vmalloc.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/slab.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/debugobjects.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/list.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/rcupdate.h>
  25. #include <asm/atomic.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/tlbflush.h>
  28. /*** Page table manipulation functions ***/
  29. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  30. {
  31. pte_t *pte;
  32. pte = pte_offset_kernel(pmd, addr);
  33. do {
  34. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  35. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  36. } while (pte++, addr += PAGE_SIZE, addr != end);
  37. }
  38. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  39. {
  40. pmd_t *pmd;
  41. unsigned long next;
  42. pmd = pmd_offset(pud, addr);
  43. do {
  44. next = pmd_addr_end(addr, end);
  45. if (pmd_none_or_clear_bad(pmd))
  46. continue;
  47. vunmap_pte_range(pmd, addr, next);
  48. } while (pmd++, addr = next, addr != end);
  49. }
  50. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  51. {
  52. pud_t *pud;
  53. unsigned long next;
  54. pud = pud_offset(pgd, addr);
  55. do {
  56. next = pud_addr_end(addr, end);
  57. if (pud_none_or_clear_bad(pud))
  58. continue;
  59. vunmap_pmd_range(pud, addr, next);
  60. } while (pud++, addr = next, addr != end);
  61. }
  62. static void vunmap_page_range(unsigned long addr, unsigned long end)
  63. {
  64. pgd_t *pgd;
  65. unsigned long next;
  66. BUG_ON(addr >= end);
  67. pgd = pgd_offset_k(addr);
  68. do {
  69. next = pgd_addr_end(addr, end);
  70. if (pgd_none_or_clear_bad(pgd))
  71. continue;
  72. vunmap_pud_range(pgd, addr, next);
  73. } while (pgd++, addr = next, addr != end);
  74. }
  75. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  76. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  77. {
  78. pte_t *pte;
  79. /*
  80. * nr is a running index into the array which helps higher level
  81. * callers keep track of where we're up to.
  82. */
  83. pte = pte_alloc_kernel(pmd, addr);
  84. if (!pte)
  85. return -ENOMEM;
  86. do {
  87. struct page *page = pages[*nr];
  88. if (WARN_ON(!pte_none(*pte)))
  89. return -EBUSY;
  90. if (WARN_ON(!page))
  91. return -ENOMEM;
  92. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  93. (*nr)++;
  94. } while (pte++, addr += PAGE_SIZE, addr != end);
  95. return 0;
  96. }
  97. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  98. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  99. {
  100. pmd_t *pmd;
  101. unsigned long next;
  102. pmd = pmd_alloc(&init_mm, pud, addr);
  103. if (!pmd)
  104. return -ENOMEM;
  105. do {
  106. next = pmd_addr_end(addr, end);
  107. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  108. return -ENOMEM;
  109. } while (pmd++, addr = next, addr != end);
  110. return 0;
  111. }
  112. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  113. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  114. {
  115. pud_t *pud;
  116. unsigned long next;
  117. pud = pud_alloc(&init_mm, pgd, addr);
  118. if (!pud)
  119. return -ENOMEM;
  120. do {
  121. next = pud_addr_end(addr, end);
  122. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  123. return -ENOMEM;
  124. } while (pud++, addr = next, addr != end);
  125. return 0;
  126. }
  127. /*
  128. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  129. * will have pfns corresponding to the "pages" array.
  130. *
  131. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  132. */
  133. static int vmap_page_range(unsigned long start, unsigned long end,
  134. pgprot_t prot, struct page **pages)
  135. {
  136. pgd_t *pgd;
  137. unsigned long next;
  138. unsigned long addr = start;
  139. int err = 0;
  140. int nr = 0;
  141. BUG_ON(addr >= end);
  142. pgd = pgd_offset_k(addr);
  143. do {
  144. next = pgd_addr_end(addr, end);
  145. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  146. if (err)
  147. break;
  148. } while (pgd++, addr = next, addr != end);
  149. flush_cache_vmap(start, end);
  150. if (unlikely(err))
  151. return err;
  152. return nr;
  153. }
  154. static inline int is_vmalloc_or_module_addr(const void *x)
  155. {
  156. /*
  157. * ARM, x86-64 and sparc64 put modules in a special place,
  158. * and fall back on vmalloc() if that fails. Others
  159. * just put it in the vmalloc space.
  160. */
  161. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  162. unsigned long addr = (unsigned long)x;
  163. if (addr >= MODULES_VADDR && addr < MODULES_END)
  164. return 1;
  165. #endif
  166. return is_vmalloc_addr(x);
  167. }
  168. /*
  169. * Walk a vmap address to the struct page it maps.
  170. */
  171. struct page *vmalloc_to_page(const void *vmalloc_addr)
  172. {
  173. unsigned long addr = (unsigned long) vmalloc_addr;
  174. struct page *page = NULL;
  175. pgd_t *pgd = pgd_offset_k(addr);
  176. /*
  177. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  178. * architectures that do not vmalloc module space
  179. */
  180. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  181. if (!pgd_none(*pgd)) {
  182. pud_t *pud = pud_offset(pgd, addr);
  183. if (!pud_none(*pud)) {
  184. pmd_t *pmd = pmd_offset(pud, addr);
  185. if (!pmd_none(*pmd)) {
  186. pte_t *ptep, pte;
  187. ptep = pte_offset_map(pmd, addr);
  188. pte = *ptep;
  189. if (pte_present(pte))
  190. page = pte_page(pte);
  191. pte_unmap(ptep);
  192. }
  193. }
  194. }
  195. return page;
  196. }
  197. EXPORT_SYMBOL(vmalloc_to_page);
  198. /*
  199. * Map a vmalloc()-space virtual address to the physical page frame number.
  200. */
  201. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  202. {
  203. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  204. }
  205. EXPORT_SYMBOL(vmalloc_to_pfn);
  206. /*** Global kva allocator ***/
  207. #define VM_LAZY_FREE 0x01
  208. #define VM_LAZY_FREEING 0x02
  209. #define VM_VM_AREA 0x04
  210. struct vmap_area {
  211. unsigned long va_start;
  212. unsigned long va_end;
  213. unsigned long flags;
  214. struct rb_node rb_node; /* address sorted rbtree */
  215. struct list_head list; /* address sorted list */
  216. struct list_head purge_list; /* "lazy purge" list */
  217. void *private;
  218. struct rcu_head rcu_head;
  219. };
  220. static DEFINE_SPINLOCK(vmap_area_lock);
  221. static struct rb_root vmap_area_root = RB_ROOT;
  222. static LIST_HEAD(vmap_area_list);
  223. static struct vmap_area *__find_vmap_area(unsigned long addr)
  224. {
  225. struct rb_node *n = vmap_area_root.rb_node;
  226. while (n) {
  227. struct vmap_area *va;
  228. va = rb_entry(n, struct vmap_area, rb_node);
  229. if (addr < va->va_start)
  230. n = n->rb_left;
  231. else if (addr > va->va_start)
  232. n = n->rb_right;
  233. else
  234. return va;
  235. }
  236. return NULL;
  237. }
  238. static void __insert_vmap_area(struct vmap_area *va)
  239. {
  240. struct rb_node **p = &vmap_area_root.rb_node;
  241. struct rb_node *parent = NULL;
  242. struct rb_node *tmp;
  243. while (*p) {
  244. struct vmap_area *tmp;
  245. parent = *p;
  246. tmp = rb_entry(parent, struct vmap_area, rb_node);
  247. if (va->va_start < tmp->va_end)
  248. p = &(*p)->rb_left;
  249. else if (va->va_end > tmp->va_start)
  250. p = &(*p)->rb_right;
  251. else
  252. BUG();
  253. }
  254. rb_link_node(&va->rb_node, parent, p);
  255. rb_insert_color(&va->rb_node, &vmap_area_root);
  256. /* address-sort this list so it is usable like the vmlist */
  257. tmp = rb_prev(&va->rb_node);
  258. if (tmp) {
  259. struct vmap_area *prev;
  260. prev = rb_entry(tmp, struct vmap_area, rb_node);
  261. list_add_rcu(&va->list, &prev->list);
  262. } else
  263. list_add_rcu(&va->list, &vmap_area_list);
  264. }
  265. static void purge_vmap_area_lazy(void);
  266. /*
  267. * Allocate a region of KVA of the specified size and alignment, within the
  268. * vstart and vend.
  269. */
  270. static struct vmap_area *alloc_vmap_area(unsigned long size,
  271. unsigned long align,
  272. unsigned long vstart, unsigned long vend,
  273. int node, gfp_t gfp_mask)
  274. {
  275. struct vmap_area *va;
  276. struct rb_node *n;
  277. unsigned long addr;
  278. int purged = 0;
  279. BUG_ON(size & ~PAGE_MASK);
  280. va = kmalloc_node(sizeof(struct vmap_area),
  281. gfp_mask & GFP_RECLAIM_MASK, node);
  282. if (unlikely(!va))
  283. return ERR_PTR(-ENOMEM);
  284. retry:
  285. addr = ALIGN(vstart, align);
  286. spin_lock(&vmap_area_lock);
  287. /* XXX: could have a last_hole cache */
  288. n = vmap_area_root.rb_node;
  289. if (n) {
  290. struct vmap_area *first = NULL;
  291. do {
  292. struct vmap_area *tmp;
  293. tmp = rb_entry(n, struct vmap_area, rb_node);
  294. if (tmp->va_end >= addr) {
  295. if (!first && tmp->va_start < addr + size)
  296. first = tmp;
  297. n = n->rb_left;
  298. } else {
  299. first = tmp;
  300. n = n->rb_right;
  301. }
  302. } while (n);
  303. if (!first)
  304. goto found;
  305. if (first->va_end < addr) {
  306. n = rb_next(&first->rb_node);
  307. if (n)
  308. first = rb_entry(n, struct vmap_area, rb_node);
  309. else
  310. goto found;
  311. }
  312. while (addr + size > first->va_start && addr + size <= vend) {
  313. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  314. n = rb_next(&first->rb_node);
  315. if (n)
  316. first = rb_entry(n, struct vmap_area, rb_node);
  317. else
  318. goto found;
  319. }
  320. }
  321. found:
  322. if (addr + size > vend) {
  323. spin_unlock(&vmap_area_lock);
  324. if (!purged) {
  325. purge_vmap_area_lazy();
  326. purged = 1;
  327. goto retry;
  328. }
  329. if (printk_ratelimit())
  330. printk(KERN_WARNING
  331. "vmap allocation for size %lu failed: "
  332. "use vmalloc=<size> to increase size.\n", size);
  333. return ERR_PTR(-EBUSY);
  334. }
  335. BUG_ON(addr & (align-1));
  336. va->va_start = addr;
  337. va->va_end = addr + size;
  338. va->flags = 0;
  339. __insert_vmap_area(va);
  340. spin_unlock(&vmap_area_lock);
  341. return va;
  342. }
  343. static void rcu_free_va(struct rcu_head *head)
  344. {
  345. struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
  346. kfree(va);
  347. }
  348. static void __free_vmap_area(struct vmap_area *va)
  349. {
  350. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  351. rb_erase(&va->rb_node, &vmap_area_root);
  352. RB_CLEAR_NODE(&va->rb_node);
  353. list_del_rcu(&va->list);
  354. call_rcu(&va->rcu_head, rcu_free_va);
  355. }
  356. /*
  357. * Free a region of KVA allocated by alloc_vmap_area
  358. */
  359. static void free_vmap_area(struct vmap_area *va)
  360. {
  361. spin_lock(&vmap_area_lock);
  362. __free_vmap_area(va);
  363. spin_unlock(&vmap_area_lock);
  364. }
  365. /*
  366. * Clear the pagetable entries of a given vmap_area
  367. */
  368. static void unmap_vmap_area(struct vmap_area *va)
  369. {
  370. vunmap_page_range(va->va_start, va->va_end);
  371. }
  372. /*
  373. * lazy_max_pages is the maximum amount of virtual address space we gather up
  374. * before attempting to purge with a TLB flush.
  375. *
  376. * There is a tradeoff here: a larger number will cover more kernel page tables
  377. * and take slightly longer to purge, but it will linearly reduce the number of
  378. * global TLB flushes that must be performed. It would seem natural to scale
  379. * this number up linearly with the number of CPUs (because vmapping activity
  380. * could also scale linearly with the number of CPUs), however it is likely
  381. * that in practice, workloads might be constrained in other ways that mean
  382. * vmap activity will not scale linearly with CPUs. Also, I want to be
  383. * conservative and not introduce a big latency on huge systems, so go with
  384. * a less aggressive log scale. It will still be an improvement over the old
  385. * code, and it will be simple to change the scale factor if we find that it
  386. * becomes a problem on bigger systems.
  387. */
  388. static unsigned long lazy_max_pages(void)
  389. {
  390. unsigned int log;
  391. log = fls(num_online_cpus());
  392. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  393. }
  394. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  395. /*
  396. * Purges all lazily-freed vmap areas.
  397. *
  398. * If sync is 0 then don't purge if there is already a purge in progress.
  399. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  400. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  401. * their own TLB flushing).
  402. * Returns with *start = min(*start, lowest purged address)
  403. * *end = max(*end, highest purged address)
  404. */
  405. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  406. int sync, int force_flush)
  407. {
  408. static DEFINE_SPINLOCK(purge_lock);
  409. LIST_HEAD(valist);
  410. struct vmap_area *va;
  411. int nr = 0;
  412. /*
  413. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  414. * should not expect such behaviour. This just simplifies locking for
  415. * the case that isn't actually used at the moment anyway.
  416. */
  417. if (!sync && !force_flush) {
  418. if (!spin_trylock(&purge_lock))
  419. return;
  420. } else
  421. spin_lock(&purge_lock);
  422. rcu_read_lock();
  423. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  424. if (va->flags & VM_LAZY_FREE) {
  425. if (va->va_start < *start)
  426. *start = va->va_start;
  427. if (va->va_end > *end)
  428. *end = va->va_end;
  429. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  430. unmap_vmap_area(va);
  431. list_add_tail(&va->purge_list, &valist);
  432. va->flags |= VM_LAZY_FREEING;
  433. va->flags &= ~VM_LAZY_FREE;
  434. }
  435. }
  436. rcu_read_unlock();
  437. if (nr) {
  438. BUG_ON(nr > atomic_read(&vmap_lazy_nr));
  439. atomic_sub(nr, &vmap_lazy_nr);
  440. }
  441. if (nr || force_flush)
  442. flush_tlb_kernel_range(*start, *end);
  443. if (nr) {
  444. spin_lock(&vmap_area_lock);
  445. list_for_each_entry(va, &valist, purge_list)
  446. __free_vmap_area(va);
  447. spin_unlock(&vmap_area_lock);
  448. }
  449. spin_unlock(&purge_lock);
  450. }
  451. /*
  452. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  453. * is already purging.
  454. */
  455. static void try_purge_vmap_area_lazy(void)
  456. {
  457. unsigned long start = ULONG_MAX, end = 0;
  458. __purge_vmap_area_lazy(&start, &end, 0, 0);
  459. }
  460. /*
  461. * Kick off a purge of the outstanding lazy areas.
  462. */
  463. static void purge_vmap_area_lazy(void)
  464. {
  465. unsigned long start = ULONG_MAX, end = 0;
  466. __purge_vmap_area_lazy(&start, &end, 1, 0);
  467. }
  468. /*
  469. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  470. * called for the correct range previously.
  471. */
  472. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  473. {
  474. va->flags |= VM_LAZY_FREE;
  475. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  476. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  477. try_purge_vmap_area_lazy();
  478. }
  479. /*
  480. * Free and unmap a vmap area
  481. */
  482. static void free_unmap_vmap_area(struct vmap_area *va)
  483. {
  484. flush_cache_vunmap(va->va_start, va->va_end);
  485. free_unmap_vmap_area_noflush(va);
  486. }
  487. static struct vmap_area *find_vmap_area(unsigned long addr)
  488. {
  489. struct vmap_area *va;
  490. spin_lock(&vmap_area_lock);
  491. va = __find_vmap_area(addr);
  492. spin_unlock(&vmap_area_lock);
  493. return va;
  494. }
  495. static void free_unmap_vmap_area_addr(unsigned long addr)
  496. {
  497. struct vmap_area *va;
  498. va = find_vmap_area(addr);
  499. BUG_ON(!va);
  500. free_unmap_vmap_area(va);
  501. }
  502. /*** Per cpu kva allocator ***/
  503. /*
  504. * vmap space is limited especially on 32 bit architectures. Ensure there is
  505. * room for at least 16 percpu vmap blocks per CPU.
  506. */
  507. /*
  508. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  509. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  510. * instead (we just need a rough idea)
  511. */
  512. #if BITS_PER_LONG == 32
  513. #define VMALLOC_SPACE (128UL*1024*1024)
  514. #else
  515. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  516. #endif
  517. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  518. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  519. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  520. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  521. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  522. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  523. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  524. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  525. VMALLOC_PAGES / NR_CPUS / 16))
  526. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  527. static bool vmap_initialized __read_mostly = false;
  528. struct vmap_block_queue {
  529. spinlock_t lock;
  530. struct list_head free;
  531. struct list_head dirty;
  532. unsigned int nr_dirty;
  533. };
  534. struct vmap_block {
  535. spinlock_t lock;
  536. struct vmap_area *va;
  537. struct vmap_block_queue *vbq;
  538. unsigned long free, dirty;
  539. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  540. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  541. union {
  542. struct {
  543. struct list_head free_list;
  544. struct list_head dirty_list;
  545. };
  546. struct rcu_head rcu_head;
  547. };
  548. };
  549. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  550. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  551. /*
  552. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  553. * in the free path. Could get rid of this if we change the API to return a
  554. * "cookie" from alloc, to be passed to free. But no big deal yet.
  555. */
  556. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  557. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  558. /*
  559. * We should probably have a fallback mechanism to allocate virtual memory
  560. * out of partially filled vmap blocks. However vmap block sizing should be
  561. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  562. * big problem.
  563. */
  564. static unsigned long addr_to_vb_idx(unsigned long addr)
  565. {
  566. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  567. addr /= VMAP_BLOCK_SIZE;
  568. return addr;
  569. }
  570. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  571. {
  572. struct vmap_block_queue *vbq;
  573. struct vmap_block *vb;
  574. struct vmap_area *va;
  575. unsigned long vb_idx;
  576. int node, err;
  577. node = numa_node_id();
  578. vb = kmalloc_node(sizeof(struct vmap_block),
  579. gfp_mask & GFP_RECLAIM_MASK, node);
  580. if (unlikely(!vb))
  581. return ERR_PTR(-ENOMEM);
  582. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  583. VMALLOC_START, VMALLOC_END,
  584. node, gfp_mask);
  585. if (unlikely(IS_ERR(va))) {
  586. kfree(vb);
  587. return ERR_PTR(PTR_ERR(va));
  588. }
  589. err = radix_tree_preload(gfp_mask);
  590. if (unlikely(err)) {
  591. kfree(vb);
  592. free_vmap_area(va);
  593. return ERR_PTR(err);
  594. }
  595. spin_lock_init(&vb->lock);
  596. vb->va = va;
  597. vb->free = VMAP_BBMAP_BITS;
  598. vb->dirty = 0;
  599. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  600. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  601. INIT_LIST_HEAD(&vb->free_list);
  602. INIT_LIST_HEAD(&vb->dirty_list);
  603. vb_idx = addr_to_vb_idx(va->va_start);
  604. spin_lock(&vmap_block_tree_lock);
  605. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  606. spin_unlock(&vmap_block_tree_lock);
  607. BUG_ON(err);
  608. radix_tree_preload_end();
  609. vbq = &get_cpu_var(vmap_block_queue);
  610. vb->vbq = vbq;
  611. spin_lock(&vbq->lock);
  612. list_add(&vb->free_list, &vbq->free);
  613. spin_unlock(&vbq->lock);
  614. put_cpu_var(vmap_cpu_blocks);
  615. return vb;
  616. }
  617. static void rcu_free_vb(struct rcu_head *head)
  618. {
  619. struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
  620. kfree(vb);
  621. }
  622. static void free_vmap_block(struct vmap_block *vb)
  623. {
  624. struct vmap_block *tmp;
  625. unsigned long vb_idx;
  626. spin_lock(&vb->vbq->lock);
  627. if (!list_empty(&vb->free_list))
  628. list_del(&vb->free_list);
  629. if (!list_empty(&vb->dirty_list))
  630. list_del(&vb->dirty_list);
  631. spin_unlock(&vb->vbq->lock);
  632. vb_idx = addr_to_vb_idx(vb->va->va_start);
  633. spin_lock(&vmap_block_tree_lock);
  634. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  635. spin_unlock(&vmap_block_tree_lock);
  636. BUG_ON(tmp != vb);
  637. free_unmap_vmap_area_noflush(vb->va);
  638. call_rcu(&vb->rcu_head, rcu_free_vb);
  639. }
  640. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  641. {
  642. struct vmap_block_queue *vbq;
  643. struct vmap_block *vb;
  644. unsigned long addr = 0;
  645. unsigned int order;
  646. BUG_ON(size & ~PAGE_MASK);
  647. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  648. order = get_order(size);
  649. again:
  650. rcu_read_lock();
  651. vbq = &get_cpu_var(vmap_block_queue);
  652. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  653. int i;
  654. spin_lock(&vb->lock);
  655. i = bitmap_find_free_region(vb->alloc_map,
  656. VMAP_BBMAP_BITS, order);
  657. if (i >= 0) {
  658. addr = vb->va->va_start + (i << PAGE_SHIFT);
  659. BUG_ON(addr_to_vb_idx(addr) !=
  660. addr_to_vb_idx(vb->va->va_start));
  661. vb->free -= 1UL << order;
  662. if (vb->free == 0) {
  663. spin_lock(&vbq->lock);
  664. list_del_init(&vb->free_list);
  665. spin_unlock(&vbq->lock);
  666. }
  667. spin_unlock(&vb->lock);
  668. break;
  669. }
  670. spin_unlock(&vb->lock);
  671. }
  672. put_cpu_var(vmap_cpu_blocks);
  673. rcu_read_unlock();
  674. if (!addr) {
  675. vb = new_vmap_block(gfp_mask);
  676. if (IS_ERR(vb))
  677. return vb;
  678. goto again;
  679. }
  680. return (void *)addr;
  681. }
  682. static void vb_free(const void *addr, unsigned long size)
  683. {
  684. unsigned long offset;
  685. unsigned long vb_idx;
  686. unsigned int order;
  687. struct vmap_block *vb;
  688. BUG_ON(size & ~PAGE_MASK);
  689. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  690. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  691. order = get_order(size);
  692. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  693. vb_idx = addr_to_vb_idx((unsigned long)addr);
  694. rcu_read_lock();
  695. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  696. rcu_read_unlock();
  697. BUG_ON(!vb);
  698. spin_lock(&vb->lock);
  699. bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
  700. if (!vb->dirty) {
  701. spin_lock(&vb->vbq->lock);
  702. list_add(&vb->dirty_list, &vb->vbq->dirty);
  703. spin_unlock(&vb->vbq->lock);
  704. }
  705. vb->dirty += 1UL << order;
  706. if (vb->dirty == VMAP_BBMAP_BITS) {
  707. BUG_ON(vb->free || !list_empty(&vb->free_list));
  708. spin_unlock(&vb->lock);
  709. free_vmap_block(vb);
  710. } else
  711. spin_unlock(&vb->lock);
  712. }
  713. /**
  714. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  715. *
  716. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  717. * to amortize TLB flushing overheads. What this means is that any page you
  718. * have now, may, in a former life, have been mapped into kernel virtual
  719. * address by the vmap layer and so there might be some CPUs with TLB entries
  720. * still referencing that page (additional to the regular 1:1 kernel mapping).
  721. *
  722. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  723. * be sure that none of the pages we have control over will have any aliases
  724. * from the vmap layer.
  725. */
  726. void vm_unmap_aliases(void)
  727. {
  728. unsigned long start = ULONG_MAX, end = 0;
  729. int cpu;
  730. int flush = 0;
  731. if (unlikely(!vmap_initialized))
  732. return;
  733. for_each_possible_cpu(cpu) {
  734. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  735. struct vmap_block *vb;
  736. rcu_read_lock();
  737. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  738. int i;
  739. spin_lock(&vb->lock);
  740. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  741. while (i < VMAP_BBMAP_BITS) {
  742. unsigned long s, e;
  743. int j;
  744. j = find_next_zero_bit(vb->dirty_map,
  745. VMAP_BBMAP_BITS, i);
  746. s = vb->va->va_start + (i << PAGE_SHIFT);
  747. e = vb->va->va_start + (j << PAGE_SHIFT);
  748. vunmap_page_range(s, e);
  749. flush = 1;
  750. if (s < start)
  751. start = s;
  752. if (e > end)
  753. end = e;
  754. i = j;
  755. i = find_next_bit(vb->dirty_map,
  756. VMAP_BBMAP_BITS, i);
  757. }
  758. spin_unlock(&vb->lock);
  759. }
  760. rcu_read_unlock();
  761. }
  762. __purge_vmap_area_lazy(&start, &end, 1, flush);
  763. }
  764. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  765. /**
  766. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  767. * @mem: the pointer returned by vm_map_ram
  768. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  769. */
  770. void vm_unmap_ram(const void *mem, unsigned int count)
  771. {
  772. unsigned long size = count << PAGE_SHIFT;
  773. unsigned long addr = (unsigned long)mem;
  774. BUG_ON(!addr);
  775. BUG_ON(addr < VMALLOC_START);
  776. BUG_ON(addr > VMALLOC_END);
  777. BUG_ON(addr & (PAGE_SIZE-1));
  778. debug_check_no_locks_freed(mem, size);
  779. if (likely(count <= VMAP_MAX_ALLOC))
  780. vb_free(mem, size);
  781. else
  782. free_unmap_vmap_area_addr(addr);
  783. }
  784. EXPORT_SYMBOL(vm_unmap_ram);
  785. /**
  786. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  787. * @pages: an array of pointers to the pages to be mapped
  788. * @count: number of pages
  789. * @node: prefer to allocate data structures on this node
  790. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  791. *
  792. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  793. */
  794. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  795. {
  796. unsigned long size = count << PAGE_SHIFT;
  797. unsigned long addr;
  798. void *mem;
  799. if (likely(count <= VMAP_MAX_ALLOC)) {
  800. mem = vb_alloc(size, GFP_KERNEL);
  801. if (IS_ERR(mem))
  802. return NULL;
  803. addr = (unsigned long)mem;
  804. } else {
  805. struct vmap_area *va;
  806. va = alloc_vmap_area(size, PAGE_SIZE,
  807. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  808. if (IS_ERR(va))
  809. return NULL;
  810. addr = va->va_start;
  811. mem = (void *)addr;
  812. }
  813. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  814. vm_unmap_ram(mem, count);
  815. return NULL;
  816. }
  817. return mem;
  818. }
  819. EXPORT_SYMBOL(vm_map_ram);
  820. void __init vmalloc_init(void)
  821. {
  822. int i;
  823. for_each_possible_cpu(i) {
  824. struct vmap_block_queue *vbq;
  825. vbq = &per_cpu(vmap_block_queue, i);
  826. spin_lock_init(&vbq->lock);
  827. INIT_LIST_HEAD(&vbq->free);
  828. INIT_LIST_HEAD(&vbq->dirty);
  829. vbq->nr_dirty = 0;
  830. }
  831. vmap_initialized = true;
  832. }
  833. void unmap_kernel_range(unsigned long addr, unsigned long size)
  834. {
  835. unsigned long end = addr + size;
  836. vunmap_page_range(addr, end);
  837. flush_tlb_kernel_range(addr, end);
  838. }
  839. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  840. {
  841. unsigned long addr = (unsigned long)area->addr;
  842. unsigned long end = addr + area->size - PAGE_SIZE;
  843. int err;
  844. err = vmap_page_range(addr, end, prot, *pages);
  845. if (err > 0) {
  846. *pages += err;
  847. err = 0;
  848. }
  849. return err;
  850. }
  851. EXPORT_SYMBOL_GPL(map_vm_area);
  852. /*** Old vmalloc interfaces ***/
  853. DEFINE_RWLOCK(vmlist_lock);
  854. struct vm_struct *vmlist;
  855. static struct vm_struct *__get_vm_area_node(unsigned long size,
  856. unsigned long flags, unsigned long start, unsigned long end,
  857. int node, gfp_t gfp_mask, void *caller)
  858. {
  859. static struct vmap_area *va;
  860. struct vm_struct *area;
  861. struct vm_struct *tmp, **p;
  862. unsigned long align = 1;
  863. BUG_ON(in_interrupt());
  864. if (flags & VM_IOREMAP) {
  865. int bit = fls(size);
  866. if (bit > IOREMAP_MAX_ORDER)
  867. bit = IOREMAP_MAX_ORDER;
  868. else if (bit < PAGE_SHIFT)
  869. bit = PAGE_SHIFT;
  870. align = 1ul << bit;
  871. }
  872. size = PAGE_ALIGN(size);
  873. if (unlikely(!size))
  874. return NULL;
  875. area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  876. if (unlikely(!area))
  877. return NULL;
  878. /*
  879. * We always allocate a guard page.
  880. */
  881. size += PAGE_SIZE;
  882. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  883. if (IS_ERR(va)) {
  884. kfree(area);
  885. return NULL;
  886. }
  887. area->flags = flags;
  888. area->addr = (void *)va->va_start;
  889. area->size = size;
  890. area->pages = NULL;
  891. area->nr_pages = 0;
  892. area->phys_addr = 0;
  893. area->caller = caller;
  894. va->private = area;
  895. va->flags |= VM_VM_AREA;
  896. write_lock(&vmlist_lock);
  897. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  898. if (tmp->addr >= area->addr)
  899. break;
  900. }
  901. area->next = *p;
  902. *p = area;
  903. write_unlock(&vmlist_lock);
  904. return area;
  905. }
  906. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  907. unsigned long start, unsigned long end)
  908. {
  909. return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
  910. __builtin_return_address(0));
  911. }
  912. EXPORT_SYMBOL_GPL(__get_vm_area);
  913. /**
  914. * get_vm_area - reserve a contiguous kernel virtual area
  915. * @size: size of the area
  916. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  917. *
  918. * Search an area of @size in the kernel virtual mapping area,
  919. * and reserved it for out purposes. Returns the area descriptor
  920. * on success or %NULL on failure.
  921. */
  922. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  923. {
  924. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  925. -1, GFP_KERNEL, __builtin_return_address(0));
  926. }
  927. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  928. void *caller)
  929. {
  930. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  931. -1, GFP_KERNEL, caller);
  932. }
  933. struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
  934. int node, gfp_t gfp_mask)
  935. {
  936. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
  937. gfp_mask, __builtin_return_address(0));
  938. }
  939. static struct vm_struct *find_vm_area(const void *addr)
  940. {
  941. struct vmap_area *va;
  942. va = find_vmap_area((unsigned long)addr);
  943. if (va && va->flags & VM_VM_AREA)
  944. return va->private;
  945. return NULL;
  946. }
  947. /**
  948. * remove_vm_area - find and remove a continuous kernel virtual area
  949. * @addr: base address
  950. *
  951. * Search for the kernel VM area starting at @addr, and remove it.
  952. * This function returns the found VM area, but using it is NOT safe
  953. * on SMP machines, except for its size or flags.
  954. */
  955. struct vm_struct *remove_vm_area(const void *addr)
  956. {
  957. struct vmap_area *va;
  958. va = find_vmap_area((unsigned long)addr);
  959. if (va && va->flags & VM_VM_AREA) {
  960. struct vm_struct *vm = va->private;
  961. struct vm_struct *tmp, **p;
  962. free_unmap_vmap_area(va);
  963. vm->size -= PAGE_SIZE;
  964. write_lock(&vmlist_lock);
  965. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  966. ;
  967. *p = tmp->next;
  968. write_unlock(&vmlist_lock);
  969. return vm;
  970. }
  971. return NULL;
  972. }
  973. static void __vunmap(const void *addr, int deallocate_pages)
  974. {
  975. struct vm_struct *area;
  976. if (!addr)
  977. return;
  978. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  979. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  980. return;
  981. }
  982. area = remove_vm_area(addr);
  983. if (unlikely(!area)) {
  984. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  985. addr);
  986. return;
  987. }
  988. debug_check_no_locks_freed(addr, area->size);
  989. debug_check_no_obj_freed(addr, area->size);
  990. if (deallocate_pages) {
  991. int i;
  992. for (i = 0; i < area->nr_pages; i++) {
  993. struct page *page = area->pages[i];
  994. BUG_ON(!page);
  995. __free_page(page);
  996. }
  997. if (area->flags & VM_VPAGES)
  998. vfree(area->pages);
  999. else
  1000. kfree(area->pages);
  1001. }
  1002. kfree(area);
  1003. return;
  1004. }
  1005. /**
  1006. * vfree - release memory allocated by vmalloc()
  1007. * @addr: memory base address
  1008. *
  1009. * Free the virtually continuous memory area starting at @addr, as
  1010. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1011. * NULL, no operation is performed.
  1012. *
  1013. * Must not be called in interrupt context.
  1014. */
  1015. void vfree(const void *addr)
  1016. {
  1017. BUG_ON(in_interrupt());
  1018. __vunmap(addr, 1);
  1019. }
  1020. EXPORT_SYMBOL(vfree);
  1021. /**
  1022. * vunmap - release virtual mapping obtained by vmap()
  1023. * @addr: memory base address
  1024. *
  1025. * Free the virtually contiguous memory area starting at @addr,
  1026. * which was created from the page array passed to vmap().
  1027. *
  1028. * Must not be called in interrupt context.
  1029. */
  1030. void vunmap(const void *addr)
  1031. {
  1032. BUG_ON(in_interrupt());
  1033. __vunmap(addr, 0);
  1034. }
  1035. EXPORT_SYMBOL(vunmap);
  1036. /**
  1037. * vmap - map an array of pages into virtually contiguous space
  1038. * @pages: array of page pointers
  1039. * @count: number of pages to map
  1040. * @flags: vm_area->flags
  1041. * @prot: page protection for the mapping
  1042. *
  1043. * Maps @count pages from @pages into contiguous kernel virtual
  1044. * space.
  1045. */
  1046. void *vmap(struct page **pages, unsigned int count,
  1047. unsigned long flags, pgprot_t prot)
  1048. {
  1049. struct vm_struct *area;
  1050. if (count > num_physpages)
  1051. return NULL;
  1052. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1053. __builtin_return_address(0));
  1054. if (!area)
  1055. return NULL;
  1056. if (map_vm_area(area, prot, &pages)) {
  1057. vunmap(area->addr);
  1058. return NULL;
  1059. }
  1060. return area->addr;
  1061. }
  1062. EXPORT_SYMBOL(vmap);
  1063. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1064. int node, void *caller);
  1065. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1066. pgprot_t prot, int node, void *caller)
  1067. {
  1068. struct page **pages;
  1069. unsigned int nr_pages, array_size, i;
  1070. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1071. array_size = (nr_pages * sizeof(struct page *));
  1072. area->nr_pages = nr_pages;
  1073. /* Please note that the recursion is strictly bounded. */
  1074. if (array_size > PAGE_SIZE) {
  1075. pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
  1076. PAGE_KERNEL, node, caller);
  1077. area->flags |= VM_VPAGES;
  1078. } else {
  1079. pages = kmalloc_node(array_size,
  1080. (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
  1081. node);
  1082. }
  1083. area->pages = pages;
  1084. area->caller = caller;
  1085. if (!area->pages) {
  1086. remove_vm_area(area->addr);
  1087. kfree(area);
  1088. return NULL;
  1089. }
  1090. for (i = 0; i < area->nr_pages; i++) {
  1091. struct page *page;
  1092. if (node < 0)
  1093. page = alloc_page(gfp_mask);
  1094. else
  1095. page = alloc_pages_node(node, gfp_mask, 0);
  1096. if (unlikely(!page)) {
  1097. /* Successfully allocated i pages, free them in __vunmap() */
  1098. area->nr_pages = i;
  1099. goto fail;
  1100. }
  1101. area->pages[i] = page;
  1102. }
  1103. if (map_vm_area(area, prot, &pages))
  1104. goto fail;
  1105. return area->addr;
  1106. fail:
  1107. vfree(area->addr);
  1108. return NULL;
  1109. }
  1110. void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
  1111. {
  1112. return __vmalloc_area_node(area, gfp_mask, prot, -1,
  1113. __builtin_return_address(0));
  1114. }
  1115. /**
  1116. * __vmalloc_node - allocate virtually contiguous memory
  1117. * @size: allocation size
  1118. * @gfp_mask: flags for the page level allocator
  1119. * @prot: protection mask for the allocated pages
  1120. * @node: node to use for allocation or -1
  1121. * @caller: caller's return address
  1122. *
  1123. * Allocate enough pages to cover @size from the page level
  1124. * allocator with @gfp_mask flags. Map them into contiguous
  1125. * kernel virtual space, using a pagetable protection of @prot.
  1126. */
  1127. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1128. int node, void *caller)
  1129. {
  1130. struct vm_struct *area;
  1131. size = PAGE_ALIGN(size);
  1132. if (!size || (size >> PAGE_SHIFT) > num_physpages)
  1133. return NULL;
  1134. area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
  1135. node, gfp_mask, caller);
  1136. if (!area)
  1137. return NULL;
  1138. return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1139. }
  1140. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1141. {
  1142. return __vmalloc_node(size, gfp_mask, prot, -1,
  1143. __builtin_return_address(0));
  1144. }
  1145. EXPORT_SYMBOL(__vmalloc);
  1146. /**
  1147. * vmalloc - allocate virtually contiguous memory
  1148. * @size: allocation size
  1149. * Allocate enough pages to cover @size from the page level
  1150. * allocator and map them into contiguous kernel virtual space.
  1151. *
  1152. * For tight control over page level allocator and protection flags
  1153. * use __vmalloc() instead.
  1154. */
  1155. void *vmalloc(unsigned long size)
  1156. {
  1157. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1158. -1, __builtin_return_address(0));
  1159. }
  1160. EXPORT_SYMBOL(vmalloc);
  1161. /**
  1162. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1163. * @size: allocation size
  1164. *
  1165. * The resulting memory area is zeroed so it can be mapped to userspace
  1166. * without leaking data.
  1167. */
  1168. void *vmalloc_user(unsigned long size)
  1169. {
  1170. struct vm_struct *area;
  1171. void *ret;
  1172. ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
  1173. if (ret) {
  1174. area = find_vm_area(ret);
  1175. area->flags |= VM_USERMAP;
  1176. }
  1177. return ret;
  1178. }
  1179. EXPORT_SYMBOL(vmalloc_user);
  1180. /**
  1181. * vmalloc_node - allocate memory on a specific node
  1182. * @size: allocation size
  1183. * @node: numa node
  1184. *
  1185. * Allocate enough pages to cover @size from the page level
  1186. * allocator and map them into contiguous kernel virtual space.
  1187. *
  1188. * For tight control over page level allocator and protection flags
  1189. * use __vmalloc() instead.
  1190. */
  1191. void *vmalloc_node(unsigned long size, int node)
  1192. {
  1193. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1194. node, __builtin_return_address(0));
  1195. }
  1196. EXPORT_SYMBOL(vmalloc_node);
  1197. #ifndef PAGE_KERNEL_EXEC
  1198. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1199. #endif
  1200. /**
  1201. * vmalloc_exec - allocate virtually contiguous, executable memory
  1202. * @size: allocation size
  1203. *
  1204. * Kernel-internal function to allocate enough pages to cover @size
  1205. * the page level allocator and map them into contiguous and
  1206. * executable kernel virtual space.
  1207. *
  1208. * For tight control over page level allocator and protection flags
  1209. * use __vmalloc() instead.
  1210. */
  1211. void *vmalloc_exec(unsigned long size)
  1212. {
  1213. return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
  1214. }
  1215. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1216. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1217. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1218. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1219. #else
  1220. #define GFP_VMALLOC32 GFP_KERNEL
  1221. #endif
  1222. /**
  1223. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1224. * @size: allocation size
  1225. *
  1226. * Allocate enough 32bit PA addressable pages to cover @size from the
  1227. * page level allocator and map them into contiguous kernel virtual space.
  1228. */
  1229. void *vmalloc_32(unsigned long size)
  1230. {
  1231. return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
  1232. }
  1233. EXPORT_SYMBOL(vmalloc_32);
  1234. /**
  1235. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1236. * @size: allocation size
  1237. *
  1238. * The resulting memory area is 32bit addressable and zeroed so it can be
  1239. * mapped to userspace without leaking data.
  1240. */
  1241. void *vmalloc_32_user(unsigned long size)
  1242. {
  1243. struct vm_struct *area;
  1244. void *ret;
  1245. ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
  1246. if (ret) {
  1247. area = find_vm_area(ret);
  1248. area->flags |= VM_USERMAP;
  1249. }
  1250. return ret;
  1251. }
  1252. EXPORT_SYMBOL(vmalloc_32_user);
  1253. long vread(char *buf, char *addr, unsigned long count)
  1254. {
  1255. struct vm_struct *tmp;
  1256. char *vaddr, *buf_start = buf;
  1257. unsigned long n;
  1258. /* Don't allow overflow */
  1259. if ((unsigned long) addr + count < count)
  1260. count = -(unsigned long) addr;
  1261. read_lock(&vmlist_lock);
  1262. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1263. vaddr = (char *) tmp->addr;
  1264. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1265. continue;
  1266. while (addr < vaddr) {
  1267. if (count == 0)
  1268. goto finished;
  1269. *buf = '\0';
  1270. buf++;
  1271. addr++;
  1272. count--;
  1273. }
  1274. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1275. do {
  1276. if (count == 0)
  1277. goto finished;
  1278. *buf = *addr;
  1279. buf++;
  1280. addr++;
  1281. count--;
  1282. } while (--n > 0);
  1283. }
  1284. finished:
  1285. read_unlock(&vmlist_lock);
  1286. return buf - buf_start;
  1287. }
  1288. long vwrite(char *buf, char *addr, unsigned long count)
  1289. {
  1290. struct vm_struct *tmp;
  1291. char *vaddr, *buf_start = buf;
  1292. unsigned long n;
  1293. /* Don't allow overflow */
  1294. if ((unsigned long) addr + count < count)
  1295. count = -(unsigned long) addr;
  1296. read_lock(&vmlist_lock);
  1297. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1298. vaddr = (char *) tmp->addr;
  1299. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1300. continue;
  1301. while (addr < vaddr) {
  1302. if (count == 0)
  1303. goto finished;
  1304. buf++;
  1305. addr++;
  1306. count--;
  1307. }
  1308. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1309. do {
  1310. if (count == 0)
  1311. goto finished;
  1312. *addr = *buf;
  1313. buf++;
  1314. addr++;
  1315. count--;
  1316. } while (--n > 0);
  1317. }
  1318. finished:
  1319. read_unlock(&vmlist_lock);
  1320. return buf - buf_start;
  1321. }
  1322. /**
  1323. * remap_vmalloc_range - map vmalloc pages to userspace
  1324. * @vma: vma to cover (map full range of vma)
  1325. * @addr: vmalloc memory
  1326. * @pgoff: number of pages into addr before first page to map
  1327. *
  1328. * Returns: 0 for success, -Exxx on failure
  1329. *
  1330. * This function checks that addr is a valid vmalloc'ed area, and
  1331. * that it is big enough to cover the vma. Will return failure if
  1332. * that criteria isn't met.
  1333. *
  1334. * Similar to remap_pfn_range() (see mm/memory.c)
  1335. */
  1336. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1337. unsigned long pgoff)
  1338. {
  1339. struct vm_struct *area;
  1340. unsigned long uaddr = vma->vm_start;
  1341. unsigned long usize = vma->vm_end - vma->vm_start;
  1342. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1343. return -EINVAL;
  1344. area = find_vm_area(addr);
  1345. if (!area)
  1346. return -EINVAL;
  1347. if (!(area->flags & VM_USERMAP))
  1348. return -EINVAL;
  1349. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1350. return -EINVAL;
  1351. addr += pgoff << PAGE_SHIFT;
  1352. do {
  1353. struct page *page = vmalloc_to_page(addr);
  1354. int ret;
  1355. ret = vm_insert_page(vma, uaddr, page);
  1356. if (ret)
  1357. return ret;
  1358. uaddr += PAGE_SIZE;
  1359. addr += PAGE_SIZE;
  1360. usize -= PAGE_SIZE;
  1361. } while (usize > 0);
  1362. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1363. vma->vm_flags |= VM_RESERVED;
  1364. return 0;
  1365. }
  1366. EXPORT_SYMBOL(remap_vmalloc_range);
  1367. /*
  1368. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1369. * have one.
  1370. */
  1371. void __attribute__((weak)) vmalloc_sync_all(void)
  1372. {
  1373. }
  1374. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1375. {
  1376. /* apply_to_page_range() does all the hard work. */
  1377. return 0;
  1378. }
  1379. /**
  1380. * alloc_vm_area - allocate a range of kernel address space
  1381. * @size: size of the area
  1382. *
  1383. * Returns: NULL on failure, vm_struct on success
  1384. *
  1385. * This function reserves a range of kernel address space, and
  1386. * allocates pagetables to map that range. No actual mappings
  1387. * are created. If the kernel address space is not shared
  1388. * between processes, it syncs the pagetable across all
  1389. * processes.
  1390. */
  1391. struct vm_struct *alloc_vm_area(size_t size)
  1392. {
  1393. struct vm_struct *area;
  1394. area = get_vm_area_caller(size, VM_IOREMAP,
  1395. __builtin_return_address(0));
  1396. if (area == NULL)
  1397. return NULL;
  1398. /*
  1399. * This ensures that page tables are constructed for this region
  1400. * of kernel virtual address space and mapped into init_mm.
  1401. */
  1402. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1403. area->size, f, NULL)) {
  1404. free_vm_area(area);
  1405. return NULL;
  1406. }
  1407. /* Make sure the pagetables are constructed in process kernel
  1408. mappings */
  1409. vmalloc_sync_all();
  1410. return area;
  1411. }
  1412. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1413. void free_vm_area(struct vm_struct *area)
  1414. {
  1415. struct vm_struct *ret;
  1416. ret = remove_vm_area(area->addr);
  1417. BUG_ON(ret != area);
  1418. kfree(area);
  1419. }
  1420. EXPORT_SYMBOL_GPL(free_vm_area);
  1421. #ifdef CONFIG_PROC_FS
  1422. static void *s_start(struct seq_file *m, loff_t *pos)
  1423. {
  1424. loff_t n = *pos;
  1425. struct vm_struct *v;
  1426. read_lock(&vmlist_lock);
  1427. v = vmlist;
  1428. while (n > 0 && v) {
  1429. n--;
  1430. v = v->next;
  1431. }
  1432. if (!n)
  1433. return v;
  1434. return NULL;
  1435. }
  1436. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  1437. {
  1438. struct vm_struct *v = p;
  1439. ++*pos;
  1440. return v->next;
  1441. }
  1442. static void s_stop(struct seq_file *m, void *p)
  1443. {
  1444. read_unlock(&vmlist_lock);
  1445. }
  1446. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  1447. {
  1448. if (NUMA_BUILD) {
  1449. unsigned int nr, *counters = m->private;
  1450. if (!counters)
  1451. return;
  1452. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  1453. for (nr = 0; nr < v->nr_pages; nr++)
  1454. counters[page_to_nid(v->pages[nr])]++;
  1455. for_each_node_state(nr, N_HIGH_MEMORY)
  1456. if (counters[nr])
  1457. seq_printf(m, " N%u=%u", nr, counters[nr]);
  1458. }
  1459. }
  1460. static int s_show(struct seq_file *m, void *p)
  1461. {
  1462. struct vm_struct *v = p;
  1463. seq_printf(m, "0x%p-0x%p %7ld",
  1464. v->addr, v->addr + v->size, v->size);
  1465. if (v->caller) {
  1466. char buff[KSYM_SYMBOL_LEN];
  1467. seq_putc(m, ' ');
  1468. sprint_symbol(buff, (unsigned long)v->caller);
  1469. seq_puts(m, buff);
  1470. }
  1471. if (v->nr_pages)
  1472. seq_printf(m, " pages=%d", v->nr_pages);
  1473. if (v->phys_addr)
  1474. seq_printf(m, " phys=%lx", v->phys_addr);
  1475. if (v->flags & VM_IOREMAP)
  1476. seq_printf(m, " ioremap");
  1477. if (v->flags & VM_ALLOC)
  1478. seq_printf(m, " vmalloc");
  1479. if (v->flags & VM_MAP)
  1480. seq_printf(m, " vmap");
  1481. if (v->flags & VM_USERMAP)
  1482. seq_printf(m, " user");
  1483. if (v->flags & VM_VPAGES)
  1484. seq_printf(m, " vpages");
  1485. show_numa_info(m, v);
  1486. seq_putc(m, '\n');
  1487. return 0;
  1488. }
  1489. static const struct seq_operations vmalloc_op = {
  1490. .start = s_start,
  1491. .next = s_next,
  1492. .stop = s_stop,
  1493. .show = s_show,
  1494. };
  1495. static int vmalloc_open(struct inode *inode, struct file *file)
  1496. {
  1497. unsigned int *ptr = NULL;
  1498. int ret;
  1499. if (NUMA_BUILD)
  1500. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  1501. ret = seq_open(file, &vmalloc_op);
  1502. if (!ret) {
  1503. struct seq_file *m = file->private_data;
  1504. m->private = ptr;
  1505. } else
  1506. kfree(ptr);
  1507. return ret;
  1508. }
  1509. static const struct file_operations proc_vmalloc_operations = {
  1510. .open = vmalloc_open,
  1511. .read = seq_read,
  1512. .llseek = seq_lseek,
  1513. .release = seq_release_private,
  1514. };
  1515. static int __init proc_vmalloc_init(void)
  1516. {
  1517. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  1518. return 0;
  1519. }
  1520. module_init(proc_vmalloc_init);
  1521. #endif