slub_def.h 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/kobject.h>
  12. #include <linux/kmemleak.h>
  13. enum stat_item {
  14. ALLOC_FASTPATH, /* Allocation from cpu slab */
  15. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  16. FREE_FASTPATH, /* Free to cpu slub */
  17. FREE_SLOWPATH, /* Freeing not to cpu slab */
  18. FREE_FROZEN, /* Freeing to frozen slab */
  19. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  20. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  21. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
  22. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  23. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  24. ALLOC_NODE_MISMATCH, /* Switching cpu slab */
  25. FREE_SLAB, /* Slab freed to the page allocator */
  26. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  27. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  28. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  29. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  30. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  31. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  32. DEACTIVATE_BYPASS, /* Implicit deactivation */
  33. ORDER_FALLBACK, /* Number of times fallback was necessary */
  34. CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
  35. CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
  36. NR_SLUB_STAT_ITEMS };
  37. struct kmem_cache_cpu {
  38. void **freelist; /* Pointer to next available object */
  39. unsigned long tid; /* Globally unique transaction id */
  40. struct page *page; /* The slab from which we are allocating */
  41. int node; /* The node of the page (or -1 for debug) */
  42. #ifdef CONFIG_SLUB_STATS
  43. unsigned stat[NR_SLUB_STAT_ITEMS];
  44. #endif
  45. };
  46. struct kmem_cache_node {
  47. spinlock_t list_lock; /* Protect partial list and nr_partial */
  48. unsigned long nr_partial;
  49. struct list_head partial;
  50. #ifdef CONFIG_SLUB_DEBUG
  51. atomic_long_t nr_slabs;
  52. atomic_long_t total_objects;
  53. struct list_head full;
  54. #endif
  55. };
  56. /*
  57. * Word size structure that can be atomically updated or read and that
  58. * contains both the order and the number of objects that a slab of the
  59. * given order would contain.
  60. */
  61. struct kmem_cache_order_objects {
  62. unsigned long x;
  63. };
  64. /*
  65. * Slab cache management.
  66. */
  67. struct kmem_cache {
  68. struct kmem_cache_cpu __percpu *cpu_slab;
  69. /* Used for retriving partial slabs etc */
  70. unsigned long flags;
  71. unsigned long min_partial;
  72. int size; /* The size of an object including meta data */
  73. int objsize; /* The size of an object without meta data */
  74. int offset; /* Free pointer offset. */
  75. struct kmem_cache_order_objects oo;
  76. /* Allocation and freeing of slabs */
  77. struct kmem_cache_order_objects max;
  78. struct kmem_cache_order_objects min;
  79. gfp_t allocflags; /* gfp flags to use on each alloc */
  80. int refcount; /* Refcount for slab cache destroy */
  81. void (*ctor)(void *);
  82. int inuse; /* Offset to metadata */
  83. int align; /* Alignment */
  84. int reserved; /* Reserved bytes at the end of slabs */
  85. const char *name; /* Name (only for display!) */
  86. struct list_head list; /* List of slab caches */
  87. #ifdef CONFIG_SYSFS
  88. struct kobject kobj; /* For sysfs */
  89. #endif
  90. #ifdef CONFIG_NUMA
  91. /*
  92. * Defragmentation by allocating from a remote node.
  93. */
  94. int remote_node_defrag_ratio;
  95. #endif
  96. struct kmem_cache_node *node[MAX_NUMNODES];
  97. };
  98. /*
  99. * Kmalloc subsystem.
  100. */
  101. #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
  102. #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
  103. #else
  104. #define KMALLOC_MIN_SIZE 8
  105. #endif
  106. #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
  107. /*
  108. * Maximum kmalloc object size handled by SLUB. Larger object allocations
  109. * are passed through to the page allocator. The page allocator "fastpath"
  110. * is relatively slow so we need this value sufficiently high so that
  111. * performance critical objects are allocated through the SLUB fastpath.
  112. *
  113. * This should be dropped to PAGE_SIZE / 2 once the page allocator
  114. * "fastpath" becomes competitive with the slab allocator fastpaths.
  115. */
  116. #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
  117. #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
  118. #ifdef CONFIG_ZONE_DMA
  119. #define SLUB_DMA __GFP_DMA
  120. #else
  121. /* Disable DMA functionality */
  122. #define SLUB_DMA (__force gfp_t)0
  123. #endif
  124. /*
  125. * We keep the general caches in an array of slab caches that are used for
  126. * 2^x bytes of allocations.
  127. */
  128. extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  129. /*
  130. * Sorry that the following has to be that ugly but some versions of GCC
  131. * have trouble with constant propagation and loops.
  132. */
  133. static __always_inline int kmalloc_index(size_t size)
  134. {
  135. if (!size)
  136. return 0;
  137. if (size <= KMALLOC_MIN_SIZE)
  138. return KMALLOC_SHIFT_LOW;
  139. if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
  140. return 1;
  141. if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
  142. return 2;
  143. if (size <= 8) return 3;
  144. if (size <= 16) return 4;
  145. if (size <= 32) return 5;
  146. if (size <= 64) return 6;
  147. if (size <= 128) return 7;
  148. if (size <= 256) return 8;
  149. if (size <= 512) return 9;
  150. if (size <= 1024) return 10;
  151. if (size <= 2 * 1024) return 11;
  152. if (size <= 4 * 1024) return 12;
  153. /*
  154. * The following is only needed to support architectures with a larger page
  155. * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
  156. * size we would have to go up to 128k.
  157. */
  158. if (size <= 8 * 1024) return 13;
  159. if (size <= 16 * 1024) return 14;
  160. if (size <= 32 * 1024) return 15;
  161. if (size <= 64 * 1024) return 16;
  162. if (size <= 128 * 1024) return 17;
  163. if (size <= 256 * 1024) return 18;
  164. if (size <= 512 * 1024) return 19;
  165. if (size <= 1024 * 1024) return 20;
  166. if (size <= 2 * 1024 * 1024) return 21;
  167. BUG();
  168. return -1; /* Will never be reached */
  169. /*
  170. * What we really wanted to do and cannot do because of compiler issues is:
  171. * int i;
  172. * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  173. * if (size <= (1 << i))
  174. * return i;
  175. */
  176. }
  177. /*
  178. * Find the slab cache for a given combination of allocation flags and size.
  179. *
  180. * This ought to end up with a global pointer to the right cache
  181. * in kmalloc_caches.
  182. */
  183. static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
  184. {
  185. int index = kmalloc_index(size);
  186. if (index == 0)
  187. return NULL;
  188. return kmalloc_caches[index];
  189. }
  190. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  191. void *__kmalloc(size_t size, gfp_t flags);
  192. static __always_inline void *
  193. kmalloc_order(size_t size, gfp_t flags, unsigned int order)
  194. {
  195. void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
  196. kmemleak_alloc(ret, size, 1, flags);
  197. return ret;
  198. }
  199. /**
  200. * Calling this on allocated memory will check that the memory
  201. * is expected to be in use, and print warnings if not.
  202. */
  203. #ifdef CONFIG_SLUB_DEBUG
  204. extern bool verify_mem_not_deleted(const void *x);
  205. #else
  206. static inline bool verify_mem_not_deleted(const void *x)
  207. {
  208. return true;
  209. }
  210. #endif
  211. #ifdef CONFIG_TRACING
  212. extern void *
  213. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
  214. extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
  215. #else
  216. static __always_inline void *
  217. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  218. {
  219. return kmem_cache_alloc(s, gfpflags);
  220. }
  221. static __always_inline void *
  222. kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  223. {
  224. return kmalloc_order(size, flags, order);
  225. }
  226. #endif
  227. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  228. {
  229. unsigned int order = get_order(size);
  230. return kmalloc_order_trace(size, flags, order);
  231. }
  232. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  233. {
  234. if (__builtin_constant_p(size)) {
  235. if (size > SLUB_MAX_SIZE)
  236. return kmalloc_large(size, flags);
  237. if (!(flags & SLUB_DMA)) {
  238. struct kmem_cache *s = kmalloc_slab(size);
  239. if (!s)
  240. return ZERO_SIZE_PTR;
  241. return kmem_cache_alloc_trace(s, flags, size);
  242. }
  243. }
  244. return __kmalloc(size, flags);
  245. }
  246. #ifdef CONFIG_NUMA
  247. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  248. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  249. #ifdef CONFIG_TRACING
  250. extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  251. gfp_t gfpflags,
  252. int node, size_t size);
  253. #else
  254. static __always_inline void *
  255. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  256. gfp_t gfpflags,
  257. int node, size_t size)
  258. {
  259. return kmem_cache_alloc_node(s, gfpflags, node);
  260. }
  261. #endif
  262. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  263. {
  264. if (__builtin_constant_p(size) &&
  265. size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
  266. struct kmem_cache *s = kmalloc_slab(size);
  267. if (!s)
  268. return ZERO_SIZE_PTR;
  269. return kmem_cache_alloc_node_trace(s, flags, node, size);
  270. }
  271. return __kmalloc_node(size, flags, node);
  272. }
  273. #endif
  274. #endif /* _LINUX_SLUB_DEF_H */