)
  710. *pte_list = (unsigned long)desc->sptes[0];
  711. else
  712. if (prev_desc)
  713. prev_desc->more = desc->more;
  714. else
  715. *pte_list = (unsigned long)desc->more | 1;
  716. mmu_free_pte_list_desc(desc);
  717. }
  718. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  719. {
  720. struct pte_list_desc *desc;
  721. struct pte_list_desc *prev_desc;
  722. int i;
  723. if (!*pte_list) {
  724. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  725. BUG();
  726. } else if (!(*pte_list & 1)) {
  727. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  728. if ((u64 *)*pte_list != spte) {
  729. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  730. BUG();
  731. }
  732. *pte_list = 0;
  733. } else {
  734. rmap_printk("pte_list_remove: %p many->many\n", spte);
  735. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  736. prev_desc = NULL;
  737. while (desc) {
  738. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  739. if (desc->sptes[i] == spte) {
  740. pte_list_desc_remove_entry(pte_list,
  741. desc, i,
  742. prev_desc);
  743. return;
  744. }
  745. prev_desc = desc;
  746. desc = desc->more;
  747. }
  748. pr_err("pte_list_remove: %p many->many\n", spte);
  749. BUG();
  750. }
  751. }
  752. typedef void (*pte_list_walk_fn) (u64 *spte);
  753. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  754. {
  755. struct pte_list_desc *desc;
  756. int i;
  757. if (!*pte_list)
  758. return;
  759. if (!(*pte_list & 1))
  760. return fn((u64 *)*pte_list);
  761. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  762. while (desc) {
  763. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  764. fn(desc->sptes[i]);
  765. desc = desc->more;
  766. }
  767. }
  768. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  769. struct kvm_memory_slot *slot)
  770. {
  771. struct kvm_lpage_info *linfo;
  772. if (likely(level == PT_PAGE_TABLE_LEVEL))
  773. return &slot->rmap[gfn - slot->base_gfn];
  774. linfo = lpage_info_slot(gfn, slot, level);
  775. return &linfo->rmap_pde;
  776. }
  777. /*
  778. * Take gfn and return the reverse mapping to it.
  779. */
  780. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  781. {
  782. struct kvm_memory_slot *slot;
  783. slot = gfn_to_memslot(kvm, gfn);
  784. return __gfn_to_rmap(gfn, level, slot);
  785. }
  786. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  787. {
  788. struct kvm_mmu_memory_cache *cache;
  789. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  790. return mmu_memory_cache_free_objects(cache);
  791. }
  792. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  793. {
  794. struct kvm_mmu_page *sp;
  795. unsigned long *rmapp;
  796. sp = page_header(__pa(spte));
  797. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  798. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  799. return pte_list_add(vcpu, spte, rmapp);
  800. }
  801. static void rmap_remove(struct kvm *kvm, u64 *spte)
  802. {
  803. struct kvm_mmu_page *sp;
  804. gfn_t gfn;
  805. unsigned long *rmapp;
  806. sp = page_header(__pa(spte));
  807. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  808. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  809. pte_list_remove(spte, rmapp);
  810. }
  811. /*
  812. * Used by the following functions to iterate through the sptes linked by a
  813. * rmap. All fields are private and not assumed to be used outside.
  814. */
  815. struct rmap_iterator {
  816. /* private fields */
  817. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  818. int pos; /* index of the sptep */
  819. };
  820. /*
  821. * Iteration must be started by this function. This should also be used after
  822. * removing/dropping sptes from the rmap link because in such cases the
  823. * information in the itererator may not be valid.
  824. *
  825. * Returns sptep if found, NULL otherwise.
  826. */
  827. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  828. {
  829. if (!rmap)
  830. return NULL;
  831. if (!(rmap & 1)) {
  832. iter->desc = NULL;
  833. return (u64 *)rmap;
  834. }
  835. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  836. iter->pos = 0;
  837. return iter->desc->sptes[iter->pos];
  838. }
  839. /*
  840. * Must be used with a valid iterator: e.g. after rmap_get_first().
  841. *
  842. * Returns sptep if found, NULL otherwise.
  843. */
  844. static u64 *rmap_get_next(struct rmap_iterator *iter)
  845. {
  846. if (iter->desc) {
  847. if (iter->pos < PTE_LIST_EXT - 1) {
  848. u64 *sptep;
  849. ++iter->pos;
  850. sptep = iter->desc->sptes[iter->pos];
  851. if (sptep)
  852. return sptep;
  853. }
  854. iter->desc = iter->desc->more;
  855. if (iter->desc) {
  856. iter->pos = 0;
  857. /* desc->sptes[0] cannot be NULL */
  858. return iter->desc->sptes[iter->pos];
  859. }
  860. }
  861. return NULL;
  862. }
  863. static void drop_spte(struct kvm *kvm, u64 *sptep)
  864. {
  865. if (mmu_spte_clear_track_bits(sptep))
  866. rmap_remove(kvm, sptep);
  867. }
  868. static int __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
  869. {
  870. u64 *sptep;
  871. struct rmap_iterator iter;
  872. int write_protected = 0;
  873. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  874. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  875. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  876. if (!is_writable_pte(*sptep)) {
  877. sptep = rmap_get_next(&iter);
  878. continue;
  879. }
  880. if (level == PT_PAGE_TABLE_LEVEL) {
  881. mmu_spte_update(sptep, *sptep & ~PT_WRITABLE_MASK);
  882. sptep = rmap_get_next(&iter);
  883. } else {
  884. BUG_ON(!is_large_pte(*sptep));
  885. drop_spte(kvm, sptep);
  886. --kvm->stat.lpages;
  887. sptep = rmap_get_first(*rmapp, &iter);
  888. }
  889. write_protected = 1;
  890. }
  891. return write_protected;
  892. }
  893. /**
  894. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  895. * @kvm: kvm instance
  896. * @slot: slot to protect
  897. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  898. * @mask: indicates which pages we should protect
  899. *
  900. * Used when we do not need to care about huge page mappings: e.g. during dirty
  901. * logging we do not have any such mappings.
  902. */
  903. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  904. struct kvm_memory_slot *slot,
  905. gfn_t gfn_offset, unsigned long mask)
  906. {
  907. unsigned long *rmapp;
  908. while (mask) {
  909. rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
  910. __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
  911. /* clear the first set bit */
  912. mask &= mask - 1;
  913. }
  914. }
  915. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  916. {
  917. struct kvm_memory_slot *slot;
  918. unsigned long *rmapp;
  919. int i;
  920. int write_protected = 0;
  921. slot = gfn_to_memslot(kvm, gfn);
  922. for (i = PT_PAGE_TABLE_LEVEL;
  923. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  924. rmapp = __gfn_to_rmap(gfn, i, slot);
  925. write_protected |= __rmap_write_protect(kvm, rmapp, i);
  926. }
  927. return write_protected;
  928. }
  929. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  930. unsigned long data)
  931. {
  932. u64 *sptep;
  933. struct rmap_iterator iter;
  934. int need_tlb_flush = 0;
  935. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  936. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  937. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  938. drop_spte(kvm, sptep);
  939. need_tlb_flush = 1;
  940. }
  941. return need_tlb_flush;
  942. }
  943. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  944. unsigned long data)
  945. {
  946. u64 *sptep;
  947. struct rmap_iterator iter;
  948. int need_flush = 0;
  949. u64 new_spte;
  950. pte_t *ptep = (pte_t *)data;
  951. pfn_t new_pfn;
  952. WARN_ON(pte_huge(*ptep));
  953. new_pfn = pte_pfn(*ptep);
  954. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  955. BUG_ON(!is_shadow_present_pte(*sptep));
  956. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  957. need_flush = 1;
  958. if (pte_write(*ptep)) {
  959. drop_spte(kvm, sptep);
  960. sptep = rmap_get_first(*rmapp, &iter);
  961. } else {
  962. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  963. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  964. new_spte &= ~PT_WRITABLE_MASK;
  965. new_spte &= ~SPTE_HOST_WRITEABLE;
  966. new_spte &= ~shadow_accessed_mask;
  967. mmu_spte_clear_track_bits(sptep);
  968. mmu_spte_set(sptep, new_spte);
  969. sptep = rmap_get_next(&iter);
  970. }
  971. }
  972. if (need_flush)
  973. kvm_flush_remote_tlbs(kvm);
  974. return 0;
  975. }
  976. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  977. unsigned long data,
  978. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  979. unsigned long data))
  980. {
  981. int j;
  982. int ret;
  983. int retval = 0;
  984. struct kvm_memslots *slots;
  985. struct kvm_memory_slot *memslot;
  986. slots = kvm_memslots(kvm);
  987. kvm_for_each_memslot(memslot, slots) {
  988. unsigned long start = memslot->userspace_addr;
  989. unsigned long end;
  990. end = start + (memslot->npages << PAGE_SHIFT);
  991. if (hva >= start && hva < end) {
  992. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  993. gfn_t gfn = memslot->base_gfn + gfn_offset;
  994. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  995. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  996. struct kvm_lpage_info *linfo;
  997. linfo = lpage_info_slot(gfn, memslot,
  998. PT_DIRECTORY_LEVEL + j);
  999. ret |= handler(kvm, &linfo->rmap_pde, data);
  1000. }
  1001. trace_kvm_age_page(hva, memslot, ret);
  1002. retval |= ret;
  1003. }
  1004. }
  1005. return retval;
  1006. }
  1007. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1008. {
  1009. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1010. }
  1011. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1012. {
  1013. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1014. }
  1015. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1016. unsigned long data)
  1017. {
  1018. u64 *sptep;
  1019. struct rmap_iterator iter;
  1020. int young = 0;
  1021. /*
  1022. * Emulate the accessed bit for EPT, by checking if this page has
  1023. * an EPT mapping, and clearing it if it does. On the next access,
  1024. * a new EPT mapping will be established.
  1025. * This has some overhead, but not as much as the cost of swapping
  1026. * out actively used pages or breaking up actively used hugepages.
  1027. */
  1028. if (!shadow_accessed_mask)
  1029. return kvm_unmap_rmapp(kvm, rmapp, data);
  1030. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1031. sptep = rmap_get_next(&iter)) {
  1032. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1033. if (*sptep & PT_ACCESSED_MASK) {
  1034. young = 1;
  1035. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)sptep);
  1036. }
  1037. }
  1038. return young;
  1039. }
  1040. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1041. unsigned long data)
  1042. {
  1043. u64 *sptep;
  1044. struct rmap_iterator iter;
  1045. int young = 0;
  1046. /*
  1047. * If there's no access bit in the secondary pte set by the
  1048. * hardware it's up to gup-fast/gup to set the access bit in
  1049. * the primary pte or in the page structure.
  1050. */
  1051. if (!shadow_accessed_mask)
  1052. goto out;
  1053. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1054. sptep = rmap_get_next(&iter)) {
  1055. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1056. if (*sptep & PT_ACCESSED_MASK) {
  1057. young = 1;
  1058. break;
  1059. }
  1060. }
  1061. out:
  1062. return young;
  1063. }
  1064. #define RMAP_RECYCLE_THRESHOLD 1000
  1065. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1066. {
  1067. unsigned long *rmapp;
  1068. struct kvm_mmu_page *sp;
  1069. sp = page_header(__pa(spte));
  1070. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1071. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  1072. kvm_flush_remote_tlbs(vcpu->kvm);
  1073. }
  1074. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1075. {
  1076. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  1077. }
  1078. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1079. {
  1080. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1081. }
  1082. #ifdef MMU_DEBUG
  1083. static int is_empty_shadow_page(u64 *spt)
  1084. {
  1085. u64 *pos;
  1086. u64 *end;
  1087. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1088. if (is_shadow_present_pte(*pos)) {
  1089. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1090. pos, *pos);
  1091. return 0;
  1092. }
  1093. return 1;
  1094. }
  1095. #endif
  1096. /*
  1097. * This value is the sum of all of the kvm instances's
  1098. * kvm->arch.n_used_mmu_pages values. We need a global,
  1099. * aggregate version in order to make the slab shrinker
  1100. * faster
  1101. */
  1102. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1103. {
  1104. kvm->arch.n_used_mmu_pages += nr;
  1105. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1106. }
  1107. /*
  1108. * Remove the sp from shadow page cache, after call it,
  1109. * we can not find this sp from the cache, and the shadow
  1110. * page table is still valid.
  1111. * It should be under the protection of mmu lock.
  1112. */
  1113. static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
  1114. {
  1115. ASSERT(is_empty_shadow_page(sp->spt));
  1116. hlist_del(&sp->hash_link);
  1117. if (!sp->role.direct)
  1118. free_page((unsigned long)sp->gfns);
  1119. }
  1120. /*
  1121. * Free the shadow page table and the sp, we can do it
  1122. * out of the protection of mmu lock.
  1123. */
  1124. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1125. {
  1126. list_del(&sp->link);
  1127. free_page((unsigned long)sp->spt);
  1128. kmem_cache_free(mmu_page_header_cache, sp);
  1129. }
  1130. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1131. {
  1132. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1133. }
  1134. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1135. struct kvm_mmu_page *sp, u64 *parent_pte)
  1136. {
  1137. if (!parent_pte)
  1138. return;
  1139. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1140. }
  1141. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1142. u64 *parent_pte)
  1143. {
  1144. pte_list_remove(parent_pte, &sp->parent_ptes);
  1145. }
  1146. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1147. u64 *parent_pte)
  1148. {
  1149. mmu_page_remove_parent_pte(sp, parent_pte);
  1150. mmu_spte_clear_no_track(parent_pte);
  1151. }
  1152. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1153. u64 *parent_pte, int direct)
  1154. {
  1155. struct kvm_mmu_page *sp;
  1156. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
  1157. sizeof *sp);
  1158. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  1159. if (!direct)
  1160. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  1161. PAGE_SIZE);
  1162. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1163. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1164. bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
  1165. sp->parent_ptes = 0;
  1166. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1167. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1168. return sp;
  1169. }
  1170. static void mark_unsync(u64 *spte);
  1171. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1172. {
  1173. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1174. }
  1175. static void mark_unsync(u64 *spte)
  1176. {
  1177. struct kvm_mmu_page *sp;
  1178. unsigned int index;
  1179. sp = page_header(__pa(spte));
  1180. index = spte - sp->spt;
  1181. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1182. return;
  1183. if (sp->unsync_children++)
  1184. return;
  1185. kvm_mmu_mark_parents_unsync(sp);
  1186. }
  1187. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1188. struct kvm_mmu_page *sp)
  1189. {
  1190. return 1;
  1191. }
  1192. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1193. {
  1194. }
  1195. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1196. struct kvm_mmu_page *sp, u64 *spte,
  1197. const void *pte)
  1198. {
  1199. WARN_ON(1);
  1200. }
  1201. #define KVM_PAGE_ARRAY_NR 16
  1202. struct kvm_mmu_pages {
  1203. struct mmu_page_and_offset {
  1204. struct kvm_mmu_page *sp;
  1205. unsigned int idx;
  1206. } page[KVM_PAGE_ARRAY_NR];
  1207. unsigned int nr;
  1208. };
  1209. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1210. int idx)
  1211. {
  1212. int i;
  1213. if (sp->unsync)
  1214. for (i=0; i < pvec->nr; i++)
  1215. if (pvec->page[i].sp == sp)
  1216. return 0;
  1217. pvec->page[pvec->nr].sp = sp;
  1218. pvec->page[pvec->nr].idx = idx;
  1219. pvec->nr++;
  1220. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1221. }
  1222. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1223. struct kvm_mmu_pages *pvec)
  1224. {
  1225. int i, ret, nr_unsync_leaf = 0;
  1226. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1227. struct kvm_mmu_page *child;
  1228. u64 ent = sp->spt[i];
  1229. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1230. goto clear_child_bitmap;
  1231. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1232. if (child->unsync_children) {
  1233. if (mmu_pages_add(pvec, child, i))
  1234. return -ENOSPC;
  1235. ret = __mmu_unsync_walk(child, pvec);
  1236. if (!ret)
  1237. goto clear_child_bitmap;
  1238. else if (ret > 0)
  1239. nr_unsync_leaf += ret;
  1240. else
  1241. return ret;
  1242. } else if (child->unsync) {
  1243. nr_unsync_leaf++;
  1244. if (mmu_pages_add(pvec, child, i))
  1245. return -ENOSPC;
  1246. } else
  1247. goto clear_child_bitmap;
  1248. continue;
  1249. clear_child_bitmap:
  1250. __clear_bit(i, sp->unsync_child_bitmap);
  1251. sp->unsync_children--;
  1252. WARN_ON((int)sp->unsync_children < 0);
  1253. }
  1254. return nr_unsync_leaf;
  1255. }
  1256. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1257. struct kvm_mmu_pages *pvec)
  1258. {
  1259. if (!sp->unsync_children)
  1260. return 0;
  1261. mmu_pages_add(pvec, sp, 0);
  1262. return __mmu_unsync_walk(sp, pvec);
  1263. }
  1264. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1265. {
  1266. WARN_ON(!sp->unsync);
  1267. trace_kvm_mmu_sync_page(sp);
  1268. sp->unsync = 0;
  1269. --kvm->stat.mmu_unsync;
  1270. }
  1271. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1272. struct list_head *invalid_list);
  1273. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1274. struct list_head *invalid_list);
  1275. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1276. hlist_for_each_entry(sp, pos, \
  1277. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1278. if ((sp)->gfn != (gfn)) {} else
  1279. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1280. hlist_for_each_entry(sp, pos, \
  1281. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1282. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1283. (sp)->role.invalid) {} else
  1284. /* @sp->gfn should be write-protected at the call site */
  1285. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1286. struct list_head *invalid_list, bool clear_unsync)
  1287. {
  1288. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1289. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1290. return 1;
  1291. }
  1292. if (clear_unsync)
  1293. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1294. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1295. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1296. return 1;
  1297. }
  1298. kvm_mmu_flush_tlb(vcpu);
  1299. return 0;
  1300. }
  1301. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1302. struct kvm_mmu_page *sp)
  1303. {
  1304. LIST_HEAD(invalid_list);
  1305. int ret;
  1306. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1307. if (ret)
  1308. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1309. return ret;
  1310. }
  1311. #ifdef CONFIG_KVM_MMU_AUDIT
  1312. #include "mmu_audit.c"
  1313. #else
  1314. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1315. static void mmu_audit_disable(void) { }
  1316. #endif
  1317. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1318. struct list_head *invalid_list)
  1319. {
  1320. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1321. }
  1322. /* @gfn should be write-protected at the call site */
  1323. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1324. {
  1325. struct kvm_mmu_page *s;
  1326. struct hlist_node *node;
  1327. LIST_HEAD(invalid_list);
  1328. bool flush = false;
  1329. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1330. if (!s->unsync)
  1331. continue;
  1332. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1333. kvm_unlink_unsync_page(vcpu->kvm, s);
  1334. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1335. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1336. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1337. continue;
  1338. }
  1339. flush = true;
  1340. }
  1341. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1342. if (flush)
  1343. kvm_mmu_flush_tlb(vcpu);
  1344. }
  1345. struct mmu_page_path {
  1346. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1347. unsigned int idx[PT64_ROOT_LEVEL-1];
  1348. };
  1349. #define for_each_sp(pvec, sp, parents, i) \
  1350. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1351. sp = pvec.page[i].sp; \
  1352. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1353. i = mmu_pages_next(&pvec, &parents, i))
  1354. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1355. struct mmu_page_path *parents,
  1356. int i)
  1357. {
  1358. int n;
  1359. for (n = i+1; n < pvec->nr; n++) {
  1360. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1361. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1362. parents->idx[0] = pvec->page[n].idx;
  1363. return n;
  1364. }
  1365. parents->parent[sp->role.level-2] = sp;
  1366. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1367. }
  1368. return n;
  1369. }
  1370. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1371. {
  1372. struct kvm_mmu_page *sp;
  1373. unsigned int level = 0;
  1374. do {
  1375. unsigned int idx = parents->idx[level];
  1376. sp = parents->parent[level];
  1377. if (!sp)
  1378. return;
  1379. --sp->unsync_children;
  1380. WARN_ON((int)sp->unsync_children < 0);
  1381. __clear_bit(idx, sp->unsync_child_bitmap);
  1382. level++;
  1383. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1384. }
  1385. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1386. struct mmu_page_path *parents,
  1387. struct kvm_mmu_pages *pvec)
  1388. {
  1389. parents->parent[parent->role.level-1] = NULL;
  1390. pvec->nr = 0;
  1391. }
  1392. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1393. struct kvm_mmu_page *parent)
  1394. {
  1395. int i;
  1396. struct kvm_mmu_page *sp;
  1397. struct mmu_page_path parents;
  1398. struct kvm_mmu_pages pages;
  1399. LIST_HEAD(invalid_list);
  1400. kvm_mmu_pages_init(parent, &parents, &pages);
  1401. while (mmu_unsync_walk(parent, &pages)) {
  1402. int protected = 0;
  1403. for_each_sp(pages, sp, parents, i)
  1404. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1405. if (protected)
  1406. kvm_flush_remote_tlbs(vcpu->kvm);
  1407. for_each_sp(pages, sp, parents, i) {
  1408. kvm_sync_page(vcpu, sp, &invalid_list);
  1409. mmu_pages_clear_parents(&parents);
  1410. }
  1411. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1412. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1413. kvm_mmu_pages_init(parent, &parents, &pages);
  1414. }
  1415. }
  1416. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1417. {
  1418. int i;
  1419. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1420. sp->spt[i] = 0ull;
  1421. }
  1422. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1423. {
  1424. sp->write_flooding_count = 0;
  1425. }
  1426. static void clear_sp_write_flooding_count(u64 *spte)
  1427. {
  1428. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1429. __clear_sp_write_flooding_count(sp);
  1430. }
  1431. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1432. gfn_t gfn,
  1433. gva_t gaddr,
  1434. unsigned level,
  1435. int direct,
  1436. unsigned access,
  1437. u64 *parent_pte)
  1438. {
  1439. union kvm_mmu_page_role role;
  1440. unsigned quadrant;
  1441. struct kvm_mmu_page *sp;
  1442. struct hlist_node *node;
  1443. bool need_sync = false;
  1444. role = vcpu->arch.mmu.base_role;
  1445. role.level = level;
  1446. role.direct = direct;
  1447. if (role.direct)
  1448. role.cr4_pae = 0;
  1449. role.access = access;
  1450. if (!vcpu->arch.mmu.direct_map
  1451. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1452. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1453. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1454. role.quadrant = quadrant;
  1455. }
  1456. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1457. if (!need_sync && sp->unsync)
  1458. need_sync = true;
  1459. if (sp->role.word != role.word)
  1460. continue;
  1461. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1462. break;
  1463. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1464. if (sp->unsync_children) {
  1465. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1466. kvm_mmu_mark_parents_unsync(sp);
  1467. } else if (sp->unsync)
  1468. kvm_mmu_mark_parents_unsync(sp);
  1469. __clear_sp_write_flooding_count(sp);
  1470. trace_kvm_mmu_get_page(sp, false);
  1471. return sp;
  1472. }
  1473. ++vcpu->kvm->stat.mmu_cache_miss;
  1474. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1475. if (!sp)
  1476. return sp;
  1477. sp->gfn = gfn;
  1478. sp->role = role;
  1479. hlist_add_head(&sp->hash_link,
  1480. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1481. if (!direct) {
  1482. if (rmap_write_protect(vcpu->kvm, gfn))
  1483. kvm_flush_remote_tlbs(vcpu->kvm);
  1484. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1485. kvm_sync_pages(vcpu, gfn);
  1486. account_shadowed(vcpu->kvm, gfn);
  1487. }
  1488. init_shadow_page_table(sp);
  1489. trace_kvm_mmu_get_page(sp, true);
  1490. return sp;
  1491. }
  1492. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1493. struct kvm_vcpu *vcpu, u64 addr)
  1494. {
  1495. iterator->addr = addr;
  1496. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1497. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1498. if (iterator->level == PT64_ROOT_LEVEL &&
  1499. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1500. !vcpu->arch.mmu.direct_map)
  1501. --iterator->level;
  1502. if (iterator->level == PT32E_ROOT_LEVEL) {
  1503. iterator->shadow_addr
  1504. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1505. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1506. --iterator->level;
  1507. if (!iterator->shadow_addr)
  1508. iterator->level = 0;
  1509. }
  1510. }
  1511. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1512. {
  1513. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1514. return false;
  1515. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1516. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1517. return true;
  1518. }
  1519. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1520. u64 spte)
  1521. {
  1522. if (is_last_spte(spte, iterator->level)) {
  1523. iterator->level = 0;
  1524. return;
  1525. }
  1526. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1527. --iterator->level;
  1528. }
  1529. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1530. {
  1531. return __shadow_walk_next(iterator, *iterator->sptep);
  1532. }
  1533. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1534. {
  1535. u64 spte;
  1536. spte = __pa(sp->spt)
  1537. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1538. | PT_WRITABLE_MASK | PT_USER_MASK;
  1539. mmu_spte_set(sptep, spte);
  1540. }
  1541. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1542. {
  1543. if (is_large_pte(*sptep)) {
  1544. drop_spte(vcpu->kvm, sptep);
  1545. --vcpu->kvm->stat.lpages;
  1546. kvm_flush_remote_tlbs(vcpu->kvm);
  1547. }
  1548. }
  1549. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1550. unsigned direct_access)
  1551. {
  1552. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1553. struct kvm_mmu_page *child;
  1554. /*
  1555. * For the direct sp, if the guest pte's dirty bit
  1556. * changed form clean to dirty, it will corrupt the
  1557. * sp's access: allow writable in the read-only sp,
  1558. * so we should update the spte at this point to get
  1559. * a new sp with the correct access.
  1560. */
  1561. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1562. if (child->role.access == direct_access)
  1563. return;
  1564. drop_parent_pte(child, sptep);
  1565. kvm_flush_remote_tlbs(vcpu->kvm);
  1566. }
  1567. }
  1568. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1569. u64 *spte)
  1570. {
  1571. u64 pte;
  1572. struct kvm_mmu_page *child;
  1573. pte = *spte;
  1574. if (is_shadow_present_pte(pte)) {
  1575. if (is_last_spte(pte, sp->role.level)) {
  1576. drop_spte(kvm, spte);
  1577. if (is_large_pte(pte))
  1578. --kvm->stat.lpages;
  1579. } else {
  1580. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1581. drop_parent_pte(child, spte);
  1582. }
  1583. return true;
  1584. }
  1585. if (is_mmio_spte(pte))
  1586. mmu_spte_clear_no_track(spte);
  1587. return false;
  1588. }
  1589. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1590. struct kvm_mmu_page *sp)
  1591. {
  1592. unsigned i;
  1593. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1594. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1595. }
  1596. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1597. {
  1598. mmu_page_remove_parent_pte(sp, parent_pte);
  1599. }
  1600. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1601. {
  1602. u64 *sptep;
  1603. struct rmap_iterator iter;
  1604. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1605. drop_parent_pte(sp, sptep);
  1606. }
  1607. static int mmu_zap_unsync_children(struct kvm *kvm,
  1608. struct kvm_mmu_page *parent,
  1609. struct list_head *invalid_list)
  1610. {
  1611. int i, zapped = 0;
  1612. struct mmu_page_path parents;
  1613. struct kvm_mmu_pages pages;
  1614. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1615. return 0;
  1616. kvm_mmu_pages_init(parent, &parents, &pages);
  1617. while (mmu_unsync_walk(parent, &pages)) {
  1618. struct kvm_mmu_page *sp;
  1619. for_each_sp(pages, sp, parents, i) {
  1620. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1621. mmu_pages_clear_parents(&parents);
  1622. zapped++;
  1623. }
  1624. kvm_mmu_pages_init(parent, &parents, &pages);
  1625. }
  1626. return zapped;
  1627. }
  1628. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1629. struct list_head *invalid_list)
  1630. {
  1631. int ret;
  1632. trace_kvm_mmu_prepare_zap_page(sp);
  1633. ++kvm->stat.mmu_shadow_zapped;
  1634. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1635. kvm_mmu_page_unlink_children(kvm, sp);
  1636. kvm_mmu_unlink_parents(kvm, sp);
  1637. if (!sp->role.invalid && !sp->role.direct)
  1638. unaccount_shadowed(kvm, sp->gfn);
  1639. if (sp->unsync)
  1640. kvm_unlink_unsync_page(kvm, sp);
  1641. if (!sp->root_count) {
  1642. /* Count self */
  1643. ret++;
  1644. list_move(&sp->link, invalid_list);
  1645. kvm_mod_used_mmu_pages(kvm, -1);
  1646. } else {
  1647. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1648. kvm_reload_remote_mmus(kvm);
  1649. }
  1650. sp->role.invalid = 1;
  1651. return ret;
  1652. }
  1653. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1654. struct list_head *invalid_list)
  1655. {
  1656. struct kvm_mmu_page *sp;
  1657. if (list_empty(invalid_list))
  1658. return;
  1659. /*
  1660. * wmb: make sure everyone sees our modifications to the page tables
  1661. * rmb: make sure we see changes to vcpu->mode
  1662. */
  1663. smp_mb();
  1664. /*
  1665. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1666. * page table walks.
  1667. */
  1668. kvm_flush_remote_tlbs(kvm);
  1669. do {
  1670. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1671. WARN_ON(!sp->role.invalid || sp->root_count);
  1672. kvm_mmu_isolate_page(sp);
  1673. kvm_mmu_free_page(sp);
  1674. } while (!list_empty(invalid_list));
  1675. }
  1676. /*
  1677. * Changing the number of mmu pages allocated to the vm
  1678. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1679. */
  1680. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1681. {
  1682. LIST_HEAD(invalid_list);
  1683. /*
  1684. * If we set the number of mmu pages to be smaller be than the
  1685. * number of actived pages , we must to free some mmu pages before we
  1686. * change the value
  1687. */
  1688. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1689. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1690. !list_empty(&kvm->arch.active_mmu_pages)) {
  1691. struct kvm_mmu_page *page;
  1692. page = container_of(kvm->arch.active_mmu_pages.prev,
  1693. struct kvm_mmu_page, link);
  1694. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1695. }
  1696. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1697. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1698. }
  1699. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1700. }
  1701. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1702. {
  1703. struct kvm_mmu_page *sp;
  1704. struct hlist_node *node;
  1705. LIST_HEAD(invalid_list);
  1706. int r;
  1707. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1708. r = 0;
  1709. spin_lock(&kvm->mmu_lock);
  1710. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1711. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1712. sp->role.word);
  1713. r = 1;
  1714. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1715. }
  1716. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1717. spin_unlock(&kvm->mmu_lock);
  1718. return r;
  1719. }
  1720. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1721. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1722. {
  1723. int slot = memslot_id(kvm, gfn);
  1724. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1725. __set_bit(slot, sp->slot_bitmap);
  1726. }
  1727. /*
  1728. * The function is based on mtrr_type_lookup() in
  1729. * arch/x86/kernel/cpu/mtrr/generic.c
  1730. */
  1731. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1732. u64 start, u64 end)
  1733. {
  1734. int i;
  1735. u64 base, mask;
  1736. u8 prev_match, curr_match;
  1737. int num_var_ranges = KVM_NR_VAR_MTRR;
  1738. if (!mtrr_state->enabled)
  1739. return 0xFF;
  1740. /* Make end inclusive end, instead of exclusive */
  1741. end--;
  1742. /* Look in fixed ranges. Just return the type as per start */
  1743. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1744. int idx;
  1745. if (start < 0x80000) {
  1746. idx = 0;
  1747. idx += (start >> 16);
  1748. return mtrr_state->fixed_ranges[idx];
  1749. } else if (start < 0xC0000) {
  1750. idx = 1 * 8;
  1751. idx += ((start - 0x80000) >> 14);
  1752. return mtrr_state->fixed_ranges[idx];
  1753. } else if (start < 0x1000000) {
  1754. idx = 3 * 8;
  1755. idx += ((start - 0xC0000) >> 12);
  1756. return mtrr_state->fixed_ranges[idx];
  1757. }
  1758. }
  1759. /*
  1760. * Look in variable ranges
  1761. * Look of multiple ranges matching this address and pick type
  1762. * as per MTRR precedence
  1763. */
  1764. if (!(mtrr_state->enabled & 2))
  1765. return mtrr_state->def_type;
  1766. prev_match = 0xFF;
  1767. for (i = 0; i < num_var_ranges; ++i) {
  1768. unsigned short start_state, end_state;
  1769. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1770. continue;
  1771. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1772. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1773. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1774. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1775. start_state = ((start & mask) == (base & mask));
  1776. end_state = ((end & mask) == (base & mask));
  1777. if (start_state != end_state)
  1778. return 0xFE;
  1779. if ((start & mask) != (base & mask))
  1780. continue;
  1781. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1782. if (prev_match == 0xFF) {
  1783. prev_match = curr_match;
  1784. continue;
  1785. }
  1786. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1787. curr_match == MTRR_TYPE_UNCACHABLE)
  1788. return MTRR_TYPE_UNCACHABLE;
  1789. if ((prev_match == MTRR_TYPE_WRBACK &&
  1790. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1791. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1792. curr_match == MTRR_TYPE_WRBACK)) {
  1793. prev_match = MTRR_TYPE_WRTHROUGH;
  1794. curr_match = MTRR_TYPE_WRTHROUGH;
  1795. }
  1796. if (prev_match != curr_match)
  1797. return MTRR_TYPE_UNCACHABLE;
  1798. }
  1799. if (prev_match != 0xFF)
  1800. return prev_match;
  1801. return mtrr_state->def_type;
  1802. }
  1803. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1804. {
  1805. u8 mtrr;
  1806. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1807. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1808. if (mtrr == 0xfe || mtrr == 0xff)
  1809. mtrr = MTRR_TYPE_WRBACK;
  1810. return mtrr;
  1811. }
  1812. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1813. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1814. {
  1815. trace_kvm_mmu_unsync_page(sp);
  1816. ++vcpu->kvm->stat.mmu_unsync;
  1817. sp->unsync = 1;
  1818. kvm_mmu_mark_parents_unsync(sp);
  1819. }
  1820. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1821. {
  1822. struct kvm_mmu_page *s;
  1823. struct hlist_node *node;
  1824. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1825. if (s->unsync)
  1826. continue;
  1827. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1828. __kvm_unsync_page(vcpu, s);
  1829. }
  1830. }
  1831. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1832. bool can_unsync)
  1833. {
  1834. struct kvm_mmu_page *s;
  1835. struct hlist_node *node;
  1836. bool need_unsync = false;
  1837. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1838. if (!can_unsync)
  1839. return 1;
  1840. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1841. return 1;
  1842. if (!need_unsync && !s->unsync) {
  1843. need_unsync = true;
  1844. }
  1845. }
  1846. if (need_unsync)
  1847. kvm_unsync_pages(vcpu, gfn);
  1848. return 0;
  1849. }
  1850. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1851. unsigned pte_access, int user_fault,
  1852. int write_fault, int level,
  1853. gfn_t gfn, pfn_t pfn, bool speculative,
  1854. bool can_unsync, bool host_writable)
  1855. {
  1856. u64 spte, entry = *sptep;
  1857. int ret = 0;
  1858. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1859. return 0;
  1860. spte = PT_PRESENT_MASK;
  1861. if (!speculative)
  1862. spte |= shadow_accessed_mask;
  1863. if (pte_access & ACC_EXEC_MASK)
  1864. spte |= shadow_x_mask;
  1865. else
  1866. spte |= shadow_nx_mask;
  1867. if (pte_access & ACC_USER_MASK)
  1868. spte |= shadow_user_mask;
  1869. if (level > PT_PAGE_TABLE_LEVEL)
  1870. spte |= PT_PAGE_SIZE_MASK;
  1871. if (tdp_enabled)
  1872. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1873. kvm_is_mmio_pfn(pfn));
  1874. if (host_writable)
  1875. spte |= SPTE_HOST_WRITEABLE;
  1876. else
  1877. pte_access &= ~ACC_WRITE_MASK;
  1878. spte |= (u64)pfn << PAGE_SHIFT;
  1879. if ((pte_access & ACC_WRITE_MASK)
  1880. || (!vcpu->arch.mmu.direct_map && write_fault
  1881. && !is_write_protection(vcpu) && !user_fault)) {
  1882. if (level > PT_PAGE_TABLE_LEVEL &&
  1883. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1884. ret = 1;
  1885. drop_spte(vcpu->kvm, sptep);
  1886. goto done;
  1887. }
  1888. spte |= PT_WRITABLE_MASK;
  1889. if (!vcpu->arch.mmu.direct_map
  1890. && !(pte_access & ACC_WRITE_MASK)) {
  1891. spte &= ~PT_USER_MASK;
  1892. /*
  1893. * If we converted a user page to a kernel page,
  1894. * so that the kernel can write to it when cr0.wp=0,
  1895. * then we should prevent the kernel from executing it
  1896. * if SMEP is enabled.
  1897. */
  1898. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  1899. spte |= PT64_NX_MASK;
  1900. }
  1901. /*
  1902. * Optimization: for pte sync, if spte was writable the hash
  1903. * lookup is unnecessary (and expensive). Write protection
  1904. * is responsibility of mmu_get_page / kvm_sync_page.
  1905. * Same reasoning can be applied to dirty page accounting.
  1906. */
  1907. if (!can_unsync && is_writable_pte(*sptep))
  1908. goto set_pte;
  1909. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1910. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1911. __func__, gfn);
  1912. ret = 1;
  1913. pte_access &= ~ACC_WRITE_MASK;
  1914. if (is_writable_pte(spte))
  1915. spte &= ~PT_WRITABLE_MASK;
  1916. }
  1917. }
  1918. if (pte_access & ACC_WRITE_MASK)
  1919. mark_page_dirty(vcpu->kvm, gfn);
  1920. set_pte:
  1921. mmu_spte_update(sptep, spte);
  1922. /*
  1923. * If we overwrite a writable spte with a read-only one we
  1924. * should flush remote TLBs. Otherwise rmap_write_protect
  1925. * will find a read-only spte, even though the writable spte
  1926. * might be cached on a CPU's TLB.
  1927. */
  1928. if (is_writable_pte(entry) && !is_writable_pte(*sptep))
  1929. kvm_flush_remote_tlbs(vcpu->kvm);
  1930. done:
  1931. return ret;
  1932. }
  1933. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1934. unsigned pt_access, unsigned pte_access,
  1935. int user_fault, int write_fault,
  1936. int *emulate, int level, gfn_t gfn,
  1937. pfn_t pfn, bool speculative,
  1938. bool host_writable)
  1939. {
  1940. int was_rmapped = 0;
  1941. int rmap_count;
  1942. pgprintk("%s: spte %llx access %x write_fault %d"
  1943. " user_fault %d gfn %llx\n",
  1944. __func__, *sptep, pt_access,
  1945. write_fault, user_fault, gfn);
  1946. if (is_rmap_spte(*sptep)) {
  1947. /*
  1948. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1949. * the parent of the now unreachable PTE.
  1950. */
  1951. if (level > PT_PAGE_TABLE_LEVEL &&
  1952. !is_large_pte(*sptep)) {
  1953. struct kvm_mmu_page *child;
  1954. u64 pte = *sptep;
  1955. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1956. drop_parent_pte(child, sptep);
  1957. kvm_flush_remote_tlbs(vcpu->kvm);
  1958. } else if (pfn != spte_to_pfn(*sptep)) {
  1959. pgprintk("hfn old %llx new %llx\n",
  1960. spte_to_pfn(*sptep), pfn);
  1961. drop_spte(vcpu->kvm, sptep);
  1962. kvm_flush_remote_tlbs(vcpu->kvm);
  1963. } else
  1964. was_rmapped = 1;
  1965. }
  1966. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1967. level, gfn, pfn, speculative, true,
  1968. host_writable)) {
  1969. if (write_fault)
  1970. *emulate = 1;
  1971. kvm_mmu_flush_tlb(vcpu);
  1972. }
  1973. if (unlikely(is_mmio_spte(*sptep) && emulate))
  1974. *emulate = 1;
  1975. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1976. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  1977. is_large_pte(*sptep)? "2MB" : "4kB",
  1978. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1979. *sptep, sptep);
  1980. if (!was_rmapped && is_large_pte(*sptep))
  1981. ++vcpu->kvm->stat.lpages;
  1982. if (is_shadow_present_pte(*sptep)) {
  1983. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1984. if (!was_rmapped) {
  1985. rmap_count = rmap_add(vcpu, sptep, gfn);
  1986. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1987. rmap_recycle(vcpu, sptep, gfn);
  1988. }
  1989. }
  1990. kvm_release_pfn_clean(pfn);
  1991. }
  1992. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1993. {
  1994. }
  1995. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  1996. bool no_dirty_log)
  1997. {
  1998. struct kvm_memory_slot *slot;
  1999. unsigned long hva;
  2000. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2001. if (!slot) {
  2002. get_page(fault_page);
  2003. return page_to_pfn(fault_page);
  2004. }
  2005. hva = gfn_to_hva_memslot(slot, gfn);
  2006. return hva_to_pfn_atomic(vcpu->kvm, hva);
  2007. }
  2008. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2009. struct kvm_mmu_page *sp,
  2010. u64 *start, u64 *end)
  2011. {
  2012. struct page *pages[PTE_PREFETCH_NUM];
  2013. unsigned access = sp->role.access;
  2014. int i, ret;
  2015. gfn_t gfn;
  2016. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2017. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2018. return -1;
  2019. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2020. if (ret <= 0)
  2021. return -1;
  2022. for (i = 0; i < ret; i++, gfn++, start++)
  2023. mmu_set_spte(vcpu, start, ACC_ALL,
  2024. access, 0, 0, NULL,
  2025. sp->role.level, gfn,
  2026. page_to_pfn(pages[i]), true, true);
  2027. return 0;
  2028. }
  2029. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2030. struct kvm_mmu_page *sp, u64 *sptep)
  2031. {
  2032. u64 *spte, *start = NULL;
  2033. int i;
  2034. WARN_ON(!sp->role.direct);
  2035. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2036. spte = sp->spt + i;
  2037. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2038. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2039. if (!start)
  2040. continue;
  2041. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2042. break;
  2043. start = NULL;
  2044. } else if (!start)
  2045. start = spte;
  2046. }
  2047. }
  2048. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2049. {
  2050. struct kvm_mmu_page *sp;
  2051. /*
  2052. * Since it's no accessed bit on EPT, it's no way to
  2053. * distinguish between actually accessed translations
  2054. * and prefetched, so disable pte prefetch if EPT is
  2055. * enabled.
  2056. */
  2057. if (!shadow_accessed_mask)
  2058. return;
  2059. sp = page_header(__pa(sptep));
  2060. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2061. return;
  2062. __direct_pte_prefetch(vcpu, sp, sptep);
  2063. }
  2064. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2065. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2066. bool prefault)
  2067. {
  2068. struct kvm_shadow_walk_iterator iterator;
  2069. struct kvm_mmu_page *sp;
  2070. int emulate = 0;
  2071. gfn_t pseudo_gfn;
  2072. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2073. if (iterator.level == level) {
  2074. unsigned pte_access = ACC_ALL;
  2075. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  2076. 0, write, &emulate,
  2077. level, gfn, pfn, prefault, map_writable);
  2078. direct_pte_prefetch(vcpu, iterator.sptep);
  2079. ++vcpu->stat.pf_fixed;
  2080. break;
  2081. }
  2082. if (!is_shadow_present_pte(*iterator.sptep)) {
  2083. u64 base_addr = iterator.addr;
  2084. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2085. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2086. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2087. iterator.level - 1,
  2088. 1, ACC_ALL, iterator.sptep);
  2089. if (!sp) {
  2090. pgprintk("nonpaging_map: ENOMEM\n");
  2091. kvm_release_pfn_clean(pfn);
  2092. return -ENOMEM;
  2093. }
  2094. mmu_spte_set(iterator.sptep,
  2095. __pa(sp->spt)
  2096. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  2097. | shadow_user_mask | shadow_x_mask
  2098. | shadow_accessed_mask);
  2099. }
  2100. }
  2101. return emulate;
  2102. }
  2103. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2104. {
  2105. siginfo_t info;
  2106. info.si_signo = SIGBUS;
  2107. info.si_errno = 0;
  2108. info.si_code = BUS_MCEERR_AR;
  2109. info.si_addr = (void __user *)address;
  2110. info.si_addr_lsb = PAGE_SHIFT;
  2111. send_sig_info(SIGBUS, &info, tsk);
  2112. }
  2113. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2114. {
  2115. kvm_release_pfn_clean(pfn);
  2116. if (is_hwpoison_pfn(pfn)) {
  2117. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2118. return 0;
  2119. }
  2120. return -EFAULT;
  2121. }
  2122. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2123. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2124. {
  2125. pfn_t pfn = *pfnp;
  2126. gfn_t gfn = *gfnp;
  2127. int level = *levelp;
  2128. /*
  2129. * Check if it's a transparent hugepage. If this would be an
  2130. * hugetlbfs page, level wouldn't be set to
  2131. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2132. * here.
  2133. */
  2134. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2135. level == PT_PAGE_TABLE_LEVEL &&
  2136. PageTransCompound(pfn_to_page(pfn)) &&
  2137. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2138. unsigned long mask;
  2139. /*
  2140. * mmu_notifier_retry was successful and we hold the
  2141. * mmu_lock here, so the pmd can't become splitting
  2142. * from under us, and in turn
  2143. * __split_huge_page_refcount() can't run from under
  2144. * us and we can safely transfer the refcount from
  2145. * PG_tail to PG_head as we switch the pfn to tail to
  2146. * head.
  2147. */
  2148. *levelp = level = PT_DIRECTORY_LEVEL;
  2149. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2150. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2151. if (pfn & mask) {
  2152. gfn &= ~mask;
  2153. *gfnp = gfn;
  2154. kvm_release_pfn_clean(pfn);
  2155. pfn &= ~mask;
  2156. if (!get_page_unless_zero(pfn_to_page(pfn)))
  2157. BUG();
  2158. *pfnp = pfn;
  2159. }
  2160. }
  2161. }
  2162. static bool mmu_invalid_pfn(pfn_t pfn)
  2163. {
  2164. return unlikely(is_invalid_pfn(pfn));
  2165. }
  2166. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2167. pfn_t pfn, unsigned access, int *ret_val)
  2168. {
  2169. bool ret = true;
  2170. /* The pfn is invalid, report the error! */
  2171. if (unlikely(is_invalid_pfn(pfn))) {
  2172. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2173. goto exit;
  2174. }
  2175. if (unlikely(is_noslot_pfn(pfn)))
  2176. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2177. ret = false;
  2178. exit:
  2179. return ret;
  2180. }
  2181. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2182. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2183. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
  2184. bool prefault)
  2185. {
  2186. int r;
  2187. int level;
  2188. int force_pt_level;
  2189. pfn_t pfn;
  2190. unsigned long mmu_seq;
  2191. bool map_writable;
  2192. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2193. if (likely(!force_pt_level)) {
  2194. level = mapping_level(vcpu, gfn);
  2195. /*
  2196. * This path builds a PAE pagetable - so we can map
  2197. * 2mb pages at maximum. Therefore check if the level
  2198. * is larger than that.
  2199. */
  2200. if (level > PT_DIRECTORY_LEVEL)
  2201. level = PT_DIRECTORY_LEVEL;
  2202. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2203. } else
  2204. level = PT_PAGE_TABLE_LEVEL;
  2205. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2206. smp_rmb();
  2207. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2208. return 0;
  2209. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2210. return r;
  2211. spin_lock(&vcpu->kvm->mmu_lock);
  2212. if (mmu_notifier_retry(vcpu, mmu_seq))
  2213. goto out_unlock;
  2214. kvm_mmu_free_some_pages(vcpu);
  2215. if (likely(!force_pt_level))
  2216. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2217. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2218. prefault);
  2219. spin_unlock(&vcpu->kvm->mmu_lock);
  2220. return r;
  2221. out_unlock:
  2222. spin_unlock(&vcpu->kvm->mmu_lock);
  2223. kvm_release_pfn_clean(pfn);
  2224. return 0;
  2225. }
  2226. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2227. {
  2228. int i;
  2229. struct kvm_mmu_page *sp;
  2230. LIST_HEAD(invalid_list);
  2231. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2232. return;
  2233. spin_lock(&vcpu->kvm->mmu_lock);
  2234. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2235. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2236. vcpu->arch.mmu.direct_map)) {
  2237. hpa_t root = vcpu->arch.mmu.root_hpa;
  2238. sp = page_header(root);
  2239. --sp->root_count;
  2240. if (!sp->root_count && sp->role.invalid) {
  2241. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2242. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2243. }
  2244. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2245. spin_unlock(&vcpu->kvm->mmu_lock);
  2246. return;
  2247. }
  2248. for (i = 0; i < 4; ++i) {
  2249. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2250. if (root) {
  2251. root &= PT64_BASE_ADDR_MASK;
  2252. sp = page_header(root);
  2253. --sp->root_count;
  2254. if (!sp->root_count && sp->role.invalid)
  2255. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2256. &invalid_list);
  2257. }
  2258. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2259. }
  2260. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2261. spin_unlock(&vcpu->kvm->mmu_lock);
  2262. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2263. }
  2264. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2265. {
  2266. int ret = 0;
  2267. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2268. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2269. ret = 1;
  2270. }
  2271. return ret;
  2272. }
  2273. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2274. {
  2275. struct kvm_mmu_page *sp;
  2276. unsigned i;
  2277. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2278. spin_lock(&vcpu->kvm->mmu_lock);
  2279. kvm_mmu_free_some_pages(vcpu);
  2280. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2281. 1, ACC_ALL, NULL);
  2282. ++sp->root_count;
  2283. spin_unlock(&vcpu->kvm->mmu_lock);
  2284. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2285. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2286. for (i = 0; i < 4; ++i) {
  2287. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2288. ASSERT(!VALID_PAGE(root));
  2289. spin_lock(&vcpu->kvm->mmu_lock);
  2290. kvm_mmu_free_some_pages(vcpu);
  2291. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2292. i << 30,
  2293. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2294. NULL);
  2295. root = __pa(sp->spt);
  2296. ++sp->root_count;
  2297. spin_unlock(&vcpu->kvm->mmu_lock);
  2298. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2299. }
  2300. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2301. } else
  2302. BUG();
  2303. return 0;
  2304. }
  2305. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2306. {
  2307. struct kvm_mmu_page *sp;
  2308. u64 pdptr, pm_mask;
  2309. gfn_t root_gfn;
  2310. int i;
  2311. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2312. if (mmu_check_root(vcpu, root_gfn))
  2313. return 1;
  2314. /*
  2315. * Do we shadow a long mode page table? If so we need to
  2316. * write-protect the guests page table root.
  2317. */
  2318. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2319. hpa_t root = vcpu->arch.mmu.root_hpa;
  2320. ASSERT(!VALID_PAGE(root));
  2321. spin_lock(&vcpu->kvm->mmu_lock);
  2322. kvm_mmu_free_some_pages(vcpu);
  2323. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2324. 0, ACC_ALL, NULL);
  2325. root = __pa(sp->spt);
  2326. ++sp->root_count;
  2327. spin_unlock(&vcpu->kvm->mmu_lock);
  2328. vcpu->arch.mmu.root_hpa = root;
  2329. return 0;
  2330. }
  2331. /*
  2332. * We shadow a 32 bit page table. This may be a legacy 2-level
  2333. * or a PAE 3-level page table. In either case we need to be aware that
  2334. * the shadow page table may be a PAE or a long mode page table.
  2335. */
  2336. pm_mask = PT_PRESENT_MASK;
  2337. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2338. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2339. for (i = 0; i < 4; ++i) {
  2340. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2341. ASSERT(!VALID_PAGE(root));
  2342. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2343. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2344. if (!is_present_gpte(pdptr)) {
  2345. vcpu->arch.mmu.pae_root[i] = 0;
  2346. continue;
  2347. }
  2348. root_gfn = pdptr >> PAGE_SHIFT;
  2349. if (mmu_check_root(vcpu, root_gfn))
  2350. return 1;
  2351. }
  2352. spin_lock(&vcpu->kvm->mmu_lock);
  2353. kvm_mmu_free_some_pages(vcpu);
  2354. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2355. PT32_ROOT_LEVEL, 0,
  2356. ACC_ALL, NULL);
  2357. root = __pa(sp->spt);
  2358. ++sp->root_count;
  2359. spin_unlock(&vcpu->kvm->mmu_lock);
  2360. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2361. }
  2362. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2363. /*
  2364. * If we shadow a 32 bit page table with a long mode page
  2365. * table we enter this path.
  2366. */
  2367. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2368. if (vcpu->arch.mmu.lm_root == NULL) {
  2369. /*
  2370. * The additional page necessary for this is only
  2371. * allocated on demand.
  2372. */
  2373. u64 *lm_root;
  2374. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2375. if (lm_root == NULL)
  2376. return 1;
  2377. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2378. vcpu->arch.mmu.lm_root = lm_root;
  2379. }
  2380. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2381. }
  2382. return 0;
  2383. }
  2384. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2385. {
  2386. if (vcpu->arch.mmu.direct_map)
  2387. return mmu_alloc_direct_roots(vcpu);
  2388. else
  2389. return mmu_alloc_shadow_roots(vcpu);
  2390. }
  2391. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2392. {
  2393. int i;
  2394. struct kvm_mmu_page *sp;
  2395. if (vcpu->arch.mmu.direct_map)
  2396. return;
  2397. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2398. return;
  2399. vcpu_clear_mmio_info(vcpu, ~0ul);
  2400. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2401. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2402. hpa_t root = vcpu->arch.mmu.root_hpa;
  2403. sp = page_header(root);
  2404. mmu_sync_children(vcpu, sp);
  2405. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2406. return;
  2407. }
  2408. for (i = 0; i < 4; ++i) {
  2409. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2410. if (root && VALID_PAGE(root)) {
  2411. root &= PT64_BASE_ADDR_MASK;
  2412. sp = page_header(root);
  2413. mmu_sync_children(vcpu, sp);
  2414. }
  2415. }
  2416. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2417. }
  2418. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2419. {
  2420. spin_lock(&vcpu->kvm->mmu_lock);
  2421. mmu_sync_roots(vcpu);
  2422. spin_unlock(&vcpu->kvm->mmu_lock);
  2423. }
  2424. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2425. u32 access, struct x86_exception *exception)
  2426. {
  2427. if (exception)
  2428. exception->error_code = 0;
  2429. return vaddr;
  2430. }
  2431. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2432. u32 access,
  2433. struct x86_exception *exception)
  2434. {
  2435. if (exception)
  2436. exception->error_code = 0;
  2437. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2438. }
  2439. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2440. {
  2441. if (direct)
  2442. return vcpu_match_mmio_gpa(vcpu, addr);
  2443. return vcpu_match_mmio_gva(vcpu, addr);
  2444. }
  2445. /*
  2446. * On direct hosts, the last spte is only allows two states
  2447. * for mmio page fault:
  2448. * - It is the mmio spte
  2449. * - It is zapped or it is being zapped.
  2450. *
  2451. * This function completely checks the spte when the last spte
  2452. * is not the mmio spte.
  2453. */
  2454. static bool check_direct_spte_mmio_pf(u64 spte)
  2455. {
  2456. return __check_direct_spte_mmio_pf(spte);
  2457. }
  2458. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2459. {
  2460. struct kvm_shadow_walk_iterator iterator;
  2461. u64 spte = 0ull;
  2462. walk_shadow_page_lockless_begin(vcpu);
  2463. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2464. if (!is_shadow_present_pte(spte))
  2465. break;
  2466. walk_shadow_page_lockless_end(vcpu);
  2467. return spte;
  2468. }
  2469. /*
  2470. * If it is a real mmio page fault, return 1 and emulat the instruction
  2471. * directly, return 0 to let CPU fault again on the address, -1 is
  2472. * returned if bug is detected.
  2473. */
  2474. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2475. {
  2476. u64 spte;
  2477. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2478. return 1;
  2479. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2480. if (is_mmio_spte(spte)) {
  2481. gfn_t gfn = get_mmio_spte_gfn(spte);
  2482. unsigned access = get_mmio_spte_access(spte);
  2483. if (direct)
  2484. addr = 0;
  2485. trace_handle_mmio_page_fault(addr, gfn, access);
  2486. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2487. return 1;
  2488. }
  2489. /*
  2490. * It's ok if the gva is remapped by other cpus on shadow guest,
  2491. * it's a BUG if the gfn is not a mmio page.
  2492. */
  2493. if (direct && !check_direct_spte_mmio_pf(spte))
  2494. return -1;
  2495. /*
  2496. * If the page table is zapped by other cpus, let CPU fault again on
  2497. * the address.
  2498. */
  2499. return 0;
  2500. }
  2501. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2502. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2503. u32 error_code, bool direct)
  2504. {
  2505. int ret;
  2506. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2507. WARN_ON(ret < 0);
  2508. return ret;
  2509. }
  2510. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2511. u32 error_code, bool prefault)
  2512. {
  2513. gfn_t gfn;
  2514. int r;
  2515. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2516. if (unlikely(error_code & PFERR_RSVD_MASK))
  2517. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2518. r = mmu_topup_memory_caches(vcpu);
  2519. if (r)
  2520. return r;
  2521. ASSERT(vcpu);
  2522. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2523. gfn = gva >> PAGE_SHIFT;
  2524. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2525. error_code & PFERR_WRITE_MASK, gfn, prefault);
  2526. }
  2527. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2528. {
  2529. struct kvm_arch_async_pf arch;
  2530. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2531. arch.gfn = gfn;
  2532. arch.direct_map = vcpu->arch.mmu.direct_map;
  2533. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2534. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2535. }
  2536. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2537. {
  2538. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2539. kvm_event_needs_reinjection(vcpu)))
  2540. return false;
  2541. return kvm_x86_ops->interrupt_allowed(vcpu);
  2542. }
  2543. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2544. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2545. {
  2546. bool async;
  2547. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2548. if (!async)
  2549. return false; /* *pfn has correct page already */
  2550. put_page(pfn_to_page(*pfn));
  2551. if (!prefault && can_do_async_pf(vcpu)) {
  2552. trace_kvm_try_async_get_page(gva, gfn);
  2553. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2554. trace_kvm_async_pf_doublefault(gva, gfn);
  2555. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2556. return true;
  2557. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2558. return true;
  2559. }
  2560. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2561. return false;
  2562. }
  2563. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2564. bool prefault)
  2565. {
  2566. pfn_t pfn;
  2567. int r;
  2568. int level;
  2569. int force_pt_level;
  2570. gfn_t gfn = gpa >> PAGE_SHIFT;
  2571. unsigned long mmu_seq;
  2572. int write = error_code & PFERR_WRITE_MASK;
  2573. bool map_writable;
  2574. ASSERT(vcpu);
  2575. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2576. if (unlikely(error_code & PFERR_RSVD_MASK))
  2577. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2578. r = mmu_topup_memory_caches(vcpu);
  2579. if (r)
  2580. return r;
  2581. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2582. if (likely(!force_pt_level)) {
  2583. level = mapping_level(vcpu, gfn);
  2584. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2585. } else
  2586. level = PT_PAGE_TABLE_LEVEL;
  2587. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2588. smp_rmb();
  2589. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2590. return 0;
  2591. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2592. return r;
  2593. spin_lock(&vcpu->kvm->mmu_lock);
  2594. if (mmu_notifier_retry(vcpu, mmu_seq))
  2595. goto out_unlock;
  2596. kvm_mmu_free_some_pages(vcpu);
  2597. if (likely(!force_pt_level))
  2598. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2599. r = __direct_map(vcpu, gpa, write, map_writable,
  2600. level, gfn, pfn, prefault);
  2601. spin_unlock(&vcpu->kvm->mmu_lock);
  2602. return r;
  2603. out_unlock:
  2604. spin_unlock(&vcpu->kvm->mmu_lock);
  2605. kvm_release_pfn_clean(pfn);
  2606. return 0;
  2607. }
  2608. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2609. {
  2610. mmu_free_roots(vcpu);
  2611. }
  2612. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2613. struct kvm_mmu *context)
  2614. {
  2615. context->new_cr3 = nonpaging_new_cr3;
  2616. context->page_fault = nonpaging_page_fault;
  2617. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2618. context->free = nonpaging_free;
  2619. context->sync_page = nonpaging_sync_page;
  2620. context->invlpg = nonpaging_invlpg;
  2621. context->update_pte = nonpaging_update_pte;
  2622. context->root_level = 0;
  2623. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2624. context->root_hpa = INVALID_PAGE;
  2625. context->direct_map = true;
  2626. context->nx = false;
  2627. return 0;
  2628. }
  2629. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2630. {
  2631. ++vcpu->stat.tlb_flush;
  2632. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2633. }
  2634. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2635. {
  2636. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2637. mmu_free_roots(vcpu);
  2638. }
  2639. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2640. {
  2641. return kvm_read_cr3(vcpu);
  2642. }
  2643. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2644. struct x86_exception *fault)
  2645. {
  2646. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2647. }
  2648. static void paging_free(struct kvm_vcpu *vcpu)
  2649. {
  2650. nonpaging_free(vcpu);
  2651. }
  2652. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2653. {
  2654. int bit7;
  2655. bit7 = (gpte >> 7) & 1;
  2656. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2657. }
  2658. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2659. int *nr_present)
  2660. {
  2661. if (unlikely(is_mmio_spte(*sptep))) {
  2662. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2663. mmu_spte_clear_no_track(sptep);
  2664. return true;
  2665. }
  2666. (*nr_present)++;
  2667. mark_mmio_spte(sptep, gfn, access);
  2668. return true;
  2669. }
  2670. return false;
  2671. }
  2672. #define PTTYPE 64
  2673. #include "paging_tmpl.h"
  2674. #undef PTTYPE
  2675. #define PTTYPE 32
  2676. #include "paging_tmpl.h"
  2677. #undef PTTYPE
  2678. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2679. struct kvm_mmu *context)
  2680. {
  2681. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2682. u64 exb_bit_rsvd = 0;
  2683. if (!context->nx)
  2684. exb_bit_rsvd = rsvd_bits(63, 63);
  2685. switch (context->root_level) {
  2686. case PT32_ROOT_LEVEL:
  2687. /* no rsvd bits for 2 level 4K page table entries */
  2688. context->rsvd_bits_mask[0][1] = 0;
  2689. context->rsvd_bits_mask[0][0] = 0;
  2690. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2691. if (!is_pse(vcpu)) {
  2692. context->rsvd_bits_mask[1][1] = 0;
  2693. break;
  2694. }
  2695. if (is_cpuid_PSE36())
  2696. /* 36bits PSE 4MB page */
  2697. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2698. else
  2699. /* 32 bits PSE 4MB page */
  2700. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2701. break;
  2702. case PT32E_ROOT_LEVEL:
  2703. context->rsvd_bits_mask[0][2] =
  2704. rsvd_bits(maxphyaddr, 63) |
  2705. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2706. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2707. rsvd_bits(maxphyaddr, 62); /* PDE */
  2708. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2709. rsvd_bits(maxphyaddr, 62); /* PTE */
  2710. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2711. rsvd_bits(maxphyaddr, 62) |
  2712. rsvd_bits(13, 20); /* large page */
  2713. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2714. break;
  2715. case PT64_ROOT_LEVEL:
  2716. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2717. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2718. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2719. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2720. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2721. rsvd_bits(maxphyaddr, 51);
  2722. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2723. rsvd_bits(maxphyaddr, 51);
  2724. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2725. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2726. rsvd_bits(maxphyaddr, 51) |
  2727. rsvd_bits(13, 29);
  2728. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2729. rsvd_bits(maxphyaddr, 51) |
  2730. rsvd_bits(13, 20); /* large page */
  2731. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2732. break;
  2733. }
  2734. }
  2735. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2736. struct kvm_mmu *context,
  2737. int level)
  2738. {
  2739. context->nx = is_nx(vcpu);
  2740. context->root_level = level;
  2741. reset_rsvds_bits_mask(vcpu, context);
  2742. ASSERT(is_pae(vcpu));
  2743. context->new_cr3 = paging_new_cr3;
  2744. context->page_fault = paging64_page_fault;
  2745. context->gva_to_gpa = paging64_gva_to_gpa;
  2746. context->sync_page = paging64_sync_page;
  2747. context->invlpg = paging64_invlpg;
  2748. context->update_pte = paging64_update_pte;
  2749. context->free = paging_free;
  2750. context->shadow_root_level = level;
  2751. context->root_hpa = INVALID_PAGE;
  2752. context->direct_map = false;
  2753. return 0;
  2754. }
  2755. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2756. struct kvm_mmu *context)
  2757. {
  2758. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2759. }
  2760. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2761. struct kvm_mmu *context)
  2762. {
  2763. context->nx = false;
  2764. context->root_level = PT32_ROOT_LEVEL;
  2765. reset_rsvds_bits_mask(vcpu, context);
  2766. context->new_cr3 = paging_new_cr3;
  2767. context->page_fault = paging32_page_fault;
  2768. context->gva_to_gpa = paging32_gva_to_gpa;
  2769. context->free = paging_free;
  2770. context->sync_page = paging32_sync_page;
  2771. context->invlpg = paging32_invlpg;
  2772. context->update_pte = paging32_update_pte;
  2773. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2774. context->root_hpa = INVALID_PAGE;
  2775. context->direct_map = false;
  2776. return 0;
  2777. }
  2778. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2779. struct kvm_mmu *context)
  2780. {
  2781. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2782. }
  2783. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2784. {
  2785. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2786. context->base_role.word = 0;
  2787. context->new_cr3 = nonpaging_new_cr3;
  2788. context->page_fault = tdp_page_fault;
  2789. context->free = nonpaging_free;
  2790. context->sync_page = nonpaging_sync_page;
  2791. context->invlpg = nonpaging_invlpg;
  2792. context->update_pte = nonpaging_update_pte;
  2793. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2794. context->root_hpa = INVALID_PAGE;
  2795. context->direct_map = true;
  2796. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2797. context->get_cr3 = get_cr3;
  2798. context->get_pdptr = kvm_pdptr_read;
  2799. context->inject_page_fault = kvm_inject_page_fault;
  2800. if (!is_paging(vcpu)) {
  2801. context->nx = false;
  2802. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2803. context->root_level = 0;
  2804. } else if (is_long_mode(vcpu)) {
  2805. context->nx = is_nx(vcpu);
  2806. context->root_level = PT64_ROOT_LEVEL;
  2807. reset_rsvds_bits_mask(vcpu, context);
  2808. context->gva_to_gpa = paging64_gva_to_gpa;
  2809. } else if (is_pae(vcpu)) {
  2810. context->nx = is_nx(vcpu);
  2811. context->root_level = PT32E_ROOT_LEVEL;
  2812. reset_rsvds_bits_mask(vcpu, context);
  2813. context->gva_to_gpa = paging64_gva_to_gpa;
  2814. } else {
  2815. context->nx = false;
  2816. context->root_level = PT32_ROOT_LEVEL;
  2817. reset_rsvds_bits_mask(vcpu, context);
  2818. context->gva_to_gpa = paging32_gva_to_gpa;
  2819. }
  2820. return 0;
  2821. }
  2822. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2823. {
  2824. int r;
  2825. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2826. ASSERT(vcpu);
  2827. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2828. if (!is_paging(vcpu))
  2829. r = nonpaging_init_context(vcpu, context);
  2830. else if (is_long_mode(vcpu))
  2831. r = paging64_init_context(vcpu, context);
  2832. else if (is_pae(vcpu))
  2833. r = paging32E_init_context(vcpu, context);
  2834. else
  2835. r = paging32_init_context(vcpu, context);
  2836. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2837. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2838. vcpu->arch.mmu.base_role.smep_andnot_wp
  2839. = smep && !is_write_protection(vcpu);
  2840. return r;
  2841. }
  2842. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  2843. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2844. {
  2845. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  2846. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  2847. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  2848. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  2849. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  2850. return r;
  2851. }
  2852. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  2853. {
  2854. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  2855. g_context->get_cr3 = get_cr3;
  2856. g_context->get_pdptr = kvm_pdptr_read;
  2857. g_context->inject_page_fault = kvm_inject_page_fault;
  2858. /*
  2859. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  2860. * translation of l2_gpa to l1_gpa addresses is done using the
  2861. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  2862. * functions between mmu and nested_mmu are swapped.
  2863. */
  2864. if (!is_paging(vcpu)) {
  2865. g_context->nx = false;
  2866. g_context->root_level = 0;
  2867. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  2868. } else if (is_long_mode(vcpu)) {
  2869. g_context->nx = is_nx(vcpu);
  2870. g_context->root_level = PT64_ROOT_LEVEL;
  2871. reset_rsvds_bits_mask(vcpu, g_context);
  2872. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2873. } else if (is_pae(vcpu)) {
  2874. g_context->nx = is_nx(vcpu);
  2875. g_context->root_level = PT32E_ROOT_LEVEL;
  2876. reset_rsvds_bits_mask(vcpu, g_context);
  2877. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2878. } else {
  2879. g_context->nx = false;
  2880. g_context->root_level = PT32_ROOT_LEVEL;
  2881. reset_rsvds_bits_mask(vcpu, g_context);
  2882. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  2883. }
  2884. return 0;
  2885. }
  2886. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2887. {
  2888. if (mmu_is_nested(vcpu))
  2889. return init_kvm_nested_mmu(vcpu);
  2890. else if (tdp_enabled)
  2891. return init_kvm_tdp_mmu(vcpu);
  2892. else
  2893. return init_kvm_softmmu(vcpu);
  2894. }
  2895. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2896. {
  2897. ASSERT(vcpu);
  2898. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2899. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2900. vcpu->arch.mmu.free(vcpu);
  2901. }
  2902. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2903. {
  2904. destroy_kvm_mmu(vcpu);
  2905. return init_kvm_mmu(vcpu);
  2906. }
  2907. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2908. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2909. {
  2910. int r;
  2911. r = mmu_topup_memory_caches(vcpu);
  2912. if (r)
  2913. goto out;
  2914. r = mmu_alloc_roots(vcpu);
  2915. spin_lock(&vcpu->kvm->mmu_lock);
  2916. mmu_sync_roots(vcpu);
  2917. spin_unlock(&vcpu->kvm->mmu_lock);
  2918. if (r)
  2919. goto out;
  2920. /* set_cr3() should ensure TLB has been flushed */
  2921. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2922. out:
  2923. return r;
  2924. }
  2925. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2926. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2927. {
  2928. mmu_free_roots(vcpu);
  2929. }
  2930. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  2931. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2932. struct kvm_mmu_page *sp, u64 *spte,
  2933. const void *new)
  2934. {
  2935. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2936. ++vcpu->kvm->stat.mmu_pde_zapped;
  2937. return;
  2938. }
  2939. ++vcpu->kvm->stat.mmu_pte_updated;
  2940. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  2941. }
  2942. static bool need_remote_flush(u64 old, u64 new)
  2943. {
  2944. if (!is_shadow_present_pte(old))
  2945. return false;
  2946. if (!is_shadow_present_pte(new))
  2947. return true;
  2948. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2949. return true;
  2950. old ^= PT64_NX_MASK;
  2951. new ^= PT64_NX_MASK;
  2952. return (old & ~new & PT64_PERM_MASK) != 0;
  2953. }
  2954. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2955. bool remote_flush, bool local_flush)
  2956. {
  2957. if (zap_page)
  2958. return;
  2959. if (remote_flush)
  2960. kvm_flush_remote_tlbs(vcpu->kvm);
  2961. else if (local_flush)
  2962. kvm_mmu_flush_tlb(vcpu);
  2963. }
  2964. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  2965. const u8 *new, int *bytes)
  2966. {
  2967. u64 gentry;
  2968. int r;
  2969. /*
  2970. * Assume that the pte write on a page table of the same type
  2971. * as the current vcpu paging mode since we update the sptes only
  2972. * when they have the same mode.
  2973. */
  2974. if (is_pae(vcpu) && *bytes == 4) {
  2975. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2976. *gpa &= ~(gpa_t)7;
  2977. *bytes = 8;
  2978. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
  2979. if (r)
  2980. gentry = 0;
  2981. new = (const u8 *)&gentry;
  2982. }
  2983. switch (*bytes) {
  2984. case 4:
  2985. gentry = *(const u32 *)new;
  2986. break;
  2987. case 8:
  2988. gentry = *(const u64 *)new;
  2989. break;
  2990. default:
  2991. gentry = 0;
  2992. break;
  2993. }
  2994. return gentry;
  2995. }
  2996. /*
  2997. * If we're seeing too many writes to a page, it may no longer be a page table,
  2998. * or we may be forking, in which case it is better to unmap the page.
  2999. */
  3000. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3001. {
  3002. /*
  3003. * Skip write-flooding detected for the sp whose level is 1, because
  3004. * it can become unsync, then the guest page is not write-protected.
  3005. */
  3006. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3007. return false;
  3008. return ++sp->write_flooding_count >= 3;
  3009. }
  3010. /*
  3011. * Misaligned accesses are too much trouble to fix up; also, they usually
  3012. * indicate a page is not used as a page table.
  3013. */
  3014. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3015. int bytes)
  3016. {
  3017. unsigned offset, pte_size, misaligned;
  3018. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3019. gpa, bytes, sp->role.word);
  3020. offset = offset_in_page(gpa);
  3021. pte_size = sp->role.cr4_pae ? 8 : 4;
  3022. /*
  3023. * Sometimes, the OS only writes the last one bytes to update status
  3024. * bits, for example, in linux, andb instruction is used in clear_bit().
  3025. */
  3026. if (!(offset & (pte_size - 1)) && bytes == 1)
  3027. return false;
  3028. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3029. misaligned |= bytes < 4;
  3030. return misaligned;
  3031. }
  3032. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3033. {
  3034. unsigned page_offset, quadrant;
  3035. u64 *spte;
  3036. int level;
  3037. page_offset = offset_in_page(gpa);
  3038. level = sp->role.level;
  3039. *nspte = 1;
  3040. if (!sp->role.cr4_pae) {
  3041. page_offset <<= 1; /* 32->64 */
  3042. /*
  3043. * A 32-bit pde maps 4MB while the shadow pdes map
  3044. * only 2MB. So we need to double the offset again
  3045. * and zap two pdes instead of one.
  3046. */
  3047. if (level == PT32_ROOT_LEVEL) {
  3048. page_offset &= ~7; /* kill rounding error */
  3049. page_offset <<= 1;
  3050. *nspte = 2;
  3051. }
  3052. quadrant = page_offset >> PAGE_SHIFT;
  3053. page_offset &= ~PAGE_MASK;
  3054. if (quadrant != sp->role.quadrant)
  3055. return NULL;
  3056. }
  3057. spte = &sp->spt[page_offset / sizeof(*spte)];
  3058. return spte;
  3059. }
  3060. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3061. const u8 *new, int bytes)
  3062. {
  3063. gfn_t gfn = gpa >> PAGE_SHIFT;
  3064. union kvm_mmu_page_role mask = { .word = 0 };
  3065. struct kvm_mmu_page *sp;
  3066. struct hlist_node *node;
  3067. LIST_HEAD(invalid_list);
  3068. u64 entry, gentry, *spte;
  3069. int npte;
  3070. bool remote_flush, local_flush, zap_page;
  3071. /*
  3072. * If we don't have indirect shadow pages, it means no page is
  3073. * write-protected, so we can exit simply.
  3074. */
  3075. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3076. return;
  3077. zap_page = remote_flush = local_flush = false;
  3078. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3079. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3080. /*
  3081. * No need to care whether allocation memory is successful
  3082. * or not since pte prefetch is skiped if it does not have
  3083. * enough objects in the cache.
  3084. */
  3085. mmu_topup_memory_caches(vcpu);
  3086. spin_lock(&vcpu->kvm->mmu_lock);
  3087. ++vcpu->kvm->stat.mmu_pte_write;
  3088. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3089. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3090. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  3091. if (detect_write_misaligned(sp, gpa, bytes) ||
  3092. detect_write_flooding(sp)) {
  3093. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3094. &invalid_list);
  3095. ++vcpu->kvm->stat.mmu_flooded;
  3096. continue;
  3097. }
  3098. spte = get_written_sptes(sp, gpa, &npte);
  3099. if (!spte)
  3100. continue;
  3101. local_flush = true;
  3102. while (npte--) {
  3103. entry = *spte;
  3104. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3105. if (gentry &&
  3106. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3107. & mask.word) && rmap_can_add(vcpu))
  3108. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3109. if (!remote_flush && need_remote_flush(entry, *spte))
  3110. remote_flush = true;
  3111. ++spte;
  3112. }
  3113. }
  3114. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3115. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3116. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3117. spin_unlock(&vcpu->kvm->mmu_lock);
  3118. }
  3119. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3120. {
  3121. gpa_t gpa;
  3122. int r;
  3123. if (vcpu->arch.mmu.direct_map)
  3124. return 0;
  3125. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3126. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3127. return r;
  3128. }
  3129. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3130. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3131. {
  3132. LIST_HEAD(invalid_list);
  3133. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3134. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3135. struct kvm_mmu_page *sp;
  3136. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3137. struct kvm_mmu_page, link);
  3138. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3139. ++vcpu->kvm->stat.mmu_recycled;
  3140. }
  3141. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3142. }
  3143. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3144. {
  3145. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3146. return vcpu_match_mmio_gpa(vcpu, addr);
  3147. return vcpu_match_mmio_gva(vcpu, addr);
  3148. }
  3149. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3150. void *insn, int insn_len)
  3151. {
  3152. int r, emulation_type = EMULTYPE_RETRY;
  3153. enum emulation_result er;
  3154. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3155. if (r < 0)
  3156. goto out;
  3157. if (!r) {
  3158. r = 1;
  3159. goto out;
  3160. }
  3161. if (is_mmio_page_fault(vcpu, cr2))
  3162. emulation_type = 0;
  3163. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3164. switch (er) {
  3165. case EMULATE_DONE:
  3166. return 1;
  3167. case EMULATE_DO_MMIO:
  3168. ++vcpu->stat.mmio_exits;
  3169. /* fall through */
  3170. case EMULATE_FAIL:
  3171. return 0;
  3172. default:
  3173. BUG();
  3174. }
  3175. out:
  3176. return r;
  3177. }
  3178. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3179. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3180. {
  3181. vcpu->arch.mmu.invlpg(vcpu, gva);
  3182. kvm_mmu_flush_tlb(vcpu);
  3183. ++vcpu->stat.invlpg;
  3184. }
  3185. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3186. void kvm_enable_tdp(void)
  3187. {
  3188. tdp_enabled = true;
  3189. }
  3190. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3191. void kvm_disable_tdp(void)
  3192. {
  3193. tdp_enabled = false;
  3194. }
  3195. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3196. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3197. {
  3198. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3199. if (vcpu->arch.mmu.lm_root != NULL)
  3200. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3201. }
  3202. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3203. {
  3204. struct page *page;
  3205. int i;
  3206. ASSERT(vcpu);
  3207. /*
  3208. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3209. * Therefore we need to allocate shadow page tables in the first
  3210. * 4GB of memory, which happens to fit the DMA32 zone.
  3211. */
  3212. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3213. if (!page)
  3214. return -ENOMEM;
  3215. vcpu->arch.mmu.pae_root = page_address(page);
  3216. for (i = 0; i < 4; ++i)
  3217. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3218. return 0;
  3219. }
  3220. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3221. {
  3222. ASSERT(vcpu);
  3223. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3224. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3225. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3226. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3227. return alloc_mmu_pages(vcpu);
  3228. }
  3229. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3230. {
  3231. ASSERT(vcpu);
  3232. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3233. return init_kvm_mmu(vcpu);
  3234. }
  3235. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3236. {
  3237. struct kvm_mmu_page *sp;
  3238. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  3239. int i;
  3240. u64 *pt;
  3241. if (!test_bit(slot, sp->slot_bitmap))
  3242. continue;
  3243. pt = sp->spt;
  3244. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3245. if (!is_shadow_present_pte(pt[i]) ||
  3246. !is_last_spte(pt[i], sp->role.level))
  3247. continue;
  3248. if (is_large_pte(pt[i])) {
  3249. drop_spte(kvm, &pt[i]);
  3250. --kvm->stat.lpages;
  3251. continue;
  3252. }
  3253. /* avoid RMW */
  3254. if (is_writable_pte(pt[i]))
  3255. mmu_spte_update(&pt[i],
  3256. pt[i] & ~PT_WRITABLE_MASK);
  3257. }
  3258. }
  3259. kvm_flush_remote_tlbs(kvm);
  3260. }
  3261. void kvm_mmu_zap_all(struct kvm *kvm)
  3262. {
  3263. struct kvm_mmu_page *sp, *node;
  3264. LIST_HEAD(invalid_list);
  3265. spin_lock(&kvm->mmu_lock);
  3266. restart:
  3267. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3268. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3269. goto restart;
  3270. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3271. spin_unlock(&kvm->mmu_lock);
  3272. }
  3273. static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3274. struct list_head *invalid_list)
  3275. {
  3276. struct kvm_mmu_page *page;
  3277. page = container_of(kvm->arch.active_mmu_pages.prev,
  3278. struct kvm_mmu_page, link);
  3279. kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3280. }
  3281. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3282. {
  3283. struct kvm *kvm;
  3284. struct kvm *kvm_freed = NULL;
  3285. int nr_to_scan = sc->nr_to_scan;
  3286. if (nr_to_scan == 0)
  3287. goto out;
  3288. raw_spin_lock(&kvm_lock);
  3289. list_for_each_entry(kvm, &vm_list, vm_list) {
  3290. int idx;
  3291. LIST_HEAD(invalid_list);
  3292. idx = srcu_read_lock(&kvm->srcu);
  3293. spin_lock(&kvm->mmu_lock);
  3294. if (!kvm_freed && nr_to_scan > 0 &&
  3295. kvm->arch.n_used_mmu_pages > 0) {
  3296. kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  3297. &invalid_list);
  3298. kvm_freed = kvm;
  3299. }
  3300. nr_to_scan--;
  3301. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3302. spin_unlock(&kvm->mmu_lock);
  3303. srcu_read_unlock(&kvm->srcu, idx);
  3304. }
  3305. if (kvm_freed)
  3306. list_move_tail(&kvm_freed->vm_list, &vm_list);
  3307. raw_spin_unlock(&kvm_lock);
  3308. out:
  3309. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3310. }
  3311. static struct shrinker mmu_shrinker = {
  3312. .shrink = mmu_shrink,
  3313. .seeks = DEFAULT_SEEKS * 10,
  3314. };
  3315. static void mmu_destroy_caches(void)
  3316. {
  3317. if (pte_list_desc_cache)
  3318. kmem_cache_destroy(pte_list_desc_cache);
  3319. if (mmu_page_header_cache)
  3320. kmem_cache_destroy(mmu_page_header_cache);
  3321. }
  3322. int kvm_mmu_module_init(void)
  3323. {
  3324. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3325. sizeof(struct pte_list_desc),
  3326. 0, 0, NULL);
  3327. if (!pte_list_desc_cache)
  3328. goto nomem;
  3329. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3330. sizeof(struct kvm_mmu_page),
  3331. 0, 0, NULL);
  3332. if (!mmu_page_header_cache)
  3333. goto nomem;
  3334. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3335. goto nomem;
  3336. register_shrinker(&mmu_shrinker);
  3337. return 0;
  3338. nomem:
  3339. mmu_destroy_caches();
  3340. return -ENOMEM;
  3341. }
  3342. /*
  3343. * Caculate mmu pages needed for kvm.
  3344. */
  3345. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3346. {
  3347. unsigned int nr_mmu_pages;
  3348. unsigned int nr_pages = 0;
  3349. struct kvm_memslots *slots;
  3350. struct kvm_memory_slot *memslot;
  3351. slots = kvm_memslots(kvm);
  3352. kvm_for_each_memslot(memslot, slots)
  3353. nr_pages += memslot->npages;
  3354. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3355. nr_mmu_pages = max(nr_mmu_pages,
  3356. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3357. return nr_mmu_pages;
  3358. }
  3359. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3360. {
  3361. struct kvm_shadow_walk_iterator iterator;
  3362. u64 spte;
  3363. int nr_sptes = 0;
  3364. walk_shadow_page_lockless_begin(vcpu);
  3365. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3366. sptes[iterator.level-1] = spte;
  3367. nr_sptes++;
  3368. if (!is_shadow_present_pte(spte))
  3369. break;
  3370. }
  3371. walk_shadow_page_lockless_end(vcpu);
  3372. return nr_sptes;
  3373. }
  3374. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3375. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3376. {
  3377. ASSERT(vcpu);
  3378. destroy_kvm_mmu(vcpu);
  3379. free_mmu_pages(vcpu);
  3380. mmu_free_memory_caches(vcpu);
  3381. }
  3382. void kvm_mmu_module_exit(void)
  3383. {
  3384. mmu_destroy_caches();
  3385. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3386. unregister_shrinker(&mmu_shrinker);
  3387. mmu_audit_disable();
  3388. }