kvm_main.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <asm/processor.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/msr.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/reboot.h>
  30. #include <asm/io.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <asm/desc.h>
  35. #include "x86_emulate.h"
  36. #include "segment_descriptor.h"
  37. MODULE_AUTHOR("Qumranet");
  38. MODULE_LICENSE("GPL");
  39. struct kvm_arch_ops *kvm_arch_ops;
  40. struct kvm_stat kvm_stat;
  41. EXPORT_SYMBOL_GPL(kvm_stat);
  42. static struct kvm_stats_debugfs_item {
  43. const char *name;
  44. u32 *data;
  45. struct dentry *dentry;
  46. } debugfs_entries[] = {
  47. { "pf_fixed", &kvm_stat.pf_fixed },
  48. { "pf_guest", &kvm_stat.pf_guest },
  49. { "tlb_flush", &kvm_stat.tlb_flush },
  50. { "invlpg", &kvm_stat.invlpg },
  51. { "exits", &kvm_stat.exits },
  52. { "io_exits", &kvm_stat.io_exits },
  53. { "mmio_exits", &kvm_stat.mmio_exits },
  54. { "signal_exits", &kvm_stat.signal_exits },
  55. { "irq_window", &kvm_stat.irq_window_exits },
  56. { "halt_exits", &kvm_stat.halt_exits },
  57. { "request_irq", &kvm_stat.request_irq_exits },
  58. { "irq_exits", &kvm_stat.irq_exits },
  59. { 0, 0 }
  60. };
  61. static struct dentry *debugfs_dir;
  62. #define MAX_IO_MSRS 256
  63. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  64. #define LMSW_GUEST_MASK 0x0eULL
  65. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  66. #define CR8_RESEVED_BITS (~0x0fULL)
  67. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  68. #ifdef CONFIG_X86_64
  69. // LDT or TSS descriptor in the GDT. 16 bytes.
  70. struct segment_descriptor_64 {
  71. struct segment_descriptor s;
  72. u32 base_higher;
  73. u32 pad_zero;
  74. };
  75. #endif
  76. unsigned long segment_base(u16 selector)
  77. {
  78. struct descriptor_table gdt;
  79. struct segment_descriptor *d;
  80. unsigned long table_base;
  81. typedef unsigned long ul;
  82. unsigned long v;
  83. if (selector == 0)
  84. return 0;
  85. asm ("sgdt %0" : "=m"(gdt));
  86. table_base = gdt.base;
  87. if (selector & 4) { /* from ldt */
  88. u16 ldt_selector;
  89. asm ("sldt %0" : "=g"(ldt_selector));
  90. table_base = segment_base(ldt_selector);
  91. }
  92. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  93. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  94. #ifdef CONFIG_X86_64
  95. if (d->system == 0
  96. && (d->type == 2 || d->type == 9 || d->type == 11))
  97. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  98. #endif
  99. return v;
  100. }
  101. EXPORT_SYMBOL_GPL(segment_base);
  102. static inline int valid_vcpu(int n)
  103. {
  104. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  105. }
  106. int kvm_read_guest(struct kvm_vcpu *vcpu,
  107. gva_t addr,
  108. unsigned long size,
  109. void *dest)
  110. {
  111. unsigned char *host_buf = dest;
  112. unsigned long req_size = size;
  113. while (size) {
  114. hpa_t paddr;
  115. unsigned now;
  116. unsigned offset;
  117. hva_t guest_buf;
  118. paddr = gva_to_hpa(vcpu, addr);
  119. if (is_error_hpa(paddr))
  120. break;
  121. guest_buf = (hva_t)kmap_atomic(
  122. pfn_to_page(paddr >> PAGE_SHIFT),
  123. KM_USER0);
  124. offset = addr & ~PAGE_MASK;
  125. guest_buf |= offset;
  126. now = min(size, PAGE_SIZE - offset);
  127. memcpy(host_buf, (void*)guest_buf, now);
  128. host_buf += now;
  129. addr += now;
  130. size -= now;
  131. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  132. }
  133. return req_size - size;
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_read_guest);
  136. int kvm_write_guest(struct kvm_vcpu *vcpu,
  137. gva_t addr,
  138. unsigned long size,
  139. void *data)
  140. {
  141. unsigned char *host_buf = data;
  142. unsigned long req_size = size;
  143. while (size) {
  144. hpa_t paddr;
  145. unsigned now;
  146. unsigned offset;
  147. hva_t guest_buf;
  148. paddr = gva_to_hpa(vcpu, addr);
  149. if (is_error_hpa(paddr))
  150. break;
  151. guest_buf = (hva_t)kmap_atomic(
  152. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  153. offset = addr & ~PAGE_MASK;
  154. guest_buf |= offset;
  155. now = min(size, PAGE_SIZE - offset);
  156. memcpy((void*)guest_buf, host_buf, now);
  157. host_buf += now;
  158. addr += now;
  159. size -= now;
  160. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  161. }
  162. return req_size - size;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_write_guest);
  165. static int vcpu_slot(struct kvm_vcpu *vcpu)
  166. {
  167. return vcpu - vcpu->kvm->vcpus;
  168. }
  169. /*
  170. * Switches to specified vcpu, until a matching vcpu_put()
  171. */
  172. static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
  173. {
  174. struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
  175. mutex_lock(&vcpu->mutex);
  176. if (unlikely(!vcpu->vmcs)) {
  177. mutex_unlock(&vcpu->mutex);
  178. return 0;
  179. }
  180. return kvm_arch_ops->vcpu_load(vcpu);
  181. }
  182. static void vcpu_put(struct kvm_vcpu *vcpu)
  183. {
  184. kvm_arch_ops->vcpu_put(vcpu);
  185. mutex_unlock(&vcpu->mutex);
  186. }
  187. static int kvm_dev_open(struct inode *inode, struct file *filp)
  188. {
  189. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  190. int i;
  191. if (!kvm)
  192. return -ENOMEM;
  193. spin_lock_init(&kvm->lock);
  194. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  195. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  196. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  197. mutex_init(&vcpu->mutex);
  198. vcpu->mmu.root_hpa = INVALID_PAGE;
  199. INIT_LIST_HEAD(&vcpu->free_pages);
  200. }
  201. filp->private_data = kvm;
  202. return 0;
  203. }
  204. /*
  205. * Free any memory in @free but not in @dont.
  206. */
  207. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  208. struct kvm_memory_slot *dont)
  209. {
  210. int i;
  211. if (!dont || free->phys_mem != dont->phys_mem)
  212. if (free->phys_mem) {
  213. for (i = 0; i < free->npages; ++i)
  214. if (free->phys_mem[i])
  215. __free_page(free->phys_mem[i]);
  216. vfree(free->phys_mem);
  217. }
  218. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  219. vfree(free->dirty_bitmap);
  220. free->phys_mem = 0;
  221. free->npages = 0;
  222. free->dirty_bitmap = 0;
  223. }
  224. static void kvm_free_physmem(struct kvm *kvm)
  225. {
  226. int i;
  227. for (i = 0; i < kvm->nmemslots; ++i)
  228. kvm_free_physmem_slot(&kvm->memslots[i], 0);
  229. }
  230. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  231. {
  232. kvm_arch_ops->vcpu_free(vcpu);
  233. kvm_mmu_destroy(vcpu);
  234. }
  235. static void kvm_free_vcpus(struct kvm *kvm)
  236. {
  237. unsigned int i;
  238. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  239. kvm_free_vcpu(&kvm->vcpus[i]);
  240. }
  241. static int kvm_dev_release(struct inode *inode, struct file *filp)
  242. {
  243. struct kvm *kvm = filp->private_data;
  244. kvm_free_vcpus(kvm);
  245. kvm_free_physmem(kvm);
  246. kfree(kvm);
  247. return 0;
  248. }
  249. static void inject_gp(struct kvm_vcpu *vcpu)
  250. {
  251. kvm_arch_ops->inject_gp(vcpu, 0);
  252. }
  253. static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu,
  254. unsigned long cr3)
  255. {
  256. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  257. unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5;
  258. int i;
  259. u64 pdpte;
  260. u64 *pdpt;
  261. struct kvm_memory_slot *memslot;
  262. spin_lock(&vcpu->kvm->lock);
  263. memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
  264. /* FIXME: !memslot - emulate? 0xff? */
  265. pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
  266. for (i = 0; i < 4; ++i) {
  267. pdpte = pdpt[offset + i];
  268. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull))
  269. break;
  270. }
  271. kunmap_atomic(pdpt, KM_USER0);
  272. spin_unlock(&vcpu->kvm->lock);
  273. return i != 4;
  274. }
  275. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  276. {
  277. if (cr0 & CR0_RESEVED_BITS) {
  278. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  279. cr0, vcpu->cr0);
  280. inject_gp(vcpu);
  281. return;
  282. }
  283. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  284. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  285. inject_gp(vcpu);
  286. return;
  287. }
  288. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  289. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  290. "and a clear PE flag\n");
  291. inject_gp(vcpu);
  292. return;
  293. }
  294. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  295. #ifdef CONFIG_X86_64
  296. if ((vcpu->shadow_efer & EFER_LME)) {
  297. int cs_db, cs_l;
  298. if (!is_pae(vcpu)) {
  299. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  300. "in long mode while PAE is disabled\n");
  301. inject_gp(vcpu);
  302. return;
  303. }
  304. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  305. if (cs_l) {
  306. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  307. "in long mode while CS.L == 1\n");
  308. inject_gp(vcpu);
  309. return;
  310. }
  311. } else
  312. #endif
  313. if (is_pae(vcpu) &&
  314. pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
  315. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  316. "reserved bits\n");
  317. inject_gp(vcpu);
  318. return;
  319. }
  320. }
  321. kvm_arch_ops->set_cr0(vcpu, cr0);
  322. vcpu->cr0 = cr0;
  323. spin_lock(&vcpu->kvm->lock);
  324. kvm_mmu_reset_context(vcpu);
  325. spin_unlock(&vcpu->kvm->lock);
  326. return;
  327. }
  328. EXPORT_SYMBOL_GPL(set_cr0);
  329. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  330. {
  331. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  332. }
  333. EXPORT_SYMBOL_GPL(lmsw);
  334. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  335. {
  336. if (cr4 & CR4_RESEVED_BITS) {
  337. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  338. inject_gp(vcpu);
  339. return;
  340. }
  341. if (is_long_mode(vcpu)) {
  342. if (!(cr4 & CR4_PAE_MASK)) {
  343. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  344. "in long mode\n");
  345. inject_gp(vcpu);
  346. return;
  347. }
  348. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  349. && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
  350. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  351. inject_gp(vcpu);
  352. }
  353. if (cr4 & CR4_VMXE_MASK) {
  354. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  355. inject_gp(vcpu);
  356. return;
  357. }
  358. kvm_arch_ops->set_cr4(vcpu, cr4);
  359. spin_lock(&vcpu->kvm->lock);
  360. kvm_mmu_reset_context(vcpu);
  361. spin_unlock(&vcpu->kvm->lock);
  362. }
  363. EXPORT_SYMBOL_GPL(set_cr4);
  364. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  365. {
  366. if (is_long_mode(vcpu)) {
  367. if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
  368. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  369. inject_gp(vcpu);
  370. return;
  371. }
  372. } else {
  373. if (cr3 & CR3_RESEVED_BITS) {
  374. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  375. inject_gp(vcpu);
  376. return;
  377. }
  378. if (is_paging(vcpu) && is_pae(vcpu) &&
  379. pdptrs_have_reserved_bits_set(vcpu, cr3)) {
  380. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  381. "reserved bits\n");
  382. inject_gp(vcpu);
  383. return;
  384. }
  385. }
  386. vcpu->cr3 = cr3;
  387. spin_lock(&vcpu->kvm->lock);
  388. vcpu->mmu.new_cr3(vcpu);
  389. spin_unlock(&vcpu->kvm->lock);
  390. }
  391. EXPORT_SYMBOL_GPL(set_cr3);
  392. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  393. {
  394. if ( cr8 & CR8_RESEVED_BITS) {
  395. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  396. inject_gp(vcpu);
  397. return;
  398. }
  399. vcpu->cr8 = cr8;
  400. }
  401. EXPORT_SYMBOL_GPL(set_cr8);
  402. void fx_init(struct kvm_vcpu *vcpu)
  403. {
  404. struct __attribute__ ((__packed__)) fx_image_s {
  405. u16 control; //fcw
  406. u16 status; //fsw
  407. u16 tag; // ftw
  408. u16 opcode; //fop
  409. u64 ip; // fpu ip
  410. u64 operand;// fpu dp
  411. u32 mxcsr;
  412. u32 mxcsr_mask;
  413. } *fx_image;
  414. fx_save(vcpu->host_fx_image);
  415. fpu_init();
  416. fx_save(vcpu->guest_fx_image);
  417. fx_restore(vcpu->host_fx_image);
  418. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  419. fx_image->mxcsr = 0x1f80;
  420. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  421. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  422. }
  423. EXPORT_SYMBOL_GPL(fx_init);
  424. /*
  425. * Creates some virtual cpus. Good luck creating more than one.
  426. */
  427. static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
  428. {
  429. int r;
  430. struct kvm_vcpu *vcpu;
  431. r = -EINVAL;
  432. if (!valid_vcpu(n))
  433. goto out;
  434. vcpu = &kvm->vcpus[n];
  435. mutex_lock(&vcpu->mutex);
  436. if (vcpu->vmcs) {
  437. mutex_unlock(&vcpu->mutex);
  438. return -EEXIST;
  439. }
  440. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  441. FX_IMAGE_ALIGN);
  442. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  443. vcpu->cpu = -1; /* First load will set up TR */
  444. vcpu->kvm = kvm;
  445. r = kvm_arch_ops->vcpu_create(vcpu);
  446. if (r < 0)
  447. goto out_free_vcpus;
  448. r = kvm_mmu_create(vcpu);
  449. if (r < 0)
  450. goto out_free_vcpus;
  451. kvm_arch_ops->vcpu_load(vcpu);
  452. r = kvm_mmu_setup(vcpu);
  453. if (r >= 0)
  454. r = kvm_arch_ops->vcpu_setup(vcpu);
  455. vcpu_put(vcpu);
  456. if (r < 0)
  457. goto out_free_vcpus;
  458. return 0;
  459. out_free_vcpus:
  460. kvm_free_vcpu(vcpu);
  461. mutex_unlock(&vcpu->mutex);
  462. out:
  463. return r;
  464. }
  465. /*
  466. * Allocate some memory and give it an address in the guest physical address
  467. * space.
  468. *
  469. * Discontiguous memory is allowed, mostly for framebuffers.
  470. */
  471. static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
  472. struct kvm_memory_region *mem)
  473. {
  474. int r;
  475. gfn_t base_gfn;
  476. unsigned long npages;
  477. unsigned long i;
  478. struct kvm_memory_slot *memslot;
  479. struct kvm_memory_slot old, new;
  480. int memory_config_version;
  481. r = -EINVAL;
  482. /* General sanity checks */
  483. if (mem->memory_size & (PAGE_SIZE - 1))
  484. goto out;
  485. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  486. goto out;
  487. if (mem->slot >= KVM_MEMORY_SLOTS)
  488. goto out;
  489. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  490. goto out;
  491. memslot = &kvm->memslots[mem->slot];
  492. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  493. npages = mem->memory_size >> PAGE_SHIFT;
  494. if (!npages)
  495. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  496. raced:
  497. spin_lock(&kvm->lock);
  498. memory_config_version = kvm->memory_config_version;
  499. new = old = *memslot;
  500. new.base_gfn = base_gfn;
  501. new.npages = npages;
  502. new.flags = mem->flags;
  503. /* Disallow changing a memory slot's size. */
  504. r = -EINVAL;
  505. if (npages && old.npages && npages != old.npages)
  506. goto out_unlock;
  507. /* Check for overlaps */
  508. r = -EEXIST;
  509. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  510. struct kvm_memory_slot *s = &kvm->memslots[i];
  511. if (s == memslot)
  512. continue;
  513. if (!((base_gfn + npages <= s->base_gfn) ||
  514. (base_gfn >= s->base_gfn + s->npages)))
  515. goto out_unlock;
  516. }
  517. /*
  518. * Do memory allocations outside lock. memory_config_version will
  519. * detect any races.
  520. */
  521. spin_unlock(&kvm->lock);
  522. /* Deallocate if slot is being removed */
  523. if (!npages)
  524. new.phys_mem = 0;
  525. /* Free page dirty bitmap if unneeded */
  526. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  527. new.dirty_bitmap = 0;
  528. r = -ENOMEM;
  529. /* Allocate if a slot is being created */
  530. if (npages && !new.phys_mem) {
  531. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  532. if (!new.phys_mem)
  533. goto out_free;
  534. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  535. for (i = 0; i < npages; ++i) {
  536. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  537. | __GFP_ZERO);
  538. if (!new.phys_mem[i])
  539. goto out_free;
  540. }
  541. }
  542. /* Allocate page dirty bitmap if needed */
  543. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  544. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  545. new.dirty_bitmap = vmalloc(dirty_bytes);
  546. if (!new.dirty_bitmap)
  547. goto out_free;
  548. memset(new.dirty_bitmap, 0, dirty_bytes);
  549. }
  550. spin_lock(&kvm->lock);
  551. if (memory_config_version != kvm->memory_config_version) {
  552. spin_unlock(&kvm->lock);
  553. kvm_free_physmem_slot(&new, &old);
  554. goto raced;
  555. }
  556. r = -EAGAIN;
  557. if (kvm->busy)
  558. goto out_unlock;
  559. if (mem->slot >= kvm->nmemslots)
  560. kvm->nmemslots = mem->slot + 1;
  561. *memslot = new;
  562. ++kvm->memory_config_version;
  563. spin_unlock(&kvm->lock);
  564. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  565. struct kvm_vcpu *vcpu;
  566. vcpu = vcpu_load(kvm, i);
  567. if (!vcpu)
  568. continue;
  569. kvm_mmu_reset_context(vcpu);
  570. vcpu_put(vcpu);
  571. }
  572. kvm_free_physmem_slot(&old, &new);
  573. return 0;
  574. out_unlock:
  575. spin_unlock(&kvm->lock);
  576. out_free:
  577. kvm_free_physmem_slot(&new, &old);
  578. out:
  579. return r;
  580. }
  581. /*
  582. * Get (and clear) the dirty memory log for a memory slot.
  583. */
  584. static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
  585. struct kvm_dirty_log *log)
  586. {
  587. struct kvm_memory_slot *memslot;
  588. int r, i;
  589. int n;
  590. unsigned long any = 0;
  591. spin_lock(&kvm->lock);
  592. /*
  593. * Prevent changes to guest memory configuration even while the lock
  594. * is not taken.
  595. */
  596. ++kvm->busy;
  597. spin_unlock(&kvm->lock);
  598. r = -EINVAL;
  599. if (log->slot >= KVM_MEMORY_SLOTS)
  600. goto out;
  601. memslot = &kvm->memslots[log->slot];
  602. r = -ENOENT;
  603. if (!memslot->dirty_bitmap)
  604. goto out;
  605. n = ALIGN(memslot->npages, 8) / 8;
  606. for (i = 0; !any && i < n; ++i)
  607. any = memslot->dirty_bitmap[i];
  608. r = -EFAULT;
  609. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  610. goto out;
  611. if (any) {
  612. spin_lock(&kvm->lock);
  613. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  614. spin_unlock(&kvm->lock);
  615. memset(memslot->dirty_bitmap, 0, n);
  616. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  617. struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
  618. if (!vcpu)
  619. continue;
  620. kvm_arch_ops->tlb_flush(vcpu);
  621. vcpu_put(vcpu);
  622. }
  623. }
  624. r = 0;
  625. out:
  626. spin_lock(&kvm->lock);
  627. --kvm->busy;
  628. spin_unlock(&kvm->lock);
  629. return r;
  630. }
  631. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  632. {
  633. int i;
  634. for (i = 0; i < kvm->nmemslots; ++i) {
  635. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  636. if (gfn >= memslot->base_gfn
  637. && gfn < memslot->base_gfn + memslot->npages)
  638. return memslot;
  639. }
  640. return 0;
  641. }
  642. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  643. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  644. {
  645. int i;
  646. struct kvm_memory_slot *memslot = 0;
  647. unsigned long rel_gfn;
  648. for (i = 0; i < kvm->nmemslots; ++i) {
  649. memslot = &kvm->memslots[i];
  650. if (gfn >= memslot->base_gfn
  651. && gfn < memslot->base_gfn + memslot->npages) {
  652. if (!memslot || !memslot->dirty_bitmap)
  653. return;
  654. rel_gfn = gfn - memslot->base_gfn;
  655. /* avoid RMW */
  656. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  657. set_bit(rel_gfn, memslot->dirty_bitmap);
  658. return;
  659. }
  660. }
  661. }
  662. static int emulator_read_std(unsigned long addr,
  663. unsigned long *val,
  664. unsigned int bytes,
  665. struct x86_emulate_ctxt *ctxt)
  666. {
  667. struct kvm_vcpu *vcpu = ctxt->vcpu;
  668. void *data = val;
  669. while (bytes) {
  670. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  671. unsigned offset = addr & (PAGE_SIZE-1);
  672. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  673. unsigned long pfn;
  674. struct kvm_memory_slot *memslot;
  675. void *page;
  676. if (gpa == UNMAPPED_GVA)
  677. return X86EMUL_PROPAGATE_FAULT;
  678. pfn = gpa >> PAGE_SHIFT;
  679. memslot = gfn_to_memslot(vcpu->kvm, pfn);
  680. if (!memslot)
  681. return X86EMUL_UNHANDLEABLE;
  682. page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
  683. memcpy(data, page + offset, tocopy);
  684. kunmap_atomic(page, KM_USER0);
  685. bytes -= tocopy;
  686. data += tocopy;
  687. addr += tocopy;
  688. }
  689. return X86EMUL_CONTINUE;
  690. }
  691. static int emulator_write_std(unsigned long addr,
  692. unsigned long val,
  693. unsigned int bytes,
  694. struct x86_emulate_ctxt *ctxt)
  695. {
  696. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  697. addr, bytes);
  698. return X86EMUL_UNHANDLEABLE;
  699. }
  700. static int emulator_read_emulated(unsigned long addr,
  701. unsigned long *val,
  702. unsigned int bytes,
  703. struct x86_emulate_ctxt *ctxt)
  704. {
  705. struct kvm_vcpu *vcpu = ctxt->vcpu;
  706. if (vcpu->mmio_read_completed) {
  707. memcpy(val, vcpu->mmio_data, bytes);
  708. vcpu->mmio_read_completed = 0;
  709. return X86EMUL_CONTINUE;
  710. } else if (emulator_read_std(addr, val, bytes, ctxt)
  711. == X86EMUL_CONTINUE)
  712. return X86EMUL_CONTINUE;
  713. else {
  714. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  715. if (gpa == UNMAPPED_GVA)
  716. return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
  717. vcpu->mmio_needed = 1;
  718. vcpu->mmio_phys_addr = gpa;
  719. vcpu->mmio_size = bytes;
  720. vcpu->mmio_is_write = 0;
  721. return X86EMUL_UNHANDLEABLE;
  722. }
  723. }
  724. static int emulator_write_emulated(unsigned long addr,
  725. unsigned long val,
  726. unsigned int bytes,
  727. struct x86_emulate_ctxt *ctxt)
  728. {
  729. struct kvm_vcpu *vcpu = ctxt->vcpu;
  730. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  731. if (gpa == UNMAPPED_GVA)
  732. return X86EMUL_PROPAGATE_FAULT;
  733. vcpu->mmio_needed = 1;
  734. vcpu->mmio_phys_addr = gpa;
  735. vcpu->mmio_size = bytes;
  736. vcpu->mmio_is_write = 1;
  737. memcpy(vcpu->mmio_data, &val, bytes);
  738. return X86EMUL_CONTINUE;
  739. }
  740. static int emulator_cmpxchg_emulated(unsigned long addr,
  741. unsigned long old,
  742. unsigned long new,
  743. unsigned int bytes,
  744. struct x86_emulate_ctxt *ctxt)
  745. {
  746. static int reported;
  747. if (!reported) {
  748. reported = 1;
  749. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  750. }
  751. return emulator_write_emulated(addr, new, bytes, ctxt);
  752. }
  753. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  754. {
  755. return kvm_arch_ops->get_segment_base(vcpu, seg);
  756. }
  757. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  758. {
  759. spin_lock(&vcpu->kvm->lock);
  760. vcpu->mmu.inval_page(vcpu, address);
  761. spin_unlock(&vcpu->kvm->lock);
  762. kvm_arch_ops->invlpg(vcpu, address);
  763. return X86EMUL_CONTINUE;
  764. }
  765. int emulate_clts(struct kvm_vcpu *vcpu)
  766. {
  767. unsigned long cr0 = vcpu->cr0;
  768. cr0 &= ~CR0_TS_MASK;
  769. kvm_arch_ops->set_cr0(vcpu, cr0);
  770. return X86EMUL_CONTINUE;
  771. }
  772. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  773. {
  774. struct kvm_vcpu *vcpu = ctxt->vcpu;
  775. switch (dr) {
  776. case 0 ... 3:
  777. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  778. return X86EMUL_CONTINUE;
  779. default:
  780. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  781. __FUNCTION__, dr);
  782. return X86EMUL_UNHANDLEABLE;
  783. }
  784. }
  785. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  786. {
  787. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  788. int exception;
  789. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  790. if (exception) {
  791. /* FIXME: better handling */
  792. return X86EMUL_UNHANDLEABLE;
  793. }
  794. return X86EMUL_CONTINUE;
  795. }
  796. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  797. {
  798. static int reported;
  799. u8 opcodes[4];
  800. unsigned long rip = ctxt->vcpu->rip;
  801. unsigned long rip_linear;
  802. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  803. if (reported)
  804. return;
  805. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  806. printk(KERN_ERR "emulation failed but !mmio_needed?"
  807. " rip %lx %02x %02x %02x %02x\n",
  808. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  809. reported = 1;
  810. }
  811. struct x86_emulate_ops emulate_ops = {
  812. .read_std = emulator_read_std,
  813. .write_std = emulator_write_std,
  814. .read_emulated = emulator_read_emulated,
  815. .write_emulated = emulator_write_emulated,
  816. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  817. };
  818. int emulate_instruction(struct kvm_vcpu *vcpu,
  819. struct kvm_run *run,
  820. unsigned long cr2,
  821. u16 error_code)
  822. {
  823. struct x86_emulate_ctxt emulate_ctxt;
  824. int r;
  825. int cs_db, cs_l;
  826. kvm_arch_ops->cache_regs(vcpu);
  827. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  828. emulate_ctxt.vcpu = vcpu;
  829. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  830. emulate_ctxt.cr2 = cr2;
  831. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  832. ? X86EMUL_MODE_REAL : cs_l
  833. ? X86EMUL_MODE_PROT64 : cs_db
  834. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  835. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  836. emulate_ctxt.cs_base = 0;
  837. emulate_ctxt.ds_base = 0;
  838. emulate_ctxt.es_base = 0;
  839. emulate_ctxt.ss_base = 0;
  840. } else {
  841. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  842. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  843. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  844. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  845. }
  846. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  847. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  848. vcpu->mmio_is_write = 0;
  849. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  850. if ((r || vcpu->mmio_is_write) && run) {
  851. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  852. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  853. run->mmio.len = vcpu->mmio_size;
  854. run->mmio.is_write = vcpu->mmio_is_write;
  855. }
  856. if (r) {
  857. if (!vcpu->mmio_needed) {
  858. report_emulation_failure(&emulate_ctxt);
  859. return EMULATE_FAIL;
  860. }
  861. return EMULATE_DO_MMIO;
  862. }
  863. kvm_arch_ops->decache_regs(vcpu);
  864. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  865. if (vcpu->mmio_is_write)
  866. return EMULATE_DO_MMIO;
  867. return EMULATE_DONE;
  868. }
  869. EXPORT_SYMBOL_GPL(emulate_instruction);
  870. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  871. {
  872. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  873. }
  874. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  875. {
  876. struct descriptor_table dt = { limit, base };
  877. kvm_arch_ops->set_gdt(vcpu, &dt);
  878. }
  879. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  880. {
  881. struct descriptor_table dt = { limit, base };
  882. kvm_arch_ops->set_idt(vcpu, &dt);
  883. }
  884. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  885. unsigned long *rflags)
  886. {
  887. lmsw(vcpu, msw);
  888. *rflags = kvm_arch_ops->get_rflags(vcpu);
  889. }
  890. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  891. {
  892. switch (cr) {
  893. case 0:
  894. return vcpu->cr0;
  895. case 2:
  896. return vcpu->cr2;
  897. case 3:
  898. return vcpu->cr3;
  899. case 4:
  900. return vcpu->cr4;
  901. default:
  902. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  903. return 0;
  904. }
  905. }
  906. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  907. unsigned long *rflags)
  908. {
  909. switch (cr) {
  910. case 0:
  911. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  912. *rflags = kvm_arch_ops->get_rflags(vcpu);
  913. break;
  914. case 2:
  915. vcpu->cr2 = val;
  916. break;
  917. case 3:
  918. set_cr3(vcpu, val);
  919. break;
  920. case 4:
  921. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  922. break;
  923. default:
  924. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  925. }
  926. }
  927. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  928. {
  929. u64 data;
  930. switch (msr) {
  931. case 0xc0010010: /* SYSCFG */
  932. case 0xc0010015: /* HWCR */
  933. case MSR_IA32_PLATFORM_ID:
  934. case MSR_IA32_P5_MC_ADDR:
  935. case MSR_IA32_P5_MC_TYPE:
  936. case MSR_IA32_MC0_CTL:
  937. case MSR_IA32_MCG_STATUS:
  938. case MSR_IA32_MCG_CAP:
  939. case MSR_IA32_MC0_MISC:
  940. case MSR_IA32_MC0_MISC+4:
  941. case MSR_IA32_MC0_MISC+8:
  942. case MSR_IA32_MC0_MISC+12:
  943. case MSR_IA32_MC0_MISC+16:
  944. case MSR_IA32_UCODE_REV:
  945. case MSR_IA32_PERF_STATUS:
  946. /* MTRR registers */
  947. case 0xfe:
  948. case 0x200 ... 0x2ff:
  949. data = 0;
  950. break;
  951. case 0xcd: /* fsb frequency */
  952. data = 3;
  953. break;
  954. case MSR_IA32_APICBASE:
  955. data = vcpu->apic_base;
  956. break;
  957. #ifdef CONFIG_X86_64
  958. case MSR_EFER:
  959. data = vcpu->shadow_efer;
  960. break;
  961. #endif
  962. default:
  963. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  964. return 1;
  965. }
  966. *pdata = data;
  967. return 0;
  968. }
  969. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  970. /*
  971. * Reads an msr value (of 'msr_index') into 'pdata'.
  972. * Returns 0 on success, non-0 otherwise.
  973. * Assumes vcpu_load() was already called.
  974. */
  975. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  976. {
  977. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  978. }
  979. #ifdef CONFIG_X86_64
  980. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  981. {
  982. if (efer & EFER_RESERVED_BITS) {
  983. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  984. efer);
  985. inject_gp(vcpu);
  986. return;
  987. }
  988. if (is_paging(vcpu)
  989. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  990. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  991. inject_gp(vcpu);
  992. return;
  993. }
  994. kvm_arch_ops->set_efer(vcpu, efer);
  995. efer &= ~EFER_LMA;
  996. efer |= vcpu->shadow_efer & EFER_LMA;
  997. vcpu->shadow_efer = efer;
  998. }
  999. #endif
  1000. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1001. {
  1002. switch (msr) {
  1003. #ifdef CONFIG_X86_64
  1004. case MSR_EFER:
  1005. set_efer(vcpu, data);
  1006. break;
  1007. #endif
  1008. case MSR_IA32_MC0_STATUS:
  1009. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1010. __FUNCTION__, data);
  1011. break;
  1012. case MSR_IA32_UCODE_REV:
  1013. case MSR_IA32_UCODE_WRITE:
  1014. case 0x200 ... 0x2ff: /* MTRRs */
  1015. break;
  1016. case MSR_IA32_APICBASE:
  1017. vcpu->apic_base = data;
  1018. break;
  1019. default:
  1020. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1021. return 1;
  1022. }
  1023. return 0;
  1024. }
  1025. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1026. /*
  1027. * Writes msr value into into the appropriate "register".
  1028. * Returns 0 on success, non-0 otherwise.
  1029. * Assumes vcpu_load() was already called.
  1030. */
  1031. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1032. {
  1033. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1034. }
  1035. void kvm_resched(struct kvm_vcpu *vcpu)
  1036. {
  1037. vcpu_put(vcpu);
  1038. cond_resched();
  1039. /* Cannot fail - no vcpu unplug yet. */
  1040. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  1041. }
  1042. EXPORT_SYMBOL_GPL(kvm_resched);
  1043. void load_msrs(struct vmx_msr_entry *e, int n)
  1044. {
  1045. int i;
  1046. for (i = 0; i < n; ++i)
  1047. wrmsrl(e[i].index, e[i].data);
  1048. }
  1049. EXPORT_SYMBOL_GPL(load_msrs);
  1050. void save_msrs(struct vmx_msr_entry *e, int n)
  1051. {
  1052. int i;
  1053. for (i = 0; i < n; ++i)
  1054. rdmsrl(e[i].index, e[i].data);
  1055. }
  1056. EXPORT_SYMBOL_GPL(save_msrs);
  1057. static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
  1058. {
  1059. struct kvm_vcpu *vcpu;
  1060. int r;
  1061. if (!valid_vcpu(kvm_run->vcpu))
  1062. return -EINVAL;
  1063. vcpu = vcpu_load(kvm, kvm_run->vcpu);
  1064. if (!vcpu)
  1065. return -ENOENT;
  1066. if (kvm_run->emulated) {
  1067. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1068. kvm_run->emulated = 0;
  1069. }
  1070. if (kvm_run->mmio_completed) {
  1071. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1072. vcpu->mmio_read_completed = 1;
  1073. }
  1074. vcpu->mmio_needed = 0;
  1075. r = kvm_arch_ops->run(vcpu, kvm_run);
  1076. vcpu_put(vcpu);
  1077. return r;
  1078. }
  1079. static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
  1080. {
  1081. struct kvm_vcpu *vcpu;
  1082. if (!valid_vcpu(regs->vcpu))
  1083. return -EINVAL;
  1084. vcpu = vcpu_load(kvm, regs->vcpu);
  1085. if (!vcpu)
  1086. return -ENOENT;
  1087. kvm_arch_ops->cache_regs(vcpu);
  1088. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1089. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1090. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1091. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1092. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1093. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1094. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1095. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1096. #ifdef CONFIG_X86_64
  1097. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1098. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1099. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1100. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1101. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1102. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1103. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1104. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1105. #endif
  1106. regs->rip = vcpu->rip;
  1107. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1108. /*
  1109. * Don't leak debug flags in case they were set for guest debugging
  1110. */
  1111. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1112. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1113. vcpu_put(vcpu);
  1114. return 0;
  1115. }
  1116. static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
  1117. {
  1118. struct kvm_vcpu *vcpu;
  1119. if (!valid_vcpu(regs->vcpu))
  1120. return -EINVAL;
  1121. vcpu = vcpu_load(kvm, regs->vcpu);
  1122. if (!vcpu)
  1123. return -ENOENT;
  1124. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1125. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1126. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1127. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1128. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1129. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1130. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1131. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1132. #ifdef CONFIG_X86_64
  1133. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1134. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1135. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1136. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1137. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1138. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1139. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1140. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1141. #endif
  1142. vcpu->rip = regs->rip;
  1143. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1144. kvm_arch_ops->decache_regs(vcpu);
  1145. vcpu_put(vcpu);
  1146. return 0;
  1147. }
  1148. static void get_segment(struct kvm_vcpu *vcpu,
  1149. struct kvm_segment *var, int seg)
  1150. {
  1151. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1152. }
  1153. static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1154. {
  1155. struct kvm_vcpu *vcpu;
  1156. struct descriptor_table dt;
  1157. if (!valid_vcpu(sregs->vcpu))
  1158. return -EINVAL;
  1159. vcpu = vcpu_load(kvm, sregs->vcpu);
  1160. if (!vcpu)
  1161. return -ENOENT;
  1162. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1163. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1164. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1165. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1166. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1167. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1168. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1169. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1170. kvm_arch_ops->get_idt(vcpu, &dt);
  1171. sregs->idt.limit = dt.limit;
  1172. sregs->idt.base = dt.base;
  1173. kvm_arch_ops->get_gdt(vcpu, &dt);
  1174. sregs->gdt.limit = dt.limit;
  1175. sregs->gdt.base = dt.base;
  1176. sregs->cr0 = vcpu->cr0;
  1177. sregs->cr2 = vcpu->cr2;
  1178. sregs->cr3 = vcpu->cr3;
  1179. sregs->cr4 = vcpu->cr4;
  1180. sregs->cr8 = vcpu->cr8;
  1181. sregs->efer = vcpu->shadow_efer;
  1182. sregs->apic_base = vcpu->apic_base;
  1183. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1184. sizeof sregs->interrupt_bitmap);
  1185. vcpu_put(vcpu);
  1186. return 0;
  1187. }
  1188. static void set_segment(struct kvm_vcpu *vcpu,
  1189. struct kvm_segment *var, int seg)
  1190. {
  1191. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1192. }
  1193. static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1194. {
  1195. struct kvm_vcpu *vcpu;
  1196. int mmu_reset_needed = 0;
  1197. int i;
  1198. struct descriptor_table dt;
  1199. if (!valid_vcpu(sregs->vcpu))
  1200. return -EINVAL;
  1201. vcpu = vcpu_load(kvm, sregs->vcpu);
  1202. if (!vcpu)
  1203. return -ENOENT;
  1204. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1205. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1206. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1207. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1208. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1209. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1210. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1211. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1212. dt.limit = sregs->idt.limit;
  1213. dt.base = sregs->idt.base;
  1214. kvm_arch_ops->set_idt(vcpu, &dt);
  1215. dt.limit = sregs->gdt.limit;
  1216. dt.base = sregs->gdt.base;
  1217. kvm_arch_ops->set_gdt(vcpu, &dt);
  1218. vcpu->cr2 = sregs->cr2;
  1219. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1220. vcpu->cr3 = sregs->cr3;
  1221. vcpu->cr8 = sregs->cr8;
  1222. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1223. #ifdef CONFIG_X86_64
  1224. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1225. #endif
  1226. vcpu->apic_base = sregs->apic_base;
  1227. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1228. kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
  1229. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1230. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1231. if (mmu_reset_needed)
  1232. kvm_mmu_reset_context(vcpu);
  1233. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1234. sizeof vcpu->irq_pending);
  1235. vcpu->irq_summary = 0;
  1236. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1237. if (vcpu->irq_pending[i])
  1238. __set_bit(i, &vcpu->irq_summary);
  1239. vcpu_put(vcpu);
  1240. return 0;
  1241. }
  1242. /*
  1243. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1244. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1245. *
  1246. * This list is modified at module load time to reflect the
  1247. * capabilities of the host cpu.
  1248. */
  1249. static u32 msrs_to_save[] = {
  1250. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1251. MSR_K6_STAR,
  1252. #ifdef CONFIG_X86_64
  1253. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1254. #endif
  1255. MSR_IA32_TIME_STAMP_COUNTER,
  1256. };
  1257. static unsigned num_msrs_to_save;
  1258. static __init void kvm_init_msr_list(void)
  1259. {
  1260. u32 dummy[2];
  1261. unsigned i, j;
  1262. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1263. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1264. continue;
  1265. if (j < i)
  1266. msrs_to_save[j] = msrs_to_save[i];
  1267. j++;
  1268. }
  1269. num_msrs_to_save = j;
  1270. }
  1271. /*
  1272. * Adapt set_msr() to msr_io()'s calling convention
  1273. */
  1274. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1275. {
  1276. return set_msr(vcpu, index, *data);
  1277. }
  1278. /*
  1279. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1280. *
  1281. * @return number of msrs set successfully.
  1282. */
  1283. static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
  1284. struct kvm_msr_entry *entries,
  1285. int (*do_msr)(struct kvm_vcpu *vcpu,
  1286. unsigned index, u64 *data))
  1287. {
  1288. struct kvm_vcpu *vcpu;
  1289. int i;
  1290. if (!valid_vcpu(msrs->vcpu))
  1291. return -EINVAL;
  1292. vcpu = vcpu_load(kvm, msrs->vcpu);
  1293. if (!vcpu)
  1294. return -ENOENT;
  1295. for (i = 0; i < msrs->nmsrs; ++i)
  1296. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1297. break;
  1298. vcpu_put(vcpu);
  1299. return i;
  1300. }
  1301. /*
  1302. * Read or write a bunch of msrs. Parameters are user addresses.
  1303. *
  1304. * @return number of msrs set successfully.
  1305. */
  1306. static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
  1307. int (*do_msr)(struct kvm_vcpu *vcpu,
  1308. unsigned index, u64 *data),
  1309. int writeback)
  1310. {
  1311. struct kvm_msrs msrs;
  1312. struct kvm_msr_entry *entries;
  1313. int r, n;
  1314. unsigned size;
  1315. r = -EFAULT;
  1316. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1317. goto out;
  1318. r = -E2BIG;
  1319. if (msrs.nmsrs >= MAX_IO_MSRS)
  1320. goto out;
  1321. r = -ENOMEM;
  1322. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1323. entries = vmalloc(size);
  1324. if (!entries)
  1325. goto out;
  1326. r = -EFAULT;
  1327. if (copy_from_user(entries, user_msrs->entries, size))
  1328. goto out_free;
  1329. r = n = __msr_io(kvm, &msrs, entries, do_msr);
  1330. if (r < 0)
  1331. goto out_free;
  1332. r = -EFAULT;
  1333. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1334. goto out_free;
  1335. r = n;
  1336. out_free:
  1337. vfree(entries);
  1338. out:
  1339. return r;
  1340. }
  1341. /*
  1342. * Translate a guest virtual address to a guest physical address.
  1343. */
  1344. static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
  1345. {
  1346. unsigned long vaddr = tr->linear_address;
  1347. struct kvm_vcpu *vcpu;
  1348. gpa_t gpa;
  1349. vcpu = vcpu_load(kvm, tr->vcpu);
  1350. if (!vcpu)
  1351. return -ENOENT;
  1352. spin_lock(&kvm->lock);
  1353. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1354. tr->physical_address = gpa;
  1355. tr->valid = gpa != UNMAPPED_GVA;
  1356. tr->writeable = 1;
  1357. tr->usermode = 0;
  1358. spin_unlock(&kvm->lock);
  1359. vcpu_put(vcpu);
  1360. return 0;
  1361. }
  1362. static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
  1363. {
  1364. struct kvm_vcpu *vcpu;
  1365. if (!valid_vcpu(irq->vcpu))
  1366. return -EINVAL;
  1367. if (irq->irq < 0 || irq->irq >= 256)
  1368. return -EINVAL;
  1369. vcpu = vcpu_load(kvm, irq->vcpu);
  1370. if (!vcpu)
  1371. return -ENOENT;
  1372. set_bit(irq->irq, vcpu->irq_pending);
  1373. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1374. vcpu_put(vcpu);
  1375. return 0;
  1376. }
  1377. static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
  1378. struct kvm_debug_guest *dbg)
  1379. {
  1380. struct kvm_vcpu *vcpu;
  1381. int r;
  1382. if (!valid_vcpu(dbg->vcpu))
  1383. return -EINVAL;
  1384. vcpu = vcpu_load(kvm, dbg->vcpu);
  1385. if (!vcpu)
  1386. return -ENOENT;
  1387. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1388. vcpu_put(vcpu);
  1389. return r;
  1390. }
  1391. static long kvm_dev_ioctl(struct file *filp,
  1392. unsigned int ioctl, unsigned long arg)
  1393. {
  1394. struct kvm *kvm = filp->private_data;
  1395. int r = -EINVAL;
  1396. switch (ioctl) {
  1397. case KVM_GET_API_VERSION:
  1398. r = KVM_API_VERSION;
  1399. break;
  1400. case KVM_CREATE_VCPU: {
  1401. r = kvm_dev_ioctl_create_vcpu(kvm, arg);
  1402. if (r)
  1403. goto out;
  1404. break;
  1405. }
  1406. case KVM_RUN: {
  1407. struct kvm_run kvm_run;
  1408. r = -EFAULT;
  1409. if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
  1410. goto out;
  1411. r = kvm_dev_ioctl_run(kvm, &kvm_run);
  1412. if (r < 0 && r != -EINTR)
  1413. goto out;
  1414. if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) {
  1415. r = -EFAULT;
  1416. goto out;
  1417. }
  1418. break;
  1419. }
  1420. case KVM_GET_REGS: {
  1421. struct kvm_regs kvm_regs;
  1422. r = -EFAULT;
  1423. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1424. goto out;
  1425. r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
  1426. if (r)
  1427. goto out;
  1428. r = -EFAULT;
  1429. if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
  1430. goto out;
  1431. r = 0;
  1432. break;
  1433. }
  1434. case KVM_SET_REGS: {
  1435. struct kvm_regs kvm_regs;
  1436. r = -EFAULT;
  1437. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1438. goto out;
  1439. r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
  1440. if (r)
  1441. goto out;
  1442. r = 0;
  1443. break;
  1444. }
  1445. case KVM_GET_SREGS: {
  1446. struct kvm_sregs kvm_sregs;
  1447. r = -EFAULT;
  1448. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1449. goto out;
  1450. r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
  1451. if (r)
  1452. goto out;
  1453. r = -EFAULT;
  1454. if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
  1455. goto out;
  1456. r = 0;
  1457. break;
  1458. }
  1459. case KVM_SET_SREGS: {
  1460. struct kvm_sregs kvm_sregs;
  1461. r = -EFAULT;
  1462. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1463. goto out;
  1464. r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
  1465. if (r)
  1466. goto out;
  1467. r = 0;
  1468. break;
  1469. }
  1470. case KVM_TRANSLATE: {
  1471. struct kvm_translation tr;
  1472. r = -EFAULT;
  1473. if (copy_from_user(&tr, (void *)arg, sizeof tr))
  1474. goto out;
  1475. r = kvm_dev_ioctl_translate(kvm, &tr);
  1476. if (r)
  1477. goto out;
  1478. r = -EFAULT;
  1479. if (copy_to_user((void *)arg, &tr, sizeof tr))
  1480. goto out;
  1481. r = 0;
  1482. break;
  1483. }
  1484. case KVM_INTERRUPT: {
  1485. struct kvm_interrupt irq;
  1486. r = -EFAULT;
  1487. if (copy_from_user(&irq, (void *)arg, sizeof irq))
  1488. goto out;
  1489. r = kvm_dev_ioctl_interrupt(kvm, &irq);
  1490. if (r)
  1491. goto out;
  1492. r = 0;
  1493. break;
  1494. }
  1495. case KVM_DEBUG_GUEST: {
  1496. struct kvm_debug_guest dbg;
  1497. r = -EFAULT;
  1498. if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
  1499. goto out;
  1500. r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
  1501. if (r)
  1502. goto out;
  1503. r = 0;
  1504. break;
  1505. }
  1506. case KVM_SET_MEMORY_REGION: {
  1507. struct kvm_memory_region kvm_mem;
  1508. r = -EFAULT;
  1509. if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
  1510. goto out;
  1511. r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
  1512. if (r)
  1513. goto out;
  1514. break;
  1515. }
  1516. case KVM_GET_DIRTY_LOG: {
  1517. struct kvm_dirty_log log;
  1518. r = -EFAULT;
  1519. if (copy_from_user(&log, (void *)arg, sizeof log))
  1520. goto out;
  1521. r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
  1522. if (r)
  1523. goto out;
  1524. break;
  1525. }
  1526. case KVM_GET_MSRS:
  1527. r = msr_io(kvm, (void __user *)arg, get_msr, 1);
  1528. break;
  1529. case KVM_SET_MSRS:
  1530. r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
  1531. break;
  1532. case KVM_GET_MSR_INDEX_LIST: {
  1533. struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
  1534. struct kvm_msr_list msr_list;
  1535. unsigned n;
  1536. r = -EFAULT;
  1537. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1538. goto out;
  1539. n = msr_list.nmsrs;
  1540. msr_list.nmsrs = num_msrs_to_save;
  1541. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1542. goto out;
  1543. r = -E2BIG;
  1544. if (n < num_msrs_to_save)
  1545. goto out;
  1546. r = -EFAULT;
  1547. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1548. num_msrs_to_save * sizeof(u32)))
  1549. goto out;
  1550. r = 0;
  1551. }
  1552. default:
  1553. ;
  1554. }
  1555. out:
  1556. return r;
  1557. }
  1558. static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
  1559. unsigned long address,
  1560. int *type)
  1561. {
  1562. struct kvm *kvm = vma->vm_file->private_data;
  1563. unsigned long pgoff;
  1564. struct kvm_memory_slot *slot;
  1565. struct page *page;
  1566. *type = VM_FAULT_MINOR;
  1567. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1568. slot = gfn_to_memslot(kvm, pgoff);
  1569. if (!slot)
  1570. return NOPAGE_SIGBUS;
  1571. page = gfn_to_page(slot, pgoff);
  1572. if (!page)
  1573. return NOPAGE_SIGBUS;
  1574. get_page(page);
  1575. return page;
  1576. }
  1577. static struct vm_operations_struct kvm_dev_vm_ops = {
  1578. .nopage = kvm_dev_nopage,
  1579. };
  1580. static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
  1581. {
  1582. vma->vm_ops = &kvm_dev_vm_ops;
  1583. return 0;
  1584. }
  1585. static struct file_operations kvm_chardev_ops = {
  1586. .open = kvm_dev_open,
  1587. .release = kvm_dev_release,
  1588. .unlocked_ioctl = kvm_dev_ioctl,
  1589. .compat_ioctl = kvm_dev_ioctl,
  1590. .mmap = kvm_dev_mmap,
  1591. };
  1592. static struct miscdevice kvm_dev = {
  1593. MISC_DYNAMIC_MINOR,
  1594. "kvm",
  1595. &kvm_chardev_ops,
  1596. };
  1597. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1598. void *v)
  1599. {
  1600. if (val == SYS_RESTART) {
  1601. /*
  1602. * Some (well, at least mine) BIOSes hang on reboot if
  1603. * in vmx root mode.
  1604. */
  1605. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1606. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1607. }
  1608. return NOTIFY_OK;
  1609. }
  1610. static struct notifier_block kvm_reboot_notifier = {
  1611. .notifier_call = kvm_reboot,
  1612. .priority = 0,
  1613. };
  1614. static __init void kvm_init_debug(void)
  1615. {
  1616. struct kvm_stats_debugfs_item *p;
  1617. debugfs_dir = debugfs_create_dir("kvm", 0);
  1618. for (p = debugfs_entries; p->name; ++p)
  1619. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  1620. p->data);
  1621. }
  1622. static void kvm_exit_debug(void)
  1623. {
  1624. struct kvm_stats_debugfs_item *p;
  1625. for (p = debugfs_entries; p->name; ++p)
  1626. debugfs_remove(p->dentry);
  1627. debugfs_remove(debugfs_dir);
  1628. }
  1629. hpa_t bad_page_address;
  1630. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  1631. {
  1632. int r;
  1633. if (kvm_arch_ops) {
  1634. printk(KERN_ERR "kvm: already loaded the other module\n");
  1635. return -EEXIST;
  1636. }
  1637. if (!ops->cpu_has_kvm_support()) {
  1638. printk(KERN_ERR "kvm: no hardware support\n");
  1639. return -EOPNOTSUPP;
  1640. }
  1641. if (ops->disabled_by_bios()) {
  1642. printk(KERN_ERR "kvm: disabled by bios\n");
  1643. return -EOPNOTSUPP;
  1644. }
  1645. kvm_arch_ops = ops;
  1646. r = kvm_arch_ops->hardware_setup();
  1647. if (r < 0)
  1648. return r;
  1649. on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
  1650. register_reboot_notifier(&kvm_reboot_notifier);
  1651. kvm_chardev_ops.owner = module;
  1652. r = misc_register(&kvm_dev);
  1653. if (r) {
  1654. printk (KERN_ERR "kvm: misc device register failed\n");
  1655. goto out_free;
  1656. }
  1657. return r;
  1658. out_free:
  1659. unregister_reboot_notifier(&kvm_reboot_notifier);
  1660. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1661. kvm_arch_ops->hardware_unsetup();
  1662. return r;
  1663. }
  1664. void kvm_exit_arch(void)
  1665. {
  1666. misc_deregister(&kvm_dev);
  1667. unregister_reboot_notifier(&kvm_reboot_notifier);
  1668. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1669. kvm_arch_ops->hardware_unsetup();
  1670. kvm_arch_ops = NULL;
  1671. }
  1672. static __init int kvm_init(void)
  1673. {
  1674. static struct page *bad_page;
  1675. int r = 0;
  1676. kvm_init_debug();
  1677. kvm_init_msr_list();
  1678. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  1679. r = -ENOMEM;
  1680. goto out;
  1681. }
  1682. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  1683. memset(__va(bad_page_address), 0, PAGE_SIZE);
  1684. return r;
  1685. out:
  1686. kvm_exit_debug();
  1687. return r;
  1688. }
  1689. static __exit void kvm_exit(void)
  1690. {
  1691. kvm_exit_debug();
  1692. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  1693. }
  1694. module_init(kvm_init)
  1695. module_exit(kvm_exit)
  1696. EXPORT_SYMBOL_GPL(kvm_init_arch);
  1697. EXPORT_SYMBOL_GPL(kvm_exit_arch);