xmit.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. static u16 bits_per_symbol[][2] = {
  33. /* 20MHz 40MHz */
  34. { 26, 54 }, /* 0: BPSK */
  35. { 52, 108 }, /* 1: QPSK 1/2 */
  36. { 78, 162 }, /* 2: QPSK 3/4 */
  37. { 104, 216 }, /* 3: 16-QAM 1/2 */
  38. { 156, 324 }, /* 4: 16-QAM 3/4 */
  39. { 208, 432 }, /* 5: 64-QAM 2/3 */
  40. { 234, 486 }, /* 6: 64-QAM 3/4 */
  41. { 260, 540 }, /* 7: 64-QAM 5/6 */
  42. };
  43. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  44. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  45. struct ath_atx_tid *tid, struct sk_buff *skb);
  46. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  47. int tx_flags, struct ath_txq *txq);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head, bool internal);
  53. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  54. struct ath_tx_status *ts, int nframes, int nbad,
  55. int txok);
  56. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  57. int seqno);
  58. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  59. struct ath_txq *txq,
  60. struct ath_atx_tid *tid,
  61. struct sk_buff *skb);
  62. enum {
  63. MCS_HT20,
  64. MCS_HT20_SGI,
  65. MCS_HT40,
  66. MCS_HT40_SGI,
  67. };
  68. static int ath_max_4ms_framelen[4][32] = {
  69. [MCS_HT20] = {
  70. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  71. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  72. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  73. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  74. },
  75. [MCS_HT20_SGI] = {
  76. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  77. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  78. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  79. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  80. },
  81. [MCS_HT40] = {
  82. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  83. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  84. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  85. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  86. },
  87. [MCS_HT40_SGI] = {
  88. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  89. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  90. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  91. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  92. }
  93. };
  94. /*********************/
  95. /* Aggregation logic */
  96. /*********************/
  97. static void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  98. {
  99. spin_lock_bh(&txq->axq_lock);
  100. }
  101. static void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  102. {
  103. spin_unlock_bh(&txq->axq_lock);
  104. }
  105. static void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  106. {
  107. struct sk_buff_head q;
  108. struct sk_buff *skb;
  109. __skb_queue_head_init(&q);
  110. skb_queue_splice_init(&txq->complete_q, &q);
  111. spin_unlock_bh(&txq->axq_lock);
  112. while ((skb = __skb_dequeue(&q)))
  113. ieee80211_tx_status(sc->hw, skb);
  114. }
  115. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  116. {
  117. struct ath_atx_ac *ac = tid->ac;
  118. if (tid->paused)
  119. return;
  120. if (tid->sched)
  121. return;
  122. tid->sched = true;
  123. list_add_tail(&tid->list, &ac->tid_q);
  124. if (ac->sched)
  125. return;
  126. ac->sched = true;
  127. list_add_tail(&ac->list, &txq->axq_acq);
  128. }
  129. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  130. {
  131. struct ath_txq *txq = tid->ac->txq;
  132. WARN_ON(!tid->paused);
  133. ath_txq_lock(sc, txq);
  134. tid->paused = false;
  135. if (skb_queue_empty(&tid->buf_q))
  136. goto unlock;
  137. ath_tx_queue_tid(txq, tid);
  138. ath_txq_schedule(sc, txq);
  139. unlock:
  140. ath_txq_unlock_complete(sc, txq);
  141. }
  142. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  143. {
  144. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  145. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  146. sizeof(tx_info->rate_driver_data));
  147. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  148. }
  149. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  150. {
  151. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  152. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  153. }
  154. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  155. {
  156. struct ath_txq *txq = tid->ac->txq;
  157. struct sk_buff *skb;
  158. struct ath_buf *bf;
  159. struct list_head bf_head;
  160. struct ath_tx_status ts;
  161. struct ath_frame_info *fi;
  162. bool sendbar = false;
  163. INIT_LIST_HEAD(&bf_head);
  164. memset(&ts, 0, sizeof(ts));
  165. while ((skb = __skb_dequeue(&tid->buf_q))) {
  166. fi = get_frame_info(skb);
  167. bf = fi->bf;
  168. if (bf && fi->retries) {
  169. list_add_tail(&bf->list, &bf_head);
  170. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  171. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  172. sendbar = true;
  173. } else {
  174. ath_tx_send_normal(sc, txq, NULL, skb);
  175. }
  176. }
  177. if (tid->baw_head == tid->baw_tail) {
  178. tid->state &= ~AGGR_ADDBA_COMPLETE;
  179. tid->state &= ~AGGR_CLEANUP;
  180. }
  181. if (sendbar) {
  182. ath_txq_unlock(sc, txq);
  183. ath_send_bar(tid, tid->seq_start);
  184. ath_txq_lock(sc, txq);
  185. }
  186. }
  187. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  188. int seqno)
  189. {
  190. int index, cindex;
  191. index = ATH_BA_INDEX(tid->seq_start, seqno);
  192. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  193. __clear_bit(cindex, tid->tx_buf);
  194. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  195. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  196. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  197. if (tid->bar_index >= 0)
  198. tid->bar_index--;
  199. }
  200. }
  201. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  202. u16 seqno)
  203. {
  204. int index, cindex;
  205. index = ATH_BA_INDEX(tid->seq_start, seqno);
  206. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  207. __set_bit(cindex, tid->tx_buf);
  208. if (index >= ((tid->baw_tail - tid->baw_head) &
  209. (ATH_TID_MAX_BUFS - 1))) {
  210. tid->baw_tail = cindex;
  211. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  212. }
  213. }
  214. /*
  215. * TODO: For frame(s) that are in the retry state, we will reuse the
  216. * sequence number(s) without setting the retry bit. The
  217. * alternative is to give up on these and BAR the receiver's window
  218. * forward.
  219. */
  220. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  221. struct ath_atx_tid *tid)
  222. {
  223. struct sk_buff *skb;
  224. struct ath_buf *bf;
  225. struct list_head bf_head;
  226. struct ath_tx_status ts;
  227. struct ath_frame_info *fi;
  228. memset(&ts, 0, sizeof(ts));
  229. INIT_LIST_HEAD(&bf_head);
  230. while ((skb = __skb_dequeue(&tid->buf_q))) {
  231. fi = get_frame_info(skb);
  232. bf = fi->bf;
  233. if (!bf) {
  234. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  235. continue;
  236. }
  237. list_add_tail(&bf->list, &bf_head);
  238. if (fi->retries)
  239. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  240. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  241. }
  242. tid->seq_next = tid->seq_start;
  243. tid->baw_tail = tid->baw_head;
  244. tid->bar_index = -1;
  245. }
  246. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  247. struct sk_buff *skb, int count)
  248. {
  249. struct ath_frame_info *fi = get_frame_info(skb);
  250. struct ath_buf *bf = fi->bf;
  251. struct ieee80211_hdr *hdr;
  252. int prev = fi->retries;
  253. TX_STAT_INC(txq->axq_qnum, a_retries);
  254. fi->retries += count;
  255. if (prev > 0)
  256. return;
  257. hdr = (struct ieee80211_hdr *)skb->data;
  258. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  259. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  260. sizeof(*hdr), DMA_TO_DEVICE);
  261. }
  262. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  263. {
  264. struct ath_buf *bf = NULL;
  265. spin_lock_bh(&sc->tx.txbuflock);
  266. if (unlikely(list_empty(&sc->tx.txbuf))) {
  267. spin_unlock_bh(&sc->tx.txbuflock);
  268. return NULL;
  269. }
  270. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  271. list_del(&bf->list);
  272. spin_unlock_bh(&sc->tx.txbuflock);
  273. return bf;
  274. }
  275. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  276. {
  277. spin_lock_bh(&sc->tx.txbuflock);
  278. list_add_tail(&bf->list, &sc->tx.txbuf);
  279. spin_unlock_bh(&sc->tx.txbuflock);
  280. }
  281. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  282. {
  283. struct ath_buf *tbf;
  284. tbf = ath_tx_get_buffer(sc);
  285. if (WARN_ON(!tbf))
  286. return NULL;
  287. ATH_TXBUF_RESET(tbf);
  288. tbf->bf_mpdu = bf->bf_mpdu;
  289. tbf->bf_buf_addr = bf->bf_buf_addr;
  290. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  291. tbf->bf_state = bf->bf_state;
  292. return tbf;
  293. }
  294. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  295. struct ath_tx_status *ts, int txok,
  296. int *nframes, int *nbad)
  297. {
  298. struct ath_frame_info *fi;
  299. u16 seq_st = 0;
  300. u32 ba[WME_BA_BMP_SIZE >> 5];
  301. int ba_index;
  302. int isaggr = 0;
  303. *nbad = 0;
  304. *nframes = 0;
  305. isaggr = bf_isaggr(bf);
  306. if (isaggr) {
  307. seq_st = ts->ts_seqnum;
  308. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  309. }
  310. while (bf) {
  311. fi = get_frame_info(bf->bf_mpdu);
  312. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  313. (*nframes)++;
  314. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  315. (*nbad)++;
  316. bf = bf->bf_next;
  317. }
  318. }
  319. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  320. struct ath_buf *bf, struct list_head *bf_q,
  321. struct ath_tx_status *ts, int txok, bool retry)
  322. {
  323. struct ath_node *an = NULL;
  324. struct sk_buff *skb;
  325. struct ieee80211_sta *sta;
  326. struct ieee80211_hw *hw = sc->hw;
  327. struct ieee80211_hdr *hdr;
  328. struct ieee80211_tx_info *tx_info;
  329. struct ath_atx_tid *tid = NULL;
  330. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  331. struct list_head bf_head;
  332. struct sk_buff_head bf_pending;
  333. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  334. u32 ba[WME_BA_BMP_SIZE >> 5];
  335. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  336. bool rc_update = true;
  337. struct ieee80211_tx_rate rates[4];
  338. struct ath_frame_info *fi;
  339. int nframes;
  340. u8 tidno;
  341. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  342. int i, retries;
  343. int bar_index = -1;
  344. skb = bf->bf_mpdu;
  345. hdr = (struct ieee80211_hdr *)skb->data;
  346. tx_info = IEEE80211_SKB_CB(skb);
  347. memcpy(rates, tx_info->control.rates, sizeof(rates));
  348. retries = ts->ts_longretry + 1;
  349. for (i = 0; i < ts->ts_rateindex; i++)
  350. retries += rates[i].count;
  351. rcu_read_lock();
  352. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  353. if (!sta) {
  354. rcu_read_unlock();
  355. INIT_LIST_HEAD(&bf_head);
  356. while (bf) {
  357. bf_next = bf->bf_next;
  358. if (!bf->bf_stale || bf_next != NULL)
  359. list_move_tail(&bf->list, &bf_head);
  360. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  361. bf = bf_next;
  362. }
  363. return;
  364. }
  365. an = (struct ath_node *)sta->drv_priv;
  366. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  367. tid = ATH_AN_2_TID(an, tidno);
  368. seq_first = tid->seq_start;
  369. /*
  370. * The hardware occasionally sends a tx status for the wrong TID.
  371. * In this case, the BA status cannot be considered valid and all
  372. * subframes need to be retransmitted
  373. */
  374. if (tidno != ts->tid)
  375. txok = false;
  376. isaggr = bf_isaggr(bf);
  377. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  378. if (isaggr && txok) {
  379. if (ts->ts_flags & ATH9K_TX_BA) {
  380. seq_st = ts->ts_seqnum;
  381. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  382. } else {
  383. /*
  384. * AR5416 can become deaf/mute when BA
  385. * issue happens. Chip needs to be reset.
  386. * But AP code may have sychronization issues
  387. * when perform internal reset in this routine.
  388. * Only enable reset in STA mode for now.
  389. */
  390. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  391. needreset = 1;
  392. }
  393. }
  394. __skb_queue_head_init(&bf_pending);
  395. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  396. while (bf) {
  397. u16 seqno = bf->bf_state.seqno;
  398. txfail = txpending = sendbar = 0;
  399. bf_next = bf->bf_next;
  400. skb = bf->bf_mpdu;
  401. tx_info = IEEE80211_SKB_CB(skb);
  402. fi = get_frame_info(skb);
  403. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  404. /* transmit completion, subframe is
  405. * acked by block ack */
  406. acked_cnt++;
  407. } else if (!isaggr && txok) {
  408. /* transmit completion */
  409. acked_cnt++;
  410. } else if ((tid->state & AGGR_CLEANUP) || !retry) {
  411. /*
  412. * cleanup in progress, just fail
  413. * the un-acked sub-frames
  414. */
  415. txfail = 1;
  416. } else if (flush) {
  417. txpending = 1;
  418. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  419. if (txok || !an->sleeping)
  420. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  421. retries);
  422. txpending = 1;
  423. } else {
  424. txfail = 1;
  425. txfail_cnt++;
  426. bar_index = max_t(int, bar_index,
  427. ATH_BA_INDEX(seq_first, seqno));
  428. }
  429. /*
  430. * Make sure the last desc is reclaimed if it
  431. * not a holding desc.
  432. */
  433. INIT_LIST_HEAD(&bf_head);
  434. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  435. bf_next != NULL || !bf_last->bf_stale)
  436. list_move_tail(&bf->list, &bf_head);
  437. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  438. /*
  439. * complete the acked-ones/xretried ones; update
  440. * block-ack window
  441. */
  442. ath_tx_update_baw(sc, tid, seqno);
  443. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  444. memcpy(tx_info->control.rates, rates, sizeof(rates));
  445. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  446. rc_update = false;
  447. }
  448. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  449. !txfail);
  450. } else {
  451. /* retry the un-acked ones */
  452. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  453. bf->bf_next == NULL && bf_last->bf_stale) {
  454. struct ath_buf *tbf;
  455. tbf = ath_clone_txbuf(sc, bf_last);
  456. /*
  457. * Update tx baw and complete the
  458. * frame with failed status if we
  459. * run out of tx buf.
  460. */
  461. if (!tbf) {
  462. ath_tx_update_baw(sc, tid, seqno);
  463. ath_tx_complete_buf(sc, bf, txq,
  464. &bf_head, ts, 0);
  465. bar_index = max_t(int, bar_index,
  466. ATH_BA_INDEX(seq_first, seqno));
  467. break;
  468. }
  469. fi->bf = tbf;
  470. }
  471. /*
  472. * Put this buffer to the temporary pending
  473. * queue to retain ordering
  474. */
  475. __skb_queue_tail(&bf_pending, skb);
  476. }
  477. bf = bf_next;
  478. }
  479. /* prepend un-acked frames to the beginning of the pending frame queue */
  480. if (!skb_queue_empty(&bf_pending)) {
  481. if (an->sleeping)
  482. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  483. skb_queue_splice(&bf_pending, &tid->buf_q);
  484. if (!an->sleeping) {
  485. ath_tx_queue_tid(txq, tid);
  486. if (ts->ts_status & ATH9K_TXERR_FILT)
  487. tid->ac->clear_ps_filter = true;
  488. }
  489. }
  490. if (bar_index >= 0) {
  491. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  492. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  493. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  494. ath_txq_unlock(sc, txq);
  495. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  496. ath_txq_lock(sc, txq);
  497. }
  498. if (tid->state & AGGR_CLEANUP)
  499. ath_tx_flush_tid(sc, tid);
  500. rcu_read_unlock();
  501. if (needreset) {
  502. RESET_STAT_INC(sc, RESET_TYPE_TX_ERROR);
  503. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  504. }
  505. }
  506. static bool ath_lookup_legacy(struct ath_buf *bf)
  507. {
  508. struct sk_buff *skb;
  509. struct ieee80211_tx_info *tx_info;
  510. struct ieee80211_tx_rate *rates;
  511. int i;
  512. skb = bf->bf_mpdu;
  513. tx_info = IEEE80211_SKB_CB(skb);
  514. rates = tx_info->control.rates;
  515. for (i = 0; i < 4; i++) {
  516. if (!rates[i].count || rates[i].idx < 0)
  517. break;
  518. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  519. return true;
  520. }
  521. return false;
  522. }
  523. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  524. struct ath_atx_tid *tid)
  525. {
  526. struct sk_buff *skb;
  527. struct ieee80211_tx_info *tx_info;
  528. struct ieee80211_tx_rate *rates;
  529. struct ath_mci_profile *mci = &sc->btcoex.mci;
  530. u32 max_4ms_framelen, frmlen;
  531. u16 aggr_limit, legacy = 0;
  532. int i;
  533. skb = bf->bf_mpdu;
  534. tx_info = IEEE80211_SKB_CB(skb);
  535. rates = tx_info->control.rates;
  536. /*
  537. * Find the lowest frame length among the rate series that will have a
  538. * 4ms transmit duration.
  539. * TODO - TXOP limit needs to be considered.
  540. */
  541. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  542. for (i = 0; i < 4; i++) {
  543. int modeidx;
  544. if (!rates[i].count)
  545. continue;
  546. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  547. legacy = 1;
  548. break;
  549. }
  550. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  551. modeidx = MCS_HT40;
  552. else
  553. modeidx = MCS_HT20;
  554. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  555. modeidx++;
  556. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  557. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  558. }
  559. /*
  560. * limit aggregate size by the minimum rate if rate selected is
  561. * not a probe rate, if rate selected is a probe rate then
  562. * avoid aggregation of this packet.
  563. */
  564. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  565. return 0;
  566. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && mci->aggr_limit)
  567. aggr_limit = (max_4ms_framelen * mci->aggr_limit) >> 4;
  568. else if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  569. aggr_limit = min((max_4ms_framelen * 3) / 8,
  570. (u32)ATH_AMPDU_LIMIT_MAX);
  571. else
  572. aggr_limit = min(max_4ms_framelen,
  573. (u32)ATH_AMPDU_LIMIT_MAX);
  574. /*
  575. * h/w can accept aggregates up to 16 bit lengths (65535).
  576. * The IE, however can hold up to 65536, which shows up here
  577. * as zero. Ignore 65536 since we are constrained by hw.
  578. */
  579. if (tid->an->maxampdu)
  580. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  581. return aggr_limit;
  582. }
  583. /*
  584. * Returns the number of delimiters to be added to
  585. * meet the minimum required mpdudensity.
  586. */
  587. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  588. struct ath_buf *bf, u16 frmlen,
  589. bool first_subfrm)
  590. {
  591. #define FIRST_DESC_NDELIMS 60
  592. struct sk_buff *skb = bf->bf_mpdu;
  593. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  594. u32 nsymbits, nsymbols;
  595. u16 minlen;
  596. u8 flags, rix;
  597. int width, streams, half_gi, ndelim, mindelim;
  598. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  599. /* Select standard number of delimiters based on frame length alone */
  600. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  601. /*
  602. * If encryption enabled, hardware requires some more padding between
  603. * subframes.
  604. * TODO - this could be improved to be dependent on the rate.
  605. * The hardware can keep up at lower rates, but not higher rates
  606. */
  607. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  608. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  609. ndelim += ATH_AGGR_ENCRYPTDELIM;
  610. /*
  611. * Add delimiter when using RTS/CTS with aggregation
  612. * and non enterprise AR9003 card
  613. */
  614. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  615. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  616. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  617. /*
  618. * Convert desired mpdu density from microeconds to bytes based
  619. * on highest rate in rate series (i.e. first rate) to determine
  620. * required minimum length for subframe. Take into account
  621. * whether high rate is 20 or 40Mhz and half or full GI.
  622. *
  623. * If there is no mpdu density restriction, no further calculation
  624. * is needed.
  625. */
  626. if (tid->an->mpdudensity == 0)
  627. return ndelim;
  628. rix = tx_info->control.rates[0].idx;
  629. flags = tx_info->control.rates[0].flags;
  630. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  631. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  632. if (half_gi)
  633. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  634. else
  635. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  636. if (nsymbols == 0)
  637. nsymbols = 1;
  638. streams = HT_RC_2_STREAMS(rix);
  639. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  640. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  641. if (frmlen < minlen) {
  642. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  643. ndelim = max(mindelim, ndelim);
  644. }
  645. return ndelim;
  646. }
  647. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  648. struct ath_txq *txq,
  649. struct ath_atx_tid *tid,
  650. struct list_head *bf_q,
  651. int *aggr_len)
  652. {
  653. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  654. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  655. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  656. u16 aggr_limit = 0, al = 0, bpad = 0,
  657. al_delta, h_baw = tid->baw_size / 2;
  658. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  659. struct ieee80211_tx_info *tx_info;
  660. struct ath_frame_info *fi;
  661. struct sk_buff *skb;
  662. u16 seqno;
  663. do {
  664. skb = skb_peek(&tid->buf_q);
  665. fi = get_frame_info(skb);
  666. bf = fi->bf;
  667. if (!fi->bf)
  668. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  669. if (!bf)
  670. continue;
  671. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  672. seqno = bf->bf_state.seqno;
  673. /* do not step over block-ack window */
  674. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  675. status = ATH_AGGR_BAW_CLOSED;
  676. break;
  677. }
  678. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  679. struct ath_tx_status ts = {};
  680. struct list_head bf_head;
  681. INIT_LIST_HEAD(&bf_head);
  682. list_add(&bf->list, &bf_head);
  683. __skb_unlink(skb, &tid->buf_q);
  684. ath_tx_update_baw(sc, tid, seqno);
  685. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  686. continue;
  687. }
  688. if (!bf_first)
  689. bf_first = bf;
  690. if (!rl) {
  691. aggr_limit = ath_lookup_rate(sc, bf, tid);
  692. rl = 1;
  693. }
  694. /* do not exceed aggregation limit */
  695. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  696. if (nframes &&
  697. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  698. ath_lookup_legacy(bf))) {
  699. status = ATH_AGGR_LIMITED;
  700. break;
  701. }
  702. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  703. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  704. break;
  705. /* do not exceed subframe limit */
  706. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  707. status = ATH_AGGR_LIMITED;
  708. break;
  709. }
  710. /* add padding for previous frame to aggregation length */
  711. al += bpad + al_delta;
  712. /*
  713. * Get the delimiters needed to meet the MPDU
  714. * density for this node.
  715. */
  716. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  717. !nframes);
  718. bpad = PADBYTES(al_delta) + (ndelim << 2);
  719. nframes++;
  720. bf->bf_next = NULL;
  721. /* link buffers of this frame to the aggregate */
  722. if (!fi->retries)
  723. ath_tx_addto_baw(sc, tid, seqno);
  724. bf->bf_state.ndelim = ndelim;
  725. __skb_unlink(skb, &tid->buf_q);
  726. list_add_tail(&bf->list, bf_q);
  727. if (bf_prev)
  728. bf_prev->bf_next = bf;
  729. bf_prev = bf;
  730. } while (!skb_queue_empty(&tid->buf_q));
  731. *aggr_len = al;
  732. return status;
  733. #undef PADBYTES
  734. }
  735. /*
  736. * rix - rate index
  737. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  738. * width - 0 for 20 MHz, 1 for 40 MHz
  739. * half_gi - to use 4us v/s 3.6 us for symbol time
  740. */
  741. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  742. int width, int half_gi, bool shortPreamble)
  743. {
  744. u32 nbits, nsymbits, duration, nsymbols;
  745. int streams;
  746. /* find number of symbols: PLCP + data */
  747. streams = HT_RC_2_STREAMS(rix);
  748. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  749. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  750. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  751. if (!half_gi)
  752. duration = SYMBOL_TIME(nsymbols);
  753. else
  754. duration = SYMBOL_TIME_HALFGI(nsymbols);
  755. /* addup duration for legacy/ht training and signal fields */
  756. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  757. return duration;
  758. }
  759. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  760. struct ath_tx_info *info, int len)
  761. {
  762. struct ath_hw *ah = sc->sc_ah;
  763. struct sk_buff *skb;
  764. struct ieee80211_tx_info *tx_info;
  765. struct ieee80211_tx_rate *rates;
  766. const struct ieee80211_rate *rate;
  767. struct ieee80211_hdr *hdr;
  768. int i;
  769. u8 rix = 0;
  770. skb = bf->bf_mpdu;
  771. tx_info = IEEE80211_SKB_CB(skb);
  772. rates = tx_info->control.rates;
  773. hdr = (struct ieee80211_hdr *)skb->data;
  774. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  775. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  776. /*
  777. * We check if Short Preamble is needed for the CTS rate by
  778. * checking the BSS's global flag.
  779. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  780. */
  781. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  782. info->rtscts_rate = rate->hw_value;
  783. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  784. info->rtscts_rate |= rate->hw_value_short;
  785. for (i = 0; i < 4; i++) {
  786. bool is_40, is_sgi, is_sp;
  787. int phy;
  788. if (!rates[i].count || (rates[i].idx < 0))
  789. continue;
  790. rix = rates[i].idx;
  791. info->rates[i].Tries = rates[i].count;
  792. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  793. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  794. info->flags |= ATH9K_TXDESC_RTSENA;
  795. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  796. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  797. info->flags |= ATH9K_TXDESC_CTSENA;
  798. }
  799. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  800. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  801. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  802. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  803. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  804. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  805. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  806. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  807. /* MCS rates */
  808. info->rates[i].Rate = rix | 0x80;
  809. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  810. ah->txchainmask, info->rates[i].Rate);
  811. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  812. is_40, is_sgi, is_sp);
  813. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  814. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  815. continue;
  816. }
  817. /* legacy rates */
  818. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  819. !(rate->flags & IEEE80211_RATE_ERP_G))
  820. phy = WLAN_RC_PHY_CCK;
  821. else
  822. phy = WLAN_RC_PHY_OFDM;
  823. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  824. info->rates[i].Rate = rate->hw_value;
  825. if (rate->hw_value_short) {
  826. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  827. info->rates[i].Rate |= rate->hw_value_short;
  828. } else {
  829. is_sp = false;
  830. }
  831. if (bf->bf_state.bfs_paprd)
  832. info->rates[i].ChSel = ah->txchainmask;
  833. else
  834. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  835. ah->txchainmask, info->rates[i].Rate);
  836. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  837. phy, rate->bitrate * 100, len, rix, is_sp);
  838. }
  839. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  840. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  841. info->flags &= ~ATH9K_TXDESC_RTSENA;
  842. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  843. if (info->flags & ATH9K_TXDESC_RTSENA)
  844. info->flags &= ~ATH9K_TXDESC_CTSENA;
  845. }
  846. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  847. {
  848. struct ieee80211_hdr *hdr;
  849. enum ath9k_pkt_type htype;
  850. __le16 fc;
  851. hdr = (struct ieee80211_hdr *)skb->data;
  852. fc = hdr->frame_control;
  853. if (ieee80211_is_beacon(fc))
  854. htype = ATH9K_PKT_TYPE_BEACON;
  855. else if (ieee80211_is_probe_resp(fc))
  856. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  857. else if (ieee80211_is_atim(fc))
  858. htype = ATH9K_PKT_TYPE_ATIM;
  859. else if (ieee80211_is_pspoll(fc))
  860. htype = ATH9K_PKT_TYPE_PSPOLL;
  861. else
  862. htype = ATH9K_PKT_TYPE_NORMAL;
  863. return htype;
  864. }
  865. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  866. struct ath_txq *txq, int len)
  867. {
  868. struct ath_hw *ah = sc->sc_ah;
  869. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  870. struct ath_buf *bf_first = bf;
  871. struct ath_tx_info info;
  872. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  873. memset(&info, 0, sizeof(info));
  874. info.is_first = true;
  875. info.is_last = true;
  876. info.txpower = MAX_RATE_POWER;
  877. info.qcu = txq->axq_qnum;
  878. info.flags = ATH9K_TXDESC_INTREQ;
  879. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  880. info.flags |= ATH9K_TXDESC_NOACK;
  881. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  882. info.flags |= ATH9K_TXDESC_LDPC;
  883. ath_buf_set_rate(sc, bf, &info, len);
  884. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  885. info.flags |= ATH9K_TXDESC_CLRDMASK;
  886. if (bf->bf_state.bfs_paprd)
  887. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  888. while (bf) {
  889. struct sk_buff *skb = bf->bf_mpdu;
  890. struct ath_frame_info *fi = get_frame_info(skb);
  891. info.type = get_hw_packet_type(skb);
  892. if (bf->bf_next)
  893. info.link = bf->bf_next->bf_daddr;
  894. else
  895. info.link = 0;
  896. info.buf_addr[0] = bf->bf_buf_addr;
  897. info.buf_len[0] = skb->len;
  898. info.pkt_len = fi->framelen;
  899. info.keyix = fi->keyix;
  900. info.keytype = fi->keytype;
  901. if (aggr) {
  902. if (bf == bf_first)
  903. info.aggr = AGGR_BUF_FIRST;
  904. else if (!bf->bf_next)
  905. info.aggr = AGGR_BUF_LAST;
  906. else
  907. info.aggr = AGGR_BUF_MIDDLE;
  908. info.ndelim = bf->bf_state.ndelim;
  909. info.aggr_len = len;
  910. }
  911. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  912. bf = bf->bf_next;
  913. }
  914. }
  915. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  916. struct ath_atx_tid *tid)
  917. {
  918. struct ath_buf *bf;
  919. enum ATH_AGGR_STATUS status;
  920. struct ieee80211_tx_info *tx_info;
  921. struct list_head bf_q;
  922. int aggr_len;
  923. do {
  924. if (skb_queue_empty(&tid->buf_q))
  925. return;
  926. INIT_LIST_HEAD(&bf_q);
  927. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  928. /*
  929. * no frames picked up to be aggregated;
  930. * block-ack window is not open.
  931. */
  932. if (list_empty(&bf_q))
  933. break;
  934. bf = list_first_entry(&bf_q, struct ath_buf, list);
  935. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  936. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  937. if (tid->ac->clear_ps_filter) {
  938. tid->ac->clear_ps_filter = false;
  939. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  940. } else {
  941. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  942. }
  943. /* if only one frame, send as non-aggregate */
  944. if (bf == bf->bf_lastbf) {
  945. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  946. bf->bf_state.bf_type = BUF_AMPDU;
  947. } else {
  948. TX_STAT_INC(txq->axq_qnum, a_aggr);
  949. }
  950. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  951. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  952. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  953. status != ATH_AGGR_BAW_CLOSED);
  954. }
  955. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  956. u16 tid, u16 *ssn)
  957. {
  958. struct ath_atx_tid *txtid;
  959. struct ath_node *an;
  960. an = (struct ath_node *)sta->drv_priv;
  961. txtid = ATH_AN_2_TID(an, tid);
  962. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  963. return -EAGAIN;
  964. txtid->state |= AGGR_ADDBA_PROGRESS;
  965. txtid->paused = true;
  966. *ssn = txtid->seq_start = txtid->seq_next;
  967. txtid->bar_index = -1;
  968. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  969. txtid->baw_head = txtid->baw_tail = 0;
  970. return 0;
  971. }
  972. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  973. {
  974. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  975. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  976. struct ath_txq *txq = txtid->ac->txq;
  977. if (txtid->state & AGGR_CLEANUP)
  978. return;
  979. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  980. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  981. return;
  982. }
  983. ath_txq_lock(sc, txq);
  984. txtid->paused = true;
  985. /*
  986. * If frames are still being transmitted for this TID, they will be
  987. * cleaned up during tx completion. To prevent race conditions, this
  988. * TID can only be reused after all in-progress subframes have been
  989. * completed.
  990. */
  991. if (txtid->baw_head != txtid->baw_tail)
  992. txtid->state |= AGGR_CLEANUP;
  993. else
  994. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  995. ath_tx_flush_tid(sc, txtid);
  996. ath_txq_unlock_complete(sc, txq);
  997. }
  998. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  999. struct ath_node *an)
  1000. {
  1001. struct ath_atx_tid *tid;
  1002. struct ath_atx_ac *ac;
  1003. struct ath_txq *txq;
  1004. bool buffered;
  1005. int tidno;
  1006. for (tidno = 0, tid = &an->tid[tidno];
  1007. tidno < WME_NUM_TID; tidno++, tid++) {
  1008. if (!tid->sched)
  1009. continue;
  1010. ac = tid->ac;
  1011. txq = ac->txq;
  1012. ath_txq_lock(sc, txq);
  1013. buffered = !skb_queue_empty(&tid->buf_q);
  1014. tid->sched = false;
  1015. list_del(&tid->list);
  1016. if (ac->sched) {
  1017. ac->sched = false;
  1018. list_del(&ac->list);
  1019. }
  1020. ath_txq_unlock(sc, txq);
  1021. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1022. }
  1023. }
  1024. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1025. {
  1026. struct ath_atx_tid *tid;
  1027. struct ath_atx_ac *ac;
  1028. struct ath_txq *txq;
  1029. int tidno;
  1030. for (tidno = 0, tid = &an->tid[tidno];
  1031. tidno < WME_NUM_TID; tidno++, tid++) {
  1032. ac = tid->ac;
  1033. txq = ac->txq;
  1034. ath_txq_lock(sc, txq);
  1035. ac->clear_ps_filter = true;
  1036. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1037. ath_tx_queue_tid(txq, tid);
  1038. ath_txq_schedule(sc, txq);
  1039. }
  1040. ath_txq_unlock_complete(sc, txq);
  1041. }
  1042. }
  1043. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1044. {
  1045. struct ath_atx_tid *txtid;
  1046. struct ath_node *an;
  1047. an = (struct ath_node *)sta->drv_priv;
  1048. if (sc->sc_flags & SC_OP_TXAGGR) {
  1049. txtid = ATH_AN_2_TID(an, tid);
  1050. txtid->baw_size =
  1051. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1052. txtid->state |= AGGR_ADDBA_COMPLETE;
  1053. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1054. ath_tx_resume_tid(sc, txtid);
  1055. }
  1056. }
  1057. /********************/
  1058. /* Queue Management */
  1059. /********************/
  1060. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  1061. struct ath_txq *txq)
  1062. {
  1063. struct ath_atx_ac *ac, *ac_tmp;
  1064. struct ath_atx_tid *tid, *tid_tmp;
  1065. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1066. list_del(&ac->list);
  1067. ac->sched = false;
  1068. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  1069. list_del(&tid->list);
  1070. tid->sched = false;
  1071. ath_tid_drain(sc, txq, tid);
  1072. }
  1073. }
  1074. }
  1075. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1076. {
  1077. struct ath_hw *ah = sc->sc_ah;
  1078. struct ath9k_tx_queue_info qi;
  1079. static const int subtype_txq_to_hwq[] = {
  1080. [WME_AC_BE] = ATH_TXQ_AC_BE,
  1081. [WME_AC_BK] = ATH_TXQ_AC_BK,
  1082. [WME_AC_VI] = ATH_TXQ_AC_VI,
  1083. [WME_AC_VO] = ATH_TXQ_AC_VO,
  1084. };
  1085. int axq_qnum, i;
  1086. memset(&qi, 0, sizeof(qi));
  1087. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1088. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1089. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1090. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1091. qi.tqi_physCompBuf = 0;
  1092. /*
  1093. * Enable interrupts only for EOL and DESC conditions.
  1094. * We mark tx descriptors to receive a DESC interrupt
  1095. * when a tx queue gets deep; otherwise waiting for the
  1096. * EOL to reap descriptors. Note that this is done to
  1097. * reduce interrupt load and this only defers reaping
  1098. * descriptors, never transmitting frames. Aside from
  1099. * reducing interrupts this also permits more concurrency.
  1100. * The only potential downside is if the tx queue backs
  1101. * up in which case the top half of the kernel may backup
  1102. * due to a lack of tx descriptors.
  1103. *
  1104. * The UAPSD queue is an exception, since we take a desc-
  1105. * based intr on the EOSP frames.
  1106. */
  1107. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1108. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  1109. TXQ_FLAG_TXERRINT_ENABLE;
  1110. } else {
  1111. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1112. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1113. else
  1114. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1115. TXQ_FLAG_TXDESCINT_ENABLE;
  1116. }
  1117. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1118. if (axq_qnum == -1) {
  1119. /*
  1120. * NB: don't print a message, this happens
  1121. * normally on parts with too few tx queues
  1122. */
  1123. return NULL;
  1124. }
  1125. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1126. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1127. txq->axq_qnum = axq_qnum;
  1128. txq->mac80211_qnum = -1;
  1129. txq->axq_link = NULL;
  1130. __skb_queue_head_init(&txq->complete_q);
  1131. INIT_LIST_HEAD(&txq->axq_q);
  1132. INIT_LIST_HEAD(&txq->axq_acq);
  1133. spin_lock_init(&txq->axq_lock);
  1134. txq->axq_depth = 0;
  1135. txq->axq_ampdu_depth = 0;
  1136. txq->axq_tx_inprogress = false;
  1137. sc->tx.txqsetup |= 1<<axq_qnum;
  1138. txq->txq_headidx = txq->txq_tailidx = 0;
  1139. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1140. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1141. }
  1142. return &sc->tx.txq[axq_qnum];
  1143. }
  1144. int ath_txq_update(struct ath_softc *sc, int qnum,
  1145. struct ath9k_tx_queue_info *qinfo)
  1146. {
  1147. struct ath_hw *ah = sc->sc_ah;
  1148. int error = 0;
  1149. struct ath9k_tx_queue_info qi;
  1150. if (qnum == sc->beacon.beaconq) {
  1151. /*
  1152. * XXX: for beacon queue, we just save the parameter.
  1153. * It will be picked up by ath_beaconq_config when
  1154. * it's necessary.
  1155. */
  1156. sc->beacon.beacon_qi = *qinfo;
  1157. return 0;
  1158. }
  1159. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1160. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1161. qi.tqi_aifs = qinfo->tqi_aifs;
  1162. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1163. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1164. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1165. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1166. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1167. ath_err(ath9k_hw_common(sc->sc_ah),
  1168. "Unable to update hardware queue %u!\n", qnum);
  1169. error = -EIO;
  1170. } else {
  1171. ath9k_hw_resettxqueue(ah, qnum);
  1172. }
  1173. return error;
  1174. }
  1175. int ath_cabq_update(struct ath_softc *sc)
  1176. {
  1177. struct ath9k_tx_queue_info qi;
  1178. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1179. int qnum = sc->beacon.cabq->axq_qnum;
  1180. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1181. /*
  1182. * Ensure the readytime % is within the bounds.
  1183. */
  1184. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1185. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1186. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1187. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1188. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1189. sc->config.cabqReadytime) / 100;
  1190. ath_txq_update(sc, qnum, &qi);
  1191. return 0;
  1192. }
  1193. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  1194. {
  1195. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1196. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  1197. }
  1198. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1199. struct list_head *list, bool retry_tx)
  1200. {
  1201. struct ath_buf *bf, *lastbf;
  1202. struct list_head bf_head;
  1203. struct ath_tx_status ts;
  1204. memset(&ts, 0, sizeof(ts));
  1205. ts.ts_status = ATH9K_TX_FLUSH;
  1206. INIT_LIST_HEAD(&bf_head);
  1207. while (!list_empty(list)) {
  1208. bf = list_first_entry(list, struct ath_buf, list);
  1209. if (bf->bf_stale) {
  1210. list_del(&bf->list);
  1211. ath_tx_return_buffer(sc, bf);
  1212. continue;
  1213. }
  1214. lastbf = bf->bf_lastbf;
  1215. list_cut_position(&bf_head, list, &lastbf->list);
  1216. txq->axq_depth--;
  1217. if (bf_is_ampdu_not_probing(bf))
  1218. txq->axq_ampdu_depth--;
  1219. if (bf_isampdu(bf))
  1220. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1221. retry_tx);
  1222. else
  1223. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  1224. }
  1225. }
  1226. /*
  1227. * Drain a given TX queue (could be Beacon or Data)
  1228. *
  1229. * This assumes output has been stopped and
  1230. * we do not need to block ath_tx_tasklet.
  1231. */
  1232. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  1233. {
  1234. ath_txq_lock(sc, txq);
  1235. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1236. int idx = txq->txq_tailidx;
  1237. while (!list_empty(&txq->txq_fifo[idx])) {
  1238. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
  1239. retry_tx);
  1240. INCR(idx, ATH_TXFIFO_DEPTH);
  1241. }
  1242. txq->txq_tailidx = idx;
  1243. }
  1244. txq->axq_link = NULL;
  1245. txq->axq_tx_inprogress = false;
  1246. ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
  1247. /* flush any pending frames if aggregation is enabled */
  1248. if ((sc->sc_flags & SC_OP_TXAGGR) && !retry_tx)
  1249. ath_txq_drain_pending_buffers(sc, txq);
  1250. ath_txq_unlock_complete(sc, txq);
  1251. }
  1252. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1253. {
  1254. struct ath_hw *ah = sc->sc_ah;
  1255. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1256. struct ath_txq *txq;
  1257. int i;
  1258. u32 npend = 0;
  1259. if (sc->sc_flags & SC_OP_INVALID)
  1260. return true;
  1261. ath9k_hw_abort_tx_dma(ah);
  1262. /* Check if any queue remains active */
  1263. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1264. if (!ATH_TXQ_SETUP(sc, i))
  1265. continue;
  1266. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1267. npend |= BIT(i);
  1268. }
  1269. if (npend)
  1270. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1271. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1272. if (!ATH_TXQ_SETUP(sc, i))
  1273. continue;
  1274. /*
  1275. * The caller will resume queues with ieee80211_wake_queues.
  1276. * Mark the queue as not stopped to prevent ath_tx_complete
  1277. * from waking the queue too early.
  1278. */
  1279. txq = &sc->tx.txq[i];
  1280. txq->stopped = false;
  1281. ath_draintxq(sc, txq, retry_tx);
  1282. }
  1283. return !npend;
  1284. }
  1285. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1286. {
  1287. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1288. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1289. }
  1290. /* For each axq_acq entry, for each tid, try to schedule packets
  1291. * for transmit until ampdu_depth has reached min Q depth.
  1292. */
  1293. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1294. {
  1295. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1296. struct ath_atx_tid *tid, *last_tid;
  1297. if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
  1298. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1299. return;
  1300. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1301. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1302. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1303. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1304. list_del(&ac->list);
  1305. ac->sched = false;
  1306. while (!list_empty(&ac->tid_q)) {
  1307. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1308. list);
  1309. list_del(&tid->list);
  1310. tid->sched = false;
  1311. if (tid->paused)
  1312. continue;
  1313. ath_tx_sched_aggr(sc, txq, tid);
  1314. /*
  1315. * add tid to round-robin queue if more frames
  1316. * are pending for the tid
  1317. */
  1318. if (!skb_queue_empty(&tid->buf_q))
  1319. ath_tx_queue_tid(txq, tid);
  1320. if (tid == last_tid ||
  1321. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1322. break;
  1323. }
  1324. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1325. ac->sched = true;
  1326. list_add_tail(&ac->list, &txq->axq_acq);
  1327. }
  1328. if (ac == last_ac ||
  1329. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1330. return;
  1331. }
  1332. }
  1333. /***********/
  1334. /* TX, DMA */
  1335. /***********/
  1336. /*
  1337. * Insert a chain of ath_buf (descriptors) on a txq and
  1338. * assume the descriptors are already chained together by caller.
  1339. */
  1340. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1341. struct list_head *head, bool internal)
  1342. {
  1343. struct ath_hw *ah = sc->sc_ah;
  1344. struct ath_common *common = ath9k_hw_common(ah);
  1345. struct ath_buf *bf, *bf_last;
  1346. bool puttxbuf = false;
  1347. bool edma;
  1348. /*
  1349. * Insert the frame on the outbound list and
  1350. * pass it on to the hardware.
  1351. */
  1352. if (list_empty(head))
  1353. return;
  1354. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1355. bf = list_first_entry(head, struct ath_buf, list);
  1356. bf_last = list_entry(head->prev, struct ath_buf, list);
  1357. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1358. txq->axq_qnum, txq->axq_depth);
  1359. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1360. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1361. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1362. puttxbuf = true;
  1363. } else {
  1364. list_splice_tail_init(head, &txq->axq_q);
  1365. if (txq->axq_link) {
  1366. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1367. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1368. txq->axq_qnum, txq->axq_link,
  1369. ito64(bf->bf_daddr), bf->bf_desc);
  1370. } else if (!edma)
  1371. puttxbuf = true;
  1372. txq->axq_link = bf_last->bf_desc;
  1373. }
  1374. if (puttxbuf) {
  1375. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1376. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1377. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1378. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1379. }
  1380. if (!edma) {
  1381. TX_STAT_INC(txq->axq_qnum, txstart);
  1382. ath9k_hw_txstart(ah, txq->axq_qnum);
  1383. }
  1384. if (!internal) {
  1385. txq->axq_depth++;
  1386. if (bf_is_ampdu_not_probing(bf))
  1387. txq->axq_ampdu_depth++;
  1388. }
  1389. }
  1390. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1391. struct sk_buff *skb, struct ath_tx_control *txctl)
  1392. {
  1393. struct ath_frame_info *fi = get_frame_info(skb);
  1394. struct list_head bf_head;
  1395. struct ath_buf *bf;
  1396. /*
  1397. * Do not queue to h/w when any of the following conditions is true:
  1398. * - there are pending frames in software queue
  1399. * - the TID is currently paused for ADDBA/BAR request
  1400. * - seqno is not within block-ack window
  1401. * - h/w queue depth exceeds low water mark
  1402. */
  1403. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1404. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1405. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1406. /*
  1407. * Add this frame to software queue for scheduling later
  1408. * for aggregation.
  1409. */
  1410. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1411. __skb_queue_tail(&tid->buf_q, skb);
  1412. if (!txctl->an || !txctl->an->sleeping)
  1413. ath_tx_queue_tid(txctl->txq, tid);
  1414. return;
  1415. }
  1416. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1417. if (!bf)
  1418. return;
  1419. bf->bf_state.bf_type = BUF_AMPDU;
  1420. INIT_LIST_HEAD(&bf_head);
  1421. list_add(&bf->list, &bf_head);
  1422. /* Add sub-frame to BAW */
  1423. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1424. /* Queue to h/w without aggregation */
  1425. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1426. bf->bf_lastbf = bf;
  1427. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1428. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1429. }
  1430. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1431. struct ath_atx_tid *tid, struct sk_buff *skb)
  1432. {
  1433. struct ath_frame_info *fi = get_frame_info(skb);
  1434. struct list_head bf_head;
  1435. struct ath_buf *bf;
  1436. bf = fi->bf;
  1437. if (!bf)
  1438. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1439. if (!bf)
  1440. return;
  1441. INIT_LIST_HEAD(&bf_head);
  1442. list_add_tail(&bf->list, &bf_head);
  1443. bf->bf_state.bf_type = 0;
  1444. bf->bf_lastbf = bf;
  1445. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1446. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1447. TX_STAT_INC(txq->axq_qnum, queued);
  1448. }
  1449. static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
  1450. int framelen)
  1451. {
  1452. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1453. struct ieee80211_sta *sta = tx_info->control.sta;
  1454. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1455. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1456. struct ath_frame_info *fi = get_frame_info(skb);
  1457. struct ath_node *an = NULL;
  1458. enum ath9k_key_type keytype;
  1459. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1460. if (sta)
  1461. an = (struct ath_node *) sta->drv_priv;
  1462. memset(fi, 0, sizeof(*fi));
  1463. if (hw_key)
  1464. fi->keyix = hw_key->hw_key_idx;
  1465. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1466. fi->keyix = an->ps_key;
  1467. else
  1468. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1469. fi->keytype = keytype;
  1470. fi->framelen = framelen;
  1471. }
  1472. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1473. {
  1474. struct ath_hw *ah = sc->sc_ah;
  1475. struct ath9k_channel *curchan = ah->curchan;
  1476. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1477. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1478. (chainmask == 0x7) && (rate < 0x90))
  1479. return 0x3;
  1480. else
  1481. return chainmask;
  1482. }
  1483. /*
  1484. * Assign a descriptor (and sequence number if necessary,
  1485. * and map buffer for DMA. Frees skb on error
  1486. */
  1487. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1488. struct ath_txq *txq,
  1489. struct ath_atx_tid *tid,
  1490. struct sk_buff *skb)
  1491. {
  1492. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1493. struct ath_frame_info *fi = get_frame_info(skb);
  1494. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1495. struct ath_buf *bf;
  1496. u16 seqno;
  1497. bf = ath_tx_get_buffer(sc);
  1498. if (!bf) {
  1499. ath_dbg(common, XMIT, "TX buffers are full\n");
  1500. goto error;
  1501. }
  1502. ATH_TXBUF_RESET(bf);
  1503. if (tid) {
  1504. seqno = tid->seq_next;
  1505. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1506. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1507. bf->bf_state.seqno = seqno;
  1508. }
  1509. bf->bf_mpdu = skb;
  1510. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1511. skb->len, DMA_TO_DEVICE);
  1512. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1513. bf->bf_mpdu = NULL;
  1514. bf->bf_buf_addr = 0;
  1515. ath_err(ath9k_hw_common(sc->sc_ah),
  1516. "dma_mapping_error() on TX\n");
  1517. ath_tx_return_buffer(sc, bf);
  1518. goto error;
  1519. }
  1520. fi->bf = bf;
  1521. return bf;
  1522. error:
  1523. dev_kfree_skb_any(skb);
  1524. return NULL;
  1525. }
  1526. /* FIXME: tx power */
  1527. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1528. struct ath_tx_control *txctl)
  1529. {
  1530. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1531. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1532. struct ath_atx_tid *tid = NULL;
  1533. struct ath_buf *bf;
  1534. u8 tidno;
  1535. if ((sc->sc_flags & SC_OP_TXAGGR) && txctl->an &&
  1536. ieee80211_is_data_qos(hdr->frame_control)) {
  1537. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1538. IEEE80211_QOS_CTL_TID_MASK;
  1539. tid = ATH_AN_2_TID(txctl->an, tidno);
  1540. WARN_ON(tid->ac->txq != txctl->txq);
  1541. }
  1542. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1543. /*
  1544. * Try aggregation if it's a unicast data frame
  1545. * and the destination is HT capable.
  1546. */
  1547. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1548. } else {
  1549. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1550. if (!bf)
  1551. return;
  1552. bf->bf_state.bfs_paprd = txctl->paprd;
  1553. if (txctl->paprd)
  1554. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1555. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1556. }
  1557. }
  1558. /* Upon failure caller should free skb */
  1559. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1560. struct ath_tx_control *txctl)
  1561. {
  1562. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1563. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1564. struct ieee80211_sta *sta = info->control.sta;
  1565. struct ieee80211_vif *vif = info->control.vif;
  1566. struct ath_softc *sc = hw->priv;
  1567. struct ath_txq *txq = txctl->txq;
  1568. int padpos, padsize;
  1569. int frmlen = skb->len + FCS_LEN;
  1570. int q;
  1571. /* NOTE: sta can be NULL according to net/mac80211.h */
  1572. if (sta)
  1573. txctl->an = (struct ath_node *)sta->drv_priv;
  1574. if (info->control.hw_key)
  1575. frmlen += info->control.hw_key->icv_len;
  1576. /*
  1577. * As a temporary workaround, assign seq# here; this will likely need
  1578. * to be cleaned up to work better with Beacon transmission and virtual
  1579. * BSSes.
  1580. */
  1581. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1582. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1583. sc->tx.seq_no += 0x10;
  1584. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1585. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1586. }
  1587. /* Add the padding after the header if this is not already done */
  1588. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1589. padsize = padpos & 3;
  1590. if (padsize && skb->len > padpos) {
  1591. if (skb_headroom(skb) < padsize)
  1592. return -ENOMEM;
  1593. skb_push(skb, padsize);
  1594. memmove(skb->data, skb->data + padsize, padpos);
  1595. hdr = (struct ieee80211_hdr *) skb->data;
  1596. }
  1597. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1598. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1599. !ieee80211_is_data(hdr->frame_control))
  1600. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1601. setup_frame_info(hw, skb, frmlen);
  1602. /*
  1603. * At this point, the vif, hw_key and sta pointers in the tx control
  1604. * info are no longer valid (overwritten by the ath_frame_info data.
  1605. */
  1606. q = skb_get_queue_mapping(skb);
  1607. ath_txq_lock(sc, txq);
  1608. if (txq == sc->tx.txq_map[q] &&
  1609. ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
  1610. ieee80211_stop_queue(sc->hw, q);
  1611. txq->stopped = 1;
  1612. }
  1613. ath_tx_start_dma(sc, skb, txctl);
  1614. ath_txq_unlock(sc, txq);
  1615. return 0;
  1616. }
  1617. /*****************/
  1618. /* TX Completion */
  1619. /*****************/
  1620. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1621. int tx_flags, struct ath_txq *txq)
  1622. {
  1623. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1624. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1625. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1626. int q, padpos, padsize;
  1627. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1628. if (!(tx_flags & ATH_TX_ERROR))
  1629. /* Frame was ACKed */
  1630. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1631. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1632. padsize = padpos & 3;
  1633. if (padsize && skb->len>padpos+padsize) {
  1634. /*
  1635. * Remove MAC header padding before giving the frame back to
  1636. * mac80211.
  1637. */
  1638. memmove(skb->data + padsize, skb->data, padpos);
  1639. skb_pull(skb, padsize);
  1640. }
  1641. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1642. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1643. ath_dbg(common, PS,
  1644. "Going back to sleep after having received TX status (0x%lx)\n",
  1645. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1646. PS_WAIT_FOR_CAB |
  1647. PS_WAIT_FOR_PSPOLL_DATA |
  1648. PS_WAIT_FOR_TX_ACK));
  1649. }
  1650. q = skb_get_queue_mapping(skb);
  1651. if (txq == sc->tx.txq_map[q]) {
  1652. if (WARN_ON(--txq->pending_frames < 0))
  1653. txq->pending_frames = 0;
  1654. if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
  1655. ieee80211_wake_queue(sc->hw, q);
  1656. txq->stopped = 0;
  1657. }
  1658. }
  1659. __skb_queue_tail(&txq->complete_q, skb);
  1660. }
  1661. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1662. struct ath_txq *txq, struct list_head *bf_q,
  1663. struct ath_tx_status *ts, int txok)
  1664. {
  1665. struct sk_buff *skb = bf->bf_mpdu;
  1666. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1667. unsigned long flags;
  1668. int tx_flags = 0;
  1669. if (!txok)
  1670. tx_flags |= ATH_TX_ERROR;
  1671. if (ts->ts_status & ATH9K_TXERR_FILT)
  1672. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1673. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1674. bf->bf_buf_addr = 0;
  1675. if (bf->bf_state.bfs_paprd) {
  1676. if (time_after(jiffies,
  1677. bf->bf_state.bfs_paprd_timestamp +
  1678. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1679. dev_kfree_skb_any(skb);
  1680. else
  1681. complete(&sc->paprd_complete);
  1682. } else {
  1683. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1684. ath_tx_complete(sc, skb, tx_flags, txq);
  1685. }
  1686. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1687. * accidentally reference it later.
  1688. */
  1689. bf->bf_mpdu = NULL;
  1690. /*
  1691. * Return the list of ath_buf of this mpdu to free queue
  1692. */
  1693. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1694. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1695. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1696. }
  1697. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1698. struct ath_tx_status *ts, int nframes, int nbad,
  1699. int txok)
  1700. {
  1701. struct sk_buff *skb = bf->bf_mpdu;
  1702. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1703. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1704. struct ieee80211_hw *hw = sc->hw;
  1705. struct ath_hw *ah = sc->sc_ah;
  1706. u8 i, tx_rateindex;
  1707. if (txok)
  1708. tx_info->status.ack_signal = ts->ts_rssi;
  1709. tx_rateindex = ts->ts_rateindex;
  1710. WARN_ON(tx_rateindex >= hw->max_rates);
  1711. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1712. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1713. BUG_ON(nbad > nframes);
  1714. }
  1715. tx_info->status.ampdu_len = nframes;
  1716. tx_info->status.ampdu_ack_len = nframes - nbad;
  1717. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1718. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1719. /*
  1720. * If an underrun error is seen assume it as an excessive
  1721. * retry only if max frame trigger level has been reached
  1722. * (2 KB for single stream, and 4 KB for dual stream).
  1723. * Adjust the long retry as if the frame was tried
  1724. * hw->max_rate_tries times to affect how rate control updates
  1725. * PER for the failed rate.
  1726. * In case of congestion on the bus penalizing this type of
  1727. * underruns should help hardware actually transmit new frames
  1728. * successfully by eventually preferring slower rates.
  1729. * This itself should also alleviate congestion on the bus.
  1730. */
  1731. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1732. ATH9K_TX_DELIM_UNDERRUN)) &&
  1733. ieee80211_is_data(hdr->frame_control) &&
  1734. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1735. tx_info->status.rates[tx_rateindex].count =
  1736. hw->max_rate_tries;
  1737. }
  1738. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1739. tx_info->status.rates[i].count = 0;
  1740. tx_info->status.rates[i].idx = -1;
  1741. }
  1742. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1743. }
  1744. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  1745. struct ath_tx_status *ts, struct ath_buf *bf,
  1746. struct list_head *bf_head)
  1747. {
  1748. int txok;
  1749. txq->axq_depth--;
  1750. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  1751. txq->axq_tx_inprogress = false;
  1752. if (bf_is_ampdu_not_probing(bf))
  1753. txq->axq_ampdu_depth--;
  1754. if (!bf_isampdu(bf)) {
  1755. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  1756. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  1757. } else
  1758. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
  1759. if (sc->sc_flags & SC_OP_TXAGGR)
  1760. ath_txq_schedule(sc, txq);
  1761. }
  1762. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1763. {
  1764. struct ath_hw *ah = sc->sc_ah;
  1765. struct ath_common *common = ath9k_hw_common(ah);
  1766. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1767. struct list_head bf_head;
  1768. struct ath_desc *ds;
  1769. struct ath_tx_status ts;
  1770. int status;
  1771. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1772. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1773. txq->axq_link);
  1774. ath_txq_lock(sc, txq);
  1775. for (;;) {
  1776. if (work_pending(&sc->hw_reset_work))
  1777. break;
  1778. if (list_empty(&txq->axq_q)) {
  1779. txq->axq_link = NULL;
  1780. if (sc->sc_flags & SC_OP_TXAGGR)
  1781. ath_txq_schedule(sc, txq);
  1782. break;
  1783. }
  1784. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1785. /*
  1786. * There is a race condition that a BH gets scheduled
  1787. * after sw writes TxE and before hw re-load the last
  1788. * descriptor to get the newly chained one.
  1789. * Software must keep the last DONE descriptor as a
  1790. * holding descriptor - software does so by marking
  1791. * it with the STALE flag.
  1792. */
  1793. bf_held = NULL;
  1794. if (bf->bf_stale) {
  1795. bf_held = bf;
  1796. if (list_is_last(&bf_held->list, &txq->axq_q))
  1797. break;
  1798. bf = list_entry(bf_held->list.next, struct ath_buf,
  1799. list);
  1800. }
  1801. lastbf = bf->bf_lastbf;
  1802. ds = lastbf->bf_desc;
  1803. memset(&ts, 0, sizeof(ts));
  1804. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1805. if (status == -EINPROGRESS)
  1806. break;
  1807. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1808. /*
  1809. * Remove ath_buf's of the same transmit unit from txq,
  1810. * however leave the last descriptor back as the holding
  1811. * descriptor for hw.
  1812. */
  1813. lastbf->bf_stale = true;
  1814. INIT_LIST_HEAD(&bf_head);
  1815. if (!list_is_singular(&lastbf->list))
  1816. list_cut_position(&bf_head,
  1817. &txq->axq_q, lastbf->list.prev);
  1818. if (bf_held) {
  1819. list_del(&bf_held->list);
  1820. ath_tx_return_buffer(sc, bf_held);
  1821. }
  1822. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1823. }
  1824. ath_txq_unlock_complete(sc, txq);
  1825. }
  1826. static void ath_tx_complete_poll_work(struct work_struct *work)
  1827. {
  1828. struct ath_softc *sc = container_of(work, struct ath_softc,
  1829. tx_complete_work.work);
  1830. struct ath_txq *txq;
  1831. int i;
  1832. bool needreset = false;
  1833. #ifdef CONFIG_ATH9K_DEBUGFS
  1834. sc->tx_complete_poll_work_seen++;
  1835. #endif
  1836. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1837. if (ATH_TXQ_SETUP(sc, i)) {
  1838. txq = &sc->tx.txq[i];
  1839. ath_txq_lock(sc, txq);
  1840. if (txq->axq_depth) {
  1841. if (txq->axq_tx_inprogress) {
  1842. needreset = true;
  1843. ath_txq_unlock(sc, txq);
  1844. break;
  1845. } else {
  1846. txq->axq_tx_inprogress = true;
  1847. }
  1848. }
  1849. ath_txq_unlock_complete(sc, txq);
  1850. }
  1851. if (needreset) {
  1852. ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
  1853. "tx hung, resetting the chip\n");
  1854. RESET_STAT_INC(sc, RESET_TYPE_TX_HANG);
  1855. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  1856. }
  1857. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1858. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1859. }
  1860. void ath_tx_tasklet(struct ath_softc *sc)
  1861. {
  1862. int i;
  1863. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1864. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1865. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1866. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1867. ath_tx_processq(sc, &sc->tx.txq[i]);
  1868. }
  1869. }
  1870. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1871. {
  1872. struct ath_tx_status ts;
  1873. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1874. struct ath_hw *ah = sc->sc_ah;
  1875. struct ath_txq *txq;
  1876. struct ath_buf *bf, *lastbf;
  1877. struct list_head bf_head;
  1878. int status;
  1879. for (;;) {
  1880. if (work_pending(&sc->hw_reset_work))
  1881. break;
  1882. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1883. if (status == -EINPROGRESS)
  1884. break;
  1885. if (status == -EIO) {
  1886. ath_dbg(common, XMIT, "Error processing tx status\n");
  1887. break;
  1888. }
  1889. /* Skip beacon completions */
  1890. if (ts.qid == sc->beacon.beaconq)
  1891. continue;
  1892. txq = &sc->tx.txq[ts.qid];
  1893. ath_txq_lock(sc, txq);
  1894. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1895. ath_txq_unlock(sc, txq);
  1896. return;
  1897. }
  1898. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1899. struct ath_buf, list);
  1900. lastbf = bf->bf_lastbf;
  1901. INIT_LIST_HEAD(&bf_head);
  1902. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1903. &lastbf->list);
  1904. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1905. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1906. if (!list_empty(&txq->axq_q)) {
  1907. struct list_head bf_q;
  1908. INIT_LIST_HEAD(&bf_q);
  1909. txq->axq_link = NULL;
  1910. list_splice_tail_init(&txq->axq_q, &bf_q);
  1911. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1912. }
  1913. }
  1914. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1915. ath_txq_unlock_complete(sc, txq);
  1916. }
  1917. }
  1918. /*****************/
  1919. /* Init, Cleanup */
  1920. /*****************/
  1921. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1922. {
  1923. struct ath_descdma *dd = &sc->txsdma;
  1924. u8 txs_len = sc->sc_ah->caps.txs_len;
  1925. dd->dd_desc_len = size * txs_len;
  1926. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1927. &dd->dd_desc_paddr, GFP_KERNEL);
  1928. if (!dd->dd_desc)
  1929. return -ENOMEM;
  1930. return 0;
  1931. }
  1932. static int ath_tx_edma_init(struct ath_softc *sc)
  1933. {
  1934. int err;
  1935. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1936. if (!err)
  1937. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1938. sc->txsdma.dd_desc_paddr,
  1939. ATH_TXSTATUS_RING_SIZE);
  1940. return err;
  1941. }
  1942. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1943. {
  1944. struct ath_descdma *dd = &sc->txsdma;
  1945. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1946. dd->dd_desc_paddr);
  1947. }
  1948. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1949. {
  1950. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1951. int error = 0;
  1952. spin_lock_init(&sc->tx.txbuflock);
  1953. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1954. "tx", nbufs, 1, 1);
  1955. if (error != 0) {
  1956. ath_err(common,
  1957. "Failed to allocate tx descriptors: %d\n", error);
  1958. goto err;
  1959. }
  1960. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1961. "beacon", ATH_BCBUF, 1, 1);
  1962. if (error != 0) {
  1963. ath_err(common,
  1964. "Failed to allocate beacon descriptors: %d\n", error);
  1965. goto err;
  1966. }
  1967. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1968. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1969. error = ath_tx_edma_init(sc);
  1970. if (error)
  1971. goto err;
  1972. }
  1973. err:
  1974. if (error != 0)
  1975. ath_tx_cleanup(sc);
  1976. return error;
  1977. }
  1978. void ath_tx_cleanup(struct ath_softc *sc)
  1979. {
  1980. if (sc->beacon.bdma.dd_desc_len != 0)
  1981. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1982. if (sc->tx.txdma.dd_desc_len != 0)
  1983. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1984. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1985. ath_tx_edma_cleanup(sc);
  1986. }
  1987. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1988. {
  1989. struct ath_atx_tid *tid;
  1990. struct ath_atx_ac *ac;
  1991. int tidno, acno;
  1992. for (tidno = 0, tid = &an->tid[tidno];
  1993. tidno < WME_NUM_TID;
  1994. tidno++, tid++) {
  1995. tid->an = an;
  1996. tid->tidno = tidno;
  1997. tid->seq_start = tid->seq_next = 0;
  1998. tid->baw_size = WME_MAX_BA;
  1999. tid->baw_head = tid->baw_tail = 0;
  2000. tid->sched = false;
  2001. tid->paused = false;
  2002. tid->state &= ~AGGR_CLEANUP;
  2003. __skb_queue_head_init(&tid->buf_q);
  2004. acno = TID_TO_WME_AC(tidno);
  2005. tid->ac = &an->ac[acno];
  2006. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2007. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2008. }
  2009. for (acno = 0, ac = &an->ac[acno];
  2010. acno < WME_NUM_AC; acno++, ac++) {
  2011. ac->sched = false;
  2012. ac->txq = sc->tx.txq_map[acno];
  2013. INIT_LIST_HEAD(&ac->tid_q);
  2014. }
  2015. }
  2016. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2017. {
  2018. struct ath_atx_ac *ac;
  2019. struct ath_atx_tid *tid;
  2020. struct ath_txq *txq;
  2021. int tidno;
  2022. for (tidno = 0, tid = &an->tid[tidno];
  2023. tidno < WME_NUM_TID; tidno++, tid++) {
  2024. ac = tid->ac;
  2025. txq = ac->txq;
  2026. ath_txq_lock(sc, txq);
  2027. if (tid->sched) {
  2028. list_del(&tid->list);
  2029. tid->sched = false;
  2030. }
  2031. if (ac->sched) {
  2032. list_del(&ac->list);
  2033. tid->ac->sched = false;
  2034. }
  2035. ath_tid_drain(sc, txq, tid);
  2036. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2037. tid->state &= ~AGGR_CLEANUP;
  2038. ath_txq_unlock(sc, txq);
  2039. }
  2040. }