page_alloc.c 145 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/kmemcheck.h>
  26. #include <linux/module.h>
  27. #include <linux/suspend.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/slab.h>
  31. #include <linux/oom.h>
  32. #include <linux/notifier.h>
  33. #include <linux/topology.h>
  34. #include <linux/sysctl.h>
  35. #include <linux/cpu.h>
  36. #include <linux/cpuset.h>
  37. #include <linux/memory_hotplug.h>
  38. #include <linux/nodemask.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/mempolicy.h>
  41. #include <linux/stop_machine.h>
  42. #include <linux/sort.h>
  43. #include <linux/pfn.h>
  44. #include <linux/backing-dev.h>
  45. #include <linux/fault-inject.h>
  46. #include <linux/page-isolation.h>
  47. #include <linux/page_cgroup.h>
  48. #include <linux/debugobjects.h>
  49. #include <linux/kmemleak.h>
  50. #include <linux/memory.h>
  51. #include <trace/events/kmem.h>
  52. #include <linux/ftrace_event.h>
  53. #include <asm/tlbflush.h>
  54. #include <asm/div64.h>
  55. #include "internal.h"
  56. /*
  57. * Array of node states.
  58. */
  59. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  60. [N_POSSIBLE] = NODE_MASK_ALL,
  61. [N_ONLINE] = { { [0] = 1UL } },
  62. #ifndef CONFIG_NUMA
  63. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  64. #ifdef CONFIG_HIGHMEM
  65. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  66. #endif
  67. [N_CPU] = { { [0] = 1UL } },
  68. #endif /* NUMA */
  69. };
  70. EXPORT_SYMBOL(node_states);
  71. unsigned long totalram_pages __read_mostly;
  72. unsigned long totalreserve_pages __read_mostly;
  73. int percpu_pagelist_fraction;
  74. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  75. #ifdef CONFIG_PM_SLEEP
  76. /*
  77. * The following functions are used by the suspend/hibernate code to temporarily
  78. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  79. * while devices are suspended. To avoid races with the suspend/hibernate code,
  80. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  81. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  82. * guaranteed not to run in parallel with that modification).
  83. */
  84. void set_gfp_allowed_mask(gfp_t mask)
  85. {
  86. WARN_ON(!mutex_is_locked(&pm_mutex));
  87. gfp_allowed_mask = mask;
  88. }
  89. gfp_t clear_gfp_allowed_mask(gfp_t mask)
  90. {
  91. gfp_t ret = gfp_allowed_mask;
  92. WARN_ON(!mutex_is_locked(&pm_mutex));
  93. gfp_allowed_mask &= ~mask;
  94. return ret;
  95. }
  96. #endif /* CONFIG_PM_SLEEP */
  97. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  98. int pageblock_order __read_mostly;
  99. #endif
  100. static void __free_pages_ok(struct page *page, unsigned int order);
  101. /*
  102. * results with 256, 32 in the lowmem_reserve sysctl:
  103. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  104. * 1G machine -> (16M dma, 784M normal, 224M high)
  105. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  106. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  107. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  108. *
  109. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  110. * don't need any ZONE_NORMAL reservation
  111. */
  112. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  113. #ifdef CONFIG_ZONE_DMA
  114. 256,
  115. #endif
  116. #ifdef CONFIG_ZONE_DMA32
  117. 256,
  118. #endif
  119. #ifdef CONFIG_HIGHMEM
  120. 32,
  121. #endif
  122. 32,
  123. };
  124. EXPORT_SYMBOL(totalram_pages);
  125. static char * const zone_names[MAX_NR_ZONES] = {
  126. #ifdef CONFIG_ZONE_DMA
  127. "DMA",
  128. #endif
  129. #ifdef CONFIG_ZONE_DMA32
  130. "DMA32",
  131. #endif
  132. "Normal",
  133. #ifdef CONFIG_HIGHMEM
  134. "HighMem",
  135. #endif
  136. "Movable",
  137. };
  138. int min_free_kbytes = 1024;
  139. static unsigned long __meminitdata nr_kernel_pages;
  140. static unsigned long __meminitdata nr_all_pages;
  141. static unsigned long __meminitdata dma_reserve;
  142. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  143. /*
  144. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  145. * ranges of memory (RAM) that may be registered with add_active_range().
  146. * Ranges passed to add_active_range() will be merged if possible
  147. * so the number of times add_active_range() can be called is
  148. * related to the number of nodes and the number of holes
  149. */
  150. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  151. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  152. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  153. #else
  154. #if MAX_NUMNODES >= 32
  155. /* If there can be many nodes, allow up to 50 holes per node */
  156. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  157. #else
  158. /* By default, allow up to 256 distinct regions */
  159. #define MAX_ACTIVE_REGIONS 256
  160. #endif
  161. #endif
  162. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  163. static int __meminitdata nr_nodemap_entries;
  164. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  165. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  166. static unsigned long __initdata required_kernelcore;
  167. static unsigned long __initdata required_movablecore;
  168. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  169. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  170. int movable_zone;
  171. EXPORT_SYMBOL(movable_zone);
  172. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  173. #if MAX_NUMNODES > 1
  174. int nr_node_ids __read_mostly = MAX_NUMNODES;
  175. int nr_online_nodes __read_mostly = 1;
  176. EXPORT_SYMBOL(nr_node_ids);
  177. EXPORT_SYMBOL(nr_online_nodes);
  178. #endif
  179. int page_group_by_mobility_disabled __read_mostly;
  180. static void set_pageblock_migratetype(struct page *page, int migratetype)
  181. {
  182. if (unlikely(page_group_by_mobility_disabled))
  183. migratetype = MIGRATE_UNMOVABLE;
  184. set_pageblock_flags_group(page, (unsigned long)migratetype,
  185. PB_migrate, PB_migrate_end);
  186. }
  187. bool oom_killer_disabled __read_mostly;
  188. #ifdef CONFIG_DEBUG_VM
  189. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  190. {
  191. int ret = 0;
  192. unsigned seq;
  193. unsigned long pfn = page_to_pfn(page);
  194. do {
  195. seq = zone_span_seqbegin(zone);
  196. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  197. ret = 1;
  198. else if (pfn < zone->zone_start_pfn)
  199. ret = 1;
  200. } while (zone_span_seqretry(zone, seq));
  201. return ret;
  202. }
  203. static int page_is_consistent(struct zone *zone, struct page *page)
  204. {
  205. if (!pfn_valid_within(page_to_pfn(page)))
  206. return 0;
  207. if (zone != page_zone(page))
  208. return 0;
  209. return 1;
  210. }
  211. /*
  212. * Temporary debugging check for pages not lying within a given zone.
  213. */
  214. static int bad_range(struct zone *zone, struct page *page)
  215. {
  216. if (page_outside_zone_boundaries(zone, page))
  217. return 1;
  218. if (!page_is_consistent(zone, page))
  219. return 1;
  220. return 0;
  221. }
  222. #else
  223. static inline int bad_range(struct zone *zone, struct page *page)
  224. {
  225. return 0;
  226. }
  227. #endif
  228. static void bad_page(struct page *page)
  229. {
  230. static unsigned long resume;
  231. static unsigned long nr_shown;
  232. static unsigned long nr_unshown;
  233. /* Don't complain about poisoned pages */
  234. if (PageHWPoison(page)) {
  235. __ClearPageBuddy(page);
  236. return;
  237. }
  238. /*
  239. * Allow a burst of 60 reports, then keep quiet for that minute;
  240. * or allow a steady drip of one report per second.
  241. */
  242. if (nr_shown == 60) {
  243. if (time_before(jiffies, resume)) {
  244. nr_unshown++;
  245. goto out;
  246. }
  247. if (nr_unshown) {
  248. printk(KERN_ALERT
  249. "BUG: Bad page state: %lu messages suppressed\n",
  250. nr_unshown);
  251. nr_unshown = 0;
  252. }
  253. nr_shown = 0;
  254. }
  255. if (nr_shown++ == 0)
  256. resume = jiffies + 60 * HZ;
  257. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  258. current->comm, page_to_pfn(page));
  259. dump_page(page);
  260. dump_stack();
  261. out:
  262. /* Leave bad fields for debug, except PageBuddy could make trouble */
  263. __ClearPageBuddy(page);
  264. add_taint(TAINT_BAD_PAGE);
  265. }
  266. /*
  267. * Higher-order pages are called "compound pages". They are structured thusly:
  268. *
  269. * The first PAGE_SIZE page is called the "head page".
  270. *
  271. * The remaining PAGE_SIZE pages are called "tail pages".
  272. *
  273. * All pages have PG_compound set. All pages have their ->private pointing at
  274. * the head page (even the head page has this).
  275. *
  276. * The first tail page's ->lru.next holds the address of the compound page's
  277. * put_page() function. Its ->lru.prev holds the order of allocation.
  278. * This usage means that zero-order pages may not be compound.
  279. */
  280. static void free_compound_page(struct page *page)
  281. {
  282. __free_pages_ok(page, compound_order(page));
  283. }
  284. void prep_compound_page(struct page *page, unsigned long order)
  285. {
  286. int i;
  287. int nr_pages = 1 << order;
  288. set_compound_page_dtor(page, free_compound_page);
  289. set_compound_order(page, order);
  290. __SetPageHead(page);
  291. for (i = 1; i < nr_pages; i++) {
  292. struct page *p = page + i;
  293. __SetPageTail(p);
  294. p->first_page = page;
  295. }
  296. }
  297. static int destroy_compound_page(struct page *page, unsigned long order)
  298. {
  299. int i;
  300. int nr_pages = 1 << order;
  301. int bad = 0;
  302. if (unlikely(compound_order(page) != order) ||
  303. unlikely(!PageHead(page))) {
  304. bad_page(page);
  305. bad++;
  306. }
  307. __ClearPageHead(page);
  308. for (i = 1; i < nr_pages; i++) {
  309. struct page *p = page + i;
  310. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  311. bad_page(page);
  312. bad++;
  313. }
  314. __ClearPageTail(p);
  315. }
  316. return bad;
  317. }
  318. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  319. {
  320. int i;
  321. /*
  322. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  323. * and __GFP_HIGHMEM from hard or soft interrupt context.
  324. */
  325. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  326. for (i = 0; i < (1 << order); i++)
  327. clear_highpage(page + i);
  328. }
  329. static inline void set_page_order(struct page *page, int order)
  330. {
  331. set_page_private(page, order);
  332. __SetPageBuddy(page);
  333. }
  334. static inline void rmv_page_order(struct page *page)
  335. {
  336. __ClearPageBuddy(page);
  337. set_page_private(page, 0);
  338. }
  339. /*
  340. * Locate the struct page for both the matching buddy in our
  341. * pair (buddy1) and the combined O(n+1) page they form (page).
  342. *
  343. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  344. * the following equation:
  345. * B2 = B1 ^ (1 << O)
  346. * For example, if the starting buddy (buddy2) is #8 its order
  347. * 1 buddy is #10:
  348. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  349. *
  350. * 2) Any buddy B will have an order O+1 parent P which
  351. * satisfies the following equation:
  352. * P = B & ~(1 << O)
  353. *
  354. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  355. */
  356. static inline struct page *
  357. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  358. {
  359. unsigned long buddy_idx = page_idx ^ (1 << order);
  360. return page + (buddy_idx - page_idx);
  361. }
  362. static inline unsigned long
  363. __find_combined_index(unsigned long page_idx, unsigned int order)
  364. {
  365. return (page_idx & ~(1 << order));
  366. }
  367. /*
  368. * This function checks whether a page is free && is the buddy
  369. * we can do coalesce a page and its buddy if
  370. * (a) the buddy is not in a hole &&
  371. * (b) the buddy is in the buddy system &&
  372. * (c) a page and its buddy have the same order &&
  373. * (d) a page and its buddy are in the same zone.
  374. *
  375. * For recording whether a page is in the buddy system, we use PG_buddy.
  376. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  377. *
  378. * For recording page's order, we use page_private(page).
  379. */
  380. static inline int page_is_buddy(struct page *page, struct page *buddy,
  381. int order)
  382. {
  383. if (!pfn_valid_within(page_to_pfn(buddy)))
  384. return 0;
  385. if (page_zone_id(page) != page_zone_id(buddy))
  386. return 0;
  387. if (PageBuddy(buddy) && page_order(buddy) == order) {
  388. VM_BUG_ON(page_count(buddy) != 0);
  389. return 1;
  390. }
  391. return 0;
  392. }
  393. /*
  394. * Freeing function for a buddy system allocator.
  395. *
  396. * The concept of a buddy system is to maintain direct-mapped table
  397. * (containing bit values) for memory blocks of various "orders".
  398. * The bottom level table contains the map for the smallest allocatable
  399. * units of memory (here, pages), and each level above it describes
  400. * pairs of units from the levels below, hence, "buddies".
  401. * At a high level, all that happens here is marking the table entry
  402. * at the bottom level available, and propagating the changes upward
  403. * as necessary, plus some accounting needed to play nicely with other
  404. * parts of the VM system.
  405. * At each level, we keep a list of pages, which are heads of continuous
  406. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  407. * order is recorded in page_private(page) field.
  408. * So when we are allocating or freeing one, we can derive the state of the
  409. * other. That is, if we allocate a small block, and both were
  410. * free, the remainder of the region must be split into blocks.
  411. * If a block is freed, and its buddy is also free, then this
  412. * triggers coalescing into a block of larger size.
  413. *
  414. * -- wli
  415. */
  416. static inline void __free_one_page(struct page *page,
  417. struct zone *zone, unsigned int order,
  418. int migratetype)
  419. {
  420. unsigned long page_idx;
  421. unsigned long combined_idx;
  422. struct page *buddy;
  423. if (unlikely(PageCompound(page)))
  424. if (unlikely(destroy_compound_page(page, order)))
  425. return;
  426. VM_BUG_ON(migratetype == -1);
  427. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  428. VM_BUG_ON(page_idx & ((1 << order) - 1));
  429. VM_BUG_ON(bad_range(zone, page));
  430. while (order < MAX_ORDER-1) {
  431. buddy = __page_find_buddy(page, page_idx, order);
  432. if (!page_is_buddy(page, buddy, order))
  433. break;
  434. /* Our buddy is free, merge with it and move up one order. */
  435. list_del(&buddy->lru);
  436. zone->free_area[order].nr_free--;
  437. rmv_page_order(buddy);
  438. combined_idx = __find_combined_index(page_idx, order);
  439. page = page + (combined_idx - page_idx);
  440. page_idx = combined_idx;
  441. order++;
  442. }
  443. set_page_order(page, order);
  444. /*
  445. * If this is not the largest possible page, check if the buddy
  446. * of the next-highest order is free. If it is, it's possible
  447. * that pages are being freed that will coalesce soon. In case,
  448. * that is happening, add the free page to the tail of the list
  449. * so it's less likely to be used soon and more likely to be merged
  450. * as a higher order page
  451. */
  452. if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
  453. struct page *higher_page, *higher_buddy;
  454. combined_idx = __find_combined_index(page_idx, order);
  455. higher_page = page + combined_idx - page_idx;
  456. higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
  457. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  458. list_add_tail(&page->lru,
  459. &zone->free_area[order].free_list[migratetype]);
  460. goto out;
  461. }
  462. }
  463. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  464. out:
  465. zone->free_area[order].nr_free++;
  466. }
  467. /*
  468. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  469. * Page should not be on lru, so no need to fix that up.
  470. * free_pages_check() will verify...
  471. */
  472. static inline void free_page_mlock(struct page *page)
  473. {
  474. __dec_zone_page_state(page, NR_MLOCK);
  475. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  476. }
  477. static inline int free_pages_check(struct page *page)
  478. {
  479. if (unlikely(page_mapcount(page) |
  480. (page->mapping != NULL) |
  481. (atomic_read(&page->_count) != 0) |
  482. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  483. bad_page(page);
  484. return 1;
  485. }
  486. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  487. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  488. return 0;
  489. }
  490. /*
  491. * Frees a number of pages from the PCP lists
  492. * Assumes all pages on list are in same zone, and of same order.
  493. * count is the number of pages to free.
  494. *
  495. * If the zone was previously in an "all pages pinned" state then look to
  496. * see if this freeing clears that state.
  497. *
  498. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  499. * pinned" detection logic.
  500. */
  501. static void free_pcppages_bulk(struct zone *zone, int count,
  502. struct per_cpu_pages *pcp)
  503. {
  504. int migratetype = 0;
  505. int batch_free = 0;
  506. spin_lock(&zone->lock);
  507. zone->all_unreclaimable = 0;
  508. zone->pages_scanned = 0;
  509. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  510. while (count) {
  511. struct page *page;
  512. struct list_head *list;
  513. /*
  514. * Remove pages from lists in a round-robin fashion. A
  515. * batch_free count is maintained that is incremented when an
  516. * empty list is encountered. This is so more pages are freed
  517. * off fuller lists instead of spinning excessively around empty
  518. * lists
  519. */
  520. do {
  521. batch_free++;
  522. if (++migratetype == MIGRATE_PCPTYPES)
  523. migratetype = 0;
  524. list = &pcp->lists[migratetype];
  525. } while (list_empty(list));
  526. do {
  527. page = list_entry(list->prev, struct page, lru);
  528. /* must delete as __free_one_page list manipulates */
  529. list_del(&page->lru);
  530. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  531. __free_one_page(page, zone, 0, page_private(page));
  532. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  533. } while (--count && --batch_free && !list_empty(list));
  534. }
  535. spin_unlock(&zone->lock);
  536. }
  537. static void free_one_page(struct zone *zone, struct page *page, int order,
  538. int migratetype)
  539. {
  540. spin_lock(&zone->lock);
  541. zone->all_unreclaimable = 0;
  542. zone->pages_scanned = 0;
  543. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  544. __free_one_page(page, zone, order, migratetype);
  545. spin_unlock(&zone->lock);
  546. }
  547. static void __free_pages_ok(struct page *page, unsigned int order)
  548. {
  549. unsigned long flags;
  550. int i;
  551. int bad = 0;
  552. int wasMlocked = __TestClearPageMlocked(page);
  553. trace_mm_page_free_direct(page, order);
  554. kmemcheck_free_shadow(page, order);
  555. for (i = 0 ; i < (1 << order) ; ++i)
  556. bad += free_pages_check(page + i);
  557. if (bad)
  558. return;
  559. if (!PageHighMem(page)) {
  560. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  561. debug_check_no_obj_freed(page_address(page),
  562. PAGE_SIZE << order);
  563. }
  564. arch_free_page(page, order);
  565. kernel_map_pages(page, 1 << order, 0);
  566. local_irq_save(flags);
  567. if (unlikely(wasMlocked))
  568. free_page_mlock(page);
  569. __count_vm_events(PGFREE, 1 << order);
  570. free_one_page(page_zone(page), page, order,
  571. get_pageblock_migratetype(page));
  572. local_irq_restore(flags);
  573. }
  574. /*
  575. * permit the bootmem allocator to evade page validation on high-order frees
  576. */
  577. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  578. {
  579. if (order == 0) {
  580. __ClearPageReserved(page);
  581. set_page_count(page, 0);
  582. set_page_refcounted(page);
  583. __free_page(page);
  584. } else {
  585. int loop;
  586. prefetchw(page);
  587. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  588. struct page *p = &page[loop];
  589. if (loop + 1 < BITS_PER_LONG)
  590. prefetchw(p + 1);
  591. __ClearPageReserved(p);
  592. set_page_count(p, 0);
  593. }
  594. set_page_refcounted(page);
  595. __free_pages(page, order);
  596. }
  597. }
  598. /*
  599. * The order of subdivision here is critical for the IO subsystem.
  600. * Please do not alter this order without good reasons and regression
  601. * testing. Specifically, as large blocks of memory are subdivided,
  602. * the order in which smaller blocks are delivered depends on the order
  603. * they're subdivided in this function. This is the primary factor
  604. * influencing the order in which pages are delivered to the IO
  605. * subsystem according to empirical testing, and this is also justified
  606. * by considering the behavior of a buddy system containing a single
  607. * large block of memory acted on by a series of small allocations.
  608. * This behavior is a critical factor in sglist merging's success.
  609. *
  610. * -- wli
  611. */
  612. static inline void expand(struct zone *zone, struct page *page,
  613. int low, int high, struct free_area *area,
  614. int migratetype)
  615. {
  616. unsigned long size = 1 << high;
  617. while (high > low) {
  618. area--;
  619. high--;
  620. size >>= 1;
  621. VM_BUG_ON(bad_range(zone, &page[size]));
  622. list_add(&page[size].lru, &area->free_list[migratetype]);
  623. area->nr_free++;
  624. set_page_order(&page[size], high);
  625. }
  626. }
  627. /*
  628. * This page is about to be returned from the page allocator
  629. */
  630. static inline int check_new_page(struct page *page)
  631. {
  632. if (unlikely(page_mapcount(page) |
  633. (page->mapping != NULL) |
  634. (atomic_read(&page->_count) != 0) |
  635. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  636. bad_page(page);
  637. return 1;
  638. }
  639. return 0;
  640. }
  641. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  642. {
  643. int i;
  644. for (i = 0; i < (1 << order); i++) {
  645. struct page *p = page + i;
  646. if (unlikely(check_new_page(p)))
  647. return 1;
  648. }
  649. set_page_private(page, 0);
  650. set_page_refcounted(page);
  651. arch_alloc_page(page, order);
  652. kernel_map_pages(page, 1 << order, 1);
  653. if (gfp_flags & __GFP_ZERO)
  654. prep_zero_page(page, order, gfp_flags);
  655. if (order && (gfp_flags & __GFP_COMP))
  656. prep_compound_page(page, order);
  657. return 0;
  658. }
  659. /*
  660. * Go through the free lists for the given migratetype and remove
  661. * the smallest available page from the freelists
  662. */
  663. static inline
  664. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  665. int migratetype)
  666. {
  667. unsigned int current_order;
  668. struct free_area * area;
  669. struct page *page;
  670. /* Find a page of the appropriate size in the preferred list */
  671. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  672. area = &(zone->free_area[current_order]);
  673. if (list_empty(&area->free_list[migratetype]))
  674. continue;
  675. page = list_entry(area->free_list[migratetype].next,
  676. struct page, lru);
  677. list_del(&page->lru);
  678. rmv_page_order(page);
  679. area->nr_free--;
  680. expand(zone, page, order, current_order, area, migratetype);
  681. return page;
  682. }
  683. return NULL;
  684. }
  685. /*
  686. * This array describes the order lists are fallen back to when
  687. * the free lists for the desirable migrate type are depleted
  688. */
  689. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  690. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  691. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  692. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  693. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  694. };
  695. /*
  696. * Move the free pages in a range to the free lists of the requested type.
  697. * Note that start_page and end_pages are not aligned on a pageblock
  698. * boundary. If alignment is required, use move_freepages_block()
  699. */
  700. static int move_freepages(struct zone *zone,
  701. struct page *start_page, struct page *end_page,
  702. int migratetype)
  703. {
  704. struct page *page;
  705. unsigned long order;
  706. int pages_moved = 0;
  707. #ifndef CONFIG_HOLES_IN_ZONE
  708. /*
  709. * page_zone is not safe to call in this context when
  710. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  711. * anyway as we check zone boundaries in move_freepages_block().
  712. * Remove at a later date when no bug reports exist related to
  713. * grouping pages by mobility
  714. */
  715. BUG_ON(page_zone(start_page) != page_zone(end_page));
  716. #endif
  717. for (page = start_page; page <= end_page;) {
  718. /* Make sure we are not inadvertently changing nodes */
  719. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  720. if (!pfn_valid_within(page_to_pfn(page))) {
  721. page++;
  722. continue;
  723. }
  724. if (!PageBuddy(page)) {
  725. page++;
  726. continue;
  727. }
  728. order = page_order(page);
  729. list_del(&page->lru);
  730. list_add(&page->lru,
  731. &zone->free_area[order].free_list[migratetype]);
  732. page += 1 << order;
  733. pages_moved += 1 << order;
  734. }
  735. return pages_moved;
  736. }
  737. static int move_freepages_block(struct zone *zone, struct page *page,
  738. int migratetype)
  739. {
  740. unsigned long start_pfn, end_pfn;
  741. struct page *start_page, *end_page;
  742. start_pfn = page_to_pfn(page);
  743. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  744. start_page = pfn_to_page(start_pfn);
  745. end_page = start_page + pageblock_nr_pages - 1;
  746. end_pfn = start_pfn + pageblock_nr_pages - 1;
  747. /* Do not cross zone boundaries */
  748. if (start_pfn < zone->zone_start_pfn)
  749. start_page = page;
  750. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  751. return 0;
  752. return move_freepages(zone, start_page, end_page, migratetype);
  753. }
  754. static void change_pageblock_range(struct page *pageblock_page,
  755. int start_order, int migratetype)
  756. {
  757. int nr_pageblocks = 1 << (start_order - pageblock_order);
  758. while (nr_pageblocks--) {
  759. set_pageblock_migratetype(pageblock_page, migratetype);
  760. pageblock_page += pageblock_nr_pages;
  761. }
  762. }
  763. /* Remove an element from the buddy allocator from the fallback list */
  764. static inline struct page *
  765. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  766. {
  767. struct free_area * area;
  768. int current_order;
  769. struct page *page;
  770. int migratetype, i;
  771. /* Find the largest possible block of pages in the other list */
  772. for (current_order = MAX_ORDER-1; current_order >= order;
  773. --current_order) {
  774. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  775. migratetype = fallbacks[start_migratetype][i];
  776. /* MIGRATE_RESERVE handled later if necessary */
  777. if (migratetype == MIGRATE_RESERVE)
  778. continue;
  779. area = &(zone->free_area[current_order]);
  780. if (list_empty(&area->free_list[migratetype]))
  781. continue;
  782. page = list_entry(area->free_list[migratetype].next,
  783. struct page, lru);
  784. area->nr_free--;
  785. /*
  786. * If breaking a large block of pages, move all free
  787. * pages to the preferred allocation list. If falling
  788. * back for a reclaimable kernel allocation, be more
  789. * agressive about taking ownership of free pages
  790. */
  791. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  792. start_migratetype == MIGRATE_RECLAIMABLE ||
  793. page_group_by_mobility_disabled) {
  794. unsigned long pages;
  795. pages = move_freepages_block(zone, page,
  796. start_migratetype);
  797. /* Claim the whole block if over half of it is free */
  798. if (pages >= (1 << (pageblock_order-1)) ||
  799. page_group_by_mobility_disabled)
  800. set_pageblock_migratetype(page,
  801. start_migratetype);
  802. migratetype = start_migratetype;
  803. }
  804. /* Remove the page from the freelists */
  805. list_del(&page->lru);
  806. rmv_page_order(page);
  807. /* Take ownership for orders >= pageblock_order */
  808. if (current_order >= pageblock_order)
  809. change_pageblock_range(page, current_order,
  810. start_migratetype);
  811. expand(zone, page, order, current_order, area, migratetype);
  812. trace_mm_page_alloc_extfrag(page, order, current_order,
  813. start_migratetype, migratetype);
  814. return page;
  815. }
  816. }
  817. return NULL;
  818. }
  819. /*
  820. * Do the hard work of removing an element from the buddy allocator.
  821. * Call me with the zone->lock already held.
  822. */
  823. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  824. int migratetype)
  825. {
  826. struct page *page;
  827. retry_reserve:
  828. page = __rmqueue_smallest(zone, order, migratetype);
  829. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  830. page = __rmqueue_fallback(zone, order, migratetype);
  831. /*
  832. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  833. * is used because __rmqueue_smallest is an inline function
  834. * and we want just one call site
  835. */
  836. if (!page) {
  837. migratetype = MIGRATE_RESERVE;
  838. goto retry_reserve;
  839. }
  840. }
  841. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  842. return page;
  843. }
  844. /*
  845. * Obtain a specified number of elements from the buddy allocator, all under
  846. * a single hold of the lock, for efficiency. Add them to the supplied list.
  847. * Returns the number of new pages which were placed at *list.
  848. */
  849. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  850. unsigned long count, struct list_head *list,
  851. int migratetype, int cold)
  852. {
  853. int i;
  854. spin_lock(&zone->lock);
  855. for (i = 0; i < count; ++i) {
  856. struct page *page = __rmqueue(zone, order, migratetype);
  857. if (unlikely(page == NULL))
  858. break;
  859. /*
  860. * Split buddy pages returned by expand() are received here
  861. * in physical page order. The page is added to the callers and
  862. * list and the list head then moves forward. From the callers
  863. * perspective, the linked list is ordered by page number in
  864. * some conditions. This is useful for IO devices that can
  865. * merge IO requests if the physical pages are ordered
  866. * properly.
  867. */
  868. if (likely(cold == 0))
  869. list_add(&page->lru, list);
  870. else
  871. list_add_tail(&page->lru, list);
  872. set_page_private(page, migratetype);
  873. list = &page->lru;
  874. }
  875. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  876. spin_unlock(&zone->lock);
  877. return i;
  878. }
  879. #ifdef CONFIG_NUMA
  880. /*
  881. * Called from the vmstat counter updater to drain pagesets of this
  882. * currently executing processor on remote nodes after they have
  883. * expired.
  884. *
  885. * Note that this function must be called with the thread pinned to
  886. * a single processor.
  887. */
  888. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  889. {
  890. unsigned long flags;
  891. int to_drain;
  892. local_irq_save(flags);
  893. if (pcp->count >= pcp->batch)
  894. to_drain = pcp->batch;
  895. else
  896. to_drain = pcp->count;
  897. free_pcppages_bulk(zone, to_drain, pcp);
  898. pcp->count -= to_drain;
  899. local_irq_restore(flags);
  900. }
  901. #endif
  902. /*
  903. * Drain pages of the indicated processor.
  904. *
  905. * The processor must either be the current processor and the
  906. * thread pinned to the current processor or a processor that
  907. * is not online.
  908. */
  909. static void drain_pages(unsigned int cpu)
  910. {
  911. unsigned long flags;
  912. struct zone *zone;
  913. for_each_populated_zone(zone) {
  914. struct per_cpu_pageset *pset;
  915. struct per_cpu_pages *pcp;
  916. local_irq_save(flags);
  917. pset = per_cpu_ptr(zone->pageset, cpu);
  918. pcp = &pset->pcp;
  919. free_pcppages_bulk(zone, pcp->count, pcp);
  920. pcp->count = 0;
  921. local_irq_restore(flags);
  922. }
  923. }
  924. /*
  925. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  926. */
  927. void drain_local_pages(void *arg)
  928. {
  929. drain_pages(smp_processor_id());
  930. }
  931. /*
  932. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  933. */
  934. void drain_all_pages(void)
  935. {
  936. on_each_cpu(drain_local_pages, NULL, 1);
  937. }
  938. #ifdef CONFIG_HIBERNATION
  939. void mark_free_pages(struct zone *zone)
  940. {
  941. unsigned long pfn, max_zone_pfn;
  942. unsigned long flags;
  943. int order, t;
  944. struct list_head *curr;
  945. if (!zone->spanned_pages)
  946. return;
  947. spin_lock_irqsave(&zone->lock, flags);
  948. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  949. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  950. if (pfn_valid(pfn)) {
  951. struct page *page = pfn_to_page(pfn);
  952. if (!swsusp_page_is_forbidden(page))
  953. swsusp_unset_page_free(page);
  954. }
  955. for_each_migratetype_order(order, t) {
  956. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  957. unsigned long i;
  958. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  959. for (i = 0; i < (1UL << order); i++)
  960. swsusp_set_page_free(pfn_to_page(pfn + i));
  961. }
  962. }
  963. spin_unlock_irqrestore(&zone->lock, flags);
  964. }
  965. #endif /* CONFIG_PM */
  966. /*
  967. * Free a 0-order page
  968. * cold == 1 ? free a cold page : free a hot page
  969. */
  970. void free_hot_cold_page(struct page *page, int cold)
  971. {
  972. struct zone *zone = page_zone(page);
  973. struct per_cpu_pages *pcp;
  974. unsigned long flags;
  975. int migratetype;
  976. int wasMlocked = __TestClearPageMlocked(page);
  977. trace_mm_page_free_direct(page, 0);
  978. kmemcheck_free_shadow(page, 0);
  979. if (PageAnon(page))
  980. page->mapping = NULL;
  981. if (free_pages_check(page))
  982. return;
  983. if (!PageHighMem(page)) {
  984. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  985. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  986. }
  987. arch_free_page(page, 0);
  988. kernel_map_pages(page, 1, 0);
  989. migratetype = get_pageblock_migratetype(page);
  990. set_page_private(page, migratetype);
  991. local_irq_save(flags);
  992. if (unlikely(wasMlocked))
  993. free_page_mlock(page);
  994. __count_vm_event(PGFREE);
  995. /*
  996. * We only track unmovable, reclaimable and movable on pcp lists.
  997. * Free ISOLATE pages back to the allocator because they are being
  998. * offlined but treat RESERVE as movable pages so we can get those
  999. * areas back if necessary. Otherwise, we may have to free
  1000. * excessively into the page allocator
  1001. */
  1002. if (migratetype >= MIGRATE_PCPTYPES) {
  1003. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1004. free_one_page(zone, page, 0, migratetype);
  1005. goto out;
  1006. }
  1007. migratetype = MIGRATE_MOVABLE;
  1008. }
  1009. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1010. if (cold)
  1011. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1012. else
  1013. list_add(&page->lru, &pcp->lists[migratetype]);
  1014. pcp->count++;
  1015. if (pcp->count >= pcp->high) {
  1016. free_pcppages_bulk(zone, pcp->batch, pcp);
  1017. pcp->count -= pcp->batch;
  1018. }
  1019. out:
  1020. local_irq_restore(flags);
  1021. }
  1022. /*
  1023. * split_page takes a non-compound higher-order page, and splits it into
  1024. * n (1<<order) sub-pages: page[0..n]
  1025. * Each sub-page must be freed individually.
  1026. *
  1027. * Note: this is probably too low level an operation for use in drivers.
  1028. * Please consult with lkml before using this in your driver.
  1029. */
  1030. void split_page(struct page *page, unsigned int order)
  1031. {
  1032. int i;
  1033. VM_BUG_ON(PageCompound(page));
  1034. VM_BUG_ON(!page_count(page));
  1035. #ifdef CONFIG_KMEMCHECK
  1036. /*
  1037. * Split shadow pages too, because free(page[0]) would
  1038. * otherwise free the whole shadow.
  1039. */
  1040. if (kmemcheck_page_is_tracked(page))
  1041. split_page(virt_to_page(page[0].shadow), order);
  1042. #endif
  1043. for (i = 1; i < (1 << order); i++)
  1044. set_page_refcounted(page + i);
  1045. }
  1046. /*
  1047. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1048. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1049. * or two.
  1050. */
  1051. static inline
  1052. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1053. struct zone *zone, int order, gfp_t gfp_flags,
  1054. int migratetype)
  1055. {
  1056. unsigned long flags;
  1057. struct page *page;
  1058. int cold = !!(gfp_flags & __GFP_COLD);
  1059. again:
  1060. if (likely(order == 0)) {
  1061. struct per_cpu_pages *pcp;
  1062. struct list_head *list;
  1063. local_irq_save(flags);
  1064. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1065. list = &pcp->lists[migratetype];
  1066. if (list_empty(list)) {
  1067. pcp->count += rmqueue_bulk(zone, 0,
  1068. pcp->batch, list,
  1069. migratetype, cold);
  1070. if (unlikely(list_empty(list)))
  1071. goto failed;
  1072. }
  1073. if (cold)
  1074. page = list_entry(list->prev, struct page, lru);
  1075. else
  1076. page = list_entry(list->next, struct page, lru);
  1077. list_del(&page->lru);
  1078. pcp->count--;
  1079. } else {
  1080. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1081. /*
  1082. * __GFP_NOFAIL is not to be used in new code.
  1083. *
  1084. * All __GFP_NOFAIL callers should be fixed so that they
  1085. * properly detect and handle allocation failures.
  1086. *
  1087. * We most definitely don't want callers attempting to
  1088. * allocate greater than order-1 page units with
  1089. * __GFP_NOFAIL.
  1090. */
  1091. WARN_ON_ONCE(order > 1);
  1092. }
  1093. spin_lock_irqsave(&zone->lock, flags);
  1094. page = __rmqueue(zone, order, migratetype);
  1095. spin_unlock(&zone->lock);
  1096. if (!page)
  1097. goto failed;
  1098. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1099. }
  1100. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1101. zone_statistics(preferred_zone, zone);
  1102. local_irq_restore(flags);
  1103. VM_BUG_ON(bad_range(zone, page));
  1104. if (prep_new_page(page, order, gfp_flags))
  1105. goto again;
  1106. return page;
  1107. failed:
  1108. local_irq_restore(flags);
  1109. return NULL;
  1110. }
  1111. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1112. #define ALLOC_WMARK_MIN WMARK_MIN
  1113. #define ALLOC_WMARK_LOW WMARK_LOW
  1114. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1115. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1116. /* Mask to get the watermark bits */
  1117. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1118. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1119. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1120. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1121. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1122. static struct fail_page_alloc_attr {
  1123. struct fault_attr attr;
  1124. u32 ignore_gfp_highmem;
  1125. u32 ignore_gfp_wait;
  1126. u32 min_order;
  1127. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1128. struct dentry *ignore_gfp_highmem_file;
  1129. struct dentry *ignore_gfp_wait_file;
  1130. struct dentry *min_order_file;
  1131. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1132. } fail_page_alloc = {
  1133. .attr = FAULT_ATTR_INITIALIZER,
  1134. .ignore_gfp_wait = 1,
  1135. .ignore_gfp_highmem = 1,
  1136. .min_order = 1,
  1137. };
  1138. static int __init setup_fail_page_alloc(char *str)
  1139. {
  1140. return setup_fault_attr(&fail_page_alloc.attr, str);
  1141. }
  1142. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1143. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1144. {
  1145. if (order < fail_page_alloc.min_order)
  1146. return 0;
  1147. if (gfp_mask & __GFP_NOFAIL)
  1148. return 0;
  1149. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1150. return 0;
  1151. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1152. return 0;
  1153. return should_fail(&fail_page_alloc.attr, 1 << order);
  1154. }
  1155. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1156. static int __init fail_page_alloc_debugfs(void)
  1157. {
  1158. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1159. struct dentry *dir;
  1160. int err;
  1161. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1162. "fail_page_alloc");
  1163. if (err)
  1164. return err;
  1165. dir = fail_page_alloc.attr.dentries.dir;
  1166. fail_page_alloc.ignore_gfp_wait_file =
  1167. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1168. &fail_page_alloc.ignore_gfp_wait);
  1169. fail_page_alloc.ignore_gfp_highmem_file =
  1170. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1171. &fail_page_alloc.ignore_gfp_highmem);
  1172. fail_page_alloc.min_order_file =
  1173. debugfs_create_u32("min-order", mode, dir,
  1174. &fail_page_alloc.min_order);
  1175. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1176. !fail_page_alloc.ignore_gfp_highmem_file ||
  1177. !fail_page_alloc.min_order_file) {
  1178. err = -ENOMEM;
  1179. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1180. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1181. debugfs_remove(fail_page_alloc.min_order_file);
  1182. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1183. }
  1184. return err;
  1185. }
  1186. late_initcall(fail_page_alloc_debugfs);
  1187. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1188. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1189. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1190. {
  1191. return 0;
  1192. }
  1193. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1194. /*
  1195. * Return 1 if free pages are above 'mark'. This takes into account the order
  1196. * of the allocation.
  1197. */
  1198. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1199. int classzone_idx, int alloc_flags)
  1200. {
  1201. /* free_pages my go negative - that's OK */
  1202. long min = mark;
  1203. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1204. int o;
  1205. if (alloc_flags & ALLOC_HIGH)
  1206. min -= min / 2;
  1207. if (alloc_flags & ALLOC_HARDER)
  1208. min -= min / 4;
  1209. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1210. return 0;
  1211. for (o = 0; o < order; o++) {
  1212. /* At the next order, this order's pages become unavailable */
  1213. free_pages -= z->free_area[o].nr_free << o;
  1214. /* Require fewer higher order pages to be free */
  1215. min >>= 1;
  1216. if (free_pages <= min)
  1217. return 0;
  1218. }
  1219. return 1;
  1220. }
  1221. #ifdef CONFIG_NUMA
  1222. /*
  1223. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1224. * skip over zones that are not allowed by the cpuset, or that have
  1225. * been recently (in last second) found to be nearly full. See further
  1226. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1227. * that have to skip over a lot of full or unallowed zones.
  1228. *
  1229. * If the zonelist cache is present in the passed in zonelist, then
  1230. * returns a pointer to the allowed node mask (either the current
  1231. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1232. *
  1233. * If the zonelist cache is not available for this zonelist, does
  1234. * nothing and returns NULL.
  1235. *
  1236. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1237. * a second since last zap'd) then we zap it out (clear its bits.)
  1238. *
  1239. * We hold off even calling zlc_setup, until after we've checked the
  1240. * first zone in the zonelist, on the theory that most allocations will
  1241. * be satisfied from that first zone, so best to examine that zone as
  1242. * quickly as we can.
  1243. */
  1244. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1245. {
  1246. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1247. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1248. zlc = zonelist->zlcache_ptr;
  1249. if (!zlc)
  1250. return NULL;
  1251. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1252. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1253. zlc->last_full_zap = jiffies;
  1254. }
  1255. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1256. &cpuset_current_mems_allowed :
  1257. &node_states[N_HIGH_MEMORY];
  1258. return allowednodes;
  1259. }
  1260. /*
  1261. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1262. * if it is worth looking at further for free memory:
  1263. * 1) Check that the zone isn't thought to be full (doesn't have its
  1264. * bit set in the zonelist_cache fullzones BITMAP).
  1265. * 2) Check that the zones node (obtained from the zonelist_cache
  1266. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1267. * Return true (non-zero) if zone is worth looking at further, or
  1268. * else return false (zero) if it is not.
  1269. *
  1270. * This check -ignores- the distinction between various watermarks,
  1271. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1272. * found to be full for any variation of these watermarks, it will
  1273. * be considered full for up to one second by all requests, unless
  1274. * we are so low on memory on all allowed nodes that we are forced
  1275. * into the second scan of the zonelist.
  1276. *
  1277. * In the second scan we ignore this zonelist cache and exactly
  1278. * apply the watermarks to all zones, even it is slower to do so.
  1279. * We are low on memory in the second scan, and should leave no stone
  1280. * unturned looking for a free page.
  1281. */
  1282. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1283. nodemask_t *allowednodes)
  1284. {
  1285. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1286. int i; /* index of *z in zonelist zones */
  1287. int n; /* node that zone *z is on */
  1288. zlc = zonelist->zlcache_ptr;
  1289. if (!zlc)
  1290. return 1;
  1291. i = z - zonelist->_zonerefs;
  1292. n = zlc->z_to_n[i];
  1293. /* This zone is worth trying if it is allowed but not full */
  1294. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1295. }
  1296. /*
  1297. * Given 'z' scanning a zonelist, set the corresponding bit in
  1298. * zlc->fullzones, so that subsequent attempts to allocate a page
  1299. * from that zone don't waste time re-examining it.
  1300. */
  1301. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1302. {
  1303. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1304. int i; /* index of *z in zonelist zones */
  1305. zlc = zonelist->zlcache_ptr;
  1306. if (!zlc)
  1307. return;
  1308. i = z - zonelist->_zonerefs;
  1309. set_bit(i, zlc->fullzones);
  1310. }
  1311. #else /* CONFIG_NUMA */
  1312. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1313. {
  1314. return NULL;
  1315. }
  1316. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1317. nodemask_t *allowednodes)
  1318. {
  1319. return 1;
  1320. }
  1321. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1322. {
  1323. }
  1324. #endif /* CONFIG_NUMA */
  1325. /*
  1326. * get_page_from_freelist goes through the zonelist trying to allocate
  1327. * a page.
  1328. */
  1329. static struct page *
  1330. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1331. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1332. struct zone *preferred_zone, int migratetype)
  1333. {
  1334. struct zoneref *z;
  1335. struct page *page = NULL;
  1336. int classzone_idx;
  1337. struct zone *zone;
  1338. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1339. int zlc_active = 0; /* set if using zonelist_cache */
  1340. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1341. classzone_idx = zone_idx(preferred_zone);
  1342. zonelist_scan:
  1343. /*
  1344. * Scan zonelist, looking for a zone with enough free.
  1345. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1346. */
  1347. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1348. high_zoneidx, nodemask) {
  1349. if (NUMA_BUILD && zlc_active &&
  1350. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1351. continue;
  1352. if ((alloc_flags & ALLOC_CPUSET) &&
  1353. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1354. goto try_next_zone;
  1355. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1356. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1357. unsigned long mark;
  1358. int ret;
  1359. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1360. if (zone_watermark_ok(zone, order, mark,
  1361. classzone_idx, alloc_flags))
  1362. goto try_this_zone;
  1363. if (zone_reclaim_mode == 0)
  1364. goto this_zone_full;
  1365. ret = zone_reclaim(zone, gfp_mask, order);
  1366. switch (ret) {
  1367. case ZONE_RECLAIM_NOSCAN:
  1368. /* did not scan */
  1369. goto try_next_zone;
  1370. case ZONE_RECLAIM_FULL:
  1371. /* scanned but unreclaimable */
  1372. goto this_zone_full;
  1373. default:
  1374. /* did we reclaim enough */
  1375. if (!zone_watermark_ok(zone, order, mark,
  1376. classzone_idx, alloc_flags))
  1377. goto this_zone_full;
  1378. }
  1379. }
  1380. try_this_zone:
  1381. page = buffered_rmqueue(preferred_zone, zone, order,
  1382. gfp_mask, migratetype);
  1383. if (page)
  1384. break;
  1385. this_zone_full:
  1386. if (NUMA_BUILD)
  1387. zlc_mark_zone_full(zonelist, z);
  1388. try_next_zone:
  1389. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1390. /*
  1391. * we do zlc_setup after the first zone is tried but only
  1392. * if there are multiple nodes make it worthwhile
  1393. */
  1394. allowednodes = zlc_setup(zonelist, alloc_flags);
  1395. zlc_active = 1;
  1396. did_zlc_setup = 1;
  1397. }
  1398. }
  1399. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1400. /* Disable zlc cache for second zonelist scan */
  1401. zlc_active = 0;
  1402. goto zonelist_scan;
  1403. }
  1404. return page;
  1405. }
  1406. static inline int
  1407. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1408. unsigned long pages_reclaimed)
  1409. {
  1410. /* Do not loop if specifically requested */
  1411. if (gfp_mask & __GFP_NORETRY)
  1412. return 0;
  1413. /*
  1414. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1415. * means __GFP_NOFAIL, but that may not be true in other
  1416. * implementations.
  1417. */
  1418. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1419. return 1;
  1420. /*
  1421. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1422. * specified, then we retry until we no longer reclaim any pages
  1423. * (above), or we've reclaimed an order of pages at least as
  1424. * large as the allocation's order. In both cases, if the
  1425. * allocation still fails, we stop retrying.
  1426. */
  1427. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1428. return 1;
  1429. /*
  1430. * Don't let big-order allocations loop unless the caller
  1431. * explicitly requests that.
  1432. */
  1433. if (gfp_mask & __GFP_NOFAIL)
  1434. return 1;
  1435. return 0;
  1436. }
  1437. static inline struct page *
  1438. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1439. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1440. nodemask_t *nodemask, struct zone *preferred_zone,
  1441. int migratetype)
  1442. {
  1443. struct page *page;
  1444. /* Acquire the OOM killer lock for the zones in zonelist */
  1445. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1446. schedule_timeout_uninterruptible(1);
  1447. return NULL;
  1448. }
  1449. /*
  1450. * Go through the zonelist yet one more time, keep very high watermark
  1451. * here, this is only to catch a parallel oom killing, we must fail if
  1452. * we're still under heavy pressure.
  1453. */
  1454. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1455. order, zonelist, high_zoneidx,
  1456. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1457. preferred_zone, migratetype);
  1458. if (page)
  1459. goto out;
  1460. if (!(gfp_mask & __GFP_NOFAIL)) {
  1461. /* The OOM killer will not help higher order allocs */
  1462. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1463. goto out;
  1464. /*
  1465. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1466. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1467. * The caller should handle page allocation failure by itself if
  1468. * it specifies __GFP_THISNODE.
  1469. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1470. */
  1471. if (gfp_mask & __GFP_THISNODE)
  1472. goto out;
  1473. }
  1474. /* Exhausted what can be done so it's blamo time */
  1475. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1476. out:
  1477. clear_zonelist_oom(zonelist, gfp_mask);
  1478. return page;
  1479. }
  1480. /* The really slow allocator path where we enter direct reclaim */
  1481. static inline struct page *
  1482. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1483. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1484. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1485. int migratetype, unsigned long *did_some_progress)
  1486. {
  1487. struct page *page = NULL;
  1488. struct reclaim_state reclaim_state;
  1489. struct task_struct *p = current;
  1490. cond_resched();
  1491. /* We now go into synchronous reclaim */
  1492. cpuset_memory_pressure_bump();
  1493. p->flags |= PF_MEMALLOC;
  1494. lockdep_set_current_reclaim_state(gfp_mask);
  1495. reclaim_state.reclaimed_slab = 0;
  1496. p->reclaim_state = &reclaim_state;
  1497. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1498. p->reclaim_state = NULL;
  1499. lockdep_clear_current_reclaim_state();
  1500. p->flags &= ~PF_MEMALLOC;
  1501. cond_resched();
  1502. if (order != 0)
  1503. drain_all_pages();
  1504. if (likely(*did_some_progress))
  1505. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1506. zonelist, high_zoneidx,
  1507. alloc_flags, preferred_zone,
  1508. migratetype);
  1509. return page;
  1510. }
  1511. /*
  1512. * This is called in the allocator slow-path if the allocation request is of
  1513. * sufficient urgency to ignore watermarks and take other desperate measures
  1514. */
  1515. static inline struct page *
  1516. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1517. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1518. nodemask_t *nodemask, struct zone *preferred_zone,
  1519. int migratetype)
  1520. {
  1521. struct page *page;
  1522. do {
  1523. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1524. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1525. preferred_zone, migratetype);
  1526. if (!page && gfp_mask & __GFP_NOFAIL)
  1527. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1528. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1529. return page;
  1530. }
  1531. static inline
  1532. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1533. enum zone_type high_zoneidx)
  1534. {
  1535. struct zoneref *z;
  1536. struct zone *zone;
  1537. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1538. wakeup_kswapd(zone, order);
  1539. }
  1540. static inline int
  1541. gfp_to_alloc_flags(gfp_t gfp_mask)
  1542. {
  1543. struct task_struct *p = current;
  1544. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1545. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1546. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1547. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1548. /*
  1549. * The caller may dip into page reserves a bit more if the caller
  1550. * cannot run direct reclaim, or if the caller has realtime scheduling
  1551. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1552. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1553. */
  1554. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1555. if (!wait) {
  1556. alloc_flags |= ALLOC_HARDER;
  1557. /*
  1558. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1559. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1560. */
  1561. alloc_flags &= ~ALLOC_CPUSET;
  1562. } else if (unlikely(rt_task(p)) && !in_interrupt())
  1563. alloc_flags |= ALLOC_HARDER;
  1564. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1565. if (!in_interrupt() &&
  1566. ((p->flags & PF_MEMALLOC) ||
  1567. unlikely(test_thread_flag(TIF_MEMDIE))))
  1568. alloc_flags |= ALLOC_NO_WATERMARKS;
  1569. }
  1570. return alloc_flags;
  1571. }
  1572. static inline struct page *
  1573. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1574. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1575. nodemask_t *nodemask, struct zone *preferred_zone,
  1576. int migratetype)
  1577. {
  1578. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1579. struct page *page = NULL;
  1580. int alloc_flags;
  1581. unsigned long pages_reclaimed = 0;
  1582. unsigned long did_some_progress;
  1583. struct task_struct *p = current;
  1584. /*
  1585. * In the slowpath, we sanity check order to avoid ever trying to
  1586. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1587. * be using allocators in order of preference for an area that is
  1588. * too large.
  1589. */
  1590. if (order >= MAX_ORDER) {
  1591. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1592. return NULL;
  1593. }
  1594. /*
  1595. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1596. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1597. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1598. * using a larger set of nodes after it has established that the
  1599. * allowed per node queues are empty and that nodes are
  1600. * over allocated.
  1601. */
  1602. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1603. goto nopage;
  1604. restart:
  1605. wake_all_kswapd(order, zonelist, high_zoneidx);
  1606. /*
  1607. * OK, we're below the kswapd watermark and have kicked background
  1608. * reclaim. Now things get more complex, so set up alloc_flags according
  1609. * to how we want to proceed.
  1610. */
  1611. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1612. /* This is the last chance, in general, before the goto nopage. */
  1613. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1614. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1615. preferred_zone, migratetype);
  1616. if (page)
  1617. goto got_pg;
  1618. rebalance:
  1619. /* Allocate without watermarks if the context allows */
  1620. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1621. page = __alloc_pages_high_priority(gfp_mask, order,
  1622. zonelist, high_zoneidx, nodemask,
  1623. preferred_zone, migratetype);
  1624. if (page)
  1625. goto got_pg;
  1626. }
  1627. /* Atomic allocations - we can't balance anything */
  1628. if (!wait)
  1629. goto nopage;
  1630. /* Avoid recursion of direct reclaim */
  1631. if (p->flags & PF_MEMALLOC)
  1632. goto nopage;
  1633. /* Avoid allocations with no watermarks from looping endlessly */
  1634. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1635. goto nopage;
  1636. /* Try direct reclaim and then allocating */
  1637. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1638. zonelist, high_zoneidx,
  1639. nodemask,
  1640. alloc_flags, preferred_zone,
  1641. migratetype, &did_some_progress);
  1642. if (page)
  1643. goto got_pg;
  1644. /*
  1645. * If we failed to make any progress reclaiming, then we are
  1646. * running out of options and have to consider going OOM
  1647. */
  1648. if (!did_some_progress) {
  1649. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1650. if (oom_killer_disabled)
  1651. goto nopage;
  1652. page = __alloc_pages_may_oom(gfp_mask, order,
  1653. zonelist, high_zoneidx,
  1654. nodemask, preferred_zone,
  1655. migratetype);
  1656. if (page)
  1657. goto got_pg;
  1658. /*
  1659. * The OOM killer does not trigger for high-order
  1660. * ~__GFP_NOFAIL allocations so if no progress is being
  1661. * made, there are no other options and retrying is
  1662. * unlikely to help.
  1663. */
  1664. if (order > PAGE_ALLOC_COSTLY_ORDER &&
  1665. !(gfp_mask & __GFP_NOFAIL))
  1666. goto nopage;
  1667. goto restart;
  1668. }
  1669. }
  1670. /* Check if we should retry the allocation */
  1671. pages_reclaimed += did_some_progress;
  1672. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1673. /* Wait for some write requests to complete then retry */
  1674. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1675. goto rebalance;
  1676. }
  1677. nopage:
  1678. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1679. printk(KERN_WARNING "%s: page allocation failure."
  1680. " order:%d, mode:0x%x\n",
  1681. p->comm, order, gfp_mask);
  1682. dump_stack();
  1683. show_mem();
  1684. }
  1685. return page;
  1686. got_pg:
  1687. if (kmemcheck_enabled)
  1688. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1689. return page;
  1690. }
  1691. /*
  1692. * This is the 'heart' of the zoned buddy allocator.
  1693. */
  1694. struct page *
  1695. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1696. struct zonelist *zonelist, nodemask_t *nodemask)
  1697. {
  1698. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1699. struct zone *preferred_zone;
  1700. struct page *page;
  1701. int migratetype = allocflags_to_migratetype(gfp_mask);
  1702. gfp_mask &= gfp_allowed_mask;
  1703. lockdep_trace_alloc(gfp_mask);
  1704. might_sleep_if(gfp_mask & __GFP_WAIT);
  1705. if (should_fail_alloc_page(gfp_mask, order))
  1706. return NULL;
  1707. /*
  1708. * Check the zones suitable for the gfp_mask contain at least one
  1709. * valid zone. It's possible to have an empty zonelist as a result
  1710. * of GFP_THISNODE and a memoryless node
  1711. */
  1712. if (unlikely(!zonelist->_zonerefs->zone))
  1713. return NULL;
  1714. get_mems_allowed();
  1715. /* The preferred zone is used for statistics later */
  1716. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1717. if (!preferred_zone) {
  1718. put_mems_allowed();
  1719. return NULL;
  1720. }
  1721. /* First allocation attempt */
  1722. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1723. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1724. preferred_zone, migratetype);
  1725. if (unlikely(!page))
  1726. page = __alloc_pages_slowpath(gfp_mask, order,
  1727. zonelist, high_zoneidx, nodemask,
  1728. preferred_zone, migratetype);
  1729. put_mems_allowed();
  1730. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1731. return page;
  1732. }
  1733. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1734. /*
  1735. * Common helper functions.
  1736. */
  1737. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1738. {
  1739. struct page *page;
  1740. /*
  1741. * __get_free_pages() returns a 32-bit address, which cannot represent
  1742. * a highmem page
  1743. */
  1744. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1745. page = alloc_pages(gfp_mask, order);
  1746. if (!page)
  1747. return 0;
  1748. return (unsigned long) page_address(page);
  1749. }
  1750. EXPORT_SYMBOL(__get_free_pages);
  1751. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1752. {
  1753. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  1754. }
  1755. EXPORT_SYMBOL(get_zeroed_page);
  1756. void __pagevec_free(struct pagevec *pvec)
  1757. {
  1758. int i = pagevec_count(pvec);
  1759. while (--i >= 0) {
  1760. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  1761. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1762. }
  1763. }
  1764. void __free_pages(struct page *page, unsigned int order)
  1765. {
  1766. if (put_page_testzero(page)) {
  1767. if (order == 0)
  1768. free_hot_cold_page(page, 0);
  1769. else
  1770. __free_pages_ok(page, order);
  1771. }
  1772. }
  1773. EXPORT_SYMBOL(__free_pages);
  1774. void free_pages(unsigned long addr, unsigned int order)
  1775. {
  1776. if (addr != 0) {
  1777. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1778. __free_pages(virt_to_page((void *)addr), order);
  1779. }
  1780. }
  1781. EXPORT_SYMBOL(free_pages);
  1782. /**
  1783. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1784. * @size: the number of bytes to allocate
  1785. * @gfp_mask: GFP flags for the allocation
  1786. *
  1787. * This function is similar to alloc_pages(), except that it allocates the
  1788. * minimum number of pages to satisfy the request. alloc_pages() can only
  1789. * allocate memory in power-of-two pages.
  1790. *
  1791. * This function is also limited by MAX_ORDER.
  1792. *
  1793. * Memory allocated by this function must be released by free_pages_exact().
  1794. */
  1795. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1796. {
  1797. unsigned int order = get_order(size);
  1798. unsigned long addr;
  1799. addr = __get_free_pages(gfp_mask, order);
  1800. if (addr) {
  1801. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1802. unsigned long used = addr + PAGE_ALIGN(size);
  1803. split_page(virt_to_page((void *)addr), order);
  1804. while (used < alloc_end) {
  1805. free_page(used);
  1806. used += PAGE_SIZE;
  1807. }
  1808. }
  1809. return (void *)addr;
  1810. }
  1811. EXPORT_SYMBOL(alloc_pages_exact);
  1812. /**
  1813. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1814. * @virt: the value returned by alloc_pages_exact.
  1815. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1816. *
  1817. * Release the memory allocated by a previous call to alloc_pages_exact.
  1818. */
  1819. void free_pages_exact(void *virt, size_t size)
  1820. {
  1821. unsigned long addr = (unsigned long)virt;
  1822. unsigned long end = addr + PAGE_ALIGN(size);
  1823. while (addr < end) {
  1824. free_page(addr);
  1825. addr += PAGE_SIZE;
  1826. }
  1827. }
  1828. EXPORT_SYMBOL(free_pages_exact);
  1829. static unsigned int nr_free_zone_pages(int offset)
  1830. {
  1831. struct zoneref *z;
  1832. struct zone *zone;
  1833. /* Just pick one node, since fallback list is circular */
  1834. unsigned int sum = 0;
  1835. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1836. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1837. unsigned long size = zone->present_pages;
  1838. unsigned long high = high_wmark_pages(zone);
  1839. if (size > high)
  1840. sum += size - high;
  1841. }
  1842. return sum;
  1843. }
  1844. /*
  1845. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1846. */
  1847. unsigned int nr_free_buffer_pages(void)
  1848. {
  1849. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1850. }
  1851. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1852. /*
  1853. * Amount of free RAM allocatable within all zones
  1854. */
  1855. unsigned int nr_free_pagecache_pages(void)
  1856. {
  1857. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1858. }
  1859. static inline void show_node(struct zone *zone)
  1860. {
  1861. if (NUMA_BUILD)
  1862. printk("Node %d ", zone_to_nid(zone));
  1863. }
  1864. void si_meminfo(struct sysinfo *val)
  1865. {
  1866. val->totalram = totalram_pages;
  1867. val->sharedram = 0;
  1868. val->freeram = global_page_state(NR_FREE_PAGES);
  1869. val->bufferram = nr_blockdev_pages();
  1870. val->totalhigh = totalhigh_pages;
  1871. val->freehigh = nr_free_highpages();
  1872. val->mem_unit = PAGE_SIZE;
  1873. }
  1874. EXPORT_SYMBOL(si_meminfo);
  1875. #ifdef CONFIG_NUMA
  1876. void si_meminfo_node(struct sysinfo *val, int nid)
  1877. {
  1878. pg_data_t *pgdat = NODE_DATA(nid);
  1879. val->totalram = pgdat->node_present_pages;
  1880. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1881. #ifdef CONFIG_HIGHMEM
  1882. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1883. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1884. NR_FREE_PAGES);
  1885. #else
  1886. val->totalhigh = 0;
  1887. val->freehigh = 0;
  1888. #endif
  1889. val->mem_unit = PAGE_SIZE;
  1890. }
  1891. #endif
  1892. #define K(x) ((x) << (PAGE_SHIFT-10))
  1893. /*
  1894. * Show free area list (used inside shift_scroll-lock stuff)
  1895. * We also calculate the percentage fragmentation. We do this by counting the
  1896. * memory on each free list with the exception of the first item on the list.
  1897. */
  1898. void show_free_areas(void)
  1899. {
  1900. int cpu;
  1901. struct zone *zone;
  1902. for_each_populated_zone(zone) {
  1903. show_node(zone);
  1904. printk("%s per-cpu:\n", zone->name);
  1905. for_each_online_cpu(cpu) {
  1906. struct per_cpu_pageset *pageset;
  1907. pageset = per_cpu_ptr(zone->pageset, cpu);
  1908. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1909. cpu, pageset->pcp.high,
  1910. pageset->pcp.batch, pageset->pcp.count);
  1911. }
  1912. }
  1913. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  1914. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  1915. " unevictable:%lu"
  1916. " dirty:%lu writeback:%lu unstable:%lu\n"
  1917. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  1918. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  1919. global_page_state(NR_ACTIVE_ANON),
  1920. global_page_state(NR_INACTIVE_ANON),
  1921. global_page_state(NR_ISOLATED_ANON),
  1922. global_page_state(NR_ACTIVE_FILE),
  1923. global_page_state(NR_INACTIVE_FILE),
  1924. global_page_state(NR_ISOLATED_FILE),
  1925. global_page_state(NR_UNEVICTABLE),
  1926. global_page_state(NR_FILE_DIRTY),
  1927. global_page_state(NR_WRITEBACK),
  1928. global_page_state(NR_UNSTABLE_NFS),
  1929. global_page_state(NR_FREE_PAGES),
  1930. global_page_state(NR_SLAB_RECLAIMABLE),
  1931. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1932. global_page_state(NR_FILE_MAPPED),
  1933. global_page_state(NR_SHMEM),
  1934. global_page_state(NR_PAGETABLE),
  1935. global_page_state(NR_BOUNCE));
  1936. for_each_populated_zone(zone) {
  1937. int i;
  1938. show_node(zone);
  1939. printk("%s"
  1940. " free:%lukB"
  1941. " min:%lukB"
  1942. " low:%lukB"
  1943. " high:%lukB"
  1944. " active_anon:%lukB"
  1945. " inactive_anon:%lukB"
  1946. " active_file:%lukB"
  1947. " inactive_file:%lukB"
  1948. " unevictable:%lukB"
  1949. " isolated(anon):%lukB"
  1950. " isolated(file):%lukB"
  1951. " present:%lukB"
  1952. " mlocked:%lukB"
  1953. " dirty:%lukB"
  1954. " writeback:%lukB"
  1955. " mapped:%lukB"
  1956. " shmem:%lukB"
  1957. " slab_reclaimable:%lukB"
  1958. " slab_unreclaimable:%lukB"
  1959. " kernel_stack:%lukB"
  1960. " pagetables:%lukB"
  1961. " unstable:%lukB"
  1962. " bounce:%lukB"
  1963. " writeback_tmp:%lukB"
  1964. " pages_scanned:%lu"
  1965. " all_unreclaimable? %s"
  1966. "\n",
  1967. zone->name,
  1968. K(zone_page_state(zone, NR_FREE_PAGES)),
  1969. K(min_wmark_pages(zone)),
  1970. K(low_wmark_pages(zone)),
  1971. K(high_wmark_pages(zone)),
  1972. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1973. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1974. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1975. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1976. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1977. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  1978. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  1979. K(zone->present_pages),
  1980. K(zone_page_state(zone, NR_MLOCK)),
  1981. K(zone_page_state(zone, NR_FILE_DIRTY)),
  1982. K(zone_page_state(zone, NR_WRITEBACK)),
  1983. K(zone_page_state(zone, NR_FILE_MAPPED)),
  1984. K(zone_page_state(zone, NR_SHMEM)),
  1985. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  1986. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  1987. zone_page_state(zone, NR_KERNEL_STACK) *
  1988. THREAD_SIZE / 1024,
  1989. K(zone_page_state(zone, NR_PAGETABLE)),
  1990. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  1991. K(zone_page_state(zone, NR_BOUNCE)),
  1992. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  1993. zone->pages_scanned,
  1994. (zone->all_unreclaimable ? "yes" : "no")
  1995. );
  1996. printk("lowmem_reserve[]:");
  1997. for (i = 0; i < MAX_NR_ZONES; i++)
  1998. printk(" %lu", zone->lowmem_reserve[i]);
  1999. printk("\n");
  2000. }
  2001. for_each_populated_zone(zone) {
  2002. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2003. show_node(zone);
  2004. printk("%s: ", zone->name);
  2005. spin_lock_irqsave(&zone->lock, flags);
  2006. for (order = 0; order < MAX_ORDER; order++) {
  2007. nr[order] = zone->free_area[order].nr_free;
  2008. total += nr[order] << order;
  2009. }
  2010. spin_unlock_irqrestore(&zone->lock, flags);
  2011. for (order = 0; order < MAX_ORDER; order++)
  2012. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2013. printk("= %lukB\n", K(total));
  2014. }
  2015. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2016. show_swap_cache_info();
  2017. }
  2018. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2019. {
  2020. zoneref->zone = zone;
  2021. zoneref->zone_idx = zone_idx(zone);
  2022. }
  2023. /*
  2024. * Builds allocation fallback zone lists.
  2025. *
  2026. * Add all populated zones of a node to the zonelist.
  2027. */
  2028. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2029. int nr_zones, enum zone_type zone_type)
  2030. {
  2031. struct zone *zone;
  2032. BUG_ON(zone_type >= MAX_NR_ZONES);
  2033. zone_type++;
  2034. do {
  2035. zone_type--;
  2036. zone = pgdat->node_zones + zone_type;
  2037. if (populated_zone(zone)) {
  2038. zoneref_set_zone(zone,
  2039. &zonelist->_zonerefs[nr_zones++]);
  2040. check_highest_zone(zone_type);
  2041. }
  2042. } while (zone_type);
  2043. return nr_zones;
  2044. }
  2045. /*
  2046. * zonelist_order:
  2047. * 0 = automatic detection of better ordering.
  2048. * 1 = order by ([node] distance, -zonetype)
  2049. * 2 = order by (-zonetype, [node] distance)
  2050. *
  2051. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2052. * the same zonelist. So only NUMA can configure this param.
  2053. */
  2054. #define ZONELIST_ORDER_DEFAULT 0
  2055. #define ZONELIST_ORDER_NODE 1
  2056. #define ZONELIST_ORDER_ZONE 2
  2057. /* zonelist order in the kernel.
  2058. * set_zonelist_order() will set this to NODE or ZONE.
  2059. */
  2060. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2061. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2062. #ifdef CONFIG_NUMA
  2063. /* The value user specified ....changed by config */
  2064. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2065. /* string for sysctl */
  2066. #define NUMA_ZONELIST_ORDER_LEN 16
  2067. char numa_zonelist_order[16] = "default";
  2068. /*
  2069. * interface for configure zonelist ordering.
  2070. * command line option "numa_zonelist_order"
  2071. * = "[dD]efault - default, automatic configuration.
  2072. * = "[nN]ode - order by node locality, then by zone within node
  2073. * = "[zZ]one - order by zone, then by locality within zone
  2074. */
  2075. static int __parse_numa_zonelist_order(char *s)
  2076. {
  2077. if (*s == 'd' || *s == 'D') {
  2078. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2079. } else if (*s == 'n' || *s == 'N') {
  2080. user_zonelist_order = ZONELIST_ORDER_NODE;
  2081. } else if (*s == 'z' || *s == 'Z') {
  2082. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2083. } else {
  2084. printk(KERN_WARNING
  2085. "Ignoring invalid numa_zonelist_order value: "
  2086. "%s\n", s);
  2087. return -EINVAL;
  2088. }
  2089. return 0;
  2090. }
  2091. static __init int setup_numa_zonelist_order(char *s)
  2092. {
  2093. if (s)
  2094. return __parse_numa_zonelist_order(s);
  2095. return 0;
  2096. }
  2097. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2098. /*
  2099. * sysctl handler for numa_zonelist_order
  2100. */
  2101. int numa_zonelist_order_handler(ctl_table *table, int write,
  2102. void __user *buffer, size_t *length,
  2103. loff_t *ppos)
  2104. {
  2105. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2106. int ret;
  2107. static DEFINE_MUTEX(zl_order_mutex);
  2108. mutex_lock(&zl_order_mutex);
  2109. if (write)
  2110. strcpy(saved_string, (char*)table->data);
  2111. ret = proc_dostring(table, write, buffer, length, ppos);
  2112. if (ret)
  2113. goto out;
  2114. if (write) {
  2115. int oldval = user_zonelist_order;
  2116. if (__parse_numa_zonelist_order((char*)table->data)) {
  2117. /*
  2118. * bogus value. restore saved string
  2119. */
  2120. strncpy((char*)table->data, saved_string,
  2121. NUMA_ZONELIST_ORDER_LEN);
  2122. user_zonelist_order = oldval;
  2123. } else if (oldval != user_zonelist_order)
  2124. build_all_zonelists();
  2125. }
  2126. out:
  2127. mutex_unlock(&zl_order_mutex);
  2128. return ret;
  2129. }
  2130. #define MAX_NODE_LOAD (nr_online_nodes)
  2131. static int node_load[MAX_NUMNODES];
  2132. /**
  2133. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2134. * @node: node whose fallback list we're appending
  2135. * @used_node_mask: nodemask_t of already used nodes
  2136. *
  2137. * We use a number of factors to determine which is the next node that should
  2138. * appear on a given node's fallback list. The node should not have appeared
  2139. * already in @node's fallback list, and it should be the next closest node
  2140. * according to the distance array (which contains arbitrary distance values
  2141. * from each node to each node in the system), and should also prefer nodes
  2142. * with no CPUs, since presumably they'll have very little allocation pressure
  2143. * on them otherwise.
  2144. * It returns -1 if no node is found.
  2145. */
  2146. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2147. {
  2148. int n, val;
  2149. int min_val = INT_MAX;
  2150. int best_node = -1;
  2151. const struct cpumask *tmp = cpumask_of_node(0);
  2152. /* Use the local node if we haven't already */
  2153. if (!node_isset(node, *used_node_mask)) {
  2154. node_set(node, *used_node_mask);
  2155. return node;
  2156. }
  2157. for_each_node_state(n, N_HIGH_MEMORY) {
  2158. /* Don't want a node to appear more than once */
  2159. if (node_isset(n, *used_node_mask))
  2160. continue;
  2161. /* Use the distance array to find the distance */
  2162. val = node_distance(node, n);
  2163. /* Penalize nodes under us ("prefer the next node") */
  2164. val += (n < node);
  2165. /* Give preference to headless and unused nodes */
  2166. tmp = cpumask_of_node(n);
  2167. if (!cpumask_empty(tmp))
  2168. val += PENALTY_FOR_NODE_WITH_CPUS;
  2169. /* Slight preference for less loaded node */
  2170. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2171. val += node_load[n];
  2172. if (val < min_val) {
  2173. min_val = val;
  2174. best_node = n;
  2175. }
  2176. }
  2177. if (best_node >= 0)
  2178. node_set(best_node, *used_node_mask);
  2179. return best_node;
  2180. }
  2181. /*
  2182. * Build zonelists ordered by node and zones within node.
  2183. * This results in maximum locality--normal zone overflows into local
  2184. * DMA zone, if any--but risks exhausting DMA zone.
  2185. */
  2186. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2187. {
  2188. int j;
  2189. struct zonelist *zonelist;
  2190. zonelist = &pgdat->node_zonelists[0];
  2191. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2192. ;
  2193. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2194. MAX_NR_ZONES - 1);
  2195. zonelist->_zonerefs[j].zone = NULL;
  2196. zonelist->_zonerefs[j].zone_idx = 0;
  2197. }
  2198. /*
  2199. * Build gfp_thisnode zonelists
  2200. */
  2201. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2202. {
  2203. int j;
  2204. struct zonelist *zonelist;
  2205. zonelist = &pgdat->node_zonelists[1];
  2206. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2207. zonelist->_zonerefs[j].zone = NULL;
  2208. zonelist->_zonerefs[j].zone_idx = 0;
  2209. }
  2210. /*
  2211. * Build zonelists ordered by zone and nodes within zones.
  2212. * This results in conserving DMA zone[s] until all Normal memory is
  2213. * exhausted, but results in overflowing to remote node while memory
  2214. * may still exist in local DMA zone.
  2215. */
  2216. static int node_order[MAX_NUMNODES];
  2217. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2218. {
  2219. int pos, j, node;
  2220. int zone_type; /* needs to be signed */
  2221. struct zone *z;
  2222. struct zonelist *zonelist;
  2223. zonelist = &pgdat->node_zonelists[0];
  2224. pos = 0;
  2225. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2226. for (j = 0; j < nr_nodes; j++) {
  2227. node = node_order[j];
  2228. z = &NODE_DATA(node)->node_zones[zone_type];
  2229. if (populated_zone(z)) {
  2230. zoneref_set_zone(z,
  2231. &zonelist->_zonerefs[pos++]);
  2232. check_highest_zone(zone_type);
  2233. }
  2234. }
  2235. }
  2236. zonelist->_zonerefs[pos].zone = NULL;
  2237. zonelist->_zonerefs[pos].zone_idx = 0;
  2238. }
  2239. static int default_zonelist_order(void)
  2240. {
  2241. int nid, zone_type;
  2242. unsigned long low_kmem_size,total_size;
  2243. struct zone *z;
  2244. int average_size;
  2245. /*
  2246. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2247. * If they are really small and used heavily, the system can fall
  2248. * into OOM very easily.
  2249. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2250. */
  2251. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2252. low_kmem_size = 0;
  2253. total_size = 0;
  2254. for_each_online_node(nid) {
  2255. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2256. z = &NODE_DATA(nid)->node_zones[zone_type];
  2257. if (populated_zone(z)) {
  2258. if (zone_type < ZONE_NORMAL)
  2259. low_kmem_size += z->present_pages;
  2260. total_size += z->present_pages;
  2261. }
  2262. }
  2263. }
  2264. if (!low_kmem_size || /* there are no DMA area. */
  2265. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2266. return ZONELIST_ORDER_NODE;
  2267. /*
  2268. * look into each node's config.
  2269. * If there is a node whose DMA/DMA32 memory is very big area on
  2270. * local memory, NODE_ORDER may be suitable.
  2271. */
  2272. average_size = total_size /
  2273. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2274. for_each_online_node(nid) {
  2275. low_kmem_size = 0;
  2276. total_size = 0;
  2277. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2278. z = &NODE_DATA(nid)->node_zones[zone_type];
  2279. if (populated_zone(z)) {
  2280. if (zone_type < ZONE_NORMAL)
  2281. low_kmem_size += z->present_pages;
  2282. total_size += z->present_pages;
  2283. }
  2284. }
  2285. if (low_kmem_size &&
  2286. total_size > average_size && /* ignore small node */
  2287. low_kmem_size > total_size * 70/100)
  2288. return ZONELIST_ORDER_NODE;
  2289. }
  2290. return ZONELIST_ORDER_ZONE;
  2291. }
  2292. static void set_zonelist_order(void)
  2293. {
  2294. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2295. current_zonelist_order = default_zonelist_order();
  2296. else
  2297. current_zonelist_order = user_zonelist_order;
  2298. }
  2299. static void build_zonelists(pg_data_t *pgdat)
  2300. {
  2301. int j, node, load;
  2302. enum zone_type i;
  2303. nodemask_t used_mask;
  2304. int local_node, prev_node;
  2305. struct zonelist *zonelist;
  2306. int order = current_zonelist_order;
  2307. /* initialize zonelists */
  2308. for (i = 0; i < MAX_ZONELISTS; i++) {
  2309. zonelist = pgdat->node_zonelists + i;
  2310. zonelist->_zonerefs[0].zone = NULL;
  2311. zonelist->_zonerefs[0].zone_idx = 0;
  2312. }
  2313. /* NUMA-aware ordering of nodes */
  2314. local_node = pgdat->node_id;
  2315. load = nr_online_nodes;
  2316. prev_node = local_node;
  2317. nodes_clear(used_mask);
  2318. memset(node_order, 0, sizeof(node_order));
  2319. j = 0;
  2320. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2321. int distance = node_distance(local_node, node);
  2322. /*
  2323. * If another node is sufficiently far away then it is better
  2324. * to reclaim pages in a zone before going off node.
  2325. */
  2326. if (distance > RECLAIM_DISTANCE)
  2327. zone_reclaim_mode = 1;
  2328. /*
  2329. * We don't want to pressure a particular node.
  2330. * So adding penalty to the first node in same
  2331. * distance group to make it round-robin.
  2332. */
  2333. if (distance != node_distance(local_node, prev_node))
  2334. node_load[node] = load;
  2335. prev_node = node;
  2336. load--;
  2337. if (order == ZONELIST_ORDER_NODE)
  2338. build_zonelists_in_node_order(pgdat, node);
  2339. else
  2340. node_order[j++] = node; /* remember order */
  2341. }
  2342. if (order == ZONELIST_ORDER_ZONE) {
  2343. /* calculate node order -- i.e., DMA last! */
  2344. build_zonelists_in_zone_order(pgdat, j);
  2345. }
  2346. build_thisnode_zonelists(pgdat);
  2347. }
  2348. /* Construct the zonelist performance cache - see further mmzone.h */
  2349. static void build_zonelist_cache(pg_data_t *pgdat)
  2350. {
  2351. struct zonelist *zonelist;
  2352. struct zonelist_cache *zlc;
  2353. struct zoneref *z;
  2354. zonelist = &pgdat->node_zonelists[0];
  2355. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2356. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2357. for (z = zonelist->_zonerefs; z->zone; z++)
  2358. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2359. }
  2360. #else /* CONFIG_NUMA */
  2361. static void set_zonelist_order(void)
  2362. {
  2363. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2364. }
  2365. static void build_zonelists(pg_data_t *pgdat)
  2366. {
  2367. int node, local_node;
  2368. enum zone_type j;
  2369. struct zonelist *zonelist;
  2370. local_node = pgdat->node_id;
  2371. zonelist = &pgdat->node_zonelists[0];
  2372. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2373. /*
  2374. * Now we build the zonelist so that it contains the zones
  2375. * of all the other nodes.
  2376. * We don't want to pressure a particular node, so when
  2377. * building the zones for node N, we make sure that the
  2378. * zones coming right after the local ones are those from
  2379. * node N+1 (modulo N)
  2380. */
  2381. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2382. if (!node_online(node))
  2383. continue;
  2384. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2385. MAX_NR_ZONES - 1);
  2386. }
  2387. for (node = 0; node < local_node; node++) {
  2388. if (!node_online(node))
  2389. continue;
  2390. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2391. MAX_NR_ZONES - 1);
  2392. }
  2393. zonelist->_zonerefs[j].zone = NULL;
  2394. zonelist->_zonerefs[j].zone_idx = 0;
  2395. }
  2396. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2397. static void build_zonelist_cache(pg_data_t *pgdat)
  2398. {
  2399. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2400. }
  2401. #endif /* CONFIG_NUMA */
  2402. /*
  2403. * Boot pageset table. One per cpu which is going to be used for all
  2404. * zones and all nodes. The parameters will be set in such a way
  2405. * that an item put on a list will immediately be handed over to
  2406. * the buddy list. This is safe since pageset manipulation is done
  2407. * with interrupts disabled.
  2408. *
  2409. * The boot_pagesets must be kept even after bootup is complete for
  2410. * unused processors and/or zones. They do play a role for bootstrapping
  2411. * hotplugged processors.
  2412. *
  2413. * zoneinfo_show() and maybe other functions do
  2414. * not check if the processor is online before following the pageset pointer.
  2415. * Other parts of the kernel may not check if the zone is available.
  2416. */
  2417. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  2418. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  2419. /* return values int ....just for stop_machine() */
  2420. static int __build_all_zonelists(void *dummy)
  2421. {
  2422. int nid;
  2423. int cpu;
  2424. #ifdef CONFIG_NUMA
  2425. memset(node_load, 0, sizeof(node_load));
  2426. #endif
  2427. for_each_online_node(nid) {
  2428. pg_data_t *pgdat = NODE_DATA(nid);
  2429. build_zonelists(pgdat);
  2430. build_zonelist_cache(pgdat);
  2431. }
  2432. /*
  2433. * Initialize the boot_pagesets that are going to be used
  2434. * for bootstrapping processors. The real pagesets for
  2435. * each zone will be allocated later when the per cpu
  2436. * allocator is available.
  2437. *
  2438. * boot_pagesets are used also for bootstrapping offline
  2439. * cpus if the system is already booted because the pagesets
  2440. * are needed to initialize allocators on a specific cpu too.
  2441. * F.e. the percpu allocator needs the page allocator which
  2442. * needs the percpu allocator in order to allocate its pagesets
  2443. * (a chicken-egg dilemma).
  2444. */
  2445. for_each_possible_cpu(cpu)
  2446. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  2447. return 0;
  2448. }
  2449. void build_all_zonelists(void)
  2450. {
  2451. set_zonelist_order();
  2452. if (system_state == SYSTEM_BOOTING) {
  2453. __build_all_zonelists(NULL);
  2454. mminit_verify_zonelist();
  2455. cpuset_init_current_mems_allowed();
  2456. } else {
  2457. /* we have to stop all cpus to guarantee there is no user
  2458. of zonelist */
  2459. stop_machine(__build_all_zonelists, NULL, NULL);
  2460. /* cpuset refresh routine should be here */
  2461. }
  2462. vm_total_pages = nr_free_pagecache_pages();
  2463. /*
  2464. * Disable grouping by mobility if the number of pages in the
  2465. * system is too low to allow the mechanism to work. It would be
  2466. * more accurate, but expensive to check per-zone. This check is
  2467. * made on memory-hotadd so a system can start with mobility
  2468. * disabled and enable it later
  2469. */
  2470. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2471. page_group_by_mobility_disabled = 1;
  2472. else
  2473. page_group_by_mobility_disabled = 0;
  2474. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2475. "Total pages: %ld\n",
  2476. nr_online_nodes,
  2477. zonelist_order_name[current_zonelist_order],
  2478. page_group_by_mobility_disabled ? "off" : "on",
  2479. vm_total_pages);
  2480. #ifdef CONFIG_NUMA
  2481. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2482. #endif
  2483. }
  2484. /*
  2485. * Helper functions to size the waitqueue hash table.
  2486. * Essentially these want to choose hash table sizes sufficiently
  2487. * large so that collisions trying to wait on pages are rare.
  2488. * But in fact, the number of active page waitqueues on typical
  2489. * systems is ridiculously low, less than 200. So this is even
  2490. * conservative, even though it seems large.
  2491. *
  2492. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2493. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2494. */
  2495. #define PAGES_PER_WAITQUEUE 256
  2496. #ifndef CONFIG_MEMORY_HOTPLUG
  2497. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2498. {
  2499. unsigned long size = 1;
  2500. pages /= PAGES_PER_WAITQUEUE;
  2501. while (size < pages)
  2502. size <<= 1;
  2503. /*
  2504. * Once we have dozens or even hundreds of threads sleeping
  2505. * on IO we've got bigger problems than wait queue collision.
  2506. * Limit the size of the wait table to a reasonable size.
  2507. */
  2508. size = min(size, 4096UL);
  2509. return max(size, 4UL);
  2510. }
  2511. #else
  2512. /*
  2513. * A zone's size might be changed by hot-add, so it is not possible to determine
  2514. * a suitable size for its wait_table. So we use the maximum size now.
  2515. *
  2516. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2517. *
  2518. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2519. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2520. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2521. *
  2522. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2523. * or more by the traditional way. (See above). It equals:
  2524. *
  2525. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2526. * ia64(16K page size) : = ( 8G + 4M)byte.
  2527. * powerpc (64K page size) : = (32G +16M)byte.
  2528. */
  2529. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2530. {
  2531. return 4096UL;
  2532. }
  2533. #endif
  2534. /*
  2535. * This is an integer logarithm so that shifts can be used later
  2536. * to extract the more random high bits from the multiplicative
  2537. * hash function before the remainder is taken.
  2538. */
  2539. static inline unsigned long wait_table_bits(unsigned long size)
  2540. {
  2541. return ffz(~size);
  2542. }
  2543. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2544. /*
  2545. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2546. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2547. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2548. * higher will lead to a bigger reserve which will get freed as contiguous
  2549. * blocks as reclaim kicks in
  2550. */
  2551. static void setup_zone_migrate_reserve(struct zone *zone)
  2552. {
  2553. unsigned long start_pfn, pfn, end_pfn;
  2554. struct page *page;
  2555. unsigned long block_migratetype;
  2556. int reserve;
  2557. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2558. start_pfn = zone->zone_start_pfn;
  2559. end_pfn = start_pfn + zone->spanned_pages;
  2560. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2561. pageblock_order;
  2562. /*
  2563. * Reserve blocks are generally in place to help high-order atomic
  2564. * allocations that are short-lived. A min_free_kbytes value that
  2565. * would result in more than 2 reserve blocks for atomic allocations
  2566. * is assumed to be in place to help anti-fragmentation for the
  2567. * future allocation of hugepages at runtime.
  2568. */
  2569. reserve = min(2, reserve);
  2570. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2571. if (!pfn_valid(pfn))
  2572. continue;
  2573. page = pfn_to_page(pfn);
  2574. /* Watch out for overlapping nodes */
  2575. if (page_to_nid(page) != zone_to_nid(zone))
  2576. continue;
  2577. /* Blocks with reserved pages will never free, skip them. */
  2578. if (PageReserved(page))
  2579. continue;
  2580. block_migratetype = get_pageblock_migratetype(page);
  2581. /* If this block is reserved, account for it */
  2582. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2583. reserve--;
  2584. continue;
  2585. }
  2586. /* Suitable for reserving if this block is movable */
  2587. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2588. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2589. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2590. reserve--;
  2591. continue;
  2592. }
  2593. /*
  2594. * If the reserve is met and this is a previous reserved block,
  2595. * take it back
  2596. */
  2597. if (block_migratetype == MIGRATE_RESERVE) {
  2598. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2599. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2600. }
  2601. }
  2602. }
  2603. /*
  2604. * Initially all pages are reserved - free ones are freed
  2605. * up by free_all_bootmem() once the early boot process is
  2606. * done. Non-atomic initialization, single-pass.
  2607. */
  2608. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2609. unsigned long start_pfn, enum memmap_context context)
  2610. {
  2611. struct page *page;
  2612. unsigned long end_pfn = start_pfn + size;
  2613. unsigned long pfn;
  2614. struct zone *z;
  2615. if (highest_memmap_pfn < end_pfn - 1)
  2616. highest_memmap_pfn = end_pfn - 1;
  2617. z = &NODE_DATA(nid)->node_zones[zone];
  2618. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2619. /*
  2620. * There can be holes in boot-time mem_map[]s
  2621. * handed to this function. They do not
  2622. * exist on hotplugged memory.
  2623. */
  2624. if (context == MEMMAP_EARLY) {
  2625. if (!early_pfn_valid(pfn))
  2626. continue;
  2627. if (!early_pfn_in_nid(pfn, nid))
  2628. continue;
  2629. }
  2630. page = pfn_to_page(pfn);
  2631. set_page_links(page, zone, nid, pfn);
  2632. mminit_verify_page_links(page, zone, nid, pfn);
  2633. init_page_count(page);
  2634. reset_page_mapcount(page);
  2635. SetPageReserved(page);
  2636. /*
  2637. * Mark the block movable so that blocks are reserved for
  2638. * movable at startup. This will force kernel allocations
  2639. * to reserve their blocks rather than leaking throughout
  2640. * the address space during boot when many long-lived
  2641. * kernel allocations are made. Later some blocks near
  2642. * the start are marked MIGRATE_RESERVE by
  2643. * setup_zone_migrate_reserve()
  2644. *
  2645. * bitmap is created for zone's valid pfn range. but memmap
  2646. * can be created for invalid pages (for alignment)
  2647. * check here not to call set_pageblock_migratetype() against
  2648. * pfn out of zone.
  2649. */
  2650. if ((z->zone_start_pfn <= pfn)
  2651. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2652. && !(pfn & (pageblock_nr_pages - 1)))
  2653. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2654. INIT_LIST_HEAD(&page->lru);
  2655. #ifdef WANT_PAGE_VIRTUAL
  2656. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2657. if (!is_highmem_idx(zone))
  2658. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2659. #endif
  2660. }
  2661. }
  2662. static void __meminit zone_init_free_lists(struct zone *zone)
  2663. {
  2664. int order, t;
  2665. for_each_migratetype_order(order, t) {
  2666. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2667. zone->free_area[order].nr_free = 0;
  2668. }
  2669. }
  2670. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2671. #define memmap_init(size, nid, zone, start_pfn) \
  2672. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2673. #endif
  2674. static int zone_batchsize(struct zone *zone)
  2675. {
  2676. #ifdef CONFIG_MMU
  2677. int batch;
  2678. /*
  2679. * The per-cpu-pages pools are set to around 1000th of the
  2680. * size of the zone. But no more than 1/2 of a meg.
  2681. *
  2682. * OK, so we don't know how big the cache is. So guess.
  2683. */
  2684. batch = zone->present_pages / 1024;
  2685. if (batch * PAGE_SIZE > 512 * 1024)
  2686. batch = (512 * 1024) / PAGE_SIZE;
  2687. batch /= 4; /* We effectively *= 4 below */
  2688. if (batch < 1)
  2689. batch = 1;
  2690. /*
  2691. * Clamp the batch to a 2^n - 1 value. Having a power
  2692. * of 2 value was found to be more likely to have
  2693. * suboptimal cache aliasing properties in some cases.
  2694. *
  2695. * For example if 2 tasks are alternately allocating
  2696. * batches of pages, one task can end up with a lot
  2697. * of pages of one half of the possible page colors
  2698. * and the other with pages of the other colors.
  2699. */
  2700. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2701. return batch;
  2702. #else
  2703. /* The deferral and batching of frees should be suppressed under NOMMU
  2704. * conditions.
  2705. *
  2706. * The problem is that NOMMU needs to be able to allocate large chunks
  2707. * of contiguous memory as there's no hardware page translation to
  2708. * assemble apparent contiguous memory from discontiguous pages.
  2709. *
  2710. * Queueing large contiguous runs of pages for batching, however,
  2711. * causes the pages to actually be freed in smaller chunks. As there
  2712. * can be a significant delay between the individual batches being
  2713. * recycled, this leads to the once large chunks of space being
  2714. * fragmented and becoming unavailable for high-order allocations.
  2715. */
  2716. return 0;
  2717. #endif
  2718. }
  2719. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2720. {
  2721. struct per_cpu_pages *pcp;
  2722. int migratetype;
  2723. memset(p, 0, sizeof(*p));
  2724. pcp = &p->pcp;
  2725. pcp->count = 0;
  2726. pcp->high = 6 * batch;
  2727. pcp->batch = max(1UL, 1 * batch);
  2728. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  2729. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  2730. }
  2731. /*
  2732. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2733. * to the value high for the pageset p.
  2734. */
  2735. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2736. unsigned long high)
  2737. {
  2738. struct per_cpu_pages *pcp;
  2739. pcp = &p->pcp;
  2740. pcp->high = high;
  2741. pcp->batch = max(1UL, high/4);
  2742. if ((high/4) > (PAGE_SHIFT * 8))
  2743. pcp->batch = PAGE_SHIFT * 8;
  2744. }
  2745. /*
  2746. * Allocate per cpu pagesets and initialize them.
  2747. * Before this call only boot pagesets were available.
  2748. * Boot pagesets will no longer be used by this processorr
  2749. * after setup_per_cpu_pageset().
  2750. */
  2751. void __init setup_per_cpu_pageset(void)
  2752. {
  2753. struct zone *zone;
  2754. int cpu;
  2755. for_each_populated_zone(zone) {
  2756. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  2757. for_each_possible_cpu(cpu) {
  2758. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  2759. setup_pageset(pcp, zone_batchsize(zone));
  2760. if (percpu_pagelist_fraction)
  2761. setup_pagelist_highmark(pcp,
  2762. (zone->present_pages /
  2763. percpu_pagelist_fraction));
  2764. }
  2765. }
  2766. }
  2767. static noinline __init_refok
  2768. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2769. {
  2770. int i;
  2771. struct pglist_data *pgdat = zone->zone_pgdat;
  2772. size_t alloc_size;
  2773. /*
  2774. * The per-page waitqueue mechanism uses hashed waitqueues
  2775. * per zone.
  2776. */
  2777. zone->wait_table_hash_nr_entries =
  2778. wait_table_hash_nr_entries(zone_size_pages);
  2779. zone->wait_table_bits =
  2780. wait_table_bits(zone->wait_table_hash_nr_entries);
  2781. alloc_size = zone->wait_table_hash_nr_entries
  2782. * sizeof(wait_queue_head_t);
  2783. if (!slab_is_available()) {
  2784. zone->wait_table = (wait_queue_head_t *)
  2785. alloc_bootmem_node(pgdat, alloc_size);
  2786. } else {
  2787. /*
  2788. * This case means that a zone whose size was 0 gets new memory
  2789. * via memory hot-add.
  2790. * But it may be the case that a new node was hot-added. In
  2791. * this case vmalloc() will not be able to use this new node's
  2792. * memory - this wait_table must be initialized to use this new
  2793. * node itself as well.
  2794. * To use this new node's memory, further consideration will be
  2795. * necessary.
  2796. */
  2797. zone->wait_table = vmalloc(alloc_size);
  2798. }
  2799. if (!zone->wait_table)
  2800. return -ENOMEM;
  2801. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2802. init_waitqueue_head(zone->wait_table + i);
  2803. return 0;
  2804. }
  2805. static int __zone_pcp_update(void *data)
  2806. {
  2807. struct zone *zone = data;
  2808. int cpu;
  2809. unsigned long batch = zone_batchsize(zone), flags;
  2810. for_each_possible_cpu(cpu) {
  2811. struct per_cpu_pageset *pset;
  2812. struct per_cpu_pages *pcp;
  2813. pset = per_cpu_ptr(zone->pageset, cpu);
  2814. pcp = &pset->pcp;
  2815. local_irq_save(flags);
  2816. free_pcppages_bulk(zone, pcp->count, pcp);
  2817. setup_pageset(pset, batch);
  2818. local_irq_restore(flags);
  2819. }
  2820. return 0;
  2821. }
  2822. void zone_pcp_update(struct zone *zone)
  2823. {
  2824. stop_machine(__zone_pcp_update, zone, NULL);
  2825. }
  2826. static __meminit void zone_pcp_init(struct zone *zone)
  2827. {
  2828. /*
  2829. * per cpu subsystem is not up at this point. The following code
  2830. * relies on the ability of the linker to provide the
  2831. * offset of a (static) per cpu variable into the per cpu area.
  2832. */
  2833. zone->pageset = &boot_pageset;
  2834. if (zone->present_pages)
  2835. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  2836. zone->name, zone->present_pages,
  2837. zone_batchsize(zone));
  2838. }
  2839. __meminit int init_currently_empty_zone(struct zone *zone,
  2840. unsigned long zone_start_pfn,
  2841. unsigned long size,
  2842. enum memmap_context context)
  2843. {
  2844. struct pglist_data *pgdat = zone->zone_pgdat;
  2845. int ret;
  2846. ret = zone_wait_table_init(zone, size);
  2847. if (ret)
  2848. return ret;
  2849. pgdat->nr_zones = zone_idx(zone) + 1;
  2850. zone->zone_start_pfn = zone_start_pfn;
  2851. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2852. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2853. pgdat->node_id,
  2854. (unsigned long)zone_idx(zone),
  2855. zone_start_pfn, (zone_start_pfn + size));
  2856. zone_init_free_lists(zone);
  2857. return 0;
  2858. }
  2859. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2860. /*
  2861. * Basic iterator support. Return the first range of PFNs for a node
  2862. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2863. */
  2864. static int __meminit first_active_region_index_in_nid(int nid)
  2865. {
  2866. int i;
  2867. for (i = 0; i < nr_nodemap_entries; i++)
  2868. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2869. return i;
  2870. return -1;
  2871. }
  2872. /*
  2873. * Basic iterator support. Return the next active range of PFNs for a node
  2874. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2875. */
  2876. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2877. {
  2878. for (index = index + 1; index < nr_nodemap_entries; index++)
  2879. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2880. return index;
  2881. return -1;
  2882. }
  2883. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2884. /*
  2885. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2886. * Architectures may implement their own version but if add_active_range()
  2887. * was used and there are no special requirements, this is a convenient
  2888. * alternative
  2889. */
  2890. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2891. {
  2892. int i;
  2893. for (i = 0; i < nr_nodemap_entries; i++) {
  2894. unsigned long start_pfn = early_node_map[i].start_pfn;
  2895. unsigned long end_pfn = early_node_map[i].end_pfn;
  2896. if (start_pfn <= pfn && pfn < end_pfn)
  2897. return early_node_map[i].nid;
  2898. }
  2899. /* This is a memory hole */
  2900. return -1;
  2901. }
  2902. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2903. int __meminit early_pfn_to_nid(unsigned long pfn)
  2904. {
  2905. int nid;
  2906. nid = __early_pfn_to_nid(pfn);
  2907. if (nid >= 0)
  2908. return nid;
  2909. /* just returns 0 */
  2910. return 0;
  2911. }
  2912. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2913. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2914. {
  2915. int nid;
  2916. nid = __early_pfn_to_nid(pfn);
  2917. if (nid >= 0 && nid != node)
  2918. return false;
  2919. return true;
  2920. }
  2921. #endif
  2922. /* Basic iterator support to walk early_node_map[] */
  2923. #define for_each_active_range_index_in_nid(i, nid) \
  2924. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2925. i = next_active_region_index_in_nid(i, nid))
  2926. /**
  2927. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2928. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2929. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2930. *
  2931. * If an architecture guarantees that all ranges registered with
  2932. * add_active_ranges() contain no holes and may be freed, this
  2933. * this function may be used instead of calling free_bootmem() manually.
  2934. */
  2935. void __init free_bootmem_with_active_regions(int nid,
  2936. unsigned long max_low_pfn)
  2937. {
  2938. int i;
  2939. for_each_active_range_index_in_nid(i, nid) {
  2940. unsigned long size_pages = 0;
  2941. unsigned long end_pfn = early_node_map[i].end_pfn;
  2942. if (early_node_map[i].start_pfn >= max_low_pfn)
  2943. continue;
  2944. if (end_pfn > max_low_pfn)
  2945. end_pfn = max_low_pfn;
  2946. size_pages = end_pfn - early_node_map[i].start_pfn;
  2947. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2948. PFN_PHYS(early_node_map[i].start_pfn),
  2949. size_pages << PAGE_SHIFT);
  2950. }
  2951. }
  2952. int __init add_from_early_node_map(struct range *range, int az,
  2953. int nr_range, int nid)
  2954. {
  2955. int i;
  2956. u64 start, end;
  2957. /* need to go over early_node_map to find out good range for node */
  2958. for_each_active_range_index_in_nid(i, nid) {
  2959. start = early_node_map[i].start_pfn;
  2960. end = early_node_map[i].end_pfn;
  2961. nr_range = add_range(range, az, nr_range, start, end);
  2962. }
  2963. return nr_range;
  2964. }
  2965. #ifdef CONFIG_NO_BOOTMEM
  2966. void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
  2967. u64 goal, u64 limit)
  2968. {
  2969. int i;
  2970. void *ptr;
  2971. /* need to go over early_node_map to find out good range for node */
  2972. for_each_active_range_index_in_nid(i, nid) {
  2973. u64 addr;
  2974. u64 ei_start, ei_last;
  2975. ei_last = early_node_map[i].end_pfn;
  2976. ei_last <<= PAGE_SHIFT;
  2977. ei_start = early_node_map[i].start_pfn;
  2978. ei_start <<= PAGE_SHIFT;
  2979. addr = find_early_area(ei_start, ei_last,
  2980. goal, limit, size, align);
  2981. if (addr == -1ULL)
  2982. continue;
  2983. #if 0
  2984. printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
  2985. nid,
  2986. ei_start, ei_last, goal, limit, size,
  2987. align, addr);
  2988. #endif
  2989. ptr = phys_to_virt(addr);
  2990. memset(ptr, 0, size);
  2991. reserve_early_without_check(addr, addr + size, "BOOTMEM");
  2992. return ptr;
  2993. }
  2994. return NULL;
  2995. }
  2996. #endif
  2997. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2998. {
  2999. int i;
  3000. int ret;
  3001. for_each_active_range_index_in_nid(i, nid) {
  3002. ret = work_fn(early_node_map[i].start_pfn,
  3003. early_node_map[i].end_pfn, data);
  3004. if (ret)
  3005. break;
  3006. }
  3007. }
  3008. /**
  3009. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3010. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3011. *
  3012. * If an architecture guarantees that all ranges registered with
  3013. * add_active_ranges() contain no holes and may be freed, this
  3014. * function may be used instead of calling memory_present() manually.
  3015. */
  3016. void __init sparse_memory_present_with_active_regions(int nid)
  3017. {
  3018. int i;
  3019. for_each_active_range_index_in_nid(i, nid)
  3020. memory_present(early_node_map[i].nid,
  3021. early_node_map[i].start_pfn,
  3022. early_node_map[i].end_pfn);
  3023. }
  3024. /**
  3025. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3026. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3027. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3028. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3029. *
  3030. * It returns the start and end page frame of a node based on information
  3031. * provided by an arch calling add_active_range(). If called for a node
  3032. * with no available memory, a warning is printed and the start and end
  3033. * PFNs will be 0.
  3034. */
  3035. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3036. unsigned long *start_pfn, unsigned long *end_pfn)
  3037. {
  3038. int i;
  3039. *start_pfn = -1UL;
  3040. *end_pfn = 0;
  3041. for_each_active_range_index_in_nid(i, nid) {
  3042. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  3043. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  3044. }
  3045. if (*start_pfn == -1UL)
  3046. *start_pfn = 0;
  3047. }
  3048. /*
  3049. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3050. * assumption is made that zones within a node are ordered in monotonic
  3051. * increasing memory addresses so that the "highest" populated zone is used
  3052. */
  3053. static void __init find_usable_zone_for_movable(void)
  3054. {
  3055. int zone_index;
  3056. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3057. if (zone_index == ZONE_MOVABLE)
  3058. continue;
  3059. if (arch_zone_highest_possible_pfn[zone_index] >
  3060. arch_zone_lowest_possible_pfn[zone_index])
  3061. break;
  3062. }
  3063. VM_BUG_ON(zone_index == -1);
  3064. movable_zone = zone_index;
  3065. }
  3066. /*
  3067. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3068. * because it is sized independant of architecture. Unlike the other zones,
  3069. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3070. * in each node depending on the size of each node and how evenly kernelcore
  3071. * is distributed. This helper function adjusts the zone ranges
  3072. * provided by the architecture for a given node by using the end of the
  3073. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3074. * zones within a node are in order of monotonic increases memory addresses
  3075. */
  3076. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3077. unsigned long zone_type,
  3078. unsigned long node_start_pfn,
  3079. unsigned long node_end_pfn,
  3080. unsigned long *zone_start_pfn,
  3081. unsigned long *zone_end_pfn)
  3082. {
  3083. /* Only adjust if ZONE_MOVABLE is on this node */
  3084. if (zone_movable_pfn[nid]) {
  3085. /* Size ZONE_MOVABLE */
  3086. if (zone_type == ZONE_MOVABLE) {
  3087. *zone_start_pfn = zone_movable_pfn[nid];
  3088. *zone_end_pfn = min(node_end_pfn,
  3089. arch_zone_highest_possible_pfn[movable_zone]);
  3090. /* Adjust for ZONE_MOVABLE starting within this range */
  3091. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3092. *zone_end_pfn > zone_movable_pfn[nid]) {
  3093. *zone_end_pfn = zone_movable_pfn[nid];
  3094. /* Check if this whole range is within ZONE_MOVABLE */
  3095. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3096. *zone_start_pfn = *zone_end_pfn;
  3097. }
  3098. }
  3099. /*
  3100. * Return the number of pages a zone spans in a node, including holes
  3101. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3102. */
  3103. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3104. unsigned long zone_type,
  3105. unsigned long *ignored)
  3106. {
  3107. unsigned long node_start_pfn, node_end_pfn;
  3108. unsigned long zone_start_pfn, zone_end_pfn;
  3109. /* Get the start and end of the node and zone */
  3110. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3111. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3112. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3113. adjust_zone_range_for_zone_movable(nid, zone_type,
  3114. node_start_pfn, node_end_pfn,
  3115. &zone_start_pfn, &zone_end_pfn);
  3116. /* Check that this node has pages within the zone's required range */
  3117. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3118. return 0;
  3119. /* Move the zone boundaries inside the node if necessary */
  3120. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3121. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3122. /* Return the spanned pages */
  3123. return zone_end_pfn - zone_start_pfn;
  3124. }
  3125. /*
  3126. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3127. * then all holes in the requested range will be accounted for.
  3128. */
  3129. unsigned long __meminit __absent_pages_in_range(int nid,
  3130. unsigned long range_start_pfn,
  3131. unsigned long range_end_pfn)
  3132. {
  3133. int i = 0;
  3134. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3135. unsigned long start_pfn;
  3136. /* Find the end_pfn of the first active range of pfns in the node */
  3137. i = first_active_region_index_in_nid(nid);
  3138. if (i == -1)
  3139. return 0;
  3140. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3141. /* Account for ranges before physical memory on this node */
  3142. if (early_node_map[i].start_pfn > range_start_pfn)
  3143. hole_pages = prev_end_pfn - range_start_pfn;
  3144. /* Find all holes for the zone within the node */
  3145. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3146. /* No need to continue if prev_end_pfn is outside the zone */
  3147. if (prev_end_pfn >= range_end_pfn)
  3148. break;
  3149. /* Make sure the end of the zone is not within the hole */
  3150. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3151. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3152. /* Update the hole size cound and move on */
  3153. if (start_pfn > range_start_pfn) {
  3154. BUG_ON(prev_end_pfn > start_pfn);
  3155. hole_pages += start_pfn - prev_end_pfn;
  3156. }
  3157. prev_end_pfn = early_node_map[i].end_pfn;
  3158. }
  3159. /* Account for ranges past physical memory on this node */
  3160. if (range_end_pfn > prev_end_pfn)
  3161. hole_pages += range_end_pfn -
  3162. max(range_start_pfn, prev_end_pfn);
  3163. return hole_pages;
  3164. }
  3165. /**
  3166. * absent_pages_in_range - Return number of page frames in holes within a range
  3167. * @start_pfn: The start PFN to start searching for holes
  3168. * @end_pfn: The end PFN to stop searching for holes
  3169. *
  3170. * It returns the number of pages frames in memory holes within a range.
  3171. */
  3172. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3173. unsigned long end_pfn)
  3174. {
  3175. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3176. }
  3177. /* Return the number of page frames in holes in a zone on a node */
  3178. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3179. unsigned long zone_type,
  3180. unsigned long *ignored)
  3181. {
  3182. unsigned long node_start_pfn, node_end_pfn;
  3183. unsigned long zone_start_pfn, zone_end_pfn;
  3184. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3185. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3186. node_start_pfn);
  3187. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3188. node_end_pfn);
  3189. adjust_zone_range_for_zone_movable(nid, zone_type,
  3190. node_start_pfn, node_end_pfn,
  3191. &zone_start_pfn, &zone_end_pfn);
  3192. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3193. }
  3194. #else
  3195. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3196. unsigned long zone_type,
  3197. unsigned long *zones_size)
  3198. {
  3199. return zones_size[zone_type];
  3200. }
  3201. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3202. unsigned long zone_type,
  3203. unsigned long *zholes_size)
  3204. {
  3205. if (!zholes_size)
  3206. return 0;
  3207. return zholes_size[zone_type];
  3208. }
  3209. #endif
  3210. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3211. unsigned long *zones_size, unsigned long *zholes_size)
  3212. {
  3213. unsigned long realtotalpages, totalpages = 0;
  3214. enum zone_type i;
  3215. for (i = 0; i < MAX_NR_ZONES; i++)
  3216. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3217. zones_size);
  3218. pgdat->node_spanned_pages = totalpages;
  3219. realtotalpages = totalpages;
  3220. for (i = 0; i < MAX_NR_ZONES; i++)
  3221. realtotalpages -=
  3222. zone_absent_pages_in_node(pgdat->node_id, i,
  3223. zholes_size);
  3224. pgdat->node_present_pages = realtotalpages;
  3225. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3226. realtotalpages);
  3227. }
  3228. #ifndef CONFIG_SPARSEMEM
  3229. /*
  3230. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3231. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3232. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3233. * round what is now in bits to nearest long in bits, then return it in
  3234. * bytes.
  3235. */
  3236. static unsigned long __init usemap_size(unsigned long zonesize)
  3237. {
  3238. unsigned long usemapsize;
  3239. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3240. usemapsize = usemapsize >> pageblock_order;
  3241. usemapsize *= NR_PAGEBLOCK_BITS;
  3242. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3243. return usemapsize / 8;
  3244. }
  3245. static void __init setup_usemap(struct pglist_data *pgdat,
  3246. struct zone *zone, unsigned long zonesize)
  3247. {
  3248. unsigned long usemapsize = usemap_size(zonesize);
  3249. zone->pageblock_flags = NULL;
  3250. if (usemapsize)
  3251. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3252. }
  3253. #else
  3254. static void inline setup_usemap(struct pglist_data *pgdat,
  3255. struct zone *zone, unsigned long zonesize) {}
  3256. #endif /* CONFIG_SPARSEMEM */
  3257. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3258. /* Return a sensible default order for the pageblock size. */
  3259. static inline int pageblock_default_order(void)
  3260. {
  3261. if (HPAGE_SHIFT > PAGE_SHIFT)
  3262. return HUGETLB_PAGE_ORDER;
  3263. return MAX_ORDER-1;
  3264. }
  3265. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3266. static inline void __init set_pageblock_order(unsigned int order)
  3267. {
  3268. /* Check that pageblock_nr_pages has not already been setup */
  3269. if (pageblock_order)
  3270. return;
  3271. /*
  3272. * Assume the largest contiguous order of interest is a huge page.
  3273. * This value may be variable depending on boot parameters on IA64
  3274. */
  3275. pageblock_order = order;
  3276. }
  3277. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3278. /*
  3279. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3280. * and pageblock_default_order() are unused as pageblock_order is set
  3281. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3282. * pageblock_order based on the kernel config
  3283. */
  3284. static inline int pageblock_default_order(unsigned int order)
  3285. {
  3286. return MAX_ORDER-1;
  3287. }
  3288. #define set_pageblock_order(x) do {} while (0)
  3289. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3290. /*
  3291. * Set up the zone data structures:
  3292. * - mark all pages reserved
  3293. * - mark all memory queues empty
  3294. * - clear the memory bitmaps
  3295. */
  3296. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3297. unsigned long *zones_size, unsigned long *zholes_size)
  3298. {
  3299. enum zone_type j;
  3300. int nid = pgdat->node_id;
  3301. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3302. int ret;
  3303. pgdat_resize_init(pgdat);
  3304. pgdat->nr_zones = 0;
  3305. init_waitqueue_head(&pgdat->kswapd_wait);
  3306. pgdat->kswapd_max_order = 0;
  3307. pgdat_page_cgroup_init(pgdat);
  3308. for (j = 0; j < MAX_NR_ZONES; j++) {
  3309. struct zone *zone = pgdat->node_zones + j;
  3310. unsigned long size, realsize, memmap_pages;
  3311. enum lru_list l;
  3312. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3313. realsize = size - zone_absent_pages_in_node(nid, j,
  3314. zholes_size);
  3315. /*
  3316. * Adjust realsize so that it accounts for how much memory
  3317. * is used by this zone for memmap. This affects the watermark
  3318. * and per-cpu initialisations
  3319. */
  3320. memmap_pages =
  3321. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3322. if (realsize >= memmap_pages) {
  3323. realsize -= memmap_pages;
  3324. if (memmap_pages)
  3325. printk(KERN_DEBUG
  3326. " %s zone: %lu pages used for memmap\n",
  3327. zone_names[j], memmap_pages);
  3328. } else
  3329. printk(KERN_WARNING
  3330. " %s zone: %lu pages exceeds realsize %lu\n",
  3331. zone_names[j], memmap_pages, realsize);
  3332. /* Account for reserved pages */
  3333. if (j == 0 && realsize > dma_reserve) {
  3334. realsize -= dma_reserve;
  3335. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3336. zone_names[0], dma_reserve);
  3337. }
  3338. if (!is_highmem_idx(j))
  3339. nr_kernel_pages += realsize;
  3340. nr_all_pages += realsize;
  3341. zone->spanned_pages = size;
  3342. zone->present_pages = realsize;
  3343. #ifdef CONFIG_NUMA
  3344. zone->node = nid;
  3345. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3346. / 100;
  3347. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3348. #endif
  3349. zone->name = zone_names[j];
  3350. spin_lock_init(&zone->lock);
  3351. spin_lock_init(&zone->lru_lock);
  3352. zone_seqlock_init(zone);
  3353. zone->zone_pgdat = pgdat;
  3354. zone->prev_priority = DEF_PRIORITY;
  3355. zone_pcp_init(zone);
  3356. for_each_lru(l) {
  3357. INIT_LIST_HEAD(&zone->lru[l].list);
  3358. zone->reclaim_stat.nr_saved_scan[l] = 0;
  3359. }
  3360. zone->reclaim_stat.recent_rotated[0] = 0;
  3361. zone->reclaim_stat.recent_rotated[1] = 0;
  3362. zone->reclaim_stat.recent_scanned[0] = 0;
  3363. zone->reclaim_stat.recent_scanned[1] = 0;
  3364. zap_zone_vm_stats(zone);
  3365. zone->flags = 0;
  3366. if (!size)
  3367. continue;
  3368. set_pageblock_order(pageblock_default_order());
  3369. setup_usemap(pgdat, zone, size);
  3370. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3371. size, MEMMAP_EARLY);
  3372. BUG_ON(ret);
  3373. memmap_init(size, nid, j, zone_start_pfn);
  3374. zone_start_pfn += size;
  3375. }
  3376. }
  3377. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3378. {
  3379. /* Skip empty nodes */
  3380. if (!pgdat->node_spanned_pages)
  3381. return;
  3382. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3383. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3384. if (!pgdat->node_mem_map) {
  3385. unsigned long size, start, end;
  3386. struct page *map;
  3387. /*
  3388. * The zone's endpoints aren't required to be MAX_ORDER
  3389. * aligned but the node_mem_map endpoints must be in order
  3390. * for the buddy allocator to function correctly.
  3391. */
  3392. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3393. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3394. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3395. size = (end - start) * sizeof(struct page);
  3396. map = alloc_remap(pgdat->node_id, size);
  3397. if (!map)
  3398. map = alloc_bootmem_node(pgdat, size);
  3399. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3400. }
  3401. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3402. /*
  3403. * With no DISCONTIG, the global mem_map is just set as node 0's
  3404. */
  3405. if (pgdat == NODE_DATA(0)) {
  3406. mem_map = NODE_DATA(0)->node_mem_map;
  3407. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3408. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3409. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3410. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3411. }
  3412. #endif
  3413. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3414. }
  3415. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3416. unsigned long node_start_pfn, unsigned long *zholes_size)
  3417. {
  3418. pg_data_t *pgdat = NODE_DATA(nid);
  3419. pgdat->node_id = nid;
  3420. pgdat->node_start_pfn = node_start_pfn;
  3421. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3422. alloc_node_mem_map(pgdat);
  3423. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3424. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3425. nid, (unsigned long)pgdat,
  3426. (unsigned long)pgdat->node_mem_map);
  3427. #endif
  3428. free_area_init_core(pgdat, zones_size, zholes_size);
  3429. }
  3430. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3431. #if MAX_NUMNODES > 1
  3432. /*
  3433. * Figure out the number of possible node ids.
  3434. */
  3435. static void __init setup_nr_node_ids(void)
  3436. {
  3437. unsigned int node;
  3438. unsigned int highest = 0;
  3439. for_each_node_mask(node, node_possible_map)
  3440. highest = node;
  3441. nr_node_ids = highest + 1;
  3442. }
  3443. #else
  3444. static inline void setup_nr_node_ids(void)
  3445. {
  3446. }
  3447. #endif
  3448. /**
  3449. * add_active_range - Register a range of PFNs backed by physical memory
  3450. * @nid: The node ID the range resides on
  3451. * @start_pfn: The start PFN of the available physical memory
  3452. * @end_pfn: The end PFN of the available physical memory
  3453. *
  3454. * These ranges are stored in an early_node_map[] and later used by
  3455. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3456. * range spans a memory hole, it is up to the architecture to ensure
  3457. * the memory is not freed by the bootmem allocator. If possible
  3458. * the range being registered will be merged with existing ranges.
  3459. */
  3460. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3461. unsigned long end_pfn)
  3462. {
  3463. int i;
  3464. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3465. "Entering add_active_range(%d, %#lx, %#lx) "
  3466. "%d entries of %d used\n",
  3467. nid, start_pfn, end_pfn,
  3468. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3469. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3470. /* Merge with existing active regions if possible */
  3471. for (i = 0; i < nr_nodemap_entries; i++) {
  3472. if (early_node_map[i].nid != nid)
  3473. continue;
  3474. /* Skip if an existing region covers this new one */
  3475. if (start_pfn >= early_node_map[i].start_pfn &&
  3476. end_pfn <= early_node_map[i].end_pfn)
  3477. return;
  3478. /* Merge forward if suitable */
  3479. if (start_pfn <= early_node_map[i].end_pfn &&
  3480. end_pfn > early_node_map[i].end_pfn) {
  3481. early_node_map[i].end_pfn = end_pfn;
  3482. return;
  3483. }
  3484. /* Merge backward if suitable */
  3485. if (start_pfn < early_node_map[i].start_pfn &&
  3486. end_pfn >= early_node_map[i].start_pfn) {
  3487. early_node_map[i].start_pfn = start_pfn;
  3488. return;
  3489. }
  3490. }
  3491. /* Check that early_node_map is large enough */
  3492. if (i >= MAX_ACTIVE_REGIONS) {
  3493. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3494. MAX_ACTIVE_REGIONS);
  3495. return;
  3496. }
  3497. early_node_map[i].nid = nid;
  3498. early_node_map[i].start_pfn = start_pfn;
  3499. early_node_map[i].end_pfn = end_pfn;
  3500. nr_nodemap_entries = i + 1;
  3501. }
  3502. /**
  3503. * remove_active_range - Shrink an existing registered range of PFNs
  3504. * @nid: The node id the range is on that should be shrunk
  3505. * @start_pfn: The new PFN of the range
  3506. * @end_pfn: The new PFN of the range
  3507. *
  3508. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3509. * The map is kept near the end physical page range that has already been
  3510. * registered. This function allows an arch to shrink an existing registered
  3511. * range.
  3512. */
  3513. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3514. unsigned long end_pfn)
  3515. {
  3516. int i, j;
  3517. int removed = 0;
  3518. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3519. nid, start_pfn, end_pfn);
  3520. /* Find the old active region end and shrink */
  3521. for_each_active_range_index_in_nid(i, nid) {
  3522. if (early_node_map[i].start_pfn >= start_pfn &&
  3523. early_node_map[i].end_pfn <= end_pfn) {
  3524. /* clear it */
  3525. early_node_map[i].start_pfn = 0;
  3526. early_node_map[i].end_pfn = 0;
  3527. removed = 1;
  3528. continue;
  3529. }
  3530. if (early_node_map[i].start_pfn < start_pfn &&
  3531. early_node_map[i].end_pfn > start_pfn) {
  3532. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3533. early_node_map[i].end_pfn = start_pfn;
  3534. if (temp_end_pfn > end_pfn)
  3535. add_active_range(nid, end_pfn, temp_end_pfn);
  3536. continue;
  3537. }
  3538. if (early_node_map[i].start_pfn >= start_pfn &&
  3539. early_node_map[i].end_pfn > end_pfn &&
  3540. early_node_map[i].start_pfn < end_pfn) {
  3541. early_node_map[i].start_pfn = end_pfn;
  3542. continue;
  3543. }
  3544. }
  3545. if (!removed)
  3546. return;
  3547. /* remove the blank ones */
  3548. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3549. if (early_node_map[i].nid != nid)
  3550. continue;
  3551. if (early_node_map[i].end_pfn)
  3552. continue;
  3553. /* we found it, get rid of it */
  3554. for (j = i; j < nr_nodemap_entries - 1; j++)
  3555. memcpy(&early_node_map[j], &early_node_map[j+1],
  3556. sizeof(early_node_map[j]));
  3557. j = nr_nodemap_entries - 1;
  3558. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3559. nr_nodemap_entries--;
  3560. }
  3561. }
  3562. /**
  3563. * remove_all_active_ranges - Remove all currently registered regions
  3564. *
  3565. * During discovery, it may be found that a table like SRAT is invalid
  3566. * and an alternative discovery method must be used. This function removes
  3567. * all currently registered regions.
  3568. */
  3569. void __init remove_all_active_ranges(void)
  3570. {
  3571. memset(early_node_map, 0, sizeof(early_node_map));
  3572. nr_nodemap_entries = 0;
  3573. }
  3574. /* Compare two active node_active_regions */
  3575. static int __init cmp_node_active_region(const void *a, const void *b)
  3576. {
  3577. struct node_active_region *arange = (struct node_active_region *)a;
  3578. struct node_active_region *brange = (struct node_active_region *)b;
  3579. /* Done this way to avoid overflows */
  3580. if (arange->start_pfn > brange->start_pfn)
  3581. return 1;
  3582. if (arange->start_pfn < brange->start_pfn)
  3583. return -1;
  3584. return 0;
  3585. }
  3586. /* sort the node_map by start_pfn */
  3587. void __init sort_node_map(void)
  3588. {
  3589. sort(early_node_map, (size_t)nr_nodemap_entries,
  3590. sizeof(struct node_active_region),
  3591. cmp_node_active_region, NULL);
  3592. }
  3593. /* Find the lowest pfn for a node */
  3594. static unsigned long __init find_min_pfn_for_node(int nid)
  3595. {
  3596. int i;
  3597. unsigned long min_pfn = ULONG_MAX;
  3598. /* Assuming a sorted map, the first range found has the starting pfn */
  3599. for_each_active_range_index_in_nid(i, nid)
  3600. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3601. if (min_pfn == ULONG_MAX) {
  3602. printk(KERN_WARNING
  3603. "Could not find start_pfn for node %d\n", nid);
  3604. return 0;
  3605. }
  3606. return min_pfn;
  3607. }
  3608. /**
  3609. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3610. *
  3611. * It returns the minimum PFN based on information provided via
  3612. * add_active_range().
  3613. */
  3614. unsigned long __init find_min_pfn_with_active_regions(void)
  3615. {
  3616. return find_min_pfn_for_node(MAX_NUMNODES);
  3617. }
  3618. /*
  3619. * early_calculate_totalpages()
  3620. * Sum pages in active regions for movable zone.
  3621. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3622. */
  3623. static unsigned long __init early_calculate_totalpages(void)
  3624. {
  3625. int i;
  3626. unsigned long totalpages = 0;
  3627. for (i = 0; i < nr_nodemap_entries; i++) {
  3628. unsigned long pages = early_node_map[i].end_pfn -
  3629. early_node_map[i].start_pfn;
  3630. totalpages += pages;
  3631. if (pages)
  3632. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3633. }
  3634. return totalpages;
  3635. }
  3636. /*
  3637. * Find the PFN the Movable zone begins in each node. Kernel memory
  3638. * is spread evenly between nodes as long as the nodes have enough
  3639. * memory. When they don't, some nodes will have more kernelcore than
  3640. * others
  3641. */
  3642. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3643. {
  3644. int i, nid;
  3645. unsigned long usable_startpfn;
  3646. unsigned long kernelcore_node, kernelcore_remaining;
  3647. /* save the state before borrow the nodemask */
  3648. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3649. unsigned long totalpages = early_calculate_totalpages();
  3650. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3651. /*
  3652. * If movablecore was specified, calculate what size of
  3653. * kernelcore that corresponds so that memory usable for
  3654. * any allocation type is evenly spread. If both kernelcore
  3655. * and movablecore are specified, then the value of kernelcore
  3656. * will be used for required_kernelcore if it's greater than
  3657. * what movablecore would have allowed.
  3658. */
  3659. if (required_movablecore) {
  3660. unsigned long corepages;
  3661. /*
  3662. * Round-up so that ZONE_MOVABLE is at least as large as what
  3663. * was requested by the user
  3664. */
  3665. required_movablecore =
  3666. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3667. corepages = totalpages - required_movablecore;
  3668. required_kernelcore = max(required_kernelcore, corepages);
  3669. }
  3670. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3671. if (!required_kernelcore)
  3672. goto out;
  3673. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3674. find_usable_zone_for_movable();
  3675. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3676. restart:
  3677. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3678. kernelcore_node = required_kernelcore / usable_nodes;
  3679. for_each_node_state(nid, N_HIGH_MEMORY) {
  3680. /*
  3681. * Recalculate kernelcore_node if the division per node
  3682. * now exceeds what is necessary to satisfy the requested
  3683. * amount of memory for the kernel
  3684. */
  3685. if (required_kernelcore < kernelcore_node)
  3686. kernelcore_node = required_kernelcore / usable_nodes;
  3687. /*
  3688. * As the map is walked, we track how much memory is usable
  3689. * by the kernel using kernelcore_remaining. When it is
  3690. * 0, the rest of the node is usable by ZONE_MOVABLE
  3691. */
  3692. kernelcore_remaining = kernelcore_node;
  3693. /* Go through each range of PFNs within this node */
  3694. for_each_active_range_index_in_nid(i, nid) {
  3695. unsigned long start_pfn, end_pfn;
  3696. unsigned long size_pages;
  3697. start_pfn = max(early_node_map[i].start_pfn,
  3698. zone_movable_pfn[nid]);
  3699. end_pfn = early_node_map[i].end_pfn;
  3700. if (start_pfn >= end_pfn)
  3701. continue;
  3702. /* Account for what is only usable for kernelcore */
  3703. if (start_pfn < usable_startpfn) {
  3704. unsigned long kernel_pages;
  3705. kernel_pages = min(end_pfn, usable_startpfn)
  3706. - start_pfn;
  3707. kernelcore_remaining -= min(kernel_pages,
  3708. kernelcore_remaining);
  3709. required_kernelcore -= min(kernel_pages,
  3710. required_kernelcore);
  3711. /* Continue if range is now fully accounted */
  3712. if (end_pfn <= usable_startpfn) {
  3713. /*
  3714. * Push zone_movable_pfn to the end so
  3715. * that if we have to rebalance
  3716. * kernelcore across nodes, we will
  3717. * not double account here
  3718. */
  3719. zone_movable_pfn[nid] = end_pfn;
  3720. continue;
  3721. }
  3722. start_pfn = usable_startpfn;
  3723. }
  3724. /*
  3725. * The usable PFN range for ZONE_MOVABLE is from
  3726. * start_pfn->end_pfn. Calculate size_pages as the
  3727. * number of pages used as kernelcore
  3728. */
  3729. size_pages = end_pfn - start_pfn;
  3730. if (size_pages > kernelcore_remaining)
  3731. size_pages = kernelcore_remaining;
  3732. zone_movable_pfn[nid] = start_pfn + size_pages;
  3733. /*
  3734. * Some kernelcore has been met, update counts and
  3735. * break if the kernelcore for this node has been
  3736. * satisified
  3737. */
  3738. required_kernelcore -= min(required_kernelcore,
  3739. size_pages);
  3740. kernelcore_remaining -= size_pages;
  3741. if (!kernelcore_remaining)
  3742. break;
  3743. }
  3744. }
  3745. /*
  3746. * If there is still required_kernelcore, we do another pass with one
  3747. * less node in the count. This will push zone_movable_pfn[nid] further
  3748. * along on the nodes that still have memory until kernelcore is
  3749. * satisified
  3750. */
  3751. usable_nodes--;
  3752. if (usable_nodes && required_kernelcore > usable_nodes)
  3753. goto restart;
  3754. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3755. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3756. zone_movable_pfn[nid] =
  3757. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3758. out:
  3759. /* restore the node_state */
  3760. node_states[N_HIGH_MEMORY] = saved_node_state;
  3761. }
  3762. /* Any regular memory on that node ? */
  3763. static void check_for_regular_memory(pg_data_t *pgdat)
  3764. {
  3765. #ifdef CONFIG_HIGHMEM
  3766. enum zone_type zone_type;
  3767. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3768. struct zone *zone = &pgdat->node_zones[zone_type];
  3769. if (zone->present_pages)
  3770. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3771. }
  3772. #endif
  3773. }
  3774. /**
  3775. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3776. * @max_zone_pfn: an array of max PFNs for each zone
  3777. *
  3778. * This will call free_area_init_node() for each active node in the system.
  3779. * Using the page ranges provided by add_active_range(), the size of each
  3780. * zone in each node and their holes is calculated. If the maximum PFN
  3781. * between two adjacent zones match, it is assumed that the zone is empty.
  3782. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3783. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3784. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3785. * at arch_max_dma_pfn.
  3786. */
  3787. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3788. {
  3789. unsigned long nid;
  3790. int i;
  3791. /* Sort early_node_map as initialisation assumes it is sorted */
  3792. sort_node_map();
  3793. /* Record where the zone boundaries are */
  3794. memset(arch_zone_lowest_possible_pfn, 0,
  3795. sizeof(arch_zone_lowest_possible_pfn));
  3796. memset(arch_zone_highest_possible_pfn, 0,
  3797. sizeof(arch_zone_highest_possible_pfn));
  3798. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3799. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3800. for (i = 1; i < MAX_NR_ZONES; i++) {
  3801. if (i == ZONE_MOVABLE)
  3802. continue;
  3803. arch_zone_lowest_possible_pfn[i] =
  3804. arch_zone_highest_possible_pfn[i-1];
  3805. arch_zone_highest_possible_pfn[i] =
  3806. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3807. }
  3808. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3809. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3810. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3811. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3812. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3813. /* Print out the zone ranges */
  3814. printk("Zone PFN ranges:\n");
  3815. for (i = 0; i < MAX_NR_ZONES; i++) {
  3816. if (i == ZONE_MOVABLE)
  3817. continue;
  3818. printk(" %-8s ", zone_names[i]);
  3819. if (arch_zone_lowest_possible_pfn[i] ==
  3820. arch_zone_highest_possible_pfn[i])
  3821. printk("empty\n");
  3822. else
  3823. printk("%0#10lx -> %0#10lx\n",
  3824. arch_zone_lowest_possible_pfn[i],
  3825. arch_zone_highest_possible_pfn[i]);
  3826. }
  3827. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3828. printk("Movable zone start PFN for each node\n");
  3829. for (i = 0; i < MAX_NUMNODES; i++) {
  3830. if (zone_movable_pfn[i])
  3831. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3832. }
  3833. /* Print out the early_node_map[] */
  3834. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3835. for (i = 0; i < nr_nodemap_entries; i++)
  3836. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3837. early_node_map[i].start_pfn,
  3838. early_node_map[i].end_pfn);
  3839. /* Initialise every node */
  3840. mminit_verify_pageflags_layout();
  3841. setup_nr_node_ids();
  3842. for_each_online_node(nid) {
  3843. pg_data_t *pgdat = NODE_DATA(nid);
  3844. free_area_init_node(nid, NULL,
  3845. find_min_pfn_for_node(nid), NULL);
  3846. /* Any memory on that node */
  3847. if (pgdat->node_present_pages)
  3848. node_set_state(nid, N_HIGH_MEMORY);
  3849. check_for_regular_memory(pgdat);
  3850. }
  3851. }
  3852. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3853. {
  3854. unsigned long long coremem;
  3855. if (!p)
  3856. return -EINVAL;
  3857. coremem = memparse(p, &p);
  3858. *core = coremem >> PAGE_SHIFT;
  3859. /* Paranoid check that UL is enough for the coremem value */
  3860. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3861. return 0;
  3862. }
  3863. /*
  3864. * kernelcore=size sets the amount of memory for use for allocations that
  3865. * cannot be reclaimed or migrated.
  3866. */
  3867. static int __init cmdline_parse_kernelcore(char *p)
  3868. {
  3869. return cmdline_parse_core(p, &required_kernelcore);
  3870. }
  3871. /*
  3872. * movablecore=size sets the amount of memory for use for allocations that
  3873. * can be reclaimed or migrated.
  3874. */
  3875. static int __init cmdline_parse_movablecore(char *p)
  3876. {
  3877. return cmdline_parse_core(p, &required_movablecore);
  3878. }
  3879. early_param("kernelcore", cmdline_parse_kernelcore);
  3880. early_param("movablecore", cmdline_parse_movablecore);
  3881. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3882. /**
  3883. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3884. * @new_dma_reserve: The number of pages to mark reserved
  3885. *
  3886. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3887. * In the DMA zone, a significant percentage may be consumed by kernel image
  3888. * and other unfreeable allocations which can skew the watermarks badly. This
  3889. * function may optionally be used to account for unfreeable pages in the
  3890. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3891. * smaller per-cpu batchsize.
  3892. */
  3893. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3894. {
  3895. dma_reserve = new_dma_reserve;
  3896. }
  3897. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3898. struct pglist_data __refdata contig_page_data = {
  3899. #ifndef CONFIG_NO_BOOTMEM
  3900. .bdata = &bootmem_node_data[0]
  3901. #endif
  3902. };
  3903. EXPORT_SYMBOL(contig_page_data);
  3904. #endif
  3905. void __init free_area_init(unsigned long *zones_size)
  3906. {
  3907. free_area_init_node(0, zones_size,
  3908. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3909. }
  3910. static int page_alloc_cpu_notify(struct notifier_block *self,
  3911. unsigned long action, void *hcpu)
  3912. {
  3913. int cpu = (unsigned long)hcpu;
  3914. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3915. drain_pages(cpu);
  3916. /*
  3917. * Spill the event counters of the dead processor
  3918. * into the current processors event counters.
  3919. * This artificially elevates the count of the current
  3920. * processor.
  3921. */
  3922. vm_events_fold_cpu(cpu);
  3923. /*
  3924. * Zero the differential counters of the dead processor
  3925. * so that the vm statistics are consistent.
  3926. *
  3927. * This is only okay since the processor is dead and cannot
  3928. * race with what we are doing.
  3929. */
  3930. refresh_cpu_vm_stats(cpu);
  3931. }
  3932. return NOTIFY_OK;
  3933. }
  3934. void __init page_alloc_init(void)
  3935. {
  3936. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3937. }
  3938. /*
  3939. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3940. * or min_free_kbytes changes.
  3941. */
  3942. static void calculate_totalreserve_pages(void)
  3943. {
  3944. struct pglist_data *pgdat;
  3945. unsigned long reserve_pages = 0;
  3946. enum zone_type i, j;
  3947. for_each_online_pgdat(pgdat) {
  3948. for (i = 0; i < MAX_NR_ZONES; i++) {
  3949. struct zone *zone = pgdat->node_zones + i;
  3950. unsigned long max = 0;
  3951. /* Find valid and maximum lowmem_reserve in the zone */
  3952. for (j = i; j < MAX_NR_ZONES; j++) {
  3953. if (zone->lowmem_reserve[j] > max)
  3954. max = zone->lowmem_reserve[j];
  3955. }
  3956. /* we treat the high watermark as reserved pages. */
  3957. max += high_wmark_pages(zone);
  3958. if (max > zone->present_pages)
  3959. max = zone->present_pages;
  3960. reserve_pages += max;
  3961. }
  3962. }
  3963. totalreserve_pages = reserve_pages;
  3964. }
  3965. /*
  3966. * setup_per_zone_lowmem_reserve - called whenever
  3967. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3968. * has a correct pages reserved value, so an adequate number of
  3969. * pages are left in the zone after a successful __alloc_pages().
  3970. */
  3971. static void setup_per_zone_lowmem_reserve(void)
  3972. {
  3973. struct pglist_data *pgdat;
  3974. enum zone_type j, idx;
  3975. for_each_online_pgdat(pgdat) {
  3976. for (j = 0; j < MAX_NR_ZONES; j++) {
  3977. struct zone *zone = pgdat->node_zones + j;
  3978. unsigned long present_pages = zone->present_pages;
  3979. zone->lowmem_reserve[j] = 0;
  3980. idx = j;
  3981. while (idx) {
  3982. struct zone *lower_zone;
  3983. idx--;
  3984. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3985. sysctl_lowmem_reserve_ratio[idx] = 1;
  3986. lower_zone = pgdat->node_zones + idx;
  3987. lower_zone->lowmem_reserve[j] = present_pages /
  3988. sysctl_lowmem_reserve_ratio[idx];
  3989. present_pages += lower_zone->present_pages;
  3990. }
  3991. }
  3992. }
  3993. /* update totalreserve_pages */
  3994. calculate_totalreserve_pages();
  3995. }
  3996. /**
  3997. * setup_per_zone_wmarks - called when min_free_kbytes changes
  3998. * or when memory is hot-{added|removed}
  3999. *
  4000. * Ensures that the watermark[min,low,high] values for each zone are set
  4001. * correctly with respect to min_free_kbytes.
  4002. */
  4003. void setup_per_zone_wmarks(void)
  4004. {
  4005. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4006. unsigned long lowmem_pages = 0;
  4007. struct zone *zone;
  4008. unsigned long flags;
  4009. /* Calculate total number of !ZONE_HIGHMEM pages */
  4010. for_each_zone(zone) {
  4011. if (!is_highmem(zone))
  4012. lowmem_pages += zone->present_pages;
  4013. }
  4014. for_each_zone(zone) {
  4015. u64 tmp;
  4016. spin_lock_irqsave(&zone->lock, flags);
  4017. tmp = (u64)pages_min * zone->present_pages;
  4018. do_div(tmp, lowmem_pages);
  4019. if (is_highmem(zone)) {
  4020. /*
  4021. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4022. * need highmem pages, so cap pages_min to a small
  4023. * value here.
  4024. *
  4025. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4026. * deltas controls asynch page reclaim, and so should
  4027. * not be capped for highmem.
  4028. */
  4029. int min_pages;
  4030. min_pages = zone->present_pages / 1024;
  4031. if (min_pages < SWAP_CLUSTER_MAX)
  4032. min_pages = SWAP_CLUSTER_MAX;
  4033. if (min_pages > 128)
  4034. min_pages = 128;
  4035. zone->watermark[WMARK_MIN] = min_pages;
  4036. } else {
  4037. /*
  4038. * If it's a lowmem zone, reserve a number of pages
  4039. * proportionate to the zone's size.
  4040. */
  4041. zone->watermark[WMARK_MIN] = tmp;
  4042. }
  4043. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4044. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4045. setup_zone_migrate_reserve(zone);
  4046. spin_unlock_irqrestore(&zone->lock, flags);
  4047. }
  4048. /* update totalreserve_pages */
  4049. calculate_totalreserve_pages();
  4050. }
  4051. /*
  4052. * The inactive anon list should be small enough that the VM never has to
  4053. * do too much work, but large enough that each inactive page has a chance
  4054. * to be referenced again before it is swapped out.
  4055. *
  4056. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4057. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4058. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4059. * the anonymous pages are kept on the inactive list.
  4060. *
  4061. * total target max
  4062. * memory ratio inactive anon
  4063. * -------------------------------------
  4064. * 10MB 1 5MB
  4065. * 100MB 1 50MB
  4066. * 1GB 3 250MB
  4067. * 10GB 10 0.9GB
  4068. * 100GB 31 3GB
  4069. * 1TB 101 10GB
  4070. * 10TB 320 32GB
  4071. */
  4072. void calculate_zone_inactive_ratio(struct zone *zone)
  4073. {
  4074. unsigned int gb, ratio;
  4075. /* Zone size in gigabytes */
  4076. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4077. if (gb)
  4078. ratio = int_sqrt(10 * gb);
  4079. else
  4080. ratio = 1;
  4081. zone->inactive_ratio = ratio;
  4082. }
  4083. static void __init setup_per_zone_inactive_ratio(void)
  4084. {
  4085. struct zone *zone;
  4086. for_each_zone(zone)
  4087. calculate_zone_inactive_ratio(zone);
  4088. }
  4089. /*
  4090. * Initialise min_free_kbytes.
  4091. *
  4092. * For small machines we want it small (128k min). For large machines
  4093. * we want it large (64MB max). But it is not linear, because network
  4094. * bandwidth does not increase linearly with machine size. We use
  4095. *
  4096. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4097. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4098. *
  4099. * which yields
  4100. *
  4101. * 16MB: 512k
  4102. * 32MB: 724k
  4103. * 64MB: 1024k
  4104. * 128MB: 1448k
  4105. * 256MB: 2048k
  4106. * 512MB: 2896k
  4107. * 1024MB: 4096k
  4108. * 2048MB: 5792k
  4109. * 4096MB: 8192k
  4110. * 8192MB: 11584k
  4111. * 16384MB: 16384k
  4112. */
  4113. static int __init init_per_zone_wmark_min(void)
  4114. {
  4115. unsigned long lowmem_kbytes;
  4116. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4117. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4118. if (min_free_kbytes < 128)
  4119. min_free_kbytes = 128;
  4120. if (min_free_kbytes > 65536)
  4121. min_free_kbytes = 65536;
  4122. setup_per_zone_wmarks();
  4123. setup_per_zone_lowmem_reserve();
  4124. setup_per_zone_inactive_ratio();
  4125. return 0;
  4126. }
  4127. module_init(init_per_zone_wmark_min)
  4128. /*
  4129. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4130. * that we can call two helper functions whenever min_free_kbytes
  4131. * changes.
  4132. */
  4133. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4134. void __user *buffer, size_t *length, loff_t *ppos)
  4135. {
  4136. proc_dointvec(table, write, buffer, length, ppos);
  4137. if (write)
  4138. setup_per_zone_wmarks();
  4139. return 0;
  4140. }
  4141. #ifdef CONFIG_NUMA
  4142. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4143. void __user *buffer, size_t *length, loff_t *ppos)
  4144. {
  4145. struct zone *zone;
  4146. int rc;
  4147. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4148. if (rc)
  4149. return rc;
  4150. for_each_zone(zone)
  4151. zone->min_unmapped_pages = (zone->present_pages *
  4152. sysctl_min_unmapped_ratio) / 100;
  4153. return 0;
  4154. }
  4155. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4156. void __user *buffer, size_t *length, loff_t *ppos)
  4157. {
  4158. struct zone *zone;
  4159. int rc;
  4160. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4161. if (rc)
  4162. return rc;
  4163. for_each_zone(zone)
  4164. zone->min_slab_pages = (zone->present_pages *
  4165. sysctl_min_slab_ratio) / 100;
  4166. return 0;
  4167. }
  4168. #endif
  4169. /*
  4170. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4171. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4172. * whenever sysctl_lowmem_reserve_ratio changes.
  4173. *
  4174. * The reserve ratio obviously has absolutely no relation with the
  4175. * minimum watermarks. The lowmem reserve ratio can only make sense
  4176. * if in function of the boot time zone sizes.
  4177. */
  4178. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4179. void __user *buffer, size_t *length, loff_t *ppos)
  4180. {
  4181. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4182. setup_per_zone_lowmem_reserve();
  4183. return 0;
  4184. }
  4185. /*
  4186. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4187. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4188. * can have before it gets flushed back to buddy allocator.
  4189. */
  4190. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4191. void __user *buffer, size_t *length, loff_t *ppos)
  4192. {
  4193. struct zone *zone;
  4194. unsigned int cpu;
  4195. int ret;
  4196. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4197. if (!write || (ret == -EINVAL))
  4198. return ret;
  4199. for_each_populated_zone(zone) {
  4200. for_each_possible_cpu(cpu) {
  4201. unsigned long high;
  4202. high = zone->present_pages / percpu_pagelist_fraction;
  4203. setup_pagelist_highmark(
  4204. per_cpu_ptr(zone->pageset, cpu), high);
  4205. }
  4206. }
  4207. return 0;
  4208. }
  4209. int hashdist = HASHDIST_DEFAULT;
  4210. #ifdef CONFIG_NUMA
  4211. static int __init set_hashdist(char *str)
  4212. {
  4213. if (!str)
  4214. return 0;
  4215. hashdist = simple_strtoul(str, &str, 0);
  4216. return 1;
  4217. }
  4218. __setup("hashdist=", set_hashdist);
  4219. #endif
  4220. /*
  4221. * allocate a large system hash table from bootmem
  4222. * - it is assumed that the hash table must contain an exact power-of-2
  4223. * quantity of entries
  4224. * - limit is the number of hash buckets, not the total allocation size
  4225. */
  4226. void *__init alloc_large_system_hash(const char *tablename,
  4227. unsigned long bucketsize,
  4228. unsigned long numentries,
  4229. int scale,
  4230. int flags,
  4231. unsigned int *_hash_shift,
  4232. unsigned int *_hash_mask,
  4233. unsigned long limit)
  4234. {
  4235. unsigned long long max = limit;
  4236. unsigned long log2qty, size;
  4237. void *table = NULL;
  4238. /* allow the kernel cmdline to have a say */
  4239. if (!numentries) {
  4240. /* round applicable memory size up to nearest megabyte */
  4241. numentries = nr_kernel_pages;
  4242. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4243. numentries >>= 20 - PAGE_SHIFT;
  4244. numentries <<= 20 - PAGE_SHIFT;
  4245. /* limit to 1 bucket per 2^scale bytes of low memory */
  4246. if (scale > PAGE_SHIFT)
  4247. numentries >>= (scale - PAGE_SHIFT);
  4248. else
  4249. numentries <<= (PAGE_SHIFT - scale);
  4250. /* Make sure we've got at least a 0-order allocation.. */
  4251. if (unlikely(flags & HASH_SMALL)) {
  4252. /* Makes no sense without HASH_EARLY */
  4253. WARN_ON(!(flags & HASH_EARLY));
  4254. if (!(numentries >> *_hash_shift)) {
  4255. numentries = 1UL << *_hash_shift;
  4256. BUG_ON(!numentries);
  4257. }
  4258. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4259. numentries = PAGE_SIZE / bucketsize;
  4260. }
  4261. numentries = roundup_pow_of_two(numentries);
  4262. /* limit allocation size to 1/16 total memory by default */
  4263. if (max == 0) {
  4264. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4265. do_div(max, bucketsize);
  4266. }
  4267. if (numentries > max)
  4268. numentries = max;
  4269. log2qty = ilog2(numentries);
  4270. do {
  4271. size = bucketsize << log2qty;
  4272. if (flags & HASH_EARLY)
  4273. table = alloc_bootmem_nopanic(size);
  4274. else if (hashdist)
  4275. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4276. else {
  4277. /*
  4278. * If bucketsize is not a power-of-two, we may free
  4279. * some pages at the end of hash table which
  4280. * alloc_pages_exact() automatically does
  4281. */
  4282. if (get_order(size) < MAX_ORDER) {
  4283. table = alloc_pages_exact(size, GFP_ATOMIC);
  4284. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4285. }
  4286. }
  4287. } while (!table && size > PAGE_SIZE && --log2qty);
  4288. if (!table)
  4289. panic("Failed to allocate %s hash table\n", tablename);
  4290. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4291. tablename,
  4292. (1U << log2qty),
  4293. ilog2(size) - PAGE_SHIFT,
  4294. size);
  4295. if (_hash_shift)
  4296. *_hash_shift = log2qty;
  4297. if (_hash_mask)
  4298. *_hash_mask = (1 << log2qty) - 1;
  4299. return table;
  4300. }
  4301. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4302. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4303. unsigned long pfn)
  4304. {
  4305. #ifdef CONFIG_SPARSEMEM
  4306. return __pfn_to_section(pfn)->pageblock_flags;
  4307. #else
  4308. return zone->pageblock_flags;
  4309. #endif /* CONFIG_SPARSEMEM */
  4310. }
  4311. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4312. {
  4313. #ifdef CONFIG_SPARSEMEM
  4314. pfn &= (PAGES_PER_SECTION-1);
  4315. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4316. #else
  4317. pfn = pfn - zone->zone_start_pfn;
  4318. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4319. #endif /* CONFIG_SPARSEMEM */
  4320. }
  4321. /**
  4322. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4323. * @page: The page within the block of interest
  4324. * @start_bitidx: The first bit of interest to retrieve
  4325. * @end_bitidx: The last bit of interest
  4326. * returns pageblock_bits flags
  4327. */
  4328. unsigned long get_pageblock_flags_group(struct page *page,
  4329. int start_bitidx, int end_bitidx)
  4330. {
  4331. struct zone *zone;
  4332. unsigned long *bitmap;
  4333. unsigned long pfn, bitidx;
  4334. unsigned long flags = 0;
  4335. unsigned long value = 1;
  4336. zone = page_zone(page);
  4337. pfn = page_to_pfn(page);
  4338. bitmap = get_pageblock_bitmap(zone, pfn);
  4339. bitidx = pfn_to_bitidx(zone, pfn);
  4340. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4341. if (test_bit(bitidx + start_bitidx, bitmap))
  4342. flags |= value;
  4343. return flags;
  4344. }
  4345. /**
  4346. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4347. * @page: The page within the block of interest
  4348. * @start_bitidx: The first bit of interest
  4349. * @end_bitidx: The last bit of interest
  4350. * @flags: The flags to set
  4351. */
  4352. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4353. int start_bitidx, int end_bitidx)
  4354. {
  4355. struct zone *zone;
  4356. unsigned long *bitmap;
  4357. unsigned long pfn, bitidx;
  4358. unsigned long value = 1;
  4359. zone = page_zone(page);
  4360. pfn = page_to_pfn(page);
  4361. bitmap = get_pageblock_bitmap(zone, pfn);
  4362. bitidx = pfn_to_bitidx(zone, pfn);
  4363. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4364. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4365. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4366. if (flags & value)
  4367. __set_bit(bitidx + start_bitidx, bitmap);
  4368. else
  4369. __clear_bit(bitidx + start_bitidx, bitmap);
  4370. }
  4371. /*
  4372. * This is designed as sub function...plz see page_isolation.c also.
  4373. * set/clear page block's type to be ISOLATE.
  4374. * page allocater never alloc memory from ISOLATE block.
  4375. */
  4376. int set_migratetype_isolate(struct page *page)
  4377. {
  4378. struct zone *zone;
  4379. struct page *curr_page;
  4380. unsigned long flags, pfn, iter;
  4381. unsigned long immobile = 0;
  4382. struct memory_isolate_notify arg;
  4383. int notifier_ret;
  4384. int ret = -EBUSY;
  4385. int zone_idx;
  4386. zone = page_zone(page);
  4387. zone_idx = zone_idx(zone);
  4388. spin_lock_irqsave(&zone->lock, flags);
  4389. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
  4390. zone_idx == ZONE_MOVABLE) {
  4391. ret = 0;
  4392. goto out;
  4393. }
  4394. pfn = page_to_pfn(page);
  4395. arg.start_pfn = pfn;
  4396. arg.nr_pages = pageblock_nr_pages;
  4397. arg.pages_found = 0;
  4398. /*
  4399. * It may be possible to isolate a pageblock even if the
  4400. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4401. * notifier chain is used by balloon drivers to return the
  4402. * number of pages in a range that are held by the balloon
  4403. * driver to shrink memory. If all the pages are accounted for
  4404. * by balloons, are free, or on the LRU, isolation can continue.
  4405. * Later, for example, when memory hotplug notifier runs, these
  4406. * pages reported as "can be isolated" should be isolated(freed)
  4407. * by the balloon driver through the memory notifier chain.
  4408. */
  4409. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4410. notifier_ret = notifier_to_errno(notifier_ret);
  4411. if (notifier_ret || !arg.pages_found)
  4412. goto out;
  4413. for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
  4414. if (!pfn_valid_within(pfn))
  4415. continue;
  4416. curr_page = pfn_to_page(iter);
  4417. if (!page_count(curr_page) || PageLRU(curr_page))
  4418. continue;
  4419. immobile++;
  4420. }
  4421. if (arg.pages_found == immobile)
  4422. ret = 0;
  4423. out:
  4424. if (!ret) {
  4425. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4426. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4427. }
  4428. spin_unlock_irqrestore(&zone->lock, flags);
  4429. if (!ret)
  4430. drain_all_pages();
  4431. return ret;
  4432. }
  4433. void unset_migratetype_isolate(struct page *page)
  4434. {
  4435. struct zone *zone;
  4436. unsigned long flags;
  4437. zone = page_zone(page);
  4438. spin_lock_irqsave(&zone->lock, flags);
  4439. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4440. goto out;
  4441. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4442. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4443. out:
  4444. spin_unlock_irqrestore(&zone->lock, flags);
  4445. }
  4446. #ifdef CONFIG_MEMORY_HOTREMOVE
  4447. /*
  4448. * All pages in the range must be isolated before calling this.
  4449. */
  4450. void
  4451. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4452. {
  4453. struct page *page;
  4454. struct zone *zone;
  4455. int order, i;
  4456. unsigned long pfn;
  4457. unsigned long flags;
  4458. /* find the first valid pfn */
  4459. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4460. if (pfn_valid(pfn))
  4461. break;
  4462. if (pfn == end_pfn)
  4463. return;
  4464. zone = page_zone(pfn_to_page(pfn));
  4465. spin_lock_irqsave(&zone->lock, flags);
  4466. pfn = start_pfn;
  4467. while (pfn < end_pfn) {
  4468. if (!pfn_valid(pfn)) {
  4469. pfn++;
  4470. continue;
  4471. }
  4472. page = pfn_to_page(pfn);
  4473. BUG_ON(page_count(page));
  4474. BUG_ON(!PageBuddy(page));
  4475. order = page_order(page);
  4476. #ifdef CONFIG_DEBUG_VM
  4477. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4478. pfn, 1 << order, end_pfn);
  4479. #endif
  4480. list_del(&page->lru);
  4481. rmv_page_order(page);
  4482. zone->free_area[order].nr_free--;
  4483. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4484. - (1UL << order));
  4485. for (i = 0; i < (1 << order); i++)
  4486. SetPageReserved((page+i));
  4487. pfn += (1 << order);
  4488. }
  4489. spin_unlock_irqrestore(&zone->lock, flags);
  4490. }
  4491. #endif
  4492. #ifdef CONFIG_MEMORY_FAILURE
  4493. bool is_free_buddy_page(struct page *page)
  4494. {
  4495. struct zone *zone = page_zone(page);
  4496. unsigned long pfn = page_to_pfn(page);
  4497. unsigned long flags;
  4498. int order;
  4499. spin_lock_irqsave(&zone->lock, flags);
  4500. for (order = 0; order < MAX_ORDER; order++) {
  4501. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4502. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4503. break;
  4504. }
  4505. spin_unlock_irqrestore(&zone->lock, flags);
  4506. return order < MAX_ORDER;
  4507. }
  4508. #endif
  4509. static struct trace_print_flags pageflag_names[] = {
  4510. {1UL << PG_locked, "locked" },
  4511. {1UL << PG_error, "error" },
  4512. {1UL << PG_referenced, "referenced" },
  4513. {1UL << PG_uptodate, "uptodate" },
  4514. {1UL << PG_dirty, "dirty" },
  4515. {1UL << PG_lru, "lru" },
  4516. {1UL << PG_active, "active" },
  4517. {1UL << PG_slab, "slab" },
  4518. {1UL << PG_owner_priv_1, "owner_priv_1" },
  4519. {1UL << PG_arch_1, "arch_1" },
  4520. {1UL << PG_reserved, "reserved" },
  4521. {1UL << PG_private, "private" },
  4522. {1UL << PG_private_2, "private_2" },
  4523. {1UL << PG_writeback, "writeback" },
  4524. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  4525. {1UL << PG_head, "head" },
  4526. {1UL << PG_tail, "tail" },
  4527. #else
  4528. {1UL << PG_compound, "compound" },
  4529. #endif
  4530. {1UL << PG_swapcache, "swapcache" },
  4531. {1UL << PG_mappedtodisk, "mappedtodisk" },
  4532. {1UL << PG_reclaim, "reclaim" },
  4533. {1UL << PG_buddy, "buddy" },
  4534. {1UL << PG_swapbacked, "swapbacked" },
  4535. {1UL << PG_unevictable, "unevictable" },
  4536. #ifdef CONFIG_MMU
  4537. {1UL << PG_mlocked, "mlocked" },
  4538. #endif
  4539. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  4540. {1UL << PG_uncached, "uncached" },
  4541. #endif
  4542. #ifdef CONFIG_MEMORY_FAILURE
  4543. {1UL << PG_hwpoison, "hwpoison" },
  4544. #endif
  4545. {-1UL, NULL },
  4546. };
  4547. static void dump_page_flags(unsigned long flags)
  4548. {
  4549. const char *delim = "";
  4550. unsigned long mask;
  4551. int i;
  4552. printk(KERN_ALERT "page flags: %#lx(", flags);
  4553. /* remove zone id */
  4554. flags &= (1UL << NR_PAGEFLAGS) - 1;
  4555. for (i = 0; pageflag_names[i].name && flags; i++) {
  4556. mask = pageflag_names[i].mask;
  4557. if ((flags & mask) != mask)
  4558. continue;
  4559. flags &= ~mask;
  4560. printk("%s%s", delim, pageflag_names[i].name);
  4561. delim = "|";
  4562. }
  4563. /* check for left over flags */
  4564. if (flags)
  4565. printk("%s%#lx", delim, flags);
  4566. printk(")\n");
  4567. }
  4568. void dump_page(struct page *page)
  4569. {
  4570. printk(KERN_ALERT
  4571. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  4572. page, page_count(page), page_mapcount(page),
  4573. page->mapping, page->index);
  4574. dump_page_flags(page->flags);
  4575. }