memory.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <linux/memcontrol.h>
  49. #include <linux/mmu_notifier.h>
  50. #include <asm/pgalloc.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/tlb.h>
  53. #include <asm/tlbflush.h>
  54. #include <asm/pgtable.h>
  55. #include <linux/swapops.h>
  56. #include <linux/elf.h>
  57. #include "internal.h"
  58. #include "internal.h"
  59. #ifndef CONFIG_NEED_MULTIPLE_NODES
  60. /* use the per-pgdat data instead for discontigmem - mbligh */
  61. unsigned long max_mapnr;
  62. struct page *mem_map;
  63. EXPORT_SYMBOL(max_mapnr);
  64. EXPORT_SYMBOL(mem_map);
  65. #endif
  66. unsigned long num_physpages;
  67. /*
  68. * A number of key systems in x86 including ioremap() rely on the assumption
  69. * that high_memory defines the upper bound on direct map memory, then end
  70. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  71. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  72. * and ZONE_HIGHMEM.
  73. */
  74. void * high_memory;
  75. EXPORT_SYMBOL(num_physpages);
  76. EXPORT_SYMBOL(high_memory);
  77. /*
  78. * Randomize the address space (stacks, mmaps, brk, etc.).
  79. *
  80. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  81. * as ancient (libc5 based) binaries can segfault. )
  82. */
  83. int randomize_va_space __read_mostly =
  84. #ifdef CONFIG_COMPAT_BRK
  85. 1;
  86. #else
  87. 2;
  88. #endif
  89. static int __init disable_randmaps(char *s)
  90. {
  91. randomize_va_space = 0;
  92. return 1;
  93. }
  94. __setup("norandmaps", disable_randmaps);
  95. /*
  96. * If a p?d_bad entry is found while walking page tables, report
  97. * the error, before resetting entry to p?d_none. Usually (but
  98. * very seldom) called out from the p?d_none_or_clear_bad macros.
  99. */
  100. void pgd_clear_bad(pgd_t *pgd)
  101. {
  102. pgd_ERROR(*pgd);
  103. pgd_clear(pgd);
  104. }
  105. void pud_clear_bad(pud_t *pud)
  106. {
  107. pud_ERROR(*pud);
  108. pud_clear(pud);
  109. }
  110. void pmd_clear_bad(pmd_t *pmd)
  111. {
  112. pmd_ERROR(*pmd);
  113. pmd_clear(pmd);
  114. }
  115. /*
  116. * Note: this doesn't free the actual pages themselves. That
  117. * has been handled earlier when unmapping all the memory regions.
  118. */
  119. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  120. {
  121. pgtable_t token = pmd_pgtable(*pmd);
  122. pmd_clear(pmd);
  123. pte_free_tlb(tlb, token);
  124. tlb->mm->nr_ptes--;
  125. }
  126. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  127. unsigned long addr, unsigned long end,
  128. unsigned long floor, unsigned long ceiling)
  129. {
  130. pmd_t *pmd;
  131. unsigned long next;
  132. unsigned long start;
  133. start = addr;
  134. pmd = pmd_offset(pud, addr);
  135. do {
  136. next = pmd_addr_end(addr, end);
  137. if (pmd_none_or_clear_bad(pmd))
  138. continue;
  139. free_pte_range(tlb, pmd);
  140. } while (pmd++, addr = next, addr != end);
  141. start &= PUD_MASK;
  142. if (start < floor)
  143. return;
  144. if (ceiling) {
  145. ceiling &= PUD_MASK;
  146. if (!ceiling)
  147. return;
  148. }
  149. if (end - 1 > ceiling - 1)
  150. return;
  151. pmd = pmd_offset(pud, start);
  152. pud_clear(pud);
  153. pmd_free_tlb(tlb, pmd);
  154. }
  155. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  156. unsigned long addr, unsigned long end,
  157. unsigned long floor, unsigned long ceiling)
  158. {
  159. pud_t *pud;
  160. unsigned long next;
  161. unsigned long start;
  162. start = addr;
  163. pud = pud_offset(pgd, addr);
  164. do {
  165. next = pud_addr_end(addr, end);
  166. if (pud_none_or_clear_bad(pud))
  167. continue;
  168. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  169. } while (pud++, addr = next, addr != end);
  170. start &= PGDIR_MASK;
  171. if (start < floor)
  172. return;
  173. if (ceiling) {
  174. ceiling &= PGDIR_MASK;
  175. if (!ceiling)
  176. return;
  177. }
  178. if (end - 1 > ceiling - 1)
  179. return;
  180. pud = pud_offset(pgd, start);
  181. pgd_clear(pgd);
  182. pud_free_tlb(tlb, pud);
  183. }
  184. /*
  185. * This function frees user-level page tables of a process.
  186. *
  187. * Must be called with pagetable lock held.
  188. */
  189. void free_pgd_range(struct mmu_gather *tlb,
  190. unsigned long addr, unsigned long end,
  191. unsigned long floor, unsigned long ceiling)
  192. {
  193. pgd_t *pgd;
  194. unsigned long next;
  195. unsigned long start;
  196. /*
  197. * The next few lines have given us lots of grief...
  198. *
  199. * Why are we testing PMD* at this top level? Because often
  200. * there will be no work to do at all, and we'd prefer not to
  201. * go all the way down to the bottom just to discover that.
  202. *
  203. * Why all these "- 1"s? Because 0 represents both the bottom
  204. * of the address space and the top of it (using -1 for the
  205. * top wouldn't help much: the masks would do the wrong thing).
  206. * The rule is that addr 0 and floor 0 refer to the bottom of
  207. * the address space, but end 0 and ceiling 0 refer to the top
  208. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  209. * that end 0 case should be mythical).
  210. *
  211. * Wherever addr is brought up or ceiling brought down, we must
  212. * be careful to reject "the opposite 0" before it confuses the
  213. * subsequent tests. But what about where end is brought down
  214. * by PMD_SIZE below? no, end can't go down to 0 there.
  215. *
  216. * Whereas we round start (addr) and ceiling down, by different
  217. * masks at different levels, in order to test whether a table
  218. * now has no other vmas using it, so can be freed, we don't
  219. * bother to round floor or end up - the tests don't need that.
  220. */
  221. addr &= PMD_MASK;
  222. if (addr < floor) {
  223. addr += PMD_SIZE;
  224. if (!addr)
  225. return;
  226. }
  227. if (ceiling) {
  228. ceiling &= PMD_MASK;
  229. if (!ceiling)
  230. return;
  231. }
  232. if (end - 1 > ceiling - 1)
  233. end -= PMD_SIZE;
  234. if (addr > end - 1)
  235. return;
  236. start = addr;
  237. pgd = pgd_offset(tlb->mm, addr);
  238. do {
  239. next = pgd_addr_end(addr, end);
  240. if (pgd_none_or_clear_bad(pgd))
  241. continue;
  242. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  243. } while (pgd++, addr = next, addr != end);
  244. }
  245. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  246. unsigned long floor, unsigned long ceiling)
  247. {
  248. while (vma) {
  249. struct vm_area_struct *next = vma->vm_next;
  250. unsigned long addr = vma->vm_start;
  251. /*
  252. * Hide vma from rmap and vmtruncate before freeing pgtables
  253. */
  254. anon_vma_unlink(vma);
  255. unlink_file_vma(vma);
  256. if (is_vm_hugetlb_page(vma)) {
  257. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  258. floor, next? next->vm_start: ceiling);
  259. } else {
  260. /*
  261. * Optimization: gather nearby vmas into one call down
  262. */
  263. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  264. && !is_vm_hugetlb_page(next)) {
  265. vma = next;
  266. next = vma->vm_next;
  267. anon_vma_unlink(vma);
  268. unlink_file_vma(vma);
  269. }
  270. free_pgd_range(tlb, addr, vma->vm_end,
  271. floor, next? next->vm_start: ceiling);
  272. }
  273. vma = next;
  274. }
  275. }
  276. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  277. {
  278. pgtable_t new = pte_alloc_one(mm, address);
  279. if (!new)
  280. return -ENOMEM;
  281. /*
  282. * Ensure all pte setup (eg. pte page lock and page clearing) are
  283. * visible before the pte is made visible to other CPUs by being
  284. * put into page tables.
  285. *
  286. * The other side of the story is the pointer chasing in the page
  287. * table walking code (when walking the page table without locking;
  288. * ie. most of the time). Fortunately, these data accesses consist
  289. * of a chain of data-dependent loads, meaning most CPUs (alpha
  290. * being the notable exception) will already guarantee loads are
  291. * seen in-order. See the alpha page table accessors for the
  292. * smp_read_barrier_depends() barriers in page table walking code.
  293. */
  294. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  295. spin_lock(&mm->page_table_lock);
  296. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  297. mm->nr_ptes++;
  298. pmd_populate(mm, pmd, new);
  299. new = NULL;
  300. }
  301. spin_unlock(&mm->page_table_lock);
  302. if (new)
  303. pte_free(mm, new);
  304. return 0;
  305. }
  306. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  307. {
  308. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  309. if (!new)
  310. return -ENOMEM;
  311. smp_wmb(); /* See comment in __pte_alloc */
  312. spin_lock(&init_mm.page_table_lock);
  313. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  314. pmd_populate_kernel(&init_mm, pmd, new);
  315. new = NULL;
  316. }
  317. spin_unlock(&init_mm.page_table_lock);
  318. if (new)
  319. pte_free_kernel(&init_mm, new);
  320. return 0;
  321. }
  322. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  323. {
  324. if (file_rss)
  325. add_mm_counter(mm, file_rss, file_rss);
  326. if (anon_rss)
  327. add_mm_counter(mm, anon_rss, anon_rss);
  328. }
  329. /*
  330. * This function is called to print an error when a bad pte
  331. * is found. For example, we might have a PFN-mapped pte in
  332. * a region that doesn't allow it.
  333. *
  334. * The calling function must still handle the error.
  335. */
  336. static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
  337. unsigned long vaddr)
  338. {
  339. printk(KERN_ERR "Bad pte = %08llx, process = %s, "
  340. "vm_flags = %lx, vaddr = %lx\n",
  341. (long long)pte_val(pte),
  342. (vma->vm_mm == current->mm ? current->comm : "???"),
  343. vma->vm_flags, vaddr);
  344. dump_stack();
  345. }
  346. static inline int is_cow_mapping(unsigned int flags)
  347. {
  348. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  349. }
  350. /*
  351. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  352. *
  353. * "Special" mappings do not wish to be associated with a "struct page" (either
  354. * it doesn't exist, or it exists but they don't want to touch it). In this
  355. * case, NULL is returned here. "Normal" mappings do have a struct page.
  356. *
  357. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  358. * pte bit, in which case this function is trivial. Secondly, an architecture
  359. * may not have a spare pte bit, which requires a more complicated scheme,
  360. * described below.
  361. *
  362. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  363. * special mapping (even if there are underlying and valid "struct pages").
  364. * COWed pages of a VM_PFNMAP are always normal.
  365. *
  366. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  367. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  368. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  369. * mapping will always honor the rule
  370. *
  371. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  372. *
  373. * And for normal mappings this is false.
  374. *
  375. * This restricts such mappings to be a linear translation from virtual address
  376. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  377. * as the vma is not a COW mapping; in that case, we know that all ptes are
  378. * special (because none can have been COWed).
  379. *
  380. *
  381. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  382. *
  383. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  384. * page" backing, however the difference is that _all_ pages with a struct
  385. * page (that is, those where pfn_valid is true) are refcounted and considered
  386. * normal pages by the VM. The disadvantage is that pages are refcounted
  387. * (which can be slower and simply not an option for some PFNMAP users). The
  388. * advantage is that we don't have to follow the strict linearity rule of
  389. * PFNMAP mappings in order to support COWable mappings.
  390. *
  391. */
  392. #ifdef __HAVE_ARCH_PTE_SPECIAL
  393. # define HAVE_PTE_SPECIAL 1
  394. #else
  395. # define HAVE_PTE_SPECIAL 0
  396. #endif
  397. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  398. pte_t pte)
  399. {
  400. unsigned long pfn;
  401. if (HAVE_PTE_SPECIAL) {
  402. if (likely(!pte_special(pte))) {
  403. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  404. return pte_page(pte);
  405. }
  406. VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
  407. return NULL;
  408. }
  409. /* !HAVE_PTE_SPECIAL case follows: */
  410. pfn = pte_pfn(pte);
  411. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  412. if (vma->vm_flags & VM_MIXEDMAP) {
  413. if (!pfn_valid(pfn))
  414. return NULL;
  415. goto out;
  416. } else {
  417. unsigned long off;
  418. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  419. if (pfn == vma->vm_pgoff + off)
  420. return NULL;
  421. if (!is_cow_mapping(vma->vm_flags))
  422. return NULL;
  423. }
  424. }
  425. VM_BUG_ON(!pfn_valid(pfn));
  426. /*
  427. * NOTE! We still have PageReserved() pages in the page tables.
  428. *
  429. * eg. VDSO mappings can cause them to exist.
  430. */
  431. out:
  432. return pfn_to_page(pfn);
  433. }
  434. /*
  435. * copy one vm_area from one task to the other. Assumes the page tables
  436. * already present in the new task to be cleared in the whole range
  437. * covered by this vma.
  438. */
  439. static inline void
  440. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  441. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  442. unsigned long addr, int *rss)
  443. {
  444. unsigned long vm_flags = vma->vm_flags;
  445. pte_t pte = *src_pte;
  446. struct page *page;
  447. /* pte contains position in swap or file, so copy. */
  448. if (unlikely(!pte_present(pte))) {
  449. if (!pte_file(pte)) {
  450. swp_entry_t entry = pte_to_swp_entry(pte);
  451. swap_duplicate(entry);
  452. /* make sure dst_mm is on swapoff's mmlist. */
  453. if (unlikely(list_empty(&dst_mm->mmlist))) {
  454. spin_lock(&mmlist_lock);
  455. if (list_empty(&dst_mm->mmlist))
  456. list_add(&dst_mm->mmlist,
  457. &src_mm->mmlist);
  458. spin_unlock(&mmlist_lock);
  459. }
  460. if (is_write_migration_entry(entry) &&
  461. is_cow_mapping(vm_flags)) {
  462. /*
  463. * COW mappings require pages in both parent
  464. * and child to be set to read.
  465. */
  466. make_migration_entry_read(&entry);
  467. pte = swp_entry_to_pte(entry);
  468. set_pte_at(src_mm, addr, src_pte, pte);
  469. }
  470. }
  471. goto out_set_pte;
  472. }
  473. /*
  474. * If it's a COW mapping, write protect it both
  475. * in the parent and the child
  476. */
  477. if (is_cow_mapping(vm_flags)) {
  478. ptep_set_wrprotect(src_mm, addr, src_pte);
  479. pte = pte_wrprotect(pte);
  480. }
  481. /*
  482. * If it's a shared mapping, mark it clean in
  483. * the child
  484. */
  485. if (vm_flags & VM_SHARED)
  486. pte = pte_mkclean(pte);
  487. pte = pte_mkold(pte);
  488. page = vm_normal_page(vma, addr, pte);
  489. if (page) {
  490. get_page(page);
  491. page_dup_rmap(page, vma, addr);
  492. rss[!!PageAnon(page)]++;
  493. }
  494. out_set_pte:
  495. set_pte_at(dst_mm, addr, dst_pte, pte);
  496. }
  497. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  498. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  499. unsigned long addr, unsigned long end)
  500. {
  501. pte_t *src_pte, *dst_pte;
  502. spinlock_t *src_ptl, *dst_ptl;
  503. int progress = 0;
  504. int rss[2];
  505. again:
  506. rss[1] = rss[0] = 0;
  507. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  508. if (!dst_pte)
  509. return -ENOMEM;
  510. src_pte = pte_offset_map_nested(src_pmd, addr);
  511. src_ptl = pte_lockptr(src_mm, src_pmd);
  512. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  513. arch_enter_lazy_mmu_mode();
  514. do {
  515. /*
  516. * We are holding two locks at this point - either of them
  517. * could generate latencies in another task on another CPU.
  518. */
  519. if (progress >= 32) {
  520. progress = 0;
  521. if (need_resched() ||
  522. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  523. break;
  524. }
  525. if (pte_none(*src_pte)) {
  526. progress++;
  527. continue;
  528. }
  529. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  530. progress += 8;
  531. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  532. arch_leave_lazy_mmu_mode();
  533. spin_unlock(src_ptl);
  534. pte_unmap_nested(src_pte - 1);
  535. add_mm_rss(dst_mm, rss[0], rss[1]);
  536. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  537. cond_resched();
  538. if (addr != end)
  539. goto again;
  540. return 0;
  541. }
  542. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  543. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  544. unsigned long addr, unsigned long end)
  545. {
  546. pmd_t *src_pmd, *dst_pmd;
  547. unsigned long next;
  548. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  549. if (!dst_pmd)
  550. return -ENOMEM;
  551. src_pmd = pmd_offset(src_pud, addr);
  552. do {
  553. next = pmd_addr_end(addr, end);
  554. if (pmd_none_or_clear_bad(src_pmd))
  555. continue;
  556. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  557. vma, addr, next))
  558. return -ENOMEM;
  559. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  560. return 0;
  561. }
  562. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  563. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  564. unsigned long addr, unsigned long end)
  565. {
  566. pud_t *src_pud, *dst_pud;
  567. unsigned long next;
  568. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  569. if (!dst_pud)
  570. return -ENOMEM;
  571. src_pud = pud_offset(src_pgd, addr);
  572. do {
  573. next = pud_addr_end(addr, end);
  574. if (pud_none_or_clear_bad(src_pud))
  575. continue;
  576. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  577. vma, addr, next))
  578. return -ENOMEM;
  579. } while (dst_pud++, src_pud++, addr = next, addr != end);
  580. return 0;
  581. }
  582. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  583. struct vm_area_struct *vma)
  584. {
  585. pgd_t *src_pgd, *dst_pgd;
  586. unsigned long next;
  587. unsigned long addr = vma->vm_start;
  588. unsigned long end = vma->vm_end;
  589. int ret;
  590. /*
  591. * Don't copy ptes where a page fault will fill them correctly.
  592. * Fork becomes much lighter when there are big shared or private
  593. * readonly mappings. The tradeoff is that copy_page_range is more
  594. * efficient than faulting.
  595. */
  596. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  597. if (!vma->anon_vma)
  598. return 0;
  599. }
  600. if (is_vm_hugetlb_page(vma))
  601. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  602. /*
  603. * We need to invalidate the secondary MMU mappings only when
  604. * there could be a permission downgrade on the ptes of the
  605. * parent mm. And a permission downgrade will only happen if
  606. * is_cow_mapping() returns true.
  607. */
  608. if (is_cow_mapping(vma->vm_flags))
  609. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  610. ret = 0;
  611. dst_pgd = pgd_offset(dst_mm, addr);
  612. src_pgd = pgd_offset(src_mm, addr);
  613. do {
  614. next = pgd_addr_end(addr, end);
  615. if (pgd_none_or_clear_bad(src_pgd))
  616. continue;
  617. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  618. vma, addr, next))) {
  619. ret = -ENOMEM;
  620. break;
  621. }
  622. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  623. if (is_cow_mapping(vma->vm_flags))
  624. mmu_notifier_invalidate_range_end(src_mm,
  625. vma->vm_start, end);
  626. return ret;
  627. }
  628. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  629. struct vm_area_struct *vma, pmd_t *pmd,
  630. unsigned long addr, unsigned long end,
  631. long *zap_work, struct zap_details *details)
  632. {
  633. struct mm_struct *mm = tlb->mm;
  634. pte_t *pte;
  635. spinlock_t *ptl;
  636. int file_rss = 0;
  637. int anon_rss = 0;
  638. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  639. arch_enter_lazy_mmu_mode();
  640. do {
  641. pte_t ptent = *pte;
  642. if (pte_none(ptent)) {
  643. (*zap_work)--;
  644. continue;
  645. }
  646. (*zap_work) -= PAGE_SIZE;
  647. if (pte_present(ptent)) {
  648. struct page *page;
  649. page = vm_normal_page(vma, addr, ptent);
  650. if (unlikely(details) && page) {
  651. /*
  652. * unmap_shared_mapping_pages() wants to
  653. * invalidate cache without truncating:
  654. * unmap shared but keep private pages.
  655. */
  656. if (details->check_mapping &&
  657. details->check_mapping != page->mapping)
  658. continue;
  659. /*
  660. * Each page->index must be checked when
  661. * invalidating or truncating nonlinear.
  662. */
  663. if (details->nonlinear_vma &&
  664. (page->index < details->first_index ||
  665. page->index > details->last_index))
  666. continue;
  667. }
  668. ptent = ptep_get_and_clear_full(mm, addr, pte,
  669. tlb->fullmm);
  670. tlb_remove_tlb_entry(tlb, pte, addr);
  671. if (unlikely(!page))
  672. continue;
  673. if (unlikely(details) && details->nonlinear_vma
  674. && linear_page_index(details->nonlinear_vma,
  675. addr) != page->index)
  676. set_pte_at(mm, addr, pte,
  677. pgoff_to_pte(page->index));
  678. if (PageAnon(page))
  679. anon_rss--;
  680. else {
  681. if (pte_dirty(ptent))
  682. set_page_dirty(page);
  683. if (pte_young(ptent))
  684. SetPageReferenced(page);
  685. file_rss--;
  686. }
  687. page_remove_rmap(page, vma);
  688. tlb_remove_page(tlb, page);
  689. continue;
  690. }
  691. /*
  692. * If details->check_mapping, we leave swap entries;
  693. * if details->nonlinear_vma, we leave file entries.
  694. */
  695. if (unlikely(details))
  696. continue;
  697. if (!pte_file(ptent))
  698. free_swap_and_cache(pte_to_swp_entry(ptent));
  699. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  700. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  701. add_mm_rss(mm, file_rss, anon_rss);
  702. arch_leave_lazy_mmu_mode();
  703. pte_unmap_unlock(pte - 1, ptl);
  704. return addr;
  705. }
  706. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  707. struct vm_area_struct *vma, pud_t *pud,
  708. unsigned long addr, unsigned long end,
  709. long *zap_work, struct zap_details *details)
  710. {
  711. pmd_t *pmd;
  712. unsigned long next;
  713. pmd = pmd_offset(pud, addr);
  714. do {
  715. next = pmd_addr_end(addr, end);
  716. if (pmd_none_or_clear_bad(pmd)) {
  717. (*zap_work)--;
  718. continue;
  719. }
  720. next = zap_pte_range(tlb, vma, pmd, addr, next,
  721. zap_work, details);
  722. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  723. return addr;
  724. }
  725. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  726. struct vm_area_struct *vma, pgd_t *pgd,
  727. unsigned long addr, unsigned long end,
  728. long *zap_work, struct zap_details *details)
  729. {
  730. pud_t *pud;
  731. unsigned long next;
  732. pud = pud_offset(pgd, addr);
  733. do {
  734. next = pud_addr_end(addr, end);
  735. if (pud_none_or_clear_bad(pud)) {
  736. (*zap_work)--;
  737. continue;
  738. }
  739. next = zap_pmd_range(tlb, vma, pud, addr, next,
  740. zap_work, details);
  741. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  742. return addr;
  743. }
  744. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  745. struct vm_area_struct *vma,
  746. unsigned long addr, unsigned long end,
  747. long *zap_work, struct zap_details *details)
  748. {
  749. pgd_t *pgd;
  750. unsigned long next;
  751. if (details && !details->check_mapping && !details->nonlinear_vma)
  752. details = NULL;
  753. BUG_ON(addr >= end);
  754. tlb_start_vma(tlb, vma);
  755. pgd = pgd_offset(vma->vm_mm, addr);
  756. do {
  757. next = pgd_addr_end(addr, end);
  758. if (pgd_none_or_clear_bad(pgd)) {
  759. (*zap_work)--;
  760. continue;
  761. }
  762. next = zap_pud_range(tlb, vma, pgd, addr, next,
  763. zap_work, details);
  764. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  765. tlb_end_vma(tlb, vma);
  766. return addr;
  767. }
  768. #ifdef CONFIG_PREEMPT
  769. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  770. #else
  771. /* No preempt: go for improved straight-line efficiency */
  772. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  773. #endif
  774. /**
  775. * unmap_vmas - unmap a range of memory covered by a list of vma's
  776. * @tlbp: address of the caller's struct mmu_gather
  777. * @vma: the starting vma
  778. * @start_addr: virtual address at which to start unmapping
  779. * @end_addr: virtual address at which to end unmapping
  780. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  781. * @details: details of nonlinear truncation or shared cache invalidation
  782. *
  783. * Returns the end address of the unmapping (restart addr if interrupted).
  784. *
  785. * Unmap all pages in the vma list.
  786. *
  787. * We aim to not hold locks for too long (for scheduling latency reasons).
  788. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  789. * return the ending mmu_gather to the caller.
  790. *
  791. * Only addresses between `start' and `end' will be unmapped.
  792. *
  793. * The VMA list must be sorted in ascending virtual address order.
  794. *
  795. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  796. * range after unmap_vmas() returns. So the only responsibility here is to
  797. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  798. * drops the lock and schedules.
  799. */
  800. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  801. struct vm_area_struct *vma, unsigned long start_addr,
  802. unsigned long end_addr, unsigned long *nr_accounted,
  803. struct zap_details *details)
  804. {
  805. long zap_work = ZAP_BLOCK_SIZE;
  806. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  807. int tlb_start_valid = 0;
  808. unsigned long start = start_addr;
  809. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  810. int fullmm = (*tlbp)->fullmm;
  811. struct mm_struct *mm = vma->vm_mm;
  812. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  813. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  814. unsigned long end;
  815. start = max(vma->vm_start, start_addr);
  816. if (start >= vma->vm_end)
  817. continue;
  818. end = min(vma->vm_end, end_addr);
  819. if (end <= vma->vm_start)
  820. continue;
  821. if (vma->vm_flags & VM_ACCOUNT)
  822. *nr_accounted += (end - start) >> PAGE_SHIFT;
  823. while (start != end) {
  824. if (!tlb_start_valid) {
  825. tlb_start = start;
  826. tlb_start_valid = 1;
  827. }
  828. if (unlikely(is_vm_hugetlb_page(vma))) {
  829. /*
  830. * It is undesirable to test vma->vm_file as it
  831. * should be non-null for valid hugetlb area.
  832. * However, vm_file will be NULL in the error
  833. * cleanup path of do_mmap_pgoff. When
  834. * hugetlbfs ->mmap method fails,
  835. * do_mmap_pgoff() nullifies vma->vm_file
  836. * before calling this function to clean up.
  837. * Since no pte has actually been setup, it is
  838. * safe to do nothing in this case.
  839. */
  840. if (vma->vm_file) {
  841. unmap_hugepage_range(vma, start, end, NULL);
  842. zap_work -= (end - start) /
  843. pages_per_huge_page(hstate_vma(vma));
  844. }
  845. start = end;
  846. } else
  847. start = unmap_page_range(*tlbp, vma,
  848. start, end, &zap_work, details);
  849. if (zap_work > 0) {
  850. BUG_ON(start != end);
  851. break;
  852. }
  853. tlb_finish_mmu(*tlbp, tlb_start, start);
  854. if (need_resched() ||
  855. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  856. if (i_mmap_lock) {
  857. *tlbp = NULL;
  858. goto out;
  859. }
  860. cond_resched();
  861. }
  862. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  863. tlb_start_valid = 0;
  864. zap_work = ZAP_BLOCK_SIZE;
  865. }
  866. }
  867. out:
  868. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  869. return start; /* which is now the end (or restart) address */
  870. }
  871. /**
  872. * zap_page_range - remove user pages in a given range
  873. * @vma: vm_area_struct holding the applicable pages
  874. * @address: starting address of pages to zap
  875. * @size: number of bytes to zap
  876. * @details: details of nonlinear truncation or shared cache invalidation
  877. */
  878. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  879. unsigned long size, struct zap_details *details)
  880. {
  881. struct mm_struct *mm = vma->vm_mm;
  882. struct mmu_gather *tlb;
  883. unsigned long end = address + size;
  884. unsigned long nr_accounted = 0;
  885. lru_add_drain();
  886. tlb = tlb_gather_mmu(mm, 0);
  887. update_hiwater_rss(mm);
  888. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  889. if (tlb)
  890. tlb_finish_mmu(tlb, address, end);
  891. return end;
  892. }
  893. /**
  894. * zap_vma_ptes - remove ptes mapping the vma
  895. * @vma: vm_area_struct holding ptes to be zapped
  896. * @address: starting address of pages to zap
  897. * @size: number of bytes to zap
  898. *
  899. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  900. *
  901. * The entire address range must be fully contained within the vma.
  902. *
  903. * Returns 0 if successful.
  904. */
  905. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  906. unsigned long size)
  907. {
  908. if (address < vma->vm_start || address + size > vma->vm_end ||
  909. !(vma->vm_flags & VM_PFNMAP))
  910. return -1;
  911. zap_page_range(vma, address, size, NULL);
  912. return 0;
  913. }
  914. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  915. /*
  916. * Do a quick page-table lookup for a single page.
  917. */
  918. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  919. unsigned int flags)
  920. {
  921. pgd_t *pgd;
  922. pud_t *pud;
  923. pmd_t *pmd;
  924. pte_t *ptep, pte;
  925. spinlock_t *ptl;
  926. struct page *page;
  927. struct mm_struct *mm = vma->vm_mm;
  928. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  929. if (!IS_ERR(page)) {
  930. BUG_ON(flags & FOLL_GET);
  931. goto out;
  932. }
  933. page = NULL;
  934. pgd = pgd_offset(mm, address);
  935. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  936. goto no_page_table;
  937. pud = pud_offset(pgd, address);
  938. if (pud_none(*pud))
  939. goto no_page_table;
  940. if (pud_huge(*pud)) {
  941. BUG_ON(flags & FOLL_GET);
  942. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  943. goto out;
  944. }
  945. if (unlikely(pud_bad(*pud)))
  946. goto no_page_table;
  947. pmd = pmd_offset(pud, address);
  948. if (pmd_none(*pmd))
  949. goto no_page_table;
  950. if (pmd_huge(*pmd)) {
  951. BUG_ON(flags & FOLL_GET);
  952. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  953. goto out;
  954. }
  955. if (unlikely(pmd_bad(*pmd)))
  956. goto no_page_table;
  957. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  958. pte = *ptep;
  959. if (!pte_present(pte))
  960. goto no_page;
  961. if ((flags & FOLL_WRITE) && !pte_write(pte))
  962. goto unlock;
  963. page = vm_normal_page(vma, address, pte);
  964. if (unlikely(!page))
  965. goto bad_page;
  966. if (flags & FOLL_GET)
  967. get_page(page);
  968. if (flags & FOLL_TOUCH) {
  969. if ((flags & FOLL_WRITE) &&
  970. !pte_dirty(pte) && !PageDirty(page))
  971. set_page_dirty(page);
  972. mark_page_accessed(page);
  973. }
  974. unlock:
  975. pte_unmap_unlock(ptep, ptl);
  976. out:
  977. return page;
  978. bad_page:
  979. pte_unmap_unlock(ptep, ptl);
  980. return ERR_PTR(-EFAULT);
  981. no_page:
  982. pte_unmap_unlock(ptep, ptl);
  983. if (!pte_none(pte))
  984. return page;
  985. /* Fall through to ZERO_PAGE handling */
  986. no_page_table:
  987. /*
  988. * When core dumping an enormous anonymous area that nobody
  989. * has touched so far, we don't want to allocate page tables.
  990. */
  991. if (flags & FOLL_ANON) {
  992. page = ZERO_PAGE(0);
  993. if (flags & FOLL_GET)
  994. get_page(page);
  995. BUG_ON(flags & FOLL_WRITE);
  996. }
  997. return page;
  998. }
  999. /* Can we do the FOLL_ANON optimization? */
  1000. static inline int use_zero_page(struct vm_area_struct *vma)
  1001. {
  1002. /*
  1003. * We don't want to optimize FOLL_ANON for make_pages_present()
  1004. * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
  1005. * we want to get the page from the page tables to make sure
  1006. * that we serialize and update with any other user of that
  1007. * mapping.
  1008. */
  1009. if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
  1010. return 0;
  1011. /*
  1012. * And if we have a fault routine, it's not an anonymous region.
  1013. */
  1014. return !vma->vm_ops || !vma->vm_ops->fault;
  1015. }
  1016. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1017. unsigned long start, int len, int flags,
  1018. struct page **pages, struct vm_area_struct **vmas)
  1019. {
  1020. int i;
  1021. unsigned int vm_flags = 0;
  1022. int write = !!(flags & GUP_FLAGS_WRITE);
  1023. int force = !!(flags & GUP_FLAGS_FORCE);
  1024. int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
  1025. if (len <= 0)
  1026. return 0;
  1027. /*
  1028. * Require read or write permissions.
  1029. * If 'force' is set, we only require the "MAY" flags.
  1030. */
  1031. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1032. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1033. i = 0;
  1034. do {
  1035. struct vm_area_struct *vma;
  1036. unsigned int foll_flags;
  1037. vma = find_extend_vma(mm, start);
  1038. if (!vma && in_gate_area(tsk, start)) {
  1039. unsigned long pg = start & PAGE_MASK;
  1040. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1041. pgd_t *pgd;
  1042. pud_t *pud;
  1043. pmd_t *pmd;
  1044. pte_t *pte;
  1045. /* user gate pages are read-only */
  1046. if (!ignore && write)
  1047. return i ? : -EFAULT;
  1048. if (pg > TASK_SIZE)
  1049. pgd = pgd_offset_k(pg);
  1050. else
  1051. pgd = pgd_offset_gate(mm, pg);
  1052. BUG_ON(pgd_none(*pgd));
  1053. pud = pud_offset(pgd, pg);
  1054. BUG_ON(pud_none(*pud));
  1055. pmd = pmd_offset(pud, pg);
  1056. if (pmd_none(*pmd))
  1057. return i ? : -EFAULT;
  1058. pte = pte_offset_map(pmd, pg);
  1059. if (pte_none(*pte)) {
  1060. pte_unmap(pte);
  1061. return i ? : -EFAULT;
  1062. }
  1063. if (pages) {
  1064. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1065. pages[i] = page;
  1066. if (page)
  1067. get_page(page);
  1068. }
  1069. pte_unmap(pte);
  1070. if (vmas)
  1071. vmas[i] = gate_vma;
  1072. i++;
  1073. start += PAGE_SIZE;
  1074. len--;
  1075. continue;
  1076. }
  1077. if (!vma ||
  1078. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1079. (!ignore && !(vm_flags & vma->vm_flags)))
  1080. return i ? : -EFAULT;
  1081. if (is_vm_hugetlb_page(vma)) {
  1082. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1083. &start, &len, i, write);
  1084. continue;
  1085. }
  1086. foll_flags = FOLL_TOUCH;
  1087. if (pages)
  1088. foll_flags |= FOLL_GET;
  1089. if (!write && use_zero_page(vma))
  1090. foll_flags |= FOLL_ANON;
  1091. do {
  1092. struct page *page;
  1093. /*
  1094. * If tsk is ooming, cut off its access to large memory
  1095. * allocations. It has a pending SIGKILL, but it can't
  1096. * be processed until returning to user space.
  1097. */
  1098. if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
  1099. return i ? i : -ENOMEM;
  1100. if (write)
  1101. foll_flags |= FOLL_WRITE;
  1102. cond_resched();
  1103. while (!(page = follow_page(vma, start, foll_flags))) {
  1104. int ret;
  1105. ret = handle_mm_fault(mm, vma, start,
  1106. foll_flags & FOLL_WRITE);
  1107. if (ret & VM_FAULT_ERROR) {
  1108. if (ret & VM_FAULT_OOM)
  1109. return i ? i : -ENOMEM;
  1110. else if (ret & VM_FAULT_SIGBUS)
  1111. return i ? i : -EFAULT;
  1112. BUG();
  1113. }
  1114. if (ret & VM_FAULT_MAJOR)
  1115. tsk->maj_flt++;
  1116. else
  1117. tsk->min_flt++;
  1118. /*
  1119. * The VM_FAULT_WRITE bit tells us that
  1120. * do_wp_page has broken COW when necessary,
  1121. * even if maybe_mkwrite decided not to set
  1122. * pte_write. We can thus safely do subsequent
  1123. * page lookups as if they were reads.
  1124. */
  1125. if (ret & VM_FAULT_WRITE)
  1126. foll_flags &= ~FOLL_WRITE;
  1127. cond_resched();
  1128. }
  1129. if (IS_ERR(page))
  1130. return i ? i : PTR_ERR(page);
  1131. if (pages) {
  1132. pages[i] = page;
  1133. flush_anon_page(vma, page, start);
  1134. flush_dcache_page(page);
  1135. }
  1136. if (vmas)
  1137. vmas[i] = vma;
  1138. i++;
  1139. start += PAGE_SIZE;
  1140. len--;
  1141. } while (len && start < vma->vm_end);
  1142. } while (len);
  1143. return i;
  1144. }
  1145. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1146. unsigned long start, int len, int write, int force,
  1147. struct page **pages, struct vm_area_struct **vmas)
  1148. {
  1149. int flags = 0;
  1150. if (write)
  1151. flags |= GUP_FLAGS_WRITE;
  1152. if (force)
  1153. flags |= GUP_FLAGS_FORCE;
  1154. return __get_user_pages(tsk, mm,
  1155. start, len, flags,
  1156. pages, vmas);
  1157. }
  1158. EXPORT_SYMBOL(get_user_pages);
  1159. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1160. spinlock_t **ptl)
  1161. {
  1162. pgd_t * pgd = pgd_offset(mm, addr);
  1163. pud_t * pud = pud_alloc(mm, pgd, addr);
  1164. if (pud) {
  1165. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1166. if (pmd)
  1167. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1168. }
  1169. return NULL;
  1170. }
  1171. /*
  1172. * This is the old fallback for page remapping.
  1173. *
  1174. * For historical reasons, it only allows reserved pages. Only
  1175. * old drivers should use this, and they needed to mark their
  1176. * pages reserved for the old functions anyway.
  1177. */
  1178. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1179. struct page *page, pgprot_t prot)
  1180. {
  1181. struct mm_struct *mm = vma->vm_mm;
  1182. int retval;
  1183. pte_t *pte;
  1184. spinlock_t *ptl;
  1185. retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
  1186. if (retval)
  1187. goto out;
  1188. retval = -EINVAL;
  1189. if (PageAnon(page))
  1190. goto out_uncharge;
  1191. retval = -ENOMEM;
  1192. flush_dcache_page(page);
  1193. pte = get_locked_pte(mm, addr, &ptl);
  1194. if (!pte)
  1195. goto out_uncharge;
  1196. retval = -EBUSY;
  1197. if (!pte_none(*pte))
  1198. goto out_unlock;
  1199. /* Ok, finally just insert the thing.. */
  1200. get_page(page);
  1201. inc_mm_counter(mm, file_rss);
  1202. page_add_file_rmap(page);
  1203. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1204. retval = 0;
  1205. pte_unmap_unlock(pte, ptl);
  1206. return retval;
  1207. out_unlock:
  1208. pte_unmap_unlock(pte, ptl);
  1209. out_uncharge:
  1210. mem_cgroup_uncharge_page(page);
  1211. out:
  1212. return retval;
  1213. }
  1214. /**
  1215. * vm_insert_page - insert single page into user vma
  1216. * @vma: user vma to map to
  1217. * @addr: target user address of this page
  1218. * @page: source kernel page
  1219. *
  1220. * This allows drivers to insert individual pages they've allocated
  1221. * into a user vma.
  1222. *
  1223. * The page has to be a nice clean _individual_ kernel allocation.
  1224. * If you allocate a compound page, you need to have marked it as
  1225. * such (__GFP_COMP), or manually just split the page up yourself
  1226. * (see split_page()).
  1227. *
  1228. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1229. * took an arbitrary page protection parameter. This doesn't allow
  1230. * that. Your vma protection will have to be set up correctly, which
  1231. * means that if you want a shared writable mapping, you'd better
  1232. * ask for a shared writable mapping!
  1233. *
  1234. * The page does not need to be reserved.
  1235. */
  1236. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1237. struct page *page)
  1238. {
  1239. if (addr < vma->vm_start || addr >= vma->vm_end)
  1240. return -EFAULT;
  1241. if (!page_count(page))
  1242. return -EINVAL;
  1243. vma->vm_flags |= VM_INSERTPAGE;
  1244. return insert_page(vma, addr, page, vma->vm_page_prot);
  1245. }
  1246. EXPORT_SYMBOL(vm_insert_page);
  1247. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1248. unsigned long pfn, pgprot_t prot)
  1249. {
  1250. struct mm_struct *mm = vma->vm_mm;
  1251. int retval;
  1252. pte_t *pte, entry;
  1253. spinlock_t *ptl;
  1254. retval = -ENOMEM;
  1255. pte = get_locked_pte(mm, addr, &ptl);
  1256. if (!pte)
  1257. goto out;
  1258. retval = -EBUSY;
  1259. if (!pte_none(*pte))
  1260. goto out_unlock;
  1261. /* Ok, finally just insert the thing.. */
  1262. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1263. set_pte_at(mm, addr, pte, entry);
  1264. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1265. retval = 0;
  1266. out_unlock:
  1267. pte_unmap_unlock(pte, ptl);
  1268. out:
  1269. return retval;
  1270. }
  1271. /**
  1272. * vm_insert_pfn - insert single pfn into user vma
  1273. * @vma: user vma to map to
  1274. * @addr: target user address of this page
  1275. * @pfn: source kernel pfn
  1276. *
  1277. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1278. * they've allocated into a user vma. Same comments apply.
  1279. *
  1280. * This function should only be called from a vm_ops->fault handler, and
  1281. * in that case the handler should return NULL.
  1282. *
  1283. * vma cannot be a COW mapping.
  1284. *
  1285. * As this is called only for pages that do not currently exist, we
  1286. * do not need to flush old virtual caches or the TLB.
  1287. */
  1288. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1289. unsigned long pfn)
  1290. {
  1291. /*
  1292. * Technically, architectures with pte_special can avoid all these
  1293. * restrictions (same for remap_pfn_range). However we would like
  1294. * consistency in testing and feature parity among all, so we should
  1295. * try to keep these invariants in place for everybody.
  1296. */
  1297. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1298. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1299. (VM_PFNMAP|VM_MIXEDMAP));
  1300. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1301. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1302. if (addr < vma->vm_start || addr >= vma->vm_end)
  1303. return -EFAULT;
  1304. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1305. }
  1306. EXPORT_SYMBOL(vm_insert_pfn);
  1307. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1308. unsigned long pfn)
  1309. {
  1310. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1311. if (addr < vma->vm_start || addr >= vma->vm_end)
  1312. return -EFAULT;
  1313. /*
  1314. * If we don't have pte special, then we have to use the pfn_valid()
  1315. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1316. * refcount the page if pfn_valid is true (hence insert_page rather
  1317. * than insert_pfn).
  1318. */
  1319. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1320. struct page *page;
  1321. page = pfn_to_page(pfn);
  1322. return insert_page(vma, addr, page, vma->vm_page_prot);
  1323. }
  1324. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1325. }
  1326. EXPORT_SYMBOL(vm_insert_mixed);
  1327. /*
  1328. * maps a range of physical memory into the requested pages. the old
  1329. * mappings are removed. any references to nonexistent pages results
  1330. * in null mappings (currently treated as "copy-on-access")
  1331. */
  1332. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1333. unsigned long addr, unsigned long end,
  1334. unsigned long pfn, pgprot_t prot)
  1335. {
  1336. pte_t *pte;
  1337. spinlock_t *ptl;
  1338. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1339. if (!pte)
  1340. return -ENOMEM;
  1341. arch_enter_lazy_mmu_mode();
  1342. do {
  1343. BUG_ON(!pte_none(*pte));
  1344. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1345. pfn++;
  1346. } while (pte++, addr += PAGE_SIZE, addr != end);
  1347. arch_leave_lazy_mmu_mode();
  1348. pte_unmap_unlock(pte - 1, ptl);
  1349. return 0;
  1350. }
  1351. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1352. unsigned long addr, unsigned long end,
  1353. unsigned long pfn, pgprot_t prot)
  1354. {
  1355. pmd_t *pmd;
  1356. unsigned long next;
  1357. pfn -= addr >> PAGE_SHIFT;
  1358. pmd = pmd_alloc(mm, pud, addr);
  1359. if (!pmd)
  1360. return -ENOMEM;
  1361. do {
  1362. next = pmd_addr_end(addr, end);
  1363. if (remap_pte_range(mm, pmd, addr, next,
  1364. pfn + (addr >> PAGE_SHIFT), prot))
  1365. return -ENOMEM;
  1366. } while (pmd++, addr = next, addr != end);
  1367. return 0;
  1368. }
  1369. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1370. unsigned long addr, unsigned long end,
  1371. unsigned long pfn, pgprot_t prot)
  1372. {
  1373. pud_t *pud;
  1374. unsigned long next;
  1375. pfn -= addr >> PAGE_SHIFT;
  1376. pud = pud_alloc(mm, pgd, addr);
  1377. if (!pud)
  1378. return -ENOMEM;
  1379. do {
  1380. next = pud_addr_end(addr, end);
  1381. if (remap_pmd_range(mm, pud, addr, next,
  1382. pfn + (addr >> PAGE_SHIFT), prot))
  1383. return -ENOMEM;
  1384. } while (pud++, addr = next, addr != end);
  1385. return 0;
  1386. }
  1387. /**
  1388. * remap_pfn_range - remap kernel memory to userspace
  1389. * @vma: user vma to map to
  1390. * @addr: target user address to start at
  1391. * @pfn: physical address of kernel memory
  1392. * @size: size of map area
  1393. * @prot: page protection flags for this mapping
  1394. *
  1395. * Note: this is only safe if the mm semaphore is held when called.
  1396. */
  1397. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1398. unsigned long pfn, unsigned long size, pgprot_t prot)
  1399. {
  1400. pgd_t *pgd;
  1401. unsigned long next;
  1402. unsigned long end = addr + PAGE_ALIGN(size);
  1403. struct mm_struct *mm = vma->vm_mm;
  1404. int err;
  1405. /*
  1406. * Physically remapped pages are special. Tell the
  1407. * rest of the world about it:
  1408. * VM_IO tells people not to look at these pages
  1409. * (accesses can have side effects).
  1410. * VM_RESERVED is specified all over the place, because
  1411. * in 2.4 it kept swapout's vma scan off this vma; but
  1412. * in 2.6 the LRU scan won't even find its pages, so this
  1413. * flag means no more than count its pages in reserved_vm,
  1414. * and omit it from core dump, even when VM_IO turned off.
  1415. * VM_PFNMAP tells the core MM that the base pages are just
  1416. * raw PFN mappings, and do not have a "struct page" associated
  1417. * with them.
  1418. *
  1419. * There's a horrible special case to handle copy-on-write
  1420. * behaviour that some programs depend on. We mark the "original"
  1421. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1422. */
  1423. if (is_cow_mapping(vma->vm_flags)) {
  1424. if (addr != vma->vm_start || end != vma->vm_end)
  1425. return -EINVAL;
  1426. vma->vm_pgoff = pfn;
  1427. }
  1428. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1429. BUG_ON(addr >= end);
  1430. pfn -= addr >> PAGE_SHIFT;
  1431. pgd = pgd_offset(mm, addr);
  1432. flush_cache_range(vma, addr, end);
  1433. do {
  1434. next = pgd_addr_end(addr, end);
  1435. err = remap_pud_range(mm, pgd, addr, next,
  1436. pfn + (addr >> PAGE_SHIFT), prot);
  1437. if (err)
  1438. break;
  1439. } while (pgd++, addr = next, addr != end);
  1440. return err;
  1441. }
  1442. EXPORT_SYMBOL(remap_pfn_range);
  1443. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1444. unsigned long addr, unsigned long end,
  1445. pte_fn_t fn, void *data)
  1446. {
  1447. pte_t *pte;
  1448. int err;
  1449. pgtable_t token;
  1450. spinlock_t *uninitialized_var(ptl);
  1451. pte = (mm == &init_mm) ?
  1452. pte_alloc_kernel(pmd, addr) :
  1453. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1454. if (!pte)
  1455. return -ENOMEM;
  1456. BUG_ON(pmd_huge(*pmd));
  1457. token = pmd_pgtable(*pmd);
  1458. do {
  1459. err = fn(pte, token, addr, data);
  1460. if (err)
  1461. break;
  1462. } while (pte++, addr += PAGE_SIZE, addr != end);
  1463. if (mm != &init_mm)
  1464. pte_unmap_unlock(pte-1, ptl);
  1465. return err;
  1466. }
  1467. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1468. unsigned long addr, unsigned long end,
  1469. pte_fn_t fn, void *data)
  1470. {
  1471. pmd_t *pmd;
  1472. unsigned long next;
  1473. int err;
  1474. BUG_ON(pud_huge(*pud));
  1475. pmd = pmd_alloc(mm, pud, addr);
  1476. if (!pmd)
  1477. return -ENOMEM;
  1478. do {
  1479. next = pmd_addr_end(addr, end);
  1480. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1481. if (err)
  1482. break;
  1483. } while (pmd++, addr = next, addr != end);
  1484. return err;
  1485. }
  1486. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1487. unsigned long addr, unsigned long end,
  1488. pte_fn_t fn, void *data)
  1489. {
  1490. pud_t *pud;
  1491. unsigned long next;
  1492. int err;
  1493. pud = pud_alloc(mm, pgd, addr);
  1494. if (!pud)
  1495. return -ENOMEM;
  1496. do {
  1497. next = pud_addr_end(addr, end);
  1498. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1499. if (err)
  1500. break;
  1501. } while (pud++, addr = next, addr != end);
  1502. return err;
  1503. }
  1504. /*
  1505. * Scan a region of virtual memory, filling in page tables as necessary
  1506. * and calling a provided function on each leaf page table.
  1507. */
  1508. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1509. unsigned long size, pte_fn_t fn, void *data)
  1510. {
  1511. pgd_t *pgd;
  1512. unsigned long next;
  1513. unsigned long start = addr, end = addr + size;
  1514. int err;
  1515. BUG_ON(addr >= end);
  1516. mmu_notifier_invalidate_range_start(mm, start, end);
  1517. pgd = pgd_offset(mm, addr);
  1518. do {
  1519. next = pgd_addr_end(addr, end);
  1520. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1521. if (err)
  1522. break;
  1523. } while (pgd++, addr = next, addr != end);
  1524. mmu_notifier_invalidate_range_end(mm, start, end);
  1525. return err;
  1526. }
  1527. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1528. /*
  1529. * handle_pte_fault chooses page fault handler according to an entry
  1530. * which was read non-atomically. Before making any commitment, on
  1531. * those architectures or configurations (e.g. i386 with PAE) which
  1532. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1533. * must check under lock before unmapping the pte and proceeding
  1534. * (but do_wp_page is only called after already making such a check;
  1535. * and do_anonymous_page and do_no_page can safely check later on).
  1536. */
  1537. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1538. pte_t *page_table, pte_t orig_pte)
  1539. {
  1540. int same = 1;
  1541. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1542. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1543. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1544. spin_lock(ptl);
  1545. same = pte_same(*page_table, orig_pte);
  1546. spin_unlock(ptl);
  1547. }
  1548. #endif
  1549. pte_unmap(page_table);
  1550. return same;
  1551. }
  1552. /*
  1553. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1554. * servicing faults for write access. In the normal case, do always want
  1555. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1556. * that do not have writing enabled, when used by access_process_vm.
  1557. */
  1558. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1559. {
  1560. if (likely(vma->vm_flags & VM_WRITE))
  1561. pte = pte_mkwrite(pte);
  1562. return pte;
  1563. }
  1564. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1565. {
  1566. /*
  1567. * If the source page was a PFN mapping, we don't have
  1568. * a "struct page" for it. We do a best-effort copy by
  1569. * just copying from the original user address. If that
  1570. * fails, we just zero-fill it. Live with it.
  1571. */
  1572. if (unlikely(!src)) {
  1573. void *kaddr = kmap_atomic(dst, KM_USER0);
  1574. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1575. /*
  1576. * This really shouldn't fail, because the page is there
  1577. * in the page tables. But it might just be unreadable,
  1578. * in which case we just give up and fill the result with
  1579. * zeroes.
  1580. */
  1581. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1582. memset(kaddr, 0, PAGE_SIZE);
  1583. kunmap_atomic(kaddr, KM_USER0);
  1584. flush_dcache_page(dst);
  1585. } else
  1586. copy_user_highpage(dst, src, va, vma);
  1587. }
  1588. /*
  1589. * This routine handles present pages, when users try to write
  1590. * to a shared page. It is done by copying the page to a new address
  1591. * and decrementing the shared-page counter for the old page.
  1592. *
  1593. * Note that this routine assumes that the protection checks have been
  1594. * done by the caller (the low-level page fault routine in most cases).
  1595. * Thus we can safely just mark it writable once we've done any necessary
  1596. * COW.
  1597. *
  1598. * We also mark the page dirty at this point even though the page will
  1599. * change only once the write actually happens. This avoids a few races,
  1600. * and potentially makes it more efficient.
  1601. *
  1602. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1603. * but allow concurrent faults), with pte both mapped and locked.
  1604. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1605. */
  1606. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1607. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1608. spinlock_t *ptl, pte_t orig_pte)
  1609. {
  1610. struct page *old_page, *new_page;
  1611. pte_t entry;
  1612. int reuse = 0, ret = 0;
  1613. int page_mkwrite = 0;
  1614. struct page *dirty_page = NULL;
  1615. old_page = vm_normal_page(vma, address, orig_pte);
  1616. if (!old_page) {
  1617. /*
  1618. * VM_MIXEDMAP !pfn_valid() case
  1619. *
  1620. * We should not cow pages in a shared writeable mapping.
  1621. * Just mark the pages writable as we can't do any dirty
  1622. * accounting on raw pfn maps.
  1623. */
  1624. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1625. (VM_WRITE|VM_SHARED))
  1626. goto reuse;
  1627. goto gotten;
  1628. }
  1629. /*
  1630. * Take out anonymous pages first, anonymous shared vmas are
  1631. * not dirty accountable.
  1632. */
  1633. if (PageAnon(old_page)) {
  1634. if (trylock_page(old_page)) {
  1635. reuse = can_share_swap_page(old_page);
  1636. unlock_page(old_page);
  1637. }
  1638. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1639. (VM_WRITE|VM_SHARED))) {
  1640. /*
  1641. * Only catch write-faults on shared writable pages,
  1642. * read-only shared pages can get COWed by
  1643. * get_user_pages(.write=1, .force=1).
  1644. */
  1645. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1646. /*
  1647. * Notify the address space that the page is about to
  1648. * become writable so that it can prohibit this or wait
  1649. * for the page to get into an appropriate state.
  1650. *
  1651. * We do this without the lock held, so that it can
  1652. * sleep if it needs to.
  1653. */
  1654. page_cache_get(old_page);
  1655. pte_unmap_unlock(page_table, ptl);
  1656. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1657. goto unwritable_page;
  1658. /*
  1659. * Since we dropped the lock we need to revalidate
  1660. * the PTE as someone else may have changed it. If
  1661. * they did, we just return, as we can count on the
  1662. * MMU to tell us if they didn't also make it writable.
  1663. */
  1664. page_table = pte_offset_map_lock(mm, pmd, address,
  1665. &ptl);
  1666. page_cache_release(old_page);
  1667. if (!pte_same(*page_table, orig_pte))
  1668. goto unlock;
  1669. page_mkwrite = 1;
  1670. }
  1671. dirty_page = old_page;
  1672. get_page(dirty_page);
  1673. reuse = 1;
  1674. }
  1675. if (reuse) {
  1676. reuse:
  1677. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1678. entry = pte_mkyoung(orig_pte);
  1679. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1680. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1681. update_mmu_cache(vma, address, entry);
  1682. ret |= VM_FAULT_WRITE;
  1683. goto unlock;
  1684. }
  1685. /*
  1686. * Ok, we need to copy. Oh, well..
  1687. */
  1688. page_cache_get(old_page);
  1689. gotten:
  1690. pte_unmap_unlock(page_table, ptl);
  1691. if (unlikely(anon_vma_prepare(vma)))
  1692. goto oom;
  1693. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1694. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1695. if (!new_page)
  1696. goto oom;
  1697. /*
  1698. * Don't let another task, with possibly unlocked vma,
  1699. * keep the mlocked page.
  1700. */
  1701. if (vma->vm_flags & VM_LOCKED) {
  1702. lock_page(old_page); /* for LRU manipulation */
  1703. clear_page_mlock(old_page);
  1704. unlock_page(old_page);
  1705. }
  1706. cow_user_page(new_page, old_page, address, vma);
  1707. __SetPageUptodate(new_page);
  1708. if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
  1709. goto oom_free_new;
  1710. /*
  1711. * Re-check the pte - we dropped the lock
  1712. */
  1713. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1714. if (likely(pte_same(*page_table, orig_pte))) {
  1715. if (old_page) {
  1716. if (!PageAnon(old_page)) {
  1717. dec_mm_counter(mm, file_rss);
  1718. inc_mm_counter(mm, anon_rss);
  1719. }
  1720. } else
  1721. inc_mm_counter(mm, anon_rss);
  1722. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1723. entry = mk_pte(new_page, vma->vm_page_prot);
  1724. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1725. /*
  1726. * Clear the pte entry and flush it first, before updating the
  1727. * pte with the new entry. This will avoid a race condition
  1728. * seen in the presence of one thread doing SMC and another
  1729. * thread doing COW.
  1730. */
  1731. ptep_clear_flush_notify(vma, address, page_table);
  1732. SetPageSwapBacked(new_page);
  1733. lru_cache_add_active_or_unevictable(new_page, vma);
  1734. page_add_new_anon_rmap(new_page, vma, address);
  1735. //TODO: is this safe? do_anonymous_page() does it this way.
  1736. set_pte_at(mm, address, page_table, entry);
  1737. update_mmu_cache(vma, address, entry);
  1738. if (old_page) {
  1739. /*
  1740. * Only after switching the pte to the new page may
  1741. * we remove the mapcount here. Otherwise another
  1742. * process may come and find the rmap count decremented
  1743. * before the pte is switched to the new page, and
  1744. * "reuse" the old page writing into it while our pte
  1745. * here still points into it and can be read by other
  1746. * threads.
  1747. *
  1748. * The critical issue is to order this
  1749. * page_remove_rmap with the ptp_clear_flush above.
  1750. * Those stores are ordered by (if nothing else,)
  1751. * the barrier present in the atomic_add_negative
  1752. * in page_remove_rmap.
  1753. *
  1754. * Then the TLB flush in ptep_clear_flush ensures that
  1755. * no process can access the old page before the
  1756. * decremented mapcount is visible. And the old page
  1757. * cannot be reused until after the decremented
  1758. * mapcount is visible. So transitively, TLBs to
  1759. * old page will be flushed before it can be reused.
  1760. */
  1761. page_remove_rmap(old_page, vma);
  1762. }
  1763. /* Free the old page.. */
  1764. new_page = old_page;
  1765. ret |= VM_FAULT_WRITE;
  1766. } else
  1767. mem_cgroup_uncharge_page(new_page);
  1768. if (new_page)
  1769. page_cache_release(new_page);
  1770. if (old_page)
  1771. page_cache_release(old_page);
  1772. unlock:
  1773. pte_unmap_unlock(page_table, ptl);
  1774. if (dirty_page) {
  1775. if (vma->vm_file)
  1776. file_update_time(vma->vm_file);
  1777. /*
  1778. * Yes, Virginia, this is actually required to prevent a race
  1779. * with clear_page_dirty_for_io() from clearing the page dirty
  1780. * bit after it clear all dirty ptes, but before a racing
  1781. * do_wp_page installs a dirty pte.
  1782. *
  1783. * do_no_page is protected similarly.
  1784. */
  1785. wait_on_page_locked(dirty_page);
  1786. set_page_dirty_balance(dirty_page, page_mkwrite);
  1787. put_page(dirty_page);
  1788. }
  1789. return ret;
  1790. oom_free_new:
  1791. page_cache_release(new_page);
  1792. oom:
  1793. if (old_page)
  1794. page_cache_release(old_page);
  1795. return VM_FAULT_OOM;
  1796. unwritable_page:
  1797. page_cache_release(old_page);
  1798. return VM_FAULT_SIGBUS;
  1799. }
  1800. /*
  1801. * Helper functions for unmap_mapping_range().
  1802. *
  1803. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1804. *
  1805. * We have to restart searching the prio_tree whenever we drop the lock,
  1806. * since the iterator is only valid while the lock is held, and anyway
  1807. * a later vma might be split and reinserted earlier while lock dropped.
  1808. *
  1809. * The list of nonlinear vmas could be handled more efficiently, using
  1810. * a placeholder, but handle it in the same way until a need is shown.
  1811. * It is important to search the prio_tree before nonlinear list: a vma
  1812. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1813. * while the lock is dropped; but never shifted from list to prio_tree.
  1814. *
  1815. * In order to make forward progress despite restarting the search,
  1816. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1817. * quickly skip it next time around. Since the prio_tree search only
  1818. * shows us those vmas affected by unmapping the range in question, we
  1819. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1820. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1821. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1822. * i_mmap_lock.
  1823. *
  1824. * In order to make forward progress despite repeatedly restarting some
  1825. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1826. * and restart from that address when we reach that vma again. It might
  1827. * have been split or merged, shrunk or extended, but never shifted: so
  1828. * restart_addr remains valid so long as it remains in the vma's range.
  1829. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1830. * values so we can save vma's restart_addr in its truncate_count field.
  1831. */
  1832. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1833. static void reset_vma_truncate_counts(struct address_space *mapping)
  1834. {
  1835. struct vm_area_struct *vma;
  1836. struct prio_tree_iter iter;
  1837. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1838. vma->vm_truncate_count = 0;
  1839. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1840. vma->vm_truncate_count = 0;
  1841. }
  1842. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1843. unsigned long start_addr, unsigned long end_addr,
  1844. struct zap_details *details)
  1845. {
  1846. unsigned long restart_addr;
  1847. int need_break;
  1848. /*
  1849. * files that support invalidating or truncating portions of the
  1850. * file from under mmaped areas must have their ->fault function
  1851. * return a locked page (and set VM_FAULT_LOCKED in the return).
  1852. * This provides synchronisation against concurrent unmapping here.
  1853. */
  1854. again:
  1855. restart_addr = vma->vm_truncate_count;
  1856. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1857. start_addr = restart_addr;
  1858. if (start_addr >= end_addr) {
  1859. /* Top of vma has been split off since last time */
  1860. vma->vm_truncate_count = details->truncate_count;
  1861. return 0;
  1862. }
  1863. }
  1864. restart_addr = zap_page_range(vma, start_addr,
  1865. end_addr - start_addr, details);
  1866. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  1867. if (restart_addr >= end_addr) {
  1868. /* We have now completed this vma: mark it so */
  1869. vma->vm_truncate_count = details->truncate_count;
  1870. if (!need_break)
  1871. return 0;
  1872. } else {
  1873. /* Note restart_addr in vma's truncate_count field */
  1874. vma->vm_truncate_count = restart_addr;
  1875. if (!need_break)
  1876. goto again;
  1877. }
  1878. spin_unlock(details->i_mmap_lock);
  1879. cond_resched();
  1880. spin_lock(details->i_mmap_lock);
  1881. return -EINTR;
  1882. }
  1883. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1884. struct zap_details *details)
  1885. {
  1886. struct vm_area_struct *vma;
  1887. struct prio_tree_iter iter;
  1888. pgoff_t vba, vea, zba, zea;
  1889. restart:
  1890. vma_prio_tree_foreach(vma, &iter, root,
  1891. details->first_index, details->last_index) {
  1892. /* Skip quickly over those we have already dealt with */
  1893. if (vma->vm_truncate_count == details->truncate_count)
  1894. continue;
  1895. vba = vma->vm_pgoff;
  1896. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1897. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1898. zba = details->first_index;
  1899. if (zba < vba)
  1900. zba = vba;
  1901. zea = details->last_index;
  1902. if (zea > vea)
  1903. zea = vea;
  1904. if (unmap_mapping_range_vma(vma,
  1905. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1906. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1907. details) < 0)
  1908. goto restart;
  1909. }
  1910. }
  1911. static inline void unmap_mapping_range_list(struct list_head *head,
  1912. struct zap_details *details)
  1913. {
  1914. struct vm_area_struct *vma;
  1915. /*
  1916. * In nonlinear VMAs there is no correspondence between virtual address
  1917. * offset and file offset. So we must perform an exhaustive search
  1918. * across *all* the pages in each nonlinear VMA, not just the pages
  1919. * whose virtual address lies outside the file truncation point.
  1920. */
  1921. restart:
  1922. list_for_each_entry(vma, head, shared.vm_set.list) {
  1923. /* Skip quickly over those we have already dealt with */
  1924. if (vma->vm_truncate_count == details->truncate_count)
  1925. continue;
  1926. details->nonlinear_vma = vma;
  1927. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1928. vma->vm_end, details) < 0)
  1929. goto restart;
  1930. }
  1931. }
  1932. /**
  1933. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  1934. * @mapping: the address space containing mmaps to be unmapped.
  1935. * @holebegin: byte in first page to unmap, relative to the start of
  1936. * the underlying file. This will be rounded down to a PAGE_SIZE
  1937. * boundary. Note that this is different from vmtruncate(), which
  1938. * must keep the partial page. In contrast, we must get rid of
  1939. * partial pages.
  1940. * @holelen: size of prospective hole in bytes. This will be rounded
  1941. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1942. * end of the file.
  1943. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1944. * but 0 when invalidating pagecache, don't throw away private data.
  1945. */
  1946. void unmap_mapping_range(struct address_space *mapping,
  1947. loff_t const holebegin, loff_t const holelen, int even_cows)
  1948. {
  1949. struct zap_details details;
  1950. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1951. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1952. /* Check for overflow. */
  1953. if (sizeof(holelen) > sizeof(hlen)) {
  1954. long long holeend =
  1955. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1956. if (holeend & ~(long long)ULONG_MAX)
  1957. hlen = ULONG_MAX - hba + 1;
  1958. }
  1959. details.check_mapping = even_cows? NULL: mapping;
  1960. details.nonlinear_vma = NULL;
  1961. details.first_index = hba;
  1962. details.last_index = hba + hlen - 1;
  1963. if (details.last_index < details.first_index)
  1964. details.last_index = ULONG_MAX;
  1965. details.i_mmap_lock = &mapping->i_mmap_lock;
  1966. spin_lock(&mapping->i_mmap_lock);
  1967. /* Protect against endless unmapping loops */
  1968. mapping->truncate_count++;
  1969. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1970. if (mapping->truncate_count == 0)
  1971. reset_vma_truncate_counts(mapping);
  1972. mapping->truncate_count++;
  1973. }
  1974. details.truncate_count = mapping->truncate_count;
  1975. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1976. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1977. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1978. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1979. spin_unlock(&mapping->i_mmap_lock);
  1980. }
  1981. EXPORT_SYMBOL(unmap_mapping_range);
  1982. /**
  1983. * vmtruncate - unmap mappings "freed" by truncate() syscall
  1984. * @inode: inode of the file used
  1985. * @offset: file offset to start truncating
  1986. *
  1987. * NOTE! We have to be ready to update the memory sharing
  1988. * between the file and the memory map for a potential last
  1989. * incomplete page. Ugly, but necessary.
  1990. */
  1991. int vmtruncate(struct inode * inode, loff_t offset)
  1992. {
  1993. if (inode->i_size < offset) {
  1994. unsigned long limit;
  1995. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1996. if (limit != RLIM_INFINITY && offset > limit)
  1997. goto out_sig;
  1998. if (offset > inode->i_sb->s_maxbytes)
  1999. goto out_big;
  2000. i_size_write(inode, offset);
  2001. } else {
  2002. struct address_space *mapping = inode->i_mapping;
  2003. /*
  2004. * truncation of in-use swapfiles is disallowed - it would
  2005. * cause subsequent swapout to scribble on the now-freed
  2006. * blocks.
  2007. */
  2008. if (IS_SWAPFILE(inode))
  2009. return -ETXTBSY;
  2010. i_size_write(inode, offset);
  2011. /*
  2012. * unmap_mapping_range is called twice, first simply for
  2013. * efficiency so that truncate_inode_pages does fewer
  2014. * single-page unmaps. However after this first call, and
  2015. * before truncate_inode_pages finishes, it is possible for
  2016. * private pages to be COWed, which remain after
  2017. * truncate_inode_pages finishes, hence the second
  2018. * unmap_mapping_range call must be made for correctness.
  2019. */
  2020. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2021. truncate_inode_pages(mapping, offset);
  2022. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2023. }
  2024. if (inode->i_op && inode->i_op->truncate)
  2025. inode->i_op->truncate(inode);
  2026. return 0;
  2027. out_sig:
  2028. send_sig(SIGXFSZ, current, 0);
  2029. out_big:
  2030. return -EFBIG;
  2031. }
  2032. EXPORT_SYMBOL(vmtruncate);
  2033. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2034. {
  2035. struct address_space *mapping = inode->i_mapping;
  2036. /*
  2037. * If the underlying filesystem is not going to provide
  2038. * a way to truncate a range of blocks (punch a hole) -
  2039. * we should return failure right now.
  2040. */
  2041. if (!inode->i_op || !inode->i_op->truncate_range)
  2042. return -ENOSYS;
  2043. mutex_lock(&inode->i_mutex);
  2044. down_write(&inode->i_alloc_sem);
  2045. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2046. truncate_inode_pages_range(mapping, offset, end);
  2047. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2048. inode->i_op->truncate_range(inode, offset, end);
  2049. up_write(&inode->i_alloc_sem);
  2050. mutex_unlock(&inode->i_mutex);
  2051. return 0;
  2052. }
  2053. /*
  2054. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2055. * but allow concurrent faults), and pte mapped but not yet locked.
  2056. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2057. */
  2058. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2059. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2060. int write_access, pte_t orig_pte)
  2061. {
  2062. spinlock_t *ptl;
  2063. struct page *page;
  2064. swp_entry_t entry;
  2065. pte_t pte;
  2066. int ret = 0;
  2067. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2068. goto out;
  2069. entry = pte_to_swp_entry(orig_pte);
  2070. if (is_migration_entry(entry)) {
  2071. migration_entry_wait(mm, pmd, address);
  2072. goto out;
  2073. }
  2074. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2075. page = lookup_swap_cache(entry);
  2076. if (!page) {
  2077. grab_swap_token(); /* Contend for token _before_ read-in */
  2078. page = swapin_readahead(entry,
  2079. GFP_HIGHUSER_MOVABLE, vma, address);
  2080. if (!page) {
  2081. /*
  2082. * Back out if somebody else faulted in this pte
  2083. * while we released the pte lock.
  2084. */
  2085. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2086. if (likely(pte_same(*page_table, orig_pte)))
  2087. ret = VM_FAULT_OOM;
  2088. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2089. goto unlock;
  2090. }
  2091. /* Had to read the page from swap area: Major fault */
  2092. ret = VM_FAULT_MAJOR;
  2093. count_vm_event(PGMAJFAULT);
  2094. }
  2095. if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
  2096. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2097. ret = VM_FAULT_OOM;
  2098. goto out;
  2099. }
  2100. mark_page_accessed(page);
  2101. lock_page(page);
  2102. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2103. /*
  2104. * Back out if somebody else already faulted in this pte.
  2105. */
  2106. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2107. if (unlikely(!pte_same(*page_table, orig_pte)))
  2108. goto out_nomap;
  2109. if (unlikely(!PageUptodate(page))) {
  2110. ret = VM_FAULT_SIGBUS;
  2111. goto out_nomap;
  2112. }
  2113. /* The page isn't present yet, go ahead with the fault. */
  2114. inc_mm_counter(mm, anon_rss);
  2115. pte = mk_pte(page, vma->vm_page_prot);
  2116. if (write_access && can_share_swap_page(page)) {
  2117. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2118. write_access = 0;
  2119. }
  2120. flush_icache_page(vma, page);
  2121. set_pte_at(mm, address, page_table, pte);
  2122. page_add_anon_rmap(page, vma, address);
  2123. swap_free(entry);
  2124. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2125. remove_exclusive_swap_page(page);
  2126. unlock_page(page);
  2127. if (write_access) {
  2128. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2129. if (ret & VM_FAULT_ERROR)
  2130. ret &= VM_FAULT_ERROR;
  2131. goto out;
  2132. }
  2133. /* No need to invalidate - it was non-present before */
  2134. update_mmu_cache(vma, address, pte);
  2135. unlock:
  2136. pte_unmap_unlock(page_table, ptl);
  2137. out:
  2138. return ret;
  2139. out_nomap:
  2140. mem_cgroup_uncharge_page(page);
  2141. pte_unmap_unlock(page_table, ptl);
  2142. unlock_page(page);
  2143. page_cache_release(page);
  2144. return ret;
  2145. }
  2146. /*
  2147. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2148. * but allow concurrent faults), and pte mapped but not yet locked.
  2149. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2150. */
  2151. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2152. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2153. int write_access)
  2154. {
  2155. struct page *page;
  2156. spinlock_t *ptl;
  2157. pte_t entry;
  2158. /* Allocate our own private page. */
  2159. pte_unmap(page_table);
  2160. if (unlikely(anon_vma_prepare(vma)))
  2161. goto oom;
  2162. page = alloc_zeroed_user_highpage_movable(vma, address);
  2163. if (!page)
  2164. goto oom;
  2165. __SetPageUptodate(page);
  2166. if (mem_cgroup_charge(page, mm, GFP_KERNEL))
  2167. goto oom_free_page;
  2168. entry = mk_pte(page, vma->vm_page_prot);
  2169. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2170. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2171. if (!pte_none(*page_table))
  2172. goto release;
  2173. inc_mm_counter(mm, anon_rss);
  2174. SetPageSwapBacked(page);
  2175. lru_cache_add_active_or_unevictable(page, vma);
  2176. page_add_new_anon_rmap(page, vma, address);
  2177. set_pte_at(mm, address, page_table, entry);
  2178. /* No need to invalidate - it was non-present before */
  2179. update_mmu_cache(vma, address, entry);
  2180. unlock:
  2181. pte_unmap_unlock(page_table, ptl);
  2182. return 0;
  2183. release:
  2184. mem_cgroup_uncharge_page(page);
  2185. page_cache_release(page);
  2186. goto unlock;
  2187. oom_free_page:
  2188. page_cache_release(page);
  2189. oom:
  2190. return VM_FAULT_OOM;
  2191. }
  2192. /*
  2193. * __do_fault() tries to create a new page mapping. It aggressively
  2194. * tries to share with existing pages, but makes a separate copy if
  2195. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2196. * the next page fault.
  2197. *
  2198. * As this is called only for pages that do not currently exist, we
  2199. * do not need to flush old virtual caches or the TLB.
  2200. *
  2201. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2202. * but allow concurrent faults), and pte neither mapped nor locked.
  2203. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2204. */
  2205. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2206. unsigned long address, pmd_t *pmd,
  2207. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2208. {
  2209. pte_t *page_table;
  2210. spinlock_t *ptl;
  2211. struct page *page;
  2212. pte_t entry;
  2213. int anon = 0;
  2214. struct page *dirty_page = NULL;
  2215. struct vm_fault vmf;
  2216. int ret;
  2217. int page_mkwrite = 0;
  2218. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2219. vmf.pgoff = pgoff;
  2220. vmf.flags = flags;
  2221. vmf.page = NULL;
  2222. ret = vma->vm_ops->fault(vma, &vmf);
  2223. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2224. return ret;
  2225. /*
  2226. * For consistency in subsequent calls, make the faulted page always
  2227. * locked.
  2228. */
  2229. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2230. lock_page(vmf.page);
  2231. else
  2232. VM_BUG_ON(!PageLocked(vmf.page));
  2233. /*
  2234. * Should we do an early C-O-W break?
  2235. */
  2236. page = vmf.page;
  2237. if (flags & FAULT_FLAG_WRITE) {
  2238. if (!(vma->vm_flags & VM_SHARED)) {
  2239. anon = 1;
  2240. if (unlikely(anon_vma_prepare(vma))) {
  2241. ret = VM_FAULT_OOM;
  2242. goto out;
  2243. }
  2244. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2245. vma, address);
  2246. if (!page) {
  2247. ret = VM_FAULT_OOM;
  2248. goto out;
  2249. }
  2250. /*
  2251. * Don't let another task, with possibly unlocked vma,
  2252. * keep the mlocked page.
  2253. */
  2254. if (vma->vm_flags & VM_LOCKED)
  2255. clear_page_mlock(vmf.page);
  2256. copy_user_highpage(page, vmf.page, address, vma);
  2257. __SetPageUptodate(page);
  2258. } else {
  2259. /*
  2260. * If the page will be shareable, see if the backing
  2261. * address space wants to know that the page is about
  2262. * to become writable
  2263. */
  2264. if (vma->vm_ops->page_mkwrite) {
  2265. unlock_page(page);
  2266. if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
  2267. ret = VM_FAULT_SIGBUS;
  2268. anon = 1; /* no anon but release vmf.page */
  2269. goto out_unlocked;
  2270. }
  2271. lock_page(page);
  2272. /*
  2273. * XXX: this is not quite right (racy vs
  2274. * invalidate) to unlock and relock the page
  2275. * like this, however a better fix requires
  2276. * reworking page_mkwrite locking API, which
  2277. * is better done later.
  2278. */
  2279. if (!page->mapping) {
  2280. ret = 0;
  2281. anon = 1; /* no anon but release vmf.page */
  2282. goto out;
  2283. }
  2284. page_mkwrite = 1;
  2285. }
  2286. }
  2287. }
  2288. if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
  2289. ret = VM_FAULT_OOM;
  2290. goto out;
  2291. }
  2292. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2293. /*
  2294. * This silly early PAGE_DIRTY setting removes a race
  2295. * due to the bad i386 page protection. But it's valid
  2296. * for other architectures too.
  2297. *
  2298. * Note that if write_access is true, we either now have
  2299. * an exclusive copy of the page, or this is a shared mapping,
  2300. * so we can make it writable and dirty to avoid having to
  2301. * handle that later.
  2302. */
  2303. /* Only go through if we didn't race with anybody else... */
  2304. if (likely(pte_same(*page_table, orig_pte))) {
  2305. flush_icache_page(vma, page);
  2306. entry = mk_pte(page, vma->vm_page_prot);
  2307. if (flags & FAULT_FLAG_WRITE)
  2308. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2309. if (anon) {
  2310. inc_mm_counter(mm, anon_rss);
  2311. SetPageSwapBacked(page);
  2312. lru_cache_add_active_or_unevictable(page, vma);
  2313. page_add_new_anon_rmap(page, vma, address);
  2314. } else {
  2315. inc_mm_counter(mm, file_rss);
  2316. page_add_file_rmap(page);
  2317. if (flags & FAULT_FLAG_WRITE) {
  2318. dirty_page = page;
  2319. get_page(dirty_page);
  2320. }
  2321. }
  2322. //TODO: is this safe? do_anonymous_page() does it this way.
  2323. set_pte_at(mm, address, page_table, entry);
  2324. /* no need to invalidate: a not-present page won't be cached */
  2325. update_mmu_cache(vma, address, entry);
  2326. } else {
  2327. mem_cgroup_uncharge_page(page);
  2328. if (anon)
  2329. page_cache_release(page);
  2330. else
  2331. anon = 1; /* no anon but release faulted_page */
  2332. }
  2333. pte_unmap_unlock(page_table, ptl);
  2334. out:
  2335. unlock_page(vmf.page);
  2336. out_unlocked:
  2337. if (anon)
  2338. page_cache_release(vmf.page);
  2339. else if (dirty_page) {
  2340. if (vma->vm_file)
  2341. file_update_time(vma->vm_file);
  2342. set_page_dirty_balance(dirty_page, page_mkwrite);
  2343. put_page(dirty_page);
  2344. }
  2345. return ret;
  2346. }
  2347. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2348. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2349. int write_access, pte_t orig_pte)
  2350. {
  2351. pgoff_t pgoff = (((address & PAGE_MASK)
  2352. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2353. unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
  2354. pte_unmap(page_table);
  2355. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2356. }
  2357. /*
  2358. * Fault of a previously existing named mapping. Repopulate the pte
  2359. * from the encoded file_pte if possible. This enables swappable
  2360. * nonlinear vmas.
  2361. *
  2362. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2363. * but allow concurrent faults), and pte mapped but not yet locked.
  2364. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2365. */
  2366. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2367. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2368. int write_access, pte_t orig_pte)
  2369. {
  2370. unsigned int flags = FAULT_FLAG_NONLINEAR |
  2371. (write_access ? FAULT_FLAG_WRITE : 0);
  2372. pgoff_t pgoff;
  2373. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2374. return 0;
  2375. if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
  2376. !(vma->vm_flags & VM_CAN_NONLINEAR))) {
  2377. /*
  2378. * Page table corrupted: show pte and kill process.
  2379. */
  2380. print_bad_pte(vma, orig_pte, address);
  2381. return VM_FAULT_OOM;
  2382. }
  2383. pgoff = pte_to_pgoff(orig_pte);
  2384. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2385. }
  2386. /*
  2387. * These routines also need to handle stuff like marking pages dirty
  2388. * and/or accessed for architectures that don't do it in hardware (most
  2389. * RISC architectures). The early dirtying is also good on the i386.
  2390. *
  2391. * There is also a hook called "update_mmu_cache()" that architectures
  2392. * with external mmu caches can use to update those (ie the Sparc or
  2393. * PowerPC hashed page tables that act as extended TLBs).
  2394. *
  2395. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2396. * but allow concurrent faults), and pte mapped but not yet locked.
  2397. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2398. */
  2399. static inline int handle_pte_fault(struct mm_struct *mm,
  2400. struct vm_area_struct *vma, unsigned long address,
  2401. pte_t *pte, pmd_t *pmd, int write_access)
  2402. {
  2403. pte_t entry;
  2404. spinlock_t *ptl;
  2405. entry = *pte;
  2406. if (!pte_present(entry)) {
  2407. if (pte_none(entry)) {
  2408. if (vma->vm_ops) {
  2409. if (likely(vma->vm_ops->fault))
  2410. return do_linear_fault(mm, vma, address,
  2411. pte, pmd, write_access, entry);
  2412. }
  2413. return do_anonymous_page(mm, vma, address,
  2414. pte, pmd, write_access);
  2415. }
  2416. if (pte_file(entry))
  2417. return do_nonlinear_fault(mm, vma, address,
  2418. pte, pmd, write_access, entry);
  2419. return do_swap_page(mm, vma, address,
  2420. pte, pmd, write_access, entry);
  2421. }
  2422. ptl = pte_lockptr(mm, pmd);
  2423. spin_lock(ptl);
  2424. if (unlikely(!pte_same(*pte, entry)))
  2425. goto unlock;
  2426. if (write_access) {
  2427. if (!pte_write(entry))
  2428. return do_wp_page(mm, vma, address,
  2429. pte, pmd, ptl, entry);
  2430. entry = pte_mkdirty(entry);
  2431. }
  2432. entry = pte_mkyoung(entry);
  2433. if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
  2434. update_mmu_cache(vma, address, entry);
  2435. } else {
  2436. /*
  2437. * This is needed only for protection faults but the arch code
  2438. * is not yet telling us if this is a protection fault or not.
  2439. * This still avoids useless tlb flushes for .text page faults
  2440. * with threads.
  2441. */
  2442. if (write_access)
  2443. flush_tlb_page(vma, address);
  2444. }
  2445. unlock:
  2446. pte_unmap_unlock(pte, ptl);
  2447. return 0;
  2448. }
  2449. /*
  2450. * By the time we get here, we already hold the mm semaphore
  2451. */
  2452. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2453. unsigned long address, int write_access)
  2454. {
  2455. pgd_t *pgd;
  2456. pud_t *pud;
  2457. pmd_t *pmd;
  2458. pte_t *pte;
  2459. __set_current_state(TASK_RUNNING);
  2460. count_vm_event(PGFAULT);
  2461. if (unlikely(is_vm_hugetlb_page(vma)))
  2462. return hugetlb_fault(mm, vma, address, write_access);
  2463. pgd = pgd_offset(mm, address);
  2464. pud = pud_alloc(mm, pgd, address);
  2465. if (!pud)
  2466. return VM_FAULT_OOM;
  2467. pmd = pmd_alloc(mm, pud, address);
  2468. if (!pmd)
  2469. return VM_FAULT_OOM;
  2470. pte = pte_alloc_map(mm, pmd, address);
  2471. if (!pte)
  2472. return VM_FAULT_OOM;
  2473. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2474. }
  2475. #ifndef __PAGETABLE_PUD_FOLDED
  2476. /*
  2477. * Allocate page upper directory.
  2478. * We've already handled the fast-path in-line.
  2479. */
  2480. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2481. {
  2482. pud_t *new = pud_alloc_one(mm, address);
  2483. if (!new)
  2484. return -ENOMEM;
  2485. smp_wmb(); /* See comment in __pte_alloc */
  2486. spin_lock(&mm->page_table_lock);
  2487. if (pgd_present(*pgd)) /* Another has populated it */
  2488. pud_free(mm, new);
  2489. else
  2490. pgd_populate(mm, pgd, new);
  2491. spin_unlock(&mm->page_table_lock);
  2492. return 0;
  2493. }
  2494. #endif /* __PAGETABLE_PUD_FOLDED */
  2495. #ifndef __PAGETABLE_PMD_FOLDED
  2496. /*
  2497. * Allocate page middle directory.
  2498. * We've already handled the fast-path in-line.
  2499. */
  2500. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2501. {
  2502. pmd_t *new = pmd_alloc_one(mm, address);
  2503. if (!new)
  2504. return -ENOMEM;
  2505. smp_wmb(); /* See comment in __pte_alloc */
  2506. spin_lock(&mm->page_table_lock);
  2507. #ifndef __ARCH_HAS_4LEVEL_HACK
  2508. if (pud_present(*pud)) /* Another has populated it */
  2509. pmd_free(mm, new);
  2510. else
  2511. pud_populate(mm, pud, new);
  2512. #else
  2513. if (pgd_present(*pud)) /* Another has populated it */
  2514. pmd_free(mm, new);
  2515. else
  2516. pgd_populate(mm, pud, new);
  2517. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2518. spin_unlock(&mm->page_table_lock);
  2519. return 0;
  2520. }
  2521. #endif /* __PAGETABLE_PMD_FOLDED */
  2522. int make_pages_present(unsigned long addr, unsigned long end)
  2523. {
  2524. int ret, len, write;
  2525. struct vm_area_struct * vma;
  2526. vma = find_vma(current->mm, addr);
  2527. if (!vma)
  2528. return -ENOMEM;
  2529. write = (vma->vm_flags & VM_WRITE) != 0;
  2530. BUG_ON(addr >= end);
  2531. BUG_ON(end > vma->vm_end);
  2532. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2533. ret = get_user_pages(current, current->mm, addr,
  2534. len, write, 0, NULL, NULL);
  2535. if (ret < 0)
  2536. return ret;
  2537. return ret == len ? 0 : -1;
  2538. }
  2539. #if !defined(__HAVE_ARCH_GATE_AREA)
  2540. #if defined(AT_SYSINFO_EHDR)
  2541. static struct vm_area_struct gate_vma;
  2542. static int __init gate_vma_init(void)
  2543. {
  2544. gate_vma.vm_mm = NULL;
  2545. gate_vma.vm_start = FIXADDR_USER_START;
  2546. gate_vma.vm_end = FIXADDR_USER_END;
  2547. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2548. gate_vma.vm_page_prot = __P101;
  2549. /*
  2550. * Make sure the vDSO gets into every core dump.
  2551. * Dumping its contents makes post-mortem fully interpretable later
  2552. * without matching up the same kernel and hardware config to see
  2553. * what PC values meant.
  2554. */
  2555. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2556. return 0;
  2557. }
  2558. __initcall(gate_vma_init);
  2559. #endif
  2560. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2561. {
  2562. #ifdef AT_SYSINFO_EHDR
  2563. return &gate_vma;
  2564. #else
  2565. return NULL;
  2566. #endif
  2567. }
  2568. int in_gate_area_no_task(unsigned long addr)
  2569. {
  2570. #ifdef AT_SYSINFO_EHDR
  2571. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2572. return 1;
  2573. #endif
  2574. return 0;
  2575. }
  2576. #endif /* __HAVE_ARCH_GATE_AREA */
  2577. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2578. static resource_size_t follow_phys(struct vm_area_struct *vma,
  2579. unsigned long address, unsigned int flags,
  2580. unsigned long *prot)
  2581. {
  2582. pgd_t *pgd;
  2583. pud_t *pud;
  2584. pmd_t *pmd;
  2585. pte_t *ptep, pte;
  2586. spinlock_t *ptl;
  2587. resource_size_t phys_addr = 0;
  2588. struct mm_struct *mm = vma->vm_mm;
  2589. VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
  2590. pgd = pgd_offset(mm, address);
  2591. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2592. goto no_page_table;
  2593. pud = pud_offset(pgd, address);
  2594. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2595. goto no_page_table;
  2596. pmd = pmd_offset(pud, address);
  2597. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2598. goto no_page_table;
  2599. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2600. if (pmd_huge(*pmd))
  2601. goto no_page_table;
  2602. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  2603. if (!ptep)
  2604. goto out;
  2605. pte = *ptep;
  2606. if (!pte_present(pte))
  2607. goto unlock;
  2608. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2609. goto unlock;
  2610. phys_addr = pte_pfn(pte);
  2611. phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
  2612. *prot = pgprot_val(pte_pgprot(pte));
  2613. unlock:
  2614. pte_unmap_unlock(ptep, ptl);
  2615. out:
  2616. return phys_addr;
  2617. no_page_table:
  2618. return 0;
  2619. }
  2620. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2621. void *buf, int len, int write)
  2622. {
  2623. resource_size_t phys_addr;
  2624. unsigned long prot = 0;
  2625. void *maddr;
  2626. int offset = addr & (PAGE_SIZE-1);
  2627. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2628. return -EINVAL;
  2629. phys_addr = follow_phys(vma, addr, write, &prot);
  2630. if (!phys_addr)
  2631. return -EINVAL;
  2632. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2633. if (write)
  2634. memcpy_toio(maddr + offset, buf, len);
  2635. else
  2636. memcpy_fromio(buf, maddr + offset, len);
  2637. iounmap(maddr);
  2638. return len;
  2639. }
  2640. #endif
  2641. /*
  2642. * Access another process' address space.
  2643. * Source/target buffer must be kernel space,
  2644. * Do not walk the page table directly, use get_user_pages
  2645. */
  2646. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2647. {
  2648. struct mm_struct *mm;
  2649. struct vm_area_struct *vma;
  2650. void *old_buf = buf;
  2651. mm = get_task_mm(tsk);
  2652. if (!mm)
  2653. return 0;
  2654. down_read(&mm->mmap_sem);
  2655. /* ignore errors, just check how much was successfully transferred */
  2656. while (len) {
  2657. int bytes, ret, offset;
  2658. void *maddr;
  2659. struct page *page = NULL;
  2660. ret = get_user_pages(tsk, mm, addr, 1,
  2661. write, 1, &page, &vma);
  2662. if (ret <= 0) {
  2663. /*
  2664. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2665. * we can access using slightly different code.
  2666. */
  2667. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2668. vma = find_vma(mm, addr);
  2669. if (!vma)
  2670. break;
  2671. if (vma->vm_ops && vma->vm_ops->access)
  2672. ret = vma->vm_ops->access(vma, addr, buf,
  2673. len, write);
  2674. if (ret <= 0)
  2675. #endif
  2676. break;
  2677. bytes = ret;
  2678. } else {
  2679. bytes = len;
  2680. offset = addr & (PAGE_SIZE-1);
  2681. if (bytes > PAGE_SIZE-offset)
  2682. bytes = PAGE_SIZE-offset;
  2683. maddr = kmap(page);
  2684. if (write) {
  2685. copy_to_user_page(vma, page, addr,
  2686. maddr + offset, buf, bytes);
  2687. set_page_dirty_lock(page);
  2688. } else {
  2689. copy_from_user_page(vma, page, addr,
  2690. buf, maddr + offset, bytes);
  2691. }
  2692. kunmap(page);
  2693. page_cache_release(page);
  2694. }
  2695. len -= bytes;
  2696. buf += bytes;
  2697. addr += bytes;
  2698. }
  2699. up_read(&mm->mmap_sem);
  2700. mmput(mm);
  2701. return buf - old_buf;
  2702. }
  2703. /*
  2704. * Print the name of a VMA.
  2705. */
  2706. void print_vma_addr(char *prefix, unsigned long ip)
  2707. {
  2708. struct mm_struct *mm = current->mm;
  2709. struct vm_area_struct *vma;
  2710. /*
  2711. * Do not print if we are in atomic
  2712. * contexts (in exception stacks, etc.):
  2713. */
  2714. if (preempt_count())
  2715. return;
  2716. down_read(&mm->mmap_sem);
  2717. vma = find_vma(mm, ip);
  2718. if (vma && vma->vm_file) {
  2719. struct file *f = vma->vm_file;
  2720. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2721. if (buf) {
  2722. char *p, *s;
  2723. p = d_path(&f->f_path, buf, PAGE_SIZE);
  2724. if (IS_ERR(p))
  2725. p = "?";
  2726. s = strrchr(p, '/');
  2727. if (s)
  2728. p = s+1;
  2729. printk("%s%s[%lx+%lx]", prefix, p,
  2730. vma->vm_start,
  2731. vma->vm_end - vma->vm_start);
  2732. free_page((unsigned long)buf);
  2733. }
  2734. }
  2735. up_read(&current->mm->mmap_sem);
  2736. }