xhci.c 148 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/pci.h>
  23. #include <linux/irq.h>
  24. #include <linux/log2.h>
  25. #include <linux/module.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/slab.h>
  28. #include <linux/dmi.h>
  29. #include "xhci.h"
  30. #include "xhci-trace.h"
  31. #define DRIVER_AUTHOR "Sarah Sharp"
  32. #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  33. /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  34. static int link_quirk;
  35. module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  36. MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  37. /* TODO: copied from ehci-hcd.c - can this be refactored? */
  38. /*
  39. * xhci_handshake - spin reading hc until handshake completes or fails
  40. * @ptr: address of hc register to be read
  41. * @mask: bits to look at in result of read
  42. * @done: value of those bits when handshake succeeds
  43. * @usec: timeout in microseconds
  44. *
  45. * Returns negative errno, or zero on success
  46. *
  47. * Success happens when the "mask" bits have the specified value (hardware
  48. * handshake done). There are two failure modes: "usec" have passed (major
  49. * hardware flakeout), or the register reads as all-ones (hardware removed).
  50. */
  51. int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  52. u32 mask, u32 done, int usec)
  53. {
  54. u32 result;
  55. do {
  56. result = xhci_readl(xhci, ptr);
  57. if (result == ~(u32)0) /* card removed */
  58. return -ENODEV;
  59. result &= mask;
  60. if (result == done)
  61. return 0;
  62. udelay(1);
  63. usec--;
  64. } while (usec > 0);
  65. return -ETIMEDOUT;
  66. }
  67. /*
  68. * Disable interrupts and begin the xHCI halting process.
  69. */
  70. void xhci_quiesce(struct xhci_hcd *xhci)
  71. {
  72. u32 halted;
  73. u32 cmd;
  74. u32 mask;
  75. mask = ~(XHCI_IRQS);
  76. halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  77. if (!halted)
  78. mask &= ~CMD_RUN;
  79. cmd = xhci_readl(xhci, &xhci->op_regs->command);
  80. cmd &= mask;
  81. xhci_writel(xhci, cmd, &xhci->op_regs->command);
  82. }
  83. /*
  84. * Force HC into halt state.
  85. *
  86. * Disable any IRQs and clear the run/stop bit.
  87. * HC will complete any current and actively pipelined transactions, and
  88. * should halt within 16 ms of the run/stop bit being cleared.
  89. * Read HC Halted bit in the status register to see when the HC is finished.
  90. */
  91. int xhci_halt(struct xhci_hcd *xhci)
  92. {
  93. int ret;
  94. xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
  95. xhci_quiesce(xhci);
  96. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  97. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
  98. if (!ret) {
  99. xhci->xhc_state |= XHCI_STATE_HALTED;
  100. xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
  101. } else
  102. xhci_warn(xhci, "Host not halted after %u microseconds.\n",
  103. XHCI_MAX_HALT_USEC);
  104. return ret;
  105. }
  106. /*
  107. * Set the run bit and wait for the host to be running.
  108. */
  109. static int xhci_start(struct xhci_hcd *xhci)
  110. {
  111. u32 temp;
  112. int ret;
  113. temp = xhci_readl(xhci, &xhci->op_regs->command);
  114. temp |= (CMD_RUN);
  115. xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
  116. temp);
  117. xhci_writel(xhci, temp, &xhci->op_regs->command);
  118. /*
  119. * Wait for the HCHalted Status bit to be 0 to indicate the host is
  120. * running.
  121. */
  122. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  123. STS_HALT, 0, XHCI_MAX_HALT_USEC);
  124. if (ret == -ETIMEDOUT)
  125. xhci_err(xhci, "Host took too long to start, "
  126. "waited %u microseconds.\n",
  127. XHCI_MAX_HALT_USEC);
  128. if (!ret)
  129. xhci->xhc_state &= ~XHCI_STATE_HALTED;
  130. return ret;
  131. }
  132. /*
  133. * Reset a halted HC.
  134. *
  135. * This resets pipelines, timers, counters, state machines, etc.
  136. * Transactions will be terminated immediately, and operational registers
  137. * will be set to their defaults.
  138. */
  139. int xhci_reset(struct xhci_hcd *xhci)
  140. {
  141. u32 command;
  142. u32 state;
  143. int ret, i;
  144. state = xhci_readl(xhci, &xhci->op_regs->status);
  145. if ((state & STS_HALT) == 0) {
  146. xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
  147. return 0;
  148. }
  149. xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
  150. command = xhci_readl(xhci, &xhci->op_regs->command);
  151. command |= CMD_RESET;
  152. xhci_writel(xhci, command, &xhci->op_regs->command);
  153. ret = xhci_handshake(xhci, &xhci->op_regs->command,
  154. CMD_RESET, 0, 10 * 1000 * 1000);
  155. if (ret)
  156. return ret;
  157. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  158. "Wait for controller to be ready for doorbell rings");
  159. /*
  160. * xHCI cannot write to any doorbells or operational registers other
  161. * than status until the "Controller Not Ready" flag is cleared.
  162. */
  163. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  164. STS_CNR, 0, 10 * 1000 * 1000);
  165. for (i = 0; i < 2; ++i) {
  166. xhci->bus_state[i].port_c_suspend = 0;
  167. xhci->bus_state[i].suspended_ports = 0;
  168. xhci->bus_state[i].resuming_ports = 0;
  169. }
  170. return ret;
  171. }
  172. #ifdef CONFIG_PCI
  173. static int xhci_free_msi(struct xhci_hcd *xhci)
  174. {
  175. int i;
  176. if (!xhci->msix_entries)
  177. return -EINVAL;
  178. for (i = 0; i < xhci->msix_count; i++)
  179. if (xhci->msix_entries[i].vector)
  180. free_irq(xhci->msix_entries[i].vector,
  181. xhci_to_hcd(xhci));
  182. return 0;
  183. }
  184. /*
  185. * Set up MSI
  186. */
  187. static int xhci_setup_msi(struct xhci_hcd *xhci)
  188. {
  189. int ret;
  190. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  191. ret = pci_enable_msi(pdev);
  192. if (ret) {
  193. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  194. "failed to allocate MSI entry");
  195. return ret;
  196. }
  197. ret = request_irq(pdev->irq, xhci_msi_irq,
  198. 0, "xhci_hcd", xhci_to_hcd(xhci));
  199. if (ret) {
  200. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  201. "disable MSI interrupt");
  202. pci_disable_msi(pdev);
  203. }
  204. return ret;
  205. }
  206. /*
  207. * Free IRQs
  208. * free all IRQs request
  209. */
  210. static void xhci_free_irq(struct xhci_hcd *xhci)
  211. {
  212. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  213. int ret;
  214. /* return if using legacy interrupt */
  215. if (xhci_to_hcd(xhci)->irq > 0)
  216. return;
  217. ret = xhci_free_msi(xhci);
  218. if (!ret)
  219. return;
  220. if (pdev->irq > 0)
  221. free_irq(pdev->irq, xhci_to_hcd(xhci));
  222. return;
  223. }
  224. /*
  225. * Set up MSI-X
  226. */
  227. static int xhci_setup_msix(struct xhci_hcd *xhci)
  228. {
  229. int i, ret = 0;
  230. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  231. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  232. /*
  233. * calculate number of msi-x vectors supported.
  234. * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
  235. * with max number of interrupters based on the xhci HCSPARAMS1.
  236. * - num_online_cpus: maximum msi-x vectors per CPUs core.
  237. * Add additional 1 vector to ensure always available interrupt.
  238. */
  239. xhci->msix_count = min(num_online_cpus() + 1,
  240. HCS_MAX_INTRS(xhci->hcs_params1));
  241. xhci->msix_entries =
  242. kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
  243. GFP_KERNEL);
  244. if (!xhci->msix_entries) {
  245. xhci_err(xhci, "Failed to allocate MSI-X entries\n");
  246. return -ENOMEM;
  247. }
  248. for (i = 0; i < xhci->msix_count; i++) {
  249. xhci->msix_entries[i].entry = i;
  250. xhci->msix_entries[i].vector = 0;
  251. }
  252. ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
  253. if (ret) {
  254. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  255. "Failed to enable MSI-X");
  256. goto free_entries;
  257. }
  258. for (i = 0; i < xhci->msix_count; i++) {
  259. ret = request_irq(xhci->msix_entries[i].vector,
  260. xhci_msi_irq,
  261. 0, "xhci_hcd", xhci_to_hcd(xhci));
  262. if (ret)
  263. goto disable_msix;
  264. }
  265. hcd->msix_enabled = 1;
  266. return ret;
  267. disable_msix:
  268. xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
  269. xhci_free_irq(xhci);
  270. pci_disable_msix(pdev);
  271. free_entries:
  272. kfree(xhci->msix_entries);
  273. xhci->msix_entries = NULL;
  274. return ret;
  275. }
  276. /* Free any IRQs and disable MSI-X */
  277. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  278. {
  279. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  280. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  281. xhci_free_irq(xhci);
  282. if (xhci->msix_entries) {
  283. pci_disable_msix(pdev);
  284. kfree(xhci->msix_entries);
  285. xhci->msix_entries = NULL;
  286. } else {
  287. pci_disable_msi(pdev);
  288. }
  289. hcd->msix_enabled = 0;
  290. return;
  291. }
  292. static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  293. {
  294. int i;
  295. if (xhci->msix_entries) {
  296. for (i = 0; i < xhci->msix_count; i++)
  297. synchronize_irq(xhci->msix_entries[i].vector);
  298. }
  299. }
  300. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  301. {
  302. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  303. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  304. int ret;
  305. /*
  306. * Some Fresco Logic host controllers advertise MSI, but fail to
  307. * generate interrupts. Don't even try to enable MSI.
  308. */
  309. if (xhci->quirks & XHCI_BROKEN_MSI)
  310. goto legacy_irq;
  311. /* unregister the legacy interrupt */
  312. if (hcd->irq)
  313. free_irq(hcd->irq, hcd);
  314. hcd->irq = 0;
  315. ret = xhci_setup_msix(xhci);
  316. if (ret)
  317. /* fall back to msi*/
  318. ret = xhci_setup_msi(xhci);
  319. if (!ret)
  320. /* hcd->irq is 0, we have MSI */
  321. return 0;
  322. if (!pdev->irq) {
  323. xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
  324. return -EINVAL;
  325. }
  326. legacy_irq:
  327. /* fall back to legacy interrupt*/
  328. ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
  329. hcd->irq_descr, hcd);
  330. if (ret) {
  331. xhci_err(xhci, "request interrupt %d failed\n",
  332. pdev->irq);
  333. return ret;
  334. }
  335. hcd->irq = pdev->irq;
  336. return 0;
  337. }
  338. #else
  339. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  340. {
  341. return 0;
  342. }
  343. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  344. {
  345. }
  346. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  347. {
  348. }
  349. #endif
  350. static void compliance_mode_recovery(unsigned long arg)
  351. {
  352. struct xhci_hcd *xhci;
  353. struct usb_hcd *hcd;
  354. u32 temp;
  355. int i;
  356. xhci = (struct xhci_hcd *)arg;
  357. for (i = 0; i < xhci->num_usb3_ports; i++) {
  358. temp = xhci_readl(xhci, xhci->usb3_ports[i]);
  359. if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
  360. /*
  361. * Compliance Mode Detected. Letting USB Core
  362. * handle the Warm Reset
  363. */
  364. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  365. "Compliance mode detected->port %d",
  366. i + 1);
  367. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  368. "Attempting compliance mode recovery");
  369. hcd = xhci->shared_hcd;
  370. if (hcd->state == HC_STATE_SUSPENDED)
  371. usb_hcd_resume_root_hub(hcd);
  372. usb_hcd_poll_rh_status(hcd);
  373. }
  374. }
  375. if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
  376. mod_timer(&xhci->comp_mode_recovery_timer,
  377. jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  378. }
  379. /*
  380. * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
  381. * that causes ports behind that hardware to enter compliance mode sometimes.
  382. * The quirk creates a timer that polls every 2 seconds the link state of
  383. * each host controller's port and recovers it by issuing a Warm reset
  384. * if Compliance mode is detected, otherwise the port will become "dead" (no
  385. * device connections or disconnections will be detected anymore). Becasue no
  386. * status event is generated when entering compliance mode (per xhci spec),
  387. * this quirk is needed on systems that have the failing hardware installed.
  388. */
  389. static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
  390. {
  391. xhci->port_status_u0 = 0;
  392. init_timer(&xhci->comp_mode_recovery_timer);
  393. xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
  394. xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
  395. xhci->comp_mode_recovery_timer.expires = jiffies +
  396. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
  397. set_timer_slack(&xhci->comp_mode_recovery_timer,
  398. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  399. add_timer(&xhci->comp_mode_recovery_timer);
  400. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  401. "Compliance mode recovery timer initialized");
  402. }
  403. /*
  404. * This function identifies the systems that have installed the SN65LVPE502CP
  405. * USB3.0 re-driver and that need the Compliance Mode Quirk.
  406. * Systems:
  407. * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
  408. */
  409. bool xhci_compliance_mode_recovery_timer_quirk_check(void)
  410. {
  411. const char *dmi_product_name, *dmi_sys_vendor;
  412. dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
  413. dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
  414. if (!dmi_product_name || !dmi_sys_vendor)
  415. return false;
  416. if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
  417. return false;
  418. if (strstr(dmi_product_name, "Z420") ||
  419. strstr(dmi_product_name, "Z620") ||
  420. strstr(dmi_product_name, "Z820") ||
  421. strstr(dmi_product_name, "Z1 Workstation"))
  422. return true;
  423. return false;
  424. }
  425. static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
  426. {
  427. return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
  428. }
  429. /*
  430. * Initialize memory for HCD and xHC (one-time init).
  431. *
  432. * Program the PAGESIZE register, initialize the device context array, create
  433. * device contexts (?), set up a command ring segment (or two?), create event
  434. * ring (one for now).
  435. */
  436. int xhci_init(struct usb_hcd *hcd)
  437. {
  438. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  439. int retval = 0;
  440. xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
  441. spin_lock_init(&xhci->lock);
  442. if (xhci->hci_version == 0x95 && link_quirk) {
  443. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  444. "QUIRK: Not clearing Link TRB chain bits.");
  445. xhci->quirks |= XHCI_LINK_TRB_QUIRK;
  446. } else {
  447. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  448. "xHCI doesn't need link TRB QUIRK");
  449. }
  450. retval = xhci_mem_init(xhci, GFP_KERNEL);
  451. xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
  452. /* Initializing Compliance Mode Recovery Data If Needed */
  453. if (xhci_compliance_mode_recovery_timer_quirk_check()) {
  454. xhci->quirks |= XHCI_COMP_MODE_QUIRK;
  455. compliance_mode_recovery_timer_init(xhci);
  456. }
  457. return retval;
  458. }
  459. /*-------------------------------------------------------------------------*/
  460. static int xhci_run_finished(struct xhci_hcd *xhci)
  461. {
  462. if (xhci_start(xhci)) {
  463. xhci_halt(xhci);
  464. return -ENODEV;
  465. }
  466. xhci->shared_hcd->state = HC_STATE_RUNNING;
  467. xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
  468. if (xhci->quirks & XHCI_NEC_HOST)
  469. xhci_ring_cmd_db(xhci);
  470. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  471. "Finished xhci_run for USB3 roothub");
  472. return 0;
  473. }
  474. /*
  475. * Start the HC after it was halted.
  476. *
  477. * This function is called by the USB core when the HC driver is added.
  478. * Its opposite is xhci_stop().
  479. *
  480. * xhci_init() must be called once before this function can be called.
  481. * Reset the HC, enable device slot contexts, program DCBAAP, and
  482. * set command ring pointer and event ring pointer.
  483. *
  484. * Setup MSI-X vectors and enable interrupts.
  485. */
  486. int xhci_run(struct usb_hcd *hcd)
  487. {
  488. u32 temp;
  489. u64 temp_64;
  490. int ret;
  491. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  492. /* Start the xHCI host controller running only after the USB 2.0 roothub
  493. * is setup.
  494. */
  495. hcd->uses_new_polling = 1;
  496. if (!usb_hcd_is_primary_hcd(hcd))
  497. return xhci_run_finished(xhci);
  498. xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
  499. ret = xhci_try_enable_msi(hcd);
  500. if (ret)
  501. return ret;
  502. xhci_dbg(xhci, "Command ring memory map follows:\n");
  503. xhci_debug_ring(xhci, xhci->cmd_ring);
  504. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  505. xhci_dbg_cmd_ptrs(xhci);
  506. xhci_dbg(xhci, "ERST memory map follows:\n");
  507. xhci_dbg_erst(xhci, &xhci->erst);
  508. xhci_dbg(xhci, "Event ring:\n");
  509. xhci_debug_ring(xhci, xhci->event_ring);
  510. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  511. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  512. temp_64 &= ~ERST_PTR_MASK;
  513. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  514. "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
  515. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  516. "// Set the interrupt modulation register");
  517. temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
  518. temp &= ~ER_IRQ_INTERVAL_MASK;
  519. temp |= (u32) 160;
  520. xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
  521. /* Set the HCD state before we enable the irqs */
  522. temp = xhci_readl(xhci, &xhci->op_regs->command);
  523. temp |= (CMD_EIE);
  524. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  525. "// Enable interrupts, cmd = 0x%x.", temp);
  526. xhci_writel(xhci, temp, &xhci->op_regs->command);
  527. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  528. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  529. "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
  530. xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
  531. xhci_writel(xhci, ER_IRQ_ENABLE(temp),
  532. &xhci->ir_set->irq_pending);
  533. xhci_print_ir_set(xhci, 0);
  534. if (xhci->quirks & XHCI_NEC_HOST)
  535. xhci_queue_vendor_command(xhci, 0, 0, 0,
  536. TRB_TYPE(TRB_NEC_GET_FW));
  537. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  538. "Finished xhci_run for USB2 roothub");
  539. return 0;
  540. }
  541. static void xhci_only_stop_hcd(struct usb_hcd *hcd)
  542. {
  543. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  544. spin_lock_irq(&xhci->lock);
  545. xhci_halt(xhci);
  546. /* The shared_hcd is going to be deallocated shortly (the USB core only
  547. * calls this function when allocation fails in usb_add_hcd(), or
  548. * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
  549. */
  550. xhci->shared_hcd = NULL;
  551. spin_unlock_irq(&xhci->lock);
  552. }
  553. /*
  554. * Stop xHCI driver.
  555. *
  556. * This function is called by the USB core when the HC driver is removed.
  557. * Its opposite is xhci_run().
  558. *
  559. * Disable device contexts, disable IRQs, and quiesce the HC.
  560. * Reset the HC, finish any completed transactions, and cleanup memory.
  561. */
  562. void xhci_stop(struct usb_hcd *hcd)
  563. {
  564. u32 temp;
  565. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  566. if (!usb_hcd_is_primary_hcd(hcd)) {
  567. xhci_only_stop_hcd(xhci->shared_hcd);
  568. return;
  569. }
  570. spin_lock_irq(&xhci->lock);
  571. /* Make sure the xHC is halted for a USB3 roothub
  572. * (xhci_stop() could be called as part of failed init).
  573. */
  574. xhci_halt(xhci);
  575. xhci_reset(xhci);
  576. spin_unlock_irq(&xhci->lock);
  577. xhci_cleanup_msix(xhci);
  578. /* Deleting Compliance Mode Recovery Timer */
  579. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  580. (!(xhci_all_ports_seen_u0(xhci)))) {
  581. del_timer_sync(&xhci->comp_mode_recovery_timer);
  582. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  583. "%s: compliance mode recovery timer deleted",
  584. __func__);
  585. }
  586. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  587. usb_amd_dev_put();
  588. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  589. "// Disabling event ring interrupts");
  590. temp = xhci_readl(xhci, &xhci->op_regs->status);
  591. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  592. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  593. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  594. &xhci->ir_set->irq_pending);
  595. xhci_print_ir_set(xhci, 0);
  596. xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
  597. xhci_mem_cleanup(xhci);
  598. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  599. "xhci_stop completed - status = %x",
  600. xhci_readl(xhci, &xhci->op_regs->status));
  601. }
  602. /*
  603. * Shutdown HC (not bus-specific)
  604. *
  605. * This is called when the machine is rebooting or halting. We assume that the
  606. * machine will be powered off, and the HC's internal state will be reset.
  607. * Don't bother to free memory.
  608. *
  609. * This will only ever be called with the main usb_hcd (the USB3 roothub).
  610. */
  611. void xhci_shutdown(struct usb_hcd *hcd)
  612. {
  613. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  614. if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
  615. usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
  616. spin_lock_irq(&xhci->lock);
  617. xhci_halt(xhci);
  618. spin_unlock_irq(&xhci->lock);
  619. xhci_cleanup_msix(xhci);
  620. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  621. "xhci_shutdown completed - status = %x",
  622. xhci_readl(xhci, &xhci->op_regs->status));
  623. }
  624. #ifdef CONFIG_PM
  625. static void xhci_save_registers(struct xhci_hcd *xhci)
  626. {
  627. xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
  628. xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
  629. xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  630. xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
  631. xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
  632. xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  633. xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  634. xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  635. xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
  636. }
  637. static void xhci_restore_registers(struct xhci_hcd *xhci)
  638. {
  639. xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
  640. xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
  641. xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
  642. xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
  643. xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
  644. xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
  645. xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
  646. xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
  647. xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
  648. }
  649. static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
  650. {
  651. u64 val_64;
  652. /* step 2: initialize command ring buffer */
  653. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  654. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  655. (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  656. xhci->cmd_ring->dequeue) &
  657. (u64) ~CMD_RING_RSVD_BITS) |
  658. xhci->cmd_ring->cycle_state;
  659. xhci_dbg_trace(xhci, trace_xhci_dbg_init,
  660. "// Setting command ring address to 0x%llx",
  661. (long unsigned long) val_64);
  662. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  663. }
  664. /*
  665. * The whole command ring must be cleared to zero when we suspend the host.
  666. *
  667. * The host doesn't save the command ring pointer in the suspend well, so we
  668. * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
  669. * aligned, because of the reserved bits in the command ring dequeue pointer
  670. * register. Therefore, we can't just set the dequeue pointer back in the
  671. * middle of the ring (TRBs are 16-byte aligned).
  672. */
  673. static void xhci_clear_command_ring(struct xhci_hcd *xhci)
  674. {
  675. struct xhci_ring *ring;
  676. struct xhci_segment *seg;
  677. ring = xhci->cmd_ring;
  678. seg = ring->deq_seg;
  679. do {
  680. memset(seg->trbs, 0,
  681. sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
  682. seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
  683. cpu_to_le32(~TRB_CYCLE);
  684. seg = seg->next;
  685. } while (seg != ring->deq_seg);
  686. /* Reset the software enqueue and dequeue pointers */
  687. ring->deq_seg = ring->first_seg;
  688. ring->dequeue = ring->first_seg->trbs;
  689. ring->enq_seg = ring->deq_seg;
  690. ring->enqueue = ring->dequeue;
  691. ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
  692. /*
  693. * Ring is now zeroed, so the HW should look for change of ownership
  694. * when the cycle bit is set to 1.
  695. */
  696. ring->cycle_state = 1;
  697. /*
  698. * Reset the hardware dequeue pointer.
  699. * Yes, this will need to be re-written after resume, but we're paranoid
  700. * and want to make sure the hardware doesn't access bogus memory
  701. * because, say, the BIOS or an SMI started the host without changing
  702. * the command ring pointers.
  703. */
  704. xhci_set_cmd_ring_deq(xhci);
  705. }
  706. /*
  707. * Stop HC (not bus-specific)
  708. *
  709. * This is called when the machine transition into S3/S4 mode.
  710. *
  711. */
  712. int xhci_suspend(struct xhci_hcd *xhci)
  713. {
  714. int rc = 0;
  715. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  716. u32 command;
  717. if (hcd->state != HC_STATE_SUSPENDED ||
  718. xhci->shared_hcd->state != HC_STATE_SUSPENDED)
  719. return -EINVAL;
  720. /* Don't poll the roothubs on bus suspend. */
  721. xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
  722. clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  723. del_timer_sync(&hcd->rh_timer);
  724. spin_lock_irq(&xhci->lock);
  725. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  726. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  727. /* step 1: stop endpoint */
  728. /* skipped assuming that port suspend has done */
  729. /* step 2: clear Run/Stop bit */
  730. command = xhci_readl(xhci, &xhci->op_regs->command);
  731. command &= ~CMD_RUN;
  732. xhci_writel(xhci, command, &xhci->op_regs->command);
  733. if (xhci_handshake(xhci, &xhci->op_regs->status,
  734. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
  735. xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
  736. spin_unlock_irq(&xhci->lock);
  737. return -ETIMEDOUT;
  738. }
  739. xhci_clear_command_ring(xhci);
  740. /* step 3: save registers */
  741. xhci_save_registers(xhci);
  742. /* step 4: set CSS flag */
  743. command = xhci_readl(xhci, &xhci->op_regs->command);
  744. command |= CMD_CSS;
  745. xhci_writel(xhci, command, &xhci->op_regs->command);
  746. if (xhci_handshake(xhci, &xhci->op_regs->status,
  747. STS_SAVE, 0, 10 * 1000)) {
  748. xhci_warn(xhci, "WARN: xHC save state timeout\n");
  749. spin_unlock_irq(&xhci->lock);
  750. return -ETIMEDOUT;
  751. }
  752. spin_unlock_irq(&xhci->lock);
  753. /*
  754. * Deleting Compliance Mode Recovery Timer because the xHCI Host
  755. * is about to be suspended.
  756. */
  757. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  758. (!(xhci_all_ports_seen_u0(xhci)))) {
  759. del_timer_sync(&xhci->comp_mode_recovery_timer);
  760. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  761. "%s: compliance mode recovery timer deleted",
  762. __func__);
  763. }
  764. /* step 5: remove core well power */
  765. /* synchronize irq when using MSI-X */
  766. xhci_msix_sync_irqs(xhci);
  767. return rc;
  768. }
  769. /*
  770. * start xHC (not bus-specific)
  771. *
  772. * This is called when the machine transition from S3/S4 mode.
  773. *
  774. */
  775. int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
  776. {
  777. u32 command, temp = 0;
  778. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  779. struct usb_hcd *secondary_hcd;
  780. int retval = 0;
  781. bool comp_timer_running = false;
  782. /* Wait a bit if either of the roothubs need to settle from the
  783. * transition into bus suspend.
  784. */
  785. if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
  786. time_before(jiffies,
  787. xhci->bus_state[1].next_statechange))
  788. msleep(100);
  789. set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  790. set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  791. spin_lock_irq(&xhci->lock);
  792. if (xhci->quirks & XHCI_RESET_ON_RESUME)
  793. hibernated = true;
  794. if (!hibernated) {
  795. /* step 1: restore register */
  796. xhci_restore_registers(xhci);
  797. /* step 2: initialize command ring buffer */
  798. xhci_set_cmd_ring_deq(xhci);
  799. /* step 3: restore state and start state*/
  800. /* step 3: set CRS flag */
  801. command = xhci_readl(xhci, &xhci->op_regs->command);
  802. command |= CMD_CRS;
  803. xhci_writel(xhci, command, &xhci->op_regs->command);
  804. if (xhci_handshake(xhci, &xhci->op_regs->status,
  805. STS_RESTORE, 0, 10 * 1000)) {
  806. xhci_warn(xhci, "WARN: xHC restore state timeout\n");
  807. spin_unlock_irq(&xhci->lock);
  808. return -ETIMEDOUT;
  809. }
  810. temp = xhci_readl(xhci, &xhci->op_regs->status);
  811. }
  812. /* If restore operation fails, re-initialize the HC during resume */
  813. if ((temp & STS_SRE) || hibernated) {
  814. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  815. !(xhci_all_ports_seen_u0(xhci))) {
  816. del_timer_sync(&xhci->comp_mode_recovery_timer);
  817. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  818. "Compliance Mode Recovery Timer deleted!");
  819. }
  820. /* Let the USB core know _both_ roothubs lost power. */
  821. usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
  822. usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
  823. xhci_dbg(xhci, "Stop HCD\n");
  824. xhci_halt(xhci);
  825. xhci_reset(xhci);
  826. spin_unlock_irq(&xhci->lock);
  827. xhci_cleanup_msix(xhci);
  828. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  829. temp = xhci_readl(xhci, &xhci->op_regs->status);
  830. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  831. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  832. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  833. &xhci->ir_set->irq_pending);
  834. xhci_print_ir_set(xhci, 0);
  835. xhci_dbg(xhci, "cleaning up memory\n");
  836. xhci_mem_cleanup(xhci);
  837. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  838. xhci_readl(xhci, &xhci->op_regs->status));
  839. /* USB core calls the PCI reinit and start functions twice:
  840. * first with the primary HCD, and then with the secondary HCD.
  841. * If we don't do the same, the host will never be started.
  842. */
  843. if (!usb_hcd_is_primary_hcd(hcd))
  844. secondary_hcd = hcd;
  845. else
  846. secondary_hcd = xhci->shared_hcd;
  847. xhci_dbg(xhci, "Initialize the xhci_hcd\n");
  848. retval = xhci_init(hcd->primary_hcd);
  849. if (retval)
  850. return retval;
  851. comp_timer_running = true;
  852. xhci_dbg(xhci, "Start the primary HCD\n");
  853. retval = xhci_run(hcd->primary_hcd);
  854. if (!retval) {
  855. xhci_dbg(xhci, "Start the secondary HCD\n");
  856. retval = xhci_run(secondary_hcd);
  857. }
  858. hcd->state = HC_STATE_SUSPENDED;
  859. xhci->shared_hcd->state = HC_STATE_SUSPENDED;
  860. goto done;
  861. }
  862. /* step 4: set Run/Stop bit */
  863. command = xhci_readl(xhci, &xhci->op_regs->command);
  864. command |= CMD_RUN;
  865. xhci_writel(xhci, command, &xhci->op_regs->command);
  866. xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
  867. 0, 250 * 1000);
  868. /* step 5: walk topology and initialize portsc,
  869. * portpmsc and portli
  870. */
  871. /* this is done in bus_resume */
  872. /* step 6: restart each of the previously
  873. * Running endpoints by ringing their doorbells
  874. */
  875. spin_unlock_irq(&xhci->lock);
  876. done:
  877. if (retval == 0) {
  878. usb_hcd_resume_root_hub(hcd);
  879. usb_hcd_resume_root_hub(xhci->shared_hcd);
  880. }
  881. /*
  882. * If system is subject to the Quirk, Compliance Mode Timer needs to
  883. * be re-initialized Always after a system resume. Ports are subject
  884. * to suffer the Compliance Mode issue again. It doesn't matter if
  885. * ports have entered previously to U0 before system's suspension.
  886. */
  887. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
  888. compliance_mode_recovery_timer_init(xhci);
  889. /* Re-enable port polling. */
  890. xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
  891. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  892. usb_hcd_poll_rh_status(hcd);
  893. return retval;
  894. }
  895. #endif /* CONFIG_PM */
  896. /*-------------------------------------------------------------------------*/
  897. /**
  898. * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
  899. * HCDs. Find the index for an endpoint given its descriptor. Use the return
  900. * value to right shift 1 for the bitmask.
  901. *
  902. * Index = (epnum * 2) + direction - 1,
  903. * where direction = 0 for OUT, 1 for IN.
  904. * For control endpoints, the IN index is used (OUT index is unused), so
  905. * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
  906. */
  907. unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
  908. {
  909. unsigned int index;
  910. if (usb_endpoint_xfer_control(desc))
  911. index = (unsigned int) (usb_endpoint_num(desc)*2);
  912. else
  913. index = (unsigned int) (usb_endpoint_num(desc)*2) +
  914. (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
  915. return index;
  916. }
  917. /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
  918. * address from the XHCI endpoint index.
  919. */
  920. unsigned int xhci_get_endpoint_address(unsigned int ep_index)
  921. {
  922. unsigned int number = DIV_ROUND_UP(ep_index, 2);
  923. unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
  924. return direction | number;
  925. }
  926. /* Find the flag for this endpoint (for use in the control context). Use the
  927. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  928. * bit 1, etc.
  929. */
  930. unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
  931. {
  932. return 1 << (xhci_get_endpoint_index(desc) + 1);
  933. }
  934. /* Find the flag for this endpoint (for use in the control context). Use the
  935. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  936. * bit 1, etc.
  937. */
  938. unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
  939. {
  940. return 1 << (ep_index + 1);
  941. }
  942. /* Compute the last valid endpoint context index. Basically, this is the
  943. * endpoint index plus one. For slot contexts with more than valid endpoint,
  944. * we find the most significant bit set in the added contexts flags.
  945. * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
  946. * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
  947. */
  948. unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
  949. {
  950. return fls(added_ctxs) - 1;
  951. }
  952. /* Returns 1 if the arguments are OK;
  953. * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
  954. */
  955. static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
  956. struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
  957. const char *func) {
  958. struct xhci_hcd *xhci;
  959. struct xhci_virt_device *virt_dev;
  960. if (!hcd || (check_ep && !ep) || !udev) {
  961. pr_debug("xHCI %s called with invalid args\n", func);
  962. return -EINVAL;
  963. }
  964. if (!udev->parent) {
  965. pr_debug("xHCI %s called for root hub\n", func);
  966. return 0;
  967. }
  968. xhci = hcd_to_xhci(hcd);
  969. if (check_virt_dev) {
  970. if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
  971. xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
  972. func);
  973. return -EINVAL;
  974. }
  975. virt_dev = xhci->devs[udev->slot_id];
  976. if (virt_dev->udev != udev) {
  977. xhci_dbg(xhci, "xHCI %s called with udev and "
  978. "virt_dev does not match\n", func);
  979. return -EINVAL;
  980. }
  981. }
  982. if (xhci->xhc_state & XHCI_STATE_HALTED)
  983. return -ENODEV;
  984. return 1;
  985. }
  986. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  987. struct usb_device *udev, struct xhci_command *command,
  988. bool ctx_change, bool must_succeed);
  989. /*
  990. * Full speed devices may have a max packet size greater than 8 bytes, but the
  991. * USB core doesn't know that until it reads the first 8 bytes of the
  992. * descriptor. If the usb_device's max packet size changes after that point,
  993. * we need to issue an evaluate context command and wait on it.
  994. */
  995. static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
  996. unsigned int ep_index, struct urb *urb)
  997. {
  998. struct xhci_container_ctx *in_ctx;
  999. struct xhci_container_ctx *out_ctx;
  1000. struct xhci_input_control_ctx *ctrl_ctx;
  1001. struct xhci_ep_ctx *ep_ctx;
  1002. int max_packet_size;
  1003. int hw_max_packet_size;
  1004. int ret = 0;
  1005. out_ctx = xhci->devs[slot_id]->out_ctx;
  1006. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1007. hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
  1008. max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
  1009. if (hw_max_packet_size != max_packet_size) {
  1010. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  1011. "Max Packet Size for ep 0 changed.");
  1012. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  1013. "Max packet size in usb_device = %d",
  1014. max_packet_size);
  1015. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  1016. "Max packet size in xHCI HW = %d",
  1017. hw_max_packet_size);
  1018. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  1019. "Issuing evaluate context command.");
  1020. /* Set up the input context flags for the command */
  1021. /* FIXME: This won't work if a non-default control endpoint
  1022. * changes max packet sizes.
  1023. */
  1024. in_ctx = xhci->devs[slot_id]->in_ctx;
  1025. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1026. if (!ctrl_ctx) {
  1027. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  1028. __func__);
  1029. return -ENOMEM;
  1030. }
  1031. /* Set up the modified control endpoint 0 */
  1032. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  1033. xhci->devs[slot_id]->out_ctx, ep_index);
  1034. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  1035. ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
  1036. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
  1037. ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
  1038. ctrl_ctx->drop_flags = 0;
  1039. xhci_dbg(xhci, "Slot %d input context\n", slot_id);
  1040. xhci_dbg_ctx(xhci, in_ctx, ep_index);
  1041. xhci_dbg(xhci, "Slot %d output context\n", slot_id);
  1042. xhci_dbg_ctx(xhci, out_ctx, ep_index);
  1043. ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
  1044. true, false);
  1045. /* Clean up the input context for later use by bandwidth
  1046. * functions.
  1047. */
  1048. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
  1049. }
  1050. return ret;
  1051. }
  1052. /*
  1053. * non-error returns are a promise to giveback() the urb later
  1054. * we drop ownership so next owner (or urb unlink) can get it
  1055. */
  1056. int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
  1057. {
  1058. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  1059. struct xhci_td *buffer;
  1060. unsigned long flags;
  1061. int ret = 0;
  1062. unsigned int slot_id, ep_index;
  1063. struct urb_priv *urb_priv;
  1064. int size, i;
  1065. if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
  1066. true, true, __func__) <= 0)
  1067. return -EINVAL;
  1068. slot_id = urb->dev->slot_id;
  1069. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1070. if (!HCD_HW_ACCESSIBLE(hcd)) {
  1071. if (!in_interrupt())
  1072. xhci_dbg(xhci, "urb submitted during PCI suspend\n");
  1073. ret = -ESHUTDOWN;
  1074. goto exit;
  1075. }
  1076. if (usb_endpoint_xfer_isoc(&urb->ep->desc))
  1077. size = urb->number_of_packets;
  1078. else
  1079. size = 1;
  1080. urb_priv = kzalloc(sizeof(struct urb_priv) +
  1081. size * sizeof(struct xhci_td *), mem_flags);
  1082. if (!urb_priv)
  1083. return -ENOMEM;
  1084. buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
  1085. if (!buffer) {
  1086. kfree(urb_priv);
  1087. return -ENOMEM;
  1088. }
  1089. for (i = 0; i < size; i++) {
  1090. urb_priv->td[i] = buffer;
  1091. buffer++;
  1092. }
  1093. urb_priv->length = size;
  1094. urb_priv->td_cnt = 0;
  1095. urb->hcpriv = urb_priv;
  1096. if (usb_endpoint_xfer_control(&urb->ep->desc)) {
  1097. /* Check to see if the max packet size for the default control
  1098. * endpoint changed during FS device enumeration
  1099. */
  1100. if (urb->dev->speed == USB_SPEED_FULL) {
  1101. ret = xhci_check_maxpacket(xhci, slot_id,
  1102. ep_index, urb);
  1103. if (ret < 0) {
  1104. xhci_urb_free_priv(xhci, urb_priv);
  1105. urb->hcpriv = NULL;
  1106. return ret;
  1107. }
  1108. }
  1109. /* We have a spinlock and interrupts disabled, so we must pass
  1110. * atomic context to this function, which may allocate memory.
  1111. */
  1112. spin_lock_irqsave(&xhci->lock, flags);
  1113. if (xhci->xhc_state & XHCI_STATE_DYING)
  1114. goto dying;
  1115. ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
  1116. slot_id, ep_index);
  1117. if (ret)
  1118. goto free_priv;
  1119. spin_unlock_irqrestore(&xhci->lock, flags);
  1120. } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
  1121. spin_lock_irqsave(&xhci->lock, flags);
  1122. if (xhci->xhc_state & XHCI_STATE_DYING)
  1123. goto dying;
  1124. if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1125. EP_GETTING_STREAMS) {
  1126. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1127. "is transitioning to using streams.\n");
  1128. ret = -EINVAL;
  1129. } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1130. EP_GETTING_NO_STREAMS) {
  1131. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1132. "is transitioning to "
  1133. "not having streams.\n");
  1134. ret = -EINVAL;
  1135. } else {
  1136. ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
  1137. slot_id, ep_index);
  1138. }
  1139. if (ret)
  1140. goto free_priv;
  1141. spin_unlock_irqrestore(&xhci->lock, flags);
  1142. } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
  1143. spin_lock_irqsave(&xhci->lock, flags);
  1144. if (xhci->xhc_state & XHCI_STATE_DYING)
  1145. goto dying;
  1146. ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
  1147. slot_id, ep_index);
  1148. if (ret)
  1149. goto free_priv;
  1150. spin_unlock_irqrestore(&xhci->lock, flags);
  1151. } else {
  1152. spin_lock_irqsave(&xhci->lock, flags);
  1153. if (xhci->xhc_state & XHCI_STATE_DYING)
  1154. goto dying;
  1155. ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
  1156. slot_id, ep_index);
  1157. if (ret)
  1158. goto free_priv;
  1159. spin_unlock_irqrestore(&xhci->lock, flags);
  1160. }
  1161. exit:
  1162. return ret;
  1163. dying:
  1164. xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
  1165. "non-responsive xHCI host.\n",
  1166. urb->ep->desc.bEndpointAddress, urb);
  1167. ret = -ESHUTDOWN;
  1168. free_priv:
  1169. xhci_urb_free_priv(xhci, urb_priv);
  1170. urb->hcpriv = NULL;
  1171. spin_unlock_irqrestore(&xhci->lock, flags);
  1172. return ret;
  1173. }
  1174. /* Get the right ring for the given URB.
  1175. * If the endpoint supports streams, boundary check the URB's stream ID.
  1176. * If the endpoint doesn't support streams, return the singular endpoint ring.
  1177. */
  1178. static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
  1179. struct urb *urb)
  1180. {
  1181. unsigned int slot_id;
  1182. unsigned int ep_index;
  1183. unsigned int stream_id;
  1184. struct xhci_virt_ep *ep;
  1185. slot_id = urb->dev->slot_id;
  1186. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1187. stream_id = urb->stream_id;
  1188. ep = &xhci->devs[slot_id]->eps[ep_index];
  1189. /* Common case: no streams */
  1190. if (!(ep->ep_state & EP_HAS_STREAMS))
  1191. return ep->ring;
  1192. if (stream_id == 0) {
  1193. xhci_warn(xhci,
  1194. "WARN: Slot ID %u, ep index %u has streams, "
  1195. "but URB has no stream ID.\n",
  1196. slot_id, ep_index);
  1197. return NULL;
  1198. }
  1199. if (stream_id < ep->stream_info->num_streams)
  1200. return ep->stream_info->stream_rings[stream_id];
  1201. xhci_warn(xhci,
  1202. "WARN: Slot ID %u, ep index %u has "
  1203. "stream IDs 1 to %u allocated, "
  1204. "but stream ID %u is requested.\n",
  1205. slot_id, ep_index,
  1206. ep->stream_info->num_streams - 1,
  1207. stream_id);
  1208. return NULL;
  1209. }
  1210. /*
  1211. * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
  1212. * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
  1213. * should pick up where it left off in the TD, unless a Set Transfer Ring
  1214. * Dequeue Pointer is issued.
  1215. *
  1216. * The TRBs that make up the buffers for the canceled URB will be "removed" from
  1217. * the ring. Since the ring is a contiguous structure, they can't be physically
  1218. * removed. Instead, there are two options:
  1219. *
  1220. * 1) If the HC is in the middle of processing the URB to be canceled, we
  1221. * simply move the ring's dequeue pointer past those TRBs using the Set
  1222. * Transfer Ring Dequeue Pointer command. This will be the common case,
  1223. * when drivers timeout on the last submitted URB and attempt to cancel.
  1224. *
  1225. * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
  1226. * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
  1227. * HC will need to invalidate the any TRBs it has cached after the stop
  1228. * endpoint command, as noted in the xHCI 0.95 errata.
  1229. *
  1230. * 3) The TD may have completed by the time the Stop Endpoint Command
  1231. * completes, so software needs to handle that case too.
  1232. *
  1233. * This function should protect against the TD enqueueing code ringing the
  1234. * doorbell while this code is waiting for a Stop Endpoint command to complete.
  1235. * It also needs to account for multiple cancellations on happening at the same
  1236. * time for the same endpoint.
  1237. *
  1238. * Note that this function can be called in any context, or so says
  1239. * usb_hcd_unlink_urb()
  1240. */
  1241. int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
  1242. {
  1243. unsigned long flags;
  1244. int ret, i;
  1245. u32 temp;
  1246. struct xhci_hcd *xhci;
  1247. struct urb_priv *urb_priv;
  1248. struct xhci_td *td;
  1249. unsigned int ep_index;
  1250. struct xhci_ring *ep_ring;
  1251. struct xhci_virt_ep *ep;
  1252. xhci = hcd_to_xhci(hcd);
  1253. spin_lock_irqsave(&xhci->lock, flags);
  1254. /* Make sure the URB hasn't completed or been unlinked already */
  1255. ret = usb_hcd_check_unlink_urb(hcd, urb, status);
  1256. if (ret || !urb->hcpriv)
  1257. goto done;
  1258. temp = xhci_readl(xhci, &xhci->op_regs->status);
  1259. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1260. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  1261. "HW died, freeing TD.");
  1262. urb_priv = urb->hcpriv;
  1263. for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
  1264. td = urb_priv->td[i];
  1265. if (!list_empty(&td->td_list))
  1266. list_del_init(&td->td_list);
  1267. if (!list_empty(&td->cancelled_td_list))
  1268. list_del_init(&td->cancelled_td_list);
  1269. }
  1270. usb_hcd_unlink_urb_from_ep(hcd, urb);
  1271. spin_unlock_irqrestore(&xhci->lock, flags);
  1272. usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
  1273. xhci_urb_free_priv(xhci, urb_priv);
  1274. return ret;
  1275. }
  1276. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  1277. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1278. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  1279. "Ep 0x%x: URB %p to be canceled on "
  1280. "non-responsive xHCI host.",
  1281. urb->ep->desc.bEndpointAddress, urb);
  1282. /* Let the stop endpoint command watchdog timer (which set this
  1283. * state) finish cleaning up the endpoint TD lists. We must
  1284. * have caught it in the middle of dropping a lock and giving
  1285. * back an URB.
  1286. */
  1287. goto done;
  1288. }
  1289. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1290. ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
  1291. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  1292. if (!ep_ring) {
  1293. ret = -EINVAL;
  1294. goto done;
  1295. }
  1296. urb_priv = urb->hcpriv;
  1297. i = urb_priv->td_cnt;
  1298. if (i < urb_priv->length)
  1299. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  1300. "Cancel URB %p, dev %s, ep 0x%x, "
  1301. "starting at offset 0x%llx",
  1302. urb, urb->dev->devpath,
  1303. urb->ep->desc.bEndpointAddress,
  1304. (unsigned long long) xhci_trb_virt_to_dma(
  1305. urb_priv->td[i]->start_seg,
  1306. urb_priv->td[i]->first_trb));
  1307. for (; i < urb_priv->length; i++) {
  1308. td = urb_priv->td[i];
  1309. list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
  1310. }
  1311. /* Queue a stop endpoint command, but only if this is
  1312. * the first cancellation to be handled.
  1313. */
  1314. if (!(ep->ep_state & EP_HALT_PENDING)) {
  1315. ep->ep_state |= EP_HALT_PENDING;
  1316. ep->stop_cmds_pending++;
  1317. ep->stop_cmd_timer.expires = jiffies +
  1318. XHCI_STOP_EP_CMD_TIMEOUT * HZ;
  1319. add_timer(&ep->stop_cmd_timer);
  1320. xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
  1321. xhci_ring_cmd_db(xhci);
  1322. }
  1323. done:
  1324. spin_unlock_irqrestore(&xhci->lock, flags);
  1325. return ret;
  1326. }
  1327. /* Drop an endpoint from a new bandwidth configuration for this device.
  1328. * Only one call to this function is allowed per endpoint before
  1329. * check_bandwidth() or reset_bandwidth() must be called.
  1330. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1331. * add the endpoint to the schedule with possibly new parameters denoted by a
  1332. * different endpoint descriptor in usb_host_endpoint.
  1333. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1334. * not allowed.
  1335. *
  1336. * The USB core will not allow URBs to be queued to an endpoint that is being
  1337. * disabled, so there's no need for mutual exclusion to protect
  1338. * the xhci->devs[slot_id] structure.
  1339. */
  1340. int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1341. struct usb_host_endpoint *ep)
  1342. {
  1343. struct xhci_hcd *xhci;
  1344. struct xhci_container_ctx *in_ctx, *out_ctx;
  1345. struct xhci_input_control_ctx *ctrl_ctx;
  1346. struct xhci_slot_ctx *slot_ctx;
  1347. unsigned int last_ctx;
  1348. unsigned int ep_index;
  1349. struct xhci_ep_ctx *ep_ctx;
  1350. u32 drop_flag;
  1351. u32 new_add_flags, new_drop_flags, new_slot_info;
  1352. int ret;
  1353. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1354. if (ret <= 0)
  1355. return ret;
  1356. xhci = hcd_to_xhci(hcd);
  1357. if (xhci->xhc_state & XHCI_STATE_DYING)
  1358. return -ENODEV;
  1359. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  1360. drop_flag = xhci_get_endpoint_flag(&ep->desc);
  1361. if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
  1362. xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
  1363. __func__, drop_flag);
  1364. return 0;
  1365. }
  1366. in_ctx = xhci->devs[udev->slot_id]->in_ctx;
  1367. out_ctx = xhci->devs[udev->slot_id]->out_ctx;
  1368. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1369. if (!ctrl_ctx) {
  1370. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  1371. __func__);
  1372. return 0;
  1373. }
  1374. ep_index = xhci_get_endpoint_index(&ep->desc);
  1375. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1376. /* If the HC already knows the endpoint is disabled,
  1377. * or the HCD has noted it is disabled, ignore this request
  1378. */
  1379. if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
  1380. cpu_to_le32(EP_STATE_DISABLED)) ||
  1381. le32_to_cpu(ctrl_ctx->drop_flags) &
  1382. xhci_get_endpoint_flag(&ep->desc)) {
  1383. xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
  1384. __func__, ep);
  1385. return 0;
  1386. }
  1387. ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
  1388. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1389. ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
  1390. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1391. last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
  1392. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1393. /* Update the last valid endpoint context, if we deleted the last one */
  1394. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
  1395. LAST_CTX(last_ctx)) {
  1396. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1397. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1398. }
  1399. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1400. xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
  1401. xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1402. (unsigned int) ep->desc.bEndpointAddress,
  1403. udev->slot_id,
  1404. (unsigned int) new_drop_flags,
  1405. (unsigned int) new_add_flags,
  1406. (unsigned int) new_slot_info);
  1407. return 0;
  1408. }
  1409. /* Add an endpoint to a new possible bandwidth configuration for this device.
  1410. * Only one call to this function is allowed per endpoint before
  1411. * check_bandwidth() or reset_bandwidth() must be called.
  1412. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1413. * add the endpoint to the schedule with possibly new parameters denoted by a
  1414. * different endpoint descriptor in usb_host_endpoint.
  1415. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1416. * not allowed.
  1417. *
  1418. * The USB core will not allow URBs to be queued to an endpoint until the
  1419. * configuration or alt setting is installed in the device, so there's no need
  1420. * for mutual exclusion to protect the xhci->devs[slot_id] structure.
  1421. */
  1422. int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1423. struct usb_host_endpoint *ep)
  1424. {
  1425. struct xhci_hcd *xhci;
  1426. struct xhci_container_ctx *in_ctx, *out_ctx;
  1427. unsigned int ep_index;
  1428. struct xhci_slot_ctx *slot_ctx;
  1429. struct xhci_input_control_ctx *ctrl_ctx;
  1430. u32 added_ctxs;
  1431. unsigned int last_ctx;
  1432. u32 new_add_flags, new_drop_flags, new_slot_info;
  1433. struct xhci_virt_device *virt_dev;
  1434. int ret = 0;
  1435. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1436. if (ret <= 0) {
  1437. /* So we won't queue a reset ep command for a root hub */
  1438. ep->hcpriv = NULL;
  1439. return ret;
  1440. }
  1441. xhci = hcd_to_xhci(hcd);
  1442. if (xhci->xhc_state & XHCI_STATE_DYING)
  1443. return -ENODEV;
  1444. added_ctxs = xhci_get_endpoint_flag(&ep->desc);
  1445. last_ctx = xhci_last_valid_endpoint(added_ctxs);
  1446. if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
  1447. /* FIXME when we have to issue an evaluate endpoint command to
  1448. * deal with ep0 max packet size changing once we get the
  1449. * descriptors
  1450. */
  1451. xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
  1452. __func__, added_ctxs);
  1453. return 0;
  1454. }
  1455. virt_dev = xhci->devs[udev->slot_id];
  1456. in_ctx = virt_dev->in_ctx;
  1457. out_ctx = virt_dev->out_ctx;
  1458. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1459. if (!ctrl_ctx) {
  1460. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  1461. __func__);
  1462. return 0;
  1463. }
  1464. ep_index = xhci_get_endpoint_index(&ep->desc);
  1465. /* If this endpoint is already in use, and the upper layers are trying
  1466. * to add it again without dropping it, reject the addition.
  1467. */
  1468. if (virt_dev->eps[ep_index].ring &&
  1469. !(le32_to_cpu(ctrl_ctx->drop_flags) &
  1470. xhci_get_endpoint_flag(&ep->desc))) {
  1471. xhci_warn(xhci, "Trying to add endpoint 0x%x "
  1472. "without dropping it.\n",
  1473. (unsigned int) ep->desc.bEndpointAddress);
  1474. return -EINVAL;
  1475. }
  1476. /* If the HCD has already noted the endpoint is enabled,
  1477. * ignore this request.
  1478. */
  1479. if (le32_to_cpu(ctrl_ctx->add_flags) &
  1480. xhci_get_endpoint_flag(&ep->desc)) {
  1481. xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
  1482. __func__, ep);
  1483. return 0;
  1484. }
  1485. /*
  1486. * Configuration and alternate setting changes must be done in
  1487. * process context, not interrupt context (or so documenation
  1488. * for usb_set_interface() and usb_set_configuration() claim).
  1489. */
  1490. if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
  1491. dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
  1492. __func__, ep->desc.bEndpointAddress);
  1493. return -ENOMEM;
  1494. }
  1495. ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
  1496. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1497. /* If xhci_endpoint_disable() was called for this endpoint, but the
  1498. * xHC hasn't been notified yet through the check_bandwidth() call,
  1499. * this re-adds a new state for the endpoint from the new endpoint
  1500. * descriptors. We must drop and re-add this endpoint, so we leave the
  1501. * drop flags alone.
  1502. */
  1503. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1504. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1505. /* Update the last valid endpoint context, if we just added one past */
  1506. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
  1507. LAST_CTX(last_ctx)) {
  1508. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1509. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1510. }
  1511. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1512. /* Store the usb_device pointer for later use */
  1513. ep->hcpriv = udev;
  1514. xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1515. (unsigned int) ep->desc.bEndpointAddress,
  1516. udev->slot_id,
  1517. (unsigned int) new_drop_flags,
  1518. (unsigned int) new_add_flags,
  1519. (unsigned int) new_slot_info);
  1520. return 0;
  1521. }
  1522. static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
  1523. {
  1524. struct xhci_input_control_ctx *ctrl_ctx;
  1525. struct xhci_ep_ctx *ep_ctx;
  1526. struct xhci_slot_ctx *slot_ctx;
  1527. int i;
  1528. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  1529. if (!ctrl_ctx) {
  1530. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  1531. __func__);
  1532. return;
  1533. }
  1534. /* When a device's add flag and drop flag are zero, any subsequent
  1535. * configure endpoint command will leave that endpoint's state
  1536. * untouched. Make sure we don't leave any old state in the input
  1537. * endpoint contexts.
  1538. */
  1539. ctrl_ctx->drop_flags = 0;
  1540. ctrl_ctx->add_flags = 0;
  1541. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  1542. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1543. /* Endpoint 0 is always valid */
  1544. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
  1545. for (i = 1; i < 31; ++i) {
  1546. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
  1547. ep_ctx->ep_info = 0;
  1548. ep_ctx->ep_info2 = 0;
  1549. ep_ctx->deq = 0;
  1550. ep_ctx->tx_info = 0;
  1551. }
  1552. }
  1553. static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
  1554. struct usb_device *udev, u32 *cmd_status)
  1555. {
  1556. int ret;
  1557. switch (*cmd_status) {
  1558. case COMP_ENOMEM:
  1559. dev_warn(&udev->dev, "Not enough host controller resources "
  1560. "for new device state.\n");
  1561. ret = -ENOMEM;
  1562. /* FIXME: can we allocate more resources for the HC? */
  1563. break;
  1564. case COMP_BW_ERR:
  1565. case COMP_2ND_BW_ERR:
  1566. dev_warn(&udev->dev, "Not enough bandwidth "
  1567. "for new device state.\n");
  1568. ret = -ENOSPC;
  1569. /* FIXME: can we go back to the old state? */
  1570. break;
  1571. case COMP_TRB_ERR:
  1572. /* the HCD set up something wrong */
  1573. dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
  1574. "add flag = 1, "
  1575. "and endpoint is not disabled.\n");
  1576. ret = -EINVAL;
  1577. break;
  1578. case COMP_DEV_ERR:
  1579. dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
  1580. "configure command.\n");
  1581. ret = -ENODEV;
  1582. break;
  1583. case COMP_SUCCESS:
  1584. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  1585. "Successful Endpoint Configure command");
  1586. ret = 0;
  1587. break;
  1588. default:
  1589. xhci_err(xhci, "ERROR: unexpected command completion "
  1590. "code 0x%x.\n", *cmd_status);
  1591. ret = -EINVAL;
  1592. break;
  1593. }
  1594. return ret;
  1595. }
  1596. static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
  1597. struct usb_device *udev, u32 *cmd_status)
  1598. {
  1599. int ret;
  1600. struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
  1601. switch (*cmd_status) {
  1602. case COMP_EINVAL:
  1603. dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
  1604. "context command.\n");
  1605. ret = -EINVAL;
  1606. break;
  1607. case COMP_EBADSLT:
  1608. dev_warn(&udev->dev, "WARN: slot not enabled for"
  1609. "evaluate context command.\n");
  1610. ret = -EINVAL;
  1611. break;
  1612. case COMP_CTX_STATE:
  1613. dev_warn(&udev->dev, "WARN: invalid context state for "
  1614. "evaluate context command.\n");
  1615. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
  1616. ret = -EINVAL;
  1617. break;
  1618. case COMP_DEV_ERR:
  1619. dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
  1620. "context command.\n");
  1621. ret = -ENODEV;
  1622. break;
  1623. case COMP_MEL_ERR:
  1624. /* Max Exit Latency too large error */
  1625. dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
  1626. ret = -EINVAL;
  1627. break;
  1628. case COMP_SUCCESS:
  1629. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  1630. "Successful evaluate context command");
  1631. ret = 0;
  1632. break;
  1633. default:
  1634. xhci_err(xhci, "ERROR: unexpected command completion "
  1635. "code 0x%x.\n", *cmd_status);
  1636. ret = -EINVAL;
  1637. break;
  1638. }
  1639. return ret;
  1640. }
  1641. static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
  1642. struct xhci_input_control_ctx *ctrl_ctx)
  1643. {
  1644. u32 valid_add_flags;
  1645. u32 valid_drop_flags;
  1646. /* Ignore the slot flag (bit 0), and the default control endpoint flag
  1647. * (bit 1). The default control endpoint is added during the Address
  1648. * Device command and is never removed until the slot is disabled.
  1649. */
  1650. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1651. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1652. /* Use hweight32 to count the number of ones in the add flags, or
  1653. * number of endpoints added. Don't count endpoints that are changed
  1654. * (both added and dropped).
  1655. */
  1656. return hweight32(valid_add_flags) -
  1657. hweight32(valid_add_flags & valid_drop_flags);
  1658. }
  1659. static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
  1660. struct xhci_input_control_ctx *ctrl_ctx)
  1661. {
  1662. u32 valid_add_flags;
  1663. u32 valid_drop_flags;
  1664. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1665. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1666. return hweight32(valid_drop_flags) -
  1667. hweight32(valid_add_flags & valid_drop_flags);
  1668. }
  1669. /*
  1670. * We need to reserve the new number of endpoints before the configure endpoint
  1671. * command completes. We can't subtract the dropped endpoints from the number
  1672. * of active endpoints until the command completes because we can oversubscribe
  1673. * the host in this case:
  1674. *
  1675. * - the first configure endpoint command drops more endpoints than it adds
  1676. * - a second configure endpoint command that adds more endpoints is queued
  1677. * - the first configure endpoint command fails, so the config is unchanged
  1678. * - the second command may succeed, even though there isn't enough resources
  1679. *
  1680. * Must be called with xhci->lock held.
  1681. */
  1682. static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
  1683. struct xhci_input_control_ctx *ctrl_ctx)
  1684. {
  1685. u32 added_eps;
  1686. added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
  1687. if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
  1688. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1689. "Not enough ep ctxs: "
  1690. "%u active, need to add %u, limit is %u.",
  1691. xhci->num_active_eps, added_eps,
  1692. xhci->limit_active_eps);
  1693. return -ENOMEM;
  1694. }
  1695. xhci->num_active_eps += added_eps;
  1696. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1697. "Adding %u ep ctxs, %u now active.", added_eps,
  1698. xhci->num_active_eps);
  1699. return 0;
  1700. }
  1701. /*
  1702. * The configure endpoint was failed by the xHC for some other reason, so we
  1703. * need to revert the resources that failed configuration would have used.
  1704. *
  1705. * Must be called with xhci->lock held.
  1706. */
  1707. static void xhci_free_host_resources(struct xhci_hcd *xhci,
  1708. struct xhci_input_control_ctx *ctrl_ctx)
  1709. {
  1710. u32 num_failed_eps;
  1711. num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
  1712. xhci->num_active_eps -= num_failed_eps;
  1713. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1714. "Removing %u failed ep ctxs, %u now active.",
  1715. num_failed_eps,
  1716. xhci->num_active_eps);
  1717. }
  1718. /*
  1719. * Now that the command has completed, clean up the active endpoint count by
  1720. * subtracting out the endpoints that were dropped (but not changed).
  1721. *
  1722. * Must be called with xhci->lock held.
  1723. */
  1724. static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
  1725. struct xhci_input_control_ctx *ctrl_ctx)
  1726. {
  1727. u32 num_dropped_eps;
  1728. num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
  1729. xhci->num_active_eps -= num_dropped_eps;
  1730. if (num_dropped_eps)
  1731. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1732. "Removing %u dropped ep ctxs, %u now active.",
  1733. num_dropped_eps,
  1734. xhci->num_active_eps);
  1735. }
  1736. static unsigned int xhci_get_block_size(struct usb_device *udev)
  1737. {
  1738. switch (udev->speed) {
  1739. case USB_SPEED_LOW:
  1740. case USB_SPEED_FULL:
  1741. return FS_BLOCK;
  1742. case USB_SPEED_HIGH:
  1743. return HS_BLOCK;
  1744. case USB_SPEED_SUPER:
  1745. return SS_BLOCK;
  1746. case USB_SPEED_UNKNOWN:
  1747. case USB_SPEED_WIRELESS:
  1748. default:
  1749. /* Should never happen */
  1750. return 1;
  1751. }
  1752. }
  1753. static unsigned int
  1754. xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
  1755. {
  1756. if (interval_bw->overhead[LS_OVERHEAD_TYPE])
  1757. return LS_OVERHEAD;
  1758. if (interval_bw->overhead[FS_OVERHEAD_TYPE])
  1759. return FS_OVERHEAD;
  1760. return HS_OVERHEAD;
  1761. }
  1762. /* If we are changing a LS/FS device under a HS hub,
  1763. * make sure (if we are activating a new TT) that the HS bus has enough
  1764. * bandwidth for this new TT.
  1765. */
  1766. static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
  1767. struct xhci_virt_device *virt_dev,
  1768. int old_active_eps)
  1769. {
  1770. struct xhci_interval_bw_table *bw_table;
  1771. struct xhci_tt_bw_info *tt_info;
  1772. /* Find the bandwidth table for the root port this TT is attached to. */
  1773. bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
  1774. tt_info = virt_dev->tt_info;
  1775. /* If this TT already had active endpoints, the bandwidth for this TT
  1776. * has already been added. Removing all periodic endpoints (and thus
  1777. * making the TT enactive) will only decrease the bandwidth used.
  1778. */
  1779. if (old_active_eps)
  1780. return 0;
  1781. if (old_active_eps == 0 && tt_info->active_eps != 0) {
  1782. if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
  1783. return -ENOMEM;
  1784. return 0;
  1785. }
  1786. /* Not sure why we would have no new active endpoints...
  1787. *
  1788. * Maybe because of an Evaluate Context change for a hub update or a
  1789. * control endpoint 0 max packet size change?
  1790. * FIXME: skip the bandwidth calculation in that case.
  1791. */
  1792. return 0;
  1793. }
  1794. static int xhci_check_ss_bw(struct xhci_hcd *xhci,
  1795. struct xhci_virt_device *virt_dev)
  1796. {
  1797. unsigned int bw_reserved;
  1798. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
  1799. if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
  1800. return -ENOMEM;
  1801. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
  1802. if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
  1803. return -ENOMEM;
  1804. return 0;
  1805. }
  1806. /*
  1807. * This algorithm is a very conservative estimate of the worst-case scheduling
  1808. * scenario for any one interval. The hardware dynamically schedules the
  1809. * packets, so we can't tell which microframe could be the limiting factor in
  1810. * the bandwidth scheduling. This only takes into account periodic endpoints.
  1811. *
  1812. * Obviously, we can't solve an NP complete problem to find the minimum worst
  1813. * case scenario. Instead, we come up with an estimate that is no less than
  1814. * the worst case bandwidth used for any one microframe, but may be an
  1815. * over-estimate.
  1816. *
  1817. * We walk the requirements for each endpoint by interval, starting with the
  1818. * smallest interval, and place packets in the schedule where there is only one
  1819. * possible way to schedule packets for that interval. In order to simplify
  1820. * this algorithm, we record the largest max packet size for each interval, and
  1821. * assume all packets will be that size.
  1822. *
  1823. * For interval 0, we obviously must schedule all packets for each interval.
  1824. * The bandwidth for interval 0 is just the amount of data to be transmitted
  1825. * (the sum of all max ESIT payload sizes, plus any overhead per packet times
  1826. * the number of packets).
  1827. *
  1828. * For interval 1, we have two possible microframes to schedule those packets
  1829. * in. For this algorithm, if we can schedule the same number of packets for
  1830. * each possible scheduling opportunity (each microframe), we will do so. The
  1831. * remaining number of packets will be saved to be transmitted in the gaps in
  1832. * the next interval's scheduling sequence.
  1833. *
  1834. * As we move those remaining packets to be scheduled with interval 2 packets,
  1835. * we have to double the number of remaining packets to transmit. This is
  1836. * because the intervals are actually powers of 2, and we would be transmitting
  1837. * the previous interval's packets twice in this interval. We also have to be
  1838. * sure that when we look at the largest max packet size for this interval, we
  1839. * also look at the largest max packet size for the remaining packets and take
  1840. * the greater of the two.
  1841. *
  1842. * The algorithm continues to evenly distribute packets in each scheduling
  1843. * opportunity, and push the remaining packets out, until we get to the last
  1844. * interval. Then those packets and their associated overhead are just added
  1845. * to the bandwidth used.
  1846. */
  1847. static int xhci_check_bw_table(struct xhci_hcd *xhci,
  1848. struct xhci_virt_device *virt_dev,
  1849. int old_active_eps)
  1850. {
  1851. unsigned int bw_reserved;
  1852. unsigned int max_bandwidth;
  1853. unsigned int bw_used;
  1854. unsigned int block_size;
  1855. struct xhci_interval_bw_table *bw_table;
  1856. unsigned int packet_size = 0;
  1857. unsigned int overhead = 0;
  1858. unsigned int packets_transmitted = 0;
  1859. unsigned int packets_remaining = 0;
  1860. unsigned int i;
  1861. if (virt_dev->udev->speed == USB_SPEED_SUPER)
  1862. return xhci_check_ss_bw(xhci, virt_dev);
  1863. if (virt_dev->udev->speed == USB_SPEED_HIGH) {
  1864. max_bandwidth = HS_BW_LIMIT;
  1865. /* Convert percent of bus BW reserved to blocks reserved */
  1866. bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
  1867. } else {
  1868. max_bandwidth = FS_BW_LIMIT;
  1869. bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
  1870. }
  1871. bw_table = virt_dev->bw_table;
  1872. /* We need to translate the max packet size and max ESIT payloads into
  1873. * the units the hardware uses.
  1874. */
  1875. block_size = xhci_get_block_size(virt_dev->udev);
  1876. /* If we are manipulating a LS/FS device under a HS hub, double check
  1877. * that the HS bus has enough bandwidth if we are activing a new TT.
  1878. */
  1879. if (virt_dev->tt_info) {
  1880. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1881. "Recalculating BW for rootport %u",
  1882. virt_dev->real_port);
  1883. if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
  1884. xhci_warn(xhci, "Not enough bandwidth on HS bus for "
  1885. "newly activated TT.\n");
  1886. return -ENOMEM;
  1887. }
  1888. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1889. "Recalculating BW for TT slot %u port %u",
  1890. virt_dev->tt_info->slot_id,
  1891. virt_dev->tt_info->ttport);
  1892. } else {
  1893. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1894. "Recalculating BW for rootport %u",
  1895. virt_dev->real_port);
  1896. }
  1897. /* Add in how much bandwidth will be used for interval zero, or the
  1898. * rounded max ESIT payload + number of packets * largest overhead.
  1899. */
  1900. bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
  1901. bw_table->interval_bw[0].num_packets *
  1902. xhci_get_largest_overhead(&bw_table->interval_bw[0]);
  1903. for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
  1904. unsigned int bw_added;
  1905. unsigned int largest_mps;
  1906. unsigned int interval_overhead;
  1907. /*
  1908. * How many packets could we transmit in this interval?
  1909. * If packets didn't fit in the previous interval, we will need
  1910. * to transmit that many packets twice within this interval.
  1911. */
  1912. packets_remaining = 2 * packets_remaining +
  1913. bw_table->interval_bw[i].num_packets;
  1914. /* Find the largest max packet size of this or the previous
  1915. * interval.
  1916. */
  1917. if (list_empty(&bw_table->interval_bw[i].endpoints))
  1918. largest_mps = 0;
  1919. else {
  1920. struct xhci_virt_ep *virt_ep;
  1921. struct list_head *ep_entry;
  1922. ep_entry = bw_table->interval_bw[i].endpoints.next;
  1923. virt_ep = list_entry(ep_entry,
  1924. struct xhci_virt_ep, bw_endpoint_list);
  1925. /* Convert to blocks, rounding up */
  1926. largest_mps = DIV_ROUND_UP(
  1927. virt_ep->bw_info.max_packet_size,
  1928. block_size);
  1929. }
  1930. if (largest_mps > packet_size)
  1931. packet_size = largest_mps;
  1932. /* Use the larger overhead of this or the previous interval. */
  1933. interval_overhead = xhci_get_largest_overhead(
  1934. &bw_table->interval_bw[i]);
  1935. if (interval_overhead > overhead)
  1936. overhead = interval_overhead;
  1937. /* How many packets can we evenly distribute across
  1938. * (1 << (i + 1)) possible scheduling opportunities?
  1939. */
  1940. packets_transmitted = packets_remaining >> (i + 1);
  1941. /* Add in the bandwidth used for those scheduled packets */
  1942. bw_added = packets_transmitted * (overhead + packet_size);
  1943. /* How many packets do we have remaining to transmit? */
  1944. packets_remaining = packets_remaining % (1 << (i + 1));
  1945. /* What largest max packet size should those packets have? */
  1946. /* If we've transmitted all packets, don't carry over the
  1947. * largest packet size.
  1948. */
  1949. if (packets_remaining == 0) {
  1950. packet_size = 0;
  1951. overhead = 0;
  1952. } else if (packets_transmitted > 0) {
  1953. /* Otherwise if we do have remaining packets, and we've
  1954. * scheduled some packets in this interval, take the
  1955. * largest max packet size from endpoints with this
  1956. * interval.
  1957. */
  1958. packet_size = largest_mps;
  1959. overhead = interval_overhead;
  1960. }
  1961. /* Otherwise carry over packet_size and overhead from the last
  1962. * time we had a remainder.
  1963. */
  1964. bw_used += bw_added;
  1965. if (bw_used > max_bandwidth) {
  1966. xhci_warn(xhci, "Not enough bandwidth. "
  1967. "Proposed: %u, Max: %u\n",
  1968. bw_used, max_bandwidth);
  1969. return -ENOMEM;
  1970. }
  1971. }
  1972. /*
  1973. * Ok, we know we have some packets left over after even-handedly
  1974. * scheduling interval 15. We don't know which microframes they will
  1975. * fit into, so we over-schedule and say they will be scheduled every
  1976. * microframe.
  1977. */
  1978. if (packets_remaining > 0)
  1979. bw_used += overhead + packet_size;
  1980. if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
  1981. unsigned int port_index = virt_dev->real_port - 1;
  1982. /* OK, we're manipulating a HS device attached to a
  1983. * root port bandwidth domain. Include the number of active TTs
  1984. * in the bandwidth used.
  1985. */
  1986. bw_used += TT_HS_OVERHEAD *
  1987. xhci->rh_bw[port_index].num_active_tts;
  1988. }
  1989. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1990. "Final bandwidth: %u, Limit: %u, Reserved: %u, "
  1991. "Available: %u " "percent",
  1992. bw_used, max_bandwidth, bw_reserved,
  1993. (max_bandwidth - bw_used - bw_reserved) * 100 /
  1994. max_bandwidth);
  1995. bw_used += bw_reserved;
  1996. if (bw_used > max_bandwidth) {
  1997. xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
  1998. bw_used, max_bandwidth);
  1999. return -ENOMEM;
  2000. }
  2001. bw_table->bw_used = bw_used;
  2002. return 0;
  2003. }
  2004. static bool xhci_is_async_ep(unsigned int ep_type)
  2005. {
  2006. return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
  2007. ep_type != ISOC_IN_EP &&
  2008. ep_type != INT_IN_EP);
  2009. }
  2010. static bool xhci_is_sync_in_ep(unsigned int ep_type)
  2011. {
  2012. return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
  2013. }
  2014. static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
  2015. {
  2016. unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
  2017. if (ep_bw->ep_interval == 0)
  2018. return SS_OVERHEAD_BURST +
  2019. (ep_bw->mult * ep_bw->num_packets *
  2020. (SS_OVERHEAD + mps));
  2021. return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
  2022. (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
  2023. 1 << ep_bw->ep_interval);
  2024. }
  2025. void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
  2026. struct xhci_bw_info *ep_bw,
  2027. struct xhci_interval_bw_table *bw_table,
  2028. struct usb_device *udev,
  2029. struct xhci_virt_ep *virt_ep,
  2030. struct xhci_tt_bw_info *tt_info)
  2031. {
  2032. struct xhci_interval_bw *interval_bw;
  2033. int normalized_interval;
  2034. if (xhci_is_async_ep(ep_bw->type))
  2035. return;
  2036. if (udev->speed == USB_SPEED_SUPER) {
  2037. if (xhci_is_sync_in_ep(ep_bw->type))
  2038. xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
  2039. xhci_get_ss_bw_consumed(ep_bw);
  2040. else
  2041. xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
  2042. xhci_get_ss_bw_consumed(ep_bw);
  2043. return;
  2044. }
  2045. /* SuperSpeed endpoints never get added to intervals in the table, so
  2046. * this check is only valid for HS/FS/LS devices.
  2047. */
  2048. if (list_empty(&virt_ep->bw_endpoint_list))
  2049. return;
  2050. /* For LS/FS devices, we need to translate the interval expressed in
  2051. * microframes to frames.
  2052. */
  2053. if (udev->speed == USB_SPEED_HIGH)
  2054. normalized_interval = ep_bw->ep_interval;
  2055. else
  2056. normalized_interval = ep_bw->ep_interval - 3;
  2057. if (normalized_interval == 0)
  2058. bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
  2059. interval_bw = &bw_table->interval_bw[normalized_interval];
  2060. interval_bw->num_packets -= ep_bw->num_packets;
  2061. switch (udev->speed) {
  2062. case USB_SPEED_LOW:
  2063. interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
  2064. break;
  2065. case USB_SPEED_FULL:
  2066. interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
  2067. break;
  2068. case USB_SPEED_HIGH:
  2069. interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
  2070. break;
  2071. case USB_SPEED_SUPER:
  2072. case USB_SPEED_UNKNOWN:
  2073. case USB_SPEED_WIRELESS:
  2074. /* Should never happen because only LS/FS/HS endpoints will get
  2075. * added to the endpoint list.
  2076. */
  2077. return;
  2078. }
  2079. if (tt_info)
  2080. tt_info->active_eps -= 1;
  2081. list_del_init(&virt_ep->bw_endpoint_list);
  2082. }
  2083. static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
  2084. struct xhci_bw_info *ep_bw,
  2085. struct xhci_interval_bw_table *bw_table,
  2086. struct usb_device *udev,
  2087. struct xhci_virt_ep *virt_ep,
  2088. struct xhci_tt_bw_info *tt_info)
  2089. {
  2090. struct xhci_interval_bw *interval_bw;
  2091. struct xhci_virt_ep *smaller_ep;
  2092. int normalized_interval;
  2093. if (xhci_is_async_ep(ep_bw->type))
  2094. return;
  2095. if (udev->speed == USB_SPEED_SUPER) {
  2096. if (xhci_is_sync_in_ep(ep_bw->type))
  2097. xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
  2098. xhci_get_ss_bw_consumed(ep_bw);
  2099. else
  2100. xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
  2101. xhci_get_ss_bw_consumed(ep_bw);
  2102. return;
  2103. }
  2104. /* For LS/FS devices, we need to translate the interval expressed in
  2105. * microframes to frames.
  2106. */
  2107. if (udev->speed == USB_SPEED_HIGH)
  2108. normalized_interval = ep_bw->ep_interval;
  2109. else
  2110. normalized_interval = ep_bw->ep_interval - 3;
  2111. if (normalized_interval == 0)
  2112. bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
  2113. interval_bw = &bw_table->interval_bw[normalized_interval];
  2114. interval_bw->num_packets += ep_bw->num_packets;
  2115. switch (udev->speed) {
  2116. case USB_SPEED_LOW:
  2117. interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
  2118. break;
  2119. case USB_SPEED_FULL:
  2120. interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
  2121. break;
  2122. case USB_SPEED_HIGH:
  2123. interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
  2124. break;
  2125. case USB_SPEED_SUPER:
  2126. case USB_SPEED_UNKNOWN:
  2127. case USB_SPEED_WIRELESS:
  2128. /* Should never happen because only LS/FS/HS endpoints will get
  2129. * added to the endpoint list.
  2130. */
  2131. return;
  2132. }
  2133. if (tt_info)
  2134. tt_info->active_eps += 1;
  2135. /* Insert the endpoint into the list, largest max packet size first. */
  2136. list_for_each_entry(smaller_ep, &interval_bw->endpoints,
  2137. bw_endpoint_list) {
  2138. if (ep_bw->max_packet_size >=
  2139. smaller_ep->bw_info.max_packet_size) {
  2140. /* Add the new ep before the smaller endpoint */
  2141. list_add_tail(&virt_ep->bw_endpoint_list,
  2142. &smaller_ep->bw_endpoint_list);
  2143. return;
  2144. }
  2145. }
  2146. /* Add the new endpoint at the end of the list. */
  2147. list_add_tail(&virt_ep->bw_endpoint_list,
  2148. &interval_bw->endpoints);
  2149. }
  2150. void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
  2151. struct xhci_virt_device *virt_dev,
  2152. int old_active_eps)
  2153. {
  2154. struct xhci_root_port_bw_info *rh_bw_info;
  2155. if (!virt_dev->tt_info)
  2156. return;
  2157. rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
  2158. if (old_active_eps == 0 &&
  2159. virt_dev->tt_info->active_eps != 0) {
  2160. rh_bw_info->num_active_tts += 1;
  2161. rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
  2162. } else if (old_active_eps != 0 &&
  2163. virt_dev->tt_info->active_eps == 0) {
  2164. rh_bw_info->num_active_tts -= 1;
  2165. rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
  2166. }
  2167. }
  2168. static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
  2169. struct xhci_virt_device *virt_dev,
  2170. struct xhci_container_ctx *in_ctx)
  2171. {
  2172. struct xhci_bw_info ep_bw_info[31];
  2173. int i;
  2174. struct xhci_input_control_ctx *ctrl_ctx;
  2175. int old_active_eps = 0;
  2176. if (virt_dev->tt_info)
  2177. old_active_eps = virt_dev->tt_info->active_eps;
  2178. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2179. if (!ctrl_ctx) {
  2180. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  2181. __func__);
  2182. return -ENOMEM;
  2183. }
  2184. for (i = 0; i < 31; i++) {
  2185. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2186. continue;
  2187. /* Make a copy of the BW info in case we need to revert this */
  2188. memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
  2189. sizeof(ep_bw_info[i]));
  2190. /* Drop the endpoint from the interval table if the endpoint is
  2191. * being dropped or changed.
  2192. */
  2193. if (EP_IS_DROPPED(ctrl_ctx, i))
  2194. xhci_drop_ep_from_interval_table(xhci,
  2195. &virt_dev->eps[i].bw_info,
  2196. virt_dev->bw_table,
  2197. virt_dev->udev,
  2198. &virt_dev->eps[i],
  2199. virt_dev->tt_info);
  2200. }
  2201. /* Overwrite the information stored in the endpoints' bw_info */
  2202. xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
  2203. for (i = 0; i < 31; i++) {
  2204. /* Add any changed or added endpoints to the interval table */
  2205. if (EP_IS_ADDED(ctrl_ctx, i))
  2206. xhci_add_ep_to_interval_table(xhci,
  2207. &virt_dev->eps[i].bw_info,
  2208. virt_dev->bw_table,
  2209. virt_dev->udev,
  2210. &virt_dev->eps[i],
  2211. virt_dev->tt_info);
  2212. }
  2213. if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
  2214. /* Ok, this fits in the bandwidth we have.
  2215. * Update the number of active TTs.
  2216. */
  2217. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  2218. return 0;
  2219. }
  2220. /* We don't have enough bandwidth for this, revert the stored info. */
  2221. for (i = 0; i < 31; i++) {
  2222. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2223. continue;
  2224. /* Drop the new copies of any added or changed endpoints from
  2225. * the interval table.
  2226. */
  2227. if (EP_IS_ADDED(ctrl_ctx, i)) {
  2228. xhci_drop_ep_from_interval_table(xhci,
  2229. &virt_dev->eps[i].bw_info,
  2230. virt_dev->bw_table,
  2231. virt_dev->udev,
  2232. &virt_dev->eps[i],
  2233. virt_dev->tt_info);
  2234. }
  2235. /* Revert the endpoint back to its old information */
  2236. memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
  2237. sizeof(ep_bw_info[i]));
  2238. /* Add any changed or dropped endpoints back into the table */
  2239. if (EP_IS_DROPPED(ctrl_ctx, i))
  2240. xhci_add_ep_to_interval_table(xhci,
  2241. &virt_dev->eps[i].bw_info,
  2242. virt_dev->bw_table,
  2243. virt_dev->udev,
  2244. &virt_dev->eps[i],
  2245. virt_dev->tt_info);
  2246. }
  2247. return -ENOMEM;
  2248. }
  2249. /* Issue a configure endpoint command or evaluate context command
  2250. * and wait for it to finish.
  2251. */
  2252. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  2253. struct usb_device *udev,
  2254. struct xhci_command *command,
  2255. bool ctx_change, bool must_succeed)
  2256. {
  2257. int ret;
  2258. int timeleft;
  2259. unsigned long flags;
  2260. struct xhci_container_ctx *in_ctx;
  2261. struct xhci_input_control_ctx *ctrl_ctx;
  2262. struct completion *cmd_completion;
  2263. u32 *cmd_status;
  2264. struct xhci_virt_device *virt_dev;
  2265. union xhci_trb *cmd_trb;
  2266. spin_lock_irqsave(&xhci->lock, flags);
  2267. virt_dev = xhci->devs[udev->slot_id];
  2268. if (command)
  2269. in_ctx = command->in_ctx;
  2270. else
  2271. in_ctx = virt_dev->in_ctx;
  2272. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2273. if (!ctrl_ctx) {
  2274. spin_unlock_irqrestore(&xhci->lock, flags);
  2275. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  2276. __func__);
  2277. return -ENOMEM;
  2278. }
  2279. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
  2280. xhci_reserve_host_resources(xhci, ctrl_ctx)) {
  2281. spin_unlock_irqrestore(&xhci->lock, flags);
  2282. xhci_warn(xhci, "Not enough host resources, "
  2283. "active endpoint contexts = %u\n",
  2284. xhci->num_active_eps);
  2285. return -ENOMEM;
  2286. }
  2287. if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
  2288. xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
  2289. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2290. xhci_free_host_resources(xhci, ctrl_ctx);
  2291. spin_unlock_irqrestore(&xhci->lock, flags);
  2292. xhci_warn(xhci, "Not enough bandwidth\n");
  2293. return -ENOMEM;
  2294. }
  2295. if (command) {
  2296. cmd_completion = command->completion;
  2297. cmd_status = &command->status;
  2298. command->command_trb = xhci->cmd_ring->enqueue;
  2299. /* Enqueue pointer can be left pointing to the link TRB,
  2300. * we must handle that
  2301. */
  2302. if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
  2303. command->command_trb =
  2304. xhci->cmd_ring->enq_seg->next->trbs;
  2305. list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
  2306. } else {
  2307. cmd_completion = &virt_dev->cmd_completion;
  2308. cmd_status = &virt_dev->cmd_status;
  2309. }
  2310. init_completion(cmd_completion);
  2311. cmd_trb = xhci->cmd_ring->dequeue;
  2312. if (!ctx_change)
  2313. ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
  2314. udev->slot_id, must_succeed);
  2315. else
  2316. ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
  2317. udev->slot_id, must_succeed);
  2318. if (ret < 0) {
  2319. if (command)
  2320. list_del(&command->cmd_list);
  2321. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2322. xhci_free_host_resources(xhci, ctrl_ctx);
  2323. spin_unlock_irqrestore(&xhci->lock, flags);
  2324. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  2325. "FIXME allocate a new ring segment");
  2326. return -ENOMEM;
  2327. }
  2328. xhci_ring_cmd_db(xhci);
  2329. spin_unlock_irqrestore(&xhci->lock, flags);
  2330. /* Wait for the configure endpoint command to complete */
  2331. timeleft = wait_for_completion_interruptible_timeout(
  2332. cmd_completion,
  2333. XHCI_CMD_DEFAULT_TIMEOUT);
  2334. if (timeleft <= 0) {
  2335. xhci_warn(xhci, "%s while waiting for %s command\n",
  2336. timeleft == 0 ? "Timeout" : "Signal",
  2337. ctx_change == 0 ?
  2338. "configure endpoint" :
  2339. "evaluate context");
  2340. /* cancel the configure endpoint command */
  2341. ret = xhci_cancel_cmd(xhci, command, cmd_trb);
  2342. if (ret < 0)
  2343. return ret;
  2344. return -ETIME;
  2345. }
  2346. if (!ctx_change)
  2347. ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
  2348. else
  2349. ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
  2350. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  2351. spin_lock_irqsave(&xhci->lock, flags);
  2352. /* If the command failed, remove the reserved resources.
  2353. * Otherwise, clean up the estimate to include dropped eps.
  2354. */
  2355. if (ret)
  2356. xhci_free_host_resources(xhci, ctrl_ctx);
  2357. else
  2358. xhci_finish_resource_reservation(xhci, ctrl_ctx);
  2359. spin_unlock_irqrestore(&xhci->lock, flags);
  2360. }
  2361. return ret;
  2362. }
  2363. /* Called after one or more calls to xhci_add_endpoint() or
  2364. * xhci_drop_endpoint(). If this call fails, the USB core is expected
  2365. * to call xhci_reset_bandwidth().
  2366. *
  2367. * Since we are in the middle of changing either configuration or
  2368. * installing a new alt setting, the USB core won't allow URBs to be
  2369. * enqueued for any endpoint on the old config or interface. Nothing
  2370. * else should be touching the xhci->devs[slot_id] structure, so we
  2371. * don't need to take the xhci->lock for manipulating that.
  2372. */
  2373. int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2374. {
  2375. int i;
  2376. int ret = 0;
  2377. struct xhci_hcd *xhci;
  2378. struct xhci_virt_device *virt_dev;
  2379. struct xhci_input_control_ctx *ctrl_ctx;
  2380. struct xhci_slot_ctx *slot_ctx;
  2381. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2382. if (ret <= 0)
  2383. return ret;
  2384. xhci = hcd_to_xhci(hcd);
  2385. if (xhci->xhc_state & XHCI_STATE_DYING)
  2386. return -ENODEV;
  2387. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2388. virt_dev = xhci->devs[udev->slot_id];
  2389. /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
  2390. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  2391. if (!ctrl_ctx) {
  2392. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  2393. __func__);
  2394. return -ENOMEM;
  2395. }
  2396. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2397. ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
  2398. ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
  2399. /* Don't issue the command if there's no endpoints to update. */
  2400. if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
  2401. ctrl_ctx->drop_flags == 0)
  2402. return 0;
  2403. xhci_dbg(xhci, "New Input Control Context:\n");
  2404. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  2405. xhci_dbg_ctx(xhci, virt_dev->in_ctx,
  2406. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2407. ret = xhci_configure_endpoint(xhci, udev, NULL,
  2408. false, false);
  2409. if (ret) {
  2410. /* Callee should call reset_bandwidth() */
  2411. return ret;
  2412. }
  2413. xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
  2414. xhci_dbg_ctx(xhci, virt_dev->out_ctx,
  2415. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2416. /* Free any rings that were dropped, but not changed. */
  2417. for (i = 1; i < 31; ++i) {
  2418. if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
  2419. !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
  2420. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2421. }
  2422. xhci_zero_in_ctx(xhci, virt_dev);
  2423. /*
  2424. * Install any rings for completely new endpoints or changed endpoints,
  2425. * and free or cache any old rings from changed endpoints.
  2426. */
  2427. for (i = 1; i < 31; ++i) {
  2428. if (!virt_dev->eps[i].new_ring)
  2429. continue;
  2430. /* Only cache or free the old ring if it exists.
  2431. * It may not if this is the first add of an endpoint.
  2432. */
  2433. if (virt_dev->eps[i].ring) {
  2434. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2435. }
  2436. virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
  2437. virt_dev->eps[i].new_ring = NULL;
  2438. }
  2439. return ret;
  2440. }
  2441. void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2442. {
  2443. struct xhci_hcd *xhci;
  2444. struct xhci_virt_device *virt_dev;
  2445. int i, ret;
  2446. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2447. if (ret <= 0)
  2448. return;
  2449. xhci = hcd_to_xhci(hcd);
  2450. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2451. virt_dev = xhci->devs[udev->slot_id];
  2452. /* Free any rings allocated for added endpoints */
  2453. for (i = 0; i < 31; ++i) {
  2454. if (virt_dev->eps[i].new_ring) {
  2455. xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
  2456. virt_dev->eps[i].new_ring = NULL;
  2457. }
  2458. }
  2459. xhci_zero_in_ctx(xhci, virt_dev);
  2460. }
  2461. static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
  2462. struct xhci_container_ctx *in_ctx,
  2463. struct xhci_container_ctx *out_ctx,
  2464. struct xhci_input_control_ctx *ctrl_ctx,
  2465. u32 add_flags, u32 drop_flags)
  2466. {
  2467. ctrl_ctx->add_flags = cpu_to_le32(add_flags);
  2468. ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
  2469. xhci_slot_copy(xhci, in_ctx, out_ctx);
  2470. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2471. xhci_dbg(xhci, "Input Context:\n");
  2472. xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
  2473. }
  2474. static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
  2475. unsigned int slot_id, unsigned int ep_index,
  2476. struct xhci_dequeue_state *deq_state)
  2477. {
  2478. struct xhci_input_control_ctx *ctrl_ctx;
  2479. struct xhci_container_ctx *in_ctx;
  2480. struct xhci_ep_ctx *ep_ctx;
  2481. u32 added_ctxs;
  2482. dma_addr_t addr;
  2483. in_ctx = xhci->devs[slot_id]->in_ctx;
  2484. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2485. if (!ctrl_ctx) {
  2486. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  2487. __func__);
  2488. return;
  2489. }
  2490. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  2491. xhci->devs[slot_id]->out_ctx, ep_index);
  2492. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  2493. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  2494. deq_state->new_deq_ptr);
  2495. if (addr == 0) {
  2496. xhci_warn(xhci, "WARN Cannot submit config ep after "
  2497. "reset ep command\n");
  2498. xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
  2499. deq_state->new_deq_seg,
  2500. deq_state->new_deq_ptr);
  2501. return;
  2502. }
  2503. ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
  2504. added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
  2505. xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
  2506. xhci->devs[slot_id]->out_ctx, ctrl_ctx,
  2507. added_ctxs, added_ctxs);
  2508. }
  2509. void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
  2510. struct usb_device *udev, unsigned int ep_index)
  2511. {
  2512. struct xhci_dequeue_state deq_state;
  2513. struct xhci_virt_ep *ep;
  2514. xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
  2515. "Cleaning up stalled endpoint ring");
  2516. ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2517. /* We need to move the HW's dequeue pointer past this TD,
  2518. * or it will attempt to resend it on the next doorbell ring.
  2519. */
  2520. xhci_find_new_dequeue_state(xhci, udev->slot_id,
  2521. ep_index, ep->stopped_stream, ep->stopped_td,
  2522. &deq_state);
  2523. /* HW with the reset endpoint quirk will use the saved dequeue state to
  2524. * issue a configure endpoint command later.
  2525. */
  2526. if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
  2527. xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
  2528. "Queueing new dequeue state");
  2529. xhci_queue_new_dequeue_state(xhci, udev->slot_id,
  2530. ep_index, ep->stopped_stream, &deq_state);
  2531. } else {
  2532. /* Better hope no one uses the input context between now and the
  2533. * reset endpoint completion!
  2534. * XXX: No idea how this hardware will react when stream rings
  2535. * are enabled.
  2536. */
  2537. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  2538. "Setting up input context for "
  2539. "configure endpoint command");
  2540. xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
  2541. ep_index, &deq_state);
  2542. }
  2543. }
  2544. /* Deal with stalled endpoints. The core should have sent the control message
  2545. * to clear the halt condition. However, we need to make the xHCI hardware
  2546. * reset its sequence number, since a device will expect a sequence number of
  2547. * zero after the halt condition is cleared.
  2548. * Context: in_interrupt
  2549. */
  2550. void xhci_endpoint_reset(struct usb_hcd *hcd,
  2551. struct usb_host_endpoint *ep)
  2552. {
  2553. struct xhci_hcd *xhci;
  2554. struct usb_device *udev;
  2555. unsigned int ep_index;
  2556. unsigned long flags;
  2557. int ret;
  2558. struct xhci_virt_ep *virt_ep;
  2559. xhci = hcd_to_xhci(hcd);
  2560. udev = (struct usb_device *) ep->hcpriv;
  2561. /* Called with a root hub endpoint (or an endpoint that wasn't added
  2562. * with xhci_add_endpoint()
  2563. */
  2564. if (!ep->hcpriv)
  2565. return;
  2566. ep_index = xhci_get_endpoint_index(&ep->desc);
  2567. virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2568. if (!virt_ep->stopped_td) {
  2569. xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
  2570. "Endpoint 0x%x not halted, refusing to reset.",
  2571. ep->desc.bEndpointAddress);
  2572. return;
  2573. }
  2574. if (usb_endpoint_xfer_control(&ep->desc)) {
  2575. xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
  2576. "Control endpoint stall already handled.");
  2577. return;
  2578. }
  2579. xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
  2580. "Queueing reset endpoint command");
  2581. spin_lock_irqsave(&xhci->lock, flags);
  2582. ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
  2583. /*
  2584. * Can't change the ring dequeue pointer until it's transitioned to the
  2585. * stopped state, which is only upon a successful reset endpoint
  2586. * command. Better hope that last command worked!
  2587. */
  2588. if (!ret) {
  2589. xhci_cleanup_stalled_ring(xhci, udev, ep_index);
  2590. kfree(virt_ep->stopped_td);
  2591. xhci_ring_cmd_db(xhci);
  2592. }
  2593. virt_ep->stopped_td = NULL;
  2594. virt_ep->stopped_trb = NULL;
  2595. virt_ep->stopped_stream = 0;
  2596. spin_unlock_irqrestore(&xhci->lock, flags);
  2597. if (ret)
  2598. xhci_warn(xhci, "FIXME allocate a new ring segment\n");
  2599. }
  2600. static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
  2601. struct usb_device *udev, struct usb_host_endpoint *ep,
  2602. unsigned int slot_id)
  2603. {
  2604. int ret;
  2605. unsigned int ep_index;
  2606. unsigned int ep_state;
  2607. if (!ep)
  2608. return -EINVAL;
  2609. ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
  2610. if (ret <= 0)
  2611. return -EINVAL;
  2612. if (ep->ss_ep_comp.bmAttributes == 0) {
  2613. xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
  2614. " descriptor for ep 0x%x does not support streams\n",
  2615. ep->desc.bEndpointAddress);
  2616. return -EINVAL;
  2617. }
  2618. ep_index = xhci_get_endpoint_index(&ep->desc);
  2619. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2620. if (ep_state & EP_HAS_STREAMS ||
  2621. ep_state & EP_GETTING_STREAMS) {
  2622. xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
  2623. "already has streams set up.\n",
  2624. ep->desc.bEndpointAddress);
  2625. xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
  2626. "dynamic stream context array reallocation.\n");
  2627. return -EINVAL;
  2628. }
  2629. if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
  2630. xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
  2631. "endpoint 0x%x; URBs are pending.\n",
  2632. ep->desc.bEndpointAddress);
  2633. return -EINVAL;
  2634. }
  2635. return 0;
  2636. }
  2637. static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
  2638. unsigned int *num_streams, unsigned int *num_stream_ctxs)
  2639. {
  2640. unsigned int max_streams;
  2641. /* The stream context array size must be a power of two */
  2642. *num_stream_ctxs = roundup_pow_of_two(*num_streams);
  2643. /*
  2644. * Find out how many primary stream array entries the host controller
  2645. * supports. Later we may use secondary stream arrays (similar to 2nd
  2646. * level page entries), but that's an optional feature for xHCI host
  2647. * controllers. xHCs must support at least 4 stream IDs.
  2648. */
  2649. max_streams = HCC_MAX_PSA(xhci->hcc_params);
  2650. if (*num_stream_ctxs > max_streams) {
  2651. xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
  2652. max_streams);
  2653. *num_stream_ctxs = max_streams;
  2654. *num_streams = max_streams;
  2655. }
  2656. }
  2657. /* Returns an error code if one of the endpoint already has streams.
  2658. * This does not change any data structures, it only checks and gathers
  2659. * information.
  2660. */
  2661. static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
  2662. struct usb_device *udev,
  2663. struct usb_host_endpoint **eps, unsigned int num_eps,
  2664. unsigned int *num_streams, u32 *changed_ep_bitmask)
  2665. {
  2666. unsigned int max_streams;
  2667. unsigned int endpoint_flag;
  2668. int i;
  2669. int ret;
  2670. for (i = 0; i < num_eps; i++) {
  2671. ret = xhci_check_streams_endpoint(xhci, udev,
  2672. eps[i], udev->slot_id);
  2673. if (ret < 0)
  2674. return ret;
  2675. max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
  2676. if (max_streams < (*num_streams - 1)) {
  2677. xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
  2678. eps[i]->desc.bEndpointAddress,
  2679. max_streams);
  2680. *num_streams = max_streams+1;
  2681. }
  2682. endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
  2683. if (*changed_ep_bitmask & endpoint_flag)
  2684. return -EINVAL;
  2685. *changed_ep_bitmask |= endpoint_flag;
  2686. }
  2687. return 0;
  2688. }
  2689. static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
  2690. struct usb_device *udev,
  2691. struct usb_host_endpoint **eps, unsigned int num_eps)
  2692. {
  2693. u32 changed_ep_bitmask = 0;
  2694. unsigned int slot_id;
  2695. unsigned int ep_index;
  2696. unsigned int ep_state;
  2697. int i;
  2698. slot_id = udev->slot_id;
  2699. if (!xhci->devs[slot_id])
  2700. return 0;
  2701. for (i = 0; i < num_eps; i++) {
  2702. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2703. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2704. /* Are streams already being freed for the endpoint? */
  2705. if (ep_state & EP_GETTING_NO_STREAMS) {
  2706. xhci_warn(xhci, "WARN Can't disable streams for "
  2707. "endpoint 0x%x, "
  2708. "streams are being disabled already\n",
  2709. eps[i]->desc.bEndpointAddress);
  2710. return 0;
  2711. }
  2712. /* Are there actually any streams to free? */
  2713. if (!(ep_state & EP_HAS_STREAMS) &&
  2714. !(ep_state & EP_GETTING_STREAMS)) {
  2715. xhci_warn(xhci, "WARN Can't disable streams for "
  2716. "endpoint 0x%x, "
  2717. "streams are already disabled!\n",
  2718. eps[i]->desc.bEndpointAddress);
  2719. xhci_warn(xhci, "WARN xhci_free_streams() called "
  2720. "with non-streams endpoint\n");
  2721. return 0;
  2722. }
  2723. changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
  2724. }
  2725. return changed_ep_bitmask;
  2726. }
  2727. /*
  2728. * The USB device drivers use this function (though the HCD interface in USB
  2729. * core) to prepare a set of bulk endpoints to use streams. Streams are used to
  2730. * coordinate mass storage command queueing across multiple endpoints (basically
  2731. * a stream ID == a task ID).
  2732. *
  2733. * Setting up streams involves allocating the same size stream context array
  2734. * for each endpoint and issuing a configure endpoint command for all endpoints.
  2735. *
  2736. * Don't allow the call to succeed if one endpoint only supports one stream
  2737. * (which means it doesn't support streams at all).
  2738. *
  2739. * Drivers may get less stream IDs than they asked for, if the host controller
  2740. * hardware or endpoints claim they can't support the number of requested
  2741. * stream IDs.
  2742. */
  2743. int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2744. struct usb_host_endpoint **eps, unsigned int num_eps,
  2745. unsigned int num_streams, gfp_t mem_flags)
  2746. {
  2747. int i, ret;
  2748. struct xhci_hcd *xhci;
  2749. struct xhci_virt_device *vdev;
  2750. struct xhci_command *config_cmd;
  2751. struct xhci_input_control_ctx *ctrl_ctx;
  2752. unsigned int ep_index;
  2753. unsigned int num_stream_ctxs;
  2754. unsigned long flags;
  2755. u32 changed_ep_bitmask = 0;
  2756. if (!eps)
  2757. return -EINVAL;
  2758. /* Add one to the number of streams requested to account for
  2759. * stream 0 that is reserved for xHCI usage.
  2760. */
  2761. num_streams += 1;
  2762. xhci = hcd_to_xhci(hcd);
  2763. xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
  2764. num_streams);
  2765. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  2766. if (!config_cmd) {
  2767. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  2768. return -ENOMEM;
  2769. }
  2770. ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
  2771. if (!ctrl_ctx) {
  2772. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  2773. __func__);
  2774. xhci_free_command(xhci, config_cmd);
  2775. return -ENOMEM;
  2776. }
  2777. /* Check to make sure all endpoints are not already configured for
  2778. * streams. While we're at it, find the maximum number of streams that
  2779. * all the endpoints will support and check for duplicate endpoints.
  2780. */
  2781. spin_lock_irqsave(&xhci->lock, flags);
  2782. ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
  2783. num_eps, &num_streams, &changed_ep_bitmask);
  2784. if (ret < 0) {
  2785. xhci_free_command(xhci, config_cmd);
  2786. spin_unlock_irqrestore(&xhci->lock, flags);
  2787. return ret;
  2788. }
  2789. if (num_streams <= 1) {
  2790. xhci_warn(xhci, "WARN: endpoints can't handle "
  2791. "more than one stream.\n");
  2792. xhci_free_command(xhci, config_cmd);
  2793. spin_unlock_irqrestore(&xhci->lock, flags);
  2794. return -EINVAL;
  2795. }
  2796. vdev = xhci->devs[udev->slot_id];
  2797. /* Mark each endpoint as being in transition, so
  2798. * xhci_urb_enqueue() will reject all URBs.
  2799. */
  2800. for (i = 0; i < num_eps; i++) {
  2801. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2802. vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
  2803. }
  2804. spin_unlock_irqrestore(&xhci->lock, flags);
  2805. /* Setup internal data structures and allocate HW data structures for
  2806. * streams (but don't install the HW structures in the input context
  2807. * until we're sure all memory allocation succeeded).
  2808. */
  2809. xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
  2810. xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
  2811. num_stream_ctxs, num_streams);
  2812. for (i = 0; i < num_eps; i++) {
  2813. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2814. vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
  2815. num_stream_ctxs,
  2816. num_streams, mem_flags);
  2817. if (!vdev->eps[ep_index].stream_info)
  2818. goto cleanup;
  2819. /* Set maxPstreams in endpoint context and update deq ptr to
  2820. * point to stream context array. FIXME
  2821. */
  2822. }
  2823. /* Set up the input context for a configure endpoint command. */
  2824. for (i = 0; i < num_eps; i++) {
  2825. struct xhci_ep_ctx *ep_ctx;
  2826. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2827. ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
  2828. xhci_endpoint_copy(xhci, config_cmd->in_ctx,
  2829. vdev->out_ctx, ep_index);
  2830. xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
  2831. vdev->eps[ep_index].stream_info);
  2832. }
  2833. /* Tell the HW to drop its old copy of the endpoint context info
  2834. * and add the updated copy from the input context.
  2835. */
  2836. xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
  2837. vdev->out_ctx, ctrl_ctx,
  2838. changed_ep_bitmask, changed_ep_bitmask);
  2839. /* Issue and wait for the configure endpoint command */
  2840. ret = xhci_configure_endpoint(xhci, udev, config_cmd,
  2841. false, false);
  2842. /* xHC rejected the configure endpoint command for some reason, so we
  2843. * leave the old ring intact and free our internal streams data
  2844. * structure.
  2845. */
  2846. if (ret < 0)
  2847. goto cleanup;
  2848. spin_lock_irqsave(&xhci->lock, flags);
  2849. for (i = 0; i < num_eps; i++) {
  2850. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2851. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2852. xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
  2853. udev->slot_id, ep_index);
  2854. vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
  2855. }
  2856. xhci_free_command(xhci, config_cmd);
  2857. spin_unlock_irqrestore(&xhci->lock, flags);
  2858. /* Subtract 1 for stream 0, which drivers can't use */
  2859. return num_streams - 1;
  2860. cleanup:
  2861. /* If it didn't work, free the streams! */
  2862. for (i = 0; i < num_eps; i++) {
  2863. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2864. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2865. vdev->eps[ep_index].stream_info = NULL;
  2866. /* FIXME Unset maxPstreams in endpoint context and
  2867. * update deq ptr to point to normal string ring.
  2868. */
  2869. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2870. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2871. xhci_endpoint_zero(xhci, vdev, eps[i]);
  2872. }
  2873. xhci_free_command(xhci, config_cmd);
  2874. return -ENOMEM;
  2875. }
  2876. /* Transition the endpoint from using streams to being a "normal" endpoint
  2877. * without streams.
  2878. *
  2879. * Modify the endpoint context state, submit a configure endpoint command,
  2880. * and free all endpoint rings for streams if that completes successfully.
  2881. */
  2882. int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2883. struct usb_host_endpoint **eps, unsigned int num_eps,
  2884. gfp_t mem_flags)
  2885. {
  2886. int i, ret;
  2887. struct xhci_hcd *xhci;
  2888. struct xhci_virt_device *vdev;
  2889. struct xhci_command *command;
  2890. struct xhci_input_control_ctx *ctrl_ctx;
  2891. unsigned int ep_index;
  2892. unsigned long flags;
  2893. u32 changed_ep_bitmask;
  2894. xhci = hcd_to_xhci(hcd);
  2895. vdev = xhci->devs[udev->slot_id];
  2896. /* Set up a configure endpoint command to remove the streams rings */
  2897. spin_lock_irqsave(&xhci->lock, flags);
  2898. changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
  2899. udev, eps, num_eps);
  2900. if (changed_ep_bitmask == 0) {
  2901. spin_unlock_irqrestore(&xhci->lock, flags);
  2902. return -EINVAL;
  2903. }
  2904. /* Use the xhci_command structure from the first endpoint. We may have
  2905. * allocated too many, but the driver may call xhci_free_streams() for
  2906. * each endpoint it grouped into one call to xhci_alloc_streams().
  2907. */
  2908. ep_index = xhci_get_endpoint_index(&eps[0]->desc);
  2909. command = vdev->eps[ep_index].stream_info->free_streams_command;
  2910. ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
  2911. if (!ctrl_ctx) {
  2912. spin_unlock_irqrestore(&xhci->lock, flags);
  2913. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  2914. __func__);
  2915. return -EINVAL;
  2916. }
  2917. for (i = 0; i < num_eps; i++) {
  2918. struct xhci_ep_ctx *ep_ctx;
  2919. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2920. ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
  2921. xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
  2922. EP_GETTING_NO_STREAMS;
  2923. xhci_endpoint_copy(xhci, command->in_ctx,
  2924. vdev->out_ctx, ep_index);
  2925. xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
  2926. &vdev->eps[ep_index]);
  2927. }
  2928. xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
  2929. vdev->out_ctx, ctrl_ctx,
  2930. changed_ep_bitmask, changed_ep_bitmask);
  2931. spin_unlock_irqrestore(&xhci->lock, flags);
  2932. /* Issue and wait for the configure endpoint command,
  2933. * which must succeed.
  2934. */
  2935. ret = xhci_configure_endpoint(xhci, udev, command,
  2936. false, true);
  2937. /* xHC rejected the configure endpoint command for some reason, so we
  2938. * leave the streams rings intact.
  2939. */
  2940. if (ret < 0)
  2941. return ret;
  2942. spin_lock_irqsave(&xhci->lock, flags);
  2943. for (i = 0; i < num_eps; i++) {
  2944. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2945. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2946. vdev->eps[ep_index].stream_info = NULL;
  2947. /* FIXME Unset maxPstreams in endpoint context and
  2948. * update deq ptr to point to normal string ring.
  2949. */
  2950. vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
  2951. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2952. }
  2953. spin_unlock_irqrestore(&xhci->lock, flags);
  2954. return 0;
  2955. }
  2956. /*
  2957. * Deletes endpoint resources for endpoints that were active before a Reset
  2958. * Device command, or a Disable Slot command. The Reset Device command leaves
  2959. * the control endpoint intact, whereas the Disable Slot command deletes it.
  2960. *
  2961. * Must be called with xhci->lock held.
  2962. */
  2963. void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
  2964. struct xhci_virt_device *virt_dev, bool drop_control_ep)
  2965. {
  2966. int i;
  2967. unsigned int num_dropped_eps = 0;
  2968. unsigned int drop_flags = 0;
  2969. for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
  2970. if (virt_dev->eps[i].ring) {
  2971. drop_flags |= 1 << i;
  2972. num_dropped_eps++;
  2973. }
  2974. }
  2975. xhci->num_active_eps -= num_dropped_eps;
  2976. if (num_dropped_eps)
  2977. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  2978. "Dropped %u ep ctxs, flags = 0x%x, "
  2979. "%u now active.",
  2980. num_dropped_eps, drop_flags,
  2981. xhci->num_active_eps);
  2982. }
  2983. /*
  2984. * This submits a Reset Device Command, which will set the device state to 0,
  2985. * set the device address to 0, and disable all the endpoints except the default
  2986. * control endpoint. The USB core should come back and call
  2987. * xhci_address_device(), and then re-set up the configuration. If this is
  2988. * called because of a usb_reset_and_verify_device(), then the old alternate
  2989. * settings will be re-installed through the normal bandwidth allocation
  2990. * functions.
  2991. *
  2992. * Wait for the Reset Device command to finish. Remove all structures
  2993. * associated with the endpoints that were disabled. Clear the input device
  2994. * structure? Cache the rings? Reset the control endpoint 0 max packet size?
  2995. *
  2996. * If the virt_dev to be reset does not exist or does not match the udev,
  2997. * it means the device is lost, possibly due to the xHC restore error and
  2998. * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
  2999. * re-allocate the device.
  3000. */
  3001. int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
  3002. {
  3003. int ret, i;
  3004. unsigned long flags;
  3005. struct xhci_hcd *xhci;
  3006. unsigned int slot_id;
  3007. struct xhci_virt_device *virt_dev;
  3008. struct xhci_command *reset_device_cmd;
  3009. int timeleft;
  3010. int last_freed_endpoint;
  3011. struct xhci_slot_ctx *slot_ctx;
  3012. int old_active_eps = 0;
  3013. ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
  3014. if (ret <= 0)
  3015. return ret;
  3016. xhci = hcd_to_xhci(hcd);
  3017. slot_id = udev->slot_id;
  3018. virt_dev = xhci->devs[slot_id];
  3019. if (!virt_dev) {
  3020. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  3021. "not exist. Re-allocate the device\n", slot_id);
  3022. ret = xhci_alloc_dev(hcd, udev);
  3023. if (ret == 1)
  3024. return 0;
  3025. else
  3026. return -EINVAL;
  3027. }
  3028. if (virt_dev->udev != udev) {
  3029. /* If the virt_dev and the udev does not match, this virt_dev
  3030. * may belong to another udev.
  3031. * Re-allocate the device.
  3032. */
  3033. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  3034. "not match the udev. Re-allocate the device\n",
  3035. slot_id);
  3036. ret = xhci_alloc_dev(hcd, udev);
  3037. if (ret == 1)
  3038. return 0;
  3039. else
  3040. return -EINVAL;
  3041. }
  3042. /* If device is not setup, there is no point in resetting it */
  3043. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  3044. if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
  3045. SLOT_STATE_DISABLED)
  3046. return 0;
  3047. xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
  3048. /* Allocate the command structure that holds the struct completion.
  3049. * Assume we're in process context, since the normal device reset
  3050. * process has to wait for the device anyway. Storage devices are
  3051. * reset as part of error handling, so use GFP_NOIO instead of
  3052. * GFP_KERNEL.
  3053. */
  3054. reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
  3055. if (!reset_device_cmd) {
  3056. xhci_dbg(xhci, "Couldn't allocate command structure.\n");
  3057. return -ENOMEM;
  3058. }
  3059. /* Attempt to submit the Reset Device command to the command ring */
  3060. spin_lock_irqsave(&xhci->lock, flags);
  3061. reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
  3062. /* Enqueue pointer can be left pointing to the link TRB,
  3063. * we must handle that
  3064. */
  3065. if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
  3066. reset_device_cmd->command_trb =
  3067. xhci->cmd_ring->enq_seg->next->trbs;
  3068. list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
  3069. ret = xhci_queue_reset_device(xhci, slot_id);
  3070. if (ret) {
  3071. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3072. list_del(&reset_device_cmd->cmd_list);
  3073. spin_unlock_irqrestore(&xhci->lock, flags);
  3074. goto command_cleanup;
  3075. }
  3076. xhci_ring_cmd_db(xhci);
  3077. spin_unlock_irqrestore(&xhci->lock, flags);
  3078. /* Wait for the Reset Device command to finish */
  3079. timeleft = wait_for_completion_interruptible_timeout(
  3080. reset_device_cmd->completion,
  3081. USB_CTRL_SET_TIMEOUT);
  3082. if (timeleft <= 0) {
  3083. xhci_warn(xhci, "%s while waiting for reset device command\n",
  3084. timeleft == 0 ? "Timeout" : "Signal");
  3085. spin_lock_irqsave(&xhci->lock, flags);
  3086. /* The timeout might have raced with the event ring handler, so
  3087. * only delete from the list if the item isn't poisoned.
  3088. */
  3089. if (reset_device_cmd->cmd_list.next != LIST_POISON1)
  3090. list_del(&reset_device_cmd->cmd_list);
  3091. spin_unlock_irqrestore(&xhci->lock, flags);
  3092. ret = -ETIME;
  3093. goto command_cleanup;
  3094. }
  3095. /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
  3096. * unless we tried to reset a slot ID that wasn't enabled,
  3097. * or the device wasn't in the addressed or configured state.
  3098. */
  3099. ret = reset_device_cmd->status;
  3100. switch (ret) {
  3101. case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
  3102. case COMP_CTX_STATE: /* 0.96 completion code for same thing */
  3103. xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
  3104. slot_id,
  3105. xhci_get_slot_state(xhci, virt_dev->out_ctx));
  3106. xhci_dbg(xhci, "Not freeing device rings.\n");
  3107. /* Don't treat this as an error. May change my mind later. */
  3108. ret = 0;
  3109. goto command_cleanup;
  3110. case COMP_SUCCESS:
  3111. xhci_dbg(xhci, "Successful reset device command.\n");
  3112. break;
  3113. default:
  3114. if (xhci_is_vendor_info_code(xhci, ret))
  3115. break;
  3116. xhci_warn(xhci, "Unknown completion code %u for "
  3117. "reset device command.\n", ret);
  3118. ret = -EINVAL;
  3119. goto command_cleanup;
  3120. }
  3121. /* Free up host controller endpoint resources */
  3122. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3123. spin_lock_irqsave(&xhci->lock, flags);
  3124. /* Don't delete the default control endpoint resources */
  3125. xhci_free_device_endpoint_resources(xhci, virt_dev, false);
  3126. spin_unlock_irqrestore(&xhci->lock, flags);
  3127. }
  3128. /* Everything but endpoint 0 is disabled, so free or cache the rings. */
  3129. last_freed_endpoint = 1;
  3130. for (i = 1; i < 31; ++i) {
  3131. struct xhci_virt_ep *ep = &virt_dev->eps[i];
  3132. if (ep->ep_state & EP_HAS_STREAMS) {
  3133. xhci_free_stream_info(xhci, ep->stream_info);
  3134. ep->stream_info = NULL;
  3135. ep->ep_state &= ~EP_HAS_STREAMS;
  3136. }
  3137. if (ep->ring) {
  3138. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  3139. last_freed_endpoint = i;
  3140. }
  3141. if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
  3142. xhci_drop_ep_from_interval_table(xhci,
  3143. &virt_dev->eps[i].bw_info,
  3144. virt_dev->bw_table,
  3145. udev,
  3146. &virt_dev->eps[i],
  3147. virt_dev->tt_info);
  3148. xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
  3149. }
  3150. /* If necessary, update the number of active TTs on this root port */
  3151. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  3152. xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
  3153. xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
  3154. ret = 0;
  3155. command_cleanup:
  3156. xhci_free_command(xhci, reset_device_cmd);
  3157. return ret;
  3158. }
  3159. /*
  3160. * At this point, the struct usb_device is about to go away, the device has
  3161. * disconnected, and all traffic has been stopped and the endpoints have been
  3162. * disabled. Free any HC data structures associated with that device.
  3163. */
  3164. void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3165. {
  3166. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3167. struct xhci_virt_device *virt_dev;
  3168. unsigned long flags;
  3169. u32 state;
  3170. int i, ret;
  3171. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  3172. /* If the host is halted due to driver unload, we still need to free the
  3173. * device.
  3174. */
  3175. if (ret <= 0 && ret != -ENODEV)
  3176. return;
  3177. virt_dev = xhci->devs[udev->slot_id];
  3178. /* Stop any wayward timer functions (which may grab the lock) */
  3179. for (i = 0; i < 31; ++i) {
  3180. virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
  3181. del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
  3182. }
  3183. if (udev->usb2_hw_lpm_enabled) {
  3184. xhci_set_usb2_hardware_lpm(hcd, udev, 0);
  3185. udev->usb2_hw_lpm_enabled = 0;
  3186. }
  3187. spin_lock_irqsave(&xhci->lock, flags);
  3188. /* Don't disable the slot if the host controller is dead. */
  3189. state = xhci_readl(xhci, &xhci->op_regs->status);
  3190. if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  3191. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3192. xhci_free_virt_device(xhci, udev->slot_id);
  3193. spin_unlock_irqrestore(&xhci->lock, flags);
  3194. return;
  3195. }
  3196. if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
  3197. spin_unlock_irqrestore(&xhci->lock, flags);
  3198. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3199. return;
  3200. }
  3201. xhci_ring_cmd_db(xhci);
  3202. spin_unlock_irqrestore(&xhci->lock, flags);
  3203. /*
  3204. * Event command completion handler will free any data structures
  3205. * associated with the slot. XXX Can free sleep?
  3206. */
  3207. }
  3208. /*
  3209. * Checks if we have enough host controller resources for the default control
  3210. * endpoint.
  3211. *
  3212. * Must be called with xhci->lock held.
  3213. */
  3214. static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
  3215. {
  3216. if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
  3217. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  3218. "Not enough ep ctxs: "
  3219. "%u active, need to add 1, limit is %u.",
  3220. xhci->num_active_eps, xhci->limit_active_eps);
  3221. return -ENOMEM;
  3222. }
  3223. xhci->num_active_eps += 1;
  3224. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  3225. "Adding 1 ep ctx, %u now active.",
  3226. xhci->num_active_eps);
  3227. return 0;
  3228. }
  3229. /*
  3230. * Returns 0 if the xHC ran out of device slots, the Enable Slot command
  3231. * timed out, or allocating memory failed. Returns 1 on success.
  3232. */
  3233. int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3234. {
  3235. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3236. unsigned long flags;
  3237. int timeleft;
  3238. int ret;
  3239. union xhci_trb *cmd_trb;
  3240. spin_lock_irqsave(&xhci->lock, flags);
  3241. cmd_trb = xhci->cmd_ring->dequeue;
  3242. ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
  3243. if (ret) {
  3244. spin_unlock_irqrestore(&xhci->lock, flags);
  3245. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3246. return 0;
  3247. }
  3248. xhci_ring_cmd_db(xhci);
  3249. spin_unlock_irqrestore(&xhci->lock, flags);
  3250. /* XXX: how much time for xHC slot assignment? */
  3251. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3252. XHCI_CMD_DEFAULT_TIMEOUT);
  3253. if (timeleft <= 0) {
  3254. xhci_warn(xhci, "%s while waiting for a slot\n",
  3255. timeleft == 0 ? "Timeout" : "Signal");
  3256. /* cancel the enable slot request */
  3257. return xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3258. }
  3259. if (!xhci->slot_id) {
  3260. xhci_err(xhci, "Error while assigning device slot ID\n");
  3261. return 0;
  3262. }
  3263. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3264. spin_lock_irqsave(&xhci->lock, flags);
  3265. ret = xhci_reserve_host_control_ep_resources(xhci);
  3266. if (ret) {
  3267. spin_unlock_irqrestore(&xhci->lock, flags);
  3268. xhci_warn(xhci, "Not enough host resources, "
  3269. "active endpoint contexts = %u\n",
  3270. xhci->num_active_eps);
  3271. goto disable_slot;
  3272. }
  3273. spin_unlock_irqrestore(&xhci->lock, flags);
  3274. }
  3275. /* Use GFP_NOIO, since this function can be called from
  3276. * xhci_discover_or_reset_device(), which may be called as part of
  3277. * mass storage driver error handling.
  3278. */
  3279. if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
  3280. xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
  3281. goto disable_slot;
  3282. }
  3283. udev->slot_id = xhci->slot_id;
  3284. /* Is this a LS or FS device under a HS hub? */
  3285. /* Hub or peripherial? */
  3286. return 1;
  3287. disable_slot:
  3288. /* Disable slot, if we can do it without mem alloc */
  3289. spin_lock_irqsave(&xhci->lock, flags);
  3290. if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
  3291. xhci_ring_cmd_db(xhci);
  3292. spin_unlock_irqrestore(&xhci->lock, flags);
  3293. return 0;
  3294. }
  3295. /*
  3296. * Issue an Address Device command (which will issue a SetAddress request to
  3297. * the device).
  3298. * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
  3299. * we should only issue and wait on one address command at the same time.
  3300. *
  3301. * We add one to the device address issued by the hardware because the USB core
  3302. * uses address 1 for the root hubs (even though they're not really devices).
  3303. */
  3304. int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
  3305. {
  3306. unsigned long flags;
  3307. int timeleft;
  3308. struct xhci_virt_device *virt_dev;
  3309. int ret = 0;
  3310. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3311. struct xhci_slot_ctx *slot_ctx;
  3312. struct xhci_input_control_ctx *ctrl_ctx;
  3313. u64 temp_64;
  3314. union xhci_trb *cmd_trb;
  3315. if (!udev->slot_id) {
  3316. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3317. "Bad Slot ID %d", udev->slot_id);
  3318. return -EINVAL;
  3319. }
  3320. virt_dev = xhci->devs[udev->slot_id];
  3321. if (WARN_ON(!virt_dev)) {
  3322. /*
  3323. * In plug/unplug torture test with an NEC controller,
  3324. * a zero-dereference was observed once due to virt_dev = 0.
  3325. * Print useful debug rather than crash if it is observed again!
  3326. */
  3327. xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
  3328. udev->slot_id);
  3329. return -EINVAL;
  3330. }
  3331. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  3332. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  3333. if (!ctrl_ctx) {
  3334. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  3335. __func__);
  3336. return -EINVAL;
  3337. }
  3338. /*
  3339. * If this is the first Set Address since device plug-in or
  3340. * virt_device realloaction after a resume with an xHCI power loss,
  3341. * then set up the slot context.
  3342. */
  3343. if (!slot_ctx->dev_info)
  3344. xhci_setup_addressable_virt_dev(xhci, udev);
  3345. /* Otherwise, update the control endpoint ring enqueue pointer. */
  3346. else
  3347. xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
  3348. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
  3349. ctrl_ctx->drop_flags = 0;
  3350. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3351. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3352. trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
  3353. slot_ctx->dev_info >> 27);
  3354. spin_lock_irqsave(&xhci->lock, flags);
  3355. cmd_trb = xhci->cmd_ring->dequeue;
  3356. ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
  3357. udev->slot_id);
  3358. if (ret) {
  3359. spin_unlock_irqrestore(&xhci->lock, flags);
  3360. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3361. "FIXME: allocate a command ring segment");
  3362. return ret;
  3363. }
  3364. xhci_ring_cmd_db(xhci);
  3365. spin_unlock_irqrestore(&xhci->lock, flags);
  3366. /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
  3367. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3368. XHCI_CMD_DEFAULT_TIMEOUT);
  3369. /* FIXME: From section 4.3.4: "Software shall be responsible for timing
  3370. * the SetAddress() "recovery interval" required by USB and aborting the
  3371. * command on a timeout.
  3372. */
  3373. if (timeleft <= 0) {
  3374. xhci_warn(xhci, "%s while waiting for address device command\n",
  3375. timeleft == 0 ? "Timeout" : "Signal");
  3376. /* cancel the address device command */
  3377. ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3378. if (ret < 0)
  3379. return ret;
  3380. return -ETIME;
  3381. }
  3382. switch (virt_dev->cmd_status) {
  3383. case COMP_CTX_STATE:
  3384. case COMP_EBADSLT:
  3385. xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
  3386. udev->slot_id);
  3387. ret = -EINVAL;
  3388. break;
  3389. case COMP_TX_ERR:
  3390. dev_warn(&udev->dev, "Device not responding to set address.\n");
  3391. ret = -EPROTO;
  3392. break;
  3393. case COMP_DEV_ERR:
  3394. dev_warn(&udev->dev, "ERROR: Incompatible device for address "
  3395. "device command.\n");
  3396. ret = -ENODEV;
  3397. break;
  3398. case COMP_SUCCESS:
  3399. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3400. "Successful Address Device command");
  3401. break;
  3402. default:
  3403. xhci_err(xhci, "ERROR: unexpected command completion "
  3404. "code 0x%x.\n", virt_dev->cmd_status);
  3405. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3406. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3407. trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
  3408. ret = -EINVAL;
  3409. break;
  3410. }
  3411. if (ret) {
  3412. return ret;
  3413. }
  3414. temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  3415. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3416. "Op regs DCBAA ptr = %#016llx", temp_64);
  3417. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3418. "Slot ID %d dcbaa entry @%p = %#016llx",
  3419. udev->slot_id,
  3420. &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
  3421. (unsigned long long)
  3422. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
  3423. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3424. "Output Context DMA address = %#08llx",
  3425. (unsigned long long)virt_dev->out_ctx->dma);
  3426. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3427. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3428. trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
  3429. slot_ctx->dev_info >> 27);
  3430. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3431. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3432. /*
  3433. * USB core uses address 1 for the roothubs, so we add one to the
  3434. * address given back to us by the HC.
  3435. */
  3436. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  3437. trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
  3438. slot_ctx->dev_info >> 27);
  3439. /* Use kernel assigned address for devices; store xHC assigned
  3440. * address locally. */
  3441. virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
  3442. + 1;
  3443. /* Zero the input context control for later use */
  3444. ctrl_ctx->add_flags = 0;
  3445. ctrl_ctx->drop_flags = 0;
  3446. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3447. "Internal device address = %d", virt_dev->address);
  3448. return 0;
  3449. }
  3450. /*
  3451. * Transfer the port index into real index in the HW port status
  3452. * registers. Caculate offset between the port's PORTSC register
  3453. * and port status base. Divide the number of per port register
  3454. * to get the real index. The raw port number bases 1.
  3455. */
  3456. int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
  3457. {
  3458. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3459. __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
  3460. __le32 __iomem *addr;
  3461. int raw_port;
  3462. if (hcd->speed != HCD_USB3)
  3463. addr = xhci->usb2_ports[port1 - 1];
  3464. else
  3465. addr = xhci->usb3_ports[port1 - 1];
  3466. raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
  3467. return raw_port;
  3468. }
  3469. /*
  3470. * Issue an Evaluate Context command to change the Maximum Exit Latency in the
  3471. * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
  3472. */
  3473. static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
  3474. struct usb_device *udev, u16 max_exit_latency)
  3475. {
  3476. struct xhci_virt_device *virt_dev;
  3477. struct xhci_command *command;
  3478. struct xhci_input_control_ctx *ctrl_ctx;
  3479. struct xhci_slot_ctx *slot_ctx;
  3480. unsigned long flags;
  3481. int ret;
  3482. spin_lock_irqsave(&xhci->lock, flags);
  3483. if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
  3484. spin_unlock_irqrestore(&xhci->lock, flags);
  3485. return 0;
  3486. }
  3487. /* Attempt to issue an Evaluate Context command to change the MEL. */
  3488. virt_dev = xhci->devs[udev->slot_id];
  3489. command = xhci->lpm_command;
  3490. ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
  3491. if (!ctrl_ctx) {
  3492. spin_unlock_irqrestore(&xhci->lock, flags);
  3493. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  3494. __func__);
  3495. return -ENOMEM;
  3496. }
  3497. xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
  3498. spin_unlock_irqrestore(&xhci->lock, flags);
  3499. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  3500. slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
  3501. slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
  3502. slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
  3503. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  3504. "Set up evaluate context for LPM MEL change.");
  3505. xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
  3506. xhci_dbg_ctx(xhci, command->in_ctx, 0);
  3507. /* Issue and wait for the evaluate context command. */
  3508. ret = xhci_configure_endpoint(xhci, udev, command,
  3509. true, true);
  3510. xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
  3511. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
  3512. if (!ret) {
  3513. spin_lock_irqsave(&xhci->lock, flags);
  3514. virt_dev->current_mel = max_exit_latency;
  3515. spin_unlock_irqrestore(&xhci->lock, flags);
  3516. }
  3517. return ret;
  3518. }
  3519. #ifdef CONFIG_PM_RUNTIME
  3520. /* BESL to HIRD Encoding array for USB2 LPM */
  3521. static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
  3522. 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
  3523. /* Calculate HIRD/BESL for USB2 PORTPMSC*/
  3524. static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
  3525. struct usb_device *udev)
  3526. {
  3527. int u2del, besl, besl_host;
  3528. int besl_device = 0;
  3529. u32 field;
  3530. u2del = HCS_U2_LATENCY(xhci->hcs_params3);
  3531. field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
  3532. if (field & USB_BESL_SUPPORT) {
  3533. for (besl_host = 0; besl_host < 16; besl_host++) {
  3534. if (xhci_besl_encoding[besl_host] >= u2del)
  3535. break;
  3536. }
  3537. /* Use baseline BESL value as default */
  3538. if (field & USB_BESL_BASELINE_VALID)
  3539. besl_device = USB_GET_BESL_BASELINE(field);
  3540. else if (field & USB_BESL_DEEP_VALID)
  3541. besl_device = USB_GET_BESL_DEEP(field);
  3542. } else {
  3543. if (u2del <= 50)
  3544. besl_host = 0;
  3545. else
  3546. besl_host = (u2del - 51) / 75 + 1;
  3547. }
  3548. besl = besl_host + besl_device;
  3549. if (besl > 15)
  3550. besl = 15;
  3551. return besl;
  3552. }
  3553. /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
  3554. static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
  3555. {
  3556. u32 field;
  3557. int l1;
  3558. int besld = 0;
  3559. int hirdm = 0;
  3560. field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
  3561. /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
  3562. l1 = udev->l1_params.timeout / 256;
  3563. /* device has preferred BESLD */
  3564. if (field & USB_BESL_DEEP_VALID) {
  3565. besld = USB_GET_BESL_DEEP(field);
  3566. hirdm = 1;
  3567. }
  3568. return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
  3569. }
  3570. static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
  3571. struct usb_device *udev)
  3572. {
  3573. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3574. struct dev_info *dev_info;
  3575. __le32 __iomem **port_array;
  3576. __le32 __iomem *addr, *pm_addr;
  3577. u32 temp, dev_id;
  3578. unsigned int port_num;
  3579. unsigned long flags;
  3580. int hird;
  3581. int ret;
  3582. if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
  3583. !udev->lpm_capable)
  3584. return -EINVAL;
  3585. /* we only support lpm for non-hub device connected to root hub yet */
  3586. if (!udev->parent || udev->parent->parent ||
  3587. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3588. return -EINVAL;
  3589. spin_lock_irqsave(&xhci->lock, flags);
  3590. /* Look for devices in lpm_failed_devs list */
  3591. dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
  3592. le16_to_cpu(udev->descriptor.idProduct);
  3593. list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
  3594. if (dev_info->dev_id == dev_id) {
  3595. ret = -EINVAL;
  3596. goto finish;
  3597. }
  3598. }
  3599. port_array = xhci->usb2_ports;
  3600. port_num = udev->portnum - 1;
  3601. if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
  3602. xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
  3603. ret = -EINVAL;
  3604. goto finish;
  3605. }
  3606. /*
  3607. * Test USB 2.0 software LPM.
  3608. * FIXME: some xHCI 1.0 hosts may implement a new register to set up
  3609. * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
  3610. * in the June 2011 errata release.
  3611. */
  3612. xhci_dbg(xhci, "test port %d software LPM\n", port_num);
  3613. /*
  3614. * Set L1 Device Slot and HIRD/BESL.
  3615. * Check device's USB 2.0 extension descriptor to determine whether
  3616. * HIRD or BESL shoule be used. See USB2.0 LPM errata.
  3617. */
  3618. pm_addr = port_array[port_num] + PORTPMSC;
  3619. hird = xhci_calculate_hird_besl(xhci, udev);
  3620. temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
  3621. xhci_writel(xhci, temp, pm_addr);
  3622. /* Set port link state to U2(L1) */
  3623. addr = port_array[port_num];
  3624. xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
  3625. /* wait for ACK */
  3626. spin_unlock_irqrestore(&xhci->lock, flags);
  3627. msleep(10);
  3628. spin_lock_irqsave(&xhci->lock, flags);
  3629. /* Check L1 Status */
  3630. ret = xhci_handshake(xhci, pm_addr,
  3631. PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
  3632. if (ret != -ETIMEDOUT) {
  3633. /* enter L1 successfully */
  3634. temp = xhci_readl(xhci, addr);
  3635. xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
  3636. port_num, temp);
  3637. ret = 0;
  3638. } else {
  3639. temp = xhci_readl(xhci, pm_addr);
  3640. xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
  3641. port_num, temp & PORT_L1S_MASK);
  3642. ret = -EINVAL;
  3643. }
  3644. /* Resume the port */
  3645. xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
  3646. spin_unlock_irqrestore(&xhci->lock, flags);
  3647. msleep(10);
  3648. spin_lock_irqsave(&xhci->lock, flags);
  3649. /* Clear PLC */
  3650. xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
  3651. /* Check PORTSC to make sure the device is in the right state */
  3652. if (!ret) {
  3653. temp = xhci_readl(xhci, addr);
  3654. xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
  3655. if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
  3656. (temp & PORT_PLS_MASK) != XDEV_U0) {
  3657. xhci_dbg(xhci, "port L1 resume fail\n");
  3658. ret = -EINVAL;
  3659. }
  3660. }
  3661. if (ret) {
  3662. /* Insert dev to lpm_failed_devs list */
  3663. xhci_warn(xhci, "device LPM test failed, may disconnect and "
  3664. "re-enumerate\n");
  3665. dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
  3666. if (!dev_info) {
  3667. ret = -ENOMEM;
  3668. goto finish;
  3669. }
  3670. dev_info->dev_id = dev_id;
  3671. INIT_LIST_HEAD(&dev_info->list);
  3672. list_add(&dev_info->list, &xhci->lpm_failed_devs);
  3673. } else {
  3674. xhci_ring_device(xhci, udev->slot_id);
  3675. }
  3676. finish:
  3677. spin_unlock_irqrestore(&xhci->lock, flags);
  3678. return ret;
  3679. }
  3680. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3681. struct usb_device *udev, int enable)
  3682. {
  3683. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3684. __le32 __iomem **port_array;
  3685. __le32 __iomem *pm_addr, *hlpm_addr;
  3686. u32 pm_val, hlpm_val, field;
  3687. unsigned int port_num;
  3688. unsigned long flags;
  3689. int hird, exit_latency;
  3690. int ret;
  3691. if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
  3692. !udev->lpm_capable)
  3693. return -EPERM;
  3694. if (!udev->parent || udev->parent->parent ||
  3695. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3696. return -EPERM;
  3697. if (udev->usb2_hw_lpm_capable != 1)
  3698. return -EPERM;
  3699. spin_lock_irqsave(&xhci->lock, flags);
  3700. port_array = xhci->usb2_ports;
  3701. port_num = udev->portnum - 1;
  3702. pm_addr = port_array[port_num] + PORTPMSC;
  3703. pm_val = xhci_readl(xhci, pm_addr);
  3704. hlpm_addr = port_array[port_num] + PORTHLPMC;
  3705. field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
  3706. xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
  3707. enable ? "enable" : "disable", port_num);
  3708. if (enable) {
  3709. /* Host supports BESL timeout instead of HIRD */
  3710. if (udev->usb2_hw_lpm_besl_capable) {
  3711. /* if device doesn't have a preferred BESL value use a
  3712. * default one which works with mixed HIRD and BESL
  3713. * systems. See XHCI_DEFAULT_BESL definition in xhci.h
  3714. */
  3715. if ((field & USB_BESL_SUPPORT) &&
  3716. (field & USB_BESL_BASELINE_VALID))
  3717. hird = USB_GET_BESL_BASELINE(field);
  3718. else
  3719. hird = udev->l1_params.besl;
  3720. exit_latency = xhci_besl_encoding[hird];
  3721. spin_unlock_irqrestore(&xhci->lock, flags);
  3722. /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
  3723. * input context for link powermanagement evaluate
  3724. * context commands. It is protected by hcd->bandwidth
  3725. * mutex and is shared by all devices. We need to set
  3726. * the max ext latency in USB 2 BESL LPM as well, so
  3727. * use the same mutex and xhci_change_max_exit_latency()
  3728. */
  3729. mutex_lock(hcd->bandwidth_mutex);
  3730. ret = xhci_change_max_exit_latency(xhci, udev,
  3731. exit_latency);
  3732. mutex_unlock(hcd->bandwidth_mutex);
  3733. if (ret < 0)
  3734. return ret;
  3735. spin_lock_irqsave(&xhci->lock, flags);
  3736. hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
  3737. xhci_writel(xhci, hlpm_val, hlpm_addr);
  3738. /* flush write */
  3739. xhci_readl(xhci, hlpm_addr);
  3740. } else {
  3741. hird = xhci_calculate_hird_besl(xhci, udev);
  3742. }
  3743. pm_val &= ~PORT_HIRD_MASK;
  3744. pm_val |= PORT_HIRD(hird) | PORT_RWE;
  3745. xhci_writel(xhci, pm_val, pm_addr);
  3746. pm_val = xhci_readl(xhci, pm_addr);
  3747. pm_val |= PORT_HLE;
  3748. xhci_writel(xhci, pm_val, pm_addr);
  3749. /* flush write */
  3750. xhci_readl(xhci, pm_addr);
  3751. } else {
  3752. pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
  3753. xhci_writel(xhci, pm_val, pm_addr);
  3754. /* flush write */
  3755. xhci_readl(xhci, pm_addr);
  3756. if (udev->usb2_hw_lpm_besl_capable) {
  3757. spin_unlock_irqrestore(&xhci->lock, flags);
  3758. mutex_lock(hcd->bandwidth_mutex);
  3759. xhci_change_max_exit_latency(xhci, udev, 0);
  3760. mutex_unlock(hcd->bandwidth_mutex);
  3761. return 0;
  3762. }
  3763. }
  3764. spin_unlock_irqrestore(&xhci->lock, flags);
  3765. return 0;
  3766. }
  3767. /* check if a usb2 port supports a given extened capability protocol
  3768. * only USB2 ports extended protocol capability values are cached.
  3769. * Return 1 if capability is supported
  3770. */
  3771. static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
  3772. unsigned capability)
  3773. {
  3774. u32 port_offset, port_count;
  3775. int i;
  3776. for (i = 0; i < xhci->num_ext_caps; i++) {
  3777. if (xhci->ext_caps[i] & capability) {
  3778. /* port offsets starts at 1 */
  3779. port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
  3780. port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
  3781. if (port >= port_offset &&
  3782. port < port_offset + port_count)
  3783. return 1;
  3784. }
  3785. }
  3786. return 0;
  3787. }
  3788. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3789. {
  3790. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3791. int ret;
  3792. int portnum = udev->portnum - 1;
  3793. ret = xhci_usb2_software_lpm_test(hcd, udev);
  3794. if (!ret) {
  3795. xhci_dbg(xhci, "software LPM test succeed\n");
  3796. if (xhci->hw_lpm_support == 1 &&
  3797. xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
  3798. udev->usb2_hw_lpm_capable = 1;
  3799. udev->l1_params.timeout = XHCI_L1_TIMEOUT;
  3800. udev->l1_params.besl = XHCI_DEFAULT_BESL;
  3801. if (xhci_check_usb2_port_capability(xhci, portnum,
  3802. XHCI_BLC))
  3803. udev->usb2_hw_lpm_besl_capable = 1;
  3804. ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
  3805. if (!ret)
  3806. udev->usb2_hw_lpm_enabled = 1;
  3807. }
  3808. }
  3809. return 0;
  3810. }
  3811. #else
  3812. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3813. struct usb_device *udev, int enable)
  3814. {
  3815. return 0;
  3816. }
  3817. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3818. {
  3819. return 0;
  3820. }
  3821. #endif /* CONFIG_PM_RUNTIME */
  3822. /*---------------------- USB 3.0 Link PM functions ------------------------*/
  3823. #ifdef CONFIG_PM
  3824. /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
  3825. static unsigned long long xhci_service_interval_to_ns(
  3826. struct usb_endpoint_descriptor *desc)
  3827. {
  3828. return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
  3829. }
  3830. static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
  3831. enum usb3_link_state state)
  3832. {
  3833. unsigned long long sel;
  3834. unsigned long long pel;
  3835. unsigned int max_sel_pel;
  3836. char *state_name;
  3837. switch (state) {
  3838. case USB3_LPM_U1:
  3839. /* Convert SEL and PEL stored in nanoseconds to microseconds */
  3840. sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
  3841. pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
  3842. max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
  3843. state_name = "U1";
  3844. break;
  3845. case USB3_LPM_U2:
  3846. sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
  3847. pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
  3848. max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
  3849. state_name = "U2";
  3850. break;
  3851. default:
  3852. dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
  3853. __func__);
  3854. return USB3_LPM_DISABLED;
  3855. }
  3856. if (sel <= max_sel_pel && pel <= max_sel_pel)
  3857. return USB3_LPM_DEVICE_INITIATED;
  3858. if (sel > max_sel_pel)
  3859. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3860. "due to long SEL %llu ms\n",
  3861. state_name, sel);
  3862. else
  3863. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3864. "due to long PEL %llu ms\n",
  3865. state_name, pel);
  3866. return USB3_LPM_DISABLED;
  3867. }
  3868. /* Returns the hub-encoded U1 timeout value.
  3869. * The U1 timeout should be the maximum of the following values:
  3870. * - For control endpoints, U1 system exit latency (SEL) * 3
  3871. * - For bulk endpoints, U1 SEL * 5
  3872. * - For interrupt endpoints:
  3873. * - Notification EPs, U1 SEL * 3
  3874. * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
  3875. * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
  3876. */
  3877. static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
  3878. struct usb_endpoint_descriptor *desc)
  3879. {
  3880. unsigned long long timeout_ns;
  3881. int ep_type;
  3882. int intr_type;
  3883. ep_type = usb_endpoint_type(desc);
  3884. switch (ep_type) {
  3885. case USB_ENDPOINT_XFER_CONTROL:
  3886. timeout_ns = udev->u1_params.sel * 3;
  3887. break;
  3888. case USB_ENDPOINT_XFER_BULK:
  3889. timeout_ns = udev->u1_params.sel * 5;
  3890. break;
  3891. case USB_ENDPOINT_XFER_INT:
  3892. intr_type = usb_endpoint_interrupt_type(desc);
  3893. if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
  3894. timeout_ns = udev->u1_params.sel * 3;
  3895. break;
  3896. }
  3897. /* Otherwise the calculation is the same as isoc eps */
  3898. case USB_ENDPOINT_XFER_ISOC:
  3899. timeout_ns = xhci_service_interval_to_ns(desc);
  3900. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
  3901. if (timeout_ns < udev->u1_params.sel * 2)
  3902. timeout_ns = udev->u1_params.sel * 2;
  3903. break;
  3904. default:
  3905. return 0;
  3906. }
  3907. /* The U1 timeout is encoded in 1us intervals. */
  3908. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
  3909. /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
  3910. if (timeout_ns == USB3_LPM_DISABLED)
  3911. timeout_ns++;
  3912. /* If the necessary timeout value is bigger than what we can set in the
  3913. * USB 3.0 hub, we have to disable hub-initiated U1.
  3914. */
  3915. if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
  3916. return timeout_ns;
  3917. dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
  3918. "due to long timeout %llu ms\n", timeout_ns);
  3919. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
  3920. }
  3921. /* Returns the hub-encoded U2 timeout value.
  3922. * The U2 timeout should be the maximum of:
  3923. * - 10 ms (to avoid the bandwidth impact on the scheduler)
  3924. * - largest bInterval of any active periodic endpoint (to avoid going
  3925. * into lower power link states between intervals).
  3926. * - the U2 Exit Latency of the device
  3927. */
  3928. static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
  3929. struct usb_endpoint_descriptor *desc)
  3930. {
  3931. unsigned long long timeout_ns;
  3932. unsigned long long u2_del_ns;
  3933. timeout_ns = 10 * 1000 * 1000;
  3934. if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
  3935. (xhci_service_interval_to_ns(desc) > timeout_ns))
  3936. timeout_ns = xhci_service_interval_to_ns(desc);
  3937. u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
  3938. if (u2_del_ns > timeout_ns)
  3939. timeout_ns = u2_del_ns;
  3940. /* The U2 timeout is encoded in 256us intervals */
  3941. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
  3942. /* If the necessary timeout value is bigger than what we can set in the
  3943. * USB 3.0 hub, we have to disable hub-initiated U2.
  3944. */
  3945. if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
  3946. return timeout_ns;
  3947. dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
  3948. "due to long timeout %llu ms\n", timeout_ns);
  3949. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
  3950. }
  3951. static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3952. struct usb_device *udev,
  3953. struct usb_endpoint_descriptor *desc,
  3954. enum usb3_link_state state,
  3955. u16 *timeout)
  3956. {
  3957. if (state == USB3_LPM_U1) {
  3958. if (xhci->quirks & XHCI_INTEL_HOST)
  3959. return xhci_calculate_intel_u1_timeout(udev, desc);
  3960. } else {
  3961. if (xhci->quirks & XHCI_INTEL_HOST)
  3962. return xhci_calculate_intel_u2_timeout(udev, desc);
  3963. }
  3964. return USB3_LPM_DISABLED;
  3965. }
  3966. static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3967. struct usb_device *udev,
  3968. struct usb_endpoint_descriptor *desc,
  3969. enum usb3_link_state state,
  3970. u16 *timeout)
  3971. {
  3972. u16 alt_timeout;
  3973. alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
  3974. desc, state, timeout);
  3975. /* If we found we can't enable hub-initiated LPM, or
  3976. * the U1 or U2 exit latency was too high to allow
  3977. * device-initiated LPM as well, just stop searching.
  3978. */
  3979. if (alt_timeout == USB3_LPM_DISABLED ||
  3980. alt_timeout == USB3_LPM_DEVICE_INITIATED) {
  3981. *timeout = alt_timeout;
  3982. return -E2BIG;
  3983. }
  3984. if (alt_timeout > *timeout)
  3985. *timeout = alt_timeout;
  3986. return 0;
  3987. }
  3988. static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
  3989. struct usb_device *udev,
  3990. struct usb_host_interface *alt,
  3991. enum usb3_link_state state,
  3992. u16 *timeout)
  3993. {
  3994. int j;
  3995. for (j = 0; j < alt->desc.bNumEndpoints; j++) {
  3996. if (xhci_update_timeout_for_endpoint(xhci, udev,
  3997. &alt->endpoint[j].desc, state, timeout))
  3998. return -E2BIG;
  3999. continue;
  4000. }
  4001. return 0;
  4002. }
  4003. static int xhci_check_intel_tier_policy(struct usb_device *udev,
  4004. enum usb3_link_state state)
  4005. {
  4006. struct usb_device *parent;
  4007. unsigned int num_hubs;
  4008. if (state == USB3_LPM_U2)
  4009. return 0;
  4010. /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
  4011. for (parent = udev->parent, num_hubs = 0; parent->parent;
  4012. parent = parent->parent)
  4013. num_hubs++;
  4014. if (num_hubs < 2)
  4015. return 0;
  4016. dev_dbg(&udev->dev, "Disabling U1 link state for device"
  4017. " below second-tier hub.\n");
  4018. dev_dbg(&udev->dev, "Plug device into first-tier hub "
  4019. "to decrease power consumption.\n");
  4020. return -E2BIG;
  4021. }
  4022. static int xhci_check_tier_policy(struct xhci_hcd *xhci,
  4023. struct usb_device *udev,
  4024. enum usb3_link_state state)
  4025. {
  4026. if (xhci->quirks & XHCI_INTEL_HOST)
  4027. return xhci_check_intel_tier_policy(udev, state);
  4028. return -EINVAL;
  4029. }
  4030. /* Returns the U1 or U2 timeout that should be enabled.
  4031. * If the tier check or timeout setting functions return with a non-zero exit
  4032. * code, that means the timeout value has been finalized and we shouldn't look
  4033. * at any more endpoints.
  4034. */
  4035. static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
  4036. struct usb_device *udev, enum usb3_link_state state)
  4037. {
  4038. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4039. struct usb_host_config *config;
  4040. char *state_name;
  4041. int i;
  4042. u16 timeout = USB3_LPM_DISABLED;
  4043. if (state == USB3_LPM_U1)
  4044. state_name = "U1";
  4045. else if (state == USB3_LPM_U2)
  4046. state_name = "U2";
  4047. else {
  4048. dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
  4049. state);
  4050. return timeout;
  4051. }
  4052. if (xhci_check_tier_policy(xhci, udev, state) < 0)
  4053. return timeout;
  4054. /* Gather some information about the currently installed configuration
  4055. * and alternate interface settings.
  4056. */
  4057. if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
  4058. state, &timeout))
  4059. return timeout;
  4060. config = udev->actconfig;
  4061. if (!config)
  4062. return timeout;
  4063. for (i = 0; i < USB_MAXINTERFACES; i++) {
  4064. struct usb_driver *driver;
  4065. struct usb_interface *intf = config->interface[i];
  4066. if (!intf)
  4067. continue;
  4068. /* Check if any currently bound drivers want hub-initiated LPM
  4069. * disabled.
  4070. */
  4071. if (intf->dev.driver) {
  4072. driver = to_usb_driver(intf->dev.driver);
  4073. if (driver && driver->disable_hub_initiated_lpm) {
  4074. dev_dbg(&udev->dev, "Hub-initiated %s disabled "
  4075. "at request of driver %s\n",
  4076. state_name, driver->name);
  4077. return xhci_get_timeout_no_hub_lpm(udev, state);
  4078. }
  4079. }
  4080. /* Not sure how this could happen... */
  4081. if (!intf->cur_altsetting)
  4082. continue;
  4083. if (xhci_update_timeout_for_interface(xhci, udev,
  4084. intf->cur_altsetting,
  4085. state, &timeout))
  4086. return timeout;
  4087. }
  4088. return timeout;
  4089. }
  4090. static int calculate_max_exit_latency(struct usb_device *udev,
  4091. enum usb3_link_state state_changed,
  4092. u16 hub_encoded_timeout)
  4093. {
  4094. unsigned long long u1_mel_us = 0;
  4095. unsigned long long u2_mel_us = 0;
  4096. unsigned long long mel_us = 0;
  4097. bool disabling_u1;
  4098. bool disabling_u2;
  4099. bool enabling_u1;
  4100. bool enabling_u2;
  4101. disabling_u1 = (state_changed == USB3_LPM_U1 &&
  4102. hub_encoded_timeout == USB3_LPM_DISABLED);
  4103. disabling_u2 = (state_changed == USB3_LPM_U2 &&
  4104. hub_encoded_timeout == USB3_LPM_DISABLED);
  4105. enabling_u1 = (state_changed == USB3_LPM_U1 &&
  4106. hub_encoded_timeout != USB3_LPM_DISABLED);
  4107. enabling_u2 = (state_changed == USB3_LPM_U2 &&
  4108. hub_encoded_timeout != USB3_LPM_DISABLED);
  4109. /* If U1 was already enabled and we're not disabling it,
  4110. * or we're going to enable U1, account for the U1 max exit latency.
  4111. */
  4112. if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
  4113. enabling_u1)
  4114. u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
  4115. if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
  4116. enabling_u2)
  4117. u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
  4118. if (u1_mel_us > u2_mel_us)
  4119. mel_us = u1_mel_us;
  4120. else
  4121. mel_us = u2_mel_us;
  4122. /* xHCI host controller max exit latency field is only 16 bits wide. */
  4123. if (mel_us > MAX_EXIT) {
  4124. dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
  4125. "is too big.\n", mel_us);
  4126. return -E2BIG;
  4127. }
  4128. return mel_us;
  4129. }
  4130. /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
  4131. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4132. struct usb_device *udev, enum usb3_link_state state)
  4133. {
  4134. struct xhci_hcd *xhci;
  4135. u16 hub_encoded_timeout;
  4136. int mel;
  4137. int ret;
  4138. xhci = hcd_to_xhci(hcd);
  4139. /* The LPM timeout values are pretty host-controller specific, so don't
  4140. * enable hub-initiated timeouts unless the vendor has provided
  4141. * information about their timeout algorithm.
  4142. */
  4143. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  4144. !xhci->devs[udev->slot_id])
  4145. return USB3_LPM_DISABLED;
  4146. hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
  4147. mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
  4148. if (mel < 0) {
  4149. /* Max Exit Latency is too big, disable LPM. */
  4150. hub_encoded_timeout = USB3_LPM_DISABLED;
  4151. mel = 0;
  4152. }
  4153. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  4154. if (ret)
  4155. return ret;
  4156. return hub_encoded_timeout;
  4157. }
  4158. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4159. struct usb_device *udev, enum usb3_link_state state)
  4160. {
  4161. struct xhci_hcd *xhci;
  4162. u16 mel;
  4163. int ret;
  4164. xhci = hcd_to_xhci(hcd);
  4165. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  4166. !xhci->devs[udev->slot_id])
  4167. return 0;
  4168. mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
  4169. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  4170. if (ret)
  4171. return ret;
  4172. return 0;
  4173. }
  4174. #else /* CONFIG_PM */
  4175. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4176. struct usb_device *udev, enum usb3_link_state state)
  4177. {
  4178. return USB3_LPM_DISABLED;
  4179. }
  4180. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4181. struct usb_device *udev, enum usb3_link_state state)
  4182. {
  4183. return 0;
  4184. }
  4185. #endif /* CONFIG_PM */
  4186. /*-------------------------------------------------------------------------*/
  4187. /* Once a hub descriptor is fetched for a device, we need to update the xHC's
  4188. * internal data structures for the device.
  4189. */
  4190. int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
  4191. struct usb_tt *tt, gfp_t mem_flags)
  4192. {
  4193. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4194. struct xhci_virt_device *vdev;
  4195. struct xhci_command *config_cmd;
  4196. struct xhci_input_control_ctx *ctrl_ctx;
  4197. struct xhci_slot_ctx *slot_ctx;
  4198. unsigned long flags;
  4199. unsigned think_time;
  4200. int ret;
  4201. /* Ignore root hubs */
  4202. if (!hdev->parent)
  4203. return 0;
  4204. vdev = xhci->devs[hdev->slot_id];
  4205. if (!vdev) {
  4206. xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
  4207. return -EINVAL;
  4208. }
  4209. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  4210. if (!config_cmd) {
  4211. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  4212. return -ENOMEM;
  4213. }
  4214. ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
  4215. if (!ctrl_ctx) {
  4216. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  4217. __func__);
  4218. xhci_free_command(xhci, config_cmd);
  4219. return -ENOMEM;
  4220. }
  4221. spin_lock_irqsave(&xhci->lock, flags);
  4222. if (hdev->speed == USB_SPEED_HIGH &&
  4223. xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
  4224. xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
  4225. xhci_free_command(xhci, config_cmd);
  4226. spin_unlock_irqrestore(&xhci->lock, flags);
  4227. return -ENOMEM;
  4228. }
  4229. xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
  4230. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  4231. slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
  4232. slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
  4233. if (tt->multi)
  4234. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  4235. if (xhci->hci_version > 0x95) {
  4236. xhci_dbg(xhci, "xHCI version %x needs hub "
  4237. "TT think time and number of ports\n",
  4238. (unsigned int) xhci->hci_version);
  4239. slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
  4240. /* Set TT think time - convert from ns to FS bit times.
  4241. * 0 = 8 FS bit times, 1 = 16 FS bit times,
  4242. * 2 = 24 FS bit times, 3 = 32 FS bit times.
  4243. *
  4244. * xHCI 1.0: this field shall be 0 if the device is not a
  4245. * High-spped hub.
  4246. */
  4247. think_time = tt->think_time;
  4248. if (think_time != 0)
  4249. think_time = (think_time / 666) - 1;
  4250. if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
  4251. slot_ctx->tt_info |=
  4252. cpu_to_le32(TT_THINK_TIME(think_time));
  4253. } else {
  4254. xhci_dbg(xhci, "xHCI version %x doesn't need hub "
  4255. "TT think time or number of ports\n",
  4256. (unsigned int) xhci->hci_version);
  4257. }
  4258. slot_ctx->dev_state = 0;
  4259. spin_unlock_irqrestore(&xhci->lock, flags);
  4260. xhci_dbg(xhci, "Set up %s for hub device.\n",
  4261. (xhci->hci_version > 0x95) ?
  4262. "configure endpoint" : "evaluate context");
  4263. xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
  4264. xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
  4265. /* Issue and wait for the configure endpoint or
  4266. * evaluate context command.
  4267. */
  4268. if (xhci->hci_version > 0x95)
  4269. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4270. false, false);
  4271. else
  4272. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4273. true, false);
  4274. xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
  4275. xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
  4276. xhci_free_command(xhci, config_cmd);
  4277. return ret;
  4278. }
  4279. int xhci_get_frame(struct usb_hcd *hcd)
  4280. {
  4281. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4282. /* EHCI mods by the periodic size. Why? */
  4283. return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
  4284. }
  4285. int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
  4286. {
  4287. struct xhci_hcd *xhci;
  4288. struct device *dev = hcd->self.controller;
  4289. int retval;
  4290. /* Accept arbitrarily long scatter-gather lists */
  4291. hcd->self.sg_tablesize = ~0;
  4292. /* XHCI controllers don't stop the ep queue on short packets :| */
  4293. hcd->self.no_stop_on_short = 1;
  4294. if (usb_hcd_is_primary_hcd(hcd)) {
  4295. xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
  4296. if (!xhci)
  4297. return -ENOMEM;
  4298. *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
  4299. xhci->main_hcd = hcd;
  4300. /* Mark the first roothub as being USB 2.0.
  4301. * The xHCI driver will register the USB 3.0 roothub.
  4302. */
  4303. hcd->speed = HCD_USB2;
  4304. hcd->self.root_hub->speed = USB_SPEED_HIGH;
  4305. /*
  4306. * USB 2.0 roothub under xHCI has an integrated TT,
  4307. * (rate matching hub) as opposed to having an OHCI/UHCI
  4308. * companion controller.
  4309. */
  4310. hcd->has_tt = 1;
  4311. } else {
  4312. /* xHCI private pointer was set in xhci_pci_probe for the second
  4313. * registered roothub.
  4314. */
  4315. return 0;
  4316. }
  4317. xhci->cap_regs = hcd->regs;
  4318. xhci->op_regs = hcd->regs +
  4319. HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
  4320. xhci->run_regs = hcd->regs +
  4321. (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
  4322. /* Cache read-only capability registers */
  4323. xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
  4324. xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
  4325. xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
  4326. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
  4327. xhci->hci_version = HC_VERSION(xhci->hcc_params);
  4328. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4329. xhci_print_registers(xhci);
  4330. get_quirks(dev, xhci);
  4331. /* In xhci controllers which follow xhci 1.0 spec gives a spurious
  4332. * success event after a short transfer. This quirk will ignore such
  4333. * spurious event.
  4334. */
  4335. if (xhci->hci_version > 0x96)
  4336. xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
  4337. /* Make sure the HC is halted. */
  4338. retval = xhci_halt(xhci);
  4339. if (retval)
  4340. goto error;
  4341. xhci_dbg(xhci, "Resetting HCD\n");
  4342. /* Reset the internal HC memory state and registers. */
  4343. retval = xhci_reset(xhci);
  4344. if (retval)
  4345. goto error;
  4346. xhci_dbg(xhci, "Reset complete\n");
  4347. /* Set dma_mask and coherent_dma_mask to 64-bits,
  4348. * if xHC supports 64-bit addressing */
  4349. if (HCC_64BIT_ADDR(xhci->hcc_params) &&
  4350. !dma_set_mask(dev, DMA_BIT_MASK(64))) {
  4351. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4352. dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
  4353. }
  4354. xhci_dbg(xhci, "Calling HCD init\n");
  4355. /* Initialize HCD and host controller data structures. */
  4356. retval = xhci_init(hcd);
  4357. if (retval)
  4358. goto error;
  4359. xhci_dbg(xhci, "Called HCD init\n");
  4360. return 0;
  4361. error:
  4362. kfree(xhci);
  4363. return retval;
  4364. }
  4365. MODULE_DESCRIPTION(DRIVER_DESC);
  4366. MODULE_AUTHOR(DRIVER_AUTHOR);
  4367. MODULE_LICENSE("GPL");
  4368. static int __init xhci_hcd_init(void)
  4369. {
  4370. int retval;
  4371. retval = xhci_register_pci();
  4372. if (retval < 0) {
  4373. pr_debug("Problem registering PCI driver.\n");
  4374. return retval;
  4375. }
  4376. retval = xhci_register_plat();
  4377. if (retval < 0) {
  4378. pr_debug("Problem registering platform driver.\n");
  4379. goto unreg_pci;
  4380. }
  4381. /*
  4382. * Check the compiler generated sizes of structures that must be laid
  4383. * out in specific ways for hardware access.
  4384. */
  4385. BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
  4386. BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
  4387. BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
  4388. /* xhci_device_control has eight fields, and also
  4389. * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
  4390. */
  4391. BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
  4392. BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
  4393. BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
  4394. BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
  4395. BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
  4396. /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
  4397. BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
  4398. return 0;
  4399. unreg_pci:
  4400. xhci_unregister_pci();
  4401. return retval;
  4402. }
  4403. module_init(xhci_hcd_init);
  4404. static void __exit xhci_hcd_cleanup(void)
  4405. {
  4406. xhci_unregister_pci();
  4407. xhci_unregister_plat();
  4408. }
  4409. module_exit(xhci_hcd_cleanup);